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Abstract 

 

The dissertation is to address the need, in contact mechanics, of efficient and 

effective solutions to certain 3-D contact problems. The solutions developed here 

are based on underlying analytical solutions to pyramidal loading elements. This 

feature, along with other characteristics, distinguishes this method from other 

numerical solutions. The research work is logically divided into three subsequent 

parts, each of which addresses a particular aspect of the project: 

 

(1) Developed analytical solution sets in closed form to pyramidal loading 

profiles. First, a set of Boussinesq-Curruti equations to linear/bilinear 

distribution of normal and tangential loading over a triangular area are 

derived and evaluated. Second, solution sets to normal and tangential 

surface loading pyramids are constructed. The work provides a solution 

set to a basic loading element, which is the foundation of the development 

of effective and efficient semi-analytical solutions to 3-D contact problems 

with general geometry and loading profile.  

 

(2) Developed a semi-analytical approach (non-incremental algorithm) to 3-D 

normal contact problems with friction. This approach treats normal 

contact (indentation) phenomenon as a static problem. Based on fully 



 

                                                                    

coupled governing equations, the algorithm of contact detecting and 

stick/slip partitioning is designed as nested iterations, to fulfill contact 

boundary conditions. The computation shows that it is an efficient 

algorithm. Numerical examples are presented to show the accuracy and 

efficiency of the method. 

 

(3) Developed a semi-analytical approach (incremental algorithm) to 3-D 

contact problems with friction. This approach treats contact as a dynamic 

problem. The general dynamic models are simplified into quasi-static 

models in many practical cases that inertial force can be ignored.  The 

incremental algorithm is designed to solve the quasi-static problems. The 

computation shows that the algorithm works very well for cases featuring 

both similar and dissimilar materials. Results are favorably compared 

with Mindlin’s analytical solution, Munisamy’s approach for 

axisymmetric contact subject to shear forces. Nowell’s analytical approach 

for 2-D case is used for comparison in an analogous manner.  

 

Computational practice shows that the semi-analytical approaches are efficient 

and robust, yielding very good results. They have wide range of potential 

applications. 
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Part I 

 

Introduction and Literature Review 

 

This part presents a thorough literature review concerning the dissertational 

research project. The literature review highlights the need for efficient and 

accurate solutions for general 3-D contact problems. 
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Chapter 1 

 Introduction 

 

The general problem of compliant bodies in contact with friction remains one of 

the most difficult areas in elastostatics.  The Boussinesq – Cerruti integral 

equations seem to provide a way to solve any 3-D contact problem. With the 

contact area known, and the required boundary conditions given, theoretically 

the solutions can be achieved by integrating these equations.  The solutions in 

closed form, however, are generally unavailable due to the following facts: (i) the 

normal and tangential surface tractions are fully coupled in Boussinesq – Cerruti 

integral equations; (ii) the equations can only be evaluated analytically for some 

very simple contact configuration (geometry and loading profile); (iii) for a 

contact problem, neither the contact area nor surface traction is known in 

advance. Therefore, a 3-D contact problem generally requires a numerical 

solution. 

 

The numerical method for contact analysis fall into one of following category: (i) 

finite element method (FEM); (ii) boundary element method (BEM); (iii) mesh 

less method; (iv) various other methods; (v) combinations of more than one 

method, such as FEM + BEM, BEM + domain decomposition, etc. The FEM has 

been fully developed; some software packages have the function of contact 
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analysis, which use gap elements to determine contact area. FEM is believed not 

good for contact analysis due to the high pressure gradient within contact area. 

BEM can handle the problem much better; recently some research works using 

BEM combined with other method give satisfactory result (see literature review). 

Mesh less method for contact is under development; only a few works have been 

reported in literature. Most of these methods are quite time consuming, for 

example, FEM requires lots of computational time, as well as notable human 

effort for modeling. The accuracy is another concern. Increasing accuracy 

requires higher element density or element order, and therefore more solution 

time. The fact motivates the research work to find better numerical solutions. 

There are some other methods, such as so called domain-decomposition method, 

Kalker’s method for rolling contact, etc, each of which suits some particular 

situation and yields good result.  In order to investigate in detail general 3-D 

contact area, however, it is still necessary to find efficient numerical solutions. 

 

Although many contact problems can be dealt with using 2-D models, there are 

still many cases that need to use 3-D models. Therefore, 3-D models are receiving 

more and more attention. However, 3-D analysis is not a simple extension of 2-D 

one; it introduces non-linear governing equations in slip zone. This 

understanding motivates the current research work also. 
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In the dissertational project, a new computational approach for general 3-D 

frictional contact problem with non-conformal surfaces has been developed. The 

method applies to any 3-D non-conforming continuous contact geometry, and 

explicitly determines sticking and slipping zones in the presence of friction.  This 

approach, which algorithmically follows along the lines discussed in Chapter 5 of 

Johnson's book [Johnson, 1985], provides a numerical framework for contact 

problems, which allows easy surface modeling and discretization, as well as a 

computationally efficient solution of the governing equations. The approach 

describes the interface tractions using a set of overlapping pyramid load profiles 

(with hexagonal base) whose boundaries are defined by a background grid on 

the contact surfaces.  A key distinction between this approach and other 

numerical procedures, including the FEM, BEM, and mesh less methods, is that 

this method does not require an underlying interpolation scheme for the field 

variables, rendered unnecessary by the analytical solutions for surface 

displacements. A numerical iteration scheme has been developed to accurately 

determine the contact area, to partition the contact area into sticking and slipping 

zones, and to determine the interface normal and shear tractions.  A number of 

example problems have been examined to verify the accuracy, sensitivity, and 

convergence behavior of this method, and the numerical results and discussion 

indicate excellent comparison with analytical solutions, as well as previous 

numerical ones. The current result shows that the method features high 

efficiency and high accuracy. The 3-D contact analysis method serves as a basic 
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research tool for possible future research work, such as contact analysis for 

coated/layered surfaces, or micro contact mechanics. 

 

The dissertation is organized as follows: The first part of the document is the 

introduction of dissertational research project and relevant literature review; the 

second part reports the research work on a topic in elasticity---analytical 

solutions to linear and bilinear normal and shear loading profile over a 

triangular base have been achieved in a closed form. Based on this, the normal 

and tangential pyramid loading profiles have been studied; the solutions are 

obtained by linear superposition technique. The third part reports the 

development of a semi-analytical approach to 3-D frictional normal contact 

problems --- non-incremental algorithm. In this part, an overlapping technique is 

introduced to approximately achieve C0 continuity representation of the surface 

traction distributions. A contact detection and stick/slip-partitioning algorithm 

have been studied. The fourth part reports the development of another semi-

analytical approach to 3-D frictional contact problems --- incremental algorithm. 

This method has been developed primarily to address a very important 

characteristic of frictional force: path-dependence. The static friction contact 

problem with shear (tangential) force existing must be dealt with using either 

dynamic or quasi-static model. The incremental method is the most accepted 

method for quasi-static models. In this section, an incremental model has been 

“derived” from a general dynamic model. The different contact detection and 



                                                                                                                            Page   16    

                                                                                                                            Page   16                              

stick/slip-partitioning algorithm from non-incremental algorithm has been 

studied. 
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Chapter 2 

 

   Literature Review on the Research Project 

 

2.1 Theoretical Research on Contact Problems 

It is well known that Hertz’s remarkable work, which founded contact 

mechanics, was based on a set of somewhat restricted assumptions. Among the 

six essential assumptions, the most significant ones are frictionless and 

nonconforming quadratic surface. Over the last century, many important 

extensions have been achieved to relax Hertz’s assumptions, and formed 

branches of non-Hertzian contact. The relevant achievements are briefly 

reviewed as follows. 

 

2.1.1 Frictional Contact 

The frictional analysis is the most important feature of non-Hertzian  contact. In 

this field, the most important work can be traced back to Cattaneo [Cattaneo, 

1938] and Mindlin [Mindlin, 1949]. Cattaneo realized that the contact zone must 

be divided into regions of slip and regions of stick, in order to fulfill Coulomb’s 

law in a point-wise manner. He solved the three-dimensional contact problem 

for quadratic surface (as in Hertzian  contact) by making a guess of a distribution 

of tangential traction to fulfill the requirements of displacement field. Mindlin 
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independently obtained the same result. The experimental work by Mindlin 

[Mindlin and Dereciewicz, 1953] and Johnson [Johnson, 1955] supported the 

theory in two respects: the tangential compliance and the appearance of annular 

slip regions. The discovery of existence of slip zone in contact area is important, 

because it brought us the understanding of the mechanics of frictional energy 

dissipation, fretting damage, wear, the formation and growth of cracks, etc. 

 

Cattaneo and Mindlin’s solution related c (the radius of stick zone) and a (radius 

of contact zone) by the relation: ( ) 2/1/1/ PQac µ−=  for cylinders in contact, and 

( ) 3/1/1/ PQac µ−=  for elastic spheres in contact, where P and Q are normal and 

tangential force respectively, µ is the coefficient of friction. Both normal and 

tangential traction distributions are symmetric/axisymmetric. However, the 

solution is only valid for the case that the materials of contacting bodies are 

similar. Goodman [Goodman, 1962], Hills [Hills and Sackfield, 1987] and Hills, 

Nowell, et al [Hills, Nowell and Sackfield, 1993] showed that in a dissimilar 

material case, (1) the slip regions exist even though no tangential force is exerted 

onto the contacting bodies; (2) surface traction distributions are no longer 

symmetric as Cattaneo-Mindlin solution predicts. Several other numerical works 

[Guyot, Kosior and Maurice, 2000], [Kosior, Guyot, and Maurice, 1999] and Li 

and Berger [Li, Berger, 2002] reach the same conclusion.  
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The governing equations of contact problems are fully coupled in normal and 

tangential traction. This makes the equations very difficult to solve even for 

quadratic surfaces. Goodman [Goodman, 1962] made a simplification to neglect 

the effect of shear tractions on normal displacements and therefore decoupled 

one of the governing equations and recovered the Hertzian  solution for normal 

traction. This simplification is often known as the Goodman approximation and 

is followed by many researchers.  

Poisson’s ratio is the key factor of decoupling. Ciavarella [Ciavarella, 1998] 

showed that only when Poisson’s ratio ν is 0, as well as Dundurs’ constant β 

(used to measure the dissimilarity of materials) is 0, that the integral equations 

can be fully decoupled. He also indicated if ν≠0, even the Cattaneo-Mindlin 

solution for Hertzian contact is approximate.  

 

Spence [Spence, 1975] studied the problem of a rigid indenter on an elastic 

foundation, and derived the stick/slip solution for both flat punch and power 

law curved indenter. He concluded that the same expression worked for both 

cases and showed that for monotonic loading, the ratio of stick radius to contact 

radius c is uniquely determined by the material properties, namely coefficient of 

friction µ and Poisson’s ratio ν. The relation can be applied to the case of two 

contacting elastic bodies, provided the coefficient γ (a composite material 

property) is replaced by modified value. This gives the solution more practical 

values, therefore is often used in indentation analysis. 
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For years, people have been using Coulomb’s law of friction: q=±µp. Oden and 

his colleagues’ work [Oden and Martins, 1984] provided a deeper understanding 

of frictional contact behavior. On summarizing their experimental work, they 

proposed a non-local and nonlinear friction laws, usually referred as power law 

of friction: 

 

( ) Nm
NNN gUc +−=−σ  (2.1) 

 

where cN > 0, mN > 0 relate to the physical characteristics of the surface. The 

friction law is then generalized into the form: 
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The classic Coulom’s law of friction can be retrieved by setting cT = µcN, and mT = 

mN. 
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2.1.2 Arbitrary Surface Traction Distributions or Arbitrary Surface 

Shapes 

Obviously, the non-quadratic surface changes the distribution of tractions; 

therefore, Hertzian  solution is no longer valid. In the real world, the contacting 

surface and contact region could be arbitrary in shape. To solve the problem 

requires the extensions to Hertzian  solution.  

 

The classical approach to finding stress and displacement solutions due to 

surface tractions can be tracked back to Boussinesq and Cerruti. They employed 

the theory of potential to get components of displacement and stress. Boussinesq 

and Cerruti both obtained solutions to a distributed normal and tangential load 

over area S on an elastic half space, although their methods are different.  The 

results were presented in Love’s book [Love, 1927]. The displacement 

expressions were given in terms of the integrals of the loading distribution over 

S. Hence, theoretically, if the distributions of loading within the area S are known 

explicitly, the displacements and stresses at any point in the solid can be found 

by evaluating the integrals. Unfortunately, these tools are best suited for simple 

loading profiles and geometrically easily described loading areas.  Non-constant 

loading (i.e., linear or higher order) and non-elliptic loading areas significantly 

increase the difficulties and in general prohibit closed form solutions.  
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Since Boussinesq and Cerruti’s work, a number of researchers have tried to 

resolve these problems. Many attempts involve solutions for simple loading 

descriptions applied over geometrically simple domains, from which solutions 

for general loading profiles over general domains can be constructed via 

superposition.  Love [Love, 1929] provided the integral for a rectangular and 

circular area with constant normal pressure. The solution for first order 

polynomial load applied to rectangular surface patch has been recently 

completed by Dydo and Busby [Dydo and Busby, 1995]. The stress and 

deformation produced by a pressure distribution of the form 22
0 1 axP /−  

acting on the rectangle byax ±=±= ,  have been calculated by Kunert (as 

described in Johnson [Johnson, 1985]). The explicit solution for normal deflection 

due to a polynomial distribution of pressure acting on a triangular region has 

been given by Svec and Gladwell [Svec and Gladwell, 1971]. Influence 

coefficients for the surface normal deflection due to a linear pressure distribution 

acting on a triangular element has been calculated by Kalker and van Randen 

[Kalker and van Randen, 1972]. Johnson and Bentall (again as discussed by 

Johnson [Johnson, 1985]) considered the deflection of a surface under the action 

of a pyramid distribution of pressure on a uniform hexagonal base. 
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2.2 Numerical Approaches to 3-D Contact Problems 

As addressed in Chapter 1, there has been a need for solutions to general 3-D 

contact problem, which can not be simplified to be 2-D models. Any extension of 

Hertzian  contact turns out to be difficult to get analytical solution in closed 

form; therefore, numerical approach to general contact problem becomes 

essential.  

 

2.2.1 FEM, BEM, Mesh-free and Other Numerical Methods 

Campos et al. [Campos, Oden and Kikuchi, 1982] produced a numerical solution 

to contact problems with friction based upon the finite element method (FEM) 

and variational inequalities.  They used a friction regularization scheme to 

produce a smooth perturbation of the non-smooth frictional work, and a key 

result of their numerical solutions is the observation that in the presence of 

friction, contact area decreases and peak contact normal stress increases as 

compared to the Hertz (frictionless) solution.   

