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                                                        Abstract 

           The Finite-Difference Time-Domain (FDTD) algorithm is a powerful tool to 

model electromagnetic phenomena. It is computation-intensive. Plenty of work has been 

done to implement this algorithm on FPGA and to improve the implementation 

performance. 

           This thesis presents an implementation of the FDTD algorithm on FPGA in two 

reconfigurable computing systems in order to explore the implementation feasibility and 

to improve the implementation performance. The two reconfigurable computing systems 

used in this thesis are a prototyping system in the ACL Lab at University of Cincinnati 

and a Cray XD1 system available at the Ohio Supercomputer Center. There are three 

major functional units in the FPGA: update engines calculating three equations in the 

FDTD algorithm, interface to host system, interface to local SRAMs. The local SRAMs 

are used to store input and output data for the FDTD algorithm. The purpose to use the 

local SRAMs is to reduce the data transfer between the host system and the FPGA. Host 

applications are developed to verify the FPGA implementation. 
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Chapter 1 

Introduction 

 

1.1   Overview  

           This thesis presents an implementation of the Finite-Difference Time-Domain 

(FDTD) algorithm on FPGA in two reconfigurable computing systems. Local SRAMs are 

used to store input and output data for the FDTD algorithm. Host applications are 

developed to verify the implementation and to evaluate performance of the 

implementation. 

           The work done in this thesis is based on the work done by Gandhi. Gandhi 

implemented the FDTD algorithm in a reconfigurable computing system named 

Heterogeneous HPC computer (HHPC) [21]. His work focuses on speedup of three 

equations in the FDTD algorithm. In his thesis, three update engines are implemented to 

calculate three equations in the FDTD algorithm, and parallelism and pipelining are 

utilized to speed up these update engines. Input and output data are stored in host system 

memories. For each iteration of FDTD algorithm calculation, input and output data must 

be transferred between the host system and the FPGA. This slow data communications is 

performance bottleneck and greatly degrades the performance of the whole system. 

           In this thesis, the implementation focuses on speedup of the whole process to 

complete the FDTD algorithm. The whole process includes input and output data transfer 

between the host system and the FPGA and data update by the update engines. In order to 

realize this goal, the implementation is done in two reconfigurable computing systems 
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different from the HHPC system. Local SRAMs attached to the FPGA are used to store 

input and output data to reduce data transfer between the host system and the FPGA. 

           The two reconfigurable computing systems used in this thesis are a prototyping 

system in the ACL Lab at University of Cincinnati which is referred to as the Prototype 

System throughout this thesis and a Cray XD1 system available at the Ohio 

Supercomputer Center. The Prototype system consists of a PC and a reconfigurable 

computing board. In the Prototype system, FPGA and local SRAMs are located on the 

reconfigurable computing board, host applications run on the host PC. The Cray XD1 

system consists of a number of Cray chassis connected by a switch fabric. Each chassis 

consists of one management processor and six compute blades. In the Cray XD1 system, 

host processors are located on the compute blades and host applications run on the host 

processors. FPGAs and local SRAMs are attached to the compute blades. 

           There are three major functional units in the FPGA: update engines calculating 

three equations in the FDTD algorithm, interface to the host system, interface to the local 

SRAMs. The update engines are implemented using floating point units. Two update 

engines are used to update magnetic field values, one is used to update electric field 

values. These update engines are pipelined. Furthermore, in the Cray XD1 system, the 

two update engines used to update magnetic field values are processed in parallel. Due to 

the pipelining and the parallelism, throughput and speed of the implementation improve. 

Interface to the host system interacts with the host system. The host system issues 

commands such as read and write to the FPGA through this interface. The FPGA 

processes the received commands and gives response to the host system through this 
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interface, too. Interface to the local SRAMs is used for the FPGA to read and write the 

local SRAMs.  

           In order to reduce the data transfer between the host system and the FPGA, input 

and output data for the FDTD algorithm are stored in the local SRAMs. In the Prototype 

system, local SRAMs are single-port memories. They can’t be read and written 

simultaneously. Three local SRAMs are used to store input data and two are used to store 

output data for the FDTD algorithm. Input data should be transferred from the host 

system to the input SRAMs before the calculation of the FDTD algorithm begins. When 

one iteration of calculation completes, the results will be stored in the output SRAMs and 

the host system should read the results back from the output SRAMs. In the Cray XD1 

system, there are four dual-port SRAMs. They can be read and written at the same time 

as long as the read address and the write address are not the same. These SRAMs are 

organized as ping-pong SRAMs. This ping-pong mechanism enables the FPGA to 

execute many iterations of calculation with little communication with the host system. 

Reduction of data transfer between the host system and the FPGA during intervals 

between calculation iterations greatly improves the performance of the whole system. 

           In this thesis, the main purpose of developing the host application is to verify the 

FPGA implementation. Though the FPGA design is already simulated and debugged after 

VHDL design completes, the FPGA design still needs to be verified to run correctly in 

the actual system. So host application needs to be developed to verify the function of the 

FPGA implementation. The host application loads the FPGA binary file into the FPGA, 

writes data to and reads data from the registers in the FPGA or the local SRAMs through 

the FPGA. It also starts the internal update engines in the FPGA and monitors the status 

 3



of the update engines. By this method, all the functional units of the FPGA can be 

verified.  

           The host application can also be augmented to evaluate the performance of the 

FPGA implementation. The experimental evaluation is the work of another member in 

our group. In this thesis, only theoretical analysis and evaluation of performance of the 

FPGA implementation is done.  

 

1.2  Related Work 

1.2.1  Reconfigurable Computing System 

           FPGA was first introduced in early 1990s. Since then, a lot of reconfigurable 

computing systems have been developed. C.E. Cox et al. developed a reconfigurable 

computing system named GANGLION [1]. GANGLION was a fast digital connectionist 

classifier. Its architecture was realized using a FPGA array on a VME card attached to a 

workstation. M. Wazlowski et al developed PRISM II [2]. PRISM II was a general 

purpose hardware platform. It mainly consisted of PRISM host processor and 

reconfigurable hardware platform. The compiler for PRISM II accepted a host application 

as input and produced hardware image and software image. The hardware image was 

used for programming the hardware platform. The Splash 2 system was developed by D. 

Buell et al. [3]. It consisted of a Sun workstation, an interface board, and Splash array 

boards. FPGAs on each array board were arranged in a linear array and were connected 

via a crossbar switch. The Splash 2 system was effective on applications such as text 

searching, sequence analysis and image processing. T.Tsutsui et al. developed YARDS 

[4]. YARDS comprised three cards: the main card, the MPU card, and the FPGA card. 

 4



There were a FPGA array mounted on the FPGA card. Several telecommunication 

applications were developed in the YARDS system. 

           Miyazaki, T categorized reconfigurable computing systems into three types: 

attached processors, coprocessors and special purpose machines [5]. He also investigated 

typical applications suitable for reconfigurable computing systems. Smith, M.C. et al. 

investigated the hardware architecture and configuration of reconfigurable computing 

system [6]. Software architecture of reconfigurable computing system was discussed, too. 

Fidanci, O.D. et al. overviewed hardware architecture and programming model of  

SRC-6ETM reconfigurable computers [7]. The SRC-6E could outperform a general-

purpose microprocessor for computationally intensive algorithms whether or not the 

overhead due to configuration and data transfer was included. The paper presented by El-

Araby, E. et al. was also based on the SRC-6ETM reconfigurable computers [8]. They put 

their concern on the DMA transfer between the host system and the FPGA. Theoretical 

model was built and analyzed for this performance bottleneck. Experimental work was 

done to verify the theoretical analysis. 

           The reconfigurable computing systems used in this thesis include the Prototype 

system and the Cray XD1 system. Based on the paper presented by Miyazaki, T [5], the 

Prototype system can be categorized into attached processors, the Cray XD1 system can 

be categorized into coprocessors. 

 

1.2.2  FPGA Implementation of Floating Point Algorithm 

           The most commonly used format for floating point numbers is described in IEEE 

Std 754 [9]. Until the late 1990s, the resource and speed of FPGA was restricted and it 
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was difficult to implement floating point arithmetic on FPGA. Many people explored and 

analyzed the feasibility and performance of implementation of floating point algorithm 

on FPGA during this period. B. Fagin et al. implemented floating point adder and 

multiplier using FPGA and discussed the tradeoff between performance and area 

requirement [10]. N. Shirazi et al. designed and optimized floating point adder/subtracter, 

multiplier and divider to maximize speed and to minimize area [11]. L. Louca et al. 

implemented floating point adder and multiplier and investigated the area-speed tradeoff 

[12]. W. B. Ligon III et al. presented implementation of floating point addition and 

multiplication functional units and discussed the performance and device utilization of 

these units [13].  

           From the beginning of 2000s, the resource and speed of FPGA increases greatly 

and area is no longer the overriding concern for implementation of floating point 

algorithm. More efforts are focused on performance and optimization of the 

implementation during this period. A. Jaenicke et al. presented an approach for 

developing and optimizing parameterized floating point units [14]. These units could be 

customized to meet user constraints by varying the precision, rounding modes, or the 

number of pipeline stages. Jian Liang et al. presented a floating point unit generation tool 

for FPGAs [17]. This tool could be used to create a variety of floating point units based 

on throughput, latency, and area requirements. Pavle Belanovic also presented a 

parameterized floating point library for use with reconfigurable hardware [15][16]. This 

library was fully parameterized for format control, arithmetic operations and conversion 

to and from any fixed-point format.  
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           The floating point library presented by Pavle Belanovic is chosen for the FPGA 

implementation of FDTD Algorithm in my thesis. 

 

1.2.3  FPGA Implementation of FDTD Algorithm 

           The first paper about FPGA implementation of FDTD algorithm was presented by 

Schneider et al. [18]. In his paper, one-dimensional FDTD algorithm was implemented 

on FPGA using a pipelined bit-serial arithmetic architecture. And the implementation 

used integer calculation. A one-dimensional resonator was used to verify the 

implementation and to explore the hardware speed and costs. Durbano et al. presented the 

first FPGA implementation of three-dimensional FDTD algorithm using floating point 

arithmetic units [19]. In his paper, system architecture for the FPGA implementation was 

introduced and functionality of each module in the system architecture was described. 

