
UNIVERSITY OF CINCINNATI

Date:_Nov 10, 2005_______

I, _Shuguang Wu__,
hereby submit this work as part of the requirements for the degree of:

Master of Science

in:

Computer Engineering

It is entitled:
FPGA Implementation of the FDTD Algorithm Using

Local SRAM

This work and its defense approved by:

Chair: _Dr. Karen A. Tomko____________
 _Dr. Harold W. Carter__________
 _Dr. Wen-Ben Jone______________

 FPGA Implementation of the FDTD Algorithm

 Using Local SRAM

 A thesis submitted to the

 Division of Research and Advanced Studies
 of
 The University of Cincinnati

 in partial fulfillment of requirements for the degree of

 Master of Science

 in the

 Department of Electrical & Computer Engineering
 and
 Computer Science
 of
 The College of Engineering

 November 2005

 by

 Shuguang Wu

 B.E., Beijing University of Posts and Telecommunications, 1996
 M.E., Beijing University of Posts and Telecommunications, 1999

 Thesis Advisor and Committee Chair: Dr. Karen A. Tomko

 Abstract

 The Finite-Difference Time-Domain (FDTD) algorithm is a powerful tool to

model electromagnetic phenomena. It is computation-intensive. Plenty of work has been

done to implement this algorithm on FPGA and to improve the implementation

performance.

 This thesis presents an implementation of the FDTD algorithm on FPGA in two

reconfigurable computing systems in order to explore the implementation feasibility and

to improve the implementation performance. The two reconfigurable computing systems

used in this thesis are a prototyping system in the ACL Lab at University of Cincinnati

and a Cray XD1 system available at the Ohio Supercomputer Center. There are three

major functional units in the FPGA: update engines calculating three equations in the

FDTD algorithm, interface to host system, interface to local SRAMs. The local SRAMs

are used to store input and output data for the FDTD algorithm. The purpose to use the

local SRAMs is to reduce the data transfer between the host system and the FPGA. Host

applications are developed to verify the FPGA implementation.

 Acknowledgement

 I’m extremely grateful to my advisor Dr. Karen A. Tomko for her precious

guidance and encouragement during the work on my thesis. It is really great honor for me

to work with her. And I’m very thankful for her kindness, support and co-operation.

 I’m thankful to Dr. Harold W. Carter and Dr. Wen-Ben Jone for participating in

my thesis committee.

 SynplifyPro used in this project is provided by Synplicity through their University

Program, Xilinx ISE is provided by Xilinx through Xilinx’s University Program (XUP),

and Modelsim is donated from Mentor Graphics as part of their Higher Education

Program (HEP).

 I would like to thank the members in our group for their help. They are: Sachin

Gandhi, Robert Cully, Ashish Desai. It is great pleasure to work with them.

 And I express my great gratitude to my parents and my sisters. Their love,

encouragement and support accompany me forever.

Table of Contents

1 Introduction . 1

1.1 Overview . 1

1.2 Related Work . 4

1.2.1 Reconfigurable Computing System 4

1.2.2 FPGA Implementation of Floating Point Algorithm 5

1.2.3 FPGA Implementation of FDTD Algorithm 7

1.3 Thesis Organization .8

2 Finite-Difference Time-Domain Algorithm for Electromagnetic Simulation

 . .10

3 FPGA-Based Reconfigurable Computing Systems13

3.1 Laboratory Prototype System . 14

3.1.1 System Architecture . 14

3.1.2 Simulation Environment . 15

3.1.3 Host Programming Environment . 17

3.2 Cray XD1 System . 18

3.2.1 System Architecture . 19

3.2.1.1 Cray XD1 Chassis .19

3.2.1.2 RapidArray Interconnect .20

3.2.2 Simulation Environment . 21

3.2.3 Host Programming Environment 22

4 FDTD FPGA Implementation using Local SRAM 25

 i

4.1 FPGA Implementation Flow . 26

4.2 FPGA Implementation in the ACL Prototype System 28

4.2.1 VHDL Design . 28

 4.2.1.1 FPGA Function . 28

 4.2.1.2 FPGA Architecture . 30

 4.2.1.3 Data Organization in Local Memories 32

 4.2.1.4 Components and Processes 33

4.2.2 Simulation . 41

4.2.3 Synthesis . 41

4.2.4 P&R . 42

4.2.5 Host Programming . 42

4.3 FPGA Implementation in the Cray XD1 System 43

4.3.1 VHDL Design . 43

 4.3.1.1 FPGA Function . 44

 4.3.1.2 FPGA Architecture . 45

 4.3.1.3 Data Organization in Local Memories 46

 4.3.1.4 Components and Processes 48

4.3.2 Simulation . 57

4.3.3 Synthesis .58

4.3.4 P&R . 59

4.3.5 Host Programming . 59

5 Theoretical Performance Analysis and Future Work 61

5.1 Performance Analysis in the Prototype System 62

 ii

5.2 Performance Analysis in the Cray XD1 System63

5.3 Performance Comparison .65

5.4 Future Work in the Cray XD1 System . 66

 Bibliography .69

 iii

List of Figures

 Figure 3-1 : Reconfigurable Computing System . 13

 Figure 3-2 : FIREBIRDTM/PCI block diagram . 15

 Figure 3-3 : Cray XD1 chassis . 19

 Figure 3-4 : Expansion Module . 20

 Figure 4-1 : FPGA Implementation Flow . 26

 Figure 4-2 : FPGA Architecture in the Prototype System 31

 Figure 4-3 : Block Diagram of Magnetic update Hx 34

 Figure 4-4 : Block Diagram of Magnetic update Hy 34

 Figure 4-5 : Block Diagram of Electric update .35

 Figure 4-6 : Structure of the Test Bench in the Prototype System 41

 Figure 4-7 : FPGA Architecture in the Cray XD1 System 45

 Figure 4-8 : Parameters in Register FPGA_reg . 51

 Figure 4-9 : Procedure for FDTD algorithm calculation. 53

 Figure 4-10 : Read Addresses Generation Order for Hx, Hy values update 54

 Figure 4-11 : Write Addresses Generation Order for Hx, Hy values update 55

 Figure 4-12 : Read Addresses Generation Order for Ez values update 56

 Figure 4-13 : Write Addresses Generation Order for Ez values update. . . . 57

 Figure 4-14 : Structure of the Test Bench in the Cray XD1. 58

 iv

Chapter 1

Introduction

1.1 Overview

 This thesis presents an implementation of the Finite-Difference Time-Domain

(FDTD) algorithm on FPGA in two reconfigurable computing systems. Local SRAMs are

used to store input and output data for the FDTD algorithm. Host applications are

developed to verify the implementation and to evaluate performance of the

implementation.

 The work done in this thesis is based on the work done by Gandhi. Gandhi

implemented the FDTD algorithm in a reconfigurable computing system named

Heterogeneous HPC computer (HHPC) [21]. His work focuses on speedup of three

equations in the FDTD algorithm. In his thesis, three update engines are implemented to

calculate three equations in the FDTD algorithm, and parallelism and pipelining are

utilized to speed up these update engines. Input and output data are stored in host system

memories. For each iteration of FDTD algorithm calculation, input and output data must

be transferred between the host system and the FPGA. This slow data communications is

performance bottleneck and greatly degrades the performance of the whole system.

 In this thesis, the implementation focuses on speedup of the whole process to

complete the FDTD algorithm. The whole process includes input and output data transfer

between the host system and the FPGA and data update by the update engines. In order to

realize this goal, the implementation is done in two reconfigurable computing systems

 1

different from the HHPC system. Local SRAMs attached to the FPGA are used to store

input and output data to reduce data transfer between the host system and the FPGA.

 The two reconfigurable computing systems used in this thesis are a prototyping

system in the ACL Lab at University of Cincinnati which is referred to as the Prototype

System throughout this thesis and a Cray XD1 system available at the Ohio

Supercomputer Center. The Prototype system consists of a PC and a reconfigurable

computing board. In the Prototype system, FPGA and local SRAMs are located on the

reconfigurable computing board, host applications run on the host PC. The Cray XD1

system consists of a number of Cray chassis connected by a switch fabric. Each chassis

consists of one management processor and six compute blades. In the Cray XD1 system,

host processors are located on the compute blades and host applications run on the host

processors. FPGAs and local SRAMs are attached to the compute blades.

 There are three major functional units in the FPGA: update engines calculating

three equations in the FDTD algorithm, interface to the host system, interface to the local

SRAMs. The update engines are implemented using floating point units. Two update

engines are used to update magnetic field values, one is used to update electric field

values. These update engines are pipelined. Furthermore, in the Cray XD1 system, the

two update engines used to update magnetic field values are processed in parallel. Due to

the pipelining and the parallelism, throughput and speed of the implementation improve.

Interface to the host system interacts with the host system. The host system issues

commands such as read and write to the FPGA through this interface. The FPGA

processes the received commands and gives response to the host system through this

 2

interface, too. Interface to the local SRAMs is used for the FPGA to read and write the

local SRAMs.

 In order to reduce the data transfer between the host system and the FPGA, input

and output data for the FDTD algorithm are stored in the local SRAMs. In the Prototype

system, local SRAMs are single-port memories. They can’t be read and written

simultaneously. Three local SRAMs are used to store input data and two are used to store

output data for the FDTD algorithm. Input data should be transferred from the host

system to the input SRAMs before the calculation of the FDTD algorithm begins. When

one iteration of calculation completes, the results will be stored in the output SRAMs and

the host system should read the results back from the output SRAMs. In the Cray XD1

system, there are four dual-port SRAMs. They can be read and written at the same time

as long as the read address and the write address are not the same. These SRAMs are

organized as ping-pong SRAMs. This ping-pong mechanism enables the FPGA to

execute many iterations of calculation with little communication with the host system.

Reduction of data transfer between the host system and the FPGA during intervals

between calculation iterations greatly improves the performance of the whole system.

 In this thesis, the main purpose of developing the host application is to verify the

FPGA implementation. Though the FPGA design is already simulated and debugged after

VHDL design completes, the FPGA design still needs to be verified to run correctly in

the actual system. So host application needs to be developed to verify the function of the

FPGA implementation. The host application loads the FPGA binary file into the FPGA,

writes data to and reads data from the registers in the FPGA or the local SRAMs through

the FPGA. It also starts the internal update engines in the FPGA and monitors the status

 3

of the update engines. By this method, all the functional units of the FPGA can be

verified.

 The host application can also be augmented to evaluate the performance of the

FPGA implementation. The experimental evaluation is the work of another member in

our group. In this thesis, only theoretical analysis and evaluation of performance of the

FPGA implementation is done.

1.2 Related Work

1.2.1 Reconfigurable Computing System

 FPGA was first introduced in early 1990s. Since then, a lot of reconfigurable

computing systems have been developed. C.E. Cox et al. developed a reconfigurable

computing system named GANGLION [1]. GANGLION was a fast digital connectionist

classifier. Its architecture was realized using a FPGA array on a VME card attached to a

workstation. M. Wazlowski et al developed PRISM II [2]. PRISM II was a general

purpose hardware platform. It mainly consisted of PRISM host processor and

reconfigurable hardware platform. The compiler for PRISM II accepted a host application

as input and produced hardware image and software image. The hardware image was

used for programming the hardware platform. The Splash 2 system was developed by D.

Buell et al. [3]. It consisted of a Sun workstation, an interface board, and Splash array

boards. FPGAs on each array board were arranged in a linear array and were connected

via a crossbar switch. The Splash 2 system was effective on applications such as text

searching, sequence analysis and image processing. T.Tsutsui et al. developed YARDS

[4]. YARDS comprised three cards: the main card, the MPU card, and the FPGA card.

 4

There were a FPGA array mounted on the FPGA card. Several telecommunication

applications were developed in the YARDS system.

 Miyazaki, T categorized reconfigurable computing systems into three types:

attached processors, coprocessors and special purpose machines [5]. He also investigated

typical applications suitable for reconfigurable computing systems. Smith, M.C. et al.

investigated the hardware architecture and configuration of reconfigurable computing

system [6]. Software architecture of reconfigurable computing system was discussed, too.

