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ABSTRACT

The exponential Euler method is a specialized numerical method that was used

in a software package called GENESIS which was created to model neurons and

neuronal networks� In this thesis we provide a convergence analysis for this scheme

in the context of some standard models from neuroscience� We provide several

computational examples to further study the accuracy� We also brie�y consider a

simple model of neuronal network activity waves�

There are two major parts to this dissertation� The �rst part concentrates on

the error analysis of the exponential Euler scheme� The basic scheme is �rst order

accurate� A second order modi�cation is introduced� We also show how this expo�

nential Euler method can be applied to mathematical models of neuronal networks

that involve integro�di�erential equations� We prove a convergence theorem for this

case�

The second part of this dissertation focuses on the modeling of retinal waves in

the visual cortex� We propose a �ring rate model for amacrine cells�

�



ACKNOWLEDGEMENT

First of all� I would like to praise my Lord and Savior Jesus Christ who is always

with me and provides me the best� Without Him� my life is worthless� I am also

grateful to many others and would like to acknowledge their signi�cant contributions

to my study in the following�

� Professor Donald A� French� who has provided me constant suports and kind

guidance� He is the best professor I have ever met in my life� My words are

not enough to thank him�

� Professor Charles Groetsch and Bingyu Zhang� for being the commitee mem�

bers�

� Taft Foundation and NSF Grant for their �nantial support�

� Former and Current graduate students in the Mathematical Department�

� People at the Power Mission Baptist Church of Cincinnati especially Deacon

Ahn	s family and Pastor Lee	s family�

Finally� I would like to express my deepest love to my husband� Kyesang Yoo� my

son� Shiwon� my parents� parents�in�law� my sisters� and sisters
brothers��in�law for

their constant supports� love� encouragement and prayers�

�



Contents

� Introduction �

��� Error Analysis of Exponential Euler Method � � � � � � � � � � � � � � 

��� Mathematical Modeling of Retinal Waves in Visual Cortex � � � � � � �

� Mathematical Neuroscience ��

��� Neuron and Action Potential � � � � � � � � � � � � � � � � � � � � � � ��

��� Morris�Lecar Model � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� FitzHugh�Nagumo Equation � � � � � � � � � � � � � � � � � � � � � � � ��

��� Hodgkin�Huxley Model � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Integro�Di�erential Equations � � � � � � � � � � � � � � � � � � � � � � ��

� Error Analysis of Exponential Euler Method ��

��� Derivation and Motivation � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Error Estimation for the Basic Exponential Euler Scheme� � � � � � � ��

�



��� Error Estimate for the Modi�ed Exponential Euler Scheme � � � � � ��

��� Qualitative Analysis of the Scheme � � � � � � � � � � � � � � � � � � � ��

�� Application to an Integro�Di�erential Equation � � � � � � � � � � � � ��

��� Applications to Partial Di�erential Equations � � � � � � � � � � � � � �

��� Numerical Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Mathematical Model of Retinal Waves in Visual Cortex ��

��� Model Description � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Computational Results � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Integro�Di�erential Equation Modeling � � � � � � � � � � � � � � � � � ��

��� Future Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�



Chapter �

Introduction

Mathematics has been frequently used to describe and understand the major pro�

cesses of the nervous system� Mathematical neuroscience has two main goals� The

�rst goal is to develop suitable mathematical models that describe the properties

in the nervous system� The other important goal is to use these models to make

predictions and understand how the nervous system works�

There are two major parts in this dissertation� The �rst part concentrates on

the error analysis of the exponential Euler scheme that is a specialized numerical

method for computing approximate solutions to the mathematical models in neuro�

science� And the second part focuses on the modeling of retinal waves in the visual

cortex�





��� Error Analysis of Exponential Euler Method

Mathematical models in neuroscience usually consist of systems of ordinary di�er�

ential equations 
ODEs�� The basic equation for the electrical activity of a neuron

was developed by Hodgkin and Huxley in their Nobel Prize winning work in the

���	s and consists of four ODEs 
�HK� and �HH��� The FitzHugh�Nagumo equa�

tions form another model for a neuron	s activity 
See �KS� for an overview�� These

models can be solved by Runge�Kutta or Euler 
forward or backward� methods as

well as standard ODE solver packages� However� these schemes do not exploit the

structure that exists in the neuron models�

Nonstandard methods are numerical schemes constructed to solve di�erential

equations which have special properties 
See �AL�� �M��� �M��� �M��� or �RU��� In

general� these schemes consist of special representations for nonlinear terms and

more complex functional forms for the step sizes� The major advantages of non�

standard methods are that they often provide better approximations than those of

conventional schemes in many situations� Although many such schemes have been

introduced and studied computationally� except for �RG�� there have been very few

that o�er a rigorous error analysis�

The exponential Euler method is a nonstandard method that was introduced

by computational neuroscientists� It was used as a default integration method in

�



GENESIS which is a popular package for the simulation of neuronal systems �BB��

The scheme is explicit like forward Euler� but the data shows that it is stable for

large time steps� however� in �BB�� it is noted that it is di�cult to rigorously analyze

the error of the scheme 
see page ��� of �BB�� and it is not as accurate as the forward

Euler method with the same step size� In this dissertation we provide this rigorous

error analysis� Our estimate shows that the exponential Euler method is �rst order

accurate�

Most ODE discretization schemes 
e�g� Runge Kutta� Multistep� etc� can be

extended to provide higher�order accuracy� However� the exponential Euler scheme

introduced in �BB� is only �rst order accurate� Using the Runge�Kutta technique

for extrapolation� we provide a second order modi�cation of the exponential Euler

scheme�

A certain type of integro�di�erential equation has frequently been used to de�

scribe neuronal activity in a synaptically coupled neuronal network 
�PE�� �TEY���

We have applied the exponential Euler scheme to the integro�di�erential equation

and have shown that this scheme is �rst order accurate�

When dendrite and axonal structures are included in neuron models� the result�

ing mathematical system typically involves time�dependent nonlinear partial di�er�

ential equations 
see �KS� for an overview�� We brie�y discuss methods based on

splitting schemes combined with the exponential Euler method�
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��� Mathematical Modeling of Retinal Waves in Visual

Cortex

The second part of this dissertation focuses on the mathematical models of retinal

waves in the visual cortex� Most neuronal systems are very complicated� and their

mathematical models will have many parameters and variables� Often� simpli�ed

minimal models are su�cient to analyze and interpret the neuronal system�

Synchronized bursting activity generated by synaptically connected networks

can be detected by multielectrode recordings and �uorescence imaging of calcium

indicators can detect modulations in the levels of cytoplasmic calcium throughout

the developing nervous system in various vertebrate species 
�WMS� and �Y��� In the

developing retina� spontaneous neuronal activity can be monitored in the ganglion

cell layer and it exhibits complicated spatiotemporal patterns called retinal waves