 

More recent additions to the literature include the works of Kosior, Guyot and 

Maurice [Kosior, Guyot and Maurice, 1999], [Guyot, Kosior and Maurice, 2000], 

which present analyses of frictional contact problems using different numerical 

approaches.  One approach [Kosior, Guyot and Maurice, 1999] is based upon the 

boundary element method (BEM) and enables the total solution to be stated only 
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in terms of unknown quantities on the contact surface.  As a result, 

computational efficiency can be achieved as compared to domain discretization 

methods such as the FEM.  The second approach [Guyot, Kosior and Maurice, 

2000] uses a coupled FEM-BEM approach to study friction contacts, in which the 

BEM is used to calculate stresses.  In each of these two approaches, the numerical 

results are compared with the Hertz solution (for the frictionless case) and with 

the analytical solution of Spence [Spence, 1975] for the cases with friction.  The 

agreement in all cases is reasonable, and they also observe a decrease in contact 

area (and consequent increase in peak normal contact pressure) for the cases with 

friction, as compared to the frictionless case. 

 

2.2.2 Non-Incremental versus Incremental Algorithm 

Due to the non-conservative property of frictional force, in general, any frictional 

contact problem should be treated using an elastodynamic model. In other 

words, the frictional contact is a path-dependent problem; all the field variables 

are functions of time. If the loading time is long enough to neglect inertial force, 

the elastodynamic model can be simplified to be quasi-static model. The 

description of such elastodynamic and quasi-static model can be found in Oden’s 

work [Oden and Martins, 1984]. The two methods in literature were considered 

to solve the quasi-static model: the incremental algorithm and the so called rate 

problem [Klarbring, 1990]. The latter has mathematical value but not adopted by 



                                                                                                                            Page   25    

                                                                                                                            Page   25                              

any other researchers, and the former is widely accepted by researchers and 

commercial software packages. 

 

The path dependence issue has been investigated by many researchers. 

Saeedvafa and Dundurs [Saeedvafa and Dundurs, 1988] extensively examined 

the path dependent behavior of a contact model. They found out that path 

dependence occurs when the stick zone expands into slip zone. When slip zone 

expands into stick zone, the path dependence is very weak. They further 

partitioned in p-q plane the extremely path-dependent zones and loosely path-

dependent zones [Saeedvafa and Dundurs, 1988].  

 

Spense studied power-law indenter contacting with a flat foundation (See 2.1.1). 

He derived an analytical solution, which related the ratio of stick zone radius to 

contact area radius to the coefficient of friction and material properties. His work 

showed that the indentation problems (no global shear force exists) are 

essentially path-independent, as long as the loading procedure is done 

monotonically, which is the case in many practical situations. 

 

2.2.3 Existence and Uniqueness Issue 

One of the most important characteristics of a numerical solution to a contact 

problem, which was found in early 1980s and has then been extensively studied, 
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is the existence and uniqueness issue. As reviewed by Klarbring [Klarbring, 

1988], the first example presented in the literature of non-uniqueness of solutions 

to static frictional contact problems of linear elastic structures was given by 

Janovsky [Janovsky 1980, 1981]. Since then other examples have been given by 

Alart and Curnier [Alart and Curnier,  1986], and Mitsopoulou and Doudoumis 

[Mitsopoulou and Doudoumis, 1987]. The problems studied by these researchers 

were special cases of the finite-dimensional counterpart of the static friction 

problem of Duvaut and Lions [Duvaut and Lions, 1976]. Since the load-path-

dependent nature of friction was not taken into account, it was suspicious at first 

that the non-uniqueness was raised by the static assumption. However, later on 

Klarbring’s work [Klarbring, 1984] showed that in the finite-dimensional quasi-

static problems non-uniqueness of solutions could also occur. Klarbring further 

showed [Klarbring, 1987] that in quasi-static problems non-existence of solutions 

could also occur in certain cases.  

 

Beside above works on finite-dimensional problems, the existence and 

uniqueness issues have been studied in a wide range. For the continuous static 

friction problems, Necas et al [Necas et al, 1980], Duvaut [Duvaut, 1980], Jarusek 

[Jarusek, 1983, 1984], Demkowicz and Oden [Demkowicz and Oden, 1982], Cocu 

[Cocu, 1984] and Kato [Kato, 1987] made contributions to various contact 

configuration. For the corresponding quasi-static problems, Klarbring et al 

[Klarbring et al, 1988, 1989] and Andersson [Andersson, 1989, 1991] proved the 
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existence and found sufficient conditions for uniqueness. For the dynamic 

problems, Martin and Oden [Martin and Oden, 1987] made an important 

contribution by proposing and experimentally proving a non-local and non-

linear frictional law, and studying the existence and uniqueness of the solution 

under such friction law. The result for the static problems commonly shows that 

uniqueness is only achieved under the restriction of a sufficiently small 

coefficient of friction, leaving open the possible non-uniqueness for large friction 

coefficients. 
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Part II 

 A Study on Elasticity --- the Analytical Solution in 

Closed Form to a Pyramid Surface Loading Profile 

 

This part presents a contribution to elasticity --- a set of Boussinesq-Curruti 

solutions to linear/bilinear distribution of normal and tangential loading over a 

triangular area. Based on that, solution sets to normal and tangential surface 

loading pyramids have been constructed. The importance of the work is that it 

provides a displacement solution set in closed form for a basic loading element, 

which is of great importance in a numerical solution to a general 3-D contact 

problem. Normal and tangential loading are considered, and both normal and 

tangential displacements are calculated.  The triangular loading element will be 

useful in describing complicated contact domains, and the first-order loading 

functions will help accurately capture arbitrary loading profiles.  In fact, the 

work is the fundamental part to the research work to develop an effective and 

efficient semi-analytical solutions 3D contact problems with general geometry 

and loading profile. 
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As examples, the solution set to normal and tangential tractions over equilateral 

triangular bases have been presented. Base on the fundamental work, the 

solution sets to normal and tangential pyramidal loads have been developed, 

which serve as load elements in subsequent parts and play a key role in the 

success of Semi-Analytical Method for contact problems. 
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Chapter 3  

 Elastic Solution to a Concentrated Load  

and Distributed Loads  

 

The basis of the solutions presented here is the classical point-load problem 

attributed to Boussinesq, which is briefly reviewed below.  Consider a 

continuous distribution of load over a surface area S of an elastic body. The 

coordinate system is chosen as shown in Figure 3.1. The x-y plane is on the 

surface, while the z-axis points into the body. Variables (ξ,η) refer to the surface 

points within area S, and the coordinates (x,y) refer to any surface point either 

inside or outside the contact area. The senses of loads and displacements are the 

same as the directions of the coordinate axes. The concentrated force is modeled 

by letting S approach 0 such that the force acts at the origin.  
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Figure 3.1  The Coordinate System and Senses of Applied Loads 

 

3.1 Potential Functions 

For the problem of a distributed load applied to an area S on an elastic half space, 

Love showed that the elastic displacement Ux, Uy, and Uz at any point in the solid 

can be expressed in terms of derivatives of a group of potential functions [Love 

1927]. Johnson systematically expressed the procedure in a simpler way [Johnson 

1985]. If we consider normal and tangential loading separately (which is a 

practical approach), the notation suggested by Dydo and Busby is a further 

simplification [Dydo and Busby 1995]. 

  

We define the potential functions as follows: 

 

222 )()( zyx +−+−= ηξρ  (3.1) 
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∫∫=Ψ
S

ddF ηξ
ρ
ηξ ),(  (3.2) 

∫∫ +=Χ
S

ddzF ηξρηξ ]ln[),(  (3.3) 

∫∫ −+=Ω
S

ddzzF ηξρρηξ ])ln()[,(  (3.4) 

where, ( )ηξ ,F  is the loading profile over surface area S. The following relations 

hold: 

Ψ=
∂
Χ∂Χ=

∂
Ω∂

zz
,  (3.5) 

Functions (3.2) - (3.4) satisfy the Laplace equation. 

 

As a concentrated load at the origin is considered, the three potential functions 

are simplified to: 

ρ
F=Ψ  (3.6) 

]ln[ zF +=Χ ρ  (3.7) 

])ln([ ρρ −+=Ω zzF  (3.8) 

Here, 

22 )()( ηξρ −+−= yx  (3.9) 

and F is the magnitude of concentrated force.  
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3.2 Displacement Field in Terms of Potential Function 

3.2.1 Concentrated Force P Normal to the Surface Only (z-Direction) 

The displacement components at any point (x,y,z) in the solid can be found as: 
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By setting z = 0, the components of displacement of a surface point (x,y) are 

obtained immediately: 
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where the over-bar notation indicates a quantity evaluated at the surface z = 0. 

 

3.2.2 Concentrated Tangential Force Qx Only (x-Direction) 

The displacement components at any point (x,y,z) in the solid can be found as: 
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Again, by setting z = 0, the displacements of a surface point (x,y) are obtained 

immediately: 
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The displacement field, due to a concentrated tangential force in y-direction Qy 

exerted at origin, can be derived similarly. 

 

3.3 The Surface Displacements Produced by the Distribution of 

Surface Tractions 

3.3.1 Distribution of Normal Pressure over Area S Only 

By using the principle of superposition, the components of surface displacement 

can be obtained from (3.13) - (3.15) by integrating over surface area S: 
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3.3.2 Distribution of Tangential Loading over Area S Only 

By using the principle of superposition, the components of surface displacement 

can be obtained from (3.19) – (3.21) by integrating over surface area S: 
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The equations (3.22)~(3.27) are the foundation of developing solutions to any 

distributed loading profiles. The set of equation serves as a starting point of 

subsequent chapters. 
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Chapter 4 

 The Surface Displacements Due To Distribution of 

Surface Tractions over a Triangular Area 

 

The displacement field can be obtained by evaluating integrals (3.22)~(3.27) over 

the triangle. The method was first used by Svec and Gladwell [Svec and 

Gladwell, 1971] to obtain the explicit solution of normal deflection due to a 

distribution of normal pressure.  

 

4.1 Integration Technique over a Triangular Area 

4.1.1 Geometry and Notation 

Figure 4.1 shows the geometry and notation of triangle A1A2A3. Denote by δ1, δ2 

and δ3 the angles between positive direction of A2A3, A3A1, A1A2 and positive 

direction of x-axis. A point B(x,y) within triangle  A1A2A3 divides it into three 

sub-triangles, denoted by ∆1, ∆2 and ∆3 respectively. The following procedure will 

be taken over three sub-triangles.  

 

Considering ∆1 (Figure 4.2), denote by ε1 and ε2 the angles between A2A3 and 

vector BA2, BA3 respectively. In general these two angles in sub-triangle ∆i are 

denoted by ε2i-1 and ε2i .  Denote by n1 the normal distance from B to A2A3. In 
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general this distance in sub-triangle ∆i is denoted by ni.  Introduce the polar 

coordinate system (r, θ) with origin located at B(x,y); then, the following relations 

hold: 

φδθ −= 1  (4.1) 

φ
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The integrals are then carried out in the polar coordinate system. For example, an 

integral over sub-triangle ∆i is evaluated as follows.  Because φθ dd −= , 
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Figure 4.1  The Geometry and Notation of the Loading Triangle. 

 

Figure 4.2  The Geometry and Notation of the Sub-Triangle ∆1. 
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4.1.2 The Consistency of Formulae 

The sign of ni is designated as shown in Figure 4.3. This convention is 

automatically guaranteed if one uses algebraic expression for ni instead of 

absolute value.  

 

 

 

Figure 4.3     The Convention of Sign of ni 

 

The integrals given in this dissertation are derived for the case of point B(x,y) 

within the triangle A1A2A3. However, the work shows that the formulae hold 

outside the loading triangle if the appropriate signs are attached to the integrals 

over three sub-triangles, confirming the assertion made by Svec and Gladwell 

[Svec and Gladwell 1971]. This can be easily shown in Figure 4.4: (a) is the case 

that point B is within triangle A1A2A3, while (b) is the case that point B is outside 

the triangle. In the second case (b), the three sub-triangles exceed the range of 

original triangle. However, since the loading profile is not defined outside 



                                                                                                                            Page   41    

                                                                                                                            Page   41                              

triangle A1A2A3, the integration over three sub-triangles is still equivalent to the 

integration over the original triangle. Even though the loading profile is defined 

outside the original triangle, due to one of the normals such as n1 takes negative 

sign while the others such as n2 and n3 take positive sign, the overall effect is still 

equivalent to the original integral. 

 

 

 

Figure 4.4    The Study of Consistency of Formula (a) Point B Is Inside Triangle 

A1A2A3, (b) Point B Is Outside Triangle A1A2A3 

 

Therefore, we use the same formula for both inside and outside the loading area, 

instead of considering them separately.  Svec and Gladwell [Svec and Gladwell 
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1971] also indicate that numerical integration gives poor results for integrals like 

(3.22)-(3.27), and therefore closed-form solutions are sought in the dissertation 

and presented next. 

 

4.1.3 The Notation of Various Integrals 

For the purpose of mathematical simplicity of expression, the following notation 

is introduced: 

∫∫
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dd)y()x(I j
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ρ
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where i  indicates the sub-triangle number (i=1,2,3), m,k,j  are exponents, and 

22 )()( ηξρ −+−== yxr  (4.6) 

 

Note that in the integral (4.6) the integration domain is defined by (ξ, η), and 

(x,y) is the point at which the displacement solution is desired.  For the purposes 

of evaluating the integrals, the coordinates (x,y) are considered as constants. 

 

It is also convenient to use the notation: 

∑
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=
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4.2 Displacement Field Due To a Distribution of Normal Pressure 

P(ξ,η) Over Sub-Triangle ∆i 

First, some simple distributions of normal pressure are considered.  More 

complicated linear or bilinear loading profile can be modeled using an arithmetic 

sum of some simple distributions. The following results are obtained by 

evaluating equation (3.22) - (3.24). 
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4.2.2  Linear Distribution ( ) ηηξ −= y,P  
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4.2.3  Bilinear Distribution ( ) ( )( )ηξηξ −−= yx,P  
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The above results are summarized in Table 4.1 for quick reference: 

 

Table 4.1   Displacements in Terms of Applied Normal Load 

 

 

 

 

 

 

 

Note:  
G
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Distribution of Loading 

( Surface Traction ) 
xU  yU  zU  

Constant 

( ) 1, =ηξP  
210ibI 201ibI 100iaI

Linear 

( ) ηηξ −= y,P  
211ibI 202ibI 101iaI

Bilinear 

( ) ( )( )ηξηξ −−= yx,P  
221ibI 212ibI 111iaI
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4.3 Displacement Field Due To Tangential Pressure Qx(ξ,η) Over Sub-

Triangle ∆i 

The following results are obtained by evaluating equations (3.25) - (3.27). 
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4.3.2 Linear Distribution ( ) ηηξ −= y,Qx  
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4.3.3 Bilinear Distribution ( ) ( )( )ηξηξ −−= yx,Qx  

331111

3

3

22
1

)()(
2

))((
2
1

ii

x

I
G

I
G

ddyx
G

ddyx
G

U
ii

π
ν

π
ν

ηξ
ρ

ηξ
π
νηξ

ρ
ηξ

π
ν

+−=

−−+−−−= ∫∫∫∫
∆∆  (4.23) 

3223

22

22 iy I
G

dd)y()x(
G

U
i

π
νηξ

ρ
ηξ

π
ν

∆
=∫∫

−−=  (4.24) 

2212

2

4
21

4
21

iz I
G

ddyx
G

U
i

π
νηξ

ρ
ηξ

π
ν
∆

−=∫∫
−−−= )()(  (4.25) 

 

The above results are summarized in Table 4.2 for quick reference: 
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Table 4.2   Displacements in Terms of Applied Tangential Load 
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4.4 The Applications of the Solutions 

The solution sets presented in section 4.3 and 4.4 are fundamentals for the 

construction of various sophisticated load elements, two of which are shown in 

Figure 4.5. The construction of pyramidal solution set is to be discussed in detail 

in the subsequent part (Part III). 