Fidanci, O.D. et al. overviewed hardware architecture and programming model of

SRC-6ETM reconfigurable computers [7]. The SRC-6E could outperform a general-

purpose microprocessor for computationally intensive algorithms whether or not the

overhead due to configuration and data transfer was included. The paper presented by El-

Araby, E. et al. was also based on the SRC-6ETM reconfigurable computers [8]. They put

their concern on the DMA transfer between the host system and the FPGA. Theoretical

model was built and analyzed for this performance bottleneck. Experimental work was

done to verify the theoretical analysis.

 The reconfigurable computing systems used in this thesis include the Prototype

system and the Cray XD1 system. Based on the paper presented by Miyazaki, T [5], the

Prototype system can be categorized into attached processors, the Cray XD1 system can

be categorized into coprocessors.

1.2.2 FPGA Implementation of Floating Point Algorithm

 The most commonly used format for floating point numbers is described in IEEE

Std 754 [9]. Until the late 1990s, the resource and speed of FPGA was restricted and it

 5

was difficult to implement floating point arithmetic on FPGA. Many people explored and

analyzed the feasibility and performance of implementation of floating point algorithm

on FPGA during this period. B. Fagin et al. implemented floating point adder and

multiplier using FPGA and discussed the tradeoff between performance and area

requirement [10]. N. Shirazi et al. designed and optimized floating point adder/subtracter,

multiplier and divider to maximize speed and to minimize area [11]. L. Louca et al.

implemented floating point adder and multiplier and investigated the area-speed tradeoff

[12]. W. B. Ligon III et al. presented implementation of floating point addition and

multiplication functional units and discussed the performance and device utilization of

these units [13].

 From the beginning of 2000s, the resource and speed of FPGA increases greatly

and area is no longer the overriding concern for implementation of floating point

algorithm. More efforts are focused on performance and optimization of the

implementation during this period. A. Jaenicke et al. presented an approach for

developing and optimizing parameterized floating point units [14]. These units could be

customized to meet user constraints by varying the precision, rounding modes, or the

number of pipeline stages. Jian Liang et al. presented a floating point unit generation tool

for FPGAs [17]. This tool could be used to create a variety of floating point units based

on throughput, latency, and area requirements. Pavle Belanovic also presented a

parameterized floating point library for use with reconfigurable hardware [15][16]. This

library was fully parameterized for format control, arithmetic operations and conversion

to and from any fixed-point format.

 6

 The floating point library presented by Pavle Belanovic is chosen for the FPGA

implementation of FDTD Algorithm in my thesis.

1.2.3 FPGA Implementation of FDTD Algorithm

 The first paper about FPGA implementation of FDTD algorithm was presented by

Schneider et al. [18]. In his paper, one-dimensional FDTD algorithm was implemented

on FPGA using a pipelined bit-serial arithmetic architecture. And the implementation

used integer calculation. A one-dimensional resonator was used to verify the

implementation and to explore the hardware speed and costs. Durbano et al. presented the

first FPGA implementation of three-dimensional FDTD algorithm using floating point

arithmetic units [19]. In his paper, system architecture for the FPGA implementation was

introduced and functionality of each module in the system architecture was described.

The speed of the implementation was more than 5 times slower than software

implementation at that time. Chen et al. implemented two-dimensional FDTD algorithm

on FPGA using fixed point arithmetic [20]. In the implementation, magnetic field

updating algorithm along the x-coordinate and along the y-coordinate were processed in

parallel, and magnetic field updating algorithms and electric field updating algorithm

were partially paralleled. The components implementing the magnetic field updating

algorithms and the electric field updating algorithm were designed as pipelines. The

on-board memories stored the magnetic field values and the electric field values and were

organized in a swapping mechanism. Another implementation of two-dimensional FDTD

algorithm on FPGA was done by Gandhi [21]. In his master thesis, floating point

arithmetic was used, three update engines magnetic update Hx, magnetic update Hy and

 7

electric update were implemented to realize the magnetic field updating algorithms and

the electric field updating algorithm, and parallelism and pipelining were utilized to

speed up the implementation. The electric field values and the magnetic field values were

stored in host system memories. The slow data communications between the host system

and the FPGA degraded the performance of the whole system.

 In my thesis, the update engines designed by Gandhi are used, local SRAMs are

used to store the electric field values and the magnetic field values.

1.3 Thesis Organization

 Chapter 1 introduces the work I have done. In summary, I have improved the

FPGA implementation in [21] by utilizing SRAMs attached to the FPGA to reduce host-

FPGA communications. Also introduced is related work done in the field of

reconfigurable computing, on FPGA implementation of floating point algorithm and on

FPGA implementation of FDTD Algorithm. Chapter 2 introduces the Finite-Difference

Time-Domain (FDTD) algorithm. The method to derive FDTD algorithm from

Maxwell’s equations is also explained in this chapter. Chapter 3 describes the

reconfigurable computing systems used in this thesis: the Prototype system and the Cray

XD1 system. The architecture of each system is introduced, the simulation environment

and the host programming environment provided by each system are described. Chapter 4

presents in detail the FPGA implementation of FDTD algorithm in the Prototype system

and the Cray XD1 system. The FPGA implementation is divided into five stages: VHDL

design, simulation, synthesis, P&R, host programming. The work done on each stage is

 8

explained in detail. Chapter 5 analyzes results and performance of the FPGA

implementation done in this thesis and proposes some suggestions for the future work.

 9

Chapter 2

Finite-Difference Time-Domain Algorithm for Electromagnetic

Simulation

 The Finite-Difference Time-Domain (FDTD) algorithm is a very powerful tool for

the modeling of electromagnetic phenomena. This algorithm is a set of discretized finite

difference equations derived from Maxwell’s equations. It was first presented by Kane S.

Yee.

 Maxwell’s equations in an isotropic medium are [22]:

0=×∇+∂∂ EtB (1a)

JHtD =×∇−∂∂ (1b)

 HB μ= (1c)

 ED ε= (1d)

 The definitions for the symbols in the equations (1a)--(1d) are:

 B – Magnetic flux density

 E – Electric field

 D – Electric flux density

 H – Magnetic field

 μ – Magnetic permittivity

 ε – Electric permittivity

 10

 Maxwell’s equations are very powerful in solving electromagnetic problems, but

are not suitable for processing by computer. In 1966, Kane S. Yee successfully presented

a method to discretize Maxwell’s equations and to derive the FDTD algorithm [23].

 There are two assumptions for the derivation. One is that the boundary condition

should be appropriate for a perfectly conducting surface. This assumption implies that the

tangential components of the electric field vanish and the normal component of the

magnetic field vanishes on the surface. The other assumption is that the space grid size

must be such that over one increment the electromagnetic field does not change

significantly [23].

 Based on these two assumptions, Kane S. Yee discretized both the physical region

and the time interval of the Maxwell’s equations on uniform grids. Then he derived the

finite difference equations for two modes of electromagnetic waves: Transverse electric

wave (TE) and Transverse magnetic wave (TM). Later these equations are named as

Finite-Difference Time-Domain (FDTD) algorithm. Here only FDTD algorithm for the

TM is presented [23]:

)],()1,([1)
2
1,()

2
1,(2/12/1 jiEjiE

y
r

Z
jiHjiH n

z
n
z

n
x

n
x −+

Δ
Δ

−+=+ −+ (2a)

)],(),1([1),
2
1(),

2
1(2/12/1 jiEjiE

x
r

Z
jiHjiH n

z
n
z

n
y

n
y −+

Δ
Δ

++=+ −+ (2b)

)]
2
1,()

2
1,([

)],
2
1(),

2
1([),(),(

2/12/1

2/12/11

−−+
Δ
Δ

−

−−+
Δ
Δ

+=

++

+++

jiHjiH
y
rZ

jiHjiH
x
rZjiEjiE

n
x

n
x

n
y

n
y

n
z

n
z

 (2c)

 FDTD Algorithm for TM waves

 11

 The electromagnetic field values in the equations (2a)--(2c) are updated ½ time

step by ½ time step from two parts: field values calculated in previous ½ time step and

field values in adjacent space cells. This characteristic makes it possible to implement the

FDTD algorithm on parallel computers because only nearest-neighbor interactions are

involved.

 There are many methods to implement FDTD algorithm on parallel computers.

Commonly in these methods, the discretized physical space is partitioned into regions

and distributed to multiple processors. Data on the boundaries between regions is

exchanged between processors, the electric field values are updated and stored in

memory using previously stored magnetic field values, and then the magnetic field values

are updated and stored in memory using the electric field values just calculated.

 12

Chapter 3

FPGA-Based Reconfigurable Computing Systems

 A reconfigurable computing system consists of a number of computing nodes

connected by an interconnection network. Host processors and reconfigurable computing

elements (FPGAs and CPLDs) are associated with some or all of the computing nodes.

The general diagram of a reconfigurable computing system is depicted in figure 3-1:

Computing Node 1

 MEMs

 FPGA

 Figure 3-1 : Reconfigurable Computing System

 Host
 Processor

Local MEMs

Computing

 Node 2

Computing

 Node N

 Interconnection Network

 In a reconfigurable computing system, a host application runs on one or several

host processors, and some tasks in the host application are assigned to the FPGAs. The

host processors and the FPGAs cooperate to execute the host application. Reconfigurable

computing system is a good choice for host applications with intensive computation and

parallelism.

 In this thesis, FDTD algorithm is implemented in two reconfigurable computing

systems: the Prototype system in the ACL Lab at University of Cincinnati and the Cray

XD1 system. The Cray XD1 system has higher bandwidth, lower latency and more

powerful memory architecture than the Prototype system.

 13

3.1 Laboratory Prototype System

3.1.1 System Architecture

 The Prototype system is an integration of a PC with a reconfigurable computing

board inserted into one of its PCI slots. This system is built for reconfigurable computing

research. The specification for the PC is:

· Intel® XeonTM CPU 1.70 GHz

· 512 MB of RAM

· 28 GB IDE disk

· 3Com® Fast Ethernet Controller

 The reconfigurable computing board in the Prototype system is an Annapolis

Micro FIREBIRDTM/PCI board. The FIREBIRDTM/PCI features include [24]:

· one Processing Element PE0 that is a Xilinx VIRTEX-E FPGA

· PE0 can optionally be programmed from flash on power up

· Processing clocks up to 150MHz

· Five memory banks, containing 9 to 36 Mbytes of synchronous ZBT SRAM

· 5.4Gbytes/sec of memory bandwidth

· 66MHz/64bit PCI transactions (3.3V PCI signaling only)

 The block diagram for the FIREBIRDTM/PCI board is depicted in figure 3-2.

 The local address data (LAD) bus in figure 3-2 is a single master, 64-bit, shared

address/data bus used for communications between the FPGA and the host processor.

Every cycle on the LAD bus is initiated by the PCI Controller.

 14

 The user’s design in the FPGA communicates with the host processor via the LAD

bus. Any memory reads/writes by the host also go through the LAD bus and the FPGA.

The FPGA directly accesses the ZBT SRAM.

LAD BusPCI Bus

LAD Bus

 VIRTEX-E
 XCV1000E

 ZBT
 SRAM

 ZBT
 SRAM

 ZBT
 SRAM

 ZBT
 SRAM

 ZBT
 SRAM

 PCI
 Controller

 Flash

 CLK

 PC
I C

onnector

 W
ILD

STA
R

TM
Euro I/O

 C
ard

 Figure 3-2 : FIREBIRDTM/PCI block diagram [24]

3.1.2 Simulation Environment

 The simulation environment includes VHDL models for the host system and the

FIREBIRD™/PCI board. These VHDL models are provided by Annapolis Micro

Systems, Inc. to give the designer an accurate test bed for the completed Processing

Element (PE) design and to enable the designer to validate the PE design before the

synthesis, placement, and routing steps [24].

 The VHDL model for the host system is used to access the PE resources of the

FIREBIRD™/PCI board via the PCI Controller. It can also be used to initialize and

analyze the contents of any memory device on the FIREBIRD™/PCI board. This VHDL

model is similar to the actual host system and it provides VHDL functions similar to the

actual software Application Programming Interface (API) functions.