�MWBS� and �C��� It is known that a synaptically connected network of amacrine

cells and ganglion cells in retina produces these waves 
�WCSS� and �FWSWS���

Feller et al 
�FBARS�� have created a computational two layer model of the

developing retina which reproduces the spatiotemporal properties 
retinal waves�

and suggests a mechanism by which the retinal circuitry can generate these patterns�
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The model in �BFSR� and �FBARS� uses instructions much like those used in cellular

automata instead of using the more common integrate�and��re� Hodgkin�Huxley or

�ring rate techniques to produce the main mechanisms� In this dissertation� we have

developed a �ring rate model that simulates the results in �BFSR� and �FBARS��

The model is simpli�ed to be only one�dimensional�

An outline of this dissertation is as follows� In Chapter �� we brie�y introduce

concepts on mathematical neuroscience as well as some of important mathematical

models� We include Hodgkin�Huxley� FitzHugh Nagumo� and Morris�Lecar models

as well as an integro�di�erential equation model for networks� In Chapter �� we

introduce the exponential Euler scheme and provide a rigorous error analysis of

the scheme as well as a second�order accurate extension of it in the case of ODE

system neuron models� A brief qualitative and stability analysis of this scheme is

furnished� Next� we analyze the exponential Euler scheme when it is applied to

integro�di�erential models and show that the scheme is �rst�order accurate� At

the end of this chapter we suggest a fully discrete approximation method for time�

dependent partial di�erential equations which uses the exponential Euler scheme for

the time discretization� We also provide rather extensive computational results for
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the scheme in this chapter� In Chapter �� we introduce a �ring rate mathematical

model that reproduces the spatiotemporal properties of retinal waves as well as a

derivation of the model and some computational results�
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Chapter �

Mathematical Neuroscience

In this chapter� we brie�y discuss some basic concepts in neuroscience� This will

help to understand the mathematical models in Chapters � and �� More information

and details can be found in �Z�� �KS�� �F�� and �T��

��� Neuron and Action Potential

The basic unit of the nervous system is the neuron� Most neurons consist of three

parts� the cell body 
or soma�� the dendrites� and the axon� Figure ��� shows the

structures of a typical neuron� The dendrites receive incoming signals from other

neurons� These signals are transmitted along the axon to other neurons� At the
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end of an axon� there are cellular junctions� called synapses� where the cells can

communicate with each other�

Each neuron is surrounded by a cell membrane that separates the cell from the

external environment� Many ions such as Na��K�� Ca��� and Cl� are dissolved in

the intracellular and extracellular environments� Usually the ionic concentrations

in and out of the cells are di�erent� For example� the intracellular concentration

of the potassium ions is higher than that outside of the cell� while the intracellular

concentrations of sodium and calcium ions are lower than their extracellular con�

centrations� There are many ion channels and pumps in the cell membrane that

maintain these concentration di�erences of the ions between the inside and outside

of the cells� Since the ion concentrations on the inside and the outside of the cells

are di�erent� there is a potential di�erence across the membrane�

When the cell is stimulated 
if enough applied current occurs so that the mem�

brane potential reaches a threshold level�� the membrane potential goes through a

dramatic change� which is called an action potential� Neurons communicate with

each other by generating and transmitting these action potentials� During the ac�

tion potential� the permeability of the cell membrane to the ions is changed� For

instance� during the action potential� the sodium channels are open allowing the

sodium ions outside of the cell to �ow into the cytoplasm� This results in a rapid

rise in the membrane potential� After that� the sodium channels are closed and
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Figure ���� Schematic diagram of biological neuron

the potassium channels are open so that the potassium ions �ow out of the cell�

This brings the membrane potential back to the resting potential 
Figure ����� It

is important to understand that the sodium channels act very quickly while the

potassium channels act slowly�

After �ring an action potential� a nerve cell is incapable� for a certain amount

of time called a refractory period� of �ring another action potential and the sodium

and potassium pumps move sodium and potassium ions in and out of the cell until

the membrane potential reaches the resting membrane potential�

��



Figure ���� Action Potential

��� Morris�Lecar Model

Mathematical modeling took a major step forward in ���� Alan L� Hodgkin and

Andrew F� Huxley developed the �rst quantitative model of electrical activity of a

squid giant axon in a series of �ve articles 
�HHa�� �HHb�� �HHc�� �HHd�� and �HH���

They were awarded the ���� Nobel Prize in physiology and medicine� Although

their model was originally developed to describe the action potential in the giant

axon of a squid� it became the basic equation for modeling of electrical activity of

cells and the study of excitability�

The Morris�Lecar model is a Hodgkin�Huxley type model that contains a system
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Figure ���� Schematic diagram for the Hodgkin�Huxley model�

of two di�erential equations� This model is orginally formulated to describe electrical

activity for a barnacle muscle �ber� The Morris�Lecar model is de�ned by the

following system of di�erential equations�

C
dV

dt
� �gCam�
V � VCa�� gKw
V � VK�� gL
V � VL� � I

dw

dt
�


w� � w�

�
� 
����

The basic idea of this equation is obtained from Ohm	s law�

V � IR

where V is the potential di�erence 
voltage� between two points which includes a

�



resistance R� For biological work� it is often written as

I � gV

where the conductance g � �
R � In neuroscience� V represents the potential di�erence

between the membrane potential and the resting potential� and I is the current

�owing across the membrane� We consider the cell membrane as a capacitor in

parallel with ionic currents� In this model� there are a delayed recti�er potassium

current� a fast activating calcium current and a leak current� The Ohm	s law gives

the potassium current as IK � gKw
V � VK� where the potassium conductance is

gKw and 
V �VK� is a driving potential� gK is the maximum potassium conductance

and w� known as a recovery variable� represents the fraction of open potassium

channels� Similarly� the calcium current is represented as ICa � gCam�
V � VCa��

Here m� is the percentage of open calcium channels and gCa is the maximum

calcium conductance�

The functions

m�
V � � �� � �� � tanh

V � ��
��

���

w�
V � � �� � �� � tanh

V � ��
��

���

�
V � � 
cosh

V � ��
� � ��

�����

are the equilibrium open fractions for the calcium current� the potassium cur�

rent� and the activation time constant for a delayed recti�er� respectively� Here�

��



C � ���mF�cm�� gCa � ���mS�cm�� gK � �mS�cm�� gL � �mS�cm�� �� �

����mV � �� � ��mV � �� � �mV � �� � ��mV � VK � ���mV � VCa � ���mV � and

VL � ���mV�

��� FitzHugh�Nagumo Equation

The FitzHugh Nagumo equation is a simplication of the Hodgkin�Huxley model that

consists of two variables� one fast and one slow� The fast variable is the excitable

variable while the slow variable is called the recovery variable� The parameter � is

introduced in order to control the speed of one variable relative to the other variable�

Phase plane techniques can be used to analyze this model 
see �KS���

The FitzHugh Nagumo model is de�ned by the following system of di�erential

equations with the dimensionless variables�

�
dv

dt
� f
v�� w � w�

dw

dt
� v � �w � v�

where f
v� � Av
v � 	�
� � v� with � 
 	 
 ��

The generalized FitzHugh Nagumo model is de�ned by the following system of
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Figure ���� Solutions of FitzHugh Nagumo system 
��� and ����� with �������

where I�� 
left� and I��� 
right�
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di�erential equations�

�
dv

dt
� f
v� w� � I

dw

dt
� g
v� w� 
����

where the nullcline f
v� w� � � resembles the cubic shape and the nullcline

g
v� w� � � has precisely one intersection with f
v� w� � �� See Figure ��� for

pictures of the solution v�

��� Hodgkin�Huxley Model

The Hodgkin�Huxley model consists of four di�erential equations� One of the equa�

tions of the model describes the evolution of the membrane potential� and the rest of

the equations represents the properties of the ionic channels� The Hodgkin�Huxley

model can be written as follows�

C
dv

dt
� �gKn

�
v � vK�� gNam
�h
v � vNa�� gL
v � vL� � Iapp�

dm

dt
� �


m�m��

�m
�

dn

dt
� �


n� n��

�n
�

dh

dt
� �


h� h��

�h
�

��



Here� v represents the membrane potential and each term in the �rst equation

represents the ionic currents� vK � vNa� and vL represent the resting potentials of the

ions and gKn
�� gNam

�h� and gL are the conductances of the ions� Also� m and n are

the activation gating variables� and h represents the inactivation� All are functions

of v� These gate variables obey the equations of two�state channel models and vary

between zero and one with voltage dependent functions� �m� �n� and �h 
See �KS���

��� Integro�Di�erential Equations

Synaptically coupled neuronal activity models are often described by integro�di�erential

equations 
see �TEY�� for instance�� Consider the following integro�di�erential equa�

tion which� loosely� models a one dimensional network of neurons connected by

synapses in nondimensionalized form 
 see page ��� in �PE�� for instance��

ut � �u� w � g
u�
u � uR� � f and u
�� �� � u� 
����

where u � u
x� t� usually represents an averaged membrane potential at point x


spatial location� and time t� Here� uR is a nondimensionalized reversal potential�

the second term� w � g
u�
u � uR� represents the synaptic currents� The symbol �

��



is for convolution over the spatial domain and is de�ned by

w � g
u� �

Z
�

��

w
x� y�g
u
y� t�� dy

where w is the distance dependent strength 
or weight� of synaptic interaction� The

function w is often de�ned on 
������ bounded� even and normalized such that

Z
R

w dx � ��

For example� w might be de�ned to be a Gaussian 
�PE�� or a Mexican hat 
�LTGE���

The �ring rate function g
u� is nonnegative� monotone increasing and f � f
x� t� in�

cludes equations for ionic channels and gates as well as the applied current� Interest

in these models focuses on traveling wave solutions and stationary bump solutions


�PE�� �TEY� and �LTGE���

��



Chapter �

Error Analysis of Exponential

Euler Method

In this section� we introduce the Exponential Euler method� and present the error

analysis of the scheme and a second order modi�cation� Also� we provide an error

estimate of the method applied to the basic integro�di�erential equation model that

often describes synaptically coupled neuronal networks�

��



��� Derivation and Motivation

Consider the initial value problem�

y� � A
y��B
y�y� y
�� � y� 
����

where� in general� A
y� and y will be vectors and B
y� will be a diagonal matrix�

In neuroscience� one of the components of y is the voltage 
membrane potential� of

a cell and is dependent on time 
and often spatial location too�� The other compo�

nents will represent the states of the various ion channels� Most of the initial value

problems that arise in neuroscience take the form of equation 
����� For example�

consider the Morris�Lecar equations introduced in previous chapter 
see �ML� or

�T��� To place the Morris�Lecar equations in the form 
����� we set

y �

�
BB� v

w

�
CCA � A
y� �

�
BB�

�
C 
gLvL � gKwvK � gCam�
v�vCa � I�

w�
v���
v�

�
CCA �

and

B
y� �

�
���

�
C 
gL � gkw � gCam�
v�� �

� �
v���

�
��	 �

The exponential Euler method could also be applied to the ionic current equations

��



that arise in cardiology 
see �KS� or �SLT���

The derivation of the exponential Euler scheme follows from the fact that there

would be an exact solution for the di�erential equation if the functions A and B

were constant� Partition the interval ��� T � uniformly and let tn � nh and h � T�N �

Also let In�� � �tn� tn���� The exponential Euler scheme is

yn�� � e�B��yn	hyn �B
�yn�
��
I � e�B��yn	h�A
�yn�� 
����

where in the standard scheme� the extrapolation is �yn � yn� Since B is a diago�

nal matrix� B��
�yn� and e
�B��yn	h are straightforward to compute� By setting the

extrapolation

�yn � yn �
h

�

A
yn��B
yn�yn�� 
����

we will show that a second order accurate scheme results�

��� Error Estimation for the Basic Exponential Euler

Scheme	

In this section we focus on the error analysis for the exponential Euler method� As

we mentioned earlier and noted in �BB� this has not been done before� The basic

��



exponential Euler scheme is �rst order accurate and our error estimation allows us

to create second order extensions which we present in Theorem ������

In order to analyze the error of the scheme� we need the following hypotheses�

We assume that the solution of the IVP 
���� has two continuous derivatives� thus

there exists a positive constant M so that

k Djy kL����T 	�M for j � �� �� and �� 
����

This is reasonable for models from neuroscience since in most cases� y represents

a bounded quantity such as the membrane potential of a cell 
Action potentials�

though representing sharp changes in behavior� are generally smooth in Hodgkin�

Huxley models��� We also assume A and B are continuously di�erentiable�

Lemma ����� Let w be a continuously di�erentiable function on In�� which is

bounded with a bounded �rst derivative� Then

jA
w
tn���
�

h

Z
In��

A
w
s�� dsj � Ch 
���

jB
w
tn���
�

h

Z
In��

B
w
s�� dsj � Ch 
����

where C is positive constant that is independent of h�

Proof� Both estimates follow by rewriting the �rst term as an integral 
e�g�

�



A
w
tn�� �
�
h

R
In��

A
w
tn�� ds and then using the Taylor expansion

A
w
s�� �A
w
tn�� � A�
y
���y�
��
s� tn���

We are now in a position to state and prove our main theorem�

Theorem ����� Let y be the solution of ����� and yn be the values obtained from

the method ����� for n � �� �� � � � � N with �yn � yn on In��� Then	

k y
tn�� yn k�� Ch for n � �� �� � � � � N�

Proof� We rede�ne A and B to create a numerical approximation� the zn� which

is guaranteed to be bounded� we eventually show that zn � yn for all n� Let

�A
z� � A
z� for k z kL����T 	�M �� and extend �A
z� outside of ��
M ����M ���

so that

k �A�j	 kL��R	� K for j � � and �� 
����

Similarly de�ne �B
z� so that for j � � and ��

�B
z� � B
z� for k z kL����T 	�M � � and k �B�j	 kL��R	� K� 
����

Since y is bounded by M � it is also the solution of the di�erential equation with A

and B replaced by �A and �B� Let zn�� be de�ned by

��



zn�� � e�
�B�zn	hzn � �B
zn�

��
I � e�
�B�zn	h� �A
zn��

for n � �� �� � � � � N and z� � y� � We will now show that

k y
tn�� zn k�� Ch� 
����

This will complete the proof since

k zn k��k y
tn� � zn � y
tn� k��k y
tn� k� � k zn � y
tn� k� �M � Ch

and so for h � �
C � we have k zn k�� M � �� Then we have yn � zn since

�A
zn� � A
zn� and �B
zn� � B
zn� for all n� Therefore� k y
tn�� yn k�� Ch�

We now prove 
����� Let �n�� be the local truncation error on In�� de�ned� as

is customary� by inserting the true solution y into the numerical scheme 
���� 
with

y
tn� as the extrapolation substituted in the A and B functionals��

y
tn��� � e�B�y�tn		hy
tn� �B
y
tn��
��


I � e�B�y�tn		h

�
A
y
tn�� � �n���

or

y
tn��� � e�B�y�tn		hy
tn� �

Z
In��

e�
R tn��
t

B�y�tn		 dsA
y
tn�� dt� �n���

Then

�n�� � y
tn���� e�B�y�tn		hy
tn��

Z
In��

e�
R tn��
t

B�y�tn		 dsA
y
tn�� dt

��



� e
�

R
In��

B�y�s		 ds
y
tn� �

Z
In��

e�
R tn��
t

B�y�s		 dsA
y
t�� dt

�e�B�y�tn		hy
tn��

Z
In��

e�
R tn��
t

B�y�tn		 dsA
y
tn�� dt

�
h
e
�

R
In��

B�y�s		 ds
� e�B�y�tn		h

i
y
tn�

�

Z
In��

h
e�

R tn��
t

B�y�s		 dsA
y
t��� e�
R tn��
t

B�y�tn		 dsA
y
tn��
i
dt

� U � V�

Now� using 
���� of the lemma ����

k U k� � k


e
�

R
In��

B�y�s		 ds
� e�B�y�tn		h

�
y
tn� k�

�

�����e��

B
y
tn��h �

Z
In��

B
y
s�� ds

�
y
tn�

�����
�

� Ch��

We used the meanvalue theorem on the second step with � a diagonal matrix and �ii

