
UNIVERSITY OF CINCINNATI

Date:___________________

I, ___,
hereby submit this work as part of the requirements for the degree of:

in:

It is entitled:

This work and its defense approved by:

Chair: _______________________________

Investigation of an Information Structure to support the Elaboration of

Simultaneous Statements in Compile-driven Mixed-signal Simulation

A thesis submitted to the

Division of Graduate Studies and Research
of

The University of Cincinnati

in
partial fulfillment

of the
requirements for the degree of

Master of Science

in the

Department of Electrical and Computer Engineering
and

Computer Science
of

The College of Engineering

September 27th 2004

By

Vinod Chamarty

B.Tech., Regional Engineering College,
Calicut, India. 2001

Thesis Advisor and Committee Chair: Dr. Hal Carter

Abstract

The issue of performance of compile-driven mixed-signal simulation is a

challenging problem with optimization techniques researched to speed-up the various

phases of simulation. The matrix load phase of the analog simulation kernel has been

found to consume the largest percentage of the total simulation time. It is also known that

in the worst case, the matrix load time is a cubic function of the number of equations in

the system. Therefore, efforts have been directed towards reducing the matrix load time

in a mixed-signal simulation paradigm.

The elaborated set of Characteristic Expressions (CEs) forms the input to the

matrix load phase of the analog kernel. The CEs are formed either as a result of

elaborating simultaneous statements or because of the association of the quantities and

terminals. A reduction in the elaborated set of CEs would result in the reduction of both

the matrix load and matrix solve times. The current data structures do not support the

reduction of the elaborated set of CEs. This thesis presents the design of a new

Information Structure (IS) to support the modification and reduction of CEs and sets of

CEs respectively. We exploit this design to improve the performance of compile-driven

mixed-signal simulation. A proof of concept has been provided to demonstrate the

viability of the designed Information Structure.

To

My loving mom and dad, and my dearest brother

Acknowledgements

I would like to thank my advisor Dr. Hal Carter for his continuous guidance and

inspiration all through my research work. I have gained immensely through his

motivation and style of working. Without his constant guidance and encouragement, this

research work would not have been possible.

I would like to thank Dr. Philip A. Wilsey and Dr. Karen Tomko for taking time

out of their busy schedule, and readily accepting to serve on the thesis defense

committee.

 I would also like to thank my companion researchers in the Distributed Processing

Laboratory for their dedicated effort in creating the research platform, SIERRA2. I would

like to thank each one of them for their valuable suggestions, and wonderful company

during the course of my research work. There were many memorable days spent in the

lab trying to build the simulator. I also enjoyed the company of a bunch of friends at UC.

My interactions with them have been very entertaining, to say the least. I will always

cherish the fun and the good times spent together.

 I would like to thank my loving parents for what I am today. Their guidance and

inspiration has been my driving force. Their vision and understanding has seen me

overcome many difficulties. Thanks are also due, to my dearest brother for standing by

me at all times, and helping me take important decisions.

Contents

List of Figures…………………………………………………………………………….3
List of Tables……………………………………………………………………………..5

1 Introduction 6
 1.1 Motivation…………………………………………………………………….7
 1.2 Statement of the Problem……………………………………………………..8
 1.3 Approach to Solution………………………………………………………...10
 1.4 Summary of Results………………………………………………………….12
 1.5 Overview of the Document………………………..…………………………12

2 Background 14
 2.1 Introduction to Simulation…………………………………………………...15
 2.2 Elaboration…………………………………………………………………...21
 2.2.1 Definition of Elaboration…………………………………………..21
 2.2.2 Implementation of Elaboration…………………………………….22
 2.3 Language Effect on Elaboration……………………………………………..23
 2.3.1 Introduction………………………………………………………...24
 2.3.2 Elaboration as Applicable to VHDL-AMS………………………...24
 2.4 Summary of the Chapter……………………………………………………..26

3 Problem Statement 27
 3.1 Introduction…………………………………………………………………..28
 3.1.1 Optimization Approaches to Speed up Analog Kernel…………….28
 3.1.2 Identification of the Problem………………………………………32
 3.2 Analysis of the Problem……………………………………………………...33
 3.2.1 Discussion of the Current Approach……………………………….34
 3.2.2 Requirements of the Proposed Design……………………………..36
 3.3 Summary of the Chapter……………………………………………………..37

4 Approach 38
 4.1 Information Structure (S3IS)………………………………………………...39
 4.1.1 Introduction………………………………………………………...40
 4.1.2 Implementation of the Data Structure……………………………...44
 4.2 Elaboration Methodology……………………………………………………49
 4.2.1 Concept of Islands…………………………………………………49
 4.2.2 Elaboration of Declarative Statements…………………………….50
 4.2.3 Elaboration of Simultaneous Statements…………………………..52
 4.3 Matrix Load Operation………………………………………………………55
 4.3.1 Matrix Load of a Characteristic Expression……………………….56
 4.3.2 Elaboration Information Structure for Matrix Load……………….56

4.4 Merits and Limitations of the Information Structure………………………..59
4.5 Summary of the Chapter…………………………………………………….60

 1

5 Optimization Approach 61
 5.1 Introduction…………..………………………………………………………61
 5.1.1 Optimization of Conserved Systems……………………………….62
 5.1.2 Optimization of Non-conserved systems…………………..………63

6 Experimental Results 69
 6.1 Introduction………………………………………………………………......69
 6.2 Reduction of Performance factors……………...…….……………………...71
 6.2.l Model Description………………………………………………….72
 6.2.2 Results……………………………………………………………...73
 6.2.3 Summary of 2k Factor Analysis..…………………………………..75
 6.3 Analysis of the Overhead of the Data Structure……………………………..76
 6.3.1 Model Description…………………………………………………77
 6.3.2 Results……………………………………………………………..78
 6.3.3 Summary of the Data Structure Overhead Analysis...……………..84
 6.4 Analysis of the Performance of the Data Structure………...………………..85
 6.4.1 Model Description…………………………………………………85
 6.4.2 Results……………………………………………………………...87
 6.4.3 Summary of the Performance of the Data Structure……..……….106
 6.5 Contribution of the various phases of Simulation………………………….107
 6.6 Summary of Results………………………………………………………...110

7 Conclusions and Future Work 111
 7.1 Summary of Conclusions…………………………………………………...111
 7.2 Future Work………………………………………………………………...112

Bibliography 114

 2

List of Figures

1.1 Flowchart for the approach to the problem………………………………………….9
2.1 Block diagram of a generic simulator……………………………………………...13
2.2 Block diagram of a compile-driven mixed-signal simulator………………………14
2.3 Stages of a front-end compiler……………………………………………………..15
2.4 Steps in the matrix solver stage……………………………………………………18
3.1 DAE system solution process……………………………………………………...28
3.2 Flow graph for the pre-processing method of reduction of equations……………..29
3.3 Description of elaboration and matrix load of a SSS………………………………33
4.1 Description of elaboration and matrix load of SSS in the new approach………….39
4.2 Flowchart showing the internal data structures during the elaboration of a SSS….40
4.3 Equation tree for a simple simultaneous statement………………………………..45
4.4 Equation tree for SSS in Equation 4.4……………………………………………..47
4.5 Elaboration data structure to support conditional simultaneous statements……….52
4.6 The elaboration Information Structure showing the different data structures
 which support matrix load operation………………………………………………56
5.1 Algorithm for reducing the elaborated set of CEs in a non-conserved system…….63
5.2 Algorithm for traversing and modifying the acceptor equation tree………………64
5.3 Algorithm for dynamically creating a sub-tree for the substituted quantity……….65
6.1 Series and Parallel resistor circuits used in 2k factor experiments…………………73
6.2 Raw results of 2k factorial experiments with two factors………………………….74
6.3 ANOVA results for 2k factor design for matrix load time...……………………….74
6.4 ANOVA results for 2k factor design for matrix solve time………..………………75
6.5 ANOVA results for 2k factor design for total simulation time………………...…..75
6.6 Test environment for evaluating the overhead of the new data structure……..…...76
6.7 A network of resistors model (Model 1)…………………………………………...78
6.8 Overhead in Intermediate Code size as matrix size increases……………………..79
6.9 Comparison of elaboration time (SIERRA vs. SIERRA2)….……………………..80
6.10 Percentage increase in elaboration time (SIERRA vs. SIERRA2)……...................81
6.11 Comparison of matrix load time (SIERRA vs. SIERRA2)………………………..82
6.12 Percentage increase in matrix load time (SIERRA vs. SIERRA2)………………...83
6.13 Test environment for evaluating the reduction algorithm………………………….85
6.14 A phono pre-amplifier circuit (Model 2)…………………………………………..86
6.15 Active high-pass filter circuit (Model 3)…………………………………………..86
6.16 Comparison of Non-IO simulation time for normal and optimized modes………..88
6.17 Percentage improvement in Non-IO simulation time……………………………...88
6.18 Comparison of matrix load time for normal and optimized modes………………..90
6.19 Percentage improvement in matrix load time……………………………………...90
6.20 Comparison of matrix solve times for the normal and optimized modes………….92
6.21 Percentage improvement in matrix solve time……………………………………..93
6.22 Optimization time as a function of matrix size…………………………………….93
6.23 Comparison of Non-IO simulation time (model 2)………………………………..94
6.24 Percentage improvement in Non-IO simulation time (model 2)…………………..95
6.25 Comparison of matrix load time (model 2)………………………………………..96

 3

6.26 Percentage improvement in matrix load time (model 2)…………………………..97
6.27 Comparison of matrix solve time (model 2)……………………………………….98
6.28 Percentage improvement in matrix solve time (model 2)………………………….99
6.29 Optimization time as a function of matrix size (model 2)………………………..100
6.30 Comparison of Non-IO simulation time (model 3)……………………………….101
6.31 Percentage improvement in Non-IO simulation time (model 3)…………………101
6.32 Comparison of matrix load time (model 3)………………………………………103
6.33 Percentage improvement in matrix load time (model 3)…………………………103
6.34 Comparison of matrix solve time (model 3)……………………………………..104
6.35 Percentage improvement in matrix solve time (model 3)………………………..105
6.36 Optimization time as a function of matrix size (model 3)………………………..106
6.37 Percentage contribution of various phases of simulation kernel
 (matrix size=143)…………………………………………………………………107
6.38 Percentage contribution of various phases of simulation kernel
 (matrix size=299)…………………………………………………………………108
6.39 Percentage contribution of matrix load and matrix solve phases with increasing

internal simulation time…………………………………………………………..109

 4

List of Tables

6.1 Confidence Interval for mean difference of the Non-IO simulation time…………...89
6.2 Confidence Interval for mean difference of the matrix load time…………………...91
6.3 Confidence Interval for mean difference of the matrix solve time…………………..92
6.4 Confidence Interval for mean difference of the Non-IO simulation time (model 2)...95
6.5 Confidence Interval for mean difference of the matrix load time (model 2)………...97
6.6 Confidence Interval for mean difference of the matrix solve time (model 2)……….98
6.7 Confidence Interval for mean difference of the Non-IO simulation time (model 3).102
6.8 Confidence Interval for mean difference of the matrix load time (model 3)……….104
6.9 Confidence Interval for mean difference of the matrix solve time (model 3)……...105

 5

Chapter 1

Introduction

 Any design environment would require simulation as a tool for analyzing the final

behavior of the system being designed. Designing a circuit is a perfect case for

simulation. It is an indispensable tool since it allows for verifying the working of the

circuit before it is fabricated. With the rising costs of a design re-spin, it is essential to

get the design right before submitting for fabrication. However, a few basic factors come

into consideration when one chooses to apply simulation to a design cycle, considerations

such as the cost, effort, and time. Cost of simulation is mostly counted in terms of the

dollars spent on a tool for simulation. The effort can be counted in terms of the total man-

hours required for simulating a design. The time taken for a simulation to finish is a very

important factor, since it decides the time of availability of the final product in the

market. The first two factors are very important to the industry and the last factor is the

most important contributor to research in the area of simulation.

 From a circuit designer’s point of view, simulation can be done in the digital,

analog, or mixed-signal domain. Languages like VHDL1 and Verilog HDL2 provide

circuit designers with the ability to model circuits in the digital domain. Traditionally,

 6

1 Very High Speed Integrated Circuit Hardware Description Language
2 Verilog Hardware Description Language

SPICE1 has been used for the description of circuits in the analog domain. With

increasing need for modeling systems with both digital and analog components in the

physical domain, hardware description languages like VHDL-AMS2 and Verilog-AMS

have gained increasing importance. Also, with the circuit feature sizes moving into the

nanometer scale, digital circuits are best analyzed with an analog description. VHDL-

AMS supports a uniform modeling environment that provides a framework for

simultaneously representing both continuous time and discrete time descriptions. The

applications of this language due to its mixed-signal nature are enormous.

 With the evolving need for simulators which support such languages, much effort

has been directed towards developing such high performance mixed-signal simulators

[1]. This necessitates a need for research into the performance of such systems. This

thesis investigates an approach for increasing the performance of a class of mixed-signal

simulators with demonstration of the performance increase in a real simulator.

1.1 Motivation

Our primary interest is in compiled mixed-signal simulation, where the repeated

solution of a set of Ordinary Differential Algebraic Equations (ODAEs) is obtained for

the continuous time component of the model being simulated.

The need for high speed mixed-signal simulation motivated this study of

enhancing the performance of mixed-signal simulation. The reduction of the elaborated

set3 ODAEs has been recognized as the major factor influencing the speed of the

simulator [2].

1Simulation Program with Integrated Circuit Emphasis
2Very High Speed Integrated Circuit Hardware Description Language – Analog and Mixed Signal
3The set of equations formed after elaborating the design hierarchy. It forms the input to the solver

 7

Mixed-signal simulation requires two steps - elaboration to put the model

together, and solution, where the solution phase is repetitive over time. The solution

phase involves the creation of the matrix and vector values for every time point, and this

matrix is then solved.

In general, the total simulation time can be classified into the following three

categories:

• Elaboration time

• Matrix build time

• Matrix solution time

It was found that in compiled mixed-signal simulators, the majority of the

simulation time is spent in the matrix load phase of the analog kernel. This phase of the

simulator would need a differential solver, either an automatic differential solver or a

symbolic differential solver. It was observed that this phase takes about 70% of the time

taken for the entire simulation [3]. Most of the research has been focused on the matrix

build phase since matrix build is a repetitive operation for every time point and is the

most time consuming phase of the simulator. This is because the time complexity for

finding the solution of the matrix is O(n3) for dense matrices, where n is the number of

equations. However, mixed-signal simulation usually involves very sparse matrices (10%

or less density) in which case the execution time complexity is around O(n1.2) [4,5].

Research has been directed at reducing the size of the matrix so as to reduce the matrix

build and solve time [2]. The reduction of the size of the matrix is achieved by reducing

the number of equations or by reducing the number of quantities involved in the

simulation.

 8

It has been observed that the means of reducing the size of the matrix is inherently

limited by the data structure for the simultaneous statements in a hardware description

language for mixed-signal simulation. The current approach only allows for local

modification of the set of simultaneous statements in a particular hierarchy.

The following limitations have been identified in the existing method of

elaborating simultaneous statements.

• It does not allow for the removal of equations from the elaborated set of ODAEs.

• It does not allow for the addition of new equations into the ODAE set.

• It does not allow for modification of the equations existing in the ODAE set.

This study proposes to remove all of the above limitations and provide an

information structure which adequately represents the simultaneous statements in a

compile-driven mixed-signal simulation model. We call this the Simple Simultaneous

Statement Information Structure, hereafter referred to as the S3IS. The S3IS designed as

a part of this study allows for the reduction of the set of ODAEs as it gives scope for

addition, removal and modification of an equation.

It can be summarized that the problem of reduction of the matrix size has been

reduced to the problem of finding a suitable information structure (IS) to allow for the

reduction of the elaborated set of ODAEs. The IS proposed in this document is the S3IS,

which has been proved to eliminate all of the above stated limitations of the traditional

IS.

 9

1.2 Statement of the Problem

This thesis presents the design of an information structure for simultaneous

statements in a compile-driven mixed-signal simulation paradigm. The information

structure is designed to allow for the reduction of the elaborated set of ODAEs.

We attempt to design an information structure to satisfy these objectives:

• Representation – The information structure (IS) should represent a simultaneous

statement and be modifiable to allow for the change in the equation description.

• Code publishing – The IS should be published as efficient intermediate code.

• Matrix Load – The IS should enable matrix load operation to be performed.

• Reduction of equation set – The set of equations may be reduced, the method for

which may vary.