The speed of the implementation was more than 5 times slower than software 

implementation at that time. Chen et al. implemented two-dimensional FDTD algorithm 

on FPGA using fixed point arithmetic [20]. In the implementation, magnetic field 

updating algorithm along the x-coordinate and along the y-coordinate were processed in 

parallel, and magnetic field updating algorithms and electric field updating algorithm 

were partially paralleled. The components implementing the magnetic field updating 

algorithms and the electric field updating algorithm were designed as pipelines. The  

on-board memories stored the magnetic field values and the electric field values and were 

organized in a swapping mechanism. Another implementation of two-dimensional FDTD 

algorithm on FPGA was done by Gandhi [21]. In his master thesis, floating point 

arithmetic was used, three update engines magnetic update Hx, magnetic update Hy and 
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electric update were implemented to realize the magnetic field updating algorithms and 

the electric field updating algorithm, and parallelism and pipelining were utilized to 

speed up the implementation. The electric field values and the magnetic field values were 

stored in host system memories. The slow data communications between the host system 

and the FPGA degraded the performance of the whole system.  

           In my thesis, the update engines designed by Gandhi are used, local SRAMs are 

used to store the electric field values and the magnetic field values.   

 

1.3  Thesis Organization 

           Chapter 1 introduces the work I have done. In summary, I have improved the 

FPGA implementation in [21] by utilizing SRAMs attached to the FPGA to reduce host-

FPGA communications. Also introduced is related work done in the field of 

reconfigurable computing, on FPGA implementation of floating point algorithm and on 

FPGA implementation of FDTD Algorithm. Chapter 2 introduces the Finite-Difference  

Time-Domain (FDTD) algorithm. The method to derive FDTD algorithm from 

Maxwell’s equations is also explained in this chapter. Chapter 3 describes the 

reconfigurable computing systems used in this thesis: the Prototype system and the Cray 

XD1 system. The architecture of each system is introduced, the simulation environment 

and the host programming environment provided by each system are described. Chapter 4 

presents in detail the FPGA implementation of FDTD algorithm in the Prototype system 

and the Cray XD1 system. The FPGA implementation is divided into five stages: VHDL 

design, simulation, synthesis, P&R, host programming. The work done on each stage is 

 8



explained in detail. Chapter 5 analyzes results and performance of the FPGA 

implementation done in this thesis and proposes some suggestions for the future work. 
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Chapter 2  

Finite-Difference Time-Domain Algorithm for Electromagnetic 

Simulation 

 

           The Finite-Difference Time-Domain (FDTD) algorithm is a very powerful tool for 

the modeling of electromagnetic phenomena. This algorithm is a set of discretized finite 

difference equations derived from Maxwell’s equations. It was first presented by Kane S. 

Yee.   

           Maxwell’s equations in an isotropic medium are [22]: 
 

0=×∇+∂∂ EtB            (1a) 

JHtD =×∇−∂∂          (1b) 

 HB μ=                  (1c) 

            ED ε=       (1d) 

           The definitions for the symbols in the equations (1a)--(1d) are: 

           B – Magnetic flux density  

           E – Electric field 

             D – Electric flux density 

             H – Magnetic field 

             μ – Magnetic permittivity 

                                   ε – Electric permittivity 
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           Maxwell’s equations are very powerful in solving electromagnetic problems, but 

are not suitable for processing by computer.  In 1966, Kane S. Yee successfully presented 

a method to discretize Maxwell’s equations and to derive the FDTD algorithm [23].  

           There are two assumptions for the derivation. One is that the boundary condition 

should be appropriate for a perfectly conducting surface. This assumption implies that the 

tangential components of the electric field vanish and the normal component of the 

magnetic field vanishes on the surface. The other assumption is that the space grid size 

must be such that over one increment the electromagnetic field does not change 

significantly [23]. 

           Based on these two assumptions, Kane S. Yee discretized both the physical region 

and the time interval of the Maxwell’s equations on uniform grids. Then he derived the 

finite difference equations for two modes of electromagnetic waves: Transverse electric 

wave (TE) and Transverse magnetic wave (TM). Later these equations are named as 

Finite-Difference Time-Domain (FDTD) algorithm. Here only FDTD algorithm for the 

TM is presented [23]: 
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                             FDTD Algorithm for TM waves 
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           The electromagnetic field values in the equations (2a)--(2c) are updated ½  time 

step by ½  time step from two parts: field values calculated in previous ½  time step and 

field values in adjacent space cells. This characteristic makes it possible to implement the 

FDTD algorithm on parallel computers because only nearest-neighbor interactions are 

involved.  

           There are many methods to implement FDTD algorithm on parallel computers. 

Commonly in these methods, the discretized physical space is partitioned into regions 

and distributed to multiple processors. Data on the boundaries between regions is 

exchanged between processors, the electric field values are updated and stored in 

memory using previously stored magnetic field values, and then the magnetic field values 

are updated and stored in memory using the electric field values just calculated.  
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Chapter 3  

FPGA-Based Reconfigurable Computing Systems  

   

           A reconfigurable computing system consists of a number of computing nodes 

connected by an interconnection network. Host processors and reconfigurable computing 

elements (FPGAs and CPLDs) are associated with some or all of the computing nodes. 

The general diagram of a reconfigurable computing system is depicted in figure 3-1: 

Computing Node 1 

 MEMs 

  FPGA

 Figure 3-1 :  Reconfigurable Computing System  

      Host  
  Processor 

Local MEMs

 
 
Computing  
 
   Node 2 

 
 
Computing  
 
   Node N 

                                           Interconnection Network 

 

           In a reconfigurable computing system, a host application runs on one or several 

host processors, and some tasks in the host application are assigned to the FPGAs. The 

host processors and the FPGAs cooperate to execute the host application. Reconfigurable 

computing system is a good choice for host applications with intensive computation and 

parallelism. 

           In this thesis, FDTD algorithm is implemented in two reconfigurable computing 

systems: the Prototype system in the ACL Lab at University of Cincinnati and the Cray 

XD1 system. The Cray XD1 system has higher bandwidth, lower latency and more 

powerful memory architecture than the Prototype system.  
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3.1   Laboratory Prototype System 

3.1.1  System Architecture  

           The Prototype system is an integration of a PC with a reconfigurable computing 

board inserted into one of its PCI slots. This system is built for reconfigurable computing 

research. The specification for the PC is: 

·  Intel® XeonTM CPU 1.70 GHz 

·  512 MB of RAM 

·  28 GB IDE disk 

·  3Com® Fast Ethernet Controller 

           The reconfigurable computing board in the Prototype system is an Annapolis 

Micro FIREBIRDTM/PCI board. The FIREBIRDTM/PCI features include [24]: 

·  one Processing Element PE0 that is a Xilinx VIRTEX-E FPGA 

·  PE0 can optionally be programmed from flash on power up 

·  Processing clocks up to 150MHz 

·  Five memory banks, containing 9 to 36 Mbytes of synchronous ZBT SRAM 

·  5.4Gbytes/sec of memory bandwidth 

·  66MHz/64bit PCI transactions (3.3V PCI signaling only) 

           The block diagram for the FIREBIRDTM/PCI board is depicted in figure 3-2.  

           The   local address data (LAD) bus in figure 3-2 is a single master, 64-bit, shared 

address/data bus used for communications between the FPGA and the host processor. 

Every cycle on the LAD bus is initiated by the PCI Controller.  
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           The user’s design in the FPGA communicates with the host processor via the LAD 

bus. Any memory reads/writes by the host also go through the LAD bus and the FPGA. 

The FPGA directly accesses the ZBT SRAM. 
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 Figure 3-2 :   FIREBIRDTM/PCI block diagram [24] 
 

 

3.1.2  Simulation Environment 

           The simulation environment includes VHDL models for the host system and the 

FIREBIRD™/PCI board. These VHDL models are provided by Annapolis Micro 

Systems, Inc. to give the designer an accurate test bed for the completed Processing 

Element (PE) design and to enable the designer to validate the PE design before the 

synthesis, placement, and routing steps [24]. 

           The VHDL model for the host system is used to access the PE resources of the 

FIREBIRD™/PCI board via the PCI Controller. It can also be used to initialize and 

analyze the contents of any memory device on the FIREBIRD™/PCI board. This VHDL 

model is similar to the actual host system and it provides VHDL functions similar to the 

actual software Application Programming Interface (API) functions. 
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           The VHDL model for the host system includes the following functions [24]: 

· WS_Open : Sets up initial board configuration 

· WS_ReadPeReg/WS_WritePeReg: Reads/writes register locations in the PE Register  

     Space 

· WS_ReadPeReg64/WS_WritePeReg64: Reads/writes register locations in the PE  

     Register Space  

· WS_DMARead/WS_DMAWrite: Reads/writes the PE Space using DMA 

· WS_MClkSetConfig/WS_UClkSetConfig: Sets the configuration of the memory and  

     PE/user clocks 

· WS_WaitOnInterrupt : Waits for PE interrupt signal 

· WS_QueryInterruptStatus : Returns current interrupt status of all PEs 

· WS_ResetInterrupt : Clears pending interrupts 

           The VHDL model for the FIREBIRD™/PCI board includes [24]: 

· PCI Controller Model  

· On-board Memory Model  

· I/O Card Model 

          The PCI controller model provides functions to handle LAD bus transactions, to 

configure the clocks, and to handle PE interrupts. These functions can all be accessed 

from the functions provided by the VHDL model for the host system. 

           The on-board memory model is used to inspect the memory contents from the 

VHDL simulator tool. This model can be configured to an “empty” architecture if no 

memories on the board are needed by the PE.  
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           The I/O card model is empty. This model tri-states all of its signals to the 

FIREBIRD™/PCI board.  

 

3.1.3  Host Programming Environment 

           The Host Programming environment consists of three layers [25]:  

·  User’s host application 

·  WILDSTAR™ Application Programming Interface (API) 

·  WILDSTAR™ Device Driver 

           User’s host application is programmed with ‘C’ language and runs on the host PC. 

Its essential function is to load the embedded PE application (provided as an FPGA 

binary file) into the PE on the FIREBIRD™/PCI board and to maintain the operating 

environment of the embedded PE application. 

           The overall host application is bound by the WILDSTAR™ API. To develop host 

application, at least one library and several include files must be included. Under 

Windows® NTTM and UNIX, a single library--the WILDSTAR™ API is included. The 

include files contain constants, data types, and prototypes necessary to interface to the 

WILDSTAR™ API. 

           The WILDSTAR™ API centralizes specific knowledge of the underlying system. 

It presents a generalized view of the hardware resources and control operations in the 

system.  