in between 
B
y
tn��h�ii and

R

In��
B
y
s�� ds

�
ii
for i � �� �� � � � � d� For the second

term V � we have

k V k� � k

Z
In��

�e�
R tn��
t

B�y�s		 dsA
y
t�� � e�
R tn��
t

B�y�tn		 dsA
y
t��

�e�
R tn��
t

B�y�tn		 ds
A
y
t�� �A
y
tn���� dt k�

� k

Z
In��

e��
�
B
y
tn��h�

Z tn��

t
B
y
s�� ds

�
A
y
t�� dt k�

� k

Z
In��

e�
R tn��
t

B�y�tn		 ds
A
y
t�� �A
y
tn��� dt k� � 
�����

Here� we also used the Mean Value Theorem on the second step with �ii in between
R tn��
t B
�yn�h ds

�
ii
and


R tn��
t B
y
s�� ds

�
ii
for i � �� �� � � � � d� For the �rst term

��



on the right of the expression above� we have

k

Z
In��

e��
�
B
y
tn��h �

Z tn��

t
B
y
s�� ds

�
A
y
t�� dt k�

� k

Z
In��

e��
�Z tn��

t

B
y
tn���B
y
s��� ds

�
A
y
t�� dt k�

� O
h��

since for t � s � tn���

jB
y
tn���B
y
s��j � jB�
��
y
s� � y
tn��j � Ch�

And using 
��� of the lemma ���� the second term on the right of 
����� is O
h���

Thus� we can conclude

k V k�� Ch�

and therefore� we have

k �n�� k�� Ch��

So� letting En�� � y
tn���� zn��� we have

En�� � e�B�y�tn		hy
tn� �

Z
In��

e�
R tn��
t

B�y�tn		 dsA
y
tn�� dt

�e�
�B�zn	hzn �

Z
In��

e�
R tn��
t

�B�zn	 ds �A
zn� dt� �n��� 
�����

We now estimate the di�erence of the �rst and the third terms�

k e�B�y�tn		hy
tn�� e�
�B�zn	hzn k�

� k 
e�B�y�tn		h � e�
�B�zn	h�y
tn� � e�

�B�zn	h
y
tn�� zn� k�

��



� h k e�
 �B
zn��B
y
tn���y
tn�k� � k
I � he� �B
zn��En k�

� 
� � Ch�kEnk�

using B
y
tn�� � �B
y
tn��� Here� �ii is between 
 �B
zn��ii and 
B
yn��ii and �ii is

between � and 
 �B
zn��ii for i � �� �� � � � � d� Similarly� estimating the di�erence of the

second and the fourth terms in 
����� by adding and subtracting e�
R tn��
t

�B�zn	 dsA
y
tn��ds�

we obtain

k

Z
In��

e�
R tn��
t

B�y�tn		 dsA
y
tn�� dt�

Z
In��

e�
R tn��
t

�B��zn	 ds �A
�zn� dt k�

� 
� � Ch� k En k�

using the fact that �B
y
tn�� � B
y
tn�� and �A
y
tn�� � A
y
tn��� So� we have from


����� and our estimates

k En�� k�� 
� �Ch� k En k� � k �n�� k� �

We now apply the above inequality for n� n� �� � � � � �� Since k �n�� k�� O
h��� we

have

k En k�� 
� �Ch�n k E� k� �O
h� � CkE�k�O
h���

That completes our proof� Hence� the basic exponential Euler method is �rst order

accurate�

��



��� Error Estimate for the Modi
ed Exponential Euler

Scheme

In this section� we introduce a modi�ed exponential Euler scheme which is the sec�

ond order accurate� Here� we used the basic midpoint method to de�ne the �yn in

equation 
����� To prove the second order accuracy of the modi�ed scheme� we need

the following lemma�

Lemma ����� Let y be the solution of ������ Suppose ���
� holds and A	 B and

their �rst and second order derivatives are bounded� Then	

k A
y
tn� �
h

�
f
y
tn����

�

h

Z
In��

A
y
s�� ds k�� Ch� 
�����

k B
y
tn� �
h

�
f
y
tn����

�

h

Z
In��

B
y
s�� ds k�� Ch� 
�����

where C is positive constant that is independent of h but may depend on the bounded

quantities �e�g� A	 A�	 B	 � � ��� Here f
y� � A
y��B
y�y�

Proof� We can easily show 
������ using Taylor expansion with the assumption


���� and the boundedness of the derivatives of the function A�

A
y
tn� �
h

�
f
y
tn����

�

h

Z
In��

A
y
s�� ds

� A
y
tn�� �
h

�
f
y
tn��A

�
y
tn��

��



�
�

h

Z
In��

�
A
y
tn�� �A�
y
tn��y

�
tn�
s� tn�
�
ds�O
h��

� O
h���

The last step follows since
R
In��


s�tn� ds �
h�

� �
�
h

R
In��

ds � � and y�
tn� � f
y
tn���

Similarly� we can prove 
������ �

The following theorem shows that the modi�ed exponential Euler method using the

basic midpoint scheme is second order accurate�

Theorem ����� Let y be the solution of ����� and yn be the values obtained from

the method ����� with �yn de�ned as in ����� for n � �� �� � � � � N � Suppose ���
�	

������ and ������ hold and second order derivatives of the functions A and B are

bounded� Then

k y
tn�� yn k�� Ch� for n � �� �� � � � � N�

Proof� The proof of this theorem is very similar to that of Theorem ������ We only

need to show that the truncation error of the modi�ed exponential Euler scheme is

O
h��� Let �n�� be the local truncation error on In��� then we have

�n�� � e
�

R
In��

B�y�s		 ds
y
tn� �

Z
In��

e�
R tn��
t

B�y�s		 dsA
y
t�� dt

�e�B��yn	hy
tn��

Z
In��

e�
R tn��
t

B��yn	 dsA
�yn� dt

�
h
e
�

R
In��

B�y�s		 ds
� e�B��yn	h

i
y
tn�

��



�

Z
In��

h
e�

R tn��
t

B�y�s		 dsA
y
t�� � e�
R tn��
t

B��yn	 dsA
�yn�
i
dt

� U� � V��

Now� using 
����� of the lemma ����� and the Mean Value Theorem�

k U� k�� Ch�

� For the second term V�� we have

k V� k� � k

Z
In��

e��
�
B
�yn�h�

Z tn��

t
B
y
s�� ds

�
A
y
t�� dt k�

� k

Z
In��

e�
R tn��
t

B��yn	 ds
A
y
t���A
�yn�� dt k� � 
�����

We also used the mean value theorem� For the �rst term on the right of the expres�

sion above� we have

k

Z
In��

e��
�
B
�yn�h�

Z tn��

t
B
y
s�� ds

�
A
y
t�� dt k�

� k

Z
In��

e��
�Z tn��

t

B
�yn��B
y
s��� ds

�
A
y
t�� dt k�

� O
h��

since for t � s � tn���

k B
�yn��B
y
s�� k� � k B�
���y
s�� y
tn��
h

�

A
y
tn���B
y
tn��y
tn��� k�

� Ch�

And using 
����� of the lemma ������ the second term on the right of 
����� is O
h���

Therefore� we can conclude

k V� k�� Ch��

��



Hence� we have

k �n�� k�� Ch��

That completes our proof� �

Numerical results will be presented in the Section ��� that will provide an explicit

example of this�

��� Qualitative Analysis of the Scheme

In this chapter� we examine the dynamics and stability of the exponential Euler

scheme� In general� to test the stability of a method� the scalar test equation�

y� � y� with y
�� � � where Re
� � �

is used� However� the exponential Euler method solves the above test equation

exactly making it already quite stable relative to the usual criterian� To explore the

schemes stability properties a little further� inspired by the work in �I�� we used the

logistic equation�

y� � �y
�� y�� with y
�� � y� where � � � and real� 
����

as a test equation�

��



First� we quickly summarize some basic ideas used in a qualitative analysis of

an ODE� For

y� � f
y� with y
�� � y�� 
�����

We de�ne that �y is a �xed point of 
����� if f
�y� � �� To examine the stability of the

di�erential equation 
����� at the �xed points� it is customary to set �
t� � y
t�� �y

and then

��
t� � f
y�� f
�y� ��f �
�y��
t��

And we have a following de�nition for the stability of the �xed point of 
������ we

say the �xed point of 
����� is stable if f �
�y� 
 ��

Example ����� 
Logistic Equation�

In the case of the logistic equation 
����� the �xed points are � and � and� since

f �
�y� � �
�� ��y��

the �xed point �y � � is stable� It turns out that lim
t��

y
t� � � if y� � ��

To study the stability of numerical methods near �xed points� we examine the

map

yn�� � �
yn��

We also de�ne �Y as a �xed point 
rest point� of the numerical method if �Y � �
�Y ��

and we say that the numerical method is stable in the neighborhood of the �xed

point �Y if j�y
 �Y �j 
 ��

�



Example ����� 
Forward Euler Scheme�

The forward Euler method is the conventional explicit method�

yn�� � yn � hf
yn�� 
�����

If we let �
y� � y � hf
y�� then 
����� can be written as yn�� � �
yn�� To �nd

the �xed point of the forward Euler method� we let �Y � �
�Y � � �Y �hf
 �Y �� Then�

f
 �Y � � �� On the other hand� the �xed points �y of the di�erential equation 
�����

satisfy f
�y� � �� Therefore� the forward Euler scheme has the same �xed points as

the di�erential equation� For instance� the �xed points of the forward Euler method

are � and � in the case of logistic equation 
�����

To analyze the stability of the method applied to 
����� we �nd that ��
 �Y � �

� � h�
� � � �Y �� Therefore� for the method to be stable at �Y � � we must have

h 
 ��� 
restriction on the step size h�� �

We carry out similar calculations for the exponential Euler scheme� here

�
yn� � yne
�B�yn	h �

A
yn�

B
yn�

�� e�B�yn	h��

Solving �
 �Y � � �Y for �Y � we have �Y � � or �Y � �� So� the exponential Euler scheme

also has the same �xed points as those of the logistic equation�

To examine the stability of the exponential Euler scheme applied to the logistic

equation near �Y � �� we �nd

��
 �Y � � e��

Y h
�� � �Y h� �h��

��



Since ��
�� � e��h and � � � we have �y
�� � � for all positive number h� This

allows us to conclude there are no restrictions on the step size h� In Figure ���� we

display the results of several computations with � � �� and h � � These plots con�

�rm that the forward Euler method is unstable while the exponential Euler scheme

is not�

Remark� We have also applied this analysis to the second order exponential Euler

introduced in Section ���� In that case� the method has three �xed point� �Y � �� ��

and ����
h��� However� studying �y as above we found that the method is unsta�

ble at the extraneous �xed point� ����
h��� Thus� in computations� the numerical

solution will still tend to ��

��� Application to an Integro�Di�erential Equation

In this section� we apply the exponential Euler scheme to the following integro�

di�erential equation that was introduced in Chapter ��

ut � �u� w � g
u�
u � uR� � f and u
�� �� � u�


See the Section ���� We assume that the functions u and g are smooth 
typi�

cally� g is a smooth approximation to the Heaviside function� and f has a bounded

��
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derivative� Also� we assume that

jw
z�j � �
z� and

Z
R

�
z� dz � �� 
�����

For simplicity� we assume that the function u is a scalar here� We do not consider

existence� We could de�ne u a priori and then determine f � thus we argue there are

problems for which there is a solution�

Theorem ����� Under the assumptions above	 there is at most one solution to

������

Proof� Assume that u and v are the solutions to 
����� Then we have

ut � �u� w � g
u�
u � �� � f

vt � �v � w � g
v�
v � �� � f�

Let Y � u� v� Then�

Yt � �Y � w � 
g
u�u � g
v�v � g
u�� g
v��

� �Y � w � fg
u�Y � g�
��Y v � g�
��Y g

� �Y � w � P 
u� v�Y

where

P 
u� v� � g
u� � g�
��v � g�
���

��



Since u� v� g� and g� are bounded�

k P k��MP � 
�����

Then we have�

Yt � Y � �

Z
R

w
x� y�P 
u� v�
y�Y 
y� dx�

That is

d

dt

etY 
x� t�� � �et

Z
R

w
x� y�P 
u� v�
y� t�Y 
y� t� dx�

Then�

etY 
x� t�� Y 
x� �� � �

Z t

�
es 
w � 
PY �� 
x� s� ds

Y 
t� � �

Z t

�
e��t�s	 
w � 
PY �� 
x� s� ds

since Y 
�� �� � �� Because we have 
����� and 
������

jY 
x� t�j �

Z t

�

Z
R

jw
x� y�j k P k� jY 
y� ��j dy ds

� MP

Z t

�

Z
R

� dy k Y 
�� s� kL��R	 ds

� MP

Z t

�
k Y 
�� s� kL��R	 ds� 
�����

Let F 
t� �
R t
� k Y 
�� s� kL��R	 ds� then 
����� becomes

F �
t� �MPF 
t�

with F 
�� � � and F 
t� � �� This is a Gronwall type inequality� Hence�

d

dt

e�MP tF 
t�� � �

��



or

e�MP tF 
t�� F 
�� � ��

Then we have F 
t� � �� Since we have F 
t� � �� we can conclude F � �� Therefore�

k Y 
�� t� kL��R	� �

for all t� Hence� we can conclude u � v� which completes our proof� �

In our approximation we consider the semi�discrete case only� we obtain nu�

merical solutions which will be discrete in time by using the exponential Euler

approximation�

In order to apply the exponential Euler scheme� we let A
u� � f � w � g
u�uR

and B
u� � ��w�g
u�� If we let un be the numerical solution using the exponential