 

 

 

Distribution of Loading 

(  Surface Traction ) 
xU  yU  zU  

Constant 

( ) 1, =ηξQ  
320100 ii cIaI +  311icI 210ibI

Linear 

( ) ηηξ −= yQ ,  
321101 ii cIaI + 312icI 211ibI

Bilinear 

( ) ( )( )ηξηξ −−= yxQ ,  

331111 ii cIaI +  
322icI 221ibI
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                              (a)                                                                    (b) 

Figure 4.5  Loading Elements Assembled from Simpler Triangular Elements:  (a) 

Tetrahedral Element, (b) Pyramidal Element 

4.5 The Evaluations of Various Integrals over Sub-Triangles 

The key work now is to evaluate these integrals obtained in the previous section. 

Here a detailed derivation is given for a typical integral Ii211. First, the 

transformation to polar coordinates is implemented, and then various 

trigonometric tools are applied to evaluate and simplify the integral.  The results 

are given for other required integrals. 
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List of evaluations of various integrals is given below: 
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Chapter 5 

  

     Surface Displacement Solution Set                 

Due to a Pyramidal Load Profile 

 

In this chapter, the fundamental displacement solution set due to a pyramidal 

load profile of hexagonal base on an elastic half-space is presented.  This result 

will be extended, and basic pyramidal elements will be used to represent 

arbitrary load profiles for the numerical examples. 

 

5.1 Coordinate System 

The origin O of an (X,Y,Z) Cartesian coordinate system is placed on the surface 

of an elastic body, with the Z-axis directed into the solid as shown in Figure 5.1.  

A second coordinate system, the (x,y) system, is oriented on the surface of the 

body and shares the origin O of the Cartesian system as well as the Z direction.  

The (x,y) coordinates are non-orthogonal, and as shown in Figure 5.1 they are 

chosen to be oriented an angle π/3 apart.  As such, the lines of constant x and y 

form a grid of quadrilaterals on the surface.  The transformation from the (x,y) 

coordinates to the (X,Y) coordinates is given by (keeping in mind that the two 

systems share the Z-coordinate):  
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where el is a characteristic grid spacing (Figure 5.1). X, Y, le all have units of 

length, while the surface coordinates x, y are dimensionless. Under this 

approach, x and y assume integer values in the non-orthogonal coordinate 

system at grid points.  

 

Throughout the development of the solutions described later, it will be necessary 

to consider a rotated coordinate system (X',Y')oriented with an angle α from the 

original (X,Y) system.  Similarly, a rotated coordinate system (x',y'), also oriented 

with an angle α from the original (x,y) system, must be defined.  Then, 
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Figure 5.1 The coordinate systems used in this part and subsequence discuss. 

Note: the x-y coordinate system is NOT orthogonal, but π/3 apart. Coordinate (ξ, 

η) are define for the contact area only, which has the same orientation as X-Y 

system. 

 
Equation (5.1) and the rotations described above imply: 
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and therefore, 
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The implication here is that if we choose the rotation angle α = nπ/3, where n is 

an integer, then all the entries in the transformation matrix [Txy] are integers, and 
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grid points in the (x',y') coordinate system all coincide with grid points in the 

(x,y) coordinate system. To prove this, we write: 
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Table 5.1   Entities in Matrix Txy  When α Takes the Value of nπ/3 

n C S Txy 

0 1 0 
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It is clearly seen from Table 5.1 that the entities of [Txy]  take value 1, -1 or 0. This 

important property aids construction of pyramid loading solutions by 

superposition of fundamental tetrahedral loading solutions in rotated coordinate 

systems.  

 

We further define one more coordinate system, the (ξ,η) coordinate system, 

which describes points within the loading domain S; see Figure 5.1. The 

orientation of the (ξ,η) system is the same as the (X,Y) system;  these coordinates 

provide for a convenient expression of the various integrals related to surface 
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displacement solutions and load profiles, as described next.  Note that the 

normal and tangential tractions P(ξ,η) and Q(ξ,η) on the surface are expressed as 

functions of (ξ,η), not as functions of (X,Y). 

 

5.2 The development of solutions to a normal pyramidal load element 

By the term “normal pyramidal load element” we mean the pyramidal load 

profile of normal load (pressure, in Z- direction) distribution. This section first 

derives the elastic solution set to a normal tetrahedral load element on equilateral 

base, and then presents the construction procedure of pyramidal solution. 

 

5.2.1 Normal Tetrahedral Pressure Distribution on Equilateral 

Triangle Base 

Consider a loading profile of normal pressure varying linearly in the η-direction 

according to: 

( ) b                        
b

PP o ≤≤





 −= ηηηξ 01 ;,  (5.9) 

acting over an equilateral triangle OAB on an elastic surface (Figure 5.2). In order 

to determine the displacement field at a surface point with coordinates (x,y) due 

to the action of P, the pressure profile is re-written as: 
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(a) tetrahedral pressure distribution               (b) linear loading profile in η 

on equilateral triangle base 

Figure 5.2.  A Linear Loading Profile over an Equilateral Triangle Base:  (a) 

Tetrahedral Pressure Distribution, (b) Linear Loading Profile in η. 
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Recall that the (ξ, η) coordinates describe the area over which the load is applied, 

while the parameters (x,y) indicate the location at which the displacement 

solution is desired.  As a result, in equation (5.10) the parameter y is considered 
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to be constant.  Then, the components of displacement at any surface point (x,y) 

are readily available as the superposition of displacements due to constant 

normal pressure [equations (4.8) - (4.10)] and due to linear normal pressure 

distribution [equations (4.11) - (4.13)]: 
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Figure 5.3  The Geometry and Notation of Equilateral Triangular Base 
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In this equilateral triangle, the parameters needed to evaluate the integrals are 

listed as follows (Figure 5.3): 

 

The orientation angles of three triangular sides take the value: 
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The normals of point B(X, Y) to three sides of the triangle are evaluated as: 
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The six characteristic angles εi ( i=1,2, …, 6): 
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The expressions (5.14~16) satisfy the requirement of formula consistency 

presented in section 4.1.2. 

 

 

Figure 5.4  (a) The Pyramid Consists of Six Tetrahedrons; (b) The Hexagonal Base 

Consists of Six Equilateral Triangles 
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5.2.2 Normal Pyramidal Pressure Distribution on Hexagonal Base 

The solution set to a normal pyramidal load element is obtained by applying 

principle of superposition of linear elasticity. The pyramid on a hexahedral base 

consists of six tetrahedrons on equilateral triangular base, as shown in Figure 5.4. 

 

We consider the first tetrahedron, denote by U(1)(X) the surface displacement 

solution to the first tetrahedral load element. Here, 









=
Y
X

X  is the surface point that solution set is desired; 















=

Z

Y

X

U
U
U

U  is the surface  

displacement set. We notice that, due to the symmetry,  this solution set can also 

be used for second tetrahedron in rotated coordinate system X’-Y’, written as: 

 

If 








=

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



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=
A

A

B

B
AB Y

X
Y
X

or '

'
' ,XX ,   

then, ( ) ( ) )()( 1
''

2 AB XUXU =  (5.17) 

 

where, the prime represents the parameters measured in rotated coordinate 

system X’-Y’; the subscript (1) and (2) represent the solution due to tetrahedral 

load element No. 1 and No. 2 respectively. 

 



                                                                                                                            Page  64 

                                                                                                                            Page  64 

The above relation says that the displacement solution at point B due to 

tetrahedron No.2 measured in X’-Y’ system, is the same as the one at point A due 

to tetrahedron No.1 measured in X-Y coordinate system.  

 

Now, suppose B is the surface point that solution is desired. From 

BBAB and TXXXX == '' , ,  we have: 

BA TXX =  (5.18) 

 

We also notice that the displacements measured in X’-Y’ need to be transformed 

back to global coordinate system X-Y for the purpose of superposition. The 

following procedure completes the task: 
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 (5.19) 

where, 















−=

100
0cossin
0sincos

αα
αα

uT  (5.20)   

is the transform matrix for displacement. 

Equation (5.19) is valid for all tetrahedral elements, as long as α takes proper 

values: 

5...,,1,0,
3

== nnπα  (5.21) 
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Equation (5.19) can be written as a general form: 

( ) ( ) ( ) ( ) 5...,,1,0),()( 1
1 == − nnnun XTUTXU  (5.22) 

 

Therefore, the displacement solution to the normal pyramid element centered at 

origin can be superposed as follows: 

( ) ( ) ( )∑
=

−=
5

0
1

1 )()(
n

nnuP XTUTXU  (5.23) 

 

The above procedure allows us to get the solution to the pyramidal element from 

a solution to a single tetrahedral element, therefore, greatly simplifies the 

derivation. The solution set is visualized in Figure 5.6(a, b). It is clear that normal 

displacement Uz is axi-symmetric, it is steep in shape close to center; the 

tangential displacements Ux and Uy are skew-symmetric. They change the sign at 

the center.  

 

5.3 The Development of Solutions to a Tangential Pyramidal Load 

Element 

5.3.1 The Solution to Tetrahedral Element No.1 on an Equilateral Base 

Consider a tangential (in positive X direction) tetrahedral load element shown in 

Figure 5.5. The linear load profile can be formulated as: 
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where, q0 is the magnitude of load element. 

 

Start from equation (3.25-3.27), and follow the similar procedure as discussed in 

section 5.2.1, we get the surface displacement solution to the load element: 
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Figure 5.5 (a) The Tangential Pyramidal Load Element Consists of Six 

Tetrahedrons; (b) The Hexagonal Base Consists of Six Equilateral Triangles 
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The solution set to a tangential tetrahedral element in positive Y direction can be 

obtained in the similar way. 

 

5.3.2 The Solution to Tetrahedral Element No.2 on an Equilateral Base 

Next, we consider tangential load element No.2 shown in Figure 5.5. The linear 

load profile can be expressed as: 
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Following the same procedure as previous section, the solution can be written as: 
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Again, the solution set to a tangential tetrahedral element in positive Y- direction 

can be obtained in the similar way. 

 

5.3.3 The Solution to Tetrahedral Element No.6 on an Equilateral Base 

Next, we consider tangential load element No.6 shown in Figure 5.5. The linear 

load profile can be expressed as: 
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Following the same procedure as previous section, the solution can be written as: 
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Again, the solution set to a tangential tetrahedral element in positive Y- direction 

can be obtained in the similar way. 

 

5.3.4 Construction of Solution to Tangential Pyramidal Load Element 

First, superpose the solution to tetrahedral element No.1, No.2 and No.6, which 

together form the first half of the pyramidal element (Figure 5.5). Written as: 

( ) ( ) ( ) )()()()( 621 XUXUXUXU ++=half  (5.35) 

 

It is observed that the first half and the second half are symmetric to each other 

with respect to X-Z plane. This motivates us to use the property to simplify the 

construction of final solution.  

 

The idea is: if X is the mirror point of X  with respect to X-Z plane, then the 

displacements at point X  due to first half of pyramid is equal to the 

displacements at point X due to second half of pyramid, except that the sign of 
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Uy should be different; the displacements at point X  due to second half of 

pyramid is equal to the displacements at point X due to first half of pyramid, 

except that the sign of Uy should be different. 

 

Therefore, the superposition of the two haves takes the form: 

)()()( XUTXUXU halfhhalfP +=  (5.36) 

where, 
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100
010
001

hT  (5.37)  

is the transform matrix for the solution construction purpose. 

 

The solution to the tangential pyramidal load element are visualized in Figure 

5.6(c, d).  
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Figure 5.6  Displacement Profiles Due to a Single Pyramidal Load profile ( 

Arbitrary Vertical Scaling): (a, b) Surface Displacements Due to Normal Load 

Pyramid, (c, d) Surface Displacements Due to Tangential Load Pyramid in X-

Direction 
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Chapter  6 

Discussion and Conclusion 

 

The solution for surface displacements due to constant, linear, or bilinear load 

distribution over a triangular domain S has been obtained for both normal and 

tangential tractions.  Identical equations are used to evaluate surface 

displacements regardless of whether the point of interest is inside or outside the 

domain S, consistent with the assertion of Svec and Gladwell [Svec and Gladwell, 

1971]. A superposition method is suggested to construct solutions to more 

complicated load configurations. 

  

The solution sets derived here have important implications for 3-D contact 

mechanics solution because:  

(1) The solution to linear loads over a triangular base is important in the 

formation of several useful loading elements, which are the key factors 

for a practical 3-D numerical solution. Figure 4.5 shows two of these 

kinds of loading elements.  The solution to these loading elements can be 

obtained in closed form by combining some basic loading profiles 

(constant, linear, bilinear).  
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(2) Loading profiles such as those shown in Figure 4.5 provide several 

advantages over other load distributions or element shapes presented 

previously in the literature.  First, the triangular footprint of the loading 

element allows great flexibility in capturing arbitrary loading domains S.  

Triangular elements can be assembled to define complicated boundaries 

on S, and typically the contact area can be approximated more accurately 

using fewer triangular elements than rectangular elements.  In addition, 

these elements provide another advantage over other load elements. They 

can be employed to construct approximately a piecewise linear 

representation of the contact pressure (C0 continuity of the load profile), 

while the constant load elements yield only a piecewise constant load 

description, and therefore non-continuous representation. This feature is 

discussed in detail in subsequent part (Part III). 

 

These two important assets of the work presented here allow more efficient and 

accurate contact mechanics solutions for general 3-D contact geometries. 

 

As discussed in subsequent part, the solution sets to normal and tangential 

tractions over equilateral triangular bases have been presented. Base on the 

fundamental work, the solution set to normal and tangential pyramidal loads 

have been developed, which serve as load elements in subsequent parts and play 

a key role in the success of Semi-Analytical Method for contact problems. 
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The normal load pyramid is constructed by employing the technique of 

coordinate rotation. Taking advantage of symmetry, only one set of solutions to a 

tetrahedral load element on an equilateral triangular base is used. However, the 

construction of tangential pyramid is more complicated, and at least three 

solution sets to three tetrahedral load elements are needed to construct tangential 

pyramidal load element. 