           The WILDSTAR™ API routines are organized to provide high-level operations by 

performing combinations of low-level WILDSTAR™ device driver functions. The 

routines are provided to accomplish clock control, PE control, register interfaces 

 17



read/write, DMA Operations, Interrupt Operations, Temperature/Power Monitoring 

Operations, LED Display Operations. The subset of the API functions available to the 

host application programmer and used for the work presented in this thesis is [25]: 

·  WS_Open : Open a FIREBIRD™/PCI board 

·  WS_Close : Close a FIREBIRD™/PCI board 

·  WS_GetPhysicalConfig : Get the configuration information from the ID PROM(s) 

·  WS_ProgramPe : Program a particular PE 

·  WS_DeProgramPe : Deprogram a particular PE 

·  WS_MClkSetConfig : Set the source and frequency for M clock 

·  WS_UClkSetConfig : Set the source and frequency for P clock 

·  WS_ReadPeReg : Read from PE register space 

·  WS_WritePeReg : Write to PE register space 

·  WS_DmaRead : Read a buffer using DMA 

·  WS_DmaWrite : Write a buffer using DMA 

·  WS_ResetInterrupt : Reset the specified interrupt sources on the board 

·  WS_QueryInterruptStatus : Check the status of pending interrupts on the board 

           The WILDSTAR™ device driver provides a low-level interface to the 

FIREBIRD™/PCI board’s register space and a central location for all of the system’s 

global resources. It performs all necessary steps to initialize, to access and to maintain the 

hardware. 

 

3.2   Cray XD1 System 

 18



3.2.1  System Architecture  

           The Cray XD1 system is designed specifically for high performance computing. It 

consists of many Cray XD1 chassis interconnected with one high-speed switch fabric 

called the RapidArray Interconnect.  

 

3.2.1.1  Cray XD1 Chassis 

           The Cray XD1 chassis contains a management processor and six compute blades.  
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Figure 3-3 :   Cray XD1 chassis [27] 

           Each compute blade includes the following components [27]: 

·  Two 64-bit AMD Opteron processors—configured as one two-way symmetric     

      multiprocessors (SMP) that runs Linux operating system.  

·  Up to 16GB of DDR SDRAM per SMP 

·  one RapidArray processor (RAP)—provide high-bandwidth, low-latency interface to   

      the RapidArray Interconnect 

· A connector for an expansion module 
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           The expansion module is an optional board that attaches to a compute blade. Each 

expansion module contains the following components [27]: 

·  An application acceleration processor (AAP FPGA) 

·  An RAP which provides two additional RapidArray links per compute blade 

·  Four quad-data-rate (QDR) II SRAMs for the AAP FPGA 

·  A programmable clock source for the AAP FPGA 

           The block diagram for the expansion module is as follows [27]: 
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  RAP 

 
 
 
 Connector     RapidArray  

Interconnect Bus 

Figure 3-4 :   Expansion Module [27] 

  QDR II SRAM

  QDR II SRAM

  QDR II SRAM

 

           The AAP FPGA belongs to the Xilinx Virtex-II Pro series. The resources in the 

AAP FPGA include 2 PowerPC processor blocks, 23616 logic slices, 232 18×18 bit 

multiplier blocks, 232 18 Kb Block RAMs.   

           The RAP connects the AAP FPGA to the local SMP and the RapidArray 

Interconnect. The QDR II SRAM provides local high-speed storage for the AAP FPGA. 

Each of the four QDR II SRAM circuits operates independently. The programmable 

clock sets the speed of the AAP FPGA for each design. 

 

3.2.1.2  RapidArray Interconnect 
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           The RapidArray Interconnect is a central communications construct in the Cray 

XD1 system. It connects processors and memories within a chassis and between chassis. 

This interconnect enables the system to avoid PCI-X bus bottlenecks and shared-resource 

contention. 

           “The RapidArray Interconnect is a 96-GB-per-second (maximum per chassis) 

nonblocking, embedded crossbar-switch fabric that connects the RAPs. Each chassis has 

either one or two RapidArray switch fabrics, each of which consists of RapidArray links 

and a 24-port internal switch.” [27] 

 

3.2.2  Simulation Environment 

           The elements in the simulation environment are [31]: 

·  A VHDL test bench  

·  VHDL model for the RapidArray fabric  

·  VHDL model for the QDR II SRAM 

·  The stimulus file 

           The test bench instantiates the AAP FPGA, the fabric model and the QDR II 

SRAM model.  

           In the simulation, the fabric model processes commands such as read request and 

write request from a stimulus file. It will also process read and write requests generated 

by the AAP FPGA.  

           The QDR II SRAM model simulates a dual-port, 36-bit wide QDR II SRAM. This 

SRAM is synchronous and can be read and written at the same time. 
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           The stimulus file is a text file containing stimulus commands which are inputs to 

the fabric model. The commands includes: [31] 

·  I :  Initialize Link  

·  P <Text to print> :  display messages on the simulation console 

·  D <delay value> :  insert a time delay between requests 

·  R <addr> <expected data> <byte mask> <byte request> <size> :  Read Request 

·  W <addr> <write data> <byte mask> <byte request> <size> :  Write Request 

·  B <data> <byte mask> :  Burst Request 

where: 

          <Text to print> = Message for console 

          <delay value> = delay in user clock cycles 

          <addr> = 40 bits address in hex 

          <data> = 64 bits data in hex 

          <byte mask> = 8 bits data mask in hex (1 = enable, 0 = disable) 

          <byte request> = 4 bits in hex (1 = byte req, 0 = dw request) 

          <size> = size of read/write access in double words (32 bits) in hex 

 

3.2.3  Host Programming Environment  

           The Host Programming environment consists of three layers [28]:  

·  host application on the SMP 

·  FPGA Application Programming Interface (API) 

·  RT core bus transactions 
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           To communicate with the AAP FPGA, the host application first opens the AAP 

FPGA to get a file descriptor. Then using the file descriptor, the host application loads 

the converted logic file (provided as an FPGA binary file) into the AAP FPGA. After 

this, the host application can read and write registers in the AAP FPGA, read data from or 

write data to the QDR II SRAMs through the AAP FPGA. At last, the host application 

can reset the AAP FPGA and close the file descriptor. 

           The FPGA API provides the functions that the host application needs to use an 

AAP FPGA. These functions include [28]: 

·  fpga_open :  Opening an FPGA 

·  fpga_load :  Loading the converted logic file into the FPGA 

·  fpga_reset :  Resetting an FPGA 

·  fpga_start :  Releasing an FPGA from reset state 

·  fpga_memmap :  Accessing FPGA locations from the host application 

·  fpga_mem_sync :  Synchronizing accesses to FPGA locations 

·  fpga_wrt_appif_val :  Writing individual FPGA locations 

·  fpga_rd_appif_val :  Reading individual FPGA locations 

·  fpga_set_ftrmem :  Accessing host application memory from an FPGA 

·  fpga_status :  Checking the status of an FPGA 

·  fpga_is_loaded :  Checking the programming state of an FPGA 

·  fpga_unload :  Erasing an FPGA 

·  fpga_close :  Closing an FPGA 
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           There is a component referred to as the Rt_core (see 4.3.1.4) in the AAP FPGA. 

The FPGA API functions initiate appropriate RT core bus transactions to this component. 

The user logic in the AAP FPGA processes the bus transactions and responds 

appropriately. If user logic in the AAP FPGA needs to access the SMP memory through 

Rt_core, it sends a bus transaction to Rt_core, then the bus transaction is forwarded to 

hardware on the SMP, where it becomes a read or write transaction to the SMP DRAM. 
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Chapter 4  

FDTD FPGA Implementation using Local SRAM 

 

           FPGA implementation of the FDTD algorithm has been done for each of the 

systems described in the previous chapter: the Prototype system and the Cray XD1 

system. The design goal in the Prototype system is to explore implementation feasibility, 

while the goal in the Cray XD1 system is to improve implementation performance. 

           In both systems, floating point units are used to implement the update engines and 

the update engines are pipelined, input and output data for the FDTD algorithm are stored 

in the local SRAMs to reduce the data transfer between the host system and the FPGA.  

           In the Prototype system, the two magnetic update engines are processed serially, 

each SRAM is single-port with random delay, and only one iteration of FDTD algorithm 

calculation can be supported. While in the Cray XD1 system, the two magnetic update 

engines are processed in parallel, each SRAM is dual-port with fixed delay, the data in 

the SRAMs in the Cray XD1 system are organized as ping-pong buffers, and specified 

number of  iterations of FDTD algorithm calculation can be supported. So the design in 

the Cray XD1 system has higher throughput, higher memory access speed, and less data 

flow between the host system and the FPGA.  

           The FPGA implementation flow in the Prototype system is almost the same as that 

in the Cray XD1 system. But the detailed steps are different in these two systems. In this 

thesis, the FPGA implementation flow and the detailed steps in the flow are explained for 

both systems.  
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4.1  FPGA Implementation Flow 

           The FPGA implementation flow in this thesis has the following five basic steps: 

·  VHDL Design—Create VHDL source code for the target FPGA 

·  Simulation—Simulate the VHDL source code  

·  Synthesis—Translate the VHDL source code into a gate-level netlist 

·  P&R—Place and route the gate-level netlist on the target FPGA 

·  Host Programming—Program host application, C/C++ with API calls     

           The FPGA implementation flow is depicted in figure 4-1: 

Figure 4-1 :  FPGA Implementation Flow 
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           VHDL can specify a hardware design in terms of familiar programming constructs 

such as conditional statements, loops, and function calls. It provides a flexible and 

powerful way to generate efficient logic. VHDL code can be written with many text 
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editors. The target FPGA in the Prototype system is the Processing Element PE0 located 

on the FIREBIRDTM/PCI board (see 3.1.1), and the target FPGA in the Cray XD1 system 

is AAP FPGA located on the expansion module board (see 3.2.1.1). 

           The simulation is done in the simulation environment described in chapter 3 (see 

3.1.2 and 3.2.2). In the simulation, VHDL source code and the VHDL models provided in 

the simulation environment that manipulate the design inputs and monitor the outputs are 

combined and compiled by the simulation tool. Then the simulation process starts, 

waveforms for all the signals in the VHDL source code and the VHDL models are 

derived, checked and verified. The simulation tool used is ModelSim VHDL simulator. 

           The synthesis process translates the VHDL source code into gate-level elements 

such as AND gates, OR gates, and flip-flops. The output of the synthesis process is a 

gate-level netlist. In the Prototype system, the synthesis tool used is Synplify Pro. In the 

XD1 Cray system, the synthesis tool used is Xilinx XST. 