Euler method to 
���� and u be the true solution to 
����� then we have

u
�� tn� � e�
R
In

B�u���s		 dsu
�� tn��� �

Z
In

e�
R
tn

�
B�u���s		 dsA
u
�� ��� d�

and

un � e�B�un��	hun�� �
A
un���

B
un���

�� e�B�un��	h�

where h� tn� and In have the same de�nitions as in Section ����

Theorem ����� Under the assumptions above	 there exists a constant C � � so

k u
�� tn�� un kL��R	� Ch�

��



Proof� Let �n be the local truncation error of the method 
���� on In de�ned by

inserting the true solution u into the numerical approximation� Then�

u
�� tn� � e�B�u���tn��		hu
�� tn��� �
A
u
�� tn����

B
u
�� tn����

�� e�B�u���tn��		h� � �n�

Therefore�

�n � e�
R
In

B�u���s		 dsu
�� tn��� �

Z
In

e�
R
tn

�
B�u���s		 dsA
u
�� ��� d�

�
e�B�u���tn��		hu
�� tn��� �
A
u
�� tn����

B
u
�� tn����

�� e�B�u���tn��		h��

� 
e�
R
In

B�u���s		 ds � e�B�u���tn��		h�u
�� tn���

�

Z
In

fe�
R
tn

�
B�u���s		 dsA
u
�� ���

�e�
R
tn

�
B�u���tn��		 dsA
u
�� tn����g d� 
�����

� P �Q�

Then�

P � e��
Z
In


B
u
�� s�� �B
u
�� tn����� ds � u
�� tn���

� e��u
�� tn���

Z
In

w � fg
u
�� tn����� g
u
�� s��g ds

� e��u
�� tn���

Z
In

w � fg�
�n���ut
�� �n���
s� tn���g ds�

We used the mean value theorem on the �rst step with � in between B
u
�� tn����h

and
R tn
tn��

B
u� ds and on the third step with �n�� in between s and tn�� and �n�� in

between u
�� tn��� and u
�� s�� Since � and u
�� tn��� are bounded� je
�� �u
�� tn���j �

��



C� for some constant C��

jP j � C�hmax
x�n

jw � g�
�n���ut
�� �n���hj � Ch��

Here� we used the assumptions that the functions g and u are smooth and bounded

as well as asssumption 
����� to show

max
x�n

jw � g�
�n���u
�
�n���j �M 
�����

for some constant M � Now turning to the second term on the right side of 
������

we have

Q �

Z
In

fe�
R
tn

�
B�u���tn��		 ds
A
u
�� tn�����A
u
�� ����

�
e�
R
tn

�
B�u���tn��		 ds � e�

R
tn

�
B�u���s		 ds�A
u
�� ���g d��

Substituting A
u� � f � w � g
u�uR in the �rst term� we obtain

Q �

Z
In

e�
R
tn

�
B�u���tn��		 ds�

�f

�t

�n���
tn�� � ��

�w � fg�
�n���ut
�� �n���
� � tn���guR� d�

�

Z
In

fe��
Z tn

�
w � fg�
�n���ut
�� �n���
s� tn���g dsA
u
�� ���g d� �

We used the same analysis as for P for the second term in Q� above� We used the

mean value theorem repeatedly on the second step� Then� using 
����� and the fact

that the functions �f
�t and u are bounded� we arrive at

jQj � Ch�

��



for some constant C� Therefore� j�nj � O
h���

To show the global error estimate of the scheme for 
����� we let F n � u
�� tn��

un� Then�

F n � e�B�u���tn��		hu
�� tn��� �

Z
In

e�
R
tn

�
B�u���s		 dsA
u
�� tn���� d�

�
e�
R
In

B�un��	 dsun�� �

Z
In

e�
R
tn

�
B�un��	 dsA
un��� d�� � �n

� G�H � �n

where G consists of the �rst and the third terms and H is the second and the fourth

terms� If we add and subtract e�
R
In

B�un��	 dsu
�� tn��� to G� then

jGj � jfe�
R
In

B�u���tn��		 ds � e�
R
In

B�un��	 dsgu
�� tn���

�e�
R
In

B�un��	 ds
u
�� tn���� un���j

� e��
Z
In

jw � 
g
u
�� tn����� g
un����j ds � ju
�� tn���j

�je�
R
In

B�un��	 dsj � jF n��j�

The exponents in both of the exponential functions above are O
h� so there exists

a constant K so

jGj � 
� �Kh�f

Z
In

jw � g�
�n���F
n��j dsju
�� tn���j� jF n��jg

� 
� �Kh�
�
h � jw � g�
�n���F

n��jju
�� tn���j� jF n��j
�

� 
� �Kh� k F n�� kL��R	

where k � kL��R	 is the L
��norm over the real line in the x�variable�

��



Next� if we add and subtract
R
In
e�

R
tn

�
B�un��	 dsA
u
�� tn���� d� to H� then

jHj � j

Z
In

�fe�
R
tn

�
B�u���s		 ds � e�

R
tn

�
B�un��	 dsgA
u
�� tn����

�e�
R
tn

�
B�un��	 dsfA
u
�� tn�����A
un���g� d� j

�

Z
In

�je� j

Z tn

�
jB
un����B
u
�� tn����j dsjA
u
�� tn����j

�e
R
tn

�
B�un��	 dsfj

�f

�t

�n���
tn�� � �� � uR � w � 
g
u
�� tn����� g
un����jg� d�

� Ch k F n�� kL��R	 �O
h
���

So�

jF nj � jGj� jHj

� 
� �Kh� k F n�� kL��R	 �O
h
��

or

k F n kL��R	� 
� �Kh�n � Lh�f� � 
� �Kh� � � � � � 
� �Kh�n��g k F � kL��R	

for some constant L� Now� by the standard iteration argument 
see �A���

k F n kL��R	� C
�
k F � kL��R	 �h

�
�

Therefore� we can conclude that the exponential Euler method applied to the above

integro�di�erential equation is �rst order accurate 
i�e� the global error is O
h��� �

Numerical results of the scheme applied to an integro�di�erential equation are

presented in Section ����

�



��� Applications to Partial Di�erential Equations

In this section we suggest a way to use splitting methods to extend the range of ap�

plication of the exponential Euler scheme to certain partial di�erential and integro�

di�erential equation models of neuron activity where a di�usion operator is involved�

The Hodgkin�Huxley model for electrical activity along an axon is described by

a reaction�di�usion equation for the membrane potential� After nondimensionaliza�

tion� it has the following form

�v

�t
� D

��v

�x�
� f
v�m� n� h� � � ��� 
�����

There are also channel equations for m�n� h� � � � which would have the same form as

equation 
�����

When applying exponential Euler to a typical reaction�di�usion equation� one is

confronted with the choice of whether to place the di�usion in the A
y� or B
y�y

terms� Inclusion of the di�usion in the A
y� term leads to an explicit treatment of

the di�usion and therefore a time step restriction is required� Inclusion in the B
y�y

term leads to the evaluation of a matrix exponential 
of the di�usion operator�� Both

of these approaches would typically be considered too expensive computationally�

We therefore� suggest the use of a splitting scheme�

��



To apply the splitting method to 
������ we introduce the following equations�

�z

�t
� D

��z

�x�
and z
�� �� � z� 
�����

and

�u

�t
� f
u�m� n� h� � � �� and u
�� �� � u�� 
����

Let z
�� t� � Xtz� and u
�� t� � Y tu� be the solutions of 
����� and 
���� respec�

tively� These two formulas are combined over a time step interval of length �t to

produce a splitting method approximation� If vn�� is an approximation to v
�� tn���

then the splitting method solution at time tn would be

vn � X�tY �tvn���

The Strang formula typically would provide more accuracy and be de�ned by

vn � X�t��Y �tX�t��vn��


�BBD� and �Sb��� The equation 
���� is a standard linear di�usion equation that

can be solved e�ciently by many time discretization methods� We suggest that the

exponential Euler scheme could be used to approximate Y t� Here� the f term will

typically have the same form as in 
�����

��



��� Numerical Results

In this section� we present some computational results with the exponential Euler

scheme applied to the logistic equation� the FitzHugh�Nagumo equation and an

integro�di�erential equation similar to 
����� For comparison in the ODE cases we

also experimented with the forward Euler method as well as the midpoint extension

of the exponential Euler scheme introduced in Section ����

We have also created and numerically tested another extension of the exponential

Euler scheme using a multistep idea� We used

�yn �
�

�
yn �

�

�
yn�� 
�����

in the form 
���� and the method computationally showed the second order accuracy