1.3 Approach to Solution

We need to design an Information Structure which at the minimum satisfies the

above criteria. The requirements of the design can be interpreted as follows:

• Design a data structure to represent simultaneous statement.

• Make sure that the data structure can be implemented in a compiled simulator

with intermediate published code.

• Ensure a consistent elaboration strategy for simultaneous statements.

• Modify the Matrix Load phase to take the new data structure as an input.

• Design and implement a reduction algorithm to show a proof of concept for the

S3IS.

 10

Figure 1.1 shows the flow of this approach. The design of the IS gives scope for the

application of a variety of graph algorithms to perform the reduction of the elaborated set

of equations. The analysis of the approach taken in this thesis is shown specifically in a

VHDL-AMS simulator, SIERRA2, which was developed at the University of Cincinnati.

The reduction algorithm is showcased to prove that the elaborated set of equations can be

modified and may lead towards improvement of the matrix solve time. The simulator has

been designed to run with and without the reduction algorithm so as to help in

comparison of the simulation times. It should be noted that the S3IS provides a base for

implementation of better reduction algorithms in future.

 Figure 1.1: Flowchart for the approach to the problem.

Design the IS for simultaneous statements

Design the intermediate C++ code
for the IS

Change implementation of elaboration
of simultaneous statements

Modify Matrix Load to use the IS as input

Implement a reduction algorithm to work on the
elaborated set of equations

Run sample simulations to show a proof of concept

 11

1.4 Summary of Results

The results of this effort show a very viable information structure meeting all

requirements outlined in the problem statement. In particular, the design allows for the

reduction of the set of equations (ODAEs) and the performance improvement is shown to

be a function of both the problem size as well as the reduction method applied.

1.5 Overview of the Document

The rest of the thesis is divided into six chapters. A brief outline of each chapter is as

follows.

1. Background: This Chapter provides the reader with the basic concept of

elaboration. It starts with an overview of compiled mixed-signal simulation followed

by a discussion of elaboration as applicable to compiled mixed-signal simulators. We

proceed with a discussion of the implementation of the same in a mixed-signal

simulator for VHDL-AMS, SIERRA2 at the University of Cincinnati.

2. Problem Statement: This Chapter introduces the problem under

consideration and describes why the problem is a compelling one. It details on the

scope of the problem and the various provisions that the design seeks to provide.

3. Approach: This chapter enumerates the steps taken to reach the final design of

the Information Structure (IS). It details the implementation of the IS using diagrams

and illustrations. It also describes the complete elaboration methodology and data

structures involved for performing the matrix load operation and reduction of the

elaborated set of ODAEs.

 12

 13

4. Optimization Approach: This Chapter describes the optimization approach

implemented for reducing the elaborated set of CEs. The algorithm and its features

are discussed.

5. Experimental Results: This Chapter presents an analysis of the results

obtained from the experiments conducted on SIERRA and SIERRA2. The overhead

introduced by the new data structure, as well as the performance of the optimization

algorithm are presented.

6. Conclusions and Future Work: This Chapter concludes the thesis and

provides some insight into the scope it provides for possible work to be done in the

future.

Chapter 2

Background

 Hardware is usually described at the system level using a Hardware Description

Language (HDL) model. The correct working of the hardware described is verified

though simulation. Thus simulation forms a very important step in the modeling and

verification of circuits.

A simulator typically allows us to understand the behavior of a circuit through

simulation of the hardware described in a HDL model. The implementation of the

simulator can vary depending on the needs of the user, as well as the technique

underlying the different stages of simulation. The user determines the interface that is to

be implemented. This may require that certain data structures be accessible to the end

user. Since the simulator itself is programmed using a software language, its

implementation may differ based on the various compilation techniques available. The

implementation of the simulator also differs based on the type of circuits simulated.

Simulators may be capable of simulating, either only digital circuits, analog circuits or

sometimes mixed-signal circuits.

 14

This chapter presents the background required to understand the various stages of

simulation, especially elaboration. It starts with a description of the various stages of a

general simulator. This is followed by a discussion of the common elaboration techniques

used in present day simulators. In the later part of the chapter we focus on elaboration as

applicable to a mixed-signal hardware description language like VHDL-AMS.

2.1 Introduction to Simulation

 Simulation is a technique by which a user visualizes the behavior of a circuit,

without actually fabricating it. It is achieved through efficient design of simulators, which

are actually programmed using a high-level software language. A simulator is designed to

understand a circuit description and evaluate various parameters in a particular time

domain.

 Figure 2.1 shows a simple block diagram of a generic simulator. The input to the

simulator is a model written for a specific hardware, typically using a Hardware

Description Language (HDL). HDL based model descriptions are preferred when system

level hardware is to be described, since it makes modeling easy. The hierarchical nature

of HDL implies that models written using a HDL can be re-used by instantiation in other

models. This considerably simplifies the description of complex hardware. The output of

the simulator is basically a set of results, which represent the values of the parameters of

the circuit described. The output can be in the form of a text file listing the values at

various time instants or it can be a graphical visualization of the values obtained.

Simulation

Results
Hardware model

description
Simulator

 15

Figure 2.1: Block diagram of a generic simulator.

 As discussed previously, the implementation of the simulator may differ based on

its model processing technique. It is either compile-driven or interpreter based. Most of

the commercial simulators are compiler based because of their efficiency and

performance advantage. The block represented by the simulator in Figure 2.1 is actually

comprised of various simulation stages as shown in Figure 2.2. The block diagram shown

below is an illustration of a typical compile-driven mixed-signal simulator.

 The following are the different stages of a compile-driven simulator -

1. Front-end Compiler: The front-end compiler is responsible for parsing the model

file and generating the Abstract Syntax Tree (AST) [6], which is then converted into

an Intermediate Code (I.C.). Parsing starts with the lexical analysis of the model

description, which involves identification of the various keywords and identifiers.

This is usually done with a standard analyzer like flex. The next stage is the language

parser, which creates the Abstract Syntax Tree of the model. An abstract syntax tree

is specified for a language in the Language Reference Manual. It is however

I.C. Compiler Model
Intermediate Code

(I.C.) Compiler

Back-end
Kernel Library

Simulation Kernel
1. Analog Kernel

• Elaboration
• Matrix Build
• Matrix Solver

2. Discrete-event Kernel
3. Synchronization

Simulation Results

Figure 2.2: Block diagram of a compile-driven mixed-signal simulator.

 16

constructed based on the model under evaluation. This phase is usually done with

parsers like Bison or PCCTS1.

Intermediate
Code (I.C.)

Code
Publishing

Unit
Semantic
Analyzer

Language
Parser

Lexical
Analyzer

Model file

 Figure 2.3: Stages of a front-end compiler.

The next step involves the analysis of the Abstract Syntax Tree to determine any

deviations from the language’s semantic sense. The final stage is the Code Publishing

Unit, which walks through the Abstract Syntax Tree and outputs Intermediate Code (I.C.)

in a pre-designed format. This stage captures the details of the HDL model described so

as to facilitate simulation. The Intermediate Code is typically in a high-level software

language so that it can be compiled along with a back-end library to achieve the results of

the simulation.

2. Intermediate Code Compiler: After the publishing of the Intermediate Code in the

desired format, it is compiled along with kernel libraries specifically designed to

understand the Intermediate Code. This stage is basically the usual high-level language

compiler.

t
1 Purdue Compiler Construction Tool Se
 17

3. Back-end Kernel Library: The kernel library supports the compilation of the

Intermediate Code. The final executable includes the kernel libraries as well as the object

code of the Intermediate Code. The kernel libraries are designed efficiently to capture all

the language features of the Hardware Description Language (HDL) being simulated. To

reduce the compilation time of the Intermediate Code it is prudent to capture most of the

language features in its back-end library. The library is essentially pre-compiled source

code. The Intermediate Code (I.C.) on the other hand, must represent the properties

specific to the input model description.

4. Simulation Kernel: The simulation kernel is the heart of the simulator. All the

previous stages are meant to provide inputs to the simulation kernel. It is the core of the

simulator, which evaluates the circuit description to output the values of the parameters

of the circuit.

The simulation kernel of a mixed-signal simulator consists of a discrete-event

kernel and an ODAE-based solver. The kernel also provides for communication between

the two simulation paradigms. This communication protocol is typically referred to as

synchronization [7].

The discrete-event kernel involves execution of the process statements until

termination. The elaboration phase creates a set of discrete-event processes from the

hierarchical description. The sequential statements within a discrete-event process modify

the values of the parameters associated with it. In a distributed simulation paradigm,

events are scheduled to propagate the values of signals between the appropriate processes

after a time delay. The simulation proceeds in discrete steps depending on when events

occur. When an event occurs on a signal to which a process is sensitive, the process

 18

resumes and may schedule transactions on that signal at some later time. Thus the

simulation of digital processes takes place in two phases – initialization and repetitive

execution of simulation cycle. Initialization phase involves the assigning of initial values

to the signals. The simulation cycle is the execution of the events based on the earliest

scheduled transaction. The simulation completes when there are no further scheduled

transactions. A more detailed explanation of the discrete-event processes can be found in

[8,9].

Even though both the kernels of a mixed-signal simulator affect the performance

of the simulator, we are more interested in the working of the analog kernel of the

simulator as it contributes the largest percentage of the total simulation time. The analog

kernel mainly consists of the following three stages –

(a) Elaboration: A model written using a HDL describes the hardware of a particular

system. This description needs to be directly translated into the simulator.

However, since the description is hierarchical, there is a need to collect the

information available at different levels of the hierarchy. The method of flattening

the entire hierarchical description of a model is called elaboration [10]. This stage

of simulation is explained in more detail in the following sections. Elaboration is

followed by an initialization phase where all the unknowns in the model are

initialized.

(b) Matrix Build: The analog portion of the mixed-signal circuit is evaluated based

on the equations which describe the circuit. This set of equations has been

previously described and has been referred to as Ordinary Differential Algebraic

Equations (ODAEs). The set of ODAEs are loaded into a matrix and then solved

 19

to obtain the values of unknowns. The part of the simulator which assigns

memory to the matrix elements and assigns values to all the row and column

members of the matrix is referred to as the matrix build stage. Research [3,11] has

indicated that this stage is the one of the most critical stages of the simulator in

terms of its performance.

(c) Matrix Solver: The matrix build phase is followed by a matrix solver. The matrix

solver is responsible for finding the values of the unknowns. The matrix solver is

actually comprised of three different phases, which convert the possibly non-

linear differential algebraic equations to a system of linear equations, which are

solved simultaneously. The different phases are shown in Figure 2.4. Many matrix

solvers have been implemented and analyzed to speed up the performance of the

matrix solve phase.

Set of ODAEs

Integrate the non-linear set of ODAEs to obtain a
set of algebraic equations

Linearize the non-linear algebraic equations
using Newton-Raphson method

Solve the linear system of equations

Output unknown
values

Figure 2.4: Steps in the Matrix Solver stage.

 20

 These methods are primarily classified as direct methods and relaxation based

methods [12,14,15]. Parallel solver techniques and super nodal approach [13] have also

been researched to speed up the performance of the matrix solver.

2.2 Elaboration

 A Hardware Description Language (HDL) allows for a hierarchical description of

hardware. The hierarchical property implies that models written using a HDL can be re-

used by instantiation in other models. Thus, one particular hardware or circuit needs to be

described only once. This enables the language user to write complex and higher level

models with great ease. However, this feature of the language would make it necessary to

collect the information from the sub-circuit when trying to analyze the main circuit. The

technique for accomplishing the above mentioned task is called elaboration and has been

further described in this section.

2.2.1 Definition of Elaboration

Elaboration is defined as the method of flattening the entire hierarchical

description of a HDL model [10]. Usually there is a specific sequence of steps defined to

elaborate a model written in a Hardware Description Language. For example, the VHDL-

AMS Language Reference manual describes the steps to be taken in the elaboration of the

language’s various constructs. However, the implementation of elaboration is usually left

to the discretion of the developer of the simulator. We would consider one such

implementation in the later sections of this document.

 21

Every system or model description involves the use of various language

constructs. It is the task of the simulator to provide a means of interpreting every

language construct and transferring the information to the simulation kernel. Thus, the

elaboration phase ensures that each HDL construct achieves its desired effect.

Elaboration has been defined as the process by which a declaration achieves is effect

[10]. The implementation of an elaboration strategy would require the creation of proper

data structures to ensure faster and functionally correct simulation. Any data lost during

elaboration would lead to incorrect analysis of the circuit description. It is also necessary

to ensure a unique interpretation of any individual language construct. The construct as

such may again require passing different values to the simulation kernel, each time it is

invoked. Thus, a proper elaboration strategy would ensure that all the above properties

are adhered to.

2.2.2 Implementation of Elaboration

As mentioned previously, the architecture of the implemented elaborator is

usually left to the discretion of the developer. This stage of the simulator defines the type

of simulator. If the result of elaboration is a program which is interpreted by the

simulator, it is called as interpreted simulation. On the other hand, if elaboration results

in the model description being compiled into object code and linked to the simulation

kernel, it is called as compiled simulation.

The two major strategies used with compiled simulation are –

(a) Pre-Intermediate Code Elaboration: If the elaboration phase is completed

before the publishing of the Intermediate Code (I.C.), it is referred to as pre-I.C.

 22

elaboration. The advantage of this strategy is that elaboration is kept simple and is

not extended to the back-end simulation kernel. This type of elaboration finishes

elaboration before the compilation time of the published code. The disadvantage

of this method is that any new model or circuit, which uses the previously

elaborated models or sub-circuits will have to elaborate the sub-circuits again.

(b) Post-Intermediate Code Elaboration: If the elaboration phase is performed after

the publishing of the Intermediate Code (I.C.), it is referred to as post-I.C.

elaboration. This strategy postpones the elaboration phase to the run-time. The

published code carries all the information pertaining to each sub-circuit modeled

in the system. This code, along with the back-end simulation kernel, is compiled

into a final executable. The elaboration of the model occurs only when the final

executable is run. The advantage of this approach is that any number of sub-

circuits may be analyzed, but, elaboration occurs only with the final configuration

of the system.

2.3 Language Effect on Elaboration

The semantic meaning of a language construct is specific to the language. Hence,

even though an elaboration strategy may be generic, it is necessary to define the

elaboration of each construct in a new language domain. This section of the document

introduces the basic language constructs in VHDL and VHDL-AMS and then proceeds

with a discussion of elaboration as applicable to VHDL-AMS.

 23

2.3.1 Introduction

VHDL introduces the concept of entities and architectures for the digital domain

where simulation occurs in discrete time. An entity represents a portion of a hardware

design that has well-defined inputs and outputs and performs a well-defined function. An

architecture body specifies the relationships between inputs and outputs of a design

entity [10]. Each entity may be instantiated multiple times to form higher level and

complex circuits. The inputs and outputs to the system are defined as signals. The

relationships between signals are defined using concurrent statements. The concurrent

statements provide the necessary constructs to describe the behavior of hardware.

VHDL-AMS extends VHDL to include the analog and mixed signal extensions.

This enables users of the HDL to simulate analog circuits in the continuous time domain

and also perform simulation of mixed-signal circuits, which involve interaction between

the analog and digital domains. The inputs and outputs in an analog domain occur

between nodes called terminals and their values are represented by quantities. ODAEs

are expressed using simultaneous statements, which together with implicit equations

generated from the definition of terminals help evaluate the values of quantities.

2.3.2 Elaboration as applicable to VHDL-AMS

A design hierarchy is represented by a design entity. Hence, elaboration of a

design hierarchy is achieved through elaboration of each statement within the design

entity. The VHDL-AMS Language Reference Manual (LRM) defines elaboration for

design hierarchies, declarative parts, statement parts, simultaneous statements and

 24

concurrent statements. We limit our discussion to elaboration of a design hierarchy since

it is most relevant to this document.

The elaboration of a design hierarchy creates a collection of processes

interconnected by nets and quantities whose values are defined by Characteristic

Expressions (CEs). The run-time elaboration strategy of a design hierarchy in VHDL-

AMS consists of two phases –

(1) Phase 1: The first phase takes place in three steps, the instantiation, the signal net-list

update, and the connection.

• The instantiation takes place in a top-down approach, where the objects represented

in the model are created first for the top-most design entity. Creation of objects of a

model implies creation of the components and processes representing the models. Objects

are also created for all VHDL-AMS constructs which represent declarations.

• The signal net-list update, as the name suggests stores all the information related to

the signals in the system. A signal is a (Value, Time) tuple and the information required

to update it is acquired from the model description. The fanout is also updated and drivers

are created for each of the signals. This step takes place in a bottom-up fashion.