           P&R is the process of translating, mapping, placing, routing, and generating an 

FPGA binary file for the VHDL source code. It assigns logic in the gate-level netlist to 

specific physical resources of the target FPGA. A set of user-determined timing and 

placement constraints guides the P&R process. These constraints are in the user 

constraint file (UCF). The target FPGA type is Xilinx VIRTEX-E XCV1000E in the 

Prototype system and Xilinx Virtex-II Pro XC2VP50 in the Cray XD1 system. The P&R 

tool used is part of the Xilinx ISE design suite. 

           The host application is programmed using the APIs provided in the host 

programming environment described in chapter 3 (see 3.1.3 and 3.2.3). It loads the FPGA 

binary file to the target FPGA and debugs the operation of the FPGA.   
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4.2  FPGA Implementation in the ACL Prototype System   

4.2.1  VHDL Design 

           In this section, the function of the VHDL source code for the FPGA is explained 

and the FPGA architecture for the VHDL source code is drawn. Next data organization in 

local memories is explained. At last components and processes in the VHDL source code 

are described in detail. 

 

4.2.1.1  FPGA Function 

           The FPGA can be used as a bridge to take data from the host system and to write it 

to local memories, to read data from local memories and to write it to the host system. It 

can also be used as FDTD algorithm update engines. 

           If the FPGA is used as a bridge, configuration data should be written into internal 

registers in the FPGA first. The configuration data indicates the local memories access 

type (read or write), the start address of the accessed local memories and the length of the 

data. Then data transfer between the host system and the local memories starts. Data are 

transferred through the FPGA in DMA mode.  

           If the FPGA is used as FDTD algorithm update engines, it can only complete one 

iteration of FDTD algorithm calculation. The host system must write input data to the 

local memories before each iteration of calculation and read output data back from the 

local memories after each iteration of calculation. The FPGA can be configured to 

operate in two modes: UpdateHxHy mode and UpdateEz mode.  In UpdateHxHy mode, 

update engine magnetic update Hx and magnetic update Hy are enabled to execute one 
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iteration of calculation. In UpdateEz mode, update engine electric update is enabled to 

execute one iteration of calculation.  

           The operation sequence in UpdateHxHy mode is as follows: 

1) Hxt-1  values are read from local memory MEM0; Hyt-1 values are read from local 

memory MEM1; Ez values are read from local memory MEM2. These read 

operations are done in parallel 

2)  Hxt-1  values, Hyt-1 values, Ez values are fed to internal FIFOs in the FPGA in   

       parallel 

3) Hxt-1 values, and Ez values in internal FIFOs are fed to the enabled update engine 

magnetic update Hx; Hyt-1 values, and Ez values in internal FIFOs are fed to the 

enabled update engine magnetic update Hy.  

4) When the result data Hxt values and Hyt values from update engine magnetic 

update Hx and magnetic update Hy are ready, they are pushed into another two 

FIFOs in the FPGA 

5) Hxt values are pulled out of the FIFO and written to local memory MEM3, Hyt 

values are pulled out of the FIFO and written to local memory MEM4. 

Similarly, the operation sequence in UpdateEz mode is as follows: 

1) Hx values are read from local memory MEM0; Hy values are read from local 

memory MEM1; Ezt-1 values are read from local memory MEM2. These read 

operations are done in parallel 

2) Hx values, Hy values and Ezt-1 values are fed to internal FIFOs in the FPGA in 

parallel 
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3) Hx values, Hy values and Ezt-1  values in internal FIFOs are fed to the enabled 

update engine electric update 

4) When the result data Ezt values from update engine electric update are ready, they 

are pushed into another FIFO in the FPGA 

5) Ezt values are pulled out of the FIFO and written to local memory MEM3 

 

4.2.1.2  FPGA Architecture 

           FPGA architecture is drawn in Figure 4-2. Definitions for the symbols used in 

figure 4-2 are: 

          :  external interface 

          :  internal bus 

          :  internal signal 

          :  component in the VHDL source code 

          :  process in the VHDL source code 

           In the FPGA architecture, components with prefix “LAD” are related to the LAD 

bus. The host system communicates with the FPGA through these components. With the 

aid of these components, the host system can access internal registers in the FPGA and 

the local memories. 

           The memory interface in the FPGA consists of components with prefix “Mem”. 

This memory interface multiplexes the read/write requests from the host system and the 

update engines in the FPGA. The host system and the update engines can’t access the 

same memory at the same time. 
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Figure 4-2  :   FPGA Architecture in the Prototype System  
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           Three update engines are used for FDTD algorithm calculation. Four processes are 

used for the update engines to access the local memories. 

           Because the local memories have random delay, internal FIFOs are used when the 

update engines access the local memories. This increases the complexity and decreases 

the performance of the FPGA design. 

 

4.2.1.3  Data Organization in Local Memories 

           There are five independent local memories on the FIREBIRDTM/PCI board (see 

3.1.1). MEM0 to MEM3 are 64-bit wide, MEM4 is 32-bit wide. MEM0 to MEM2 are 

used to store source data, MEM3 to MEM4 are used to store destination data. In detail, 

MEM0 stores Hxt-1  values, MEM1 stores Hyt-1  values, MEM2 stores Ezt-1  values, MEM3 

stores Hxt  values or Ezt  values, MEM4 stores Hyt  values. 

           Assume the electromagnetic field processed by the FPGA is a 

Grid_Row×Grid_Column matrix. Then Hx values, Hy values and Ez values in this matrix 

can be organized as two-dimensional data arrays. The range for Hx values is from 

Hx[0][0] to Hx[Grid_Row−1][ Grid_Column−1], the range for Hy values is from 

Hy[0][0] to Hy[Grid_Row−1][ Grid_Column−1], the range for Ez values is from Ez[0][0] 

to Ez[Grid_Row−1][ Grid_Column−1].   

           Hxt-1[i][ j] in the electromagnetic field matrix is stored in MEM0 at address 

i×Grid_Column+j, Hyt-1[i][ j] is stored in MEM1 at address i×Grid_Column+j, Ezt-1[i][ j] 

is stored in MEM2 at address (i−1)×Grid_Column+(j−1), Hxt[i][ j] is stored in MEM3 at 

address i×Grid_Column+j, Hyt[i][ j] is stored in MEM4 at address i×Grid_Column+j, 

Ezt[i][ j] is stored in MEM3 at address (i−1)×Grid_Column+(j−1). 
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4.2.1.4  Components and Processes 

           Components in the FPGA architecture can be divided into four groups: 

·  update engines 

·  components related to LAD bus 

·  components related to memory interface 

·  internal FIFO 

           Processes in the FPGA architecture include: 

·  MEM_TO_BLOCKRAM 

·  BLOCKRAM_TO_UPDATEENGINE 

·  UPDATEENGINE_TO_BLOCKRAM 

·  BLOCKRAM_TO_MEM 

           There are three update engines in the FPGA. They are used to update magnetic 

field and electric field values. To improve speed, these update engines are fully pipelined. 

·  magnetic update Hx :  updates magnetic field values along the x-coordinate. It 

implements the following equation: 

             [ ][ ] [ ][ ] [ ][ ] [ ][ ]( )jiEzjiEzdtmudyjiHxjiHx tt 1111 +−++×−= −        (3a) 

This equation is transformation of equation (2a) in the FDTD algorithm in chapter 2.  

     Hxt :    the magnetic field value along the x-coordinate 

     Hxt-1 :  the magnetic field value along the x-coordinate from the previous time step  

     Ez :  the electric field value along the z-coordinate 

     dtmudy :  constant that includes time step, grid spacing, and magnetic permeability  
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Figure 4-3  Block Diagram of Magnetic update Hx [21]
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·  magnetic update Hy :  updates magnetic field values along the y-coordinate. It 

implements the following equation:      

             [ ][ ] [ ][ ] [ ][ ] [ ][ ]( )1111 +−++×+= − jiEzjiEzdtmudxjiHyjiHy tt        (3b) 

This equation is transformation of equation (2b) in the FDTD algorithm in chapter 2.  

Figure 4-4  Block Diagram of Magnetic update Hy [21]

 
 

AddIntegrated
 

AddIntegrated 

 
MulIntegrated 

Op2 

Op1 

Op3 

Exception_In 

Ready 

Const 

[1]

[2]

[3]

[1]
[2]

[3]

Result Signal 
Exception Out Signal
Done Signal 

Result 

Done 

Clock Signal 
Delay
_Block

Delay
_Block 

[1]

[2]

[3]

Delay
_Block 

Exception Out 

 

·  electric update :  updates electric field values along the z-coordinate. It implements 

the following equation:      

             
[ ][ ] [ ][ ] [ ][ ] [ ][ ]( )

[ ][ ] [ ][ ]( )111
1111

−−−−×−
−−−−×+= −

jiHxjiHxdtepsdy
jiHyjiHydtepsdxjiEzjiEz tt        (3c)     
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           The FPGA communicates with the host system through the LAD bus. Components 

related to LAD bus in the FPGA include [24]: 

·  LAD64_Mux_IF : connects internal components in PE0 to the PCI Controller on the 

FIREBIRD /PCI board. It has master port LAD64_BUS and clients port 

LAD64_Mux_Bus. LAD64_BUS is a local address data (LAD) bus. It is a single master, 

64-bit, shared address/data bus. Every cycle on it is initiated by the PCI Controller and 

may last from four to hundreds of clock cycles. LAD64_Mux_Bus is clients bus, the 

internal components in PE0 such as LAD64_Mux_Reset and LAD64_Mux_RegFile are 

connected to it 

·  LAD64_Mux_Reset : provides an LAD accessible reset unit for PE0. It encapsulates a 

VIRTEX_STARTUP block. When the host application writes a ‘1’ to its control address, 

it will generate a reset pulse on the global reset line of PE0 

Figure 4-5  Block Diagram of Electric update [21] 

TM
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·  LAD64_Mux_RegFile : provides an LAD accessible register file on PE0. Each 

register in the file is 64-bits. Configuration data such as version number and update type 

are written into the register file in this component     

·  LAD64_DMA_Read_Mux_IF : used with component 

LAD64_DMA_Read_Mem64_Bridge and LAD64_DMA_Read_Mem32_Bridge to read 

data from the local memory on the FIREBIRD™ /PCI board. It receives DMA data from 

LAD64_DMA_Read_Mem64_Bridge and LAD64_DMA_Read_Mem32_Bridge and 

transmits the received DMA data on the LAD bus which is connected to the host system. 