 

All these work take advantage of the important properties of the solution sets 

derived in this part. Part of the work presented here has been reported in [Li, J. 

and Berger, E. J., 2001]. 
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Part III 

The Development of a Semi-Analytical Approach  

to 3-D Frictional Normal Contact Problem  

--- Non-Incremental Algorithm 

 

This approach treats contact phenomena as a static problem. The surface traction 

profiles are represented by sets of overlapping pyramidal load elements. Based 

on fully coupled governing equations, the algorithm of contact-detecting and 

stick/slip partitioning is designed as nesting iterations to fulfill contact boundary 

conditions. This approach requires no interpolation scheme for the field 

variables, which distinguishes it from other numerical techniques such as the 

FEM, BEM, and mesh less methods. A background grid is defined only on the 

contact surfaces. Computation shows that it is an efficient algorithm, which 

quickly shrinks initially assumed contact area to final converged area. Numerical 

examples are presented to show the accuracy and efficiency of the method. 
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Chapter 7 

Contact Model and the Technique of  

Overlapping Load Elements 

 

7.1 Contact Model 

The problem to be solved is defined as: Frictional contact problem of two elastic 

bodies with arbitrary non-conformal 3-D continuous surfaces, to which only 

normal forces are exerted (Figure 7.1). The problem solved here is a static contact 

model. 

 

Figure 7.1  The Contact Model to be Solved 
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7.2 The Technique of Overlapping Load Elements 

Having developed the solution set to pyramidal load elements, we are ready to 

represent the arbitrary continuous surface traction profile by a group of 

pyramidal load elements. These load elements with suitable magnitudes are 

overlapped at the grid points of specially designed background mesh, such that 

the center and vertices of all the pyramids are located at grid points. The grid is 

defined by x-y coordinate while x and y take integer values, which is introduced 

in section 5.1.  The scheme of overlapped pyramids on the grid points is 

visualized in Figure 7.2. 

 

The reason to employ overlapped load element is to achieve approximate C0 

continuity of surface load profile. For the purpose of easy illustration, we 

consider the modeling method of surface load in 2-D cases. Figure 7.3 shows 

several models of surface load. (a) is the simple model of concentrated forces on 

discrete nodes, the sum of which is equal to the total load; (b) is the piecewise 

constant model, the sum of area of each bar represents the total load; (c) 

represents a piecewise continuous model or C0 continuity curve, the area under 

the curve equals the total load; (d) is Cn (n≥1) continuous mathematical model.  

 

In elasticity, the surface load such as (a) and (b) will lead to discontinuity of 

displacement fields. Although these models are used in many numerical 

methods such as FEA, generally speaking, they are not good for contact analysis. 
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If the contact surfaces are Cn continuous, obviously (d) is the best way to model 

surface tractions. However, as discussed in Chapter 2, very limited contact 

configurations can be solved analytically using such mathematical models. 

Therefore, (c) is the best model from a practical point of view. 

 

The C0 continuous representation is approximately achieved by a group of 

overlapped triangle load elements, the solutions of which are known and 

continuous, as shown in Figure 7.4.  Denote by f(x) the Cn continuous curve to be 

approximated; by pi the height of ith triangular element, by a the spacing between 

adjacent nodes. The height pi takes the value of curve f(x) at node xi:  

)( ii xfp =  (7.1)  

 

It can be easily shown that: 

∫∑ =
=∞→

2

11
)(lim

b

b

n

i
i

n
dxxfap  (7.2) 

where, a is grid spacing, or half of the length of triangular side on X axis,  api is 

the area of ith triangle, and the integral on the right hand side represent the area 

under curve f(x). Therefore, the Cn curve is represented by a set of discrete points 

pi ( i=0, 1,2, …, n, n+1).  The area under curve f(x) is approximated by the sum of 

area of a set of overlapped triangles with magnitude pi=f(xi). In 3-D cases, we use 

pyramidal load elements instead of triangles. The above argument can be used in 

3-D case in an analogous manner. 
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Figure 7.2  Overlapped Pyramidal Load Elements to Approximate C0 Continuity 

Loading Profile; Adjacent Load Pyramids with Vertices at (ξi,ηj) and (ξk,ηm) Have 

Nodal Pressure values pij and pkm, Respectively 
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Figure 7.3  Modeling of Surface Load (a) Concentrated Forces; (b) Piecewise 

Constant; (c) C0 Continuity; (d) Cn (n≥1) Continuity 

 

As shown in Figure 7.2, we use a set of pyramids with magnitude pij at grid 

points. pij takes the value of load profile at node ij, written as: 

),( jiij yxfp =  (7.3) 

Similar to 2-D case, it can also be shown that: 
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where, el  is grid spacing, or the side length of hexagonal base of pyramid,  ije pl 2

2
3  is 

the volume of pyramid ij, and the integral on right hand side is the volume under profile 

f(x, y). This argument also applies to any arbitrary specified local area, which means that 

the sufficient number of pyramids can catch interesting detail of any load profile. In this 

way, Cn load profile f(x,y) is represented by a set of discrete point pij, and the 

volume under profile f(x,y) (the total global force) is approximated by the linear 

function of pij, which allow us to linearize system equations with minimal 

sacrifice of continuity of load profile. 

 

 

Figure 7.4 A Set of Overlapped Triangular Elements Approximates Continuous 

Surface Load Profile 
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Chapter 8 

Algorithms for  

Contact Area Detecting,  

Stick/Slip Zone Partitioning,  

and Field Variables Computation 

 

In this chapter, we develop equations for surface displacements due to normal 

and tangential surface tractions respectively.  We also derive the equations 

governing contact area calculations, and conditions that allow us to partition the 

total contact area into stick and slip regions.  Finally, the iteration scheme for the 

contact solutions is presented. The fundamental idea is to present surface 

tractions raised by contact by a set of overlapped pyramid load elements (Figure 

7.2), which has been introduced in Chapter 7. The coordinate systems used in the 

development of system equations have already been introduced in chapter 5. 

Please refer to section 5.1 and Figure 5.1. 

 

Because the system equations are based on the displacement solutions to a 

normal and two tangential loading elements, we introduce the following 
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notations: pzU _  is the surface displacement solution in z direction due to a 

normal traction pyramid with unit amplitude centered at origin, given by: 

),(
2
1

_ YXC
G

U pz π
ν−=  (8.1)  

where C(X,Y) (and subsequent similar functions to be defined) are influence 

functions of surface location. This idea is extended by defining the other 

notations in Table 8.1. 

 

Table 8.1 Displacement Fields Due to Unit Pyramid Traction Elements 

Load Type z-Displacement x-Displacement y-Displacement 

Normal ),(_ YXaCU pz =  ),(_ YXbDU px −=  ),(_ YXbEU py −=  

Tangential 

in X  

),(_ YXbFU qxz =  ),,( 0_ νYXaGU qxx =  ),(_ YXcHU qxy =  

Tangential 

in Y  

),(_ YXbIU qyz =  ),(_ YXcJU qyx =  ),,( 0_ νYXaKU qyy =  

 

Note:  
G
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b
G
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π
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π
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π
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2
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4
21,

2
1,

10 =−=−=
−

=  

 

We notice that coefficients G and K are not only the function of surface location, 

but also of ν0. Computational result (See Table 8.2) shows that Poisson’s ratio ν 

has remarkable effect on coefficient G. The peak value of G(X, Y, ν0) changes 38% 

between ν = 0 and ν = 0.27. However, when ν varies from 0.27 to 0.32 (which 
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covers the majority of metals), the peak value of G(X, Y, ν0) only changes 0.88%. 

Coefficient K varies according to ν in the same manner as G. In the contact 

problem that two different materials involved, using the average formula (Table 

8.2) gives very good approximation. 

 

Table 8.2 The effect of Poisson’s ratio on G(X, Y, ν0) 

ν Normalized Peak value of 

G(X, Y, ν0) 

0 1.0 

0.27 1.3775 

0.32 1.3896 

ν1=0.27, ν2=0.32, use average: 









−

+
−

=
2

2

1

1
0 112

1
ν

ν
ν

νν  

1.3836 

 

In subsequent discussion, we use modified average value for the two-body 

contact problems, so that we calculate a single G(X,Y, ν0) and K(X,Y, ν0), instead 

of one influence function for each body. It is shown later that this approach 

brings us convenience in writing system equations in a neat way without 

introducing significant error. 
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8.1 Surface Displacements Due to Normal Traction 

If we denote by ijkmU  the surface displacement at point (Xi,Yj) due to the existence 

of a pyramid loading element with amplitude Pkm at point (ξk, ηm), then the 

following relationships hold: 

kmijkmkmmjkipZZijkm PC
G

PYXUU
π
νηξ

2
1),(_,
−=−−=  (8.2)  

where ijkmC  is an influence coefficient, the meaning of which is defined in Table 

8.1. Similarly, we can write: 

kmijkmXijkm PD
G

U
π
ν

4
21

,
−−=  (8.3)  

kmijkmYijkm PE
G

U
π
ν

4
21

,
−−=  (8.4)  

with Dijkm and Eijkm having similar interpretations as influence coefficients 

relating loading at one location to displacement at another.  Recall that this 

family of influence coefficients (C,D,E)ijkm can be determined using the analytical 

solutions provided earlier. 

 

The displacements at the point (Xi,Yj) can be expressed as a summation over all 

of the load points (k,m): 

∑∑−=
k m

kmijkmZij PC
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U
π
ν
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,  (8.5)  

∑∑−−=
k m
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,  (8.6)  
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∑∑−−=
k m

kmijkmYij PE
G

U
π
ν

4
21

,  (8.7)  

 

Further, the special case of displacement at the origin will be of interest and 

discussed subsequently; as such, we define for (X=0,Y=0): 

( )

kmijkm

km

C

ijkmkmZijkmZkm

PC
G

PCC
G

UU

ijkm

ˆ
2
1

2
1

ˆ

00,,00

π
ν

π
ν

−−=

−−=−
−

4434421
 (8.8)  

kmijkmXijkmXkm PD
G

UU ˆ
4

21
,,00 π

ν−=−  (8.9)  

kmijkmYijkmYkm PE
G

UU ˆ
4

21
,,00 π

ν−=−  (8.10)  

where the operators ijkmD̂  and ijkmÊ  are defined in an analogous manner to ijkmĈ  

for the X- and Y-direction deflections, respectively. 

 

8.2 Surface Displacements Due to Tangential Traction 

Consider next a tangential load distribution in the X- or Y-direction given by qX 

or qY.    The tangential surface displacement due to tangential traction pyramid in  

X-direction with amplitude of qkm,X at location (ξk, ηm) can be written as: 

Xkmijkmzijkmzkm qF
G

UU ,,,00
ˆ

4
21
π
ν−−=−  (8.11) 

XkmijkmXijkmXkm qG
G

UU ,,,00
ˆ

2
1
π
ν−−=−  (8.12) 
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XkmijkmYijkmYkm qH
G

UU ,,,00
ˆ

2π
ν−=−  (8.13) 

and the similar equations for the Y-direction are:   

Ykmijkmzijkmzkm qI
G

UU ,,,00
ˆ

4
21
π
ν−−=−  (8.14) 

YkmijkmXijkmXkm qJ
G

UU ,,,00
ˆ

2π
ν−=−  (8.15) 

YkmijkmYijkmYkm qK
G

UU ,,,00
ˆ

2
1
π
ν−−=−  (8.16) 

 

8.3 Governing Equations for a Point to Fall within the Contact Area 

Next, we consider two elastic bodies in normal approach, and we denote by ZU ,1  

the normal displacement of body one at surface point (X,Y), where a positive 

displacement is directed into body one.  Further, we denote by ZU ,2  the normal 

displacement of body two at surface point (X,Y), where a positive displacement 

is directed into body two.  h(X,Y) is defined as the separation distance between 

surface points of two bodies, when they come into contact with the external 

forces are zero. Figure 8.1 shows the normal contact configuration and the 

surface separation h(X,Y) of the two bodies.  

 

If a surface point (X,Y) falls within the contact area, then: 

 

)0,0()0,0(),(),(),( ,2,1,2,1 ZZZZZ UUYXhYXUYXU +=∆=++  (8.17)  
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where ∆Z is the normal approach (i.e., surface interpenetration) of the centers of 

bodies one and two and is equivalent to the sum of the centerline displacements 

of bodies one and two at the surface.  Equation (8.17) can be rewritten as: 

[ ] [ ] ),(),()0,0(),()0,0( ,2,2,1,1 YXhYXUUYXUU ZZZZ =−+−  (8.18)  

 

which, when combined with equations (8.8), (8.11) and (8.14), yields the fully 

coupled equations for the surface normal displacement: 





−>
−=

++ ∑∑∑∑∑∑

SoutsideYXh
SinsideYXh

qIqFPC
k m

Ykmijkm
k m

Xkmijkm
k m

kmijkm

),(
),(

ˆ2ˆ2ˆ
,,1 λλλ

 (8.19)  

where 

2

2

1

1
1 2

1
2
1

GG π
ν

π
νλ −

+
−

=  (8.20)  

2

2

1

1
2 4

21
4

21
GG π
ν

π
νλ −

−
−

=  (8.21)  

 

Note that the tangential traction expressions qkm,X and qkm,Y appear explicitly in 

the equations which determine contact area.  Their relative importance in this 

equation (which will be discussed in the section on numerical results) is defined 

by the magnitude of the individual influence coefficients relating tangential 

tractions to normal surface displacements.  Equilibrium in the Z-direction also 

requires the force balance constraint: 
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∑∑ =
k m

kmp PPA  (8.22)  

where 2

2
3

ep lA =  is the characteristic volume of a pyramid of uniform hexagonal 

base and unit height, and P is the total normal load applied to the contacting 

bodies. 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Relationships Among Far-Field Normal Motion ∆z, Surface 

Displacements ZU ,1  and ZU ,2 ; Inset: Separation Distance h(X,Y) Measured from 

the Initial Configuration 
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8.4 Governing Equations for a Point to Fall into Sticking Area 

Consider a pair of surface points A1 and A2 on bodies one and two, respectively, 

which were coincident before external loads are applied;  see Figure 8.2. Denote 

the X-direction motion of the centers of the two bodies as δ1,x and δ2,x, and the X-

direction tangential displacements of points A1 and A2 as XU ,1  and XU ,2 . If this 

pair of surface points is in a sticking condition in the X-direction, then: 

XXXXX YXUYXU ∆=−=− ,2,1,2,1 ),(),( δδ  (8.23)  

 

This can again be rewritten taking advantage of equation (8.9), (8.12) and (8.15). 