• The connection phase passes the information about the signals on to the instantiated

components and processes. This is necessary to create the signal source tree (for multiple

drivers of signals) and also to evaluate the type conversion functions.

(2) Phase 2: This phase is necessary to form the characteristic expressions so as to

simulate the system in the continuous time domain.

 25

• The first step involves the identification of all the unknown quantities across all

design entities. Solvability checks are applied using the characteristic number of each

external block. The characteristic number is equal to the number of characteristic

expressions formed for that block.

• In the second step, the association of the formal and actual terminals and quantities is

performed. A top-down approach is taken for this step.

• The third step involves identification of break statements to form the discontinuity

augmentation sets. This helps in detecting discontinuities during mixed-signal simulation

[2,10,16,19].

• The last step involves creation of characteristic expressions1 from the simultaneous

statements, as per the rules defined in the VHDL-AMS LRM [10]. The characteristic

expressions (CEs) created from simultaneous statements are referred to as explicit CEs.

Another set of CEs are created from the declarations of quantities with respect to their

terminals. These CEs are referred to as implicit CEs. The conditional simultaneous

statements in VHDL-AMS imply that the elaboration phase maintain a data structure to

control the selection of CEs during simulation.

2.4 Summary of the Chapter

The working of a general mixed-signal simulator has been introduced to the reader

in this Chapter. This was followed by a description of the various stages of simulation

with special importance being given to the elaboration phase. Elaboration was described

with reference to VHDL-AMS in order to form the foundation for the problem statement

and the approach taken to solving the problem defined earlier in this document.

1 A characteristic expression either represents a simple simultaneous statement or is an implicit consequence of the

declaration and association of quantities and terminals.
 26

Chapter 3

Problem Statement

 It has been noted in the previous sections of this document that improving the

performance of a mixed-signal simulator has been a major research area [14,17].

Research has been targeted at improving the various stages of a compiled simulator.

Methods using pre-processing [2], selective matrix update [3] and parallel solver [13]

have been applied to speed up mixed-signal simulators. This document presents a new,

novel elaboration approach which provides the infrastructure to speed up mixed-signal

simulation in a compiled simulator.

The research documented here has been particularly guided towards removing the

performance bottleneck in compiled simulators. The study of the problem has enabled us

to come up with a set of requirements to solve the problem. The results from this study

have been applied in a research simulator at the University of Cincinnati and the

performance of the simulator has been analyzed. This Chapter presents an in-depth

description of the problem, a discussion on how compelling it is, the requirements of a

solution to the problem, and finally the broad scope that it provides in terms of speed

enhancement of a compiled mixed-signal simulator.

 27

 3.1 Introduction

Research has come up with a wide variety of proposals to enhance the

performance of compiled mixed-signal simulation [18,20]. Earlier research in this area

has used profiling techniques to identify the regions where the simulator spends the

maximum amount of time.

As has been identified before, the analog kernel basically consists of three phases.

They are -

• Elaboration phase

• Matrix Build phase

• Matrix Solve phase

Further, it has been identified that the analog kernel of a mixed-signal simulator takes the

largest percentage of the total simulation time [3]. Efforts have been directed at reducing

the total simulation time of the analog kernel [2,3,11,14]. Research has been

concentrated on the various techniques to improve the performance of each phase of the

analog kernel. In this section, we present some of the optimization approaches that have

been considered so far to identify the problem considered by this document, and highlight

the need for an approach to solve it.

3.1.1 Optimization Approaches to Speed up Analog Kernel

 The most important metric for the performance of a mixed-signal simulator is its

simulation time. Since the analog kernel of a mixed-signal simulator is the most critical

part of the kernel, the time spent by the simulator in the analog kernel is a very important

performance metric of a compiled mixed-signal simulator.

 28

 It has also been identified in earlier research [3,13] that matrix build phase and the

matrix solver phase contribute a greater percentage of the analog solver time. This is

because these phases are iterative and hence have a greater effect on the total simulation

time of the analog kernel.

The following are some of the techniques which have been applied to improve the

simulation time of the analog kernel.

• Equation Set Optimization (ESO): The ESO technique attempts to speed up the set

up phase of the matrix build operation [3]. The set up phase involves the allocation of

the row where the equation will be entered in the matrix. It also takes care of

allocation of pointers to the positions in the matrix where the contribution of this

equation will be entered. The use of simultaneous if statements in VHDL-AMS

implies that the set of equations loaded into the matrix keeps changing with progress

in time. These equations have been classified as the Base Set and the Conditional Set

[3]. The technique improves the matrix build phase by loading the Base Set at the

beginning of the simulation time and, loading the Conditional Set at every time point

in the simulation. This approach considerably improves the simulation time.

• Conservative Equations Optimization (CEO): The CEO technique aims to

eliminate the need to load the conservative equations of a circuit description

repeatedly for every simulation time point. The conservative equations in a circuit are

basically the equations formed by applying Kirchoff’s Current Law (KCL) to the

circuit. Assuming that the simultaneous if statements do not modify the circuit net

list, it is noted that the KCL equations are essentially the same with progress in the

simulation time. Hence this optimization creates a stamp of the matrix and reproduces

 29

it with the contribution KCL equations at every time point. The time saved by

avoiding the re-evaluation of the contributions of the conservative equations has been

shown to be considerable [3]. This method is also directed at improving the matrix

build times.

• Multiple Solution Methods (MSM): This method proven to be effective by

Vasudevan [21] and later improvised by [3], attempts to reduce the time spent in the

matrix solver phase of the analog kernel. The method separated the elaborated set of

equations at each time point into the linear set of DAEs and non-linear set of DAEs.

The generic solver has a linearization step where the Jacobian matrix is calculated for

the set of non-linear equations. The MSM as shown in Figure 3.1, identifies the set of

linear DAEs at the current simulation timepoint and passes them on to a faster linear

solver. This method has been shown to improve the performance of the matrix solver.

DAEs in the model

Classification of DAEs
into linear and non-linear

Form current DAE set

System Type?

Linear DAE system
solution method

Non-linear DAE system
solution method

Figure 3.1: DAE system solution process [3].

 30

• Pre-processing Method for Reduction of Equations: Our research has been largely

motivated by the elaboration support needed by this optimization, namely reducing

the number of equations to be simulated. Research has identified that reducing the

number of equations in a model description will ultimately lead to a reduction in the

size of the matrix [2]. The pre-processing method is applied on the VHDL-AMS

description of a model to identify certain properties and change the model description

to a more efficient one. The output of the applied algorithm is again a VHDL-AMS

model which is then analyzed and simulated. Figure 3.2 gives the general flow of the

pre-processing method.

VHDL-AMS
model

Pre-processing algorithm

Modified VHDL-
AMS model

Simulator

Figure 3.2: Flow graph for the pre-processing method for reduction of equations.

 Two different approaches have been described for the conserved models and the

non-conserved models. Both the approaches aimed at reducing the number of equations

in the model description. The advantages, disadvantages and limitations of this technique

have been described in detail in the following sections as we introduce the problem that

this document attempts to address.

 31

3.1.2 Identification of the Problem

 It is clear to the reader that to improve the performance of compiled, mixed-signal

simulators, it is necessary to improve the performance of the analog kernel of the

simulator. In addition, research in improving mixed-signal simulation speed has

concentrated primarily on the matrix build and solver phases of the analog kernel since

they contribute the largest percentage of the of the total simulation time.

The explanation for this is that the matrix build and solver phases are iterative and

are repeated at every simulation timepoint. Therefore, we can broadly split the

optimization approaches to two different classes. They are -

1. Class A – In this approach, the input to the matrix build phase (elaborated set

of ODAEs) is optimized.

2. Class B – In this approach, the matrix build and solver phases themselves are

optimized.

The ESO, CEO and MSM methods described above are Class B approaches. In this

document we are more interested in Class A methods, like the pre-processing method for

the reduction of equations.

The input to the matrix build phase is the elaborated set of equations. Note that

any optimization on the elaborated set of equations is a one time activity, assuming that

simultaneous if statements are not used in the description of the VHDL-AMS model.

Thus, this should be our preferred approach in comparison with optimizing the matrix

build and solver phases themselves. Even if the simultaneous if statements are used in the

model description, the elaborated set of equations would not necessarily change for each

and every timepoint in the simulation. Therefore, the problem of improving the

 32

performance of the analog kernel has been reduced to the problem of optimizing the

elaborated set of equations.

It has been pointed out in previous research that the data structure used for the

representation of simultaneous statements is a limiting factor in optimizing the elaborated

set of equations [2]. This is exactly the problem that this thesis attempts to address. We

designed an efficient information structure for the simultaneous statements in a compile

driven mixed-signal simulation paradigm. The information structure attempts to provide a

data structure for the simultaneous statements, as well as provide a mechanism for

producing the Intermediate Code, that enables efficient and functionally correct

elaboration of simultaneous statements.

3.2 Analysis of the Problem

The representation of a simultaneous statement in a mixed-signal simulator can

have an impact on the performance of the simulator. When we refer to simultaneous

statements, we are indirectly referring to the representation of the Characteristic

Expressions (CEs) in the simulator. In general, this not only effects the loading of the

matrix, but also the capability to apply reduction algorithms on the elaborated set of CEs.

The discussion in this section is presented with reference to VHDL-AMS and an

implementation of a specific research simulator for VHDL-AMS. However, since the

generality of the discussion is maintained, we can confidently state that the findings of

this study are applicable to the entire class of compiled mixed-signal simulators. We start

with an analysis of the current implementation of the simulator, called SIERRA

developed in the Distributed Processing Laboratory at the University of Cincinnati. Then,

 33

we present a set of requirements for the proposed information structure for the simple

simultaneous statements in order to overcome the limitations imposed by the current data

structure.

3.2.1 Discussion of the Current Approach

The research simulator, called SIERRA at the University of Cincinnati, uses a

sparse matrix solver in its analog kernel [22,23]. It is essential that the published

Intermediate Code (I.C.) is in a format that can be used by the sparse matrix solver.

Figure 3.3 presents a block diagram of how simultaneous statements are elaborated and

loaded into the matrix. It shows the details of the composition of the published code w.r.t.

simple simultaneous statements, as an example.

 SIERRA publishes its Intermediate Code (I.C.) in C++. This C++ code adequately

represents the VHDL-AMS model. The creation of the elaborated set of CEs requires that

all the information about the simultaneous statements be collected from the entities at

every level in the model hierarchy. The Intermediate Code in C++ creates a class for

every architecture - entity combination. Instantiations of a component in the VHDL-

AMS model correspond to creation of objects of this class.

The Intermediate Code generator needs to perform two tasks for every simple

simultaneous statement. They are -

• Create component objects in the published code for every CE to be created in the

back-end.

• Publish a function which represents the simple simultaneous statement. This

function is called in the matrix build phase of the analog kernel, and is in a format

 34

compatible with the sparse matrix solver. This function is also associated with the

corresponding component object created as mentioned above.

Simultaneous Statements
in a VHDL-AMS model

Intermediate Code (I.C.)

Publish a function for every simple
simultaneous statement (SSS)

Create objects for each SSS in the
architecture of an entity

Create objects for every instantiation of the
component

Collect all the CEs during elaboration

Load the matrix by calling the published functions

Figure 3.3: Description of elaboration and matrix load of SSS.

An analysis of the current approach shows that all the CEs created in the

Intermediate Code have to be loaded into the matrix. Moreover, the matrix load operation

takes place by directly calling the functions which have been published based on the

VHDL-AMS model. This approach does not allow us to modify the elaborated set of

Characteristic Expressions (CEs). It also does not allow us to modify the composition of

the CE itself. Thus it creates major limitations in applying equation reduction techniques

before loading the matrix. Sanjiv has recorded in his thesis that his pre-processing

 35

approach, which we henceforth refer to as the current method of reduction of CEs, was

limited in its application by the data structure of the Characteristic Expressions [10].

We can summarize the limitations or disadvantages of the current methods as

follows -

• The method does not allow for the removal of equations from the elaborated set of

ODAEs.

• The method also does not allow for the addition of new equations into the ODAE

set.

• The current approach does not allow for modification of the equations existing in

the ODAE set.

• Any reduction approach may only be performed on the simple simultaneous

statements in the architecture of an entity and hence is not global in its approach.

This means that any reduction algorithm may be applied only before the code

generation phase.

Our purpose is to develop a data structure that overcomes the above stated limitations.

3.2.2 Requirements of the Proposed Design

As a part of the study conducted to support this thesis, we have analyzed the

published Intermediate Code (I.C.), the data structure of the Characteristic Expressions

(CEs) and the matrix load operation. A set of requirements for the new and improvised

approach have emerged as a result of this thesis. The goal of the improvised approach is

to support the reduction of the elaborated set of ODAEs.

 36

The requirements have been summarized below –

• Representation – The information structure (IS) should be able to represent a

simple simultaneous statement and be modifiable to allow for the change in the

equation description.

• Code publishing – The data structure should be published as efficient intermediate

code and must be in a format compatible with the sparse matrix solver.

• Matrix Load – The IS should enable matrix load operation to be performed.

• Reduction of equation set – The set of equations may be reduced, the method for

which may vary.

3.3 Summary of the Chapter

 This Chapter has provided the reader with a description of the problem statement.

A detailed analysis of the current approach has been conducted, and its limitations have

been highlighted against the backdrop of improving the performance of a mixed-signal

simulator. The limitations of the traditional approach and the ever-growing need to

improve the performance of the mixed-signal simulator make our problem a compelling

one. To conclude, we have provided a set of requirements for the design of a new

Information Structure (IS), which would be conducive to the idea of reducing the

elaborated set of ODAEs.

 37

Chapter 4

Approach

In this document we have so far presented the concepts of mixed-signal

simulation and its various stages with a particular emphasis on elaboration. We have also

discussed the nature and validity of the problem statement. We are convinced of the

importance of this problem, and propose an approach to the design of an Information

Structure (IS) for efficient elaboration from the problem of improving the performance of

the mixed-signal simulator.

In the previous Chapter we have identified the requirements of a design which

would support the reduction of the elaborated set of ODAEs. We have implemented one

such Information Structure (IS) in the analog kernel of a mixed-signal simulator, called

SIERRA2 developed at the University of Cincinnati. The design is generic and is

applicable to any compiled mixed-signal simulator.

This Chapter presents the design of the Information Structure (IS) for simple

simultaneous statements. It also describes the design of the necessary Intermediate Code.

We, then proceed to describe how the elaboration methodology has been implemented.

 38

This is followed by a discussion of the implementation of the matrix load operation using

the data structure.

4.1 Information Structure (S3IS)

The design of an Information Structure (IS) requires careful analysis of the

problem. The IS basically comprises of the data structure for the simple simultaneous

statements, the code generator to achieve the publishing of the necessary Intermediate

Code, and the classes in the back-end kernel to support elaboration and the matrix load

operation.

Since the basic requirements of the IS have been laid out, we start this section

with the concepts behind the design. As we proceed we describe the classification of

various elements of the data structure and discuss its implementation in detail. Flow

graphs have been provided wherever necessary.

4.1.1 Introduction

In the previous Chapter, we have described the current approach of elaborating

simple simultaneous statements. Figure 3.3 illustrates the various components of the

published Intermediate Code (I.C.) and the subsequent matrix load operation.

It has been observed that the matrix load operation has been performed by directly

calling a function in the published Intermediate Code (I.C.) (Section 3.2.1). Even though

this function completely describes the Characteristic Expression to be loaded into the

matrix, with current elaboration methods CEs and sets of CEs can not be modified once

published. The current approach publishes a static function, the terms and operators of

 39

which are not accessible to the developer of the analog kernel. Since we have no access

to the description of the CE itself, we are unable to identify situations which are

conducive to reduction of CEs, much less actually perform the reduction on the CE or

sets of CEs. Thus no equation reductions are possible, or, equivalently, we are forced to

load the equations as translated from the VHDL-AMS model.

Figure 4.1 presents a flow graph for the new approach. It illustrates the creation of

an equation tree for every simple simultaneous statement in the model. The following is

an ordered description of the elaboration in the new approach -

1. The code generator of the front-end compiler publishes a function which creates

an equation tree at the run-time for every simple simultaneous statement (SSS).

2. A component object is created for every SSS and its corresponding function is

associated with the object.

3. The respective equation tree function is called during the creation of the

component object and this returns the root of the equation tree.

4. The elaboration phase involves the formation of the set of Characteristic

Expressions (CEs) by traversing the entire hierarchy of the model description.

This translates into traversing every object instantiation for the various entities in

the model and forming a list of all the CEs encountered.