It also controls the DMA read status 

·  LAD64_DMA_Write_Mux_IF : used with component 

LAD64_DMA_Write_Mem64_Bridge to write data to the local memory. It receives data 

from the LAD bus which is connected to the host system, then it transmits the received 

data on DMA bus which is connected to LAD64_DMA_Write_Mem64_Bridge. It also 

controls the DMA write status  

·  LAD64_DMA_Read_Mem64_Bridge : acts as a pre-fetch unit for the 

LAD64_DMA_Read_Mux_IF. It reads data from the 64-bit Mem bus which is connected 

to the Mem64_Mux_Priority_IF and transmits the received data to the DMA bus which is 

connected to the LAD64_DMA_Read_Mux_IF. It has ports LAD, Mem and DMA. Port 

LAD is connected to the LAD64_Mux_IF and receives control data from the host system. 

LAD64_DMA_Read_Mem64_Bridge contains a register file CRegfile which is used to 

control the start and stop memory addresses. It also contains a status record which can be 

used to determine if a DMA read is being performed and what percentage of the DMA 

read has been completed  
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·  LAD64_DMA_Read_Mem32_Bridge : acts as a pre-fetch unit for the 

LAD64_DMA_Read_Mux_IF. It reads data from the 32-bit Mem bus which is connected 

to the Mem32_Mux_Priority_IF and transmits the received data to the DMA bus which is 

connected to the LAD64_DMA_Read_Mux_IF. It has ports LAD, Mem and DMA. Port 

LAD is connected to the LAD64_Mux_IF and receives control data from the host system. 

LAD64_DMA_Read_Mem32_Bridge contains a register file CRegfile which is used to 

control the start and stop memory addresses. It also contains a status record which can be 

used to determine if a DMA read is being performed and what percentage of the DMA 

read has been completed 

·  LAD64_DMA_Write_Mem64_Bridge : used with LAD64_DMA_Write_Mux_IF to 

take data from the host system and write it to the 64-bit local memory. It reads data from 

DMA bus connected to LAD64_DMA_Write_Mux_IF and transmits the received data to 

the Mem bus connected to Mem64_Mux_Priority_IF. It has ports LAD, Mem and DMA. 

Port LAD is connected to the LAD64_Mux_IF and receives control data from the host 

system. LAD64_DMA_Write_Mem64_Bridge contains a register file CRegfile which is 

used to control the start and stop memory addresses. It also contains a status record which 

can be used to determine if a DMA write is being performed and what percentage of the 

DMA write has been completed  

           The FPGA accesses the local memories through a 64-bit Memory Standard 

Interface and a 32-bit Memory Standard Interface. Components related to these memory 

interfaces in the FPGA include [24]: 

·  Mem64_Mux_Priority_IF : a 64-bit memory server in the PE0. It multiplexes 

memory ports among different components that are clients contained in the PE0 and is 
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capable of providing 64-bit memory access to these clients. For example, for the local 

memory MEM0 in figure 4-2, Mem64_Mux_Priority_IF provides memory access to 

clients LAD64_DMA_Write_Mem64_Bridge and MEM_TO_BLOCKRAM. Each client 

must be assigned a unique element of the client vector in order to be connected to the  

64-bit memory server 

·  Mem32_Mux_Priority_IF : a 32-bit memory server in the PE0. It multiplexes 

memory ports among different components that are clients contained in the PE0 and is 

capable of providing 32-bit memory access to these clients 

           Internal FIFO used in the FPGA is component BlockRAM_FIFO. This is a 256x32 

FIFO. 32-bit data can be pushed into it and pulled out of it. If the FIFO is almost full, Full 

Flag is set. If the FIFO is almost empty, then Empty Flag is set. 

           There are four processes in the FPGA. These processes control the memory access 

of the update engines. 

·  MEM_TO_BLOCKRAM : reads data from three 64-bit local memories (MEM0 to 

MEM2) and feeds the data to four BLOCKRAM_FIFOs (BLOCKRAM_FIFO0 to 

BLOCKRAM_FIFO3). Local memory MEM0 is connected to BLOCKRAM_FIFO0, 

Local memory MEM1 is connected to BLOCKRAM_FIFO1, Local memory MEM2 is 

connected to BLOCKRAM_FIFO2 and BLOCKRAM_FIFO3. If PE0 is in UpdateHxHy 

mode or UpdateEz mode and the four BLOCKRAM_FIFOs have spare space, read 

requests are issued to the three local memories. When the output data from the three local 

memories are ready, they are pushed into the four BLOCKRAM_FIFOs. If PE0 is in 

UpdateHxHy mode, the pseudo-code to generate read addresses to the three local 

memories is: 
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           for update engine magnetic update Hx:  

               for i from 0 to Grid_Row−1 

                   for j from 1 to Grid_Column−1 

                       generate read address     i× Grid_Column + j − 1           for MEM0 

                       generate read address     i× Grid_Column + j − 1           for MEM2 

                       generate read address     i× Grid_Column + j                for MEM2 

           for update engine magnetic update Hy:  

               for i from 1 to Grid_Row−1 

                   for j from 0 to Grid_Column−1 

                       generate read address     (i − 1)× Grid_Column + j          for MEM1 

                       generate read address     (i − 1)× Grid_Column + j          for MEM2 

                       generate read address     i× Grid_Column + j                  for MEM2 

If PE0 is in UpdateEz mode, the pseudo-code to generate read addresses to the three local 

memories is: 

           for update engine electric update  

               for i from 1 to Grid_Row−1 

                   for j from 1 to Grid_Column−1 

                       generate read address     (i − 1)× Grid_Column + j − 1    for MEM0 

                       generate read address     (i − 1)× Grid_Column + j          for MEM0 

                       generate read address     (i − 1)× Grid_Column + j − 1    for MEM1 

                       generate read address     i× Grid_Column + j − 1            for MEM1 

                       generate read address     (i − 1)× Grid_Column + j − 1   for MEM2 
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·  BLOCKRAM_TO_UPDATEENGINE : reads data from four BLOCKRAM_FIFOs 

(BLOCKRAM_FIFO0 to BLOCKRAM_FIFO3) and feed the data to update engines. It 

monitors the status of the four BLOCKRAM_FIFOs and read data from them. Then it 

enables update engines magnetic update Hx and magnetic update Hy and feeds data to 

them if PE0 is in UpdateHxHy mode or enables update engine electric update and feeds 

data to it if PE0 is in UpdateEz mode. 

·  UPDATEENGINE_TO_BLOCKRAM : reads data from update engines and writes it to 

BlockRAM_FIFOs (BLOCKRAM_FIFO4 to BLOCKRAM_FIFO5). If PE0 is in 

UpdateHxHy mode, result of update engine magnetic update Hx is pushed to 

BlockRAM_FIFO4 and result of update engine magnetic update Hy is pushed to 

BlockRAM_FIFO5. If PE0 is in UpdateEz mode, result of update engine electric update 

is pushed to BlockRAM_FIFO4. 

·  BLOCKRAM_TO_MEM : reads data from BlockRAM_FIFOs (BLOCKRAM_FIFO4 

to BLOCKRAM_FIFO5) and writes the data into two local memories (MEM3, MEM4). 

If PE0 is in UpdateHxHy mode, data from BLOCKRAM_FIFO4 is written to MEM3 and 

data from BLOCKRAM_FIFO5 is written to MEM4. If PE0 is in UpdateEz mode, data 

from BLOCKRAM_FIFO4 is written to MEM3. If PE0 is in UpdateHxHy mode, the 

pseudo-code to generate write addresses to the two local memories is: 

               for i from 0 to Grid_Row−1 

                   for j from 1 to Grid_Column−1 

                       generate write address     i× Grid_Column + j − 1           for MEM3 

               for i from 1 to Grid_Row−1 

                   for j from 0 to Grid_Column−1 
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                       generate write address     (i − 1)× Grid_Column + j        for MEM4 

If PE0 is in UpdateEz mode, the pseudo-code to generate write addresses to the three 

local memories is: 

               for i from 1 to Grid_Row−1 

                   for j from 1 to Grid_Column−1 

                       generate write address     (i − 1)× Grid_Column + j − 1  for MEM3 

 

4.2.2 Simulation 

The simulation is done in the simulation environment described in chapter 3 (see  

3.1.2). The test bench includes and instantiates the FPGA, VHDL model for the host 

system and the FIREBIRD™/PCI board. The operation sequence in the test bench is the 

same as the operation sequence in the host application described in 4.2.5. 

           Structure of the test bench is depicted in figure 4-6.  

 

   Test Bench 

 PCI Controller Model 

   Host System Model 

 FPGA Design  On-board Memory Model 

 Request  Request 
  Response 

Figure 4-6  Structure of the Test Bench in the Prototype System 

 

4.2.3 Synthesis 

           The VHDL source code for the FPGA is synthesized with Synplify Pro. The 

output of synthesis is an EDIF file.  
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4.2.4 P&R 

The EDIF file is placed and routed on the target FPGA Xilinx VIRTEX-E  

XCV1000E. The output file is a FPGA binary file for the VHDL source code.  

 

4.2.5 Host Programming 

           The host application is programmed with ‘C’ language in the host programming 

environment described in chapter 3 (see 3.1.3). In order to interact with PE0, it calls 

WILDSTAR™ API functions. 

           The operation sequence in the host application is as follows: 

1) Open the FIREBIRD™/PCI board and check configuration information 

2) Configure the clocks on the board 

3) Download FPGA binary file into XCV1000E 

4) Reset FPGA, update engines and interrupt signal 

5) Write Hxt-1  values in DMA mode to local memory MEM0  

6) Write Hyt-1  values in DMA mode to local memory MEM1  

7) Write Ez  values in DMA mode to local memory MEM2  

8) Enable update engines magnetic update Hx and magnetic update Hy  

9) Check interrupt signal. If interrupt signal is set, the update process ends 

10) Read Hxt  values in DMA mode from local memory MEM3 

11) Read Hyt  values in DMA mode from local memory MEM3 

12) Write Hx  values in DMA mode to local memory MEM0  

13) Write Hy  values in DMA mode to local memory MEM1  

14) Write Ezt-1  values in DMA mode to local memory MEM2  
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15) Enable update engines electric update  

16) Check interrupt signal. If interrupt signal is set, the update process ends 

17) Read Ezt  values in DMA mode from local memory MEM3 

18) Unload FPGA binary file from XCV1000E 

19) Close the FIREBIRD™/PCI board 

The Prototype System is very simple. There are only one host processor and one  

FPGA in the system. So thread-level parallelism in the FDTD algorithm can’t be 

exploited. Local SRAMs attached to the FPGA are single-port with random delay and 

low speed. These low-performance SRAMs can’t support parallelism among the update 

engines and can only support one iteration of FDTD algorithm calculation. 