 15

 The VHDL model for the host system includes the following functions [24]:

· WS_Open : Sets up initial board configuration

· WS_ReadPeReg/WS_WritePeReg: Reads/writes register locations in the PE Register

 Space

· WS_ReadPeReg64/WS_WritePeReg64: Reads/writes register locations in the PE

 Register Space

· WS_DMARead/WS_DMAWrite: Reads/writes the PE Space using DMA

· WS_MClkSetConfig/WS_UClkSetConfig: Sets the configuration of the memory and

 PE/user clocks

· WS_WaitOnInterrupt : Waits for PE interrupt signal

· WS_QueryInterruptStatus : Returns current interrupt status of all PEs

· WS_ResetInterrupt : Clears pending interrupts

 The VHDL model for the FIREBIRD™/PCI board includes [24]:

· PCI Controller Model

· On-board Memory Model

· I/O Card Model

 The PCI controller model provides functions to handle LAD bus transactions, to

configure the clocks, and to handle PE interrupts. These functions can all be accessed

from the functions provided by the VHDL model for the host system.

 The on-board memory model is used to inspect the memory contents from the

VHDL simulator tool. This model can be configured to an “empty” architecture if no

memories on the board are needed by the PE.

 16

 The I/O card model is empty. This model tri-states all of its signals to the

FIREBIRD™/PCI board.

3.1.3 Host Programming Environment

 The Host Programming environment consists of three layers [25]:

· User’s host application

· WILDSTAR™ Application Programming Interface (API)

· WILDSTAR™ Device Driver

 User’s host application is programmed with ‘C’ language and runs on the host PC.

Its essential function is to load the embedded PE application (provided as an FPGA

binary file) into the PE on the FIREBIRD™/PCI board and to maintain the operating

environment of the embedded PE application.

 The overall host application is bound by the WILDSTAR™ API. To develop host

application, at least one library and several include files must be included. Under

Windows® NTTM and UNIX, a single library--the WILDSTAR™ API is included. The

include files contain constants, data types, and prototypes necessary to interface to the

WILDSTAR™ API.

 The WILDSTAR™ API centralizes specific knowledge of the underlying system.

It presents a generalized view of the hardware resources and control operations in the

system.

 The WILDSTAR™ API routines are organized to provide high-level operations by

performing combinations of low-level WILDSTAR™ device driver functions. The

routines are provided to accomplish clock control, PE control, register interfaces

 17

read/write, DMA Operations, Interrupt Operations, Temperature/Power Monitoring

Operations, LED Display Operations. The subset of the API functions available to the

host application programmer and used for the work presented in this thesis is [25]:

· WS_Open : Open a FIREBIRD™/PCI board

· WS_Close : Close a FIREBIRD™/PCI board

· WS_GetPhysicalConfig : Get the configuration information from the ID PROM(s)

· WS_ProgramPe : Program a particular PE

· WS_DeProgramPe : Deprogram a particular PE

· WS_MClkSetConfig : Set the source and frequency for M clock

· WS_UClkSetConfig : Set the source and frequency for P clock

· WS_ReadPeReg : Read from PE register space

· WS_WritePeReg : Write to PE register space

· WS_DmaRead : Read a buffer using DMA

· WS_DmaWrite : Write a buffer using DMA

· WS_ResetInterrupt : Reset the specified interrupt sources on the board

· WS_QueryInterruptStatus : Check the status of pending interrupts on the board

 The WILDSTAR™ device driver provides a low-level interface to the

FIREBIRD™/PCI board’s register space and a central location for all of the system’s

global resources. It performs all necessary steps to initialize, to access and to maintain the

hardware.

3.2 Cray XD1 System

 18

3.2.1 System Architecture

 The Cray XD1 system is designed specifically for high performance computing. It

consists of many Cray XD1 chassis interconnected with one high-speed switch fabric

called the RapidArray Interconnect.

3.2.1.1 Cray XD1 Chassis

 The Cray XD1 chassis contains a management processor and six compute blades.

 RapidArray Interconnect Bus 100Mb
Ethernet Bus

Compute Blade

 SMP SMP

 RAP

 DDR
 SDRAM

 DDR
 SDRAM

connector

 M
anagem

ent Processor

Figure 3-3 : Cray XD1 chassis [27]

 Each compute blade includes the following components [27]:

· Two 64-bit AMD Opteron processors—configured as one two-way symmetric

 multiprocessors (SMP) that runs Linux operating system.

· Up to 16GB of DDR SDRAM per SMP

· one RapidArray processor (RAP)—provide high-bandwidth, low-latency interface to

 the RapidArray Interconnect

· A connector for an expansion module

 19

 The expansion module is an optional board that attaches to a compute blade. Each

expansion module contains the following components [27]:

· An application acceleration processor (AAP FPGA)

· An RAP which provides two additional RapidArray links per compute blade

· Four quad-data-rate (QDR) II SRAMs for the AAP FPGA

· A programmable clock source for the AAP FPGA

 The block diagram for the expansion module is as follows [27]:

Bus to SMP

 AAP
 FPGA

 QDR II SRAM

 RAP

 Connector RapidArray

Interconnect Bus

Figure 3-4 : Expansion Module [27]

 QDR II SRAM

 QDR II SRAM

 QDR II SRAM

 The AAP FPGA belongs to the Xilinx Virtex-II Pro series. The resources in the

AAP FPGA include 2 PowerPC processor blocks, 23616 logic slices, 232 18×18 bit

multiplier blocks, 232 18 Kb Block RAMs.

 The RAP connects the AAP FPGA to the local SMP and the RapidArray

Interconnect. The QDR II SRAM provides local high-speed storage for the AAP FPGA.

Each of the four QDR II SRAM circuits operates independently. The programmable

clock sets the speed of the AAP FPGA for each design.

3.2.1.2 RapidArray Interconnect

 20

 The RapidArray Interconnect is a central communications construct in the Cray

XD1 system. It connects processors and memories within a chassis and between chassis.

This interconnect enables the system to avoid PCI-X bus bottlenecks and shared-resource

contention.

 “The RapidArray Interconnect is a 96-GB-per-second (maximum per chassis)

nonblocking, embedded crossbar-switch fabric that connects the RAPs. Each chassis has

either one or two RapidArray switch fabrics, each of which consists of RapidArray links

and a 24-port internal switch.” [27]

3.2.2 Simulation Environment

 The elements in the simulation environment are [31]:

· A VHDL test bench

· VHDL model for the RapidArray fabric

· VHDL model for the QDR II SRAM

· The stimulus file

 The test bench instantiates the AAP FPGA, the fabric model and the QDR II

SRAM model.

 In the simulation, the fabric model processes commands such as read request and

write request from a stimulus file. It will also process read and write requests generated

by the AAP FPGA.

 The QDR II SRAM model simulates a dual-port, 36-bit wide QDR II SRAM. This

SRAM is synchronous and can be read and written at the same time.

 21

 The stimulus file is a text file containing stimulus commands which are inputs to

the fabric model. The commands includes: [31]

· I : Initialize Link

· P <Text to print> : display messages on the simulation console

· D <delay value> : insert a time delay between requests

· R <addr> <expected data> <byte mask> <byte request> <size> : Read Request

· W <addr> <write data> <byte mask> <byte request> <size> : Write Request

· B <data> <byte mask> : Burst Request

where:

 <Text to print> = Message for console

 <delay value> = delay in user clock cycles

 <addr> = 40 bits address in hex

 <data> = 64 bits data in hex

 <byte mask> = 8 bits data mask in hex (1 = enable, 0 = disable)

 <byte request> = 4 bits in hex (1 = byte req, 0 = dw request)

 <size> = size of read/write access in double words (32 bits) in hex

3.2.3 Host Programming Environment

 The Host Programming environment consists of three layers [28]:

· host application on the SMP

· FPGA Application Programming Interface (API)

· RT core bus transactions

 22

 To communicate with the AAP FPGA, the host application first opens the AAP

FPGA to get a file descriptor. Then using the file descriptor, the host application loads

the converted logic file (provided as an FPGA binary file) into the AAP FPGA. After

this, the host application can read and write registers in the AAP FPGA, read data from or

write data to the QDR II SRAMs through the AAP FPGA. At last, the host application

can reset the AAP FPGA and close the file descriptor.

 The FPGA API provides the functions that the host application needs to use an

AAP FPGA. These functions include [28]:

· fpga_open : Opening an FPGA

· fpga_load : Loading the converted logic file into the FPGA

· fpga_reset : Resetting an FPGA

· fpga_start : Releasing an FPGA from reset state

· fpga_memmap : Accessing FPGA locations from the host application

· fpga_mem_sync : Synchronizing accesses to FPGA locations

· fpga_wrt_appif_val : Writing individual FPGA locations

· fpga_rd_appif_val : Reading individual FPGA locations

· fpga_set_ftrmem : Accessing host application memory from an FPGA

· fpga_status : Checking the status of an FPGA

· fpga_is_loaded : Checking the programming state of an FPGA

· fpga_unload : Erasing an FPGA

· fpga_close : Closing an FPGA

 23

 There is a component referred to as the Rt_core (see 4.3.1.4) in the AAP FPGA.

The FPGA API functions initiate appropriate RT core bus transactions to this component.

The user logic in the AAP FPGA processes the bus transactions and responds

appropriately. If user logic in the AAP FPGA needs to access the SMP memory through

Rt_core, it sends a bus transaction to Rt_core, then the bus transaction is forwarded to

hardware on the SMP, where it becomes a read or write transaction to the SMP DRAM.

 24

Chapter 4

FDTD FPGA Implementation using Local SRAM

 FPGA implementation of the FDTD algorithm has been done for each of the

systems described in the previous chapter: the Prototype system and the Cray XD1

system. The design goal in the Prototype system is to explore implementation feasibility,

while the goal in the Cray XD1 system is to improve implementation performance.

 In both systems, floating point units are used to implement the update engines and

the update engines are pipelined, input and output data for the FDTD algorithm are stored

in the local SRAMs to reduce the data transfer between the host system and the FPGA.

 In the Prototype system, the two magnetic update engines are processed serially,

each SRAM is single-port with random delay, and only one iteration of FDTD algorithm

calculation can be supported. While in the Cray XD1 system, the two magnetic update

engines are processed in parallel, each SRAM is dual-port with fixed delay, the data in

the SRAMs in the Cray XD1 system are organized as ping-pong buffers, and specified

number of iterations of FDTD algorithm calculation can be supported. So the design in

the Cray XD1 system has higher throughput, higher memory access speed, and less data

flow between the host system and the FPGA.

 The FPGA implementation flow in the Prototype system is almost the same as that

in the Cray XD1 system. But the detailed steps are different in these two systems. In this

thesis, the FPGA implementation flow and the detailed steps in the flow are explained for

both systems.

 25

4.1 FPGA Implementation Flow

 The FPGA implementation flow in this thesis has the following five basic steps:

· VHDL Design—Create VHDL source code for the target FPGA

· Simulation—Simulate the VHDL source code

· Synthesis—Translate the VHDL source code into a gate-level netlist

· P&R—Place and route the gate-level netlist on the target FPGA

· Host Programming—Program host application, C/C++ with API calls

 The FPGA implementation flow is depicted in figure 4-1:

Figure 4-1 : FPGA Implementation Flow

No

 VHDL Design

 Synthesis

 P&R

 Host Programming
 C/C++

loads FPGA binary file to the target
FPGA and debugs the operation of the
FPGA

 Simulation

 Meet Timing Constraints?

Yes

No

Function Correct?

Design Complete

Yes

No

 VHDL can specify a hardware design in terms of familiar programming constructs

such as conditional statements, loops, and function calls. It provides a flexible and

powerful way to generate efficient logic. VHDL code can be written with many text

 26

editors. The target FPGA in the Prototype system is the Processing Element PE0 located

on the FIREBIRDTM/PCI board (see 3.1.1), and the target FPGA in the Cray XD1 system

is AAP FPGA located on the expansion module board (see 3.2.1.1).

 The simulation is done in the simulation environment described in chapter 3 (see

3.1.2 and 3.2.2). In the simulation, VHDL source code and the VHDL models provided in

the simulation environment that manipulate the design inputs and monitor the outputs are

combined and compiled by the simulation tool. Then the simulation process starts,

waveforms for all the signals in the VHDL source code and the VHDL models are

derived, checked and verified. The simulation tool used is ModelSim VHDL simulator.

 The synthesis process translates the VHDL source code into gate-level elements

such as AND gates, OR gates, and flip-flops. The output of the synthesis process is a

gate-level netlist. In the Prototype system, the synthesis tool used is Synplify Pro. In the

XD1 Cray system, the synthesis tool used is Xilinx XST.