See �gure �����

First� we present our numerical results for the logistic equation 
����

y� � �y
�� y�� with y
�� � y� where � � � and real�

with � � �� and initial condition y
�� � �� 
Figure ����� The true solution of the

logistic equation is y
t� � y�

�� y��e
��t � y��

���

Figure ��� shows the error vs h plots for forward Euler� exponential Euler� as well

as the midpoint and multistep extensions� The slope of the lines is the experimental

order of convergence for each of the methods� Careful study of the graphs reveals

��
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the midpoint and multistep methods are second order while the two Euler methods

are �rst order�

As a second example� we present the Fitzhugh�Nagumo equation 
���� which was

introduced in Section ���� Here we have

f
v� w� � v
v � ����
� � v��w

and g
v� w� � v � ��w 
�����

and � 

 � 

 ��

We have carried out numerical experiments with the di�erent applied currents

I � ���� and I � ��� Figure ��� is a plot of the solutions of the FitzHugh�Nagumo

equations with I � ��� and I � ��� Here we used the forward Euler method with

the stepsize h � ���� as a solution of the FitzHugh�Nagumo equation to calculate

the error of the schemes� Our results are in Tables ��� and ���� Here� FE� EE� EEMP�

and EEMS are the acronyms of forward Euler� exponential Euler� exponential Euler

with midpoint rule� and exponential Euler with multistep method� respectively�

These tables demonstrate that the forward Euler method is unstable for large h

while the exponential Euler methods are not� We also observe from the table that

the forward and exponential Euler methods are O
h� since their errors are divided

by ��� on each reduction of stepsize� At the same time the results suggest that the

exponential Euler extensions are O
h���

Finally� we have tested the scheme on one example of the integro�di�erential

�



h FE EE EEMP EEMS

�� � ������ ����� �����

��� ����� ������ ����� �����

���� ������ ������ ������ ������

���� ����� ������ ������ ������

���� ������ ����� ������ ������

Table ���� Errors in approximation of solutions to FitzHugh�Nagumo equation with

I � ��� and � � t � ��

h FE EE EEMP EEMS

��� � ����� ������ ������

���� ������ ����� ������ ������

��� ������ ������ ������ ������

���� ����� ������ ������ ������

������ ������ ������ ������ ������

Table ���� Errors in approximation of solutions to FitzHugh�Nagumo equation with

I��� and � � t � �

�



equation� Consider the following integro�di�erential equation

ut � �u� w �H
u� ��
u� �� 
�����

where H is the Heaviside function

H
s� �

����
���
� for s � �

� otherwise

and

w �H
u� �� �

Z
�

��

w
� � y�H
u
y� t�� �� dy

is similar to the one we analyzed above� However� because of the jump discontinuity

in H our Theorem ���� does not apply� Nevertheless� it is interesting to see if the

O
h� convergence still holds�

In order to calculate the true solution of the 
������ we have studied traveling

front solutions to 
����� that are introduced by 
�PE��� We let the traveling front

solution U to 
����� be monotone decreasing with U
��� � A� U
�� � �� U
�� � �

and c of constant value 
�PE��� And we substitute u
x� t� � U
x� ct� in 
����� and

let z � x� ct� Then we have�

cU �
z� � U
z� � 
w �H
U � ���
U
z�� ��� 
�����

And


w �H
U
z� � ���
z� �

Z
�

��

w
z � ��H
U
��� �� d�

�



where � � y � ct� Then


w �H
U
z�� ���
z� �

Z �

��

w
z � �� d�

�� W 
z��

Let

G
z� ��

Z z

�

�

c

� �W 
��� d��

then the solution to 
����� is

U
z� � �eG�z	 �
�

c
eG�z	

Z z

�
e�G��	W 
�� d�

where

� �
�

c

Z
�

�
e�G��	W 
�� d�

�

To apply the exponential Euler scheme to 
������ we let

A
u� � w �H
u� ��

and

B
u� � � � w �H
u� ���

We used w
x� � �
� when �� � x � � and w
x� � � otherwise in our computation�

Here we are computing a fully discrete approximation on a spatial mesh with subin�

terval width �x� We used the rectangular rule with mesh parameter width ����

�



h���� h���� h���� h����

�x���� ������� ������� ������� �������

�x���� ������� ������� ������� �������

�x���� ������ ������ ����� �������

Table ���� Errors in approximation of solutions to the integro�di�erential Equation

with �� � x � �� and � � t � ��

to evaluate the convolutions in the true solution� Table ��� veri�es that our fully

discrete exponential Euler method is nearly �rst order accurate 
O
h��� Of course�

our Theorem ���� only applies to semi�discrete methods with smooth g�

�



Chapter �

Mathematical Model of Retinal

Waves in Visual Cortex

In this Chapter� we present a one�dimensional �ring rate type model for retinal

waves that produces similar results to those in 
�BFSR� and �FBARS��� In the

developing mammalian retina� spontaneous neuronal activity� called retinal waves�

can be detected and it is known that a synaptically connected network of amacrine

cells and ganglion cells in the retina is involved in generating these waves 
�WCSS��

�FWSWS��� Feller et al 
�FBARS�� has created a two layer readout model that

consists of those two cell types� In their model� ganglion cells receive excitatory

inputs and depolarize through synaptic coupling only if nearby amacrine cells reach

their threshold� The ganglion cells cannot cause nearby ganglion cells or amacrine





Figure ���� Schematic of Retinal Model 
Page ��� of �BFSR��

cells to depolarize 
See Figure ����� Because of this we focus on the amacrine cells

only�

The primary goal in this chapter is the introduction of the �ring�rate model

of amacrine cells in the retina and con�rmation through computer simulation of

their validity� In particular� they should match the following three experimentally

testable quantities�

� The wave velocties should be in the range of ������� mm�sec 
see page ��� of

�BFSR���

� The average length covered by an individual wave should be approximately

�



�� mm 
This the square root of ����� mm� which is noted as the average

area on page ������� of �BFSR���

� The average interval in time between waves should be around��� seconds 
see

page ������� of �BFSR���

Our model network consists of a one�dimensional array of N neurons which rep�

resent the amacrine cell layer� As in �FBARS� the cells are assumed to be �� �m

apart and N 	� ��� thus the array has length around � mm�

��� Model Description

Our model for the amacrine cell layer is based on �ring rate techniques that in�

cludes a slow calcium variable� The main equation for an individual amacrine cell

n contains �ve di�erent currents as follows�

C
d�vn

d�t
� ICa � IAHP � IRest � ISyn � INoise 
����

d�cn

d�t
� �fICa �

�cn
�c


����

where

IAHP � �gAHP
�cn
Kc

�vn � vRest��

�



ISyn � �gSyn
X
	�Fn

�w	�nH
�v	 � ���
�vn � vCa�

IRest � �gL
�vn � vRest��

ICa � �gCaH
�vn � ���
�vn � vCa��

for n � �� �� � � � � N and

H
s� �

����
���
� for s � �

� otherwise

is the Heaviside function� Here �vn
�t� and �cn
�t� represent the membrane potential