   

4.3  FPGA Implementation in the Cray XD1 System   

           In order to overcome the limitations of the Prototype System and to improve the 

performance, the FPGA implementation is done in another reconfigurable system named 

Cray XD1 System. In the Cray XD1 system, there are lots of host processors and FPGAs. 

The FDTD algorithm can be partitioned and distributed to the host processors and the 

FPGAs, thus thread-level parallelism can be exploited. Furthermore, local SRAMs in the 

Cray XD1 system are dual-port with fixed delay and high speed. These SRAMs can 

support parallelism among the update engines and specified number of iterations of 

FDTD algorithm calculation. So performance of the FPGA design in the Cray XD1 

system improves greatly compared with that in the Prototype system. 

 

4.3.1  VHDL Design 
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           In the Cray XD1 system, the FPGA which is referred to as the AAP FPGA is 

located on the expansion module board (see 3.2.1.1). In this section, the function of the 

VHDL source code for the FPGA is explained and the FPGA architecture for the VHDL 

source code is drawn. Then data organization in local memories is explained. At last 

components and processes in the VHDL source code are described in detail. 

 

4.3.1.1  FPGA Function 

           The FPGA can be used as a bridge to take data from the host system and to write it 

to local memories, to read data from local memories and to write it to the host system. It 

can also be used for the FDTD algorithm update engines. 

           If the FPGA is used as a bridge, local memories QDR II SRAM 1 to QDR II 

SRAM 4 are mapped to the address space of the host system. Read commands from this 

address space and write commands to this address space will be delivered to the FPGA. 

The FPGA then reads data from the local memories and forwards them to the host system 

or write the received data to the local memories. 

           If the FPGA is used for the FDTD algorithm update engines, it must be initialized 

first. The initialization data are stored in two internal registers FPGA_reg and 

Update_counter. These registers are described in 4.3.1.4. After configuration the FPGA 

will execute specified number of iterations of FDTD algorithm calculation. Throughout 

this thesis, “one iteration of FDTD algorithm calculation” means magnetic field values 

update by magnetic update Hx and magnetic update Hy at one time step, or electric field 

update by electric update at one time step. The exact operation sequence is described in 

4.3.1.4 (see component Qdr_fdtd in 4.3.1.4).  
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4.3.1.2  FPGA Architecture 

           FPGA architecture which supports both memory bridge and FDTD operation is 

drawn in figure 4-7.  

            App_fdtd 
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                       R
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core

                     Q
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core

 

           Definitions for the symbols in figure 4-7 are as follows: 

          :  external interface 

          :  internal bus 

          :  internal signal 

          :  component in the VHDL source code 

          :  process in the VHDL source code 

           The FPGA interacts with the host system using the component Rt_core. The 

Rt_core delivers requests from the host system to component Rt_client, it also delivers 

response from Rt_client to the host system. 
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Figure 4-7   FPGA Architecture in the Cray XD1 System 
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           In the FPGA architecture, the Rt_client acts as an agent for the host system to 

access the local memories and to control component Qdr_fdtd. 

           Qdr_fdtd contains three update engines. If enabled, Qdr_fdtd can execute a 

specified number of iterations of FDTD algorithm calculation without interference from 

the host system. The magnetic update Hx and the magnetic update Hy in Qdr_fdtd run in 

parallel. One Hx result and one Hy result can be produced per clock cycle. During the 

calculation, Qdr_fdtd accesses the local memories exclusively. It reads input data from 

the local memories and stores intermediate results and output data to the local memories. 

           Qdr2_core is used for the FPGA to access the local memories. Memory access 

requests from Rt_client and from Qdr_fdtd are multiplexed by component Mux. These 

requests are then processed by Qdr2_core. Rt_client and Qdr_fdtd can’t access the same 

SRAM at the same time. 

           The local memories have fixed delay, so no internal FIFOs are needed for the 

FPGA to access the local memories. This simplifies the FPGA design and improves the 

memory access speed. 

 

4.3.1.3  Data Organization in Local Memories 

           There are four independent local memories (QDR II SRAM 1 to QDR II SRAM 4) 

on the expansion module board (see 3.2.1.1). The QDR II SRAMs are 36-bit wide high 

speed, low latency memories. Each QDR II SRAM has 2 ports hence is capable of 

sustaining simultaneous, single clock, read and write accesses at clock speeds of up to 

199 MHz [31]. QDR II SRAM 1 is used to store Hxt-1  values and Hxt  values, QDR II 
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SRAM 2 is used to store Hyt-1  values and Hyt  values, QDR II SRAM 3 and 4 are used to 

store Ezt-1  values and Ezt  values. 

           The QDR II SRAMs are dual-port and the data stored in them is organized as 

ping-pong buffers. The ping-pong mechanism works like this: for cycle N, if the input 

data are stored in the lower (upper) parts of the SRAMs, then output data are stored in the 

upper (lower) parts of the SRAMs. Then during the next cycle N+1, the input data are 

read from the upper (lower) parts of the SRAMs and the output data are stored in the 

lower (upper) parts of the SRAMs. This process can continue until the specified number 

of calculation iterations is reached. This ping-pong mechanism enables the FPGA to 

execute many iterations of calculation with little communication with the host system. 

Reduction of data transfer between the host system and the FPGA during intervals 

between calculation iterations greatly improves the performance of the whole system. 

           The Hxt-1  values and Hxt  values are stored in QDR II SRAM 1 in row major order,  

The Hyt-1  values and Hyt  values are stored in QDR II SRAM 2 in column major order,  

the Ezt-1  values and Ezt  values are stored in QDR II SRAM 3 in row major order and 

stored in QDR II SRAM 4 in column major order. Assume the electromagnetic field 

processed by the FPGA is a Grid_Row×Grid_Column matrix, the row major order means 

value V[i][j] in the matrix is stored at the address i×Grid_Column+j or 

Grid_Row×Grid_Column+ i×Grid_Column+j in the QDR II SRAM, the column major 

order means value V[i][j] in the matrix is stored at the address j×Grid_Row+i or 

Grid_Row×Grid_Column+ j×Grid_Row+i in the QDR II SRAM. 

           The row major order and the column order are adopted so that Qdr_fdtd can utilize 

these orders to improve throughput of the update engines. Utilizing these orders and 
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parallelism between magnetic update Hx and magnetic update Hy, Qdr_fdtd can produce 

one Hx result and one Hy result per clock cycle or one Ez result every two clock cycles. 

 

4.3.1.4  Components and Processes 

           The components in the FPGA architecture include: 

·  Prog_clock_gen 

·  Rt_core 

·  Qdr2_core 

·  Rt_client 

·  Qdr_fdtd 

·  Mux 

           Component Prog_clock_gen generates the programmable global clocks.  

           Component Rt_core is provided by Cray Inc. It connects internal components in 

the FPGA to external devices such as SMPs and other AAP FPGAs connected to the 

RapidArray Interconnect (see 3.2.1.2) in the Cray XD1 system. It allows internal 

components to access the external devices, and it also allows the external devices to 

access internal registers and local memories of the FPGA.  

           Component Rt_core is connected to the external devices through ports Transmit 

Data Bus, Receive Data Bus, Host Processor Interface, Clock Signals, and it provides 

Fabric Request Interface and User Request Interface to internal components in the FPGA. 

Ports Transmit Data Bus and Receive Data Bus are used to transfer data between Rt-core 

and the external devices. The host Processor Interface is provide to the external devices 

to set the frequency of the programmable global clocks and to reset the FPGA. The 
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Fabric Request Interface is used by Rt_core to forward the received remote memory 

access requests from the external devices to Rt_client. It is also used to accept responses 

from Rt_client, then the responses are forwarded by Rt_core to the external devices. The 

User Request Interface can be used to accept memory access requests from internal 

components in the FPGA. Then these requests are forwarded by Rt_core to the external 

devices. It also can deliver the received responses from the external devices to the 

internal components. But in the current FPGA design, the User Request Interface is not 

used. 

           Component Qdr2_core is provided by Cray Inc. It provides an interface for the 

FPGA to access the four external 36 bit wide QDR II SRAMs. It allows the internal 

components in the FPGA to simultaneously read and write the external QDR II SRAMs 

at a clock speeds from 130 MHz up to 199 MHz. Qdr2_core is made up of four fully 

independent RAM interface blocks, each connected to an external QDR II SRAM. The 

four RAM interfaces blocks provide full control of the QDR II SRAMs including 

address, read data, write data, read and write enables. This allows the four QDR II 

SRAMs to be arranged in many different bank configurations [30]. 

           Component Mux multiplexes memory access buses from Rt_client and Qdr_fdtd. 

After FPGA reset, memory access bus from Rt_client is connected to the qdr2_core and 

the four QDR II SRAMs can only be accessed by the external devices connected to the 

RapidArray Interconnect. If update engines in Qdr_fdtd is enabled, then memory access 

bus from Qdr_fdtd is connected to the qdr2_core. When the update process completes, 

the qdr2_core is switched back to Rt_client.   
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           Component Rt_client acts as an agent for the host system to access the local 

memories and to control component Qdr_fdtd. It processes requests from the external 

devices and gives response through the Fabric Request Interface, it also monitors the 

status of Qdr_fdtd and controls the operation of Qdr_fdtd. When it receives requests from 

the Fabric Request Interface, it checks if the request are read requests or write requests, it 

also checks the request addresses to tell if the requests should be directed to the internal 

registers or the external QDR II SRAMs. If the requests are read requests to the internal 

registers, then data stored in the internal registers are sent as response to the Fabric 

Request Interface. If the requests are write requests to the internal registers, then data 

from the Fabric Request Interface are stored into the internal registers and no response is 

given to the Fabric Request Interface. If the requests are read requests to the external 

QDR II SRAMs, Rt_client issues memory read requests to component Mux and waits for 

response from the external QDR II SRAMs. When Rt_client receives the response from 

Mux, it will forward the response to the Fabric Request Interface.  If the requests are 

write requests to the external QDR II SRAMs, Rt_client issues memory write requests to 

Mux and completes the requests without waiting for the response.  

           Component Rt_client contains two internal registers: Update_counter and 

FPGA_reg. These two registers are used to control the operation of Qdr_fdtd and to 

monitor the status of Qdr_fdtd. Update_counter is a 32-bit wide register. It specifies the 

iteration number of the FDTD algorithm calculation Qdr_fdtd should complete. 