5. Reduction algorithms are applied to reduce the elaborated set of Characteristic

Expressions (CEs).

6. Each equation tree is traversed recursively starting from its root node to load the

matrix.

 40

Simultaneous Statements
in a VHDL-AMS model

Figure 4.2 presents a more detailed description of the data structures for SSS in

the new approach. This perspective of the elaboration process, shows how the front-end

Intermediate Code (I.C.)

Publish a function which generates a modifiable equation
tree at run-time for every simple simultaneous statement

Front-end
Compiler

Back-end
kernel

Collect all the CEs during elaboration to
form the elaborated set of ODAEs

Load the optimized equation set into the matrix by
recursively traversing each equation tree starting at

its root node

Figure 4.1: Description of elaboration and matrix load of SSS in the new approach.
Shaded boxes indicate changed tasks relative those in the current approach (Figure 3.3).

Apply reduction algorithms on the
elaborated set of ODAEs

Create objects for each SSS in the
architecture of an entity

Create objects for every instantiation of the
component

 41

compiler, code generator, and the back-end kernel work in synchronism to achieve

elaboration.

Figure 4.2: Flowchart showing the internal data structures during the elaboration of a SSS.

Intermediate Code Publishing

equationNode *
 Func1 (component *eqn) { }

equationNode *
Func2 (component *eqn) { }

Dynamic equation tree representation of the CE

Compiler

 (a) (b)

AIRE representation for SSS

Language constructs
including simple

simultaneous statements.
For example,

a + b – c * d = = sin (1.2);

sin

c

*

d 1.2 b a

a b c d

*

sin

Execution of compiled object code

Matrix Build
+

Matrix Solve

1.2

 42

The front-end compiler is responsible for creating the Abstract Syntax Tree (AST)

for the entire model description. The AIRE (Advanced Intermediate Representation with

Extensibility) document describes the AST for all the constructs in VHDL-AMS. A

simple simultaneous statement is stored as two expression trees, (‘a’ and ‘b’ in figure) as

per the AIRE document [24]. The code generator publishes a function for each SSS

which would generate the equation tree during execution of the compiled code. Note that

the SSS is converted into its Characteristic Expression format during the code generation

phase itself. This is described in more detail in the next section.

The Intermediate Code (I.C.) is compiled along with the back-end kernel libraries

to form a final executable object (Section 2.1). The equation tree is creating dynamically

during the execution of this final executable object. The creation of the equation tree

occurs during the elaboration phase of the simulation.

The advantage of this new approach is that we have achieved a separation

between the elaboration and the matrix load phase of the analog kernel. The matrix is not

loaded based on the published Intermediate Code (I.C.), but is loaded using the root node

of the equation tree. This novel approach gives us the capability to dynamically change

the equation description. Thus, we name this new approach dynamic elaboration, and the

Information Structure to achieve the same is called S3IS.

Since every component object keeps track of the root of its equation tree, we are

able to modify the description of the equation tree itself. We describe the equation tree in

further detail in the later section, when it would be clear as to how the root of the

equation tree would remain the same, even when the contents of the equation are

modified. The equation tree function in the Intermediate Code (I.C.) creates each of its

 43

nodes dynamically on the heap. Therefore they are accessible at a later point of time,

when they can be modified.

The elaborated set of CEs is designed as a list of characteristic expressions. This

list of CEs is traversed during the matrix load phase. Thus, removing a CE from the list

gives the effect of not loading the particular characteristic expression. Since the equation

tree is created dynamically on a heap, we can evaluate conditions to create a complete

equation tree or a sub-tree of the equation tree. Once the equation tree is created and its

root node known, we can add the CE to the list of CEs. The above mentioned capabilities

were simply not achievable with the previous Information Structure.

In this section, we have shown how the new approach satisfies the basic

requirement of our problem statement – it supports the reduction of the elaborated set of

Characteristic Expressions (CEs). We have also illustrated the modified elaboration

methodology to take advantage of the new Information Structure. In the following

section, we discuss the implementation of the data structure for simple simultaneous

statements.

4.1.2 Implementation of the Data Structure

The requirements for the design of the data structure for simple simultaneous

statements have been discussed in the earlier sections. We present the design in complete

detail in this section.

The VHDL-AMS LRM defines a simple simultaneous statement as follows -

simple_simultaneous_statement ::=
[label :] simple_expression == simple_expression [tolerance_aspect] ;

 44

where, the label and tolerance_aspect are optional fields. A simple simultaneous

statement basically consists of a “left hand side” expression and a “right hand side”

expression. We usually represent it as

lhs = = rhs; (4.1)

We realize that this translates into an equation which can be represented as

lhs – rhs = = 0; (4.2)

We call this equation the restructured simple simultaneous statement.

 Thus, any simple simultaneous statement can be converted into the format as

shown above. The advantage of using the above notation is that the equation has been

converted into a format which always assumes that the effective right hand side

expression is “0”. The “lhs – rhs” in specific, is referred to as the Characteristic

Expression (CE) for the particular SSS. The AIRE representation of the simple

simultaneous statement (SSS) allows the code generator of the front-end compiler,

SAVANT1 to publish the SSS in its Characteristic Expression (CE) format [28,29].

Therefore, we are left with the problem of finding a data structure which allows us to

describe the effective “left hand side” expression or Characteristic Expression (CE) in the

back-end of the simulator. This task also involves the design of an efficient Intermediate

Code (I.C.) to create the data structure during run-time. As described previously, the run-

time in a compiled mixed-signal simulator refers to the execution of the final executable

object.

 We introduce the design of an equation tree to solve the above stated

problem. An equation tree allows us to effectively describe a SSS, and also to create a

CE which can be traversed by the back-end kernel to load the matrix.

1Standard Analyzer of VHDL Applications for Next Generation Technology

 45

 The equation tree consists of nodes, each of which is completely described by a

(attribute, value, parent node) tuple. A node in an equation tree represents either an

operator or a term in the effective “left hand side” expression of the Equation 4.2. The

attribute of a node describes the type of the node. A node can be described with any one

of the following attributes -

• Quantity

• Number

• Operator

• Function

• Time

Each node is referred to based on its attribute. For example, a node whose

attribute is ‘Quantity’ is called a quantity node. The value of a node derives its meaning

based on the attribute. The following definitions are valid for the value of a node -

• The value of a quantity node is its index in the particular CE.

• The value of a number node is the real value of the number itself.

• The value of an operator node indicates the type of operator. For example,

a value ‘1’ indicates the addition operator.

• The value of a function node is null.

• The value of a time node is null.

The construction of such an equation tree requires that each node identify its

parent node. The top-most node in such an equation tree would be the subtraction

operator as defined in equation 4.2. This top-most node is defined to as the root node of

 46

the equation. The equation tree can be now defined as a tree whose recursive traversal

starting from the root node leads to the unfolding of the Characteristic Expression (CE).

Consider, for example, the VHDL-AMS simple simultaneous statement (SSS) -

 x + y = = (16.0 – z) / 4.0; (4.3)

where, x, y, and z are real type quantities. Assume we desire to construct the equation

tree for the above statement. The following sequence of steps are taken to ensure the

creation of the equation tree for every SSS -

1. Convert the SSS into its CE format during the code generation phase of the front-

end compiler. Thus, at the beginning of code generation phase, the SSS is in the

CE format as shown below.

(x + y) – (16.0 – z) / 4.0

2. Convert the CE into an equation tree by efficient publishing of Intermediate Code

(I.C.). The I.C. is designed so as to generate the equation tree during simulation.

This is done by creating each node in the equation tree and associating it with its

parent node. The equation tree for the above CE is shown in Figure 4.3.

1312

765

3

1

2

16

4
4 y x

z

Figure 4.3: Equation tree for a simple simultaneous statement.

 47

Nodes numbered 1, 2, 3 and 6 are operator nodes as and nodes numbered 4, 5, and 13 are

quantity nodes with values of 1, 2 and 3 respectively (not shown in the figure). We obtain

the values of quantity nodes based on their order in the equation. For example, Equation

4.3 can be represented as

(q[0] + q[1]) – (16.0 – q[2]) / 4.0

where, q is a vector of all the quantities occurring in the equation. Nodes numbered 7 and

12 in Figure 4.3 are number nodes as per our definition. Finally, node numbered 1 is the

root node of the equation tree and is associated with its component object.

Our design of the equation tree is generic and extensible. We consider another

example to further our explanation of the equation tree. Consider a SSS as shown below -

x * y = = 8.0 + pow (5.0, 10.0); (4.4)

where, x and y are real quantities and ‘pow’ is a standard function. The above SSS is

transformed during the beginning of the code generator phase into its CE format as

shown below -

x * y – (8.0 + pow (5.0, 10.0))

The equation tree for equation 4.4 is shown below. Nodes numbered 1, 2, and 3 are

operator nodes, nodes numbered 4 and 5 are quantity nodes, nodes numbered 6, 14, and

15 are number nodes, and node numbered 7 is a function node. During the recursive

traversal of the equation tree, the sub-tree with node 7 as the root evaluates to a real

number.

 48

4.2 Elaboration Methodology

The S3IS Information Structure is designed to support elaboration of VHDL-

AMS constructs. It provides a consistent methodology to perform efficient and

functionally correct elaboration. SEAMS1, a mixed-signal simulator developed at the

University of Cincinnati implemented an elaboration methodology called RTEMS (Run-

time Elaboration for VHDL-AMS) [11,25]. Our elaboration methodology is largely based

on the techniques derived from RTEMS.

4.2.1 Concept of Islands

One of the novel approaches implemented in SEAMS to improve the performance

of a distributed, compiled mixed-signal simulator is the notion of islands [11]. The idea

behind the formation of analog islands is to reduce the size of the matrix to be solved.

Disjoint sets of Characteristic Expressions (CEs), which are not dependent on the other

set of CEs for the values of their unknowns, are created. Each set of such Characteristic

1514

765

32
*

1

5 10

8
4

P y x

Figure 4.4: Equation tree for SSS in equation 4.4.

1 Simulation Environment for VHDL-AMS

 49

Expressions constitute an analog island. Each of these analog islands are solved using a

separate matrix and hence are conducive to a distributed simulation paradigm.

Analysis of the formation of analog islands has led us to the observation that any

reduction algorithm for the elaborated set of Characteristic Expressions needs to applied

after the formation of islands. This is because any algorithm to reduce the complete set of

CEs, would not be able to use an ‘unconnected’ CE in its algorithm. In other words,

independent sets of CEs need independent reduction techniques to be applied. Thus, the

elaborated set of CEs is separated into sets of CEs at the end of analog island formation.

Each set of such CEs is a separate analog process handled by a separate processor in a

distributed simulation paradigm.

4.2.2 Elaboration of Declarative Statements

An entity declaration in VHDL-AMS defines an interface to a component. Every

entity declaration is represented as a C++ class derived from the pre-defined elaboration

kernel class. The generic constants and signals in the port list of the entity become

member objects of the entity class. Elaboration of architecture of an entity involves the

elaboration of the declarative parts, and the concurrent and simultaneous statements in its

body.

A detailed discussion of elaboration of the various statements in the architecture

and entity of a VHDL-AMS model can be found in [9]. We limit our discussion here to

the elaboration of terminal and quantity declarations as they may result in the creation of

Characteristic Expressions (CEs). The quantity and terminal declarations result in

creation of data members which store their attributes and any valid initialization values.

 50

A terminal declaration defines the nature of a terminal. A quantity declaration is either a

‘free quantity declaration’ or a ‘branch quantity declaration’. A branch quantity

declaration is used to define quantities which either have an across aspect or through

aspect associated with them. A ‘free quantity declaration’ does not associate the quantity

with terminals. However, a ‘branch quantity declaration’ defines the across or through

aspect of the quantity w.r.t its terminals.

Since the solver of our analog kernel uses Modified Nodal Analysis (MNA) to

solve the matrix, we must include the equations formed by the application of Kirchoff’s

Current Law (KCL) [26]. These equations are actually a result of branch quantity

declarations, and are referred to as the structural set of Characteristic Expressions.

Thus, the elaboration of branch quantity declarations also results in the creation of

CEs, which constitute the structural set of CEs. We use a data structure to identify the

CEs based on their declarations. We create contribution nodes for every terminal in the

system. Each contribution node is associated with a list of through quantities. The

following rules define the contributions of the through quantities -

• The contribution is set to +1 if the terminal is the positive terminal of the

through quantity.

• The contribution is set to -1 if the terminal is the negative terminal of the

through quantity.

The contribution stamp for each contribution node (terminal) represents a CE in the

structural set of CEs. These stamps are loaded into the matrix at the beginning of each

matrix load operation. Section 3.1.1 has presented a method to optimize the matrix build

phase for the structural set of CEs.

 51

4.2.3 Elaboration of Simultaneous Statements

Systems described using VHDL-AMS can be broadly classified into conserved

and non-conserved systems. Conserved systems are those which follow the conservation

laws. For example, circuit systems follow the Kirchoff’s Current Law (KCL). Non-

conserved systems are those that do not follow any laws of conservation. Their behavior

is completely described using the simultaneous statements, contrary to the conserved

systems which use both simultaneous statements and the association of terminals and

quantities to completely define the system behavior.

The elaboration technique designed and implemented in SIERRA2 is valid for

both conserved and non-conserved systems. The different ODAEs as recognized by

SIERRA2 analog simulation kernel are as follows –

• Free equation – If a simple simultaneous statement consists of at least one

free quantity (e.g. distance), then the equation is classified as free equation.

• Branch equation – If the equation is not a free equation, it is classified as a

branch equation. The simultaneous statement would include one or more

branch quantities (e.g. voltage) in its description.

The simulation kernel needs to evaluate each characteristic expression during every

iteration in the simulation cycle and as many times as needed. Thus, elaboration must

support such evaluations in a simple and efficient manner. All Characteristic Expressions

(CEs) formed from the simple simultaneous statements constitute a list of CEs called as

the explicit set of CEs.

 52

Support for Differential Quantities:

In VHDL-AMS Q’dot represents the derivate of any quantity Q with respect to

time. Numerical integration is performed to convert a differential equation into an

algebraic equation. Before performing the numerical integration, the ODAE is

transformed into an equivalent set of simultaneous statements. “Every quantity in a

simultaneous statement of the form Q’dot is replaced by a new quantity IQ (Implicit

Quantity) in that statement and a new simultaneous statement of the form IQ = = Q’dot is

generated implicitly” [2,11]. Thus, the simultaneous statement with the Q‘dot replaced, is

like any other simple simultaneous statement and hence may be implemented with our

data structure.

The conversion of the implicit equation into an algebraic equation can now be

done using the trapezoidal numerical integration method. The application of the method

on the implicit equation gives us a template equation which is loaded at every timepoint

during the simulation of the model. But, note that the differential quantity cannot be

modified to support optimization. This is a limitation to our design. In other words, the

implementation of the numerical method prevents us from modifying the implicit

equation. Thus the complete set of CEs includes a list of implicit equations.

Support for Conditional Simultaneous Statements:

The design of the elaboration methodology includes the elaboration of conditional

simultaneous statements (CSS). Simultaneous if statements and simultaneous case

statements together constitute conditional simultaneous statements (CSS). The

implementation of CSS requires maintaining a control structure for the activation of one

 53

or more simple simultaneous statements depending on what the condition evaluates to at

the run-time [3]. This would need us to maintain a true list and a false list for every CSS

in the elaborated set of CEs. The designed data structure gives scope for the

implementation of conditional simultaneous statements. Thus, we create a tree of nodes

which includes the explicit and implicit CEs along with conditions which branch off into

a true and false list of nodes. Each node is either a CE or a boolean condition which

evaluates to either true or false.

Figure 4.5 illustrates this elaboration data structure which facilitates the matrix

load operation at every timepoint in the simulation cycle. Each node in the data structure

is either a CE or a condition. This tree is traversed to find the transient set of CEs to be

loaded in the matrix to solve for the unknowns.

CE

CE

F

F

T

C
T

CE C

CE

CE

CE
CE

C

Figure 4.5: Elaboration data structure to support conditional simultaneous statements.
In the figure, CE indicates Characteristic Expression, C indicates Condition, and T

and F represent true and false conditions respectively.

 54

Support for Discontinuities in the model:

Break statements are used in VHDL-AMS to model discontinuities. They cause a

break in the transient simulation which results in finding a new DC operating point for

the set of current set of equations at each discontinuity. A break statement specifies the

condition which results in a discontinuity. It also contains the quantities and the new

values that must be assigned to them when a discontinuity occurs. The break set consists

of a linear list of quantities and the expressions which result in a new value for the

quantity in the event of a discontinuity.