and cytoplasmic calcium concentrations of amacrine cell n� The set Fn has the

indices of the amacrine cells connected to cell n� We connected each amacrine cell

to its � neighbors� � on each side�

The �rst current ICa is a spiking current which corresponds to the rapid de�

polarization of the amacrine cell� If a cell reaches its threshold 
���� ICa is turned

on due to the Heaviside function H causing the cell to be depolarized� There is

a current due to the Ca�� activated K� channels 
IAHP �� This after�hypolarizing

current is thought to be important for temination of action potentials and determi�

nation of the refractory period 
�T� and �SG��� The depolarization of a cell causes

an increase in the intracellular calcium concentration level� so that the IAHP cur�

rent dominates and the cell returns to resting potential� After a cell �res an action

potential� it enters its refractory period� The amacrine cell in our model has a long

refractory period because of the slow calcium variable and the time constant �c�

�



The third current IRest is a leak current� Nonrefractory amacrine cells can reach

their thresholds either through excitatory inputs from neighboring cells 
synaptic

curents� or through an intrinsic spontaneous depolarization 
noise currents�� In our

model� there is a synaptic current ISyn which corresponds to inputs from nearby

amacrine cells� Finally� there is a noise current INoise which represents the current

from spontaneous random noise events that the cells experience and instigates the

waves� Here�

INoise
t� �
X
j

�MNoiseP 
�t� �t
Noise
j � ��Noise�

where P 
s� �� is a unit pulse function that lasts for � time units after s � ��

P 
s� �� �

����
���
� if s 
 ��� ��

� otherwise�

Thus ��Noise is the length of each spontaneous noise event and �MNoise is the mag�

nitude� The �tNoise
j are the times of the noise events for each individual neuron�

These times occur at random intervals of length� on average� �NNoise� with standard

deviation �NNoise��� We have chosen �NNoise as the value used in �FBARS��

We now nondimensionalize the equations describing the amacrine cells� We make

the following variable changes� our primary goal is to match the nondimensionalized

model with the automata�type model used in �FBARS�� We introduced the extra

nondimensional parameters �L and � to accomplish this�

�vn � vRest �
�� � vRest

�
vn� �cn � Kccn and �t �

C�L
gL

t�

�



Thus we have a characteristic time tc � C�L�gL� We also set

iNoise �
X
j

MNoiseP 
� � tNoise
j � �Noise��

After the variable changes we have the following nondimensional system

v�n � ��Lvn��CaH
vn���
vn�����AHP cnvn�
vn���
X
	�Fn

w	�nH
v	����iNoise

and

c�n � 	H
vn � ��
vn � ���
cn
�
�

where we introduce the following nondimensional parameters�

�Ca � gCa�L�gL� �AHP � gAHP�L�gL� 	 �
fgCa�LC
�� � vRest�

gLKc�
�

� � �c�tc� �Noise � ��Noise�tc� � � �
vca � vRest
�� � vRest

�

MNoise �
�L�

gL
�� � vRest�
�MNoise and w	�n � �L �w	�n�

Choosing �L � � and � � � we have� using the constants from table ��

�Ca � �� �AHP � ��� w	�n � �� tc � � ms� � � �� �	 � � and � � ����

This completes the description of our nondimensionalize model of the amacrine cells�

��



Membrane Potentials vCa � �� mV vRest � ��� mV

Threshold Potentials �� � ��� mV

Capacitance C � � � F�cm�

Conductances gL � ���� mS�cm
� gAHP � ���� mS�cm

�

gCa � ���� mS�cm
�

Calcium Parameters Kc � � �M �c � �� s

f � �� ���� �M cm��
�A ms�

Synaptic Current gSyn � � mS�cm
� �w	�n � ���

Noise Current �MNoise � ��A ��Noise � � s

�NNoise � �� s

Table ���� Physical Parameters used in this Study

��



��� Computational Results

In this section� we present the computational results of the �ring rate model of

amacrine cells� As mentioned in the previous section� we have introduced three

testable quantities � the wave velocities� the average length covered by an individual

wave and the average interval in time between waves� With the nondimensionalized

model of amacrine cells� we have compared these quantities from the computational

results to those in �BFSR� and �FBARS��

There are �� amacrine cells in our model and the cells are assumed to be �� �m

apart from each other� We have solved the di�erential equations of the model with

the exponential Euler scheme and h
� �t� � ���

Figure ��� shows that the waves created in our one dimensional amacrine cell

model� We have calculated the average wave speed with � randomly chosen waves

and found it was around ����� mm�sec which though large is still within the range

of order of magnitude for the wave speed 
��� � ��� mm�sec� in �BFSR�� Figure ���

shows a single wave on a short time scale� the shape of the line provides a rough

approximation of the wave speed� In this example� the speed is ����mm�s�

Also we examined the average length covered by an individual wave with �

randomly chosen waves� The average length of waves are approximately �� mm

which is also within the range of order of magnitude for the average length covered

��
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��



by an individual wave� The average interval in time between waves were about ��

seconds that is also within the range of order of magnitute for the refractory periods�

��� Integro�Di�erential Equation Modeling

A synaptically coupled network of neurons is often described by an integro�di�erential

equation 
IDE�� Our amacrine cell model can also be transformed into an integro�

di�erential problem� We follow the approach in �TEY� to transform the network

into an IDE problem� We simplify by assuming the neurons lie on the entire real

axis and neuron n is placed at position xn � n�x where� for amacrine cells� we take

�x � ���m and n � �������� � � �� We de�ne

w
s� �

����
���

� for jsj 
 ����m

� otherwise

as a continuum representation for w	�n� Recall w	�n � �� and each cell was connected

synaptically to its six nearest neighbors� so its range was around ����m in each

direction� Our IDE model will have continuum functions v� c� and i so

v
xn� t� 	� vn
t�� c
xn� t� 	� cn
t�� and i
xn� t� 	� iNoise
t�n��

�



So� for the membrane potential equation for the amacrine cells we have� at say� xn

and t�

�v

�t
� ��Lv��CaH
v���
v�����AHP cv�

�

�x

v���

X
	

w
��x	�H
v
x	� ������x�i

Taking x in place of xn� y in place of x	� and approximating the synaptic current

sum by an integral over y we have� for any x�

�v

�t
� ��Lv��CaH
v���
v�����AHP cv�

�

�x

v���

Z
R
w
��y�H
v
y� �����dy�i�

Similarly� we have

�c

�t
� 	H
v � ��
v � ���

c

�
�

We expect standard mathematical techniques 
similar to those in �Cs�� �GE��

�PE�� or �TEY�� could be used to derive traveling wave solutions of this IDE model�

speeds and pulse shapes�

��� Future Work

There are several improvements and extensions that should be made to our retinal

wave model� First of all� the model should contain a ganglion cell layer as the cellular

automata model in �FBARS� and �BFSR�� Since the retinal waves are observed in

��



ganglion cell layer� it is important to include this cell type in the model even though

our model already reproduces the spatiotemporal patterns of retinal waves� To

compare our model to experimental data more precisely� we should introduce two�

dimensional geometry�

Our wave speeds were slightly large� to remodeling this we could introduce a

more complex synaptic response that allows a �nite rise time instead of the Heaviside

function response we currently have�

Of course� the primary extension would involve an analysis of the IDE model

introduced in Section ���� For instance� one should be able to �nd traveling waves

and deduce their speed as is done in� say� 
�TEY���

��
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