FPGA_reg is a 64-bit wide register used by the host to specify parameters and initiate 

execution of the Qdr_fdtd engine. The parameters in FPGA_reg are shown in figure 4-8 

and described below: 
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      2        1        27-2        28 

       29        30        31     47-32 bit   63-48 

Grid_Row Access_type

Update_starter

Grid_Column HxHy_Source_Location Update_type

Ez_Source_Location  Update_end 

  Figure 4-8 :  Parameters in Register FPGA_reg 
 

·  Grid_Row :  the number of rows of the electromagnetic field matrix 

·  Grid_Column :  the number of columns of the electromagnetic field matrix 

·  Access_type :  if this bit is set to ‘0’, then memory access bus from Rt_client is  

      connected to Qdr2_core enabling the host to access the QDR II SRAMs; if this bit is  

      set to ‘1’, then memory access bus from Qdr_fdtd is connected to Qdr2_core and the  

      update engines has access to the QDR II SRAMs 

·  Update_type :  if this bit is set to ‘0’, then in the first iteration of the FDTD algorithm  

      calculation, update engines magnetic update Hx and magnetic update Hy are enabled;  

      if this bit is set to ‘1’, then in the first iteration of the FDTD algorithm calculation,  

      update engine electric update is enabled 

·  HxHy_Source_Location : this bit determines which ping-pong buffer to read for Hx  

      and Hy data.  If this bit is set to ‘0’, then in the first iteration of the FDTD algorithm  

      calculation, source data value Hxt-1[i][ j] is stored in QDR II SRAM 1 at  

      address i×Grid_Column+j, source data value Hyt-1[i][ j] is stored in QDR II SRAM 2  

      at address j×Grid_Row+i; If this bit is set to ‘1’, then in the first iteration of the  

      FDTD algorithm calculation, source data value Hxt-1[i][ j] is stored in QDR II SRAM  

      1 at address Grid_Row×Grid_Column+i×Grid_Column+j, source data value  

      Hyt-1[i][ j] is stored in QDR II SRAM 2 at address  
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      Grid_Row×Grid_Column+j×Grid_Row+i 

·  Ez_Source_Location : this bit determines which ping-pong buffer to read for Ez  

      data. If this bit is set to ‘0’, then in the first iteration of the FDTD algorithm  

      calculation, source data value Ezt-1[i][ j] is stored in QDR II SRAM 3 at address  

      i×Grid_Column+j and in QDR II SRAM 4 at address j×Grid_Row+i; If this  

      bit is set to ‘1’, then in the first iteration of the FDTD algorithm calculation, source  

      data value Ezt-1[i][ j] is stored in QDR II SRAM 3 at address  

      Grid_Row×Grid_Column+i×Grid_Column+j and in QDR II SRAM 4 at address  

      Grid_Row×Grid_Column+j×Grid_Row+i 

·  Update_starter :  when this bit toggles, update engines in Qdr_fdtd start FDTD   

      algorithm calculation 

·  Update_end :  when update engines in Qdr_fdtd complete calculation, this bit is set  

      by Qdr_fdtd to ‘1’, otherwise it is ‘0’  

           Component Qdr_fdtd can do any iterations of FDTD algorithm calculation under 

control of Rt_client. The procedure for FDTD algorithm calculation is depicted in figure 

4-9.  

           The Hx, Hy values update procedure in figure 4-9 is as follows: 

1) Generate read addresses for the external QDR II SRAMs  

2) Read data from the external QDR II SRAMs. Data from QDR II SRAM 1 are fed 

to operand “op3” in update engine magnetic update Hx, data from QDR II SRAM 

3 are fed to “op1” and “op2” in magnetic update Hx, data from QDR II SRAM 2 

are fed to “op3” in magnetic update Hy, data from QDR II SRAM 4 are fed to 

“op1” and “op2” in magnetic update Hy 
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 Figure 4-9 :  Procedure for FDTD algorithm calculation 
 

3) Magnetic update Hx and magnetic update Hy are enabled and run in parallel. 

Calculation results will appear after a fixed number of clock cycles. One Hx result 

and one Hy result will be produced every clock cycle 

4) Generate write addresses for the external QDR II SRAMs  

5) Write Hx calculation results from magnetic update Hx to QDR II SRAM 1 and 

write Hy calculation results from magnetic update Hy to QDR II SRAM 2     

           The Ez values update procedure in figure 4-9 is as follows: 

1) Generate read addresses for the external QDR II SRAMs  

2) Read data from the external QDR II SRAMs. Data from QDR II SRAM 1 are fed 

to “op3” and “op4” in electric update, data from QDR II SRAM 2 are fed to 

“op1” and “op2” in electric update, data from QDR II SRAM 3 are fed to “op5” 

in electric update 
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3) Electric update is enabled, and calculation results will appear after a fixed number 

of clock cycles. One Ez result will be produced every two clock cycles 

4) Generate write addresses for the external QDR II SRAMs  

5) Write Ez calculation results from electric update to QDR II SRAM 3 and 4       

           The order to generate read addresses for the external QDR II SRAMs in step 1) 

during the Hx, Hy values update procedure is shown with arrows in figure 4-10. 

 

Grid Column 

 QDR II SRAM 3
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Grid_Row-1 
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Figure 4-10   Read Addresses Generation Order for Hx, Hy values update 

00 

0

1 

Grid_Row-1 

Grid_Row 

00

1

Grid Column-1

Grid_Row-1 

Grid Column-1 

00 

1 

Grid Column

Grid_Row-1 

Grid Column-1

00

1

QDR II SRAM 2 
             Hy 

 QDR II SRAM 4 
     Copy of Ez 

1 0 1

0 1 10

 54



The order to generate write addresses for the external QDR II SRAMs in step 4)  

during the Hx, Hy values update procedure is shown with arrows in figure 4-11.  

Grid Column

Grid_Row-1 

Grid_Row 

 QDR II SRAM 1 
            Hx 
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Figure 4-11   Write  Addresses Generation Order for Hx, Hy values update 
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             Hy 
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The order to generate read addresses for the external QDR II SRAMs in step 1)  

during the Ez values update procedure is shown with arrows in figure 4-12.  

The order to generate write addresses for the external QDR II SRAMs in step 4)  

during the Ez values update procedure is shown with arrows in figure 4-13.  

           Component Qdr_fdtd can update one Hx value and one Hy value every clock 

cycle. Every clock cycle Qdr_fdtd reads one Hx value from QDR II SRAM 1, one Hy 

value from QDR II SRAM 2, two Ez values from QDR II SRAM 3, two Ez values from 

QDR II SRAM 4. These six values or four of them plus two values buffered in the 

previous clock cycle (totally six values) can be fed to update engines magnetic update Hx 

and magnetic update Hy in the same clock cycle, thus one Hx value and one Hy value can 

be updated every clock cycle. 
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Figure 4-12   Read Addresses Generation Order for Ez values update  
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           Component Qdr_fdtd can update one Ez value every two clock cycles. Every two 

clock cycles Qdr_fdtd reads two Hx values from QDR II SRAM 1, two Hy values from 

QDR II SRAM 2, one Ez value from QDR II SRAM 3. These five values are fed to 

update engine electric update, thus one Ez value can be updated every two clock cycles. 

 

4.3.2 Simulation 

The simulation is done in the simulation environment described in chapter 3 (see  

3.2.2). The test bench instantiates the AAP FPGA, the fabric model and the QDR II 

SRAM model. Then it fetches commands such as read request and write request from a 

stimulus file fabric.in and feeds these commands to the fabric model. The fabric model 

then translates the requests into low-level bus transactions. For a delay command, the 

fabric model will insert a time delay between requests. If it is a print command, the fabric 

Figure 4-13   Write Addresses Generation Order for Ez values update  
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model then will display messages on the simulation console. For a read or write request, 

the fabric model will send it to the AAP FPGA. The AAP FPGA processes the received 

request and responds appropriately. For a write request, the AAP FPGA processes the 

transaction but doesn’t give response to the fabric model. For a read request, the AAP 

FPGA gives response to the fabric model and the fabric model will verify that the 

response matches the expected data provided in the request. 

           The operation sequence in the stimulus file fabric.in is the same as the operation 

sequence in the host application described in 4.3.5. 

           Structure of the test bench is depicted in figure 4-14.  

 

4.3.3 

s  

 

Synthesis 

Components Rt_core and Qdr2_core are incorporated into the FPGA design a

“black box” components within the VHDL source code. They are provided as Xilinx 

NGC netlist files instead of VHDL files. The NGC files contain both the gate level design 

implementation for Rt_core and Qdr2_core plus additional timing and placement 

constraint information. 

Test Bench 
xd1_fdtd 

Figure 4-14  Structure of the Test Bench in the Cray XD1 
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The FPGA design is synthesized with Xilinx XST. First all the other components 

in the FPGA design except Components Rt_core and Qdr2_core are synthesized and 

netlist files for these components are generated. Then these netlist files are combined 

with the NGC netlist files of Rt_core and Qdr2_core. The output is an integrated NGD 

file for the whole FPGA design.  

           In the process of synthesis, timing and placement cons

 

traint information in the 

environment described in chapter 3 (see 3.2.3). In order to interact with the AAP FPGA, 

it calls the FPGA API functions. 

 sequence in the host application is as follows: 

1) 

es to local memory QDR II SRAM 1  

user constraint file (UCF) is integrated into the NGD file. 

         

4.3.4 P&R 

The generated NGD file in 4.3.3 is placed and routed with P&R tool Xilinx ISE  

on the target FPGA Xilinx Virtex-II Pro XC2VP50 XCV. The output file is a 

downloadable FPGA binary file for the FPGA design.  

 

4.3.5 Host Programming 

           The host application is programmed with ‘C’ language in the host programming 

           The operation

Open the AAP FPGA 

2) Download FPGA binary file into AAP FPGA 

3) Write parameters to register FPGA_reg  

4) Write parameter Update_counter to register Update_counter  

5) Write Hxt-1  valu
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6) 

TD 

) Read Hxt  values from local memory QDR II SRAM 1 

yt  values from local memory QDR II SRAM 2 

13)

 

 

 

 

 

 

 

Write Hyt-1  values to local memory QDR II SRAM 2 

7) Write Ezt-1  values to local memory QDR II SRAM 3  

8) Write Ezt-1  values to local memory QDR II SRAM 4  

9) Toggle parameter Update_starter in register FPGA_reg to start the FDTD 

algorithm calculation 

10) Poll parameter Update_end in register FPGA_reg. If Update_end is set, the FD

algorithm calculation ends 

11

12) Read H

 Read Ezt  values from local memory QDR II SRAM 3 

14) Close the AAP FPGA 
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Ch

Th rk 

 

           In 

rates achiev ns in both systems. Based on the analysis, suggestions 

for future work are given. 