In sticking regions, the points A1 and A2 remain coincident, ∆1,X - ∆1,X =0; 

recognizing that the displacements can be written relative to displacements at the 

origin )0,0(,1 XU  and )0,0(,2 XU , we write: 

0ˆˆˆ: ,5,43 =−−− ∑∑∑∑∑∑
k m

Ykmijkm
k m

Xkmijkm
k m

kmijkm qJqGPDdirectionX λλλ                (8.24) 

where  
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5 22 GG π
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π
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For sticking in the Y-direction, we can again define a bulk relative displacement 

in the Y-direction as YYY ,2,1 δδ −=∆ . Following the same procedure, we can write 

the governing equation in Y- direction: 

0ˆˆˆ: ,4,53 =−−− ∑∑∑∑∑∑
k m

Ykmijkm
k m

Xkmijkm
k m

kmijkm qKqHPEdirectionY λλλ   (8.28)                   

with λ3, λ4 and λ5  having the same expressions as equations (8.25~8.27). 

 

In the slipping regions, the loads are defined by the Coulomb friction equality: 

kmXXkm Pq µ=,  (8.29)  

kmYYkm Pq µ=,  (8.30)  

where we introduce a vector notation for the friction coefficient defined as: 

kmkmYX Pqji µµµµ rrrrr =⇒+=  (8.31)  

 

The resultant friction coefficient has magnitude: 

22
YXo µµµ +=  (8.32) 

The vector components can be expressed as: 

o
o

X
X q

q µµ =  (8.33) 

o
o

Y
Y q

q µµ =  (8.34) 

where 22
YXo qqq +=  is the resultant tangential traction magnitude, and the 

direction of the friction coefficient vector at any contact point is opposite the 
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direction of relative motion at that point. Since qx and qy are the unknowns in 

system equations, we cannot use above relations to obtain µx and µy directly. We 

then use the result from previous iterative step to compute µx and µy in current 

step. That is: 

o
o

X
X iq

iq
i µµ

)1(
)1(

)(
−
−

=  (8.35) 

o
o

Y
Y iq

iq
i µµ

)1(
)1(

)(
−
−

=  (8.36) 

 

where, i is the index of iteration. In the beginning of iteration scheme, vector µr  is 

set in the direction of radius.  

 

Finally, the overall tangential force balance of the system requires: 

∑∑ =
k

X
m

Xkmp QqA ,  (8.37)  

∑∑ =
k

Y
m

Ykmp QqA ,  (8.38)  

where QX and QY are the total tangential loads applied to the two contacting 

bodies. 

 

We note that in the slipping regions, the two points A1 and A2 do not remain 

coincident, and the extent of their relative motion is determined by the elastic 
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responses of the two materials, and the sliding friction shear stress at the 

interface. 

 

 

 

 

 

 

 

 

 

Figure 8.2  Tangential Interface Behavior Showing Points A1 and A2, Originally 

Coincident, Undergoing Tangential Displacements XU ,1  and XU ,1 . Sticking 

Regions Can Be Determined by Considering Interface Displacements Relative to 

Far-Field Displacements  δ1,x and δ2,x 

 

8.5 Discrete Equations 

Based upon the preceding discussion, the discrete system equations can be 

stated.  The unknowns in this approach are the interface normal and tangential 

tractions at the nodes on the contact surface, Pij, qij,X, qij,Y for all (i,j) on the contact 

surface.  For N surface nodes, this results in 3N unknowns.  The traction-
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displacement equations (8.19, 8.24 and 8.28) contribute 3N-3 equations, which are 

supplemented by the three force balance equations (8.22), (8.37), and (8.38). The 

coefficient matrix for the unknowns is constructed from the operators Cijkm, Dijkm, 

… Kijkm as well as the scalars λi; i=1,…,4  described earlier in this section.  Note 

that because the influence functions are constructed from analytical elasticity 

solutions, the coefficient matrix arising from these equations is fully populated. 

The surface displacement due to a point load on a half-space only goes to zero 

asymptotically as we move infinitely far from the load application point.  While 

this implicit satisfaction of displacement boundary conditions does provide some 

modeling and discretization advantages (as described later), it also limits our use 

of sparse matrix storage approaches and sparse solvers.  The coefficient matrix in 

this approach does not emerge with a banded characteristic of, for example, 

structured FEM techniques. Nonetheless, overall system equations of the form  

 

[ ]{ } { }BxA =  (8.39) 

 

where{ } { }yijxijij
T qqpx ,, ,,=   for all (i,j) node locations, can be assembled and 

solved at each iteration, and ultimately a convergent solution for contact area 

and stick zone size can be achieved. 

 

8.6 Numerical Approach 
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There are three essential considerations in developing a numerical approach 

which takes full advantage of the analytical solutions presented here. There are 

two implementation/iteration issues related to (A) contact size and (B) stick zone 

size. The third consideration is load stepping and potential path dependence of 

the numerical solution. A substantial body of literature has addressed the path 

dependence issue [see related discussion on existence and uniqueness in the 

Chapter 2], so we first consider the nature of the solutions to the problem at 

hand. In the dissertation, we apply a novel semi-analytical strategy to solve 

normal contact problems with friction, in which the normal load is applied both 

quasi-statically and monotonically, with no global tangential loading. In solving 

axisymmetric indentation problems under these conditions, Spence [Spence, 

1968] developed self-similar solutions which show that in fact the solution is 

unique (i.e., independent of load path), even in the presence of friction. He later 

reported [Spence 1975] axisymmetric indentation results valid for any power law 

indenters, which are functions of geometry, material properties, friction 

coefficient, and loading, and independent of load path. Non-axisymmetric 

indentation (as in one of the examples presented later) can be accommodated by 

Spence's framework as well, but a more general argument can be made in light of 

the work of Saeedvafa & Dundurs [Saeedvafa and Dundurs, 1988]. From their 

detailed examination of load paths, we can conclude that the normal contact 

problem with friction and no global tangential loading is essentially path-

independent (their Regimes I and II). We therefore do not implement any load 
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stepping in the algorithm presented here, focusing rather on the iterations for 

contact size and stick zone size. Figure 8.3 highlights the nested looping structure 

with iteration on (A) contact area and (B) stick area, as described next. 

 

A:  Iteration on contact area 

Iteration on the contact area is determined based upon the contact pressure 

constraint: 

Sjipij ∈∀≥ ),(0  (8.40) 

for all (i,j) in S [where the force balance equation (8.22) is implicitly satisfied by 

solutions of the linear system (8.39)]. Iteration on the contact area involves taking 

the current contact area, calculating contact tractions based upon the stick or slip 

status of each contact node, and comparing the calculated contact tractions with 

constraint (8.40).  If any 0<ijp , then the contact area S is adjusted to include 

fewer nodes (i,j) as appropriate, and the calculations continue until the result 

converges.  The contact area is then indicated by the boundary separating 

regions of pij=0 from non-zero pressures.  As we shall see later, this approach 

allows determination of the contact size to an accuracy on the order of at least 

le/3, and in some cases much better. 

 

B: Iteration on sticking area 
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The algorithm for iteration on stick zone within the contact area includes the 

nested iteration on contact domain S.  Further, we employ a checking procedure 

which partitions the contact into sticking and slipping regions for the next 

iteration step according to the constraint: 

( ) ( )jiji YXpYXq ,, 0µ≤r  (8.41) 

If the above constraint is satisfied, the node falls into the stick area.  Otherwise, 

the node falls into the slip area.  The iteration is continued by comparing 

solutions of the system equations (8.39) to this constraint, and adjusting the stick 

area until a consistent solution is obtained. 
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Figure 8.3 Flowchart for the Numerical Solution. An Internal Loop over Contact 

Area (A) Is Nested Within the Stick-Slip Region Iteration (B). 
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Chapter 9 

 

Numerical Examples  

 

The algorithm presented here has been implemented into a numerical framework 

and used to examine several example problems.  The intent of this section is to 

look at several specific cases for which analytical solutions or previous numerical 

solutions are available to evaluate the accuracy and convergence behavior of the 

proposed method. 

 

9.1 Normal Contact of Elastic Spheres Without Friction 

First, consider the case of two dissimilar elastic spheres in normal contact, 

without friction, under a total normal load P = 1000 N.  This example has been 

chosen to evaluate the validity of the equation formulation as well as the contact 

area iteration procedure.   

 

Table 9.1 Properties of Material and Geometries 

No.  Material E (×109 N/m2) ν Radius (m) 

1 Steel, S.A.E 4068 206.84 0.27 0.100 

2 Stainless 193.05 0.27 0.150 
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The algorithm presented here determines whether each surface node is within 

the contact area S, and therefore if we define the boundary of the contact area S 

simply by connecting the surface nodes (using nodes just inside S), then the 

contact region is defined by a piecewise linear function.  Since we know that in 

this case the contact area is indeed a circle, we use a least-squares approach to 

define the best-fit circle to the solution.  

 

2
22 e

iii
l

YXa ++=  (9.1)  

is the  ith radius estimate, and a is the estimated radius of the contact area given 

by: 

∑
=

=
m

i
ia

m
a

1

1  (9.2) 

 

Table 9.2 gives several computational results for various background meshes. A 

typical mesh scheme is shown in Figure 9.1. It will be useful to define two 

additional accuracy parameters, both of which measure errors related to the 

contact area S.  

 

The radius error is defined as:  

o

o
a a

aa
E

−
=                                                                              (9.3) 
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The radius standard deviation is defined as:                                                        

( )

m

aa
m

i∑ −
=

2

σ   (9.4) 

where m is the number of points defining the contact area. 

 

Table 9.2  Convergence Study, No Friction Case 

Number of 

Initial Nodes 

Length of 

Triangle 

sides 

(×10-4 m) 

Maximum 

Normal Traction 

(×108 N/m2) 

Contact Area, 

Radius a  

(×10-4m) 

Wall Clock 

Time of 

Computation

11×11 2 8.573573 7.671789 Immediate 

21×21 1 8.551941 7.341638 Immediate 

31×31 0.75 8.547610 7.491091 1.5 min 

41×41 0.50 8.545378 7.481721 8min 

51×51 0.40 8.544563 7.466225 18min 

Hertz’s Solution 8.543278 7.475813  

 

Table 9.2 shows the convergence of the numerical solution as a function of mesh 

parameter le. Both contact pressure p/po and contact radius a/ao converge 

quickly to the analytical solution, and the two error estimates also approach zero 

as the mesh is refined. We note that a convergent solution for the Hertz problem 

is obtained when the grid spacing becomes sufficiently small, say le/ao ≤ 0.1. 
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Figure 9.1 The Background Mesh and Curve Fit for Contact Area 

 

 

9.2 Normal Contact of Elastic Spheres With Friction 

We now examine the case of normal contact of dissimilar elastic bodies with 

friction under the action of an applied normal load P, with zero tangential load,    

QX=QY=0. Two recent numerical approaches [Kosior, F., Guyot, N., and Maurice, 
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G. 1999], [Guyot, N., Kosior, F., and Maurice, G., 2000], as well as an earlier 

analytical approach [ Spence, D. A., 1975 ], provide results for comparison with 

the method described here. We consider two cases (one for each of the two 

numerical works cited above), both of which can be compared to the analytical 

solution of Spence.  Two different mesh spacings were used to compare with the 

numerical results. The physical lengths of the nodal spacing are 61 105.3 −×=el  m 

and 62 105 −×=el  m, both of which are similar to the characteristic mesh sizes cited 

in [Kosior, F., Guyot, N., and Maurice, G. 1999], [Guyot, N., Kosior, F., and 

Maurice, G.,  2000 ]. 

 

A typical numerical result for the calculation of resultant tangential traction qo is 

shown in Figure 9.2, a 3-D contour plot in which the height of the contour 

indicates its value. Outside the contact zone, beyond the circular boundary of 

diameter 2a, the tangential traction is identically zero, while within the contact 

zone it varies depending upon the local sticking or slipping state.  In the slip 

annulus defined by c<r<a (where r is a radial location measured from the center 

of contact), the tangential traction scales with the contact pressure by Coulomb's 

law, qo(X,Y) = µoP(X,Y).  Within the sticking region, r < c, the tangential traction 

does not scale directly with contact pressure, but rather locally assumes a value 

which allows for overall force equilibrium in the tangential direction.  We finally 
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note that exactly at the center of contact r=0, the tangential traction falls to zero, 

as this is a point of symmetry in the geometry and loading. 

 

Table 9.3  Numerical Result Compared with Previous Analytical and Numerical 

Solutions 

Conditions Method po(MPa) a (µm) c/a 
This Method 2092.5 47.40  

Guyot 2133.4 47.80  µ = 0.0 
Hertz 2091.4 47.78  

This Method 2154.2 46.61 0.511 
Guyot 2156.6 47.50 0.690 µ = 0.1 
Spence - - 0.530 

This Method 2154.2 46.61 0.978 
Guyot 2169.7 47.50 0.990 

P = 10N 
 

µ = 0.6 
Spence - - 0.999 

This Method 3068.3 70.28 - 
Kosior 3069.0 70.70 - µ = 0.0 
Hertz 3065.8 70.04 - 

This Method 3163.8 68.43 0.533 
Kosior 3147.0 68.80 0.545 µ = 0.1 
Spence - - 0.535 

This Method 3163.8 68.43 0.980 
Kosior 3167.0 67.60 0.961 

P = 31.5N 
 

µ = 0.6 
Spence - - 0.999 
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Figure 9.2 Contour Plot of Tangential Interface Traction qo for Normal 

Indentation of Dissimilar Materials (with Friction) 

 

9.3 Contact of Crossed Elastic Cylinders 

We next consider the contact of crossed elastic cylinders, a non-axisymmetric 

normal indentation problem which will test the robustness of the approach 

presented here. Two long, elastic cylinders of radius R1 and R2 with axes oriented 

at an angle φ are pressed together by a normal load P with no global tangential 

load. We consider one steel cylinder of radius R1 = 75 mm, and one aluminum 

cylinder of radius R2 = 50 mm, loaded by a normal force of P = 10 kN. The 

contact shape for a crossed cylinder contact problem is an ellipse of major semi-

axis a and minor semi-axis b oriented at an angle θ from the x-axis, and in 

general θ ≠φ (see the Appendix for an approximate analysis of the relationship  
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Figure 9.3 Crossed Cylinder Contact Analysis: (a) Contact Schematic, (b) Ellipse 

Fitting from Computational Results 

 

between θ and φ). This situation is shown schematically in Figure 9.3(a), in which 

both the angles are defined. Part (b) of the figure shows a calculation for the best-

fit ellipse as well as an error estimate for the curve fit. The open circles 

correspond to grid points immediately inside the contact region (for which the 

contact pressure pij > 0), while the closed circles correspond to grid points 

immediately outside the contact. The ellipse fitting error is defined as: 

( ) ( )∑
=

−+−=
N

i
iiiie yyxx

Nb
E

1

221  (9.5) 

 

where (xi; yi) are the coordinates of the grid points defined on the figure, N is the 

total number of points defining the contact boundary, and ( )ii yx ,  are the 
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coordinates on the best-fit ellipse closest to the grid point (xi; yi). The error is 

therefore interpreted as the mean distance of each grid point to the best-fit 

ellipse, normalized by the semi-minor axis b.  