 P&R is the process of translating, mapping, placing, routing, and generating an

FPGA binary file for the VHDL source code. It assigns logic in the gate-level netlist to

specific physical resources of the target FPGA. A set of user-determined timing and

placement constraints guides the P&R process. These constraints are in the user

constraint file (UCF). The target FPGA type is Xilinx VIRTEX-E XCV1000E in the

Prototype system and Xilinx Virtex-II Pro XC2VP50 in the Cray XD1 system. The P&R

tool used is part of the Xilinx ISE design suite.

 The host application is programmed using the APIs provided in the host

programming environment described in chapter 3 (see 3.1.3 and 3.2.3). It loads the FPGA

binary file to the target FPGA and debugs the operation of the FPGA.

 27

4.2 FPGA Implementation in the ACL Prototype System

4.2.1 VHDL Design

 In this section, the function of the VHDL source code for the FPGA is explained

and the FPGA architecture for the VHDL source code is drawn. Next data organization in

local memories is explained. At last components and processes in the VHDL source code

are described in detail.

4.2.1.1 FPGA Function

 The FPGA can be used as a bridge to take data from the host system and to write it

to local memories, to read data from local memories and to write it to the host system. It

can also be used as FDTD algorithm update engines.

 If the FPGA is used as a bridge, configuration data should be written into internal

registers in the FPGA first. The configuration data indicates the local memories access

type (read or write), the start address of the accessed local memories and the length of the

data. Then data transfer between the host system and the local memories starts. Data are

transferred through the FPGA in DMA mode.

 If the FPGA is used as FDTD algorithm update engines, it can only complete one

iteration of FDTD algorithm calculation. The host system must write input data to the

local memories before each iteration of calculation and read output data back from the

local memories after each iteration of calculation. The FPGA can be configured to

operate in two modes: UpdateHxHy mode and UpdateEz mode. In UpdateHxHy mode,

update engine magnetic update Hx and magnetic update Hy are enabled to execute one

 28

iteration of calculation. In UpdateEz mode, update engine electric update is enabled to

execute one iteration of calculation.

 The operation sequence in UpdateHxHy mode is as follows:

1) Hxt-1 values are read from local memory MEM0; Hyt-1 values are read from local

memory MEM1; Ez values are read from local memory MEM2. These read

operations are done in parallel

2) Hxt-1 values, Hyt-1 values, Ez values are fed to internal FIFOs in the FPGA in

 parallel

3) Hxt-1 values, and Ez values in internal FIFOs are fed to the enabled update engine

magnetic update Hx; Hyt-1 values, and Ez values in internal FIFOs are fed to the

enabled update engine magnetic update Hy.

4) When the result data Hxt values and Hyt values from update engine magnetic

update Hx and magnetic update Hy are ready, they are pushed into another two

FIFOs in the FPGA

5) Hxt values are pulled out of the FIFO and written to local memory MEM3, Hyt

values are pulled out of the FIFO and written to local memory MEM4.

Similarly, the operation sequence in UpdateEz mode is as follows:

1) Hx values are read from local memory MEM0; Hy values are read from local

memory MEM1; Ezt-1 values are read from local memory MEM2. These read

operations are done in parallel

2) Hx values, Hy values and Ezt-1 values are fed to internal FIFOs in the FPGA in

parallel

 29

3) Hx values, Hy values and Ezt-1 values in internal FIFOs are fed to the enabled

update engine electric update

4) When the result data Ezt values from update engine electric update are ready, they

are pushed into another FIFO in the FPGA

5) Ezt values are pulled out of the FIFO and written to local memory MEM3

4.2.1.2 FPGA Architecture

 FPGA architecture is drawn in Figure 4-2. Definitions for the symbols used in

figure 4-2 are:

 : external interface

 : internal bus

 : internal signal

 : component in the VHDL source code

 : process in the VHDL source code

 In the FPGA architecture, components with prefix “LAD” are related to the LAD

bus. The host system communicates with the FPGA through these components. With the

aid of these components, the host system can access internal registers in the FPGA and

the local memories.

 The memory interface in the FPGA consists of components with prefix “Mem”.

This memory interface multiplexes the read/write requests from the host system and the

update engines in the FPGA. The host system and the update engines can’t access the

same memory at the same time.

 30

Figure 4-2 : FPGA Architecture in the Prototype System

 LAD64_Mux_Bus

LAD64_
DMA_
Read_
Mem32_
Bridge

 LAD64_Mux_RegFile Clock_Std_IF LAD64_Mux_IF

 LAD64_BUS

LAD64_Mux_Reset LAD64_Mux_RegFile

LAD64_
DMA_
Read_
Mem64_
Bridge

LAD64_
DMA_
Write_
Mem64_
Bridge

LAD64_
DMA_
Write_
Mem64_
Bridge

LAD64_
DMA_
Write_
Mem64_
Bridge

LAD64_DMA_Read
_Mux_IF

 LAD64_DMA_Write_Mux_IF

DMA_Read_Mux_Bus DMA_Write_Mux_Bus

Mem64_
Mux_
Priority_
IF

Mem64_
Mux_
Priority_
IF

Mem64_
Mux_
Priority_
IF

Mem64_
Mux_
Priority_
IF

Mem32_
Mux_
Priority_
IF

M
E
M
3

M
E
M
0

M
E
M
1

M
E
M
2

 Clocks

M
E
M
4

 BLOCKRAM_TO_MEM MEM_TO_BLOCKRAM

UPDATEENGINE_TO_
BLOCKRAM

 magnetic update Hx

 BLOCKRAM_TO_UPDATEENGINE

 magnetic update Hy

 electric update

BlockRA
M_FIFO5

BlockRA
M_FIFO4

BlockRA
M_FIFO0

BlockRA
M_FIFO1

BlockRA
M_FIFO2

BlockRA
M_FIFO3

 31

 Three update engines are used for FDTD algorithm calculation. Four processes are

used for the update engines to access the local memories.

 Because the local memories have random delay, internal FIFOs are used when the

update engines access the local memories. This increases the complexity and decreases

the performance of the FPGA design.

4.2.1.3 Data Organization in Local Memories

 There are five independent local memories on the FIREBIRDTM/PCI board (see

3.1.1). MEM0 to MEM3 are 64-bit wide, MEM4 is 32-bit wide. MEM0 to MEM2 are

used to store source data, MEM3 to MEM4 are used to store destination data. In detail,

MEM0 stores Hxt-1 values, MEM1 stores Hyt-1 values, MEM2 stores Ezt-1 values, MEM3

stores Hxt values or Ezt values, MEM4 stores Hyt values.

 Assume the electromagnetic field processed by the FPGA is a

Grid_Row×Grid_Column matrix. Then Hx values, Hy values and Ez values in this matrix

can be organized as two-dimensional data arrays. The range for Hx values is from

Hx[0][0] to Hx[Grid_Row−1][Grid_Column−1], the range for Hy values is from

Hy[0][0] to Hy[Grid_Row−1][Grid_Column−1], the range for Ez values is from Ez[0][0]

to Ez[Grid_Row−1][Grid_Column−1].

 Hxt-1[i][j] in the electromagnetic field matrix is stored in MEM0 at address

i×Grid_Column+j, Hyt-1[i][j] is stored in MEM1 at address i×Grid_Column+j, Ezt-1[i][j]

is stored in MEM2 at address (i−1)×Grid_Column+(j−1), Hxt[i][j] is stored in MEM3 at

address i×Grid_Column+j, Hyt[i][j] is stored in MEM4 at address i×Grid_Column+j,

Ezt[i][j] is stored in MEM3 at address (i−1)×Grid_Column+(j−1).

 32

4.2.1.4 Components and Processes

 Components in the FPGA architecture can be divided into four groups:

· update engines

· components related to LAD bus

· components related to memory interface

· internal FIFO

 Processes in the FPGA architecture include:

· MEM_TO_BLOCKRAM

· BLOCKRAM_TO_UPDATEENGINE

· UPDATEENGINE_TO_BLOCKRAM

· BLOCKRAM_TO_MEM

 There are three update engines in the FPGA. They are used to update magnetic

field and electric field values. To improve speed, these update engines are fully pipelined.

· magnetic update Hx : updates magnetic field values along the x-coordinate. It

implements the following equation:

 [][] [][] [][] [][]()jiEzjiEzdtmudyjiHxjiHx tt 1111 +−++×−= − (3a)

This equation is transformation of equation (2a) in the FDTD algorithm in chapter 2.

 Hxt : the magnetic field value along the x-coordinate

 Hxt-1 : the magnetic field value along the x-coordinate from the previous time step

 Ez : the electric field value along the z-coordinate

 dtmudy : constant that includes time step, grid spacing, and magnetic permeability

 33

AddIntegrated

AddIntegrated

MulIntegrated

Op2

Op1

Op3

Exception_In

Ready

Const

[1]

[2]

[3]

[1]
[2]

[3] Result Signal
Exception Out Signal

Done Signal

Result

Done

Clock Signal
Delay
_Block

Delay
_Block

[1]

[2]

[3]

Delay
_Block

Figure 4-3 Block Diagram of Magnetic update Hx [21]

Exception Out

· magnetic update Hy : updates magnetic field values along the y-coordinate. It

implements the following equation:

 [][] [][] [][] [][]()1111 +−++×+= − jiEzjiEzdtmudxjiHyjiHy tt (3b)

This equation is transformation of equation (2b) in the FDTD algorithm in chapter 2.

Figure 4-4 Block Diagram of Magnetic update Hy [21]

AddIntegrated

AddIntegrated

MulIntegrated

Op2

Op1

Op3

Exception_In

Ready

Const

[1]

[2]

[3]

[1]
[2]

[3]

Result Signal
Exception Out Signal
Done Signal

Result

Done

Clock Signal
Delay
_Block

Delay
_Block

[1]

[2]

[3]

Delay
_Block

Exception Out

· electric update : updates electric field values along the z-coordinate. It implements

the following equation:

[][] [][] [][] [][]()

[][] [][]()111
1111

−−−−×−
−−−−×+= −

jiHxjiHxdtepsdy
jiHyjiHydtepsdxjiEzjiEz tt (3c)

 34

Exception Out

Exception
Out

Op4

Op3

Op2

Op1

Op5

Exception_In

Ready
Const1

Const2

[1]

[2]

[3]

[1]
[2]
[3]

Result

Done

AddInteg

rated
MulIntegr

ated

Delay
_Block

Delay
_Block

Delay
_Block

Delay
_Block

Delay
_Block

AddInteg

rated

MulIntegr

ated

AddInteg

rated

AddInteg

rated

[1]

[2]

[3]

Result Signal

Done Signal
Clock Signal

[1]

[1]

[1]

[2]

[3]

[2]

[2]

[3]

[3]

 The FPGA communicates with the host system through the LAD bus. Components

related to LAD bus in the FPGA include [24]:

· LAD64_Mux_IF : connects internal components in PE0 to the PCI Controller on the

FIREBIRD /PCI board. It has master port LAD64_BUS and clients port

LAD64_Mux_Bus. LAD64_BUS is a local address data (LAD) bus. It is a single master,

64-bit, shared address/data bus. Every cycle on it is initiated by the PCI Controller and

may last from four to hundreds of clock cycles. LAD64_Mux_Bus is clients bus, the

internal components in PE0 such as LAD64_Mux_Reset and LAD64_Mux_RegFile are

connected to it

· LAD64_Mux_Reset : provides an LAD accessible reset unit for PE0. It encapsulates a

VIRTEX_STARTUP block. When the host application writes a ‘1’ to its control address,

it will generate a reset pulse on the global reset line of PE0

Figure 4-5 Block Diagram of Electric update [21]

TM

 35

· LAD64_Mux_RegFile : provides an LAD accessible register file on PE0. Each

register in the file is 64-bits. Configuration data such as version number and update type

are written into the register file in this component

· LAD64_DMA_Read_Mux_IF : used with component

LAD64_DMA_Read_Mem64_Bridge and LAD64_DMA_Read_Mem32_Bridge to read

data from the local memory on the FIREBIRD™ /PCI board. It receives DMA data from

LAD64_DMA_Read_Mem64_Bridge and LAD64_DMA_Read_Mem32_Bridge and

transmits the received DMA data on the LAD bus which is connected to the host system.