           In each system alysis is done for the whole system. It includes 

execution tim

data transfer. The tim value is derived and 

used as a perform

           Definitions for th bols used in this chapter are: 

   N :    size of the electromagnetic matrix processed by the FPGA. Assume there are  

            Grid_Row rows and Grid_Column columns in the matrix, then  

            N=Grid_Row×Grid_Column 

   2C :  specified number of iterations of FDTD algorithm calculation in the Cray XD1  

            system, only one iteration can be carried out on a given run on the Prototype  

              System 

     T0 :   time needed to transfer 3N electromagnetic field values between the host system  

   Dpro : average delay for local memory in the Prototype System  

   Dcray :delay for local memory in the Cray XD1 System  

   F :     latency for internal FIFOs in the Prototype System 

   M :    latency for magnetic update engines 

apter 5  

eoretical Performance Analysis and Future Wo

this chapter, theoretical performance is analyzed and evaluated for the clock 

ed in the implementatio

, performance an

e for FDTD algorithm calculation and overhead due to configuration and 

e it takes to update one electromagnetic field 

ance metric. 

e sym

  

  

  

  

  

              and the local memories 
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     E :     latency for electric update engines 

pro :  time needed to update one electromagnetic field value in the Prototype System 

lysis in the Prototype System 

hm 

 from MEM0, MEM1, MEM2 

gorithm calculation 

3, MEM4 

pipeline fashion. In step 3), if magnetic field 

d 

d, one Ez result can be produced every two clock cycles. 

tic field values update is 

     Tu :    clock period for the update engines 

     T

     Tcray : time needed to update one electromagnetic field value in the Cray XD1 System 

 

5.1   Performance Ana

           In the Prototype system, the complete process to calculate the FDTD algorit

consists of five stages:  

1) the host system writes electromagnetic field values to MEM0, MEM1, MEM2  

2) FPGA reads source data

3) the update engines execute one iteration of FDTD al

4) FPGA writes the result data into MEM3, MEM4 

5) the host system reads electromagnetic field values back from MEM

           Step 2), 3), 4) are overlapped in 

values are updated, magnetic update Hx and magnetic update Hy execute serially, and 

one Hx result and one Hy result can be produced every four clock cycles. If electric fiel

values are update

           To update 2N magnetic field values, the five stages should be gone through. The 

upro TNMFDT ×++++ )42(0 . total time to complete the magne

To update N electric field values, the five stages should be gone through again. The total 

×+time to complete the electric field values update is T upro TNEFD+ + + )22( . Tpro 0

can be derived as: 

EMFDTT propro 42(2( 0 NTN u 3))6                 (4a)                                         ×+++++=
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           In equation (4a), T0  is a function of N and clock rate of the FPGA, assume 

T0=kNTu , then 

upropro TkNEMFDT ×+++++= )]22(3)42[(                 (4b)                                        3  

pro

ts have insignificant influence on the performance.  

 N is very small, Tpro will 

he performance improves but is still very low. 

     3. 

The pro

       1000 

           In equation (4b), D  is a system constant, F, M, E are design constants. These 

constan

           The significant variables in equation (4b) are N and Tu. If

be hundreds of times of Tu, this means very low performance. If N is very large, Tpro will 

approach (2+2k/3)×Tu, t

      In the current design, Dpro=1, F=2, M=22, E=30, the minimum value for k is 

 following table shows T  as a function of N: 

N       1     5     10    20     50   100    500 

  Tpro u u u u u  4.3 Tu 4.04 Tu 4.02 Tu24.6 T  8.1 T  6.1 T  5.0 T   4.4 T

 

5.2     Performance Analysis in the Cray XD1 System 

 

2) FPGA reads source data from QDR II SRAM 1-4 

3) the update engines execute specified number of iterations of FDTD algorithm 

calculation 

4) FPGA writes the result data into QDR II SRAM 1-4 

tem reads electromagnetic field values back from QDR II SRAM 1-4 

           In the Cray XD1 system, the complete process to calculate the FDTD algorithm

consists of five stages:  

1) the host system writes electromagnetic field values to QDR II SRAM 1-4 

5) the host sys
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           There are no internal FIFOs between the stages. If magnetic field values are 

ic update Hx and magnetic update Hy execute in parallel, and one Hx 

e Hy result can be produced every clock cycle. I

calculation is 2C, so 2N×C 

 can be updated 

ugh the five stages is 

EDT ucray × cray

       

updated, magnet

result and on f electric field values are 

updated, one Ez result can be produced every two clock cycles. 

           The specified number of iterations of FDTD algorithm 

magnetic field values will be updated and N×C electric field values will be updated. The 

total updated values are 3N×C. Because two magnetic field values (one Hx value and one 

Hy value) can be updated every clock cycle and one electric field value

every two clock cycles, the time it takes for the update engines to update the 3N×C 

values are 3N×C× Tu . And the total time to go thro

T C× , TN+ )3M +++ 2(0  can be derived as: 

            )C3() NC)3 TN2(0 Dcray(T uEMTcray ×× ×++++=          ) 

         In equation (4c), T0  is a function of N and clock rate of the FPGA, assume 

         (4c      

  

T0=kNTu , then 

                   ucraycray TC
kNEMDT ×++++= )]133)2[(                                 (4d)                 

           In equation (4d),

     

 Dcray is a system constant, M, E are design constants. These 

constan

     , Tu. If N and C is very small, 

Tpro ery 

large, T ach Tu, the performance improves greatly.     

     um value for k is 3. The 

foll

ts have insignificant influence on the performance.  

      The significant variables in equation (4d) are N, C

will be hundreds of times of Tu, this means very low performance. If N and C is v

pro will appro

      In the current design, Dcray=1, M=22, E=30, the minim

owing table shows Tcray as a function of N and C: 
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          1     5     10    20     50   100    500    100

     N 

0 

   1   20 Tu  5.6 Tu  3.8 Tu  2.9 Tu 2.36 Tu 2.18 Tu 2.04 Tu 2.02 Tu

   5  19.2 Tu  4.8 Tu  3.0 Tu  2.1 Tu 1.56 Tu 1.38 Tu 1.24 Tu  1.22 Tu 

  10  19.1 Tu   4.7 Tu  2.9 Tu  2.0 Tu 1.46 Tu 1.28 Tu 1.14 Tu  1.12 Tu

N 

 

  50 19.02Tu 4.62 Tu 2.82 Tu 1.92 Tu 1.38 Tu 1.2 Tu 1.06 Tu 1.04 Tu

 

           The performance goal in t reduce Tcray. According to 

equations (4d), the following methods can be adopted for performance 

a ck rate of update engines, this will reduce Tu 

agnetic matrix proces

      increase N 

·  increase the specified number of iterations of FDTD algorithm calculation, this will  

  decrea

he Cray XD1 system is to 

analysis of 

improving: 

·  incre se the clo

·  increase the size of the electrom sed by the FPGA, this will  

      increase C 

· se the latency of  update engines, this will reduce M and E, but have only small  

      impact on overall performance for reasonable values of N. 

 

5.3   Performance Comparison  

Tcray

C
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           The Cray XD1 system greatly outperforms the Prototype system based on analysis 

f equations (4b) and (4d). Equations (4b) and (4d) are repeated here: 

     

o

uproDproT TEF ×++= 2()42[(           k )]3
2N +3M ++            (4b)                               

ucraycray TC
kNEMDT ×++++= )]133)2[(                                            (4d)                      

           If C=1, then Tpro≈2Tcray. This means for one iteration of FDTD algorithm 

calculation, the Cray XD1 system outperforms the Prototype system by about 2 times. 

           When C increases, for a reasonable matrix, 3N 〉〉 (2Dpr +4F+M+E),  

3N 〉〉 (2D +M+E), so T o≈(2+2k/3)×T , T y≈T . Normally, the data transfer speed 

between the host system and the FPGA is very slow, so k≥3, Tpro≥4Tu. This means for 

ay XD1 system

ents, N is very small 

compared with (2D +4F+M+E) and (2D +M+E), so both Tpro and Tcray will be 

hundreds of times of Tu. This means unacceptable low performance for both systems. To 

avoid this case, the size of the actual electromagnetic matrix distributed to one FPGA 

should be large. 

 

ork in the Cray XD1 System 

           Based on the analysis in 5.2, several suggestions are proposed for the future work 

         First new floating point library may be chosen to replace the current floating point 

ing floating point library is located in the critical 

o

cray pr u cra u

more than one iteration of FDTD algorithm calculation, the Cr  

outperforms the Prototype system by more than 4 times. 

           For a very special case which can only appear in experim

pro cray

5.4   Future W

in the Cray XD1 system.    

  

library. Update engines implemented us
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paths of the design. If the clock rate for the update engines improves, the clock rate for 

the whole FPGA can improve, so does the performance. The current library is provided 

anovic [15]. Components in this library are well 

for speed. So in the future, floating point library well optimized for speed can be tried.  

           One choice is to use the Nallatech Floating Point Cores. The Nallatech Floating 

nt design, 

of the 18 Kb Block RAMs. So it 

ost system. When Qdr_fdtd completes FDTD algorithm calculation, it 

eeds to wait for polling from the host system. If the polling interval is too large, 

performance. In the future, the 

 FDTD algorithm calculation. 

 

by Pavle Bel pipelined but not optimized 

Point Cores employ the FPGA-optimal Nallatech Floating Point format for internal use, 

with conversion blocks provided for IEEE-754 compatibility. The pre-placed, fully 

pipelined core architectures offer performance of up to 180MHz. In the curre

the clock rate for the update engines is 75MHz. If the Nallatech floating point cores are 

used to implement the update engines, the clock rate can be improved to 180MHz. 

           More parallelism may be explored in the future. The current design occupies 45% 

of the slices, 11% of the 18×18 bit multiplier blocks, 7% 

is feasible to add one more set of update engines in the FPGA implementation and the 

performance will double. The memory architecture should change accordingly if one 

more set of update engines is added in the FPGA.                          

           In the current design, component Qdr_fdtd uses the Fabric Request Interface to 

send data to the h

n

Qdr_fdtd may wait too long. This degrades the whole 

User Request Interface can be used for Qdr_fdtd to send results to the host system as 

soon as Qdr_fdtd completes

           Currently, for use in a parallel simulation boundary data must be transferred 

between the FPGA and the host system, then sent to other nodes. This is one performance
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bottleneck. In the future, the FPGA may exchange data directly with the neighboring 

FPGAs. Cray has not yet provided cores to support this although the underlying 

architecture has the capability.           
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