The elaboration of a break statement results in the creation of a boolean signal

corresponding to the break condition and this signal is placed in the sensitivity list of the

analog process. During simulation, when the condition for a particular break statement

becomes true, discontinuity is reported to the analog kernel by the activation of the break

signal. Each time a discontinuity occurs, the structural set of CEs and the current explicit

set of CEs are loaded into the matrix and the DC operating point is evaluated. Transient

simulation continues after the evaluation of the DC operating point. Thus, the designed

Information Structure provides support for the evaluation of discontinuities.

4.3 Matrix Load Operation

In this section, we describe the use of the elaboration Information Structure for

the matrix load operation. We describe a new approach to load a characteristic expression

into the matrix of a sparse matrix solver. This is followed by a description of the entire

elaboration Information Structure to enable the matrix load of all the characteristic

expressions of a model.

 55

4.3.1 Matrix Load of a Characteristic Expression

 The matrix load operation is performed for the entire elaborated set of

Characteristic Expressions (CEs) at each timepoint in the simulation cycle. Each CE is

represented by its component object, and each component object calls its associated

equation tree function to dynamically create the equation tree during elaboration.

The flow graph for this methodology is shown in Figure 4.1. The equation tree

function returns the root node of the equation tree which is then stored as a member of

the component object. During the matrix load operation, each CE is recursively traversed

starting from its root node and the matrix is loaded. This recursive traversal re-creates the

characteristic expression. The use of an equation tree also ensures that the rules of

precedence are followed in the evaluation of the characteristic expression.

As has been mentioned in the previous sections, the primary advantage of our new

approach is that the elaborated set of CEs may be reduced before the matrix load

operation. This is now evident from the fact that we do not change the association of the

root node of the equation tree with the component object for the equation.

4.3.2 Elaboration Information Structure for Matrix Load

The matrix load operation is said to complete when all the current set of

Characteristic Expressions (CEs) have been loaded into the matrix of a sparse matrix

solver. This would require the right set of CEs to be loaded after selection from the

complete elaborated set of CEs.

Figure 4.6 presents a summary of the data structures, which support the matrix

load operation. It primarily consists of -

 56

• A list of pointers to Quantity objects, which completely describe the attributes of

the quantities occurring in the system.

• A list of pointers to Terminal objects, which completely described the attributes

of the terminals occurring in the system.

• A data structure to support the structural set of CEs. These represent the

conservative equations of the system. A list of Contribution Nodes (CN) is

created, one contribution node per Terminal. Each CN is associated with a list of

Quantity Nodes (QN) as described in Section 4.2.2. Each QN also holds a value

‘v’, where v belongs to the set {-1, +1}. Thus, each CN represents a CE whose

stamp is directly loaded into the matrix by using the ‘values’ in its list of QNs.

• A data structure to support the explicit set of CEs. This data structure has already

been described in Section 4.3.3. The tree representing all explicit CEs is traversed

and each CE is loaded into the matrix. Some of the nodes in the tree are condition

nodes and would lead to a different sub-tree based on the evaluation of the

condition at run-time.

• A list of pointers to implicit equations which constitute the implicit set of CEs.

Each pointer refers to an object of ‘differential equation’ (IQ = IQ’dot), which is

created for every ‘dot quantity. The stamp for the ‘differential equation’ is loaded

into the matrix as has been discussed in Section 4.3.3.

• A list of break sets which constitute the discontinuity augmentation set. Each

break set comprises of one or more break elements. A break element consists of

quantities and the expressions which result in a new value for the quantity in the

event of a discontinuity.

 57

Explicit set of CEs

Contribution Nodes

CN1

CN2

CN3

CNn

QN1 v QN2 v QNm v

QN1 v QN2 v

QN1 v QN2 v

List of
Quantities

Q w/ Attributes

Q w/ Attributes

Q w/ Attributes

T w/ Attributes

T w/ Attributes

List of
Terminals

T w/ Attributes

F

F

T

T

CE

CE

C

CE C

CE
CE

CE

CE

Implicit set of CEs

Break Set

Implicit CEi

Figure 4.6: The elaboration Information Structure showing the different data
structures which support matrix load operation. The following notations have
been used in the above diagram.
CN-Contribution Node; QN-Quantity Node; v-value; Q-Quantity; T-Terminal;
CE-Characteristic Expression; C-Condition; B-Break set; E-Expression

B1

Bb

Q1 E1

Implicit CE1

Implicit CE2

Q2 E2

Qe Ee

 58

4.4 Merits and Limitations of the Information Structure

The following are the merits of the above described design for the Information

Structure -

• The Information Structure supports our elaboration methodology and is conducive

to performing the matrix load operation as described above.

• The Information Structure allows for the addition and removal of ODAEs from

the elaborated set of ODAEs, thus allowing the use reduction algorithms.

• The equation tree may be modified easily by creating new nodes dynamically.

Modification operation includes, addition of a sub-tree, deletion of a sub-tree, re-

arranging the existing equation tree, and compaction of a sub-tree, as required by

the equation reduction algorithm.

• The association of the root node of the equation tree with the component object

does not change.

• The value of a particular node can be changed as necessary. This is most required

during modification of a Characteristic Expression (CE), when the index of

quantities in the CE may change due to the removal or insertion of a new quantity

into the quantities vector.

• The data structure is scalable and does not restrict the number of terms or

operators in the SSS.

• Intermediate Code may be designed and published based on the SSS, to create the

required data structure.

 59

Limitations of the Design:

The following are the limitations of the design presented above -

• The differential quantity node may not be reduced or substituted in the current

implementation of the simulator. This is because of the approach adopted in the

implementation of the numerical integration method in the simulator.

• The data structure does not support user defined functions. This is not considered

to be a major limitation as any user defined function may be expanded in the

simple simultaneous statement itself.

4.5 Summary of the Chapter

This Chapter has introduced a new data structure for elaborating simple

simultaneous statements. We have shown that this data structure is most useful in

enabling reduction of the elaborated set of CEs. We have also described in detail the

entire Information Structure to support dynamic elaboration and subsequent matrix load

operation. We have thus satisfied all the requirements of the problem statement.

 60

Chapter 5

Optimization Approach

The previous Chapter has described a new data structure for simple simultaneous

statements, and a dynamic elaboration methodology. The unique advantage of this

approach is that it enables reduction of the elaborated set of CEs. This was hitherto not

possible due to the limitations of the previous data structure.

In this Chapter, we present an approach to reduce the elaborated set of CEs. This

is presented as a proof of concept for the design of our Information Structure. We present

the algorithm used to perform the reduction of the elaborated set of CEs.

5.1 Introduction

The optimization approaches that have been implemented so far have not

attempted to reduce the elaborated set of CEs as this was a limitation of the previous data

structure. The reduction algorithm for the elaborated set of CEs is meant to improve the

performance of the simulator, the most important performance metric being the total

simulation time.

 61

The use of the data structure in reducing conserved equations is the subject of a

companion research effort [27]. Thus, we illustrate the use of the data structure using

only non-conserved equations. However, no rigor is lost by restricting our attention to

non-conserved equations since the algorithms and results exercise the primary

components of the structure.

5.1.1 Optimization of Conserved Systems

Conserved systems include Characteristic Expressions (CEs) derived from simple

simultaneous statements as well as the association of terminals and quantities. In other

words, the elaborated set of CEs consists of the explicit set of CEs, and the structural set

of CEs.

The optimization approaches used in such systems can be classified as follows -

• Type 1 – Elimination of Terminals in the model description. For example, a

circuit or sub-circuit with a series of linear elements (like resistors, capacitors,

etc.) can be reduced to a single linear element with equivalent value. This

translates to reduction of the internal nodes or Terminals in a system. In terms of

the input to the matrix, we are attempting to reduce the structural set of CEs

(contributions of each Terminal) as well as the explicit set of CEs (branch

equations).

• Type 2 – Elimination of Quantities in the model description. For example, a

circuit or sub-circuit with linear elements in parallel can be reduced to a single

linear element with equivalent value. This translates into eliminating the branch

quantities of the parallel branches in the model. This reduces the explicit set of

 62

CEs (branch equations) and modifies the structural set of CEs (contribution

equations).

The above two reduction approaches make use of the new S3IS Information

Structure to reduce and modify the elaborated set of CEs. The algorithms and results of

the optimization approach will be discussed by [27].

5.1.2 Optimization of Non-conserved Systems

In this section, we present substitution as a method of reduction of the elaborated

set of CEs in a non-conserved system. We contend that substitution can be an effective

optimization approach to reduce the elaborated set of CEs generated from a model

description.

This approach attempts to reduce the total number of CEs that are loaded into the

matrix. Since the reduction algorithm runs only once before the start of the matrix load

operation and the matrix load and solve operations are iterative, we anticipate that we

would achieve a net reduction in the total simulation time.

Figure 5.1 presents the reduction algorithm. The algorithm contains a number of

terms which are described here-

• Donor Expression: This is the characteristic expression which is used for

substitution.

• Acceptor Expression: This is the characteristic expression into which

substitution takes place.

 63

• Donor Quantity: This is the Quantity ‘y’ in a characteristic expression of the

form “y – f(x)”. This quantity is substituted in the rest of the characteristic

expressions.

• Donor copy node: This refers to the root of the sub-tree which needs to be copied

or substituted, into an acceptor expression tree.

• Quantity index: This is the index of the quantity in the characteristic expression

as defined in Section 4.1.2.

Description of the Algorithm:

The idea behind the use of substitution as a method of reduction is that it is an

effective method to reduce the number of unknowns in the system. The algorithm called

‘reduce’ is shown in Figure 5.1. The input to the algorithm is the explicit set of CEs, and

the output is a reduced set of CEs. The algorithm starts with the search for a donor

quantity ‘y’ and the respective donor expression as defined above. The donor expression

is then removed from the basic set of CEs. Substitution is achieved by walking the

equation tree of every CE and replacing one or more nodes representing the donor

quantity with its equivalent sub-tree. Thus each donor quantity node is substituted with a

sub-tree representing the expression for the donor quantity in the donor expression. To

ensure the correctness of the CE, we also need to modify the vector of quantities for each

characteristic expression by removing the donor quantity and changing the value of the

other quantity nodes in the modified equation tree. The algorithm ‘reduce’ continues as

long as the elaborated set of CEs consists of equations of the form “y = f(x)”, which can

be used as donor equations. The complexity analysis for the algorithm is provided in

Appendix A.

 64

Algorithm reduce
{
Inputs: The explicit set of characteristic expressions
Outputs: Reduced set of characteristic expressions

Process:
 Find a Donor Qty ‘y’;
 Remove the Donor Expression from basic set of CEs;
 for V e ∈ CE Set
 if (donorQty ∈ e)

Remove donor quantity from the vector of quantities;
 call WalkEquationTree (root node, Qty index);
 end if
 end for
 Remove Donor Qty from the list of quantities;
}

Figure 5.1: Algorithm for reducing the elaborated set of CEs in a non-conserved system.

 The two important methods used in the above algorithm are described below-

• WalkEquationTree: The algorithm for this method is shown in Figure 5.2. This

method is responsible for recursively traversing each acceptor equation tree to

locate nodes which represent the donor quantity. Each of these donor quantity

nodes is replaced by the sub-tree starting with the donor copy node. The creation

of the sub-tree is achieved by the ‘CreateSubTree’ method. Once the sub-tree is

dynamically created, it is connected to the acceptor equation tree. This method is

also responsible for changing the values of the quantity nodes in the equation tree

for the acceptor expression. The function of this algorithm can be summarized as

follows – it recursively traverses the acceptor expression to achieve substitution

by creating sub-trees wherever necessary.

 65

Algorithm WalkEquationTree
{
Inputs: The current equation node during the traversal
 Value of the donor quantity node
Outputs: Modified acceptor equation tree

Process:
 if (root node != NULL)
 call WalkEquationTree (current equation node → leftChild, Qty index);
 if (current equation node is a ‘quantity node’)
 if (current equation node → value = Qty index)
 call CreateSubTree (Donor copy node);
 Make parent and child connection for the root of this sub-tree;
 else if (current equation node → value > Qty index)
 Decrement the node’s value;
 end if
 end if
 call WalkEquationTree(current equation node → rightChild, Qty index);
 end if
}

Figure 5.2: Algorithm for traversing and modifying the acceptor equation tree.

• CreateSubTree: Figure 5.3 describes the algorithm behind the implementation of

this method. This method is responsible for creating a copy of the donor sub-tree

to enable substitution of the donor quantity. We replace each occurrence of the

donor quantity in the acceptor equation tree with a sub-tree starting from the

donor copy node. This method allows us to dynamically create nodes using their

(attribute, value, parent node) tuples. Thus the donor equation tree is recursively

traversed starting from the donor copy node and new nodes are created

dynamically. Any new quantities occurring in the acceptor expression as a result

of substitution are added to the vector of quantities for that acceptor expression.

 66

Algorithm CreateSubTree
{
Inputs: The current copy node
Outputs: A dynamic sub-tree representing the equivalent expression of the donor

quantity

Process:
 if (copy node != NULL)
 if (copy node is a quantity node)
 flag = Check if the quantity already exists in the acceptor equation;
 if (flag = true)
 Assign new node value;
 else
 Add new quantity to the vector of quantities;
 end if
 end if
 Create new equation node dynamically;
 call CreateSubTree (copy node → leftChild);
 call CreateSubTree (copy node → rightChild);
 end if
}

Figure 5.3: Algorithm for dynamically creating a sub-tree for the substituted quantity.

Comparison with Compiler Optimization Techniques:

The optimization approach presented above is very similar to ‘copy propagation’,

an optimization approach used in compiler code optimization. Copy propagation is a

transformation that uses an assignment of the form ‘y ← x’, where ‘x’ and ‘y’ are some

variables, and replaces all the following uses of the variable ‘y’ with uses of ‘x’, as long

as there are no intermediate assignments for the variable ‘y’ [30]. However, our approach

differs from copy propagation in the following ways-

• Since we are working with simultaneous statements we are not restricted by

the redefinition of the variable ‘y’. All occurrences of ‘y’ may be replaced by

the rhs expression since our aim is to reduce a quantity.

 67

• Our reduction approach does not restrict the substitution to just copy

statements of the form “y = = x”. Any simultaneous statement of the form

 “y = = f(x1,x2,….xi)”, where y and xi are quantities in the continuous time

domain may be used for substitution as long as y is not used in its derivative

form in any of the simultaneous statements.

 68

Chapter 6

Experimental Results

This Chapter presents the data obtained from the various tests that were conducted

on the current and previous mixed-signal simulators developed at the University of

Cincinnati. We analyze the overhead introduced with the new approach and also compare

the performance metrics with and without the use of the reduction algorithm.

We begin with a description of the various performance metrics used in the

evaluation of the data structure and the optimization algorithm. This is followed by a

description of the experimental set up. We present the results obtained using various

plots, and conclude with a summary of the performance of the new approach.

6.1 Introduction

In the previous Chapter, we have presented substitution as a method of reduction

for the elaborated set of CEs. In this section, we define the metrics necessary for

evaluating the overhead of the data structure, as well as the performance of the reduction

algorithm. The following metrics are most relevant to the results presented in the

following sections-

 69

• Total Simulation Time (Tsim): This is the total time taken for the completion of

simulation.

Tsim = Telab + Topt + Tml + Tms + To (5.1)

where, Telab is the total elaboration time

Topt is the time taken for the optimization algorithm

Tml is the time taken matrix load operation

Tms is the time taken for the matrix solve phase

To is the total output time

• Elaboration time (Telab): This includes the time taken for elaboration of the

language constructs and also the creation of necessary data structures to enable

matrix load operation and reduction algorithms.

• Optimization time (Topt): This is the time for which the optimization algorithm

runs. An important metric is the percentage contribution of the optimization

algorithm to the total simulation time.

• Matrix Load time (Tml): This is the total time spent by the simulator in the

matrix load phase of the analog kernel.

• Matrix Solve time (Tms): This is the total time spent by the simulator in the

matrix solve phase of the analog kernel.

• Output time (To): Simulation involves the file output of the values of unknowns

at every timepoint in the simulation. The output time of a simulator is the time

spent in writing this output file.

• Non-IO Simulation Time (Tn-sim): A reduction algorithm involves a reduction of

unknowns in the system. Since fewer output values need to be recorded, it affects

 70

the file output time of the simulator. Therefore, a more relevant performance

metric is the total simulation time without the contribution of the output time.