It also controls the DMA read status

· LAD64_DMA_Write_Mux_IF : used with component

LAD64_DMA_Write_Mem64_Bridge to write data to the local memory. It receives data

from the LAD bus which is connected to the host system, then it transmits the received

data on DMA bus which is connected to LAD64_DMA_Write_Mem64_Bridge. It also

controls the DMA write status

· LAD64_DMA_Read_Mem64_Bridge : acts as a pre-fetch unit for the

LAD64_DMA_Read_Mux_IF. It reads data from the 64-bit Mem bus which is connected

to the Mem64_Mux_Priority_IF and transmits the received data to the DMA bus which is

connected to the LAD64_DMA_Read_Mux_IF. It has ports LAD, Mem and DMA. Port

LAD is connected to the LAD64_Mux_IF and receives control data from the host system.

LAD64_DMA_Read_Mem64_Bridge contains a register file CRegfile which is used to

control the start and stop memory addresses. It also contains a status record which can be

used to determine if a DMA read is being performed and what percentage of the DMA

read has been completed

 36

· LAD64_DMA_Read_Mem32_Bridge : acts as a pre-fetch unit for the

LAD64_DMA_Read_Mux_IF. It reads data from the 32-bit Mem bus which is connected

to the Mem32_Mux_Priority_IF and transmits the received data to the DMA bus which is

connected to the LAD64_DMA_Read_Mux_IF. It has ports LAD, Mem and DMA. Port

LAD is connected to the LAD64_Mux_IF and receives control data from the host system.

LAD64_DMA_Read_Mem32_Bridge contains a register file CRegfile which is used to

control the start and stop memory addresses. It also contains a status record which can be

used to determine if a DMA read is being performed and what percentage of the DMA

read has been completed

· LAD64_DMA_Write_Mem64_Bridge : used with LAD64_DMA_Write_Mux_IF to

take data from the host system and write it to the 64-bit local memory. It reads data from

DMA bus connected to LAD64_DMA_Write_Mux_IF and transmits the received data to

the Mem bus connected to Mem64_Mux_Priority_IF. It has ports LAD, Mem and DMA.

Port LAD is connected to the LAD64_Mux_IF and receives control data from the host

system. LAD64_DMA_Write_Mem64_Bridge contains a register file CRegfile which is

used to control the start and stop memory addresses. It also contains a status record which

can be used to determine if a DMA write is being performed and what percentage of the

DMA write has been completed

 The FPGA accesses the local memories through a 64-bit Memory Standard

Interface and a 32-bit Memory Standard Interface. Components related to these memory

interfaces in the FPGA include [24]:

· Mem64_Mux_Priority_IF : a 64-bit memory server in the PE0. It multiplexes

memory ports among different components that are clients contained in the PE0 and is

 37

capable of providing 64-bit memory access to these clients. For example, for the local

memory MEM0 in figure 4-2, Mem64_Mux_Priority_IF provides memory access to

clients LAD64_DMA_Write_Mem64_Bridge and MEM_TO_BLOCKRAM. Each client

must be assigned a unique element of the client vector in order to be connected to the

64-bit memory server

· Mem32_Mux_Priority_IF : a 32-bit memory server in the PE0. It multiplexes

memory ports among different components that are clients contained in the PE0 and is

capable of providing 32-bit memory access to these clients

 Internal FIFO used in the FPGA is component BlockRAM_FIFO. This is a 256x32

FIFO. 32-bit data can be pushed into it and pulled out of it. If the FIFO is almost full, Full

Flag is set. If the FIFO is almost empty, then Empty Flag is set.

 There are four processes in the FPGA. These processes control the memory access

of the update engines.

· MEM_TO_BLOCKRAM : reads data from three 64-bit local memories (MEM0 to

MEM2) and feeds the data to four BLOCKRAM_FIFOs (BLOCKRAM_FIFO0 to

BLOCKRAM_FIFO3). Local memory MEM0 is connected to BLOCKRAM_FIFO0,

Local memory MEM1 is connected to BLOCKRAM_FIFO1, Local memory MEM2 is

connected to BLOCKRAM_FIFO2 and BLOCKRAM_FIFO3. If PE0 is in UpdateHxHy

mode or UpdateEz mode and the four BLOCKRAM_FIFOs have spare space, read

requests are issued to the three local memories. When the output data from the three local

memories are ready, they are pushed into the four BLOCKRAM_FIFOs. If PE0 is in

UpdateHxHy mode, the pseudo-code to generate read addresses to the three local

memories is:

 38

 for update engine magnetic update Hx:

 for i from 0 to Grid_Row−1

 for j from 1 to Grid_Column−1

 generate read address i× Grid_Column + j − 1 for MEM0

 generate read address i× Grid_Column + j − 1 for MEM2

 generate read address i× Grid_Column + j for MEM2

 for update engine magnetic update Hy:

 for i from 1 to Grid_Row−1

 for j from 0 to Grid_Column−1

 generate read address (i − 1)× Grid_Column + j for MEM1

 generate read address (i − 1)× Grid_Column + j for MEM2

 generate read address i× Grid_Column + j for MEM2

If PE0 is in UpdateEz mode, the pseudo-code to generate read addresses to the three local

memories is:

 for update engine electric update

 for i from 1 to Grid_Row−1

 for j from 1 to Grid_Column−1

 generate read address (i − 1)× Grid_Column + j − 1 for MEM0

 generate read address (i − 1)× Grid_Column + j for MEM0

 generate read address (i − 1)× Grid_Column + j − 1 for MEM1

 generate read address i× Grid_Column + j − 1 for MEM1

 generate read address (i − 1)× Grid_Column + j − 1 for MEM2

 39

· BLOCKRAM_TO_UPDATEENGINE : reads data from four BLOCKRAM_FIFOs

(BLOCKRAM_FIFO0 to BLOCKRAM_FIFO3) and feed the data to update engines. It

monitors the status of the four BLOCKRAM_FIFOs and read data from them. Then it

enables update engines magnetic update Hx and magnetic update Hy and feeds data to

them if PE0 is in UpdateHxHy mode or enables update engine electric update and feeds

data to it if PE0 is in UpdateEz mode.

· UPDATEENGINE_TO_BLOCKRAM : reads data from update engines and writes it to

BlockRAM_FIFOs (BLOCKRAM_FIFO4 to BLOCKRAM_FIFO5). If PE0 is in

UpdateHxHy mode, result of update engine magnetic update Hx is pushed to

BlockRAM_FIFO4 and result of update engine magnetic update Hy is pushed to

BlockRAM_FIFO5. If PE0 is in UpdateEz mode, result of update engine electric update

is pushed to BlockRAM_FIFO4.

· BLOCKRAM_TO_MEM : reads data from BlockRAM_FIFOs (BLOCKRAM_FIFO4

to BLOCKRAM_FIFO5) and writes the data into two local memories (MEM3, MEM4).

If PE0 is in UpdateHxHy mode, data from BLOCKRAM_FIFO4 is written to MEM3 and

data from BLOCKRAM_FIFO5 is written to MEM4. If PE0 is in UpdateEz mode, data

from BLOCKRAM_FIFO4 is written to MEM3. If PE0 is in UpdateHxHy mode, the

pseudo-code to generate write addresses to the two local memories is:

 for i from 0 to Grid_Row−1

 for j from 1 to Grid_Column−1

 generate write address i× Grid_Column + j − 1 for MEM3

 for i from 1 to Grid_Row−1

 for j from 0 to Grid_Column−1

 40

 generate write address (i − 1)× Grid_Column + j for MEM4

If PE0 is in UpdateEz mode, the pseudo-code to generate write addresses to the three

local memories is:

 for i from 1 to Grid_Row−1

 for j from 1 to Grid_Column−1

 generate write address (i − 1)× Grid_Column + j − 1 for MEM3

4.2.2 Simulation

The simulation is done in the simulation environment described in chapter 3 (see

3.1.2). The test bench includes and instantiates the FPGA, VHDL model for the host

system and the FIREBIRD™/PCI board. The operation sequence in the test bench is the

same as the operation sequence in the host application described in 4.2.5.

 Structure of the test bench is depicted in figure 4-6.

 Test Bench

 PCI Controller Model

 Host System Model

 FPGA Design On-board Memory Model

 Request Request
 Response

Figure 4-6 Structure of the Test Bench in the Prototype System

4.2.3 Synthesis

 The VHDL source code for the FPGA is synthesized with Synplify Pro. The

output of synthesis is an EDIF file.

 41

4.2.4 P&R

The EDIF file is placed and routed on the target FPGA Xilinx VIRTEX-E

XCV1000E. The output file is a FPGA binary file for the VHDL source code.

4.2.5 Host Programming

 The host application is programmed with ‘C’ language in the host programming

environment described in chapter 3 (see 3.1.3). In order to interact with PE0, it calls

WILDSTAR™ API functions.

 The operation sequence in the host application is as follows:

1) Open the FIREBIRD™/PCI board and check configuration information

2) Configure the clocks on the board

3) Download FPGA binary file into XCV1000E

4) Reset FPGA, update engines and interrupt signal

5) Write Hxt-1 values in DMA mode to local memory MEM0

6) Write Hyt-1 values in DMA mode to local memory MEM1

7) Write Ez values in DMA mode to local memory MEM2

8) Enable update engines magnetic update Hx and magnetic update Hy

9) Check interrupt signal. If interrupt signal is set, the update process ends

10) Read Hxt values in DMA mode from local memory MEM3

11) Read Hyt values in DMA mode from local memory MEM3

12) Write Hx values in DMA mode to local memory MEM0

13) Write Hy values in DMA mode to local memory MEM1

14) Write Ezt-1 values in DMA mode to local memory MEM2

 42

15) Enable update engines electric update

16) Check interrupt signal. If interrupt signal is set, the update process ends

17) Read Ezt values in DMA mode from local memory MEM3

18) Unload FPGA binary file from XCV1000E

19) Close the FIREBIRD™/PCI board

The Prototype System is very simple. There are only one host processor and one

FPGA in the system. So thread-level parallelism in the FDTD algorithm can’t be

exploited. Local SRAMs attached to the FPGA are single-port with random delay and

low speed. These low-performance SRAMs can’t support parallelism among the update

engines and can only support one iteration of FDTD algorithm calculation.

4.3 FPGA Implementation in the Cray XD1 System

 In order to overcome the limitations of the Prototype System and to improve the

performance, the FPGA implementation is done in another reconfigurable system named

Cray XD1 System. In the Cray XD1 system, there are lots of host processors and FPGAs.

The FDTD algorithm can be partitioned and distributed to the host processors and the

FPGAs, thus thread-level parallelism can be exploited. Furthermore, local SRAMs in the

Cray XD1 system are dual-port with fixed delay and high speed. These SRAMs can

support parallelism among the update engines and specified number of iterations of

FDTD algorithm calculation. So performance of the FPGA design in the Cray XD1

system improves greatly compared with that in the Prototype system.

4.3.1 VHDL Design

 43

 In the Cray XD1 system, the FPGA which is referred to as the AAP FPGA is

located on the expansion module board (see 3.2.1.1). In this section, the function of the

VHDL source code for the FPGA is explained and the FPGA architecture for the VHDL

source code is drawn. Then data organization in local memories is explained. At last

components and processes in the VHDL source code are described in detail.

4.3.1.1 FPGA Function

 The FPGA can be used as a bridge to take data from the host system and to write it

to local memories, to read data from local memories and to write it to the host system. It

can also be used for the FDTD algorithm update engines.

 If the FPGA is used as a bridge, local memories QDR II SRAM 1 to QDR II

SRAM 4 are mapped to the address space of the host system. Read commands from this

address space and write commands to this address space will be delivered to the FPGA.

The FPGA then reads data from the local memories and forwards them to the host system

or write the received data to the local memories.

 If the FPGA is used for the FDTD algorithm update engines, it must be initialized

first. The initialization data are stored in two internal registers FPGA_reg and

Update_counter. These registers are described in 4.3.1.4. After configuration the FPGA

will execute specified number of iterations of FDTD algorithm calculation. Throughout

this thesis, “one iteration of FDTD algorithm calculation” means magnetic field values

update by magnetic update Hx and magnetic update Hy at one time step, or electric field

update by electric update at one time step. The exact operation sequence is described in

4.3.1.4 (see component Qdr_fdtd in 4.3.1.4).

 44

4.3.1.2 FPGA Architecture

 FPGA architecture which supports both memory bridge and FDTD operation is

drawn in figure 4-7.