 

These results use le = 0.225 mm, and we first present a calculation for contact size 

in the absence of friction and φ = 90°, for which there exists an analytical solution 

[Young 1989, page 651]. In this case, θ  = 90°, and the analytical solution for the 

ellipse axes is aa = 2.287 mm and ba = 1.748 mm. Our calculations for the best-fit 

ellipse result in ae = 2.303 mm, be = 1.781 mm, θ = 89.5°, with ellipse fitting error 

Ee = 0.05. The average error in the estimates for (ae; be) is about 1.25% as 

compared to the analytical solution (aa; ba). This calculation gives confidence that 

the numerical algorithm for contact calculations is correct, that the predicted 

ellipse axes are correct, and also that the background grid is sufficiently fine that 

the best-fit ellipse accurately represents the actual contact region. A number of 

other cases, both with friction and without, are shown in Figure 9.4 for φ = 30°; 

45°; 60°; 90°. For the non-zero friction cases, the stick ellipse in the center of 

contact was fit with an ellipse in the same way as the contact zone. We note the 

increasing stick zone size with increasing friction, as expected, although the total 

contact size changes by only a few percent as in the Hertz problem discussed 

above. For µ = 0.5, virtually the entire contact sticks; fully resolving this very 

small slip ellipse will require an extremely dense background grid. Angle θ 

always lags the cylinder orientation angle φ, and the ellipse aspect ratio a/b 
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becomes smaller as φ increases. In all cases, the error in the ellipse fit is on the 

order of 11% or less. Error is larger for the larger aspect ratio cases, for which 

resolving the semi-minor axis b demands a finer mesh. From this crossed 

cylinder example, we reinforce the idea that the approach described here is 

capable of accurately and efficiently solving non-conformal normal contact 

problems with friction. 

 

 

 

Figure 9.4  Crossed Cylinder Contact Results for Contact and Stick Zone Size 

with µ = 0; 0.25; 0.5 and φ = 30°; 45°; 60°; 90°. Ee is the Curve Fit Error from 

Equation (9.5)  
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Chapter 10 

 

Discussion and Conclusion 

 

The numerical solutions described here demonstrate the fidelity of this semi-

analytical method for a variety of normal contact problems. Specifically, 

comparisons to analytical solutions (Hertz, Spence, Roark) and existing 

numerical results (Guyot, Kosior) are very good. The semi-analytical nature of 

this approach affords several convenient features for the numerical 

implementation: 

 

• Boundary conditions for the contact mechanics problem are contained in 

the analytical solutions, so the size of the physical domain over which the 

background mesh is defined must be only slightly larger than the actual 

contact area, and the background grid is defined only on the contact 

surfaces 

• Iteration on contact area and stick/slip boundary location uses the 

analytical displacement solutions, which reduces the computational cost of 

each iteration  
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• Displacement interpolation errors are eliminated by using the analytical 

solution for surface displacements  

• Non-Hertzian contact configurations, including those with friction and 

non-quadratic surfaces, can be analyzed easily, so long as the underlying 

assumptions of the analytical displacement solution (i.e., we can consider 

the surfaces as elastic half-spaces) are not violated 

 

As compared to the FEM and BEM approaches to contact mechanics, this method 

provides some advantages, the most important being its lack of interpolation of 

field variables. In this approach, the displacement at each node is related to 

loading at every other node through a non-zero influence function which is 

determined analytically. This allows us to describe the contact surface without 

formal elements or structured connectivity, because each node is implicitly 

connected to every other node. On the other hand, the resulting discrete 

equations do not retain the characteristic banded structure of FEM stiffness 

matrices, and in this sense our approach is similar to the BEM approach, in 

which fully-populated matrices result. Nonetheless, the numerical results 

presented here clearly show that the accuracy of this method is consistent with, 

and in some cases better than, more traditional numerical approaches. 

 

The lack of underlying `element' organization of the overlapping pyramid 

loading cells may suggest that this approach falls into the broad class of `mesh 
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less' methods. However, this is not strictly the case, as this method makes no use 

of interpolation functions for the field variables (displacements), and instead 

uses the analytical surface displacement solutions developed elsewhere [Li & 

Berger 2001]. On the other hand, mesh less methods depend upon well-defined 

interpolation functions, regardless of the mesh less approach used (e.g., moving 

least squares [Lancaster & Salkauskas 1981], partition of unity [Babuska & 

Melenk 1997], hp-clouds [Duarte & Oden 1996], mesh less local Petrov-Galerkin 

[Atluri, Kim & Cho 1999], etc.). System stiffness matrices in mesh less approaches 

require numerical integration of the interpolation functions, and depending 

upon the interpolation scheme and mesh less approach, this sometimes requires 

use of background “integration cells" to facilitate quadrature. On the contrary, 

this approach circumvents all of these interpolation concerns by directly 

developing the influence coefficients from analytical surface displacement 

solutions. 

 

We next consider the relationship between this work and the suggestions of 

Johnson [Johnson, 1985], who originally proposed this type of procedure. 

Johnson considered normal contact of frictionless surfaces for both line and point 

contacts. To describe the influence coefficients he used a variety of analytical 

solutions, depending upon the location of the point of interest relative to the 

loading point, and in fact his expressions for influence coefficients are exact for 

only a few nodes on the contact surfaces. By constructing the influence 
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coefficients from piecewise analytical solutions and approximations, he makes 

use of readily-available expressions. 

 

This method is a substantial extension over Johnson's original work, although the 

procedure and underlying framework retain the same spirit. Here, we solve 3-D 

normal contact normal contact with friction 3-D problems with friction, and this 

non-trivial extension has been achieved after first developing the fundamental 

analytical surface displacement solutions for triangular (normal and tangential) 

loading profiles [Li & Berger 2001]. From these analytical solutions, the influence 

coefficients can be derived, the governing contact equations assembled, and the 

resulting system solved at each iteration step to determine contact area and stick 

zone size. The influence coefficients can be evaluated exactly at every point on 

the contact surface, although the computational price is the resulting fully-

populated coefficient matrices. 

 

A semi-analytical approach to general non-Hertzian normal contact mechanics 

problems has been described and validated against analytical solutions and 

previous numerical results for normal contact of dissimilar materials, with 

friction. This approach is fundamentally different from more traditional 

numerical approaches, and the key distinction is the lack of an underlying 

interpolation scheme for the field variables. Instead, we use an analytical 

solution for surface displacements due to a pyramid loading profile, and then the 
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total normal and tangential contact tractions can be assembled as a superposition 

of appropriately-scaled, overlapping pyramid sections. This approach employs 

iteration on contact size and stick zone to reach a convergent solution. The 

numerical results show high accuracy as compared to previous numerical and 

analytical solution. The sensitivity of the method allows us to capture changes in 

contact area due to friction, an observation supported elsewhere in the literature. 

 

Having validated the numerical framework for normal contact problems with 

friction, the work was reported in [Li, J. and Berger, E. J., 2003]. 
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Part IV 

  

The Development of a Semi-Analytical Approach to 

3-D Frictional Contact Problem with Tangential 

Load --- Incremental Algorithm 

 

As discussed in section 2.2.2, due to the path-dependent nature of frictional force, 

in principle, any contact problems with friction involved should be treated as 

dynamic models. The work done also shows difficulty when using non-

incremental algorithm to the cases that global tangential force exist, although the 

non-incremental algorithm seems to have the capacity to consider tangential 

force (see section 8.4). Therefore, in order to handle general 3-D contact 

problems, it is necessary to develop incremental algorithm. This part presents the 

development of such an algorithm, which is based also on the idea of overlapped 

pyramids. 
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Chapter 11 

Modeling of Frictional Contact  

 

We first discuss several useful contact models, then present related contact 

conditions. The contact model employed by the author is derived from these 

models. 

 

11.1 Elastodynamic Model 

For the purpose of simplification, we consider that a linear elastic body, 

occupying a space Ω∈RN  (for 3-D problem, N=3), comes into contact with a rigid 

foundation, over part  Γc of its boundary Γ. The body force density is 

),...,,( 21 Nbbbb =
r

, and prescribed displacements dU
v

 are applied to boundary Γd, 

and traction t onto the parts Γt. We also assume that: Γ=Γc∪Γd∪Γt.  Γc is called 

contact boundary, which means the boundary of Ω that possibly comes into 

contact (Figure 11.1). 
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Figure 11.1 The Elastodynamic Model  

 

Assume the material of elastic body possesses isotropic properties. The 

elastodynamic model presented here is based on the Oden and Martins’ model 

[Oden and Martins, 1985], except the modification that the spring constraint has 

been taken away. It is reasonable since we do not consider the significant motion 

of contact bodies. From elasticity, we have: 

( ) lkijklij uEu ,
rr =σ  (11.1) 

where ijσ  is the stress tensor, Nlkjixuu lklk ≤≤∂∂= ,,,1,/,
rr   is the derivative of 

displacements, and ijklE  is the elasticities, which satisfy: 

klijijlkjiklijkl EEEE === ,    ( )Ω∈ ∞LEijkl , (11.2) 
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In Ω, for every symmetric tensor Aij,  α is a positive constant in following 

inequality: 

ijijijklijkl AAAAE α≥   (11.3) 

 

And the elasticities also satisfy: 

MESUP ijklNlkji
≤

∞≤≤ ,,,1
. (11.4) 

 

For a time interval [0, T], the equations governing this elastodynaics problem are 

written as follows: 

( ) iijij ubu &&rr ρσ =+, ,  in Ω and (0, T),  (11.5) 

 

where, ρ is mass density, and ( ) 0,,0/ 0 >≥Ω∈=∂∂ ∞ ρρρρ Lt ; the particle 

acceleration is: 

22 / tuu ii ∂∂≡&&v   (11.6) 

 

stress and displacement relations are written as: 

( ) ( )jiijlkijklij uEu σσσ == ,
rr . (11.7) 

 

The boundary conditions are: 

duu rv =               on Γd, t∈[0, T],  (11.8) 
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ijij tnu =)(rσ     on Γt, t∈[0, T],  (11.9) 

 

Initial conditions: 

10 , uuuu r&vrr ==        in Ω and t=0.  (11.10) 

 

11.2 Quasi-Static Model 

The quasi-static model is obtained from dynamic model by neglecting the inertial 

force term. The quasi-static problem is to find the fields of displacement and 

stress tensor such that: 

0=+ bdiv
rrσ                                 in Ω,  0<t<T,  (11.11) 

( ) ( )jiijlkijklij uEu σσσ == ,
rr          in Ω,  0<t<T,  (11.12) 

tn
rrr =•σ                                        on Γt,  0<t<T  (11.13a) 

duu rv =                                             on Γd, 0<t<T,  (11.13b) 

,0uu rr =                                          in Ω and t=0.  (11.14) 

 

The model covers two frequently used boundary conditions: 

• The resultant forces exerted on the body on contact boundary are given; 

• The displacement fields on the contact boundary are given. 
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11.3 Contact Conditions on Contact Boundary 

We consider a special case: both the elastic body and the rigid foundation have 

flat surfaces and are infinite half spaces. Denote by g the initial gap, or separation 

between the contact boundary and rigid foundation, measured along the 

outward normal direction of Γc  (Figure 11.2). 

 

There are two different ways to model contact boundary conditions: Signorini’s 

condition and Oden’s power law model. The latter provide certain insight of 

frictional contact phenomenon. The basic ideas for both models are cited in the 

following two sections. 

 

11.3.1 Signorini’s Contact Condition 

Figure 11.2 (a) and (b) show the status before and after an elastic body comes into 

contact with a rigid foundation. The contact boundary is treated as an ideal 

surface, the property of which is described only by the coefficient of friction µ. 

Because the elastic body cannot penetrate the rigid foundation, we have: 

0≤− guN           on Γc  (11.15) 

where, Nu  is the normal surface displacement of elastic body, g is the initial gap 

before contact. Notice that contact stresses are compressive, therefore: 

0≤Nσ                on Γc  (11.16) 
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On contact boundary Γc, the following relation holds: 

( ) 0=− guNNσ ,  which means: 





=
=−

0:
0:

N

N

separation
gucontact

σ
  (11.17) 

 

The above three equations represent Signorini’s contact condition on Γc.  Let 

tuu ∂∂= /r&r  denote the derivative of displacement with respect to time, then the 

Coulomb’s law of friction is written as:  









≥−=−=

=−<

0

0

λσλµσσ

µσσ

someforuthen

uthen

TTNT

TNT

r
&

r

&
r

 (11.18) 

 

11.3.2 Oden’s power law of friction 

In reality, however, the surface is not perfect. The surface properties greatly 

depend on the machining processes and working environments. Figure 11.2 (c) 

and (d) show the status before and after an elastic body comes into contact with a 

rigid foundation.  On summarizing experimental work, Oden and his colleagues 

proposed a non-linear, non-local law of friction [Oden and Martins, 1985], which 

can better address the real behavior of contact surfaces than classic Coulomb’s 

law of friction. The normal compliance is written as power law: 
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Figure 11.2 The Contact Problem of Two Infinite Half Spaces (See similar 

discussion in [Oden and Martins, 1985] and [Klarbring, Mikelic and Shillor, 

1988]) 
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( ) Nm
NNN gUc +−=−σ   (11.19) 

where the constants 0,0 >> NN mc  are all related to the physical characteristics 

of the surface. The friction law is then generalized into the form: 

( )

( )







≥−=−=

=−<

+

+

0

0

λσλσ

σ

someforuthenguc

uthenguc

TT
m

NTT

T
m

NTT

T

T

r
&

r

&
r

  (11.20) 

 

The classic Coulomb’s law of friction can be retrieved by setting NT cc µ= , and 

NT mm = . 

 

11.4 Incremental Model 

As discussed in section 2.2.2, the widely adopted way to deal with quasi-static 

problem is incremental method.  This section is to derive the incremental model 

by using Oden’s power law of friction. Divided time interval [0, T] into N+1 

segments (tn, tn+1 ), n = 0, 1, 2, …, N and 

0 = t0 < t1 < … < TN+1 = T.  

 

Let the time derivative of displacements ur  be approximated by finite difference: 

( ) )/()()()( 111 nnnnn tttututu −−≈ +++
rr&r   (11.21) 

 

Introduce following notation to simplify the formula: 
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)( n
n tuu rr =    (11.22) 

Then we can write: 

nnnnnnnnn bbbtttuuu
rrrrrrrrr ∆+=∆+=∆+= +++ 111 ,,   (11.23) 

here, ∆ denotes the increment at current load step. We further write nur  as the 

sum of incremental solutions: 

∑
−

=

∆+=
1

0

0
n

i

in uuu rr   (11.24) 

where 0ur  is initial displacement. 