Tn-sim = Tsim - To (5.2)

• Intermediate Code Size: This metric measured in bytes represents the amount of

the Intermediate Code published. Although the absolute value of the Intermediate

Code size is not of any interest to us, the difference in the Intermediate Code size

with and without the use of the new data structure is of interest to us.

• Percentage Improvement: Percentage improvement is used to measure the gain

in performance for any metric. It is defined as follows-

()
100*%

T
TT

normal

optimizednormaltimprovemen
−

=
 (5.3)

where, Tnormal is the time without the application of the optimization algorithm

 Toptimized is the time with the application of the optimization algorithm

6.2 Reduction of Performance Factors

In this section, we present statistical analysis to identify the significant factors

relevant to the new data structure that affect the performance of compiled mixed-signal

simulation. This analysis is commonly referred to as 2k factor analysis for the

identification of significant factors.

The factors which influence the performance include-

1. Matrix size: As the matrix size increases, there will be a significant increase in

the time taken for the matrix load and solve phases of the continuous time kernel.

 71

Our aim is to determine the significance of this factor after defining the levels for

the factor.

2. Average equation size: We define the average equation size as the total number

of nodes used to represent all the Characteristic Expressions (CEs) in the

continuous time domain, divided by the number of CEs in the system. We expect

an increase in the matrix load time with an increase in the number of nodes to be

traversed in the matrix load operation. We define the levels for this factor and

then determine its significance.

6.2.1 Model description

 Since we are studying the effect of the new data structure, we consider systems

which are represented using only free equations. In order to use real models, we have

chosen to use circuit descriptions of a network of resistors, with the conservative

equations written explicitly as free equations.

 We consider two levels for each of the factors listed above. We consider matrix

sizes of 20 and 400 as the two levels. To generate models of different average equation

sizes, we consider a completely series circuit and a completely parallel circuit as shown

in Figure 6.1. Circuits of the form shown in Figure 6.1 were generated keeping the

number of unknowns same. The series circuit has a low average equation size and the

parallel circuit has a high average equation size. Typically, in electronic circuits, the

average number of nodes per equation ranges approximately between 5 and 10. For the

model used here with 20 unknowns, the average equation size of 5.65 and 9.05 nodes1.

Thus the two levels for the average equation size were chosen as 5.65 and 9.05.

1 The average equation size range is an estimate only. Further study is needed.

 72

 73

 VHDL-AMS model descriptions were written for the two circuits shown in Figure

6.1. A model generator was used to create multiple instantiations of the two base circuits.

This enables us to increase the matrix size. Thus we have four models for running the 2k

factor experiments. Each of the four models was simulated five times so as to account for

the variances introduced due to available computing power.

6.2.2 Results

Figure 6.2 shows the 2k factorial table obtained by collecting data from the

simulations as described above. Next, we perform significance analysis of the data. We

use the ANOVA process in the SAS system. ANOVA results for the three responses are

shown in Figure 6.3, Figure 6.4 and Figure 6.5.

Factors Responses
Simulation

Run
Matrix

Size
Average Equation

Size
Matrix Load

Time (s)
Matrix Solve

Time (s)
Total Simulation

Time (s)
1 -1 -1 20.435 0.446992 23.6931
2 -1 -1 20.5344 0.446294 23.7609
3 -1 -1 20.4527 0.444041 23.6782
4 -1 -1 20.4332 0.456495 23.6979
5 -1 -1 20.4056 0.440096 23.6462
6 -1 +1 24.6695 0.457713 27.9449
7 -1 +1 24.7685 0.450417 28.0057
8 -1 +1 24.7239 0.450692 27.9576
9 -1 +1 24.7487 0.454693 27.9901

10 -1 +1 24.7005 0.451381 27.9629
11 +1 -1 388.034 33.2913 507.219
12 +1 -1 388.109 33.39 507.155
13 +1 -1 389.267 33.4137 508.416
14 +1 -1 389.176 33.3666 508.474
15 +1 -1 392.801 33.2313 512.067
16 +1 +1 526.765 33.7411 653.588
17 +1 +1 525.954 33.7866 652.733
18 +1 +1 521.936 33.7856 648.882
19 +1 +1 534.374 34.0461 661.492
20 +1 +1 525.103 33.7058 652.003

Matrix Size Average Equation Size
 Level -1 20x20 matrix Level -1 5.65
 Level +1 400x400 matrix Level +1 9.05

 Figure 6.2: Raw results of 2k factorial experiments with two factors

Figure 6.3: ANOVA results for 2k factor design for Matrix Load Time.

 74

Figure 6.4: ANOVA results for 2k factor design for Matrix Solve Time.

Figure 6.5: ANOVA results for 2k factor design for Total Simulation Time.

6.2.3 Summary of the 2k Factor Analysis

 As seen from the F-variates of the analysis, matrix size has the largest impact on

matrix load time, matrix solve time and the total simulation time as it is 97.42%, 99.99%,

and 98.22% significant respectively. The average equation size has minimal impact on

the matrix load time. The dependence on average equation size is an expected behavior

 75

due to the recursive traversal of the equation tree. However, the dependence is very low.

It has almost no impact on the matrix solve time. Note that the total variation for total

simulation time response is 1542174 + 27881 = 1570055. Thus, the variation of matrix

size as a percent of total variation is 98.23%, whereas average equation size variation is

only 1.77%. Since change in the average equation size has almost no affect on simulation

time changes, we need not consider this factor further.

6.3 Analysis of the Overhead of the Data Structure

The new data structure and the reduction algorithm were implemented in

SIERRA2, a compiled mixed-signal simulator developed at the University of Cincinnati.

This section describes the tests that were conducted to measure the overhead introduced

with the use of the new data structure.

We compare the relevant test data obtained from SIERRA2 with the respective

data obtained from a previous compiled, mixed-signal simulator called SIERRA

developed at the University of Cincinnati. The test environment for the same is shown in

Figure 6.6.

Model
Generator

Simulation
using

VHDL-AMS
models

 SIERRA
Output

Data Results file
Analysis +

Timings file Simulation
using

SIERRA2 Comparison
and

Conclusions

Figure 6.6: Test environment for evaluating the overhead of the new data structure.

 76

The overhead incurred as a result of the introduction of the new data structure can be

summarized as follows-

• Intermediate Code (I.C.) Size – Intermediate Code, which results in the creation

of a dynamic equation tree, uses high-level language constructs. This is expected

to consume more memory in bytes when compared to the previous approach of

publishing the equation itself.

• Elaboration Time – The equation tree is actually created at run-time during the

elaboration phase of the analog kernel. This introduces an overhead in the

elaboration time in the new methodology.

• Matrix Load Time – The recursive traversal of the equation tree during the matrix

load is expected to be more time consuming than the previous approach. We

analyze the overhead introduced in the matrix load phase as a result of the new

data structure.

• Run-time memory requirement – Since the new elaboration methodology involves

the creation of dynamic equation trees, we have a greater run-time memory usage.

We present an analysis of the additional run-time memory used.

6.3.1 Model Description

 The models used for this set of simulations were again generated using the model

generator described in the previous section. The circuit shown in Figure 6.7 representing

a network of resistors with 13 unknowns is taken as the base model. Multiple instances of

the base circuit give us models of higher matrix sizes. Since SIERRA only accepts

simultaneous statements of the form “y = = rhs”, we generate models in the respective

 77

 78

format. The same model description is used as the input to both the simulators. Each

model was simulated five times. The maximum variance for the data collected was 0.6%.

Therefore, we have used average values in the plots provided below.

Figure 6.7: A network of resistors model (Model 1).

6.3.2 Results

 This section presents the results obtained from the tests run on SIERRA and

SIERRA2 to analyze the overhead introduced with the use of the new data structure.

Intermediate Code size:

 Figure 6.8 shows a linear increase in the additional bytes of memory required as

the matrix size increases. The plot shows the difference in the bytes of memory required

by SIERRA and SIERRA2. As expected, SIERRA2 requires additional amount of

memory in the Intermediate Code to have instructions which create the equation tree.

Increase in Intermediate Code size

0

20000

40000

60000

80000

100000

120000

13 65 11
7

16
9

22
1

27
3

32
5

37
7

Matrix size

Di
ffe

re
nc

e
in

 I.
C.

 s
iz

e
(b

yt
es

)

Difference (SIERRA2 -
SIERRA) in Bytes

Figure 6.8: Overhead in Intermediate Code size as matrix size increases.

Elaboration Time:

 Figure 6.9 shows an increase in the elaboration time as matrix size increases.

With increasing size of matrix, we have more constructs to be elaborated, hence the

greater elaboration time. We also observe that the elaboration time in SIERRA2 is greater

than the elaboration time in SIERRA.

 The percentage increase in the elaboration time is shown in Figure 6.10. It is

observed that the percentage increase in the elaboration time varies from about 127% to

145% as matrix size is varied from 39 to 403. The plot also seems to indicate that

elaboration time increases by a particular factor. This is because of the combination of

two reasons-

 79

Comparison of Elaboration Times (SIERRA vs SIERRA2)

0

0.005

0.01

0.015

0.02

0.025

0.03

13 39 65 91 11
7

14
3

16
9

19
5

22
1

24
7

27
3

29
9

32
5

35
1

37
7

40
3

Matrix size

El
ab

or
at

io
n

Ti
m

e
(s

)

Elaboration Time - SIERRA

Elaboration Time - SIERRA2

Figure 6.9: Comparison of Elaboration Time (SIERRA vs. SIERRA2).

• SIERRA2 involves the creation of dynamic equations trees during elaboration

which increases the elaboration time for a particular matrix size.

• Changes in processes like class structure between SIERRA and SIERRA2 effects

a factor of times increase in the elaboration time. This is more evident because of

the low absolute values of elaboration time.

 80

Percentage increase in Elaboration Time
(S2-S1)/S1*100

0

20

40

60

80

100

120

140

160

39 65 91 117 143 169 195 221 247 273 299 325 351 377 403

Matrix Size

Pe
rc

en
ta

ge
 In

cr
ea

se

Percentage increase

Figure 6.10: Percentage increase in Elaboration Time (SIERRA vs. SIERRA2).

Matrix Load Time:

 We observe from Figure 6.11 that matrix load time in SIERRA2 is greater than

the matrix load time for SIERRA. This is because of two reasons-

• SIERRA2 involves the recursive traversal of the equation trees for each iteration.

SIERRA, however just calls a function describing an equation in the published

I.C. to load the matrix.

• SIERRA2 has a provision to solve generalized equations of the form

“lhs = = rhs”, whereas SIERRA can only solve equations of the form “y = =

rhs”, where lhs and rhs are expressions and y is a quantity. There is an additional

 81

cost in the matrix load operation due to the scope provided for loading the

generalized equations.

Comparison of Matrix Load Times for 610 iterations of matrix
load

0

5

10

15

20

25

30

35

40

45

50

13 39 65 91 11
7

14
3

16
9

19
5

22
1

24
7

27
3

29
9

32
5

35
1

37
7

40
3

Matrix Size

M
at

rix
 L

oa
d

Ti
m

e
(s

)

Matrix Load Time - SIERRA

Matrix Load Time - SIERRA2

Figure 6.11: Comparison of Matrix Load Time (SIERRA vs. SIERRA2).

Figure 6.12 shows the percentage increase in the matrix load time as the matrix

size increases. It is observed that the percentage increase in the matrix load time

decreases as the matrix size increases. This indicates that as the matrix size increases, the

recursive traversal of the equation tree is not the dominant factor in the matrix load time.

This is a positive point as it indicates a reduced overhead with increasing matrix size.

 82

Percentage Increase in Matrix Load Time
(S2-S1)/S1*100

0
20
40
60
80

100
120
140

13 39 65 91 11
7

14
3

16
9

19
5

22
1

24
7

27
3

29
9

32
5

35
1

37
7

40
3

Matrix Size

Pe
rc

en
ta

ge
 In

cr
ea

se

Percentage Increase

Figure 6.12: Percentage increase in Matrix Load Time (SIERRA vs. SIERRA2).

Run-time memory requirement:

 The new approach involves the creation of equation trees during run-time for all

the CEs occurring in the continuous time domain. This adds to the run-time memory

requirement of the application. In this section, we present an analysis of the memory

requirement of the new data structure.

Let,

pi ← number of operands equation ‘i’.

ri ← number of operators in equation ‘i’.

n ← total number of explicit equations in the system.

Si ← total number of nodes in the Characteristic Expression for equation ‘i’.

 83

then,

 Si = pi + ri + 1 (the additional node is for the ‘-‘ in the CE)

The kernel uses the objects of the “equationNode” class to create operator and operand

nodes. All our simulations have been run on a Sun Sparc machine on which

 Sizeof (equationNode) = 36 bytes

 Sizeof (equationNode *) = 4 bytes

Since equation trees are created dynamically, we have memory space allocated for the

object as well as the pointers used to alias the object.

Therefore,

 Additional memory required for equation ‘i’ = [(pi + ri + 1)*36 + (xi)*4]

where, xi is the number of pointers aliasing to the root of the equation tree. It is a

constant for any equation.

Therefore,

 Total additional run-time memory required = 36 * + 4 * ∑ ∑
=

++
n

i
ip

1
i) r 1(

=

n

i
x

1
i

It should be noted that both the terms in the above equation are of the O(n). Thus the

memory requirements for the data structure scale linearly with increasing matrix size.

6.3.3 Summary of the Data Structure Overhead Analysis

 We conclude that the new data structure introduces an overhead in the elaboration

time, matrix load time and the run-time memory requirement. The matrix solve time is

not dependent on the data structure and hence it is not analyzed. The overhead in the size

of the published Intermediate Code in form of additional bytes is not a concern in current

day computers. We hope that the reduction approach implemented as a result of the

 84

introduction of the new data structure would give us enough performance improvement to

substantiate the overhead incurred in the simulation time.

6.4 Analysis of the Performance of the Data Structure

The test environment for evaluating the performance of the data structure is

shown in Figure 6.13. An example reduction algorithm which makes use of the new data

structure has been presented in Section 5.1.2. The models are simulated using a

command-line switch to include or not include the reduction algorithm during execution.

The simulator has embedded code to time the various stages of simulation. This timing

information is output by the simulator along with the results file. In this section, we

present the data obtained from the above described analysis.

6.4.1 Model Description:

Three different circuit models have been used to analyze the performance of the

optimization algorithm. The first model is the network of resistors circuit driven by a

time-varying source as shown in Figure 6.7. The second circuit used to validate the

Model
Generator

Simulation
w/o reduction

algorithm
VHDL-AMS

models

Output
Data Results file

Analysis +
Simulation Timings file

with
reduction
algorithm Comparison

and
Conclusions

Figure 6.13: Test environment for evaluating the reduction algorithm.

 85

performance of the optimization algorithm is the phono pre-amplifier circuit shown in

Figure 6.14. The third model is that of an active high-pass filter as shown in Figure 6.15.

The model generator is responsible for generating models of increasing matrix size. In

order to compare the various performance metrics of the simulator for increasing matrix

sizes, we keep the reduction factor of a particular model constant. In other words, a

constant percentage of CEs are reduced for all matrix sizes. Since equations of the form

“y = = rhs” are reduced, we generate a constant percentage of simultaneous statements

in the particular form.

AC

Rsrc L1

gain
Rin

Ra

R1

C1

Ca

Figure 6.14: A phono pre-amplifier circuit (Model 2).

AC

R1

C1 C2

R2

Figure 6.15: Active high-pass filter circuit (Model 3).

 86

6.4.2 Results

 In this section, we present the plots to illustrate the effectiveness of the reduction

algorithm. The results presented below were obtained with a simulation time of 1µs. We

analyze the important performance metrics of the simulator.

I. Results for Model 1

The results obtained from the network of resistors model shown in Figure 6.7 are

presented below. Three unknowns were reduced from a total of 13 unknowns in the base

model. Thus, the reduction factor for the model is maintained 23%.

Non-IO Simulation Time:

 Figure 6.16 shows that we have indeed achieved a reduction in the Non-IO

simulation time for models of various matrix sizes. Figure 6.17 shows an increasing

percentage improvement in the Non-IO simulation time. Table 6.1 shows the confidence

intervals for the difference of the means of the Non-IO simulation time in the normal and

optimized modes. It must be noted that the intervals do not include zero at 99%

confidence level and thus, for all ‘n’, percentage improvement is non-zero (e.g., real

differences occur at 99% confidence).

 It must be noted that the improvement in Non-IO simulation time is mainly due to

the reduced matrix load and solve times after optimization. At higher matrix sizes, we

have greater percentage improvement since for a constant reduction factor, there is a

greater gain at higher matrix sizes.