 App_fdtd

 Prog_clock_gen

 R
t

core

 Q
dr2

core

 Definitions for the symbols in figure 4-7 are as follows:

 : external interface

 : internal bus

 : internal signal

 : component in the VHDL source code

 : process in the VHDL source code

 The FPGA interacts with the host system using the component Rt_core. The

Rt_core delivers requests from the host system to component Rt_client, it also delivers

response from Rt_client to the host system.

Clock
Signals

Fabric
Request
Interface

Transmit
Data Bus

Receive
Data Bus

Host
Processor
Interface

QDR II SRAM 1
Interface

QDR II SRAM 2
Interface

QDR II SRAM 3
Interface

QDR II SRAM 4
Interface

QDR 1
Interface

QDR 2
Interface

QDR 3
Interface

 Rt_client

M
ux

QDR 4
Interface

 Qdr_fdtd

User
Request
Interface

Figure 4-7 FPGA Architecture in the Cray XD1 System

 45

 In the FPGA architecture, the Rt_client acts as an agent for the host system to

access the local memories and to control component Qdr_fdtd.

 Qdr_fdtd contains three update engines. If enabled, Qdr_fdtd can execute a

specified number of iterations of FDTD algorithm calculation without interference from

the host system. The magnetic update Hx and the magnetic update Hy in Qdr_fdtd run in

parallel. One Hx result and one Hy result can be produced per clock cycle. During the

calculation, Qdr_fdtd accesses the local memories exclusively. It reads input data from

the local memories and stores intermediate results and output data to the local memories.

 Qdr2_core is used for the FPGA to access the local memories. Memory access

requests from Rt_client and from Qdr_fdtd are multiplexed by component Mux. These

requests are then processed by Qdr2_core. Rt_client and Qdr_fdtd can’t access the same

SRAM at the same time.

 The local memories have fixed delay, so no internal FIFOs are needed for the

FPGA to access the local memories. This simplifies the FPGA design and improves the

memory access speed.

4.3.1.3 Data Organization in Local Memories

 There are four independent local memories (QDR II SRAM 1 to QDR II SRAM 4)

on the expansion module board (see 3.2.1.1). The QDR II SRAMs are 36-bit wide high

speed, low latency memories. Each QDR II SRAM has 2 ports hence is capable of

sustaining simultaneous, single clock, read and write accesses at clock speeds of up to

199 MHz [31]. QDR II SRAM 1 is used to store Hxt-1 values and Hxt values, QDR II

 46

SRAM 2 is used to store Hyt-1 values and Hyt values, QDR II SRAM 3 and 4 are used to

store Ezt-1 values and Ezt values.

 The QDR II SRAMs are dual-port and the data stored in them is organized as

ping-pong buffers. The ping-pong mechanism works like this: for cycle N, if the input

data are stored in the lower (upper) parts of the SRAMs, then output data are stored in the

upper (lower) parts of the SRAMs. Then during the next cycle N+1, the input data are

read from the upper (lower) parts of the SRAMs and the output data are stored in the

lower (upper) parts of the SRAMs. This process can continue until the specified number

of calculation iterations is reached. This ping-pong mechanism enables the FPGA to

execute many iterations of calculation with little communication with the host system.

Reduction of data transfer between the host system and the FPGA during intervals

between calculation iterations greatly improves the performance of the whole system.

 The Hxt-1 values and Hxt values are stored in QDR II SRAM 1 in row major order,

The Hyt-1 values and Hyt values are stored in QDR II SRAM 2 in column major order,

the Ezt-1 values and Ezt values are stored in QDR II SRAM 3 in row major order and

stored in QDR II SRAM 4 in column major order. Assume the electromagnetic field

processed by the FPGA is a Grid_Row×Grid_Column matrix, the row major order means

value V[i][j] in the matrix is stored at the address i×Grid_Column+j or

Grid_Row×Grid_Column+ i×Grid_Column+j in the QDR II SRAM, the column major

order means value V[i][j] in the matrix is stored at the address j×Grid_Row+i or

Grid_Row×Grid_Column+ j×Grid_Row+i in the QDR II SRAM.

 The row major order and the column order are adopted so that Qdr_fdtd can utilize

these orders to improve throughput of the update engines. Utilizing these orders and

 47

parallelism between magnetic update Hx and magnetic update Hy, Qdr_fdtd can produce

one Hx result and one Hy result per clock cycle or one Ez result every two clock cycles.

4.3.1.4 Components and Processes

 The components in the FPGA architecture include:

· Prog_clock_gen

· Rt_core

· Qdr2_core

· Rt_client

· Qdr_fdtd

· Mux

 Component Prog_clock_gen generates the programmable global clocks.

 Component Rt_core is provided by Cray Inc. It connects internal components in

the FPGA to external devices such as SMPs and other AAP FPGAs connected to the

RapidArray Interconnect (see 3.2.1.2) in the Cray XD1 system. It allows internal

components to access the external devices, and it also allows the external devices to

access internal registers and local memories of the FPGA.

 Component Rt_core is connected to the external devices through ports Transmit

Data Bus, Receive Data Bus, Host Processor Interface, Clock Signals, and it provides

Fabric Request Interface and User Request Interface to internal components in the FPGA.

Ports Transmit Data Bus and Receive Data Bus are used to transfer data between Rt-core

and the external devices. The host Processor Interface is provide to the external devices

to set the frequency of the programmable global clocks and to reset the FPGA. The

 48

Fabric Request Interface is used by Rt_core to forward the received remote memory

access requests from the external devices to Rt_client. It is also used to accept responses

from Rt_client, then the responses are forwarded by Rt_core to the external devices. The

User Request Interface can be used to accept memory access requests from internal

components in the FPGA. Then these requests are forwarded by Rt_core to the external

devices. It also can deliver the received responses from the external devices to the

internal components. But in the current FPGA design, the User Request Interface is not

used.

 Component Qdr2_core is provided by Cray Inc. It provides an interface for the

FPGA to access the four external 36 bit wide QDR II SRAMs. It allows the internal

components in the FPGA to simultaneously read and write the external QDR II SRAMs

at a clock speeds from 130 MHz up to 199 MHz. Qdr2_core is made up of four fully

independent RAM interface blocks, each connected to an external QDR II SRAM. The

four RAM interfaces blocks provide full control of the QDR II SRAMs including

address, read data, write data, read and write enables. This allows the four QDR II

SRAMs to be arranged in many different bank configurations [30].

 Component Mux multiplexes memory access buses from Rt_client and Qdr_fdtd.

After FPGA reset, memory access bus from Rt_client is connected to the qdr2_core and

the four QDR II SRAMs can only be accessed by the external devices connected to the

RapidArray Interconnect. If update engines in Qdr_fdtd is enabled, then memory access

bus from Qdr_fdtd is connected to the qdr2_core. When the update process completes,

the qdr2_core is switched back to Rt_client.

 49

 Component Rt_client acts as an agent for the host system to access the local

memories and to control component Qdr_fdtd. It processes requests from the external

devices and gives response through the Fabric Request Interface, it also monitors the

status of Qdr_fdtd and controls the operation of Qdr_fdtd. When it receives requests from

the Fabric Request Interface, it checks if the request are read requests or write requests, it

also checks the request addresses to tell if the requests should be directed to the internal

registers or the external QDR II SRAMs. If the requests are read requests to the internal

registers, then data stored in the internal registers are sent as response to the Fabric

Request Interface. If the requests are write requests to the internal registers, then data

from the Fabric Request Interface are stored into the internal registers and no response is

given to the Fabric Request Interface. If the requests are read requests to the external

QDR II SRAMs, Rt_client issues memory read requests to component Mux and waits for

response from the external QDR II SRAMs. When Rt_client receives the response from

Mux, it will forward the response to the Fabric Request Interface. If the requests are

write requests to the external QDR II SRAMs, Rt_client issues memory write requests to

Mux and completes the requests without waiting for the response.

 Component Rt_client contains two internal registers: Update_counter and

FPGA_reg. These two registers are used to control the operation of Qdr_fdtd and to

monitor the status of Qdr_fdtd. Update_counter is a 32-bit wide register. It specifies the

iteration number of the FDTD algorithm calculation Qdr_fdtd should complete.

FPGA_reg is a 64-bit wide register used by the host to specify parameters and initiate

execution of the Qdr_fdtd engine. The parameters in FPGA_reg are shown in figure 4-8

and described below:

 50

 2 1 27-2 28

 29 30 31 47-32 bit 63-48

Grid_Row Access_type

Update_starter

Grid_Column HxHy_Source_Location Update_type

Ez_Source_Location Update_end

 Figure 4-8 : Parameters in Register FPGA_reg

· Grid_Row : the number of rows of the electromagnetic field matrix

· Grid_Column : the number of columns of the electromagnetic field matrix

· Access_type : if this bit is set to ‘0’, then memory access bus from Rt_client is

 connected to Qdr2_core enabling the host to access the QDR II SRAMs; if this bit is

 set to ‘1’, then memory access bus from Qdr_fdtd is connected to Qdr2_core and the

 update engines has access to the QDR II SRAMs

· Update_type : if this bit is set to ‘0’, then in the first iteration of the FDTD algorithm

 calculation, update engines magnetic update Hx and magnetic update Hy are enabled;

 if this bit is set to ‘1’, then in the first iteration of the FDTD algorithm calculation,

 update engine electric update is enabled

· HxHy_Source_Location : this bit determines which ping-pong buffer to read for Hx

 and Hy data. If this bit is set to ‘0’, then in the first iteration of the FDTD algorithm

 calculation, source data value Hxt-1[i][j] is stored in QDR II SRAM 1 at

 address i×Grid_Column+j, source data value Hyt-1[i][j] is stored in QDR II SRAM 2

 at address j×Grid_Row+i; If this bit is set to ‘1’, then in the first iteration of the

 FDTD algorithm calculation, source data value Hxt-1[i][j] is stored in QDR II SRAM

 1 at address Grid_Row×Grid_Column+i×Grid_Column+j, source data value

 Hyt-1[i][j] is stored in QDR II SRAM 2 at address

 51

 Grid_Row×Grid_Column+j×Grid_Row+i

· Ez_Source_Location : this bit determines which ping-pong buffer to read for Ez

 data. If this bit is set to ‘0’, then in the first iteration of the FDTD algorithm

 calculation, source data value Ezt-1[i][j] is stored in QDR II SRAM 3 at address

 i×Grid_Column+j and in QDR II SRAM 4 at address j×Grid_Row+i; If this

 bit is set to ‘1’, then in the first iteration of the FDTD algorithm calculation, source

 data value Ezt-1[i][j] is stored in QDR II SRAM 3 at address

 Grid_Row×Grid_Column+i×Grid_Column+j and in QDR II SRAM 4 at address

 Grid_Row×Grid_Column+j×Grid_Row+i

· Update_starter : when this bit toggles, update engines in Qdr_fdtd start FDTD

 algorithm calculation

· Update_end : when update engines in Qdr_fdtd complete calculation, this bit is set

 by Qdr_fdtd to ‘1’, otherwise it is ‘0’

 Component Qdr_fdtd can do any iterations of FDTD algorithm calculation under

control of Rt_client. The procedure for FDTD algorithm calculation is depicted in figure

4-9.

 The Hx, Hy values update procedure in figure 4-9 is as follows:

1) Generate read addresses for the external QDR II SRAMs

2) Read data from the external QDR II SRAMs. Data from QDR II SRAM 1 are fed

to operand “op3” in update engine magnetic update Hx, data from QDR II SRAM

3 are fed to “op1” and “op2” in magnetic update Hx, data from QDR II SRAM 2

are fed to “op3” in magnetic update Hy, data from QDR II SRAM 4 are fed to

“op1” and “op2” in magnetic update Hy

 52

= 0= 0

> 0> 0

 1 0

Start FDTD algorithm calculation

Update_type=?

 Hx, Hy values update Ez values update

 Update_counter =
 Update_counter - 1

 Update_counter =
 Update_counter - 1

Update_counter=? Update_counter=?

 complete

 Figure 4-9 : Procedure for FDTD algorithm calculation

3) Magnetic update Hx and magnetic update Hy are enabled and run in parallel.