 

Oden et al. [Oden and Martins, 1985] and Klarbring et al. [Klarbring, Mikelic and 

Shillor, 1988] derived the incremental formula by using the method of virtual 

power of normal stress and frictional force. Their work shows that the 

incremental problem is equivalent to the following time independent boundary 

value problem: 

0)( =∆+∆ nn budiv
rrrσ              in Ω  (11.25) 

0=∆ nu                                   on Γd  (11.26) 

tnu n rrrr ∆=•∆ )(σ                      on Γt   (11.27) 

( ) Tmn
N

n
NNN guuc +−∆+−=σr     on Γc   (11.28) 
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( ) ( )

( ) ( )
( )













≥∆+−=∆

−∆+=∆+

=∆−∆+<∆+

+

+

0

0

λσλ

σ

σ

someforuuuthen

guucuu

uthenguucuu

nn
T

n
T

mn
N

n
NT

nn
T

n
T

mn
N

n
NT

nn
T

T

T

rrrr

rrr

rrrr

  (11.29) 
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Chapter 12 

The Incremental Algorithm for Contact Boundary 

Problems 

 

The model presented in section 11.4 is a complete model to describe the behavior 

of the elastic body under the various applied forces (or tractions) / 

displacements, as well as body force. Now we simplify this model to concentrate 

on contact behavior, in other words, only contact area, surface tractions, surface 

displacements, and partition of stick and slip zone of contact boundary Γc are to 

be found. We use Signorini’s law in order to further simplify the model, which 

means the properties of real surfaces are modeled into only one parameter: 

coefficient of friction. Because this simplified model can be retrieved from the 

power law model, the existence and uniqueness issue are covered by the power 

law model. Pre-developed traction-displacement relationships are used to 

formulate the solution. 

 

12.1 The Derivation of Contact Model for Two Elastic Bodies 

Model One:  A flat elastic body rests on a flat rigid foundation.  
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Since we consider both bodies as infinite half spaces, the contact condition will 

be the same everywhere, only one single point represents the solution to all the 

body.  The model can be written as follows: 

 

At loading step n+1( n = 0, 1, 2, …, N ): 

Lose contact: 0== TN σσ   

Come into contact: 0<Nσ  and: 

 


















∆+=∆≥∃⇒

∆+−=∆+

=∆⇒

∆+−<∆+

⇒<∆+

)(,0

)()(

:

0

)()(

:

0)(

nn
T

n

nn
N

nn
T

n

nn
N

nn
T

nn
N

uuu

uuuu

ZoneSlipping

u

uuuu

ZoneSticking

uu

rrrr

rrrrr

r

rrrrr

rr

σλλ

µσσ

µσσ

σ  (12.1) 

 

The above equation and inequality serves as criteria that a surface point fall into 

stick or slip zone, or a node changes contact conditions. 

 

Model Two:  The Curved Elastic Body to Flat Rigid Foundation 

Since the elastic body is curved in contact boundary, the contact conditions are 

different from point to point. However, we can use the flat-flat model in a point-

wise manner, taking into account the fact that the initial gap is different from 
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point to point, not all of points fall into contact or separate. Therefore, an 

algorithm needs to be developed to determine which nodes are falling into 

contact and which are not. 

 

Model Three:  The Curved Elastic Body to Curved Elastic Body 

Finally, we will reach our goal: the contact problem of two non-conforming 

elastic bodies. Note that in this case: (1) Both bodies are elastic, therefore any 

points within two bodies have displacements. (2) Both bodies are curved, 

therefore, the initial gap should take into account the two parts. This can be 

formulated by modifying some constants from model No. 2. 

 

12.2 Algorithms for Contact Area Detecting, Stick/Slip Zone 

Partitioning, and Field Variables Computation 

Let h(X, Y, t) denote the initial gap between the body and foundation when they 

come into contact but contact stress is zero. Follow the detailed procedure 

discussed in [Li and Berger, 2002, or Part III of the dissertation], we can write: 

 

For all the surface nodes on contact boundary, the following relation holds (See 

Figure 8.2): 
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







−<
−>
−=

++ ∑∑∑∑∑∑

placetakesnpenetratioSareacontactoutsidetYXh
SareacontactoutsidetYXh

SareacontactwithintYXh

qIqFPC
k m

Ykmijkm
k m

Xkmijkm
k m

kmijkm

,),,(
),,(
),,(

ˆˆˆ
,2,21 λλλ

                                 (12.2)                       

 

where 

2

2

1

1
1 2

1
2
1

GG π
ν

π
νλ −

+
−

=        (12.3) 

2

2

1

1
2 4

21
4

21
GG π
ν

π
νλ −

−
−

=       (12.4) 

 

Keep in mind that Pkm, qkm,X and qkm,Y  are functions of time, and ijkmC
r

, etc., are the 

constants with respect to time. By taking derivative of equation (12.2) with 

respect to time (t), and approximating derivatives by finite differences, we have: 

 

n

k m

n
Ykmijkm

k m

n
Xkmijkm

k m

n
kmijkm hqIqFPC ∆−=∆+∆+∆ ∑∑∑∑∑∑ ,2,21

ˆˆˆ λλλ       (12.5) 

 

where, the symbol ∆ denotes the increment, superscript n denotes the loading 

step, they keep the same meanings for following derivation.  

 

Equilibrium in the Z-direction also requires the force balance constraint: 
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∑∑ =
k

total
m

kmp PPA      (12.6) 

where 2

2
3

ep lA =  is the characteristic volume of a pyramid of uniform hexagonal 

base and unit height, and Ptotal is the total normal load applied to the contacting 

bodies. 

 

We take derivative of equation (12.3) with respect to time (t) , and approximate 

derivatives by finite differences: 

∑∑ ∆=∆
k

n
total

m

n
kmp PPA      (12.7) 

 

In sticking regions, the points A1 and A2 remain coincident (See Figure 8.3), ∆1,X - 

∆1,X =0; recognizing that the displacements can be written relative to 

displacements at the origin )0,0(,1 XU  and )0,0(,2 XU , we write: 

 

0ˆˆˆ: ,5,43 =−−− ∑∑∑∑∑∑
k m

Ykmijkm
k m

Xkmijkm
k m

kmijkm qJqGPDdirectionX λλλ  (12.8) 

 

0ˆˆˆ: ,4,53 =−−− ∑∑∑∑∑∑
k m

Ykmijkm
k m

Xkmijkm
k m

kmijkm qKqHPEdirectionY λλλ         (12.9) 

 

where  

2

2

1

1
3 4

21
4

21
GG π
ν

π
νλ −

−
−

=        (12.10) 
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2

2

1

1
4 2

1
2
1

GG π
ν

π
νλ −

+
−

=       (12.11) 

 
2

2

1

1
5 22 GG π

ν
π
νλ +=       (12.12)  

 

Again we obtain finite difference equations from (12.6)~(12.7): 

 

:directionX −  

0ˆˆˆ
,5,43 =∆−∆−∆ ∑∑∑∑∑∑

k m

n
Ykmijkm

k m

n
Xkmijkm

k m

n
kmijkm qJqGPD λλλ               (12.13) 

:directionY −  

0ˆˆˆ
,4,53 =∆−∆−∆ ∑∑∑∑∑∑

k m

n
Ykmijkm

k m

n
Xkmijkm

k m

n
kmijkm qKqHPE λλλ                (12.14) 

 

In slip region, the surface tractions fulfill Coulomb’s law. In general, we write:   

n
km

n
T

n
km

n
km quuPq rrr λλ =∆≥∃= ,0, ,   (12.15) 

and  

2
,

2
, YkmXkm

n
km qqq +=r   (12.16) 

 

Because (12.16) is a non-linear equation of Xq  and Yq , we cannot integrate 

equations (12.15-12.16) into system equations. We introduce the concept of vector 

of coefficient of friction to linearize the equation: 
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







=
Y

X

µ
µ

µr     (12.17) 

 

The component of µr  can be written as: 

 

µµ
q

qtYX X
X =),,(    (12.18a) 

µµ
q

qtYX Y
Y =),,(  (12.18b) 

where qq r=  is the resultant tangential traction magnitude. The resultant friction 

coefficient has the constant magnitude: 

22
YX µµµ +=               (12.19) 

 

Since Xq  and Yq  in current load step are the unknowns in system equations, we 

cannot use above relations to obtain µx and µy directly. We then use the result 

from previous iterative step to compute µx and µy in current step. That is: 

on

n
Xn

X iq
iqi µµ

)1(
)1(

)(
0 −

−
=  (12.20a) 

on

n
Yn

Y iq
iq

i µµ
)1(
)1(

)(
0 −

−
=  (12.20a) 
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where i is the index of iteration. In the beginning of iteration scheme, vector µr  is 

set in the direction of radius. Note that the components of µr  are always positive. 

 

 In practice, therefore, the equation (12.15-12.16) are rewritten as: 

 

)(,
n
TX

n
km

n
X

n
Xkm usignPq ∆= µ               (12.21) 

)(,
n
TY

n
km

n
Y

n
Ykm usignPq ∆= µ               (12.22) 

Y
n
TYX

n
TX

n
T juiuu

rrr ∆+∆=∆       (12.23)  

where,  YX jandi
rr

are unit vector in X- and Y- direction respectively. n
TXu∆  and 

n
TYu∆  are X- and Y- component of n

Tur∆  respectively. Because n
Tur∆  is unknown, in 

the iteration, we use the result of previous computational step instead: 

X
n
T

n
TX iiuiu

rr •−∆≈∆ )1()(               (12.24) 

Y
n
T

n
TY jiuiu

rr •−∆≈∆ )1()(               (12.25) 

where, the letter i represents the number of iterative step. The convergent 

iteration will ensure the final results are current for this loading step. 

 

Finally, the overall tangential force balance of the system requires: 

∑∑ ∆=∆
k

n
X

m

n
Xkmp QqA ,  (12.26) 

∑∑ ∆=∆
k

n
Y

m

n
Ykmp QqA ,  (12.27) 
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12.3 Discrete Equations and Numerical Approach 

For each load step, the system equations are similar to non-incremental 

algorithm. They are assembled and solved in the same way as discussed in 

section 8.5. Only the meanings of unknowns are different: all the unknowns 

represent the value of increments. 

 

Figure 12.1 presents a general flowchart that outlines that numerical procedure. 

Due to the nature of contact problems, the procedures such as contact detecting, 

stick/slip zone partitioning, determining of the direction of shear traction, etc., 

require iterations. There are two important iterative procedures in this numerical  

approach, which are presented in detail next. 

 

12.3.1 Iteration on Expanding Contact Area 

In a non-incremental algorithm, the contact area keeps shrinking from initial pre-

described large area until final convergence. The incremental algorithm, 

however, is a two-way road; it can expand or shrink contact and stick zone 

whenever it is necessary. For example, when a normal load starts from zero to its 

maximal value monotonically, the contact zone should expand monotonically.  

 

Expanding becomes necessary when the contact area in current step is too small. 

The expanding is implemented in such a way that it enlarges the current contact 
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area by a ring. In Figure 12.2, the solid dots represent current contact area, while 

the hollow dots show the expanded area. This approach has an advantage of 

“following the current shape of contact area”.  Sometimes it will save 

computational time if contact area expands more than one ring at a time, this is 

realized simply by repeating above procedure.  

 

We use equation (12.2) as a criterion to judge whether a contact area is too small. 

When the contact area is too small for the loads, the equation takes minus sign 

somewhere outside contact area, which means penetration has taken place. The 

contact zone, therefore, needs to be expanded. 

 

The penetration is checked after the current step field variables have been 

computed, because penetration checking is based on current value, rather than 

increments. 

 

12.3.2 Iteration on Shrinking Contact Area 

Shrinking contact area is discussed in section 8.6 (under A: Iteration on contact 

area). The procedure is still used in the incremental algorithm. All the nodes 

falling into contact area must fulfill: 

Sjippp n
ij

n
ij

n
ij ∈∀≥∆+= − ),(01  (12.28) 
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After system equations are solved, each node in current contact zone is examined 

against the above criteria. If any node has 0<n
ijp , then this node is eliminated 

from contact zone. 

 

12.3.3 Iteration on Partitioning Stick / Slip Zone 

The partitioning of stick/slip zone is based upon the Coulomb’s law used in 

point-wise manner. For all the nodes in stick: 

( ) ( )jiji YXpYXq ,, 0µ<
r  (12.29) 

 

For all the nodes in slip, we have: 

( ) ( )jiji YXpYXq ,, 0µ=
r  (12.30) 

 

It happens all the time in the loading procedure when stick and slip nodes 

interchange. The following criteria guide the change of status: 

(i) If a node in stick in current step has the shear traction that: 

( ) ( )jiji YXpYXq ,, 0µ≥
r  (12.31) 

then it becomes slip node in next step. 

(ii) If a node in slip in current step has zero slip velocity: 

0
rr =∆ n

Tu   (12.32) 

then this node becomes stick in next step. 
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                    Figure 12.1 The Flowchart of Numerical Framework 
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Figure 12.2 The Expanding of Contact Area 
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Chapter 13 

Numerical Examples 

 

The incremental algorithm has been implemented into a numerical framework, 

which has been used to examine several contact problems. These problems are 

used to validate the algorithm and show the capacities of the algorithm. This 

algorithm is primarily developed to accommodate the need of general 3-D 

contact problem with friction and tangential force(s). One of major application of 

such a contact model is fretting contact problems. The fretting contact problems 

are usually divided into two categories: similar material problems and dissimilar 

material problems, due to the fact that they have totally different behaviors. We 

refer material similarity to the elastic properties of materials of contacting bodies. 

Dundur’s parameter is introduced to measure the similarity of material: 

 

2

2

1

1

2

2

1

1

11

2121

GG

GG
νν

νν

β
−

+
−

−
−

−

=  (13.1) 

 

For the same material, β=0. 
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13.1 Contact Problem with Similar Materials 

First, we consider the contact problem with similar materials (β≈0), we can see 

from equation (12.2), (12.8)~(12.9), the normal traction and tangential tractions 

are decoupled. It means that tangential tractions will not affect normal traction in 

entire contact area; the tangential traction in stick zone can be independently 

computed while tangential tractions in slip zone can be obtained by Coulomb’s 

law and slip velocity. 

 

Furthermore, if Poisson’s ratio is zero, the tangential tractions in X- and Y- 

directions are decoupled also. 

 

13.1.1 Cattaneo-Mindlin’s Solution 

This problem was first studied by Cattaneo [ Cattaneo, 1938], and later on, by 

Mindlin [Mindlin, 1949], [Mindlin and Deresiewicz, 1953] independently. They 

provided an analytical solution that is widely used today. Their works were 

based on an educated guess on tangential surface with stick zone. The theory has 

been validated by fretting experiments [Mindlin, 1952], [Johnson, 1955].  