 87

Comparison of Non-IO Simulation Time (w/ and w/o optimization)

0

100

200

300

400

500

600

13 39 65 91 117 143 169 195 221 247 273 299 325 351 377 403
Matrix Size

N
on

-IO
 S

im
ul

at
io

n
Ti

m
e

(s
)

Non-IO Simulation Time (Normal)
Non-IO Simulation Time (Optimized)

 Figure 6.16: Comparison of Non-IO Simulation Time for Normal and Optimized modes.

Percentage Improvement in Non-IO Simulation Time
(w/ and w/o optimization)

0

5

10

15

20

25

13 39 65 91 117 143 169 195 221 247 273 299 325 351 377 403

Matrix Size, n

P
er

ce
nt

ag
e

Im
pr

ov
em

en
t (

%
)

Percentage Improvement (%)

Figure 6.17: Percentage improvement in Non-IO Simulation Time.

 88

Matrix
Size

Mean Difference
of Non-IO

Simulation Time
Confidence Interval

for the Mean
Confidence

Level %
13 2.039 (1.958,2.119) 99
39 6.609 (6.548,6.670) 99
65 10.951 (10.483,11.418) 99
91 17.378 (17.085,17.669) 99
117 21.046 (20.906,21.185) 99
143 35.463 (34.909,36.016) 99
169 38.684 (38.184,39.184) 99
195 41.225 (40.827,41.623) 99
221 43.536 (42.597,44.474) 99
247 49.584 (49.317,49.850) 99
273 65.022 (63.904,66.140) 99
299 79.825 (79.458,80.191) 99
325 86.093 (85.708,86.477) 99
351 82.074 (81.111,83.037) 99
377 103.244 (100.310,106.176) 99
403 125.252 (121.451,129.052) 99

Table 6.1: Confidence Interval for mean difference of the Non-IO Simulation Time.

Matrix Load Time:

The data collected shows that matrix load time constitutes a very large percentage

of the total simulation time. Figure 6.18 shows the absolute improvement achieved in the

matrix load time as matrix size increases.

It is observed that the matrix load time after the application of the optimization

algorithm is always less than the matrix load time without the optimization algorithm.

This proves our initial assumption that the size of the elaborated set of CEs has a definite

influence on the time spent in the matrix load phase of the simulator. Figure 6.19 shows a

plot of the percentage improvement in matrix load time with increasing matrix size. The

percentage improvement is higher at a greater matrix size due to the effect of constant

reduction factor. Keeping the reduction factor constant implies that the higher order

matrices are reduced by a greater number of unknowns. The plot proves that we have

achieved a reduction in matrix load time by reducing the elaborated set of CEs.

 89

Figure 6.18: Comparison of Matrix Load Time for Normal and Optimized modes.

Comparison of Matrix Load Times (w/ and w/o optimization)

0

50

100

150

200

250

300

350

400

450

500

13 39 65 91 117 143 169 195 221 247 273 299 325 351 377 403

Matrix size

M
at

ri
x

Lo
ad

 T
im

e
(s

)

Matrix Load Time (Normal)
Matrix Load Time (Optimized)

Percentage Improvement in Matrix Load Time
 (w/ and w/o optimization)

0

5

10

15

20

25

13 39 65 91 117 143 169 195 221 247 273 299 325 351 377 403

Matrix Size

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t (
%

)

Percentage Improvement

Figure 6.19: Percentage improvement in Matrix Load time.

 90

Table 6.2 shows the confidence intervals for the difference of the means of matrix

load time in the normal and optimized modes. Again, the intervals do not include zero at

99% confidence level and thus, for all ‘n’, percentage improvement is non-zero. In other

words, real differences occur at 99% confidence.

Matrix
Size

Mean Difference
of Matrix Load

Time
Confidence Interval

for the Mean
Confidence

Level %
13 1.887 (1.807,1.966) 99
39 6.114 (6.031,6.196) 99
65 9.781 (9.306,10.256) 99
91 15.570 (15.259,15.881) 99
117 18.180 (18.032,18.327) 99
143 29.911 (29.311,30.511) 99
169 30.382 (29.921,30.841) 99
195 34.350 (33.974,34.725) 99
221 37.152 (36.201,38.103) 99
247 42.609 (42.327,42.890) 99
273 54.291 (53.131,55.449) 99
299 59.882 (59.560,60.203) 99
325 65.073 (64.652,65.494) 99
351 65.785 (64.668,66.901) 99
377 82.748 (79.736,85.759) 99
403 92.748 (88.909,96.585) 99

Table 6.2: Confidence Interval for mean difference of the Matrix Load Time.

Matrix Solve Time:

Figure 6.20 compares the matrix solve times in the optimized and non-optimized

(normal) simulators. It is seen that the matrix solve time is consistently lower for the

optimized approach when compared to the un-optimized approach. This speaks in favor

of a reduction algorithm, and supports our initial assumption that a one time reduction

would give us a performance advantage since the matrix solve phase is iterative.

Figure 6.21 shows the percentage improvement in matrix solve time as the matrix

size increases. We observe a greater percentage improvement at higher matrix size due to

 91

the constant reduction factor. Table 6.3 shows the confidence intervals for the difference

of the means of matrix solve times for the normal and optimized modes of the simulator.

The data shows a confidence level of 99% that the difference is significant.

Comparison of Matrix Solve Time (w/ and w/o optimization)

0

5

10

15

20

25

30

35

13 39 65 91 117 143 169 195 221 247 273 299 325 351 377 403

Matrix Size

M
at

ri
x

S
ol

ve
 T

im
es

Matrix Solve Time (Normal)
Matrix Solve Time (Optimized)

Figure 6.20: Comparison of matrix solve times for the normal and optimized modes.

Matrix

Size

Mean Difference
of Matrix Solve

Time
Confidence Interval

for the Mean
Confidence

Level %
13 0.051 (0.048,0.054) 99
39 0.181 (0.171,0.190) 99
65 0.457 (0.447,0.466) 99
91 0.740 (0.698,0.781) 99
117 1.148 (1.094,1.200) 99
143 2.132 (2.117,2.147) 99
169 2.985 (2.927,3.041) 99
195 2.981 (2.909,3.052) 99
221 2.749 (2.680,2.817) 99
247 3.219 (3.137,3.301) 99
273 4.811 (4.716,4.904) 99
299 5.857 (5.761,5.952) 99
325 6.275 (6.125,6.423) 99
351 7.279 (7.109,7.447) 99
377 9.361 (9.207,9.514) 99
403 10.860 (14.743,14.977) 99

Table 6.3: Confidence Interval for mean difference of the Matrix Solve Time.

 92

Percentage Improvement in Matrix Solve Time
(w/ and w/o optimization)

0

5

10

15

20

25

30

35

40

45

13 39 65 91 117 143 169 195 221 247 273 299 325 351 377 403

Matrix Size

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

Percentage Improvement (%)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

O
pt

im
iz

at
io

n
Ti

m
e

(s
)

Figure 6.21: Percentage improvement in Matrix Solve time.
Optimization Time vs Problem Size

13 39 65 91 117 143 169 195 221 247 273 299 325 351 377 403

Matrix Size Optimization Time (s)

93
Figure 6.22: Optimization Time as a function of matrix size.

Optimization Time:

 It is observed from Figure 6.22 that the time consumed by the optimization

algorithm increases with the increase in matrix size. However, since the percentage

contribution of the optimization time to the total simulation time is very low, we obtain

performance improvement with the use of the reduction algorithm.

II. Results for Model 2

The results obtained from the phono pre-amplifier model shown in Figure 6.14

are presented below. Four unknowns were reduced from a total of 17 unknowns in the

base model. Thus, the reduction factor for the model is maintained 23.5%.

Non-IO Simulation Time:

 Figure 6.23 shows that the optimization algorithm has resulted in a lower value

for the Non-IO simulation time for all the matrix sizes considered.

Non-IO Simulation Time vs. Matrix Size

0

100

200

300

400

500

600

68 136 204 272 340 408
Matrix Size, n

N
on

-IO
 S

im
ul

at
io

n
Ti

m
e

(s
)

Non-IO Simulation Time (Normal)

Non-IO Simulation Time (Optimized)

 94
Figure 6.23: Comparison of Non-IO Simulation Time (model 2).

 We observe from Figure 6.24 that the percentage improvement in the Non-IO

simulation time increases as the matrix size increases. As pointed out for Model 1, this is

due to the constant reduction factor. Reducing the matrix size by a constant percentage,

results in increased gains at higher matrix sizes.

Percentage improvement in Non-IO Simulation Time

0

5

10

15

20

25

68 136 204 272 340 408

Matrix Size, n

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t (
%

)

Percentage improvement in
Non-IO Simulation Time

 Figure 6.24: Percentage improvement in Non-IO Simulation time (model 2).

Matrix Size

Mean Difference
of Non-IO

Simulation Time
Confidence Interval for

the Mean
Confidence

Level %
68 10.84912 (10.674,10.916) 99
136 26.623368 (26.294,26.750) 99
204 44.14764 (43.119,44.546) 99
272 63.39334 (63.247,63.449) 99
340 91.69692 (90.609,92.118) 99
408 117.3832 (116.729,117.636) 99

Table 6.4: Confidence Interval for mean difference of the Non-IO Simulation Time (model 2).

 95

 Table 6.4 shows the confidence intervals for the difference of the means of Non-

IO simulation time in the normal and optimized modes. Since the intervals do not include

zero at 99% confidence level, we can state that for all matrix sizes percentage

improvement is non-zero.

Matrix Load Time:

 We observe from Figure 6.25 that the matrix load time is lower when the

optimization algorithm is used. The gains in matrix load time contribute towards the gain

in the Non-IO simulation time.

 Figure 6.26 shows the percentage improvement in matrix load time as a function

of the matrix size. We observe an increasing percentage improvement due to the constant

reduction factor.

Matrix Load Time vs. Matrix size

0

50

100

150

200

250

300

350

400

450

500

68 136 204 272 340 408

Matrix Size, n

M
at

rix
 L

oa
d

Ti
m

e
(s

)

Matrix Load Time (Normal)

Matrix Load Time (Optimized)

Figure 6.25: Comparison of Matrix Load Time (model 2).

 96

Percentage improvement in Matrix Load Time

15.5

16

16.5

17

17.5

18

18.5

19

68 136 204 272 340 408

Matrix Size, n

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t (
%

)

Percentage increase in
Matrix Load Time

 Figure 6.26: Percentage improvement in Matrix Load Time (model 2).

Table 6.5 shows the confidence intervals for the difference of the means of matrix

load time in the normal and optimized modes. We observe that a non-zero improvement

has been achieved for all ‘n’ at 99% confidence level.

Matrix Size

Mean Difference
of Matrix Load

Time
Confidence Interval for

the Mean
Confidence

Level %
68 9.52824 (9.384,9.671) 99
136 21.77792 (21.450,22.104) 99
204 35.7744 (34.689,36.859) 99
272 50.5896 (49.483,51.695) 99
340 65.3204 (64.856,65.784) 99
408 81.5954 (80.953,82.237) 99

 Table 6.5: Confidence Interval for mean difference of the Matrix Load Time (model 2).

 97

Matrix Solve Time:

In Figure 6.27, we observe a lower matrix solve time with the use of the

optimization algorithm. This proves that lower matrix solve times can be achieved by the

reduction of the matrix size. Based on Table 6.6, we can state that we have achieved a

real improvement in matrix solve time at 99% confidence level as a result of the

optimization algorithm.

Matrix Solve Time vs. Matrix Size

0

10

20

30

40

50

60

68 136 204 272 340 408

Matrix Size, n

M
at

ri
x

So
lv

e
Ti

m
e

(s
)

Matrix Solve Time (Normal)
Matrix Solve Time (Optimized)

Matrix Size

Mean Difference
of Matrix Solve

Time
Confidence Interval for

the Mean
Confidence

Level %
68 0.520592 (0.456 ,0.584) 99
136 2.083972 (2.035 ,2.132) 99
204 3.7182 (3.664 ,3.771) 99
272 6.12202 (6.008 ,6.235) 99
340 13.06304 (12.961 ,13.164) 99
408 15.6625 (5.481 ,15.843) 99

Figure 6.27: Comparison of Matrix Solve Time (model 2).

Table 6.6: Confidence Interval for mean difference of the Matrix Solve Time (model 2).

 98

Percentage improvement in Matrix Solve Time

0

5

10

15

20

25

30

35

40

68 136 204 272 340 408

Matrix Size, n

P
er

ce
nt

ag
e

im
pr

ov
em

en
t (

%
)

Percentage improvement in
Matrix Solve Time

 Figure 6.28: Percentage improvement in Matrix Solve Time (model 2).

 Figure 6.28 shows that the percentage improvement in matrix solve time increases

with increase in matrix size. There is a 24% improvement in matrix solve time for a

matrix size of 68 and a 32% improvement for a matrix size of 408. The increase in the

percentage improvement is because of the constant reduction factor.

Optimization Time:

 It is observed from Figure 6.29 that the time consumed by the optimization

algorithm increases with the increase in matrix size. As discussed in the following

section, the data obtained from the simulations indicate that the percentage contribution

of the optimization time to the total simulation time is very low. Thus it does not

constitute a major overhead in the total simulation time.

 99

Optimization Time vs. Matrix Size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

68 136 204 272 340 408

Matrix Size, n

O
pt

im
iz

at
io

n
Ti

m
e

(s
)

Optimization Time

Figure 6.29: Optimization time as a function of matrix size (model 2).

III. Results for Model 3

The results obtained from the active high-pass filter model shown in Figure 6.15

are presented below. Two unknowns were reduced from a total of 16 unknowns in the

base model. Thus, the reduction factor for the model is maintained 12.5%.

Non-IO Simulation Time:

 Figure 6.30 shows that the optimization algorithm results in a reduction of the

Non-IO simulation time for all the matrix sizes considered. We observe from Figure 6.31

that the improvement achieved as a result of optimization is greater at higher matrix

sizes. This is because of the constant reduction factor as discussed earlier.

 100

Non-IO Simulation Time vs. Matrix Size

0

100

200

300

400

500

600

48 112 176 240 304 368

Matrix Size, n

N
on

-IO
 S

im
ul

at
io

n
Ti

m
e

(s
)

Non-IO Simulation Time (Normal)
Non-IO Simulation Time (Optimized)

 Figure 6.30: Comparison of Non-IO Simulation time (model 3).

Percentage improvement in Non-IO Simulation Time

0

2

4

6

8

10

12

14

16

18

48 112 176 240 304 368

Matrix Size, n

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t (
%

)

Percentage improvement in
Non-IO Simulation Time

 Figure 6.31: Percentage improvement in Non-IO Simulation Time (model 3).

 101

Matrix Size

Mean Difference
of Non-IO

Simulation Time

Confidence
Interval for the

Mean
Confidence

Level %
48 4.140994 (4.062,4.219) 99
112 10.677854 (9.920,11.435) 99
176 17.31874 (16.294,18.342) 99
240 27.34398 (26.877,27.810) 99
304 44.35556 (43.433,45.277) 99
368 77.94372 (77.404,78.483) 99

 Table 6.7: Confidence Interval for mean difference of the Non-IO simulation time (model 3).

Table 6.7 shows the confidence intervals for the difference of means for varying

matrix sizes. It gives us a statistical proof that the optimization algorithm results in real,

non-zero improvement of the Non-IO simulation time.

Matrix Load Time:

We observe from Figure 6.32 that the optimization algorithm causes considerable

reduction in the matrix load time as a result of the reduction in the size of the matrix to be

loaded. Table 6.8 further proves that the improvements seen in matrix load time as a

result of optimization are non-zero for all matrix sizes at 99% confidence level.

Figure 6.33 shows the percentage improvements achieved in the matrix load time.

We observe that the percentage improvement in matrix load time increases from 9.3% to

14.2% as the matrix size increases from 48 to 368. This increase is attributed to the

constant reduction factor in the models as matrix size increases. Since there is a greater

effect of a constant percentage decrease in matrix size at higher matrix sizes, we find

greater percentage improvements in matrix load time. Since matrix load time dominates

the total simulation time, we find similar increases in percentage improvement in the

Non-IO simulation time plot presented earlier.

 102

Matrix Load Time vs. Matrix Size

0

50

100

150

200

250

300

350

400

450

48 112 176 240 304 368

Matrix Size, n

M
at

rix
 L

oa
d

Ti
m

e
(s

)

Matrix Load Time (Normal)

Matrix Load Time (Optimized)

 Figure 6.32: Comparison of Matrix Load Time (model 3).