Calculation results will appear after a fixed number of clock cycles. One Hx result

and one Hy result will be produced every clock cycle

4) Generate write addresses for the external QDR II SRAMs

5) Write Hx calculation results from magnetic update Hx to QDR II SRAM 1 and

write Hy calculation results from magnetic update Hy to QDR II SRAM 2

 The Ez values update procedure in figure 4-9 is as follows:

1) Generate read addresses for the external QDR II SRAMs

2) Read data from the external QDR II SRAMs. Data from QDR II SRAM 1 are fed

to “op3” and “op4” in electric update, data from QDR II SRAM 2 are fed to

“op1” and “op2” in electric update, data from QDR II SRAM 3 are fed to “op5”

in electric update

 53

3) Electric update is enabled, and calculation results will appear after a fixed number

of clock cycles. One Ez result will be produced every two clock cycles

4) Generate write addresses for the external QDR II SRAMs

5) Write Ez calculation results from electric update to QDR II SRAM 3 and 4

 The order to generate read addresses for the external QDR II SRAMs in step 1)

during the Hx, Hy values update procedure is shown with arrows in figure 4-10.

Grid Column

 QDR II SRAM 3
 Ez

Grid_Row-1

Grid_Row

 QDR II SRAM 1
 Hx

Grid Column-1

Figure 4-10 Read Addresses Generation Order for Hx, Hy values update

00

0

1

Grid_Row-1

Grid_Row

00

1

Grid Column-1

Grid_Row-1

Grid Column-1

00

1

Grid Column

Grid_Row-1

Grid Column-1

00

1

QDR II SRAM 2
 Hy

 QDR II SRAM 4
 Copy of Ez

1 0 1

0 1 10

 54

The order to generate write addresses for the external QDR II SRAMs in step 4)

during the Hx, Hy values update procedure is shown with arrows in figure 4-11.

Grid Column

Grid_Row-1

Grid_Row

 QDR II SRAM 1
 Hx

Grid Column-1

Figure 4-11 Write Addresses Generation Order for Hx, Hy values update

00

0

1

Grid_Row-1

Grid Column-1

00

1

 QDR II SRAM 2
 Hy

1 0 1

The order to generate read addresses for the external QDR II SRAMs in step 1)

during the Ez values update procedure is shown with arrows in figure 4-12.

The order to generate write addresses for the external QDR II SRAMs in step 4)

during the Ez values update procedure is shown with arrows in figure 4-13.

 Component Qdr_fdtd can update one Hx value and one Hy value every clock

cycle. Every clock cycle Qdr_fdtd reads one Hx value from QDR II SRAM 1, one Hy

value from QDR II SRAM 2, two Ez values from QDR II SRAM 3, two Ez values from

QDR II SRAM 4. These six values or four of them plus two values buffered in the

previous clock cycle (totally six values) can be fed to update engines magnetic update Hx

and magnetic update Hy in the same clock cycle, thus one Hx value and one Hy value can

be updated every clock cycle.

 55

 56

 QDR II SRAM 1
 Hx

Grid Column

Grid_Row-1

Grid_Row

 QDR II SRAM 1
 Hx

Grid Column-1

Figure 4-12 Read Addresses Generation Order for Ez values update

00

0 1 0 1 Grid Column-1

1

Grid_Row-1

Grid Column-1

00

1

QDR II SRAM 2
 Hy

Grid_Row-1

Grid_Row

00

1

Grid Column

Grid_Row-1

Grid Column-1

00

1

 QDR II SRAM 2
 Hy

 QDR II SRAM 3
 Ez

Grid_Row-1

Grid_Row

00

1

Grid Column-1

1 10 0

 Component Qdr_fdtd can update one Ez value every two clock cycles. Every two

clock cycles Qdr_fdtd reads two Hx values from QDR II SRAM 1, two Hy values from

QDR II SRAM 2, one Ez value from QDR II SRAM 3. These five values are fed to

update engine electric update, thus one Ez value can be updated every two clock cycles.

4.3.2 Simulation

The simulation is done in the simulation environment described in chapter 3 (see

3.2.2). The test bench instantiates the AAP FPGA, the fabric model and the QDR II

SRAM model. Then it fetches commands such as read request and write request from a

stimulus file fabric.in and feeds these commands to the fabric model. The fabric model

then translates the requests into low-level bus transactions. For a delay command, the

fabric model will insert a time delay between requests. If it is a print command, the fabric

Figure 4-13 Write Addresses Generation Order for Ez values update

Grid Column

Grid_Row-1

Grid Column-1

00

0

1

 QDR II SRAM 4
 Copy of Ez

 QDR II SRAM 3
 Ez

Grid_Row-1

Grid_Row

00

1Grid Column-1

1

 57

model then will display messages on the simulation console. For a read or write request,

the fabric model will send it to the AAP FPGA. The AAP FPGA processes the received

request and responds appropriately. For a write request, the AAP FPGA processes the

transaction but doesn’t give response to the fabric model. For a read request, the AAP

FPGA gives response to the fabric model and the fabric model will verify that the

response matches the expected data provided in the request.

 The operation sequence in the stimulus file fabric.in is the same as the operation

sequence in the host application described in 4.3.5.

 Structure of the test bench is depicted in figure 4-14.

4.3.3

s

Synthesis

Components Rt_core and Qdr2_core are incorporated into the FPGA design a

“black box” components within the VHDL source code. They are provided as Xilinx

NGC netlist files instead of VHDL files. The NGC files contain both the gate level design

implementation for Rt_core and Qdr2_core plus additional timing and placement

constraint information.

Test Bench
xd1_fdtd

Figure 4-14 Structure of the Test Bench in the Cray XD1

App_fdtd

cy7c1314v18

cy7c1314v18

cy7c1314v18

cy7c1314v18

Q
dr2

ore
c

R
t

core

 Prog_clock_gen

 host_bus

fabric_model

host_bus.in

 fabric.in

 58

The FPGA design is synthesized with Xilinx XST. First all the other components

in the FPGA design except Components Rt_core and Qdr2_core are synthesized and

netlist files for these components are generated. Then these netlist files are combined

with the NGC netlist files of Rt_core and Qdr2_core. The output is an integrated NGD

file for the whole FPGA design.

 In the process of synthesis, timing and placement cons

traint information in the

environment described in chapter 3 (see 3.2.3). In order to interact with the AAP FPGA,

it calls the FPGA API functions.

 sequence in the host application is as follows:

1)

es to local memory QDR II SRAM 1

user constraint file (UCF) is integrated into the NGD file.

4.3.4 P&R

The generated NGD file in 4.3.3 is placed and routed with P&R tool Xilinx ISE

on the target FPGA Xilinx Virtex-II Pro XC2VP50 XCV. The output file is a

downloadable FPGA binary file for the FPGA design.

4.3.5 Host Programming

 The host application is programmed with ‘C’ language in the host programming

 The operation

Open the AAP FPGA

2) Download FPGA binary file into AAP FPGA

3) Write parameters to register FPGA_reg

4) Write parameter Update_counter to register Update_counter

5) Write Hxt-1 valu

 59

6)

TD

) Read Hxt values from local memory QDR II SRAM 1

yt values from local memory QDR II SRAM 2

13)

Write Hyt-1 values to local memory QDR II SRAM 2

7) Write Ezt-1 values to local memory QDR II SRAM 3

8) Write Ezt-1 values to local memory QDR II SRAM 4

9) Toggle parameter Update_starter in register FPGA_reg to start the FDTD

algorithm calculation

10) Poll parameter Update_end in register FPGA_reg. If Update_end is set, the FD

algorithm calculation ends

11

12) Read H

 Read Ezt values from local memory QDR II SRAM 3

14) Close the AAP FPGA

 60

Ch

Th rk

 In

rates achiev ns in both systems. Based on the analysis, suggestions

for future work are given.

 In each system alysis is done for the whole system. It includes

execution tim

data transfer. The tim value is derived and

used as a perform

 Definitions for th bols used in this chapter are:

 N : size of the electromagnetic matrix processed by the FPGA. Assume there are

 Grid_Row rows and Grid_Column columns in the matrix, then

 N=Grid_Row×Grid_Column

 2C : specified number of iterations of FDTD algorithm calculation in the Cray XD1

 system, only one iteration can be carried out on a given run on the Prototype

 System

 T0 : time needed to transfer 3N electromagnetic field values between the host system

 Dpro : average delay for local memory in the Prototype System

 Dcray :delay for local memory in the Cray XD1 System

 F : latency for internal FIFOs in the Prototype System

 M : latency for magnetic update engines

apter 5

eoretical Performance Analysis and Future Wo

this chapter, theoretical performance is analyzed and evaluated for the clock

ed in the implementatio

, performance an

e for FDTD algorithm calculation and overhead due to configuration and

e it takes to update one electromagnetic field

ance metric.

e sym

 and the local memories

 61

 E : latency for electric update engines

pro : time needed to update one electromagnetic field value in the Prototype System

lysis in the Prototype System

hm

 from MEM0, MEM1, MEM2

gorithm calculation

3, MEM4

pipeline fashion. In step 3), if magnetic field

d

d, one Ez result can be produced every two clock cycles.

tic field values update is

 Tu : clock period for the update engines

 T

 Tcray : time needed to update one electromagnetic field value in the Cray XD1 System

5.1 Performance Ana

 In the Prototype system, the complete process to calculate the FDTD algorit

consists of five stages:

1) the host system writes electromagnetic field values to MEM0, MEM1, MEM2

2) FPGA reads source data

3) the update engines execute one iteration of FDTD al

4) FPGA writes the result data into MEM3, MEM4

5) the host system reads electromagnetic field values back from MEM

 Step 2), 3), 4) are overlapped in

values are updated, magnetic update Hx and magnetic update Hy execute serially, and

one Hx result and one Hy result can be produced every four clock cycles. If electric fiel

values are update

 To update 2N magnetic field values, the five stages should be gone through. The

upro TNMFDT ×++++)42(0 . total time to complete the magne

To update N electric field values, the five stages should be gone through again. The total

×+time to complete the electric field values update is T upro TNEFD+ + +)22(. Tpro 0

can be derived as:

EMFDTT propro 42(2(0 NTN u 3))6 (4a) ×+++++=

 62

 In equation (4a), T0 is a function of N and clock rate of the FPGA, assume

T0=kNTu , then

upropro TkNEMFDT ×+++++=)]22(3)42[((4b) 3

pro

ts have insignificant influence on the performance.

 N is very small, Tpro will

he performance improves but is still very low.

 3.

The pro

 1000

 In equation (4b), D is a system constant, F, M, E are design constants. These

constan

 The significant variables in equation (4b) are N and Tu. If

be hundreds of times of Tu, this means very low performance. If N is very large, Tpro will

approach (2+2k/3)×Tu, t

 In the current design, Dpro=1, F=2, M=22, E=30, the minimum value for k is

 following table shows T as a function of N:

N 1 5 10 20 50 100 500

 Tpro u u u u u 4.3 Tu 4.04 Tu 4.02 Tu24.6 T 8.1 T 6.1 T 5.0 T 4.4 T

5.2 Performance Analysis in the Cray XD1 System

2) FPGA reads source data from QDR II SRAM 1-4

3) the update engines execute specified number of iterations of FDTD algorithm

calculation

4) FPGA writes the result data into QDR II SRAM 1-4

tem reads electromagnetic field values back from QDR II SRAM 1-4

 In the Cray XD1 system, the complete process to calculate the FDTD algorithm

consists of five stages:

1) the host system writes electromagnetic field values to QDR II SRAM 1-4

5) the host sys

 63

 There are no internal FIFOs between the stages. If magnetic field values are

ic update Hx and magnetic update Hy execute in parallel, and one Hx

e Hy result can be produced every clock cycle. I

calculation is 2C, so 2N×C

 can be updated

ugh the five stages is

EDT ucray × cray

updated, magnet

result and on f electric field values are

updated, one Ez result can be produced every two clock cycles.

 The specified number of iterations of FDTD algorithm

magnetic field values will be updated and N×C electric field values will be updated. The

total updated values are 3N×C. Because two magnetic field values (one Hx value and one

Hy value) can be updated every clock cycle and one electric field value

every two clock cycles, the time it takes for the update engines to update the 3N×C

values are 3N×C× Tu . And the total time to go thro

T C× , TN+)3M +++ 2(0 can be derived as:

)C3() NC)3 TN2(0 Dcray(T uEMTcray ×× ×++++=)

 In equation (4c), T0 is a function of N and clock rate of the FPGA, assume

 (4c

T0=kNTu , then

 ucraycray TC
kNEMDT ×++++=)]133)2[((4d)

 In equation (4d),

 Dcray is a system constant, M, E are design constants. These

constan

 , Tu. If N and C is very small,

Tpro ery

large, T ach Tu, the performance improves greatly.

 um value for k is 3. The

foll

ts have insignificant influence on the performance.

 The significant variables in equation (4d) are N, C

will be hundreds of times of Tu, this means very low performance. If N and C is v

pro will appro

 In the current design, Dcray=1, M=22, E=30, the minim

owing table shows Tcray as a function of N and C:

 64

 1 5 10 20 50 100 500 100

 N

0

 1 20 Tu 5.6 Tu 3.8 Tu 2.9 Tu 2.36 Tu 2.18 Tu 2.04 Tu 2.02 Tu

 5 19.2 Tu 4.8 Tu 3.0 Tu 2.1 Tu 1.56 Tu 1.38 Tu 1.24 Tu 1.22 Tu

 10 19.1 Tu 4.7 Tu 2.9 Tu 2.0 Tu 1.46 Tu 1.28 Tu 1.14 Tu 1.12 Tu

N

 50 19.02Tu 4.62 Tu 2.82 Tu 1.92 Tu 1.38 Tu 1.2 Tu 1.06 Tu 1.04 Tu

 The performance goal in t reduce Tcray. According to

equations (4d), the following methods can be adopted for performance

a ck rate of update engines, this will reduce Tu

agnetic matrix proces

 increase N

· increase the specified number of iterations of FDTD algorithm calculation, this will

 decrea

he Cray XD1 system is to

analysis of

improving:

· incre se the clo

· increase the size of the electrom sed by the FPGA, this will

 increase C

· se the latency of update engines, this will reduce M and E, but have only small

 impact on overall performance for reasonable values of N.

5.3 Performance Comparison

Tcray

C

 65

 The Cray XD1 system greatly outperforms the Prototype system based on analysis

f equations (4b) and (4d). Equations (4b) and (4d) are repeated here:

o

uproDproT TEF ×++= 2()42[(k)]3
2N +3M ++ (4b)

ucraycray TC
kNEMDT ×++++=)]133)2[((4d)

 If C=1, then Tpro≈2Tcray. This means for one iteration of FDTD algorithm

calculation, the Cray XD1 system outperforms the Prototype system by about 2 times.

 When C increases, for a reasonable matrix, 3N 〉〉 (2Dpr +4F+M+E),

3N 〉〉 (2D +M+E), so T o≈(2+2k/3)×T , T y≈T . Normally, the data transfer speed

between the host system and the FPGA is very slow, so k≥3, Tpro≥4Tu. This means for

ay XD1 system

ents, N is very small

compared with (2D +4F+M+E) and (2D +M+E), so both Tpro and Tcray will be

hundreds of times of Tu. This means unacceptable low performance for both systems. To

avoid this case, the size of the actual electromagnetic matrix distributed to one FPGA

should be large.

ork in the Cray XD1 System

 Based on the analysis in 5.2, several suggestions are proposed for the future work

 First new floating point library may be chosen to replace the current floating point

ing floating point library is located in the critical

o

cray pr u cra u

more than one iteration of FDTD algorithm calculation, the Cr

outperforms the Prototype system by more than 4 times.

 For a very special case which can only appear in experim

pro cray

5.4 Future W

in the Cray XD1 system.

library. Update engines implemented us

 66

paths of the design. If the clock rate for the update engines improves, the clock rate for

the whole FPGA can improve, so does the performance. The current library is provided

anovic [15]. Components in this library are well

for speed. So in the future, floating point library well optimized for speed can be tried.

 One choice is to use the Nallatech Floating Point Cores. The Nallatech Floating

nt design,

of the 18 Kb Block RAMs. So it

ost system. When Qdr_fdtd completes FDTD algorithm calculation, it

eeds to wait for polling from the host system. If the polling interval is too large,

performance. In the future, the

 FDTD algorithm calculation.

by Pavle Bel pipelined but not optimized

Point Cores employ the FPGA-optimal Nallatech Floating Point format for internal use,

with conversion blocks provided for IEEE-754 compatibility. The pre-placed, fully

pipelined core architectures offer performance of up to 180MHz. In the curre

the clock rate for the update engines is 75MHz. If the Nallatech floating point cores are

used to implement the update engines, the clock rate can be improved to 180MHz.

 More parallelism may be explored in the future. The current design occupies 45%

of the slices, 11% of the 18×18 bit multiplier blocks, 7%

is feasible to add one more set of update engines in the FPGA implementation and the

performance will double. The memory architecture should change accordingly if one

more set of update engines is added in the FPGA.

 In the current design, component Qdr_fdtd uses the Fabric Request Interface to

send data to the h

n

Qdr_fdtd may wait too long. This degrades the whole

User Request Interface can be used for Qdr_fdtd to send results to the host system as

soon as Qdr_fdtd completes

 Currently, for use in a parallel simulation boundary data must be transferred

between the FPGA and the host system, then sent to other nodes. This is one performance

 67

bottleneck. In the future, the FPGA may exchange data directly with the neighboring

FPGAs. Cray has not yet provided cores to support this although the underlying

architecture has the capability.

 68

Bibliography:

[1] C.E. Cox, and W.E. Blanz, “GANGLION- A Fast hardware Implementation

 Connectionist Classifier”, IEEE P

of a

roc. Custom Integrated Circuits Conference

 (CICC’91), 6.5.1, 1991

] M. Wazlowski et al. “PRISM-II Compiler and Architecture”, Proc. FCCM’93, pp.

 9-16, 1993

] D. Buell et al., “Splash 2: FPGAs in a Custom Computing Machine,” IEEE

 Computer Press, 1996 (ISBN0-8186-7413-X)

iyazaki, “YARDS:FPGA/MPU Hybrid Architecture for

 Telecommunication Data Processing”, Proc. ACM/SIGDA FPGA’97, pp. 93-99, Feb

 1997

] Miyazaki, T. “Reconfigurable systems: a survey”, Design Automation Conference

 1998. Proceedings of the ASP-DAC '98. Asia and South Pacific, 10-13 Feb. 1998

 Pages: 447-452

] Smith, M.C. ; Drager, S.L. ; Pochet, L. ; Peterson, G.D. ; “High performance

puting systems”, Circuits and Systems, 2001. MWSCAS 2001.

 Proceedings of the 44th IEEE 2001 Midwest Symposium on Volume: 1, 14-17 Aug.

 2001 Pages: 462-465 vol.1

] Fidanci, O.D. ; Poznanovic, D. ; Gaj, K. ; El-Ghazawi, T. ; Alexandridis, N.

 “Performance and overhead in a hybrid reconfigurable computer”, Parallel and

 Distributed Processing Symposium, 2003. Proceedings. International, 22-26 April

 2003

8] El-Araby, E. ; Taher, M. ; Gaj, K. ; El-Ghazawi, T. ; Caliga, D. ; Alexandridis, N.

[2

[3

[4] T.Tsutsui, and T. M

[5

[6

 reconfigurable com

[7

[

 69

 “System-level parallelism and throughput optimization in designing reconfigurable

IEEE Standard for Binary Floating-Point Arithmetic”.

ic

w York, 1985

nt

ms, 2(3), September 1994

int

osium on FPGAs for Custom Computing Machines, IEEE Computer Society

g Point Addition and Multiplication on FPGAs”. In K. L. Pocek

stom

n of the Practicality of Floating-Point Operations on

puting

f IEEE ICASSP, 2001, vol. 2, pp. 897-900

 computing applications”, Parallel and Distributed Processing Symposium, 2004.

 Proceedings. 18th International, April 26-30, 2004 Pages: 136-143

 [9] IEEE Standards Board. “

 Technical Report ANSI/IEEE Std 754-1985, The Institute of Electrical and Electron

 Engineers, ne

[10] B. Fagin and C. Renard. “Field Programmable Gate Arrays and Floating Poi

 Arithmetic”. IEEE Transactions on VLSI Syste

[11] N. Shirazi, A. Walters, and P. Athanas, “Quantitative Analysis of Floating Po

 Arithmetic on FPGA Based Custom Computing Machines”, Proc. of IEEE

 Symp

 Press, 1995, pp. 155-162

[12] L. Louca, T. A. Cook, and W. H. Johnson. “Implementation of IEEE Single

 Precision Floatin

 and J. Arnold, editors, Proceedings of the IEEE Symposium on FPGAs for Cu

 Computing Machines, pages 107–116, April 1996

[13] W. B. Ligon III, S. McMillan, G. Monn, K. Schoonover, F. Stivers, and K. D.

 Underwood. A Re-evaluatio

 FPGAs”. In Proceedings of the IEEE Symposium on FPGAs for Custom Com

 Machines, April 1998

[14] A. Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs",

 Proc. o

[15] Pavle Belanovic, “Library of Parameterized Hardware Modules for Floating-Point

 70

 Arithmetic with An Example Application”, M.S. Thesis, Dept of Electrical and

 Computer Engineering, Northeastern University, June 2002

[16] P. Belanovi’c and M. Leeser. “A Library of Parameterized Floating Point Modules

e

cer, O. “Floating point unit generation and evaluation

od”,

. pp.97-105

k,

in

n FPGA implementation of the

al

iversity of Cincinnati, Nov 2004

 and Their Use”. In Proceedings, International Conference on Field Programmabl

 Logic and Applications, Montpelier, France, Aug. 2002

[17] Jian Liang; Tessier, R.; Men

 for FPGAs”. Field-Programmable Custom Computing Machines, 2003. FCCM

 2003. 11th Annual IEEE Symposium on 9-11 April 2003 Pages:185-194

[18] R. N. Schneider, L. E. Turner, M. M. Okoniewski, “Application of FPGA

 Technology to Accelerate the Finite-Difference Time-Domain (FDTD) Meth

 Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-

 programmable gate arrays

[19] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, D. W. Prather, and M. S. Mirotzni

 “Hardware Implementation of a Three-Dimensional Finite-Difference Time-Doma

 Algorithm”, IEEE Antennas and Wireless Propagation Letters, VOL.2, 2003

[20] W. Chen, P. Kosmas, M. Leeser, C. Rappaport. “A

 two-dimensional finite-difference time-domain (FDTD) algorithm”, Internation

 Symposium on Field Programmable Gate Arrays, Proceeding of the 2004

 ACM/SIGDA 12th international symposium on Field programmable gate arrays,

 2004, pp. 213-222

[21] Sachin Gandhi, “An FPGA Implementation of FDTD Codes For Reconfigurable

 High Performance Computing”, Master Thesis, Un

[22] J. Stratton, “Electromagnetic Theory”. New York: McGraw-Hill,1941, p. 23

 71

[23] K. Yee, “Numerical solution of initial boundary value problems involving

 Maxwell’s equations in isotropic media”, IEEE Trans. Antennas and Propagation,

vision 3.0

 Core”, S-6412-12, Release 1.2

 16 (1966), pp. 302-307

[24] “FIREBIRD™ Hardware Reference Manual for FIREBIRD™ /PCI, c/PCI, /PMC

 Dual WSDP™ , and PMC Dual G-Link”, 12727-0000 Re

[25] “WILDSTAR™ Software Reference Manual for WILDSTAR™ , STARFIRE™ ,

 and FIREBIRD™”, 12723-0000 Revision 2.0

[26] “Cray XD1™ System Overview”, S-2429-12, Release 1.2

[27] “Cray XD1™ FPGA Development”, S-6400-12, Release 1.2

[28] “Cray XD1™ Programming”, S-2433-12, Release 1.2

[29] “Design of Cray XD1™ RapidArray Transport Core”, S-6411-12, Release 1.2

[30] “Design of Cray XD1™ QDR II SRAM

[31] “Cray XD1 MINCE FPGA Design”, June 06, 2004, Issue 0.3, PNR-DD-0015

 72

	Thesis_Prefix.pdf
	Date:_Nov 10, 2005_______
	Master of Science
	Computer Engineering
	FPGA Implementation of the FDTD Algorithm Using
	Local SRAM
	This work and its defense approved by:
	Chair:
	_Dr. Karen A. Tomko____________
	_Dr. Harold W. Carter__________
	_Dr. Wen-Ben Jone______________

	Thesis_index.pdf
	Thesis_body.pdf