 

Because it is very important in modeling fretting contact problem, we briefly 

introduce Cattaneo-Mindlin problem first: 
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Suppose an elastic sphere with radius R contacts against an elastic half-space 

with identical material, the contact conditions fulfill all the Herzian assumptions 

except that there is friction between surfaces and tangential force is exerted. 

Hertzian theory predicts the normal traction arises as the result applied normal 

load P: 

ar
a
rprp ≤





−= ,1)(

2

0  (13.2) 

 

where p0 is the maximal normal traction, which occurs at the center of contact 

area: 

20 2
3

a
Pp
π

=   (13.3) 

 

and a is the radius of contact area: 

3
2

4
31 PR

E
a ν−=  (13.4) 

 

When a tangential load PQx µ<  is applied, the shear traction in slip zone is 

related to normal traction by Coulomb’s friction law: 

arc
a
rprprq ≤≤





−== ,1)()(

2

0µµ  (13.5) 

where c is the radius of stick zone. 
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In stick zone, the shear traction is the superposition of two parts, written as: 

arc
c
r

a
c

a
rp

c
r

a
cp

a
rprqx

≤≤


















−−






−=







−−






−=

,11

11)(

22

0

2

0

2

0

µ

µµ

 (13.6) 

 

By applying the equilibrium condition along X- direction, the following 

relationship is obtained: 

3 1
P

Q
a
c

µ
−=                                         ( 13.7) 

 

Figure 13.1 shows the plot of surface traction distribution of Cattaneo-Mindlin 

problems. The Cattaneo-Mindlin’s solution is accurate only when Poisson’s ratio 

is zero. Munisamy, et al. [Munisamy, Hill, and Nowell, 1994] studied the contact 

problem with non-zero Poisson’s ratio. They found that relative transverse 

displacements result within slip zone and are maximized along the lines y=±x. 
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p/p0 

q/p0 
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1 -1 
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Stick Zone 
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 Figure 13.1  Cattaneo-Mindlin’s  Solution 

 

13.1.2 Numerical Example 

The following example comes from a fretting fatigue experiment [Tur, 

Fuenmayor and Rodenas, 2002]. Two pads with sphere top are push against the 

specimen having rectangular cross-section. The force F is applied to specimen 

while force N is applied to each pad. Both sphere and foundation are made of 

aluminum alloys. The slip zone and maximal shear traction are to be found. The 

problem is modeled as the following contact problem: an elastic body is in 
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contact with elastic foundation. The material properties and geometry data are 

listed in Table 13.1. 

 

Table 13.1 Contact Configuration Data 

Parameter E (109N/m2) ν µ P (N) Q (N) Radius (m)

Sphere 71.1 0.33 1.2 1000 10800 0.050 

Foundation 71.1 0.33    Infinity 

 

Table 13.2  Loading Step 

Step No. 1~10 11~37 Total Note 

∆P (N) 100 0 1000  

∆Qx (N) 0 40 10800  

 

The computation shows that when only normal load increments ∆P is applied 

(step No. 1~10), both contact zone and surface normal traction increase 

monotonically. The whole contact area is in stick, no slip takes place. Then, when 

tangential load increment ∆Q is applied, a slip ring appears from the contact 

boundary, all the points with which have the same slip direction. Along with the 

applying of increments ∆Q, the slip zone grows in size towards center. The 

contact zone, stick and slip area keep the property of axi-symmetry. 

 

Figure 13.2(a)~(h) are the plots of the result comparing with Cattaneo-Minlin’s 

solution. It is clear that the numerical results are very close to analytical solution.  
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(a)                                                                                (e) 

 

 

 

(b)                                                                                (f) 

 

 

 

 

(c)                                                                                (g) 

 

 

 

(d)                                                                                (h) 

 

 

Figure 13.2  Numerical Results Compare with Cattaneo-Minlin’s Solution, Along 
X- Direction 
Figure (a) (b) (c) (d) (e) (f) (g) (h) 
Step 13 16 19 22 25 28 31 34 

Q / µP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
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The result shows that the numerical solution is valid for similar material contact 

problems.  Our results also show that when Poisson’s ratio is not zero, there 

exists transverse shear traction; while in Mindlin’s solution, there is no transverse 

shear traction because it is based on the assumption that Poisson’s ratio is zero. 

 

13.2 Contact Problem with Dissimilar Materials 

Next, we consider the contact problems with dissimilar material. We first briefly 

examine previously studied cases in this category, then present a case and 

compare the computational result with these cases. 

 

13.2.1 Nowell, Munisamy and Hill’s works 

 Nowell et al. [Nowell and Hill, 1988] studies the contact problem of dissimilar 

elastic cylinders under normal and tangential loading.  Unlike the result 

predicted by Mindlin’s solution, the distribution of shear traction is skew-

symmetric when there is no tangential force is applied. Further, when tangential 

force is monotonically applied, the stick zone becomes irregular in shape and 

shift in the direction of tangential force (see Figure 13.3). 

 

Munisamy, et al. [Munisamy, Hill, and Nowell, 1994] examined the axisymmetric 

Hertzian contact subject to shearing forces. They employed Goodman 

approximation to decouple normal and tangential tractions. The normal traction  
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Figure 13.3  The Analytical Solutions for 2-D Cases. (Above) Solution to 

Dissimilar Materials Obtained from Goodman’s Approximation, It Shows That 

the Shape and Location of Stick Zone Change When Tangential Force Is Applied;  

(Bottom) Mindlin’s Solution for Similar Materials (From [Hills, Nowell, and 

Sackfield, 1993]) 
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was predicted by Hertzian solution.  Then, they discretized the contact into a 

mesh of squares, uniform traction elements of unknown magnitudes iyix qq ,, , ; 

the governing integral equations were linearized into algebraic equations. Their 

numerical result showed that: 

(1) In elastically similar cases, if Poisson’s ratio is not zero, the transverse 

shear traction is not negligible; 

(2) The elastic dissimilarity (measured by parameter β) has remarkable effect 

on bulk relative shear displacement (see Figure 13.4); 

(3) Tangential force will dramatically change the distribution of shear 

tractions, and both the shape and location of stick zone (see Figure 13.5). 
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Figure 13.4 Initial Tangential Compliance of the Numerical Scheme Compared 

with Mindlin’s Approximation (From [Munisamy, Hill, and Nowell, 1994]). δx Is 

the Bulk Relative Shear Displacement, δmind Is the Value Given by Mindlin’s 

Approximation 

 

Figure 13.5 Evolution of Stick Zone for Contact Between Dissimilar Elastic 

Materials.  Dashed Line Corresponds to Normal Loading Alone and Chain Line 

to a Subsequent Infinitesimal Tangential Force (From [Munisamy, Hill, and 

Nowell, 1994]). 
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13.2.2 Numerical Example 

As a case to show the capability of the numerical solution, we examine the 

problem that we used in Chapter 9: an elastic (with relatively high Young’s 

modulus) indenter with a sphere top contacts an aluminum foundation. The only 

difference is that in addition to normal force P, a tangential force Q is also 

applied to the indenter. The material properties and geometry data are listed in 

Table 13.3. 

 

 

Table 13.3 Contact Configuration Data 

Parameter E (109N/m2) ν µ P (N) Q (N) Radius ( m)

Sphere 432 0.32 0.1 31.5 3 0.001 

Foundation 72 0.32    Infinity 

 

Table 13.4  Loading Schedule 

Step No. 1~10 11~40 Total Note 

∆P( N ) 3.15 0 31.5  

∆Qx( N ) 0 0.1 3  

 

Again, we apply normal force first, then tangential force. In order to simulate the 

loading procedure as accurately as possible, we use relatively small increments 

for tangential load. The schedule of loading steps is shown in Table 13.4. 
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It is observed that in the first 10 steps (when only normal force applied), both the 

contact area and normal traction increase monotonically (Figure 13.6). However, 

the relationships are not linear.  It was found that even though there is no 

tangential force applied, the slips take place within contact area Figure 13.7(a); 

further, unlike similar material case, the shear traction is positive in one half but 

negative in another half – skew-symmetric. When tangential load increments 

applied, the shape of stick zone and the distribution of shear traction change 

dramatically. 

 

First, we examine the situation when only normal force is applied. Comparing 

the result we obtained here with the result from non-incremental algorithm (see 

Table 13.5), it can be concluded that: for a normal contact problem (no tangential 

force applied), both non-incremental and incremental solution (with monotonic 

increments) give excellent results, comparing with analytical solution. 

 

Next, we examine the contact behavior when tangential increments are applied. 

From loading step No. 11 to No. 35, no more normal force applied; the tangential 

force applied with the same increments: 0.1N. It is worthy to give special 

attention to step no.11, in which only a small amount of tangential force is 

applied. The stick/slip zones, however, change dramatically Figure 13.7(b)), the 

right side of stick boundary reaches the contact boundary, the stick zone 

becomes very large and the shape becomes irregular. 
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Table 13.5 Comparison Among Non-incremental, Incremental and Spence 

Solution 

    Parameters

 

 

Solutions 

 

Background 

Mesh 

Maximal 

normal 

traction pmax 

(109N/m2) 

Contact 

Radius 

a (10-5m) 

 

Stick 

Radius 

c (10-5m) 

 

c / a 

Non-

incremental 

41×41 3.16380 6.843  0.533 

Incremental 21×21 3.211257 6.966087 3.541842 0.508 

Spence     0.535 

 

 

0 5 10 15 20 25 30 35 40
Loading Step

Maximal Normal Traction
Radius of Contact Area

 

Figure 13.6  The History of Contact Area and Normal Traction 
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(b)                                                                                  (f) 

 

 

 

 

(c)                                                                                  (g) 

 

 

 

(d)                                                                                  (h) 

 

 

Figure 13.7  History of Contact and Stick Area, * -- Nodes Immediately Inside 
Contact Boundary;    ∇ -- Nodes Immediately Inside Stick Boundary;  Solid Line -
-- Curve fit of Nodes 
Figure (a) (b) (c) (d) (e) (f) (g) (h) 
Step 10 11 12 15 20 25 30 35 

Q / µP 0 0.0317 0.0635 0.1587 0.3175 0.4762 0.6349 0.7937 
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At next step, the stick zone leaves contact boundary and begins to shrink, the 

shape is still irregular.  The stick zone keeps shrinking all the way to about Q/µP 

≈ 0.9, after that, the entire contact area is in slip condition. In the procedure, the 

shape becomes more and more like ellipse. However, it is no longer located at 

center as the normal contact cases (Figure 13.7(c-h)). 

 

Compare the numerical result with Munisamy et al.’s result, we can see that 

Figure 13.7(a-h) yields similar information as their result (Figure 13.5) in three 

aspects: (1) The initial shapes of contact and stick zones (before tangential force is 

applied); (2) The shape change of stick zone along with Q/µP; (3) The Location 

change of stick zone along with Q/µP.  While Munisamy’s solution is based on 

Goodman’s approximation, but the case they chose fulfills the criterion: βµ <0.1, 

which is believed can yield good result.  Our method has no such restriction, but 

the case we chose fulfills the criterion also: βµ=0.017. Therefore, it is reasonable 

to use Munisamy’s solution to serve the validation purpose.  

 

There is still no analytical solution available for 3-D fretting contact with 

dissimilar materials, and the numerical result is not perceptible intuitively. 

However, the result we obtained can be illustrated as follows: 

 

For the purpose of clarity, we look at the section-cut view of surface traction 

distribution (Figure 13.8). Before any tangential force is applied, there exist two 
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slip zones with opposite shear tractions: (-a, -c) and (c, a); the stick zone (-c, c) at 

the center surrounded by slip zones. When an increment ∆Q is applied, it must 

be balanced by the rearrangement of surface shear traction. It causes the shear 

traction in one slip zone (right side) to decrease in magnitude and increase in 

another (left side). Therefore, one side (right) becomes stick instantaneously 

because |q|<µp, while the other side (left) increase slip area due to the increased 

shear traction q>µp, which violates Coulomb’s friction law. 

 

After a certain amount of tangential force is applied, the shear traction in left side 

will change direction and grows in magnitude, and new slip with the same 

direction as the other slip zone appears in the side. On the other hand, the size of 

another slip zone keeps growing when gradually increasing tangential force. As 

the result, the stick zone can no longer stay at the center of contact area. 

 

 



                                                                                                                            Page  155 

                                                                                                                            Page  155 

 

 

Figure 13.8  The Illustration of the Change of Stick Zone 
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Chapter 14 

Discussion and Conclusion 

In this part, an incremental algorithm has been developed to accommodate 3-D 

frictional contact problem with tangential forces. Because friction force is path-

dependent, the frictional contact problem is treated as a dynamic model. In most 

of the cases that the acceleration is not significant, the inertial force can be 

ignored, and quasi-static model is adopted. One of the most popular ways to 

deal with quasi-static problem is incremental method. The incremental algorithm 

presented here also follows the concept of superposition of pyramid loading 

element to approximately achieve C0 continuity presentation of actual traction 

distribution. The case studies show this method has been successfully used in 

both non-incremental and incremental algorithm, yielding excellent result 

comparing with analytical solution and previously available numerical solution. 

 

The contact detecting and stick/slip partitioning algorithm are much more 

complicated than non-incremental formula. For each loading step, the system 

equations are assembled and solved in a similar way as non-incremental 

solution. However, the contact area keeps shrinking during the iterations in non-

incremental solution, while incremental solution allows expanding and 

shrinking. The partition of stick and slip zone allows stick and slip nodes to 
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change between two statuses.  The algorithm and corresponding numerical 

framework have been examined and validated against analytical solutions, using 

several example cases. The results show that: 

 

(1) For the frictional normal contact cases (only normal force applied), the 

algorithm gives the results very close to those from non-incremental 

solution, as well as Spence’s analytical solution. 

(2) For the frictional contact problems with similar materials, the algorithm 

gives the result very close to Cattaneo-Mindlin’s analytical solution in the 

whole range from Q/µP = 0 ~0.9. For the tangential load Q/µP>0.9, the 

solution gives the result that whole contact region is in slip, or only 1~2 

nodes in stick. The author expects that the result can be further improved 

by increasing the density of background mesh. 

(3) For the frictional contact problems with dissimilar materials, we use the 

work by Munisamy, et al [Munisamy, et al, 1994]. to validate the 

algorithm and numerical framework. It is found that our results are very 

close to theirs. The comparison gives the confidence that the numerical 

solution reflects the real mechanism of contact.   Further, Nowell and Hill 

have done analytical solution for a 2-D plain strain case [Hill, Nowell & 

Sackfield, 1993]. Their results for two elastic cylinders can be used to 

compare with our result in a analogous manner. It is also found that 

stick/slip zones behaviors in a way similar to 2-D contact problem. 
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