Percentage improvement in Matrix Load Time

0

2

4

6

8

10

12

14

16

48 112 176 240 304 368

Matrix Size, n

P
er

ce
nt

ag
e

im
pr

ov
em

en
t (

%
)

Percentage improvement in
Matrix Load Time

 Figure 6.33: Percentage improvement in Matrix Load Time (model 3).

 103

Matrix Size

Mean Difference
of Matrix Load

Time

Confidence
Interval for the

Mean
Confidence

Level %
48 3.7484 (3.657,3.839) 99
112 8.83438 (8.036,9.631) 99
176 14.5632 (13.505,15.620) 99
240 19.651 (19.273,20.028) 99
304 31.5326 (30.583,32.481) 99
368 57.7214 (57.280,58.162) 99

Table 6.8: Confidence Interval for mean difference of the Matrix Load Time (model 3).

Matrix Solve Time:

Figure 6.34 compares the matrix solve time with and without the application of

the reduction algorithm. We observe a definite reduction in the matrix solve time with the

use of the reduction algorithm. This is further verified in Table 6.9 which shows that at

99% confidence level, there exist real, non-zero differences between the means for the

normal and optimized modes.

Matrix Solve Time vs. Matrix Size

0

5

10

15

20

25

30

35

40

48 112 176 240 304 368

Matrix Size, n

M
at

rix
 S

ol
ve

 T
im

e
(s

)

Matrix Solve Time (Normal)
Matrix Solve Time (Optimized)

Figure 6.34: Comparison of Matrix Solve Time (model 3).

 104

Percentage improvement in Matrix Solve Time

0

5

10

15

20

25

30

48 112 176 240 304 368

Matrix Size, n

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t (
%

)

Percentage improvement in
Matrix Solve Time

 Figure 6.35: Percentage improvement in Matrix Solve Time (model 3).

Matrix Size

Mean Difference
of Matrix Solve

Time

Confidence
Interval for the

Mean
Confidence

Level %
48 0.14764 (0.138,0.156) 99
112 0.805648 (0.779,0.831) 99
176 1.306636 (1.254,1.358) 99
240 3.68118 (3.579,3.782) 99
304 6.14936 (6.110,6.187) 99
368 10.29806 (10.224,10.371) 99

Table 6.9: Confidence Interval for mean difference of the Matrix Solve Time (model 3).

We observe from Figure 6.35 that percentage improvement in matrix solve time

increases with increasing matrix size. This is because, at higher matrix sizes, we have a

greater gain in matrix solve time with the same percentage reduction factor.

 105

Optimization Time:

 It is observed from Figure 6.36 that the time consumed by the optimization

algorithm increases with the increase in matrix size. The data obtained from the

simulations indicate that the percentage contribution of the optimization time to the total

simulation time is very low. Thus it does not constitute a major overhead in the total

simulation time.

Optimization Time vs. matrix size

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

48 112 176 240 304 368

Matrix Size, n

O
pt

im
iz

at
io

n
Ti

m
e

(s
)

Optimization Time

6.4.3 Sum

 We

the use of re

set of CEs.

as well as th

Figure 6.36: Optimization time as a function of matrix size (model 3).
mary of the Performance of the Data Structure

conclude that an improvement in the simulation time is indeed possible with

duction algorithms applied on the new data structure to reduce the elaborated

This performance improvement is a result of a decrease in matrix load time,

e matrix solve time of the simulation kernel.

106

6.5 Contribution of the various phases of Simulation

In this section, we present pie-charts and plots to show the contribution of the

reduction algorithm to the total simulation time. We also illustrate the percentage of time

spent by the simulator in the different phases of simulation to prove the domination of the

matrix load phase of simulation.

Percentage contribution of the various phases of simulation
 (Matrix Size = 143)

86.386%

2.691%

5.956%
4.925%

0.007%
0.036%

ElaborationTime
OptimizationTime

MatrixLoadTime
MatrixSolveTime
IOTime

Other

simul

that t

134.2

the ke

the o

Figure 6.37: Percentage contribution of various phases of simulation kernel

(matrix size = 143).
Figure 6.37 shows the percentage contribution of the various phases of the

ation kernel for a matrix size of 143 and a simulation time of 1 µs. It is observed

he reduction algorithm contributes only 0.036% of the total simulation time of

14 seconds. Figure 6.38 shows the percentage contributions of the various phases of

rnel for a matrix size of 299 and a simulation time of 1 µs. We observe again that

ptimization algorithm has a very low contribution to the total simulation time of

107

303.792 seconds. It is also observed that as the matrix size increases, the contribution of

the matrix load phase of the kernel reduces from 86.386% to 83.405%. This is due to an

increased contribution of the matrix solve phase and the IO phase of the kernel.

Percentage contribution of the various phases of simulation
(Matrix Size = 299)

83.405%

3.810%

6.274%

0.006%

6.437% 0.067%

ElaborationTime

OptimizationTime

MatrixLoadTime

MatrixSolveTime

IOTime

Other

as the

from

secon

simul

phase

Figure 6.38: Percentage contribution of various phases of simulation kernel

(matrix size = 299).
Figure 6.39 shows the percentage contribution of the matrix load and solve times

 internal simulation time of the model is increased. The simulation time was varied

0.1 µs to 0.1 ms leading to a change in wall-clock simulation time from 4.265

ds to 4191.2 seconds for a model of matrix size 39. It is observed that as the

ation time increases, there is a slight decrease in the contribution of the matrix load

 of the kernel. The percentage contribution of the matrix solve phase remains almost

108

a constant around 2.1%. The decrease in the percentage contribution of matrix load time

is because of an increase in the IO time as the simulation time increases.

Percentage contribution of matrix load and matrix solve phases

0

10

20

30

40

50

60

70

80

90

100

1.00E-07 5.00E-07 1.00E-06 5.00E-06 1.00E-05 5.00E-05 1.00E-04

Simulation Time (s)

Pe
rc

en
ta

ge
 c

on
tri

bu
tio

n
(%

)

Matrix Load
Matrix Solve

 Figure 6.39: Percentage contribution of matrix load and matrix solve phases with
increasing internal simulation time.

6.6 Summary of Results

The following is a summary of the results obtained -

• Reduction of the elaborated set of CEs has been shown to be possible with our

new information structure.

 109

• Substitution as a method of reduction achieved an improvement in the total

simulation time for non-conserved systems.

• Analysis of the non-I/O simulation time is more appropriate than the total

simulation time when reduction algorithms are applied.

• The reduction in the elaborated set of CEs leads to a reduction in the matrix load

time and the matrix solve time.

• The optimization algorithm contributes a very small percentage of the total

simulation time in general and more so at higher problem sizes.

 110

Chapter 7

Conclusions and Future Work

7.1 Summary of Conclusions

This research aimed at improving the performance of compile-driven mixed-

signal simulators. Our focus was on improving the performance of the analog kernel of

the mixed-signal simulator. The strategy was to improve the matrix build and solve times

of the analog kernel. The current approaches showed that optimization of the elaborated

set of characteristic expressions could lead to an improvement of the matrix build and

solve times, and hence the total simulation time. However the internal data structure for

the simple simultaneous statements did not allow for the modification or reduction of

characteristic expressions or sets of characteristic expressions. A new data structure has

been designed and implemented for the simple simultaneous statements and an

information structure (S3IS) has been designed to support the dynamic elaboration

methodology.

Additionally, we have demonstrated a proof of concept for the design by

implementing a reduction algorithm which showed performance improvements. Below

 111

we summarize the contributions of this research against the objectives set forth in Section

1.2.

• This thesis has successfully documented the design and implementation of a data

structure for simple simultaneous statements, which allows run-time modification

of the characteristic expression.

• The design has been implemented in a compiled, mixed-signal simulator with

Intermediate Code in C++.

• The information structure has been shown to allow the matrix load operation both

by design and implementation.

• The S3IS information structure supports a dynamic elaboration strategy which

separates the elaboration phase from the matrix load phase, thus enabling a run-

time reduction of the elaborated set of characteristic expressions.

• In addition, this document also presents the design and implementation of a

reduction algorithm based on substitution for non-conserved systems. The

experimental results validate the design of our information structure, and also

show performance improvement for smaller problem sizes.

7.2 Future Work

Some directions and suggestions for future work are presented below:

• More complex reduction algorithms may be explored to improve the performance

of the mixed-signal simulator. Since the optimization phase of our algorithm

contributes very minimally to the total simulation time, we can afford to design

and implement more complex reduction algorithms.

 112

• Another suggestion related to the above is the use of graph theory and algorithms

to reduce the elaborated set of ODAEs.

• Modify the implementation of the numerical method of integration of the

simulator so as to allow the reduction of differential quantities in the simultaneous

statements.

• Extend the design of the S3IS to include user defined functions.

 113

Bibliography

[1] Kettenis, D. L. An algorithm for parallel combined continuous and discrete-event

simulation. Simulation Practice and Theory (May 1997), 167-184.

[2] Pandey, S. Improving performance of mixed-signal simulation by reducing equation-

set, Master’s thesis, University of Cincinnati, 2002.

[3] Agrawal, S Optimization approaches for analog kernel to speed-up VHDL-AMS

simulation, Master’s thesis, University of Cincinnati, 2002.

[4] Vlach, J. and Singhal, K. Computer Methods for Circuit Analysis and Design. Van

Nostrand Reinhold, New York, NY, 1994.

[5] Buchanan, James L. and Turner, Peter R. Numerical methods and analysis. McGraw-

Hill, Inc., 1992.

[6] Aho, A. V., Sethi R., and Ulman J. D., Compilers Principles Techniques and Tools.

Addison-Wesley, Reading, MA, 1986.

[7] Frey, P. Protocols for Optimistic Synchronization of Mixed-Mode Simulation. Ph.D.

dissertation, University of Cincinnati, 1998.

[8] Ashenden, P. J. The Designer’s Guide to VHDL. Morgan Kaufmann, 1995.

[9] Subramani, K. The Design of Parallel VHDL Simulation Kernel based on Time Warp,

Master’s thesis, University of Cincinnati, February 1998.

[10] IEEE Computer Society, IEEE Draft Standard VHDL-AMS Language Reference

Manual, (1 August), 1998.

 114

[11] Nellayappan, K. SEAMS: A Mixed-signal simulation environment for VHDL-AMS

with emphasis on run-time elaboration and analog design partitioning, Master’s thesis.

University of Cincinnati, 1998.

[12] Young-Hyun Jun; Song-Bai Park. KMIX: a mixed-mode simulator for analog/digital

circuits using event driven waveform relaxation method. Circuits and Systems, 1989,

IEEE International Symposium, 8-11 May 1989, pp. 877 – 880, vol.2.

[13] Subramanian, S. A Super nodal approach to the linear analog solver in a VHDL-

AMS system. Master’s thesis. University of Cincinnati, 2003.

[14] Geeta, B. Iterative Relaxation Algorithm: An efficient and improved method for

circuit simulation used in Sierra: VHDL-AMS simulator. Master’s thesis. University of

Cincinnati, 2002.

[15] Chetput, C.L. An analog kernel using the direct method for solving ordinary

algebraic differential equations in a mixed-mode simulator. Master’s thesis, University of

Cincinnati, 1997.

[16] Ashenden, Peter J., Peterson, Gregory D., and Teegarden, Darrel A. The System

Designer’s Guide to VHDL-AMS, Morgan Kaufmann Publishers, San Francisco,

September 2002.

[17] Manavalan, JKA. Performance Evaluation and Speed Improvement of the SEAMS

VHDL-AMS Simulator using Dynamic Adjustment of the Analog Simulation Interval.

Master’s thesis, University of Cincinnati, 1998.

[18] Antrim Design Systems, Inc. Advanced Techniques for the Simulation of Mixed-

Signal Integrated Circuits, 1999.

[19] Mayiladuthurai, R. S. Processing discontinuities and SPICE modeling in VHDL-

AMS. Master’s thesis, University of Cincinnati, 1998.

 115

[20] Lightner, M. Computer Aided Circuit Simulation. CRC Press, 1993.

[21] Shanmugasundaram, V. A Dynamic Multiple Solution Approach to Improve the

Efficiency of VHDL-AMS Simulation, Master’s thesis, University of Cincinnati, April

1998.

[22] Kundert, K. S. Sparse User’s Guide, University of California, Berkeley, 1998.

[23] Kundert, K. S. Sparse matrix techniques, In Circuit Analysis, Simulation and Design,

A. Ruehli, Ed. North-Holland, 1986.

[24] Willis, J., Wilsey, P.A., Peterson, G.D., Hines, J., Zamfirescu, A., Martin, D.A., and

Newschutz, R. Advanced intermediate representation with extensibility (AIRE). In

VHDL: Multidisciplinary Systems Design and Multimedia (Oct. 1996), VHDL

Internationa User’s Forum, pp. 33-39.

[25] Frey, P., Nellayappan, K., Mayiladuthurai, R. S., Chandrashekar, C. L., Carter H.

W., SEAMS: Simulation Environment for VHDL-AMS, In Proceedings of the 1998

Winter Simulation Conference, (1998), pp. 539-546.

[26] Ho, C. W., Ruehli, A. I., and Brennan, P. A., The modified nodal approach to

network analysis, IEEE Trans. On Circuits and Systems, 1975, Vol. CAS-22, No. 6, pp.

504-509.

[27] Venkataramani, H. Optimization of the elaborated set in a conserved system,

Research in progress, Distributed Processing Laboratory, University of Cincinnati, 2004.

[28] Wilsey, P. A., Martin, D.E., and Subramani, K., "SAVANT/TyVIS/WARPED:

Components for the Analysis and Simulation of VHDLT," VHDL Users' Group Spring

1998 Conference, 195-201, 1998.

 116

http://www.ececs.uc.edu/~paw/lab/papers/savant/viuf-sp98.ps.gz
http://www.ececs.uc.edu/~paw/lab/papers/savant/viuf-sp98.ps.gz

[29] Wilsey, P. A. TyVIS: A VHDL Simulation Kernel, 1999. (available on the www at

http://www.ececs.uc.edu/~paw/tyvis).

[30] Muchnick, S. S., Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers, San Francisco, California, 1997.

 117

http://www.ececs.uc.edu/~paw/tyvis

Appendix A

Complexity of the Optimization Algorithm

 To analyze the complexity of the optimization algorithm presented in Section

5.1.2, we model the time spent by the optimization algorithm in the sub-routine ‘reduce’.

The following parameters are used in this discussion-

1. Total number of characteristic expressions in the continuous-time system (n).

2. Average equation size as described in Section 6.2 (m).

The following are the constants used in the discussion-

1. Percentage of donor expressions (p).

2. Percentage of quantity nodes (average) in an acceptor expression (q).

3. Number of donor quantities in an acceptor expression (lav, lw).

The product of q and m gives us this value.

4. Percentage of characteristic expressions which contain the donor quantity (r).

5. Number of acceptor expressions which are walked to replace the donor quantity

(k). Therefore, k = r * n

The following are the times taken by various sub-routines discussed in Section 5.1.2-

1. Time taken to find a donor expression (Tfde): This is the time taken to check a CE

is fit to become a donor expression. This operation is repeated, traversing the list

of ‘n’ CEs to find a donor expression.

2. Time taken to test if the donor quantity exists in a acceptor expression (Ttdq): This

is the time taken in traversing the ‘l’ vector of quantities associated with a CE. We

need to perform this action for ‘n-1’ CEs.

3. Time taken to walk an equation tree and replace occurrences of the donor

quantity (Twalk): This is the time taken in walking an equation tree and replacing

‘l’ donor quantity nodes with a sub-tree of the donor equation tree. In total, we

walk ‘k’ such equation trees.

We present the average and worst case time taken by the optimization algorithm

for substituting ‘p*n’ donor expressions. In the average case,

Topt = p * n (
2
n * Tfde + (n-1) Ttdq + k Twalk)

where, Tfde is a constant, Ttdq is
2
q , and Twalk = m + lav(m-2). In the worst case,

Topt = p * n (n * Tfde + (n-1) Ttdq + k Twalk)

where, Tfde is a constant, Ttdq is q, and Twalk = m + lw(m-2).

 From the above two equations, we conclude that the average and the worst case

complexity of the optimization algorithm is O(n2).

	DATE: 27 September 2004
	NAME: Vinod Chamarty
	DEGREE: Master of Science
	DEPT: Computer Engineering
	TITLE1: Investigation of an Information Structure to support the
	TITLE2: elaboration of simultaneous statements in compile-driven
	TITLE3: mixed-signal simulation.
	TITLE4:
	CHAIR: Dr. Hal Carter
	COMM2: Dr. Philip Wilsey
	COMM3: Dr. Karen Tomko
	COMM4:
	COMM5:

