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Abstract 
 

With the increasing design complexity of applications implemented on Field 
Programmable Gate Array (FPGA) based hardware platforms the time for debugging 
becomes a major bottleneck in achieving early time to market goals. Traditionally 
designs implemented on SRAM based FPGAs have been debugged in a manner similar to 
ASIC designs using simulation during the early stages of the design process.  However, 
FPGA device features such as configuration readback, reprogramability, and clock 
stepping support the debugging of designs directly on the FPGA-based target platform 
thus speeding up the debugging and verification process.  
Recently FPGA vendors and academic researchers have introduced integrated logic 
analyzer (ILA) cores that are added to a user’s design in support of such in-situ 
debugging.  In this thesis we have developed a method to enable addition of such cores at 
the last step of the FPGA design flow. This can ease and expedite the process of 
debugging designs implemented on FPGA based systems by improving their execution 
control, reducing the time taken to modify the debugging functionality and hence aid in 
achieving early time to market goals. The process of developing these debugging 
techniques was divided into two phases. 
 

1. In the first phase a symbol table is created which contains information of the 
mapping of the logical design synthesized by the synthesis tool to the physical 
FPGA resources. 

2. The goal of the next phase is to improve the execution control of the design. This 
is achieved by adding bitstream generated Integrated Logic Analyzer Cores into 
the designs using the JBits and JRoute bitstream modification tools. 

 
The process of ILA core generation and addition was automated as a part of this 

research. From the experiments that were conducted it was observed that the time taken 
to add these ILA cores to the FPGA design was quite small. On average the technique 
developed took 8-10 times less time for ILA core addition when compared to the other 
techniques. In the case of complex designs the time saved was even more significant.                  
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 1

                                                       CHAPTER 1 
                                                    INTRODUCTION 
 
1 Introduction: 
 
1.1 Introduction to Reconfigurable Computing:  Reconfigurable Computing is an 

innovative approach in the area of Computing Systems design, inorder to cope with the 

drawbacks of the conventional Computing Systems, due to their general purpose nature.  

It aims at reducing the gap between Hardware and Software Computing by trying to 

achieve the advantages of both i.e. the flexibility of Software and the efficiency of 

Hardware at the same time. In recent years there have been many instances in which the 

potential of Reconfigurable Computing Systems has been demonstrated in many different 

application domains. Survey [39] describes many FPGA based systems which have 

demonstrated excellent performance for different applications. The following are some of 

the systems which are mentioned in this survey. 

a. The Splash system [40] gave 200 times better performance on genetic string 

matching algorithms when compared to supercomputers implementations.   

b. The DECPeRLe-1 system [41] achieved a very fast encryption rate of 185 kbps 

with 970 bit keys and 600 kbps with 512 bit keys for data encryption based 

applications. 

               An FPGA in general can be viewed as a two dimensional network of 

Configurable Logic Blocks which are surrounded by the Input Output Blocks on the 

periphery of the chip. The different components that make up an SRAM based FPGA are 

Configurable Logic Blocks (CLB), Input/Output Blocks (IOB), Block Rams, buffers and 

the configurable interconnect resources that are used to connect these primitives together. 

The CLBs consists of Look up Tables (LUTs) which can be configured to implement 
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different Boolean functions and Flip Flops to implement components of the design that 

need to save state such as registers, counters, control logic, etc. The Block Rams are used 

to provide on chip memory for DSP and other applications [42] that require low memory 

latency and high bandwidth as the data in the memory is accessed frequently.   

         With the advent of multimillion gate FPGAs like the Vertex [1] FPGA architecture 

from Xilinx which consists of more than 10 million gates the amount of reconfigurable 

resources that are available on these devices have increased drastically. With 

improvement in the VLSI chip technology and improvement in the Mapping, Placement 

and Routing algorithms the execution speed of the designs that are mapped on the FPGAs 

have also improved rapidly  resulting in implementation of  complex and high frequency 

designs on FPGA Based Systems. Recently, Xilinx has introduced a new FPGA 

architecture, the Vertex II [43] which in addition to providing traditional configurable 

resources like CLBs, IOBs and Block Rams also includes dedicated resources such as 

Multipliers, Adders, etc to speed up DSP and other applications which require fast 

arithmetic computations.     

                                              

1.2 Design Verification techniques for FPGA Based Systems: 

        Design verification is a very important and time consuming step in the process to 

bring a new system design to successful completion. Designs are verified at different 

stages of the design process. In the case of FPGAs the different stages at which designs 

are verified is depicted in Fig 1.1. Once the design is described in a Hardware 

Description Language the first step is to verify the functional correctness as per the 

given specifications, which is generally performed using a simulation environment. The 
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later in the design cycle the bugs are detected the more time consuming and expensive, 

it is to correct them. Hence it is desirable to detect and correct the errors in the early 

stages of the design process which will help in reducing both the time and design effort.  

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1 The FPGA design Flow 
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brief overview of the various verification techniques that are employed during the 

development of FPGA based Systems. 

 

1.2.1 Functional Verification: 

           Functional verification is the process of verifying the functional correctness of 

the design. Designs are verified by simulation tools which take the HDL description of 

the design at various levels of design abstraction such as the Behavioral level, the RTL 

level or the Gate level as input  and  verify the functional correctness by applying a set 

of test vectors and verifying the output generated against the expected output for each of 

the test vectors. The strengths of simulation include high controllability, observibility 

and control over the execution of the design. But a linear increase in the complexity of 

the design produces an exponential increase [48] in the number of test vectors required 

to verify the functional correctness of the design making the process of simulation 

impractical for complex designs since it becomes very time consuming to simulate for 

all the test vectors that are necessary to exhaustively test the design functionality.   

         An alternative technique to simulation is emulation, also called Rapid Prototyping, 

where the designs are verified for their functionality directly in hardware by mapping 

the synthesized design to an FPGA based emulator [43] and then verifying their 

functionality by applying the set of test vectors as in the case of simulation. The 

advantage of emulation is a reduction in execution time as the design is implemented 

and executed directly on the hardware. There has been significant amount of work 

reported in the literature [44] which has demonstrated the capabilities of in circuit 

emulators. 
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1.2.2 Timing Verification: 

        Timing verification is the process of verifying that the system meets the desired 

timing goals [45] such as achieving the desired clock frequency, satisfying the setup and 

hold times of flip flops, etc. Timing verification is performed later in the design process 

as can be observed from Fig 1.1 after the design is synthesized and also after the design 

is mapped onto an FPGA. Timing analysis that is performed after the design is 

synthesized is termed as static timing analysis where the critical paths in the design are 

identified and this information is passed onto the Placement and Routing tools so that 

the components that are a part of the critical path can be placed in close proximity to 

each other to satisfy the timing goals and avoid any timing violations. In this step the 

delays due to FPGA interconnect are not considered, so its accuracy is not as good as 

the post placed and routed timing analysis. The next instance where the timing analysis 

is performed is after the design has been mapped to the FPGA and this includes the 

delays due to the FPGA interconnect. Thus the goal of timing analysis at different stages 

in the FPGA design flow is to make sure that designs implemented on FPGA Based 

Systems satisfy the desired timing specifications and design goals. 

 

1.3 Debugging:   

        The process of debugging a design consists of error detection, error diagnosis and 

error correction [46]. Error detection is the process of detecting the location in the design 

where the error has occurred which is responsible for the malfunctioning of the design. 

Error diagnosis is the process of detecting the cause of the error and error correction is 

the process of coming up with a remedy to resolve the problem or error.  
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           For a design to be debugged efficiently it should have good controllability, 

observibility and control over the execution of the design. The following is a brief 

description emphasizing the importance of each of these techniques. 

 

1.3.1 Controllability:  

         Controllability is defined as the ability to set the value of any internal signal and 

components in the design to a desired value. This is important when one is interested in 

testing a given section of the design whose input cannot be controlled directly from the 

primary input of the design. This is important when a designer is trying to detect an error 

and inorder to narrow down the search of the actual location of the error the designer 

might be interested in controlling the values of certain internal signals. In the case of 

Application Specific Integrated Circuits (ASICs) this capability is provided by the 

addition of Scan Chains and other ad hoc debugging techniques. There has been a lot of 

research that has been reported in this area and one of the famous techniques for scan 

chain design is the Level Sensitive Scan design [47] technique being employed at IBM.  

 

1.3.2 Observibility: 

       Observibility is defined as the ability to observe the value of any of the internal 

signal and the components in a given design. This feature is important when the designer 

is interested in monitoring the internal signals during the execution of the design. There 

are some nodes in the design which are difficult to monitor and it is difficult to generate 

test patterns so that the values on those nodes can be observed at the primary output. In 

such cases the observibility of the design can be improved by adding debugging logic 
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such as scan chains, multiplexers, etc to the design. Fig 1.3 demonstrated how the 

observibility of the circuit given in Fig 1.2 can be improved by connecting a wire from  
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                         Fig 1.2 An example design implemented on FPGA 
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one of the output of C1 which is a internal node and connecting it to the primary output if 

any unused I/O pin is available. In case of FPGA based designs the observibility can be 

improved through readback which is the ability to read back the state of various elements 

in the FPGA like flip flops, Block Rams, etc. The different families which support this 

feature include the XC4000, Virtex and Spartan from Xilinx and Lucent FPGAs. 

         Debugging of designs in case of ASICs differ from FPGAs as ASICs are tested for 

manufacturing defects after the design has been fabricated, along with the debugging 

logic that has been added to the design inorder to improve its debugging capabilities. 

These design for testability (DFT) techniques help in improving the controllability, 
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observibility and execution control of the design during the testing process after the chip 

has been fabricated. This extra logic that is added in ASIC designs cannot be removed 

from the chip after the design has been tested. The goal that needs to be achieved by the 

addition of these debugging logic cores differ in ASICs and FPGAs. In case of ASICs as 

discussed above the purpose of debugging logic is to aid in the testing of the chip for 

manufacturing defects after fabrication but in case of FPGAs the purpose of debugging 

logic is to aid in the process of functional and timing verification during the development 

of the system and the debugging logic can be removed once the functionality and timing 

of the system has been verified and this is possible due to the reprogrammable nature of 

FPGAs.  

 

1.4 Motivation:   

          Traditionally designers who implement their designs on FPGA Based Systems 

follow the same design flow as used for design of ASICs. During the initial stages of the 

design process when the specifications of the design are available, designers try to 

describe the design at the behavioral or RTL level depending on the complexity of the 

design using a Hardware Description language and try to simulate the design using a 

circuit simulator. The attractive feature of circuit simulation is in its ability to provide 

almost complete visibility and control over the execution of the design during simulation. 

These features include monitoring of internal signals, forcing the values of certain signals 

as and when desired, halting the execution of the design on the occurrence of certain 

trigger conditions, etc. These features are very important when the design is in its initial 

stages of development when there are many issues that need to be resolved. 
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        With the arrival of multimillion gate FPGAs into the market from vendor like Xilinx 

and Altera the complexity of designs that are implemented on these FPGA based systems 

is increasing rapidly. The time required for simulating these systems is high due to the 

reasons discussed in section 1.2.1. 

         An alternative technique which tries to mitigate the long simulation times of these 

complex systems is Rapid Prototyping or in circuit emulation which was also discussed 

in section 1.2.1. But there are some issues that have to be addressed when considering in 

circuit emulation. Controllability and observibility must be available during execution of 

the designs to make it a viable alternative to simulation. 

        Designs tools for implementing circuits with FPGA based system as their final target 

platform similar to ASIC design systems which are verified using the emulation 

environments have to address this problem of poor debugging capabilities. SRAM based 

FPGAs with flexible resources like CLBs, IOBs, Block Rams and Configurable 

interconnect and features such as configuration readback, configuration writeback, 

reprogramability and JTAG Boundary Scan interface have the potential for supporting 

the desired debugging capabilities as discussed above. Towards achieving the goal for 

supporting improved debugging capabilities for FPGA based designs using these unique 

features of FPGAs many researchers in both the academic and commercial domains have 

come up with debugging circuits called Integrated Logic Analyzers (ILA) which can be 

added to the design to improve its observibility and execution control. One of the 

prominent academic tools include the ILA cores developed by researchers at BYU [25] 

that support different debugging capabilities and the techniques used to add them to the 

design at various stages of the design flow. This work supports the addition of ILA cores 
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at the HDL stage before the commencement of logic synthesis and also in the logical 

database before commencement of Xilinx design flow. Similarly the tools in the 

commercial domain include the Chipscope ILA [11] [12] from Xilinx and Signal Tap 

Logic Analyzer [8][9][10] form Altera Corporation. It is observed that the logic analyzers 

that each of these tools support provide good debugging capabilities. But the problem 

with these tools lies in the time taken to add and modify the ILA cores based on the 

designer’s requirements, as the entire Xilinx flow has to be repeated whenever these 

changes are made. It is observed that as the complexity of designs increases the time 

taken to make these changes also increases drastically. Hence it is desirable to develop a 

technique that can be used to add the ILA cores to the design as late as possible so that 

the ILA core addition or modification takes less time. The latest stage at which the ILA 

cores can be added is at the bitstream stage after the process of bitstream generation 

which is last stage before the device is configured. Hence, the aim of this thesis is to 

develop techniques to add the ILA cores to the design at the bitstream stage so that the 

time taken for addition and modification of these ILAs cores is minimal. By developing 

such a technique which may be a part of a comprehensive Hardware debugging 

environment, along with the speed up that is achieved by debugging the design directly 

on the FPGA hardware, the designer can improve the debugging capabilities of the design 

by adding and modifying the ILA cores as needed and hence have a rich and flexible 

investigative tool for his/her debugging needs. 

 

1.5 Contribution of this thesis: In this thesis we have investigated a technique to add 

and modify ILA cores to the design which takes very less time when compared to the 
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conventional approaches in both the academic and commercial domains to support a 

hardware debugging environment so that designs can be debugged directly on the FPGA 

hardware which is their target platform. The main contribution of this thesis has been the 

demonstration of the ability to add Integrated Logic Analyzer cores to the design at the 

bitstream level using the bitstream modification tools such as JBits and JRoute after the 

user has been provided with a logical view of the design through the process of logical to 

physical design mapping for the creation of symbol table, which is implemented as a part 

of this thesis. The process of logic to physical design mapping is also useful to find the 

state of the logical elements such as flip flops, Ram, etc during hardware execution when 

readback is carried out, which is another way of improving the observibility of  designs. 

So instead of simulating designs using cycle based or event based simulators which are 

very slow in simulating complex designs, a hardware debugging environment with the 

techniques investigated in this thesis and several other capabilities demonstrated by other 

systems can be developed to verify the functional correctness of the design directly on the 

target platform.  

                 The following are the steps taken during the process of adding ILA cores to a 

design as shown in the context of FPGA design flow in Fig 1.4 the goal of each step is 

given along with a brief description.   

1. Logical to Physical design mapping to provide the user with the logical view of the     

    design. 

2. Detecting the free resources in the FPGA so that these resources can be used for the     

    addition of debugging logic. 

3. Modifying the designs at the bitstream level using JBits and JRoute for adding the  
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    necessary debugging logic. 

 4. Configuring the FPGA chip using the new debug modified bitstream. 

                    This process speeds up the modification of ILA logic while maintaining the 

same level of observibility and execution control. 

 

1.5.1 Logical to Physical Design Mapping:   

             Logical to Physical design mapping is defined as the process of  creating a 

symbol table from the information of the mapping of the logical netlist of the design 

generated by the synthesis tools to the physical resources in the FPGA after the design 

has been placed and routed to the device by the  FPGA vendors CAD tools. This mapping 

is important when designs are debugged directly on the FPGA based platform, as the user 

is familiar with the components in the logical netlist and he/she doesn’t have a clear 

picture of how the design has been mapped to the primitives in the FPGA. Along with the 

generation of a bitstream used to configure the FPGA CAD tools also generate several 

files which have information of how the logical components or instances in the design are 

mapped to their physical counterparts in the FPGA. To achieve good observibility and 

control over the execution of the design it is necessary to provide a mapping of all the 

signals and components in the FPGA that are a part of the netlist to their logical 

counterparts so that debugging can be carried out efficiently. Since the user is familiar 

with the logical design he/she should be provided with the logical view even when the 

design is being executed on the FPGA hardware. For instance if the designer is interested 

in reading the content of a particular flip flop in the logical design then the user should 

not need to know what it corresponds to in the physical FPGA. This should be taken care  
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gathered in a Symbol Table which will be referred to by the Hardware Debugging 

Environment whenever the information is desired. 

    

1.5.2 Detection of free resources:  

            Once the design has been mapped to the FPGA based system not all of the 

resources in the FPGA are used. Depending on the complexity of the design being 

implemented different percentage of resources remain free. For instance the user might 

be interested in controlling some of the signals in the design. An example of such 

improved observability is depicted in Fig 1.3. Inorder to achieve this some of the free 

resources inside the FPGA along with the unused interconnect can be used to implement 

debugging logic cores which provide this improved debugging capability. Inorder to do 

this first the free resources in the FPGA have to be identified. The information of the 

resources utilized to implement a particular design are present in Native Circuit 

Description (NCD) file and by parsing this file a table with the free resources can be 

created which is used to guide the process of debugging logic addition without disturbing 

the already implemented design on the FPGA. In this thesis we have implemented a 

parser which parses this NCD file and generates a table with the information of the free 

resources which is utilized for the addition of debugging logic. 

 

1.5.3 Addition of Integrated Logic Analyzer Cores at Bitstream level using JBits & 

JRoute: 

         Once the Logical to Physical design mapping symbol table is created  and the free 

resources in the FPGA are identified the next step involves the improvement in the 
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debugging capabilities of the design. The debugging capabilities required for a rich 

interactive tool includes features like single or multi stepping the clock, reading back the 

state of the intermediate and internal signals, generation of interrupt signals on the 

occurrence of certain trigger conditions, saving the intermediate state of certain signals in 

data buffers, stopping the clock on the occurrence of certain trigger condition, forcing the 

values of certain internal signals, etc. Inorder to achieve these goals Integrated Logic 

Analyzers (ILA) have to be added to the FPGA designs[9][10][11][12][25]. There are 

many stages in the design flow where these ILA cores can be added. But since one might 

be interested in making changes to these ILA cores depending on the debugging 

capabilities that the user wants while diagnosing a problem, the best case scenario would 

be to add it in the latter stages of the design process so that the overhead in terms of time 

taken can be minimized. Towards achieving this goal we have developed techniques to 

add the ILA cores at the bitstream level after the configuration bitstream for the design is 

generated. From our experiments it has been observed that on the average it takes 8 times 

less time to add the ILA cores at the bitstream level when compared to the time taken for 

the addition of the debugging logic at the earlier stages of the design flow.   

 

1.6 Organization of the thesis: 

         The following is the organization of the rest of this thesis. Chapter 2 will provide an 

introduction to the different features of FPGAs, the different capabilities that are 

available in FPGA Based System that are utilized, the design tools used in this thesis and 

the background to the previous work done. Chapter 3 will describe in detail the process of 

logic to physical design mapping for the creation of a Symbol table. Chapter 4 will 
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explain the process of modifying the designs at the bitstream level using JBits and JRoute 

inorder to add the Integrated Logic Analyzer cores to improve the debugging capabilities 

of the designs. Chapter 5 will describe the experiments that were conducted and the 

insight gained from those experiments. Finally, Chapter 6 will conclude the thesis and 

provides a brief introduction to the potential future work related to this thesis.  
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                                    CHAPTER 2 
BACKGROUND AND RELATED WORK 

 
        This chapter will give a detailed description of the Virtex™ FPGA architecture 

from Xilinx, the different configuration techniques supported by  Virtex™ FPGAs 

and the different features available in this architecture that are utilized in this thesis to 

improve the debugging capabilities of designs. It also gives an introduction to JBits 

and JRoute, the Java Based APIs developed by Xilinx which are used in this thesis for 

the modification of designs at the bitstream level inorder to add the desired debugging 

logic to the design. Finally, the chapter concludes with a description of the previous 

work done in this area. 

2.1 Introduction to Virtex™ FPGA Architecture: 

        The different components that make up a Virtex™ [1] FPGA architecture 

include Configurable logic Blocks (CLBs), Block Rams, Input Output Blocks (IOBs), 

buffers and the configurable routing resources. A brief description of each of the 

components is given below. 

2.1.1 Configurable Logic Blocks (CLBs):  

       Each Virtex™ CLB consists of four Logic cells (LC) which are the basic 

component that make up a CLB. A CLB consists of two slices where each slice 

contains two Logic Cells and some other configurable resources that are a part of the 

CLB, which can be used to handle different situations and requirements as discussed 

below.  
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       Each Logic cells consists of a 4-input Lookup table (LUT), carry logic and the 

storage element. Figure 2.1 gives a schematic of a typical LC of a Virtex™ CLB.  

The LUT in a LC can be used to implement any function of four variables. It can also 

be used as a 16x1 SRAM or as a 16 bit shift register. In order to implement functions 

of more than four variables the LUTs from different LCs can be combined to handle 

this situation. For instance a function of five variables can be implemented by 

combining the outputs of the two 4 input LUTs  and passing them as input  to a 

                                                                                                                         X  

    F4  

    F3                                                                                                                      XQ  

    F2                                                                                                                                                                     

    F1 
           
  Bx 
 
  Clk 
 
             Fig 2.1 A Schematic of the Logic Cell in a Virtex™ CLB  
 
multiplexer which is a part of the CLB.  Similarly functions of more than five variables 

can also be implemented using similar techniques. Thus the availability of ample 

configurable resources in the CLB provides a great deal of flexibility.  

       The LCs also contains dedicated carry logic which is used to expedite the carry 

operation in case of arithmetic computations for DSP and other applications. Each slice 

of the CLB implements 2 bits of the carry logic chain. Some extra resources like an XOR 

gate are available in each LC which can be utilized to implement a 1 bit full adder in each 

of the LCs. 

 
  LUT Carry 

Logic
D 
 
Clk 
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        The storage element available in each LC can be used either as an edge triggered flip 

flop or level sensitive latche. The input to the storage element can be the output of the 

LUT or a direct input to the slice.  

 
2.1.2 Block RAMs: 

        For applications which access the contents of memory frequently such as DSP 

applications it is desirable to provide on chip RAM to reduce the latency of memory 

access. Towards serving this goal Xilinx has provided on chip memory in the form of 

Block Rams modules each containing 4096 bits of storage space. Fig 2.2 shows a block 

diagram of a Virtex™ Block Ram. Each of the 4096 bit blocks can be configured as 

memory module with varying aspect ratios ranging from 4096x1 to 256x16. The table in 

Fig 2.3 gives the different aspect ratios to which each of the Block Rams can be 

configured. 

 
 
2.1.3 Input Output Blocks (IOBs):   

       The Input Output Blocks in the FPGA act as an interface between the IO pads and 

the internal FPGA resources. Each IOB contains three storage elements each of which 

can be used as a D flip flop or a level sensitive latch. The IOBs have capabilities to 

support various I/O modes.    

 

2.2 Different Configuration Techniques: 

          Configuration is defined as the process of storing the bitstream generated by the 

FPGA CAD tools for configuring the FPGA in its configuration memory. The 
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configuration bitstream includes data which is used to configure various configurable 

resources in the FPGA like LUTs to implement a particular Boolean function or as a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2.2 Schematic of Block Select Ram taken from the application notes [1] 

 
 
                  
 
 
 
 
 
                  
 
 
 

Fig 2.3 Table showing different aspects Ratios for Block Rams                                              
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1 4096 12 
2 2048 11 
4 1024 10 
8 512 9 
16 256 8 

 
 
 
WEA 
RSTA                      DOA 
CLKA 
ADDRA 
DIA 
 
 
 
 
 
           
BLOCKRAM_S#_S# 
 
 
 
WEB 
RSTB                      DOB 
CLKB 
ADDRB



 21

16x1 RAM, Block Rams as memory elements with different aspect ratios as discussed in 

the previous section, a particular IOB as input or output port, configuring the interconnect 

inorder to connect the FPGA configurable resources together as required by the current 

design, etc. The various Configuration techniques that are employed to configure the 

FPGAs can broadly be classified into static Reconfiguration and Runtime or Dynamic 

reconfiguration. The following is a brief overview of each of these techniques and issues 

related to each one of them. 

           Static reconfiguration is the process of reconfiguring the FPGA after the design 

has been synthesized by the synthesis tools and mapped, Placed and Routed using the 

FPGA vendors CAD tool. The bitstream generated by the FPGA vendors CAD tool is 

used to configure the FPGA and once this is done there are no changes made in the 

configuration of the device when the design is being executed on the FPGA Based 

System. This process of configuring the device once and not altering its configuration 

till the execution is complete is termed as static reconfiguration. The advantage of static 

reconfiguration lies in the time saved as the device is configured once for a single run of 

the execution. But if a design is complex and does not fit on the available FPGA 

resources then such designs cannot be implemented on the given FPGA system using 

static or compile time reconfiguration. This drawback can be addressed by Runtime or 

Dynamic Reconfiguration. Using Dynamic reconfiguration [2][3]  designs which cannot 

be accommodated on the available FPGA hardware can also be implemented. Here at a 

given instance only those components of the design are using during computations are 

mapped to the FPGA and the other components are swapped in and out of the system as 

and when required.  
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             The Configuration bitstream is divided into frames each of which is used to 

configure a different portion of the FPGA. A frame is a smallest possible set of bitstream 

data that can be used to configure a particular section of the FPGA. So incase of partial 

reconfiguration the smallest possible unit of reconfiguration that can be used is a frame. 

This feature of reading back or configuring the device using individual frames is 

important in many different applications. In some applications which support dynamic or 

partial reconfiguration only a portion of the FPGA needs to be reconfigured and only 

those frames need to be used which are responsible for configuring the corresponding 

portions of the FPGA. Similarly incase of debugging designs if the designer is interested 

in checking the content of a particular flip flop in the design he/she can figure out the 

frame that contains the content of that particular storage element and then read back only 

that particular frame. This feature is very useful as reading back the entire configuration 

of the device would be unnecessary for checking the content of a single storage element. 

Application note [5] for Virtex™ FPGA gives a detailed description of each frame and 

their arrangement in the configuration bitstream. 

 

2.3 FPGA features useful in debugging: 

       Inorder to debug designs on FPGA based systems there are many features available 

in present day FPGAs which can be utilized towards achieving this goal. These features 

include configuration readback, writeback, reprogrammability, JTAG Boundary Scan 

interface, etc. A brief introduction to each of these features available in Virtex™ FPGA 

and their significance with respect to improving the debugging capabilities of the designs 

is given below. 
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2.3.1 Configuration Readback:  

         Readback is defined as the process of reading back the configuration of the FPGA 

[4]. Reading back the configuration is useful in many instances. One application of 

readback is for checking whether the FPGA has been configured using the proper data 

and any unwanted bit inversion during configuration of the device can be detected 

through readback. 

      Configuration readback is used as a means of tracing the content of memory 

components like Block Select Rams, Flip Flops, and LUTs during the execution of the 

design. Inorder to relate the content of these components to the data read back one needs 

to be familiar with the layout of data in the frames of the configuration bitstream and 

their distribution. The configuration bitstream for Virtex™ FPGAs is divided into 

columns with each column containing several frames as shown in Fig 2.5 for a Virtex 

XCV50 device.  

       Each column has a Major Address and each frame within the column will have a 

Minor Address. Hence each frame in the configuration bitstream is identified using a 

combination of Major and Minor addresses. As can be observed in Fig 2.4 different 

frames in the bitstream are used to configure different resources in the FPGA. For 

instance the   left most and the right most columns contain frames for configuring the 

IOBs in the left and right column. Similarly the second from the left and the second from 

the right  columns are used to configure the Block Rams in the designs and the remaining 

frames are used to configure the CLBs, the IOBs in each column and the clock driver as  
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Figure 2.4 Distribution of Frames in the Bitstream for Virtex XCV50 device taken   

                     Form the application notes [5] 

 

the Virtex FPGA provides resources for different clock configurations. Different frames 

in an FPGA contain a different no. of configuration bits depending on the type of 

resource the particular frame is used to configure. Another point to be noticed is that each 

frame contains padding bits at the beginning and the end of the frame for demarcation of 

different frames. The number of configuration bits used to configure different devices in 

the Virtex™ family is given in the table of Fig 2.5. In summary configuration readback is 

a very important feature available in the Xilinx Virtex™ FPGA family which can be used 

for debugging designs during design execution. 
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Device No of Configuration bits

XCV50 559,200 
 

XCV100 781,216 
 

XCV150 1,040,096 
 

XCV200 1,335,840 
 

XCV300 1,751,808 
 

XCV400 2,546,048 
 

XCV600 3,607,968 
 

XCV800 4,715,616 
 

XCV1000 6,127,744 
 

  

                     Fig 2.5 Table showing the no. of configuration bits for each Virtex       
                                   device  taken from Application notes [5]    
 

2.3.2 JTAG Boundary Scan Interface: 

        JTAG is an acronym for Joint Test Action Group. It is an IEEE standard which was 

introduced to support board level testing of designs. Virtex™ FPGAs support this 

standard and hence contain the circuitry which implements the Boundary Scan controller 

and the logic which is required to support the operation of the Boundary Scan circuitry 

within the FPGA. A Virtex™ FPGA contains four ports which are used to communicate 

with boundary scan circuitry inside the FPGA. They are TDI(test data input) which is 

used to input the data serially to the data and instruction registers of the Boundary Scan 

circuitry present in the FPGA, TDO(test Data Output) is the test data output port which 
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acts as an output interface to the test bus circuitry, TMS( test mode  select) is used to 

control the state of the Boundary scan controller which is in one of the  

16 possible states and Tclk which is the clock signal used for clocking the Boundary                     

Scan JTAG interface. JTAG interface is used for configuring the FPGA serially as well 

as for configuration readback. No extra FPGA pins are used for configuring the device as 

JTAG interface has the dedicated JTAG pins which are sufficient to carry out these tasks 

of configuring the device and reading back the configuration. In addition to configuration 

and readback of designs the Boundary Scan interface also supports many other debugging 

capabilities. Fig 2.6 gives a list of instruction that are supported by the JTAG interface   

which facilitate both chip level and board level debugging of designs implemented on 

FPGA based systems. 

 

2.4 JBits and JRoute:                               

         JBits [6] is a Java Based Application Program Interface (API) which can be used to 

configure the Virtex™ device at the bitstream level. As JBits works at the bitstream level 

one should  be familiar with the Virtex™ architecture inorder to use this tool efficiently.  

It supports both static and dynamic or Runtime reconfiguration.  Designs implemented  

using traditional CAD tools can be modified using JBits which takes as input the original 

bitstream generated by the normal design flow and can make the necessary changes to the 

design at the bitstream level inorder to provide the desired functionality. So JBits can be  

used to construct new designs or modify existing designs. Fig 2.7 shows the various steps 

involved in bitstream modification using JBits and JRoute. The CLBs inside a Virtex™                  
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Fig 2.6 This table gives a brief description of each of the JTAG commands 

Taken from the Virtex Data Book [4] 

FPGA are represented in JBits as a two dimensional array of configurable logic blocks. 

Each CLB in the FPGA is represented by an X and Y coordinate which is used to identify 

the particular CLB. Similar is the case with Block Rams and IOBs.  

         JBits can be used to implement designs using the Runtime Parameterizable (RTP) 

cores at the bitstream level that have been provided along with the API. These cores 

include adders, multipliers, comparators, counters, registers, etc whose bus width can be 

customized to implements designs with the desired specification. Using these cores to 

implement the desired design is easier as the designer does not need to worry about the 

details of the Virtex™ architecture as he/she uses the RTP cores and connects them 

 
JTAG 

Commands 

Opcode 
5 bit 

Description of 
Command 

Extest 00000 Enable boundary Scan external test for testing  
inter chip interconnect 

Sample/Preload 00001 Enable boundary Scan sample/ preload 
USER1 00010 Command for accessing user defined Register1 
USER2 00011 Command for access user defined Register 2 
CFG_OUT 00100 The configuration bus is accessed for  

read operation 
CFG_IN 00101 The configuration bus is accessed for 

Write operation 
INTEST 00111 Test the internal components of the FPGA 
USERCODE 01000 Enable shifting the user code to the output 
IDCODE 01001 Enable shifting the content of instruction register 
HIGHZ 01010 3 state output pin while enabling the bypass register
JSTART 01011 Clock the startup sequence 
BYPASS 11111 Enable bypassing of data 
RESERVED All other 

 cases 
Other reserved instructions 
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together using the JRoute API calls. Using these RTP cores enables the designer to work 

at a higher level of abstraction which is desirable when the designs are complex.        

JRoute is a java based API used to route the nets in a Virtex™ device. It can be used to 

route a single net or a group of nets using a single command. It can also be used to 

unroute nets in case the need arises using simple API calls. If one is modifying designs 

using JBits and JRoute then it is important that the routing resources that are already used 

should not be reused. Inorder to prevent JRoute from reusing the reserved resources the 

JRoute database is preloaded with the used resources. 

 

2.4.1 Drawbacks of JBits and JRoute:  

       The following are some of the drawbacks of using JBits and JRoute which were 

realized while using them during the course of this thesis. 

1. There is no way of finding the maximum frequency at which the design can be 

executed after it has modified using JBits and JRoute. 

2.  Limited to the Virtex™ chips. 

3. No way of determining which routing resources have been used when a net is   

          added with Jroute. 

       4. User needs to be familiar with the FPGA device architecture to use these tools as  

           one works at a low level of abstraction. 

 

2.5 Related Work: In this section we will try to give an overview of the previous work 

that has been done in the area of debugging designs on FPGA based systems. We will try 
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to discuss the FPGA Based Systems and software that have been developed to improve 

the debugging                   

 

                                           Start                                        

 

 

 

Fig 2.7 The different steps involved in modifying designs using JBits 

 

capabilities of designs and the research that has been done in this area. We will discuss 

both the commercial and academic systems and software that have been developed and 

features among controllability, observibility and execution control that they support.    

 

2.5.1 Device Level Support for Debugging: There are many FPGA devices available in 

the market which supports features that are useful in debugging designs. FPGA vendors 
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like Xilinx and Altera provide many features like configuration readback and JTAG 

Boundary Scan interface as discussed in the previous sections which have been used 

successfully for debugging designs. For instance the Virtex™ FPGA from Xilinx 

provides the ability to configure the FPGA partially or completely. In addition it also 

provides the capability to readback the configuration partially as well as completely. 

Through readback the designer can observe the content of resources inside the FPGA like 

LUTs, Block Rams, IOBs and Flip Flops [5]. Thus readback helps in improving the 

observibility of the designs.  

         Similarly through partial reconfiguration that is supported by the Vitrex™ and 

Spartan™ FPGAs from Xilinx [5] one can improve the controllability of designs. For 

instance one can add some small debugging logic cores into the design which will help in 

controlling the internal values of signals. Also design level scan chains can be added to 

the design so that the content of the storage elements like flip flops can both be observed 

and controlled. 

        Recently introduced devices from Xilinx, the Virtex-II [7] series of devices have 

Phase Locked Loops (PLL), Delay Locked Loops (DLL) and Digital clock manager. 

These features are available for implementing system on a chip solution where there can 

be multiple clocks that are used by the system. They also provide support for single or 

multi stepping the clock, turning off the clock to certain parts of the system and 

configuring the clock on the fly through partial reconfiguration. These features can be 

utilized for controlling the execution of the design during debugging. They provide the 

ability to stop the clock on the occurrence of certain trigger condition, change the 

frequency of the clock during debugging through partial reconfiguration, etc. 
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         Device from both Xilinx and Altera support the JTAG boundary Scan interface. 

Generally JTAG port is used for debugging designs by providing controllability and 

observibility. In the case of FPGAs in addition to supporting these above mentioned 

features it is also used for some other purposes. 

      In the Altera Apex 20k [8] device family the JTAG interface is used for configuring 

the device. In addition to this, Altera provides the capability of adding Embedded Logic 

Analyzer (ELA) cores called SignalTap Megafunction [9] [10] into the design to improve 

the observibility and execution control of the design. The user can communicate with the 

ELAs added to the design through the JTAG interface. These ELAs and the capabilities 

that they support are discussed in more detail in the following sections. 

     A similar type of capability is also supported by the Virtex™ FPGAs from Xilinx 

through the JTAG interface. Virtex™ devices use the JTAG port for configuration 

readback and write back. In addition to these features Xilinx also supports the addition of 

Integrated Logic Analyzer cores using the software called ChipScope [11] [12] into the 

designs which have quite powerful capabilities for debugging designs. These capabilities 

are discussed in detail in a separate section on the various software tools that are 

available for debugging FPGA Based designs. 

 

   2.5.2 FPGA Based Boards that support Debugging: There are many FPGA Based 

boards that have been developed which support different type of debugging capabilities. 

A brief discussion of these systems and the debugging capabilities that they support is 

discussed below. 
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       Designs that are implemented on FPGA based boards are implemented in a 

Hardware Description Language and simulated using a simulation environment and once 

verified are implemented on the given target platform. In order to communicate with the 

FPGA devices on the board software support needs to be provided so that the features 

supported by the device like configuration readback, partial reconfiguration, clock control 

like single and multi stepping of clock, etc can be supported at board level. In order to 

support these features at the board Application Program interfaces (API) are developed in 

languages like C, C++, Java and through the API calls these features described above are 

supported.    

      There are many FPGA based Boards developed that support several debugging 

capabilities. The prominent among them are Wildfire [13], Pamette [14], Splash [15], 

Splash 2 [16], Teramac [17] and SLACC[18]. All these boards support configuration 

readback and write back.  In addition the Wildfire and Splash 2 boards provide capability 

for relating the extracted symbols in the design to their values in the read back bitstream 

which is useful when debugging designs. The SLAAC series of FPGA boards support 

features like single and muti stepping the clock which is an important feature for 

supporting execution control and partial reconfiguration can be utilized for making 

changes in the design at runtime which can be used to improve the controllability of 

designs. 

 

2.5.3 Hardware Debugging tools : 

        There have been many hardware debugging tools both commercial and academic 

that have been developed that support excellent debugging capabilities. These include 
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Signaltap Megafunction from Altera, ChipScope Logic Analyzer from Xilinx, JHDL 

Design Environment developed by researchers at BYU [19] and BoardScope [20] from 

Xilinx. Each of these tools and the features they support is described below. 

 

SignalTap Megafunction: 

         The SignalTap megafunction is an Embedded Logic Analyzer (ELA) developed by 

Altera for the APEX II and APEX 20K devices (including APEX 20K, APEX 20KE, and 

APEX 20KC devices), which can be added to the design to improve the observibility of 

the design. The user can communicate with this ELA through the JTAG Boundary Scan 

interface of the FPGA. It can basically be considered to be a piece of hardware that is 

added to the design before the design is placed and routed by the placement and routing 

tools.                             

       The ELA consists of three ports i.e. the debugging port, the ELA port and the 

triggering port. The debugging port connects the ELA to the data signal in the design that 

are captured on the occurrence of certain trigger condition. There can be several 

debugging ports in the design based on the number of data signals that need to be 

monitored. The debugging port can be connected internally to the logic analyzer so that 

the data can be captured on the occurrence of certain trigger condition or it can also be 

connected to the I/O pins of the FPGA so that data can be saved in a buffer external to the 

device if the resources on the device are scarce. On the FPGA the storage buffer is 

implemented using the Embedded System Blocks (ESB) which are the block Rams 

available inside the FPGA. Fig 2.8 gives an overview of the various components of the 

SignalTap MegaFunction ELA.  
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       The ELA port is used for communicating with the ELA. In addition to the JTAG 

interface USB and other parallel ports can also be used to communicate with the ELA. 

An ELA functions in three different modes. They are the Run mode, the Autorun and 

Stop mode. In the Run mode data is saved in the buffer on the occurrence of the specified 

trigger and the ELA goes into the stop mode where the ELA is not active. In the case of 

Autorun mode the ELA continues sampling the data on the occurrence of the trigger 

condition and it continues doing so until the status is changed to the stop mode.   

       The list of possible trigger conditions that are supported by the ELA include the 

rising edge, the falling edge and the level trigger conditions. There are three different 

positions at which the trigger can be placed when saving the data on the occurrence of 

certain trigger condition. Since the buffer used is a circular buffer the trigger can be 

placed at 12%, 50% of 88% of the trigger point i.e. for instance in case of a 12% trigger 

condition, 12% of the data saved in the buffer is before the occurrence of trigger 

condition and 88 % comprises of data after the occurrence of the trigger condition.  The 

trigger signals are connected to the ELA through the trigger ports and if necessary the 

trigger single signal can be connected to the I/O pin of the FPGA informing the user on 

the occurrence of certain trigger condition. But the trigger port itself cannot be connected 

to the I/O pins of the FPGA. The ELA cores are added to the design before placement 

and routing the design after the design has been synthesized by the synthesis tool. Thus 

no changes need to be made in the HDL source code inorder to add the ELA into the 

design. Modifications can be made to the ELA cores that are already present in the design 

without repeating the process of placement and routing the design. These changes include 

changing the trigger pattern, new signals can be connected to the ELA or the mode of the 
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ELA can be changed. But if the designer wants to increase the depth of the buffer, the 

width of the trigger bus, or the width of the data bus, these changes can be incorporated 

only by repeating the entire process of placement and routing as significant modifications 

have been made to the ELAs.  

 

 ChipScope: 

                      Similar to Altera, Xilinx also provides the support to add Integrated Logic 

Analyzer (ILA) Cores into the design through their hardware debugging tool called 

Chipscope.  This feature is supported for Virtex and Spartan II family of FPGAs.  The 

different features of the ILA cores are as follows 

  There are from 1 to 256 user selectable data channels.       

1. At a given time upto 15 independent ILA cores can be added to the design. 

2. The trigger bus can be separate from the data bus with its width ranging from 1-64 bits. 

3. All trigger and data operations are synchronous to the user clock. 

4. The user can set multiple trigger setting simultaneously. 

                     Using Chipscope ILA cores can be added to the design. A GUI is provided 

using which the user can specify the various trigger and data signals that need to be 

monitored, the depth of the storage buffer, the width of the data and trigger signals, etc. 

The Chipscope tool includes the Core Generator which is used to generate ILA cores 

depending on the various requirements supplied by the user through the GUI. The ILA 

cores generated can be in the form of an Edif netlist or the VHDL components, which can 

be added to the design at various stages of the design process. Once the ILA core is 
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generated it can be added to the design using a Core Inserter before or after synthesis. 

Adding the ILA core before synthesis is accomplished by instantiating the HDL 

 

 

       

 

                       Fig 2.8  Different component of the ELA core [9][10] 

 

components into the HDL sources code of the design. One can also add the ILA cores 

after synthesis directly into the Edif netlist of the design before placement and routing of 

the design begins.  

        The different components of Chipscope toolkit include the ICON and the ILA cores. 

ICON is the integrated logic controller which controls the operation of the various 

components of the ILA. The ILA core incorporates the hardware which contains the 

trigger logic and it communicates with ICON on the occurrence of certain trigger 
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condition so that the values on the data signals can be saved into the storage buffer. The 

triggering can occur on the rising or falling or both edges of the signal or at a stable 

value.  The trigger logic can work in basic or extended trigger mode. In the case of basic 

mode there can be a single match unit or at the most two match units. For instance when 

the designer is interested in checking whether a signal lies in a particular range two match 

units are used. In the extended mode in addition to the individual match units for each 

ILA the output of each ILA triger unit is ‘Ored’ to give the overall trigger signal. This is 

useful when one is interested in relating the various trigger signals in the design. The data 

saved in the storage buffer can be analyzed using the Chipscope Analyzer which is a part 

of the tool. The analyzer comprises of a waveform viewer which displays the content of 

the storage buffer. The Chipscope Analyzer can communicate with the PC or workstation 

through the Xilinx MultiLINX™ and Parallel Cable III download cables.  

      Similar to Altera’s SignalTap megafunction, the Chipscope tool allows small changes 

in the ILA core like the changes in trigger condition, the control and data signals being 

monitored without repeating the process of placement and routing of the design. For 

making significant changes like the alteration in the depth of the buffer, the width of the 

trigger and data ports, the process of Placement and Routing has to be repeated after 

making the necessary alterations at the HDL source file or the EDIF netlist stage.  

 

JHDL Design Environment for Debugging: There has been a lot of research being 

done by researchers at BYU [21] [22] to improve the debugging capabilities of designs 

implemented on FPGA Custom Computing Machines (FCCMs). We will try to give a 
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brief description of the JHDL design environment that they have developed and how it 

has inspired the work that has been done in this thesis. 

           JHDL is a simulation environment that provides Java Based APIs. Designs 

implemented on FPGA based systems can be described and simulated using the tools 

supported by the JHDL Design Environment. Only structural designs can be described 

using JHDL which treats each of the components of the design as a java object. The 

researchers at BYU have developed a framework for integrating hardware execution and 

simulation [23] [24]. Here the information of the mapping of the logical design to the 

physical FPGA resources is stored in the form of a symbol table using the Java based 

APIs and once this is done the user can execute the design in a unified framework 

switching back and forth between hardware execution and software simulation when 

desired based on the requirements. For instance when the designer has reached a 

particular phase of the design execution where excellent observibility is desired then 

he/she can switch from hardware execution to software simulation which provides 

excellent observibility. The creation of a symbol table from the information of logical to 

physical design mapping which is a part of the process of developing an integrated 

debugging environment is also useful for many other purposes as will become clear in 

subsequent chapters. 

        In our thesis we have also developed an algorithm for the creation of a symbol table 

which contains the information of the logical to physical design mapping so that the user 

can be provided with a logical view of the design even after the design has been mapped 

to the FPGA and he/she doesn’t need to worry about the mapping information as the 

symbol table contains this information. So whenever the designer refers to a particular 
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logical component in the netlist the correspondent resource in the FPGA is referred to 

using the information in the symbol table which is desired as the user is familiar with the 

logical design.     

       In addition to this work on Logical to Physical Design mapping there has been a 

considerable amount of work done at BYU on improving the debugging capabilities of 

design through the addition of debugging logic for better controllability , observibility 

and execution control [25] [26][27]  of the design. In this work they have demonstrated 

the various stages of the design process where the debugging logic can be added and the 

trade offs involved.  

       Since there are some similarities between our work and the work done at BYU so we 

will try to explain the various aspects in which our work differs from theirs. The work at 

BYU targets the JHDL design environment whereas our design environment supports 

general HDLs like VHDL or Verilog which are the industry standard and used by most of 

the designers. Also to our knowledge in their work the debugging logic is added to the 

design through the logical database before the process of Placement and Routing, 

whereas we have been able to add the debugging logic directly at the bitstream stage 

using JBits and JRoute which is one of the main contributions of our work. 

 

BoardScope: 

       There has been considerable amount of work reported in the literature [28] [29] [30] 

describing the various capabilities supported by Boardscope, a tool developed by Xilinx 

for debugging designs. After the bitstream is modified using JBits and JRoute the new 

bitstream generated can be debugged using BoardScope [31]. It comes as a part of JBits 
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package. A view of the BoardScope interface is given in Fig 2.9 which can be used to 

view the configuration information in different views which includes Core view, State 

View, Power View and Routing density View. Using Boardscope one can communicate 

with the design implemented on the FPGA board through the Xilinx hardware interface. 

BoardScope can be used to invoke the Virtex device simulator which is a simulation tool 

used to simulate designs implemented on the Virtex FPGAs. In this thesis we have used 

this Virtex Device Simulator to verify the functionality of the designs after the addition of 

Integrated Logic Analyzer cores. Virtex device simulator provides feature for debugging 

designs like single stepping or multi stepping the clock, reading back the content of Flip 

Flops, IOBs and Block Rams during simulation, etc. The designer can also use the 

command line interface for controlling the simulation of the design using DDT Script 

commands which are a part of the BoardScope interface. The current version of 

BoardScope is slow for complex designs. 

 

Other Hardware Debugging Tools: 

         In addition to the debugging tools discussed above there are many other debugging 

tools that have been developed over a period of time. The prominent among them are the 

InnerView hardware debugger from the virtual wires group at MIT[32], the Splash 

reconfigurable coprocessor board which also supports  a runtime debugging environment 

called T2 [16], the Teramac [17] FPGA based system developed at the HP laboratories 

also has a debugging tool using which the state of the resources inside the FPGA like flip 

flops, LUTs, etc can be read back. My colleague Anurag Tiwari has also studied different 
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techniques [33] [34] to add small and compact debugging logic cores called hardware 

watchpoints to speed up the debugging process of complex designs. He has also been  

 

 

 

                                        Fig 2.11 The BoardScope Interface 
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 working on using the features of FPGAs to support debugging, such as LUTs being used 

as shift registers to add and make changes to the watchpoint logic at runtime to improve 

the debugging capabilities [35]. 

           In this chapter we have given an overview of the various features of the Virtex™ 

FPGAs from Xilinx which can be used for improving the debugging capabilities of 

designs. In addition to this some FPGA based Hardware debugging systems and tools 

relevant to the work done in this thesis which have been developed over the past decade 

were also discussed. 
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Chapter 3 
 

Process of Symbol Table Creation 
 
          In chapter 1 we have explained the importance of the process of logical to physical 

design mapping for the creation of a symbol table. This idea of symbol table creation was 

first proposed by researchers at BYU [24].As discussed this will help in providing the 

designer with a logical view of the design which the designer is familiar with, instead of 

the physical view after the design has been mapped to the FPGA. This is the first step 

towards the process of improving the debugging capabilities of the design by adding the 

Integrated Logic Analyzer (ILA) cores to the design at the bit stream level. Due to the 

presence of the mapping information in the symbol table the debugging environment can 

provide support for various debugging capabilities like selection of signals to be 

monitored by connecting them to the ILA, flip flops whose content is to be readback to 

improve the observibility of the design, etc using the logical view and the circuit 

modifications to support these capabilities can be carried out at the bitstream level using 

the bitstream modification tools such as JBits and JRoute. 

       

3.1 Introduction: 

         The process of Logical to Physical design mapping for creating the symbol table is 

quite involved. In this chapter we will try to give a detailed explanation of this process 

for Virtex™ FPGAs and the issues involved. A similar mapping process is described in 

ref [24] and [25]. We will start with an overview of this process and then try to explain 

each step in detail. This process of Symbol table creation can be broadly divided into 

three steps which are as follows 
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1. The process of extracting the relationship between the FPGA state elements such 

as flip flops, LUTs, Block Rams, IOB, etc. to the location of  their state in the 

readback bitstream. 

2. The process of mapping the physical FPGA elements to their counterparts in the 

logical netlist. 

3. The tracing of the LUT Ram address permutations and taking these permutations 

into account while determining the location of the LUT Ram state in the read back 

bitstream.   

           This process of logic to physical design mapping can be accomplished by using 

the information form various files generated by the synthesis and the Xilinx Placement 

and Routing tools. The table in Fig 3.1 gives a brief description of each of the files that 

will be used in the creation of the symbol table and their content and they are explain in 

detail below. 

a. .edf: This EDIF (electronic design interchange format) file is generated by the 

synthesis tool. It is a standard format used to represent the logical netlist generated by the 

synthesis tool. 

b. .mrp: This map report file is generated by the Xilinx Mapping tool. The “.mrp” file 

contains information of the various design optimization that have been performed by the 

mapping tool. It also provides information regarding the relationship between the logical 

instances and the FPGA resources used in implementing the design. 

c. .ll: This logic location file is an ASCII representation of information of the 

corresponding flip flops and Ram state values in the readback bitstream. This file is 
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generated bt “bitgen” which is the bitstream generation program provided as part of the 

Xilinx CAD tool kit. 

d. .ncd:  This native circuit description file provides the information of all the used 

resources in the FPGA for implementing the particular design. As this file is in a non 

readable format Xilinx provides a utility called “ncdread” which can be used  to generate 

a textual description of this file in ASCII format. 

                                

Fig 3.1 List of files used for symbol table creation 

 

3.2 Process of Logical to Physical Design mapping:                          

                                          This section will describe the process of Logical to Physical 

design mapping in detail. This process will lead us to the creation of the symbol table that 

we refer to as “.rbstable”. We will start with a detailed description of the information that 

File name                                Content of the file 

.edf It generated by the synthesis tool and contains the list  

of all the logical instances in the design 

.ll  The logic location file which contains the information of the  

Sampled FPGA state in the readback bitstream  

.mrp  This file contains contains information of the mapping of the the  

Logical instances in the design to the physical resources in the FPGA 

and the optimizations performed on the logical design.  

.ncd this is binary file which contains information of the resoures in the FPGA 

that have been used for the implementation of the given circuit 

.ncdtext  This file is an ASCII representation of the FPGA resources used for 

implementing the given design. 
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is contained in each of the files and how this information is utilized for constructing the 

symbol table.  

 

3.2.1 EDIF netlist file (“.edf”):               

               The first file we will describe is the “.edf” file generated by the synthesis 

tool. This file contains information of the logical instances (which are the components 

from the FPGA design library used by the synthesis tool to implement the design) in 

the design and the way they are inter connected to each other to form the netlist of the 

design. We used an “.edf” parser which was developed at Rice University for a 

project on “Optimizing VHDL Intermediate Representations” [37]. The parser is 

available as open source and we have customized this parser for our research. A hash 

table called  “.instancehash” is generated by parsing the .edf file. This hashtable is 

keyed on the name of the instances in the design. Each entry in the hashtable contains 

the name of the instance, the name of the each port of the instance and the direction of     

     the ports (whether input or output or both) and the net connected to each of the ports.     

     Fig 3.2 gives some sample entries of this hashtable. This includes an instance which is     

     mapped to a flip flop and another instance which is mapped to a LUT.  Fig 3.3 gives a  

     block diagram of the “.instancehash”. The information in this hashtable will be used   

    for achieving the one to one mapping of the logical instance to the physical  

    components in the FPGA.                                     

 

3.2.2 Information extracted from Logic Location (.ll) file: The logic location file is 

used during the construction of the symbol table inorder to trace the position of the state 
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for various resources which includes Flip Flops, Block Rams and LUTs in the readback 

bitstream. Once a one to one mapping of the  

   

A_BLOCK/ACOUNT/HRS_OUT[3]       FDPE   

        ah(3)                  Q       OUTPUT 

        hrs_out_8(3)      D       INPUT 

        CLK_c              C       INPUT 

        RESET_c          PRE     INPUT 

 

A_BLOCK/ACOUNT/un7_inc_mins     LUT4 

        am(5)                       I3      INPUT 

        am(4)                      I2      INPUT 

        G_31                      I1      INPUT 

        un7_inc_mins        O       OUTPUT 

        un7_inc_mins_1    I0      INPUT 

        

Figure 3.2 Sample entries of the .instancehash file 

 

logical instances and the Physical FPGA resources is established the information in the 

“.ll” file will assist in tracing the location of the data read back from each component. 

There are several issues that are to be considered and resolved when using the 

information provided in the .ll file to construct a hashtable. We will explain in detail the 
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possible entries in a logic location file, the information available in this file and how this 

information is used.                                        

 

Fig 3.3 Block Diagram of the “.instancehash” 

 

          A list of sample entries of the Logic Location file is given in Fig 3.4. The first 

entry is the state of output flip flop of IOB AK25. As discussed in section 2.1.1 each 

Virtex CLB contains two slices designated by S0 and S1, each containing pair of Flip 

Flops and LUTs. The second entry in the sample .ll file gives the position of the FFY flip 

flop of CLB located on row 60 and column 16 in slice S0 . The other entries are for Block 

Rams and LUTs used as Ram. Here the .ll file provides information that can be used to 

calculate the position of the content of each Ram bit in the bitstream. 

        As discussed above the different possible readback entries include the state of 

latches and the content of LUT and Block Rams in the case of Virtex™ FPGAs. The 
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possible latch entries in the .ll file are given in Fig 3.5. They include the  I,T ports which 

are the outputs of the IOBs and the IQ, O ports which are the inputs to the IOBs. In 

addition to this the latch entries include the state of flip flops which are a part of the 

Virtex™ CLB slice.  The detailed functional diagram of the IOBs and CLB and block 

Ram can be found in reference [1].                      

                 

     Offset       framenum      frameoff   

 

Bit   3938642   0x00843400   1170   Block=AK25    Latch=O      

                                                                            Net=b14_comp/addr_35_enl(18)    

Bit   3954777   0x00844e00   1081   Block=CLB_R60C16.S0  Latch=YQ   

                                                                             Net=b14_comp/reg3(8) 

Bit   204927     0x00b01000   160     Block=CLB_R9C6.S1      Ram=M:16 

Bit   6122057   0x02027c00    585    Block=RAMB4_R7C1      Ram=B:BIT2027 

Bit   6122058   0x02027c00    586    Block=RAMB4_R7C1      Ram=B:BIT2023 

 

                                     Fig 3.4 Sample .ll file entries 

 

                            The process of relating LUT and Block Rams to their state in the 

readback bitstream is very involved. We will start by describing the different possible 

configuration in which the LUTs and Block Rams in the design can be used. The LUTs in 

the CLB slices can be used as individual 16x1 single port Rams or the two LUTs 

combine to form a single 32x1 single port Ram depending on the requirement. In case of 
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Virtex™ series of FPGA the F4 port represents the MSB of the address line and F1 

represents its LSB. If the two LUTs are combined together to form a 32x1 Ram then the 

F LUT holds the lower 16 bit of data and the G LUT holds the higher 16 bit of the data 

and the BY port which is the input to the slice acts as the MSB of the address bus. If the 

LUTs in the slice are used as two individual 16x1 Rams that the entries in the .ll file are 

represented as Ram=F:<address> and Ram=G:<address> where the address ranges from 

0 to 15. In the case when the two LUTs are combined to form a 32x1 Ram  the Ram 

entries are represented as Ram=M:<address> where the address ranges form 0 to 31.   

 

Possible latch entries Explanation of each type 

IQ This is the input to the user circuit which is the 

Output of the IOB resgister in the FPGA 

O The output of the IOB (it’s the output form the user circuit)  

I It’s the input to the user circuit which is the output of the IOB 

XQ, YQ These are the output of the flip flops in the CLB slices 

T The IOB output which is the output form the user circuit. It’s a 

tristate flipflop 

 

                             Fig 3.5 Possible latch entries for Virtex device 

                   

         As discussed in chapter 2 the block Rams are additional memory resources 

provided in the Virtex™ series of FPGA. The entries of the Block Rams are also 

available in the .ll file. The Block Rams can be configured with different aspect ratios 
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such as 4096x1 bit, 2048x2 bit, 1024x4 bit, 512x8 bit and 256x16 bit based on the users 

requirement.         

             The Xilinx Placement and Routing tools perform address signal permutations 

during the process of  Placement and Routing for Rams implemented using the LUTs in 

the slices inorder to improve the routing. Fig 3.7 depicts possible address signal 

permutation that can be performed by the Xilinx PAR tool. In 3.7 (a) the logical instance 

has the address signal with F4 being the MSB and F1 being the LSB. But inorder to 

reduce the congestion during routing the Xilinx PAR tool might permute the signal as 

shown in Fig 3.7 (b). One need to take this permuation into account when performing the 

task of calculating the bit position of each Ram state. Fig 3.7 (c) depicts the mapping of 

the logical address to their physical counterparts inorder to relate the logical Ram state to 

their Physical counterpart. In case of block Ram, the Xilinx placement and Routing tool 

do not perform any address signal permutations due to the abundance of Routing 

resources.  

                                           A parser has been implemented for parsing the .ll file so that 

the information in the .ll file can be used during readback. Towards achieving this goal 

two hashtable are generated from this process. The first hashtable called “.rbblockhash” 

contains the information of all the latches in the FPGA that have been used in the design 

which includes the latches in the IOBs and the CLBs. The second hashtable called 

“.rbramhash” contains the readback information of the LUT and BlockRams used in the 

design. Each entry in the .ll file, as observed in Fig 3.4 includes the absolute bit offset 

(ao), the frame number (fn) and the frame offset (fo). This information along with the 
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information in references [4][38] is used to calculate the exact location of the state of the 

respective elements in the readback bitstream.                                  

            The formulae used to calculate the absolute position of the state bit in the 

readback bitstream for all the Rams and latches in the design is given in Fig 3.6. The 

different terms used in the formulae include the frame length  fl, the frame number fn the 

bitmap length bm which varies for various Virtex™ devices as given in reference[4], the 

frame offset fo and  the pad word length pwl  which is 32 for the Virtex™ devices. The 

values of 63 and 93 used in the formulae for calculating the actual bit position for 

BlockRam came from reference [38] as this did not appear in the Xilinx documentation.  

                            

                
   
                 Actual position                           = fl* fn + bm – fo + pwl   
    (if the component is in CLB or IOB)  
  
                Actual position                             = fl* (fn -63) + bm – fo + pwl   
    ( if component is in Blockram column 0) 
 
                Actual position                             = fl* (fn -93) + bm – fo + pwl   
    ( if component is in Blockram column 1) 
 
 

Figure 3.6 The formulae used to calculate the postion of bits in the readback 
bitstream 

 
                                   
          Once the bit position of each Ram Bit and latch in the readback bitstream is know 

the “.rbblockhash” and the “.llramhash” are created with the necessary information. Fig  

3.8 represent information contained in the “.rbblockhash” for latches in the design and 

Fig 3.9 the information for the Ram entities. Thus these hashtable provide comprehensive  
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                                                   (c) Process of Ram Address Mapping 
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information that is utilized to relate the Latch and Ram entries to their state in the 

readback bitstream. 

 
 
 

 

                                  Fig 3.8 Block diagram of readback Block hash 

3.2.3 Considering the Design Optimization (.mrp): 

              The map report file (.mrp) file generated by the Xilinx Cad tools contain 

information of the various design optimization that have been performed by the mapper 

while mapping the logical design to the physical FPGA resources. The “Merged Signal” 

section of this “.mrp” file contains information of the nets that have been removed or 

merged with some other nets during this process. Fig 3.10 shows some sample entries of 

1.Port Name 
 2.Bit Position 

 
1.Port Name 
 2.Bit Position

1.Port Name 
 2.Bit Position 

 
1.Port Name 
 2.Bit Position 

CLB or  
IOB name 

CLB or  
IOB name 
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Fig 3.9 Block Diagram of readback Ram hash 

 

this file where the information of the merged nets is provided. The possible net 

optimization that can be performed include the merging of two nets, for instance net n1  

can be merged with net n2 . It may also happen that net n1 is merged into n2 and net n2 is 

merged into n3 so after optimization only n3 is left . So inorder to keep track of these 

optimizations we have implemented a parser for the map report file which creates a hash 

table called “.nethash” with each entry keyed on the old net and the nets that have been 

optimized will contain the name of the new net into which it has been merged as the 

entry. The algorithm used to keep track of these optimizations and the information 

 

1 Function generator
2 Address location   
3 Bit location        

  
1 Address location 
2 Bit location         

1 Function generator
2 Address location 
3 Bit location        

 

1.Address location 
2. Bit location       

CLB name 
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Merged Signal(s): 

  -The signal “PrgmCntr/un3_stack1_cry_2” was merged   into signal   

“PrgmCntr/un3_stack1_cry_2/O”. 

  -The signal “PrgmCntr/un3_stack1_axb_1” was merged into signal   “pc(1)”                                                

                             - 

                             - 

  

Symbol Cross-Reference: 

  - "DECODE/ALUOP[0]" (FDP) mapped to:  aluop(0) (SLICE) 

  - "porta_iobuf[0]" (IOBUF) mapped to:  porta(0) (IOB) 

Fig 3.10 Sample entries of Map report file 

 

contained in the hashtable generated is shown in Fig 3.11 and Fig 3.12 respectively. The 

algorithm implemented handles only two levels of merging, as it was observed from the 

map report files generated for different designs that the Xilinx CAD tools at the most 

performs two levels of merging. But it is not difficult to implement an algorithm which 

can handle more than 2 levels of merging.                              

                                                                    The second hashtable generated from the map 

report file is called the “.instancemaphash”. This hash table contains the information of 

one to one mapping of the logical instance in the design to the corresponding physical 

FPGA resources which is extracted from the “symbol cross reference” section of the map 

report file. The block diagram in Fig 3.13 depicts the information contained in this hash.                 
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                                   Fig 3.11 Algorithm for keeping track of Net Merging 

 

 

 

 

 

 

 

 

 

                                                

 

                                            Fig 3.12 Block Diagram of Nethash 
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                                Fig 3.13 Block Diagram of Instancemaphash 

 

3.2.4 Tracing the FPGA resource usage information (Native Circuit Description): 

               The native circuit description (“.ncd”) file generated by the Xilinx Placement 

and Routing tools contains information of all the resources of the FPGA used in the 

design. A textual description of this file is available in ASCII format which is parsed to 

create a hash table which provides information of the resources used. Fig 3.14 shows a 

sample entry of this file. It contains the information of the Physical resource which is a 

Slice S1 of the CLB  located at Row 4, Column 13 and the ports of the CLB that have 

been used in the designs and the nets connected to these ports. Fig 3.15 gives a block 

diagram representing the information contained in this hashtable.  

 

  Instance 
   Name 

  Instance 
    Name     

 
Symbol 

Reference 
 
 

 
Symbol 

Reference 
 



 59

3.2.5 Putting it altogether: The information extracted from various files as described 

above is used to create a symbol table called “.rbstable” which provides detailed 

information of   

                       

NC_COMP:2 - <status_z_write> site = CLB_R4C13.S1 

            Config String: <CYSELF:#OFF CYSELG:#OFF CKINV:1 COUTUSED:#OFF 

            YUSED:0 XUSED:#OFF XBUSED:#OFF F5USED:#OFF YBMUX:#OFF CYINIT:#OFF 

             DYMUX:#OFF DXMUX:1 CY0F:#OFF CY0G:#OFF 

             F:#LUT:D=(~A1*~A2*~A3*~A4)+(~A1*~A2*~A3*A4)+(~A1*~A2*A3*A4) 

             G:#LUT:D=(~A3*~A2*~A1) RAMCONFIG:#OFF REVUSED:#OFF BYMUX:#OFF 

             BXMUX:#OFF CEMUX:#OFF SRMUX:SR_B GYMUX:G FXMUX:F SYNC_ATTR:ASYNC 

             SRFFMUX:0 INITY:#OFF FFX:#FF FFY:#OFF INITX:LOW> 

        23 pins - 

          pin 4 - CLK: <clock_c> 

          pin 6 - F1: <DECODE/G_142> 

          pin 7 - F2: <DECODE/N_162> 

          pin 8 - F3: <DECODE/N_259>  

          pin 9 - F4: <inst(7)> 

          pin 12 - G1: <inst(9)> 

          pin 13 - G2: <inst(8)> 

          pin 14 - G3: <inst(6)> 

          pin 16 - SR: <resetn_c> 

          pin 19 - XQ: <status_z_write> 

          pin 20 - Y: <DECODE/N_259> 

 

                            Fig 3.14 Sample entry of the ASCII representation of .ncd file  
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                                              Fig 3.15 Block Diagram of NCD hash 

 

the logical to physical design mapping. The table in figure 3.16 gives a list of all the 

intermediate hashtables generated during this process and the data contained in each of 

the hashtables that is used for the creation of final symbol table. This entire process 

which is depicted in Fig 3.17 begins by mapping all the logical instances in the 

“.instancehash” to their counterparts in the “.ncdhash” using the information in the 

“.maphash” and the “.ncdhash” which contains the information of this mapping to create 

the “.instancemaphash”. Once this mapping is done the information in “.llblockhash” and 

the “.llramhash” is used to relate each of the Latches, Flip flops and Rams in the design 
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              Fig 3.16 A list of Hash table created during the process of  

                            Logical to Physical design Mapping 
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information from the “.ncdhash” and the “.instancehash” is used to compare the signals 

connected to the ports of these components and correspondence between the ports is 

established utilizing the information form the “.nethash” which contains information of 

 

 

                          

                          Fig 3.17 Process of Logical to Physical Design mapping 
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those signal that have been merged. With the information gathered through this procedure 

a symbol table as shown in Fig 3.18 is created which contains comprehensive information  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.18 Block Diagram of the final Symbol table 
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are optimized by the Xilinx CAD tools. This information in the symbol table will be 

utilized during the process of ILA core addition using JBits and JRoute.  

 

3.3 Limitation of Logical to Physical design Mapping technique: The limitation of 

this technique lies in the fact that the process of symbol table creation starts at the Edif 

netlist stage and the design optimizations performed by the synthesis tool are not 

accounted for by this technique. Some signals may be optimized by the synthesis tools 

and are not present in the design after synthesis. The symbol able does not contain any 

information about these. There is a greater chance that designs described at the behavioral 

stage will have many signal names changed or compared to designs described at the 

structural level using a HDL language. So the process of symbol table creation which 

starts after synthesis is more useful fro the case of designs described at the structural 

level. 
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Chapter 4 
 

Adding ILA Cores to Improve the Debugging Capabilities of Designs 
 
       

           This chapter will give a detailed description of the process of adding Integrated 

Logic Analyzer (ILA) cores to the design at the bitstream level using JBits and JRoute, 

the Java based APIs that can be used to modify designs at this level. The main advantage 

of adding the ILA cores at the bitstream level lies in the time saved in making the 

necessary modification to the ILAs depending on the users requirement, such as the 

change in trigger condition, the change in the depth of the data buffer, etc as these 

changes are made late in the design process. Another advantage is that the placement and 

routing of the original design is not changed with the addition of debugging logic. Hence 

the placement is the same with or without the addition of debugging logic. Using this 

technique also provides flexibility which is a very important factor when the design is in 

the early stage of development and several iterations with modifications in the debugging 

logic are required. 

   

4.1 Introduction:          

       ILA cores are a specialized form of logic that is added to the design inorder to 

improve the observibility and execution control of the design. They are in some ways 

similar to the Logic Analyzers that are used to test the fabricated chips. But there are 

some very important distinctions which are as follows 
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a. Logic analyzers for Chip testing are used after the system is already implemented and 

fabricated whereas ILAs are used in aiding the debugging of designs during the 

development of the system. 

b. Logic Analyzers can only be used to probe the I/O pins of the design whereas ILA        

cores are added to the design due to which they are capable of probing even the internal 

signals. This is a very important feature as the no. of I/O pins available for testing 

purpose is very limited and it is desired that all the internal signals are observable.  

       There have been many instances in both commercial and academic domains which 

have demonstrated the capability of adding the ILA cores into the design to aid the 

debugging process. Prominent among the commercial tools are the SignalTap Logic 

Analyzer from Altera and the ChipScope Logic Analyzer from Xilinx. These tools have 

been discussed in chapter 2. Using SignalTap, an ILA cores can be added in the Logical 

Database before commencing the process of PAR carried out by FPGA vendors CAD 

tools. Any significant changes to be made in the debugging tool such as the change in the 

width of capture data, change in the trigger bus width, changes in the buffer depth require 

repeating the entire process of PAR which is quite time consuming. In the case of 

ChipScope Logic Analyzer from Xilinx the ILA core can be added by modifying the 

HDL source code or making the changes in the EDIF netlist before the process of PAR 

and this process has to be repeated whenever significant changes are made to the ILA as 

described above. An instance of an effort in the academic domain was carried out by 

researchers at BYU which targeted the JHDL design environment. It demonstrated the 

ability of ILA core addition in the JHDL source file and connecting the signals in the 

design to the ILA core using Jroute API calls.  The time required for repeating this 
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process using the methods described is quite high in case of complex designs. To 

circumvent these excessive times for ILA core modifications, in this thesis we have 

developed a procedure for adding as well as modifying the ILA cores late into design 

process at the bitstream stage. By doing so a considerable amount of time is saved which 

is highly desirable.  

         ILA cores can be added to the design at various stages of the design process as 

depicted in Fig 4.1. The earliest stage at which the ILA cores can be added is in the HDL 

source code of the design. The Chipscope tool supports this feature. Adding the ILA core 

at this stage will result in design optimization being applied to the Logic Analyzer by the 

synthesis tools resulting in less resources being used by the ILA. But the main 

disadvantage is the inflexibility as any changes to be made to the ILA will require the 

repetition of the entire synthesis and PAR process. This results in the user being tempted 

to make the ILA very generic so that it can support various debugging capabilities as 

desired at the given instance. Such a generic ILA will use up lot of FPGA resources 

instead of supporting only those capabilities as desired at that instance. The next stage at 

which the ILA cores can be added is in the EDIF netlist generated by the synthesis. This 

capability is supported by ChipScope. Logic Analyzers can also be added after the 

process of Placement and Routing by the FPGA CAD tool. In case of Xilinx the 

modification can be made in the Native Circuit Description (NCD) file. The placed and 

routed design can be modified using the FPGA Editor from Xilinx which reads the NCD 

file of the design as input and a new NCD file is created after the necessary modification. 

A script can be written for modifying the ILA. The latest stage at which the ILA cores 

can be added is at the bitstream stage by using bitstream modification tools like JBits and 
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JRoute. The main advantage in using JBits and Jroute as discussed at the beginning of 

this chapter is in the time saved which is highly desirable. There are some disadvantages 

in making the modification so late in the design process which are as follows. 

 

 

                                     

 

 

 

 

 

 

 

 

                                                      

 Fig 4.1 The different stages at which ILA cores can be added to the design 
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4.2 Integrated Logic Analyzers: In this section we will give a detailed description of the 

various aspects of the ILA. Fig 4.2 gives a block diagram of an ILA core. As described in 

the previous section an ILA can be added at various stages in the design process. One of 

the aims in this thesis was to demonstrate that such ILA cores can be added to the design 

at the bitstream level in a minimum amount of time. 

           The components that make up an ILA include the ILA controller, the trigger logic, 

the address generator and the data buffer. This section will explain the overall functioning 

of the ILA. The trigger input to the trigger logic is checked for the occurrence of certain 

trigger condition. On the occurrence of the trigger condition the control logic enable the 

address generator. The address generator generates the address where the data signal is to 

be saved in the storage buffer. The control logic also enables the write enable signal of 

the storage buffer so that data can be written in the particular location. When the buffer is 

full the buffer full output of the control logic goes high. The data saved in the data buffer 

can be analyzed once the hardware execution is terminated. The following is a brief 

description of the different components that make up an ILA. 

 

4.2.1 The ILA controller: An ILA controller is a state machine which controls the 

functioning of the ILA and coordinates the communication between different 

components. For instance on the occurrence of certain trigger condition the ILA 

controller asserts the write enable input of the data buffer so that data can be saved in it. 

When the buffer is full the control logic asserts a trigger signal indication that no more 

data can be sampled by the storage buffer. 
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 4.2.2Trigger Logic: The trigger logic is used to support various types of trigger 

conditions. The different trigger conditions include 

• Equal to 
• Not equal to 
• Greater than 
• Greater than or equal to 
• Less than 
• Less than or equal to 

 
  On the occurrence of the trigger condition data can be captured on the   

• The rising edge 
• The falling edge 
• The rising edge or the falling edge 

 

 

 

 

                                  Fig 4.2 Integrated Logic Analyzer Core 
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      Some instances of the trigger logic are shown in Fig 4.3 and Fig 4.4 which is used to 

implemented different types of trigger conditions. In Fig 4.3 the input trigger signal is 

checked for less than or equal to condition. When the given trigger condition occurs the 

output of the trigger logic goes high. A trigger logic which supports                               

more than one trigger input can also be generated as shown the trigger logic in Fig 4.4. 

Here the trigger logic supports two input signal which can be tested for certain trigger 

condition and a logical operation between the individual output such as a logical OR in 

the given example will give the overall trigger output. The RTP cores supplied by JBits 

can be used to implement the trigger logic to support the different type of trigger 

conditions and different trigger widths. The different possible trigger widths are 8, 16, 24 

and 32. Depending on the requirement the use can select any particular trigger width. 

 

4.2.3 Data Storage Buffer:                                  

               The storage buffer is used to save the value of the signals on the data lines on 

the occurrence of a certain trigger condition. When the trigger occurs, the address 

generator increments the address on the address line and the control logic asserts the 

write enable input of the storage buffer so that the data on the data input can be saved in 

the storage buffer. The data storage buffer is implemented using the block Rams available 

in the Virtex™ devices. A single block Ram in a Virtex™ device has 4096 bits. Data 

buffers of different aspect ratios can be implemented using these Block Rams. So in our 

thesis we have implemented storage buffers of varying depths and data widths as shown 

in the table of Fig 4.5.  

 



 72

 

     

     Trigger input                                                           Trigger Out 
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using a counter which is incremented on the occurrence of certain trigger condition and 

this value of the counter forms the address input to the storage buffer. The flow chart in 

Fig 4.6 depicts the functioning of the ILA core.                   

 

Data Width Buffer Depth

16 256 

8 512 

4 1024 

2 2048 

1 4096 

 

Fig 4.5 Table showing different buffer depths and Data widths 

           

4.3 Process of adding ILA cores to the design using JBits and JRoute: 

                  In this section we will describe the procedure of adding ILA cores to the 

design at the bitstream level. We have used JBits and JRoute to add the ILA cores at the 

bitstream stage. Towards achieving this goal we have used the Runtime Parameterizable 

(RTP) cores supplied with the JBits tool kit. These RTP cores include various                              

components like counters, registers, comparators, adders, etc. Since these cores are 

parameterizable different types of debugging logic can be generated at the bitstream level 

using JBits and JRoute. These RTP cores enable us to work at a higher level of 

abstraction as against the case where the designer is required to configure the bitstream at  
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a very low level. Each of the steps involved is explained in detail below and the block 

diagram depicting this process is given in Fig 4.7. 

  

4.3.1 Providing the user with a logical view of the design: After the design has been 

synthesized by the synthesis tool and then mapped, placed and routed by the Xilinx 

FPGA tools it is desired that the user is provided with a logical view of the design even 

after mapping the design to the physical FPGA resources. Towards achieving this goal 

we have generated a symbol called “.rbstable” which contains detailed information of the                              

logical to physical mapping. This process of symbol table creation was described in detail 

in the previous chapter. The symbol table provides the mapping of the each of the 

instance in the design to their Physical counterparts and the nets connected to each of the 

ports for all the instances. When the user is provided with a logical view of the design 

he/she can select the signal to be monitored in the logical view and as the environment is 

familiar with the physical counterparts of these signals whose information is available in 

the symbol table the corresponding signals are monitored in the physical design. The 

information provided by the user for the creation of ILA cores is as follows. 

1. The depth of the storage buffer. 

2. The width of the data signal 

3. The width of the trigger signal or signals depending on the no of trigger signals. 

4. The data signal in the design that is to be monitored 

5. The trigger signal or signals that are to be monitored. 

                                       Based on this information provided by the user ILA cores are 

automatically generated by the ILA core generator. 
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                      Fig 4.7 The different steps during the process of ILA addition 
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4.3.2 Filling the Database with the used resources:   Before adding the ILA core to the 

design the designer has to make sure that the resources that are already used by the actual 

design are not disturbed during the process of adding the ILA cores. Towards achieving 

this goal the JBits and JRoute Database is filled with the information of the used 

resources before commencing the process of ILA core addition.         

 

4.3.3 Tracking the free resources available in the device: Inorder to add the ILA core 

to the design the information of the free resources in the FPGA should be known. The 

NCD file generated by the Xilinx placement and routing tool contains information of the 

used resources in the FPGA. A textual format of this file is generated using a utility  

called “ncdread” provided by Xilinx. A 2 Dimensional array representing the CLB slices 

inside the FPGA is created and all of the entries are marked as free. The ncd file parser   

which is implemented as a part of this thesis parses this file and fills the 2D array with the 

information of the used resources as depicted in the diagram of Fig 4.8. Thus this array 

will contain the information of the free resources which is referred to while adding the 

ILA core to the design so that only the free resources that are left are used during the 

process of ILA core addition. 

  

4.3.4 Algorithm used to add the ILA core: In this section we will describe the 

algorithm that we have used to add the ILA cores to the design. In the previous sections 

we have described different components that make up an ILA. If the designs are dense it 

might not be possible to add the entire ILA as a single entity but it has to be split and add 

at different locations in the FPGA based on the availability of resources. Fig 4.9 shows 
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Fig 4.8 Block Diagram describing the process of tracking the free resources 
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                    Fig 4.9 Flow chart describing the algorithm used to add the ILA core 
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the highest granularity in the X and Y direction that can fit into these free resources is 

selected from the list and placed in these free resources. Once this is done the placed 

component is removed form the list and the resources used are marked so that they won’t  

be used again. This process is repeated until all the components of the ILA are placed, or 

the entire array has been searched. The algorithm terminates when all the components are 

placed and declares success but if sufficient resource are not available to accommodate 

all the components of the ILA the  algorithm terminates by declaring a failure. 

 
4.3.5 Connecting the data and trigger signal to the ILA: Once the ILA is added to the 

design the trigger and data signals are connected to the ILA so that the process of 

debugging can start. Inorder to connect these signals to the ILA core we use the JRoute 

tool to connect the nets. This tool provides support for API calls which take the end point 

of the net (i.e. the ports) as parameters so that the two ports can be connected via a net. 

The symbol table (“.rbstable”) that we have created contains the corresponding physical 

ports information of the logical ports the user has selected, which is provided as input to 

the JRoute function calls so that the trigger and data signals can be hooked to the ILA.  

 

4.3.5 Creating the new bitstream and configuring the device: Once the ILA core is 

added and connected to the design a new bitstream is generated which contains the 

configuration data for the design with the ILA added. This new bitstream is used to 

configure the FPGA. Once the FPGA is configured the ILA core can be used for 

debugging the design. 
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4.4. Example showing the process of Debugging Design using an ILA: We will now 

describe the process of debugging a design using an ILA with the help of an example. 

Consider a design which contains two counters as shown in Fig 4.10 (a). One of the 

counters output is used as a trigger signal and the output of other counter is used as a data 

signal. Counter1 is a 4 bit counter. The output of this counter will be used as the trigger 

signal. Counter2 is an 8 bit counter whose output is used as the data signal that is sampled 

and saved in the data buffer on the occurrence of certain trigger condition.  

                            First the signals to be monitored are identified which include the 4 bit 

trigger signal from counter1 and the 8 bit data signal from counter2. The ILA core is 

generated and added to the design as shown in Fig 4.10 (b). Now the 4 bit trigger signal  
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                    Fig 4.10(b) Adding the ILA core to the design using JBits 
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Fig 4.10 (c) Connecting the data and trigger signals to the ILA core using JRouteFig 

Fig 4.10 Blocking diagram depicting the steps in addition of ILA core to a design  
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                       Fig 4.11 The core view of the ILA added to the design 

Clock Cycle Trigger Signal
T [0…3] (hex) 

Data Signal 
D[0…7] (hex)

Value saved in Data buffer
(hex) 

 
16 

F 0A 0A 

 
32 

F 1A 1A 

 
48 

F 2A 2A 

 
64 

F 3A 3A 

 
80 

F 4A 4A 

 
96 

F 5A 5A 

            
                  Fig 4.12  Table showing the various signal values during simulation 
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Fig 4.13 The state view of the ILA also showing the content of the Block Ram 
Used as Data Buffer 

 
 

t [0…3] and the 8 bit data signal d [0…7] are connected to ILA using the JRoute API 

calls as shown in Fig 4.10 (c). Fig 4.11 shows the core view of the ILA in BoardScope 

after the ILA core is added. We have used the Virtex device simulator which s a part of 

the BoardScope tool kit to simulate the working of the ILA after it has been added to the 
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design. The trigger value in this example is set to 15. So whenever the value on the 

trigger bus reaches 15 the content of the counter2 or the content on the data bus is saved 

in the data buffer. Fig 4.13 shows the content of the data buffer after some 1500 clock 

cycles. The value on the trigger bus and the data bus and the content of the data buffer for 

certain sample clock cycles is shown in Fig 4.12.  

             Thus in this chapter we have explained this process of ILA core addition using 

bitstream modification tools like JBits and JRoute in great detail. Thus using the readback 

capability as discussed in chapter 3 and the features supported by the ILA cores as 

discussed in this chapter the observibility and execution control of the designs can be 

enhanced considerably. 
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Chapter 5 
 

Results and Analysis 
 
 
 

   This chapter will give a detailed description of the experiments that were conducted and 

the conclusions and insight gained from this research. In chapters 3 and 4 we have 

described in detail the different steps that are involved to automate the process of ILA 

core addition and modification which has been developed as a part of this research to 

improve the observibility and execution control of the designs implemented on FPGA 

Based systems. This technique which was studied extensively consists of the process of 

ILA core addition by modifying the bitstream generated by the Xilinx PAR tools and 

making changes to these ILA cores at the bitstream stage as desired based on the 

particular debugging needs. Logical to Physical design mapping for creation of symbol 

table is an important step towards developing such a technique as discussed in the 

previous chapters. In this chapter we will try to summarize the different aspects of this 

technique and provide results obtained by using this technique and try to gain some 

insight. 

.  

 5.1 Symbol table Creation for providing the user with a logical view of the designs  

during ILA core addition:  The process of Logical to Physical design mapping for the 

creation of Symbol table is very involved and this entire process has been automated as a 

part of this research. We have implemented the parsers for various files that are generated 

by the synthesis and the FPGA vendors CAD tools which are utilized during this process. 

These parsers were implemented using UNIX utilities, Lex and YACC. The information 
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gathered from various files is put together to create a symbol table. This symbol table 

created by the mapper provides a logical view of the design to the user with the 

information of all the logical instance in the design including the information of the ports 

of each of these instances and the nets connected to these ports even after the design has 

been mapped to the physical FPGA. With the information of the mapping available in the 

symbol table the designer can select the signals in the design that he/she is interested in 

and the corresponding signal in the physical FPGA which are recognized by the Jbits and 

Jroute tools is selected in the physical FPGA.  

             The information in the symbol table can be used for other debugging purposes 

such as readback which was demonstrated by the researchers at BYU [24] for the JHDL 

design environment. In this research we are targeting a design environment in which 

designs are described in a hardware description language like VHDL or Verilog. Using 

the information in the symbol table similar type of debugging capabilities can be 

provided for the VHDL or Verilog design environment.          

  

5.2 Addition and Modification of ILA cores: 

               The process of adding the ILA cores and modifying them at the bitstream level 

using bitstream modification tools like JBits and JRoute have been explained in great 

detailed in the previous chapter. The main metric that was used to test the effectiveness of 

the techniques developed lies in the time saved in adding the ILA cores at the bitstream 

stage rather than before the start of PAR, which will result in drastic improvement. We 

used the BoardScope debugger from Xilinx to debug the designs modified using Jbits and 

Jroute at the bitstream stage for adding the ILA cores. 
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5.2.1 Description of the ILA cores added to the design: 

             We added ILA cores with different configurations to the designs using JBits and 

JRoute. The different configurations of the ILA cores depend on the width of the trigger 

and data signals that each of the ILA supports. In the experiments conducted we used the 

ILA cores with the following Trigger and Data widths. 

                           

ILA configuration Trigger Width Data Width

ILA_8_16 16 8 

ILA_8_24 24 8 

ILA_8_32 32 8 

ILA_8_40 40 8 

ILA_8_48 48 8 

ILA_8_64 64 8 

ILA_8_80 80 8 

ILA_8_96 96 8 

 

                             Fig 5.1 ILAs with different configurations used in the experiments 

                            We have used a specific format to represent each of the ILA cores based 

on its configuration. The format used is as follows. 

                                   ILA_# of Data bits_# of Trigger bits 

            For instance an ILA core with an 8 bit Data signal and a 48 bit trigger signal can 

be represented using the above mentioned format as ILA_8_48.  Each of these ILA cores 

utilize different amount of FPGA resources based on its configuration. In the experiments  
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we have used a single BRAM in the Virtex device to implement the data buffer in which 

the sampled values are saved on the occurrence of certain trigger condition. The table in 

Figure 5.2(a) gives the information of the resources used by each of the ILA cores based 

on its configuration when the ILA cores are added to the design using the bitstream 

modification techniques (BMOD) and the same is also depicted with the help of a bar 

graph in Fig 5.2(b). Similarly Fig 5.2(a) also shows the resources used by ILA cores with 

similar configuration when they are added into the VHDL source code before the 

commencement of PAR and a bar graph representing the same is shown in Fig 5.2(b). It 

is observed that the ILA cores add at the VHDL stage use less resource than the bitstream 

modification technique. This is due to the optimizations performed by the synthesis and 

Xilinx tools for ILAs added in VHDL which is not the case for ILA core added using the 

bitstream modification method. 

 

5.2.2 Benchmarks used to test the effectiveness of the technique: 

                       The following is a brief description of each of the benchmarks that are used 

to test the technique developed. We have used the ITC 99’ Benchmarks developed by the 

CAD group at Politecnico di Torino (I99T). It is considered that the characteristics of 

these circuits closely resemble those of the synthesized circuits [36].  We have 

implemented each of the Benchmarks on a Virtex XCV1000 chip. The ILA cores with 

the different configuration are added to each of these benchmarks after they have been 

synthesized, mapped, placed and routed. The benchmarks vary in size with ‘b12’ being 

the smallest one utilizing 1% of the FPGA slices and the largest being the ‘b18’ 
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benchmark that utilizes 72% of the slices in a Virtex™ XCV1000 FPGA. The table in Fig 

5.3 gives a list of the FPGA resources used by each of the benchmarks. Using  

                                                             (a)                                                                  
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                                                                  (b) 
                               Fig 5.2 Resources used by each ILA configuration 

                                BMOD             Added in HDL Configuration 

of the ILA 
No. of Slices 

used 

No of BRAMs 

used 

No. of Slices 
used 

No of BRAMs 
used 

ILA_8_16 19 1     15       1 

ILA_8_24 24 1     20       1 

ILA-8_32 29 1     25        1 

ILA_8_40 34 1     30        1 

ILA_8_48 39 1     35        1 

ILA_8_64 49 1     45         1 

ILA_8_80 59 1     55        1 

ILA_8_96 69 1     65         1 
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benchmarks with a large variation is size will help in analyzing the improvement in 

timing obtained by applying the technique developed inorder to add the ILA cores to the 

designs in this research and how the complexity of the designs governs this 

improvement?. An important aspect of these benchmarks lies in the fact that they were 

developed to test new techniques which help in improving the debugging capabilities of 

designs. Fig 5.4 gives a brief description of the 8 circuits from among the 22 available 

circuits that we used as benchmarks.                  

                 All these benchmarks are available in synthesizable RT Vhdl format or Edif 

netlist format. These benchmarks use only the IEEE standard library components which 

make it easy to synthesize them with any of the available synthesis tools. Some of these 

benchmarks are quite complex. For instance the b18 benchmark is reasonable more 

complex than the largest ISCAS’89 benchmarks. This is important to test the effect of 

time taken for ILA core addition as the complexity of designs change drastically. Another 

important aspect of these benchmarks is the fact that they use single clock which 

synchronizes all the flip flops in the design and makes it easy to test the capabilities of 

the ILA cores after they are added to the design. The number of primary input pins for 

each of these benchmarks varies form 1 to 37 and the number of output pins varies from 

1 to 97. This variation in the number of I/O pins requires ILA cores with varying 

capabilities for each of the benchmarks. 

 

5.2.3 Different methods used for adding the ILA cores to the design: 

          Inorder to test the degree of improvement that can be achieved by using the 

technique of bitstream modification as developed as a part of this thesis we have also 
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added the ILA cores to the benchmarks at the HDL stages of the design process so that 

the relative improvement achieved can be analyzed.  We can add the ILA cores to the 

design directly in the HDL description of the design before the synthesis of the design is 

 

 

 

 

 

 

 

 

 

 

 

 

                              

                                          Fig 5.3 Resources used by each Benchmark 

 

initiated. All the commercial as well as academic tools add the ILA cores before the 

commencement of the Xilinx CAD flow. For instance the Chipscope tool from Xilinx 

supports the addition of ILA core at the VHDL stage or after synthesis. The Signal Tap 

Logic Analyzer from Xilinx supports the ILA core addition in the logic database before 

commencing the process of placement and routing of the design. Similarly the JHDL 

Benchmarks No of Slices 

used 

 

% of Slices 

used 

No. of Nets in 

the design 

B12 

 

185 

 

1% 1289 

B14 637 5% 4468 

B15 1085 8% 7420 

B17 3374 27% 22745 

B18 8965 72% 60182 

B20 1355 11% 9039 

B21 1313 10% 8991 

B22 1974 16% 13413 
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debugging tools also adds the ILA in the logical database or directly in the JHDL source 

code which is before the start of PAR. So we try to find the time taken for ILA core 

addition by repeating the process of PAR as each of these techniques discussed above 

atleast require the repetition of this process of PAR, we compare the PAR time with the 

time taken to add the ILA cores using our technique which adds the ILA at the bitstream 

stage without repeating the PAR step. Since we are considering only the time taken for 

the process of PAR it is the best case scenario for these other techniques as some of these 

techniques even require the repetition of logic synthesis as is the case with Chipscope 

ILA, which may result in this process of ILA core addition taking even more time. Once 

the ILA core is added to the design there are many options that are supported by the 

Xilinx Placement and Routing tools to place and route the designs like the Normal build, 

Guided PAR and fast build. In addition to these, the technique we developed is used to 

add the ILA cores directly at the bitstream stage which does not require the repetition of 

process of PAR each time modification are made to the ILA. We refer to this technique 

as Bitstream addition and modification of ILA (BMOD) .We use the Jbits and Jroute 

tools from Xilinx to modify the bitstream of the original design to add the ILA core and 

connecting the signals in the design to the ILA. Even though the routing algorithm used 

by Jroute is slow it was observed that the improvement in terms of time taken for ILA 

core addition was very less when compared to the other techniques. This is because using 

Jbits and Jroute the placement and routing of the original design is not disturbed and only 

the new resources in the FPGA for ILA core addition are configured and only the signals 

in the design to be monitored are routed using JRoute. Hence we are comparing the time 

taken to repeat the process of PAR for adding the ILA cores as is done by the other 
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methods against the time taken by our technique (BMOD) which utilizes the process of 

bitstream modification for ILA core addition and does not require the repetition of PAR. 

The following gives a brief description of each of the methods that have been employed 

to add the ILA cores to the designs and the time taken by each of these four techniques 

for ILA core addition is used to compare the effectiveness of each of these techniques.       

 

Normal Build:  In case of Normal Build the process of Placement and Routing (PAR) is 

performed by the Xilinx CAD tool with an average effort level for PAR. This is generally 

used when the design meets the timing goals with this average effort level. If the design 

does not meet the timing goals using this method then a high design effort is applied so 

that desired goals can be accomplished.    

Fast Build: In the case of Fast Build the process of PAR which is most time consuming   

is performed with the least effort level. This method is used when the design being 

mapped easily meets the design goals like frequency, 100 % routing of the design, etc.                     

Guided PAR:  In the case of Guided PAR the information from previously placed and 

routed design, without the ILA core added to it is used. The Native Circuit description 

file acts as the guide file to guide the process of PAR so that time can be saved during the 

process of mapping as well as placement and routing the design.                

 Bitstream modification of designs (BMOD) : As explained in chapter 4 after the 

design is paced and routed by the Xilinx CAD tools we take the user inputs such as the 

signals to be monitored in the logical view, the width of the trigger signal, the width of 

the data signal and the depth of the storage buffer, an ILA core is automatically generated 

and using the information in the symbol table which has the information of the Logical to 
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Physical design mapping modification are made to the design at the bitstream level using 

JBits and JRoute inorder to add the ILA core to the design and connect the signals to be 

monitored in the design to the corresponding ILA inputs. 

 

Circuits                       Description 

B12 1-player game (guess a sequence) 

B14 Viper processor (subset) 

B15 80386 processor (subset) 

B17 Three copies of b15 

B18 Two copies of b14 and two of b17 

B20 A copy of b14 and a modified version of b14 

B21 Two copies of b14 

B22 A copy of b14 and two modified versions of b14 

 

Fig 5.4 Brief Description of each of he Benchmarks used 

                  We have measured the time taken by each of the four techniques discussed 

above inorder to show that the fourth technique that we have developed is better in terms 

of time saved when adding the ILA cores as well as modifying them. We compare the 

time taken by the first three methods for mapping, placing and routing the design which 

is indicative of the time taken by the other tools in both academic and commercial 

domains which add the ILA cores before the start of PAR  and comparing it with the time 

taken in modifying the bitstream to add the ILA cores using JBits and JRoute and using 
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this as a metric to show the improvement in terms of time taken by each of these methods 

for  ILA core addition.  

 

5.3 Experiments and Results: 

          We have added eight ILA cores with varying configuration to each of the circuits. 

These different ILA cores added to each of the designs include ILA_8_16, ILA_8_24, 

ILA_8_32, ILA_8_40, ILA_8_48, ILA_8_64, ILA_8_80, ILA_8_96.  We have 

performed these extensive experiments to gain an insight as to how the ILA addition time 

varies with respect to the complexity of the designs as well as the complexity of the ILA 

cores. Each of the figures from Fig 5.5 – Fig 5.12 gives a detailed information of the data 

that was gathered form the experiments. Each of these figures shows the time taken for 

the addition of all the an ILA core with a particular configuration each of the eight  

circuits.  In each of these figures the table in Fig (a) gives the time taken to add the ILA 

core of particular configuration using different methods which include Normal Build, 

Fast Build, Guided PAR and the technique of ILA core addition using BMOD which 

utilizes Jbits and Jroute and developed as a part of this thesis. Fig(b) in each of these 

figures shows the percentage improvement in time taken using BMOD over each of the 

other techniques for ILA core addition which include Fast Build, Normal Build and 

Guided PAR. The graphs in Fig (c) shows in a visual format the time taken for adding 

ILA core to the design using all the four methods. Similarly the graphs in Fig(d) show a 

visual picture of the improvement in the ILA addition time using BMOD over the other 

techniques. With this data available we will try to perform a detailed analysis.     
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Fig 5.5 ILA core Addition time for ILA_8_16 

 Fast 
Build 

Normal 
Build 

Guided 
PAR 

BMOD

B12  50 102 60 16.81 

B14 72 165 79 21.5 

B15 85 206 94 25.4 

B17 221 755 234 46.72 

B18 666 1956 612 100.44 

B20 100 307 110 28.06 

B21 102 311 108 28.12 

B22 150 468 164 33.78 

 Fast 
Build 

Normal 
Build 

Guided 
PAR 

B12 197 506 256 

B14 234 667 267 

B15 234 711 270 

B17 373 1516 400 

B18 563 1847 509 

B20 256 994 292 

B21 262 1005 284 

B22 344 1285 385 
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Fig 5.6 ILA core Addition time for ILA_8_24 

 Fast 
Build 

Normal 
Build 

Guided 
PAR 

BMOD 

B12 37 117 44 16.54 

B14 70 181 73 21.03 

B15 74 213 84 25.86 

B17 179 753 178 47 

B18 585 1965 605 101.42 

B20 84 336 83 27.93 

B21 93 310 97 27.38 

B22 128 488 133 33.76 

 Fast 
Build 

Normal 
Build 

Guided 
PAR 

B12 123 607 166 

B14 232 760 247 

B15 186 723 224 

B17 280 1502 278 

B18 476 1837 496 

B20 200 1103 197 

B21 239 1032 254 

B22 279 1345 293 
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Fig 5.7 ILA core Addition time for ILA_8_32 

 Fast 
Build 

Normal  
Build 

Guided 
PAR 

BMOD 

B12 35 109 43 17.08 

B14 65 184 73 21.55 

B15 87 227 87 25.8 

B17 180 688 174 47.68 

B18 529 1823 714 102.48 

B20 97 331 91 28.13 

B21 98 301 104 27.68 

B22 138 545 125 34.18 

 Fast 
Build 

Normal  
Build 

Guided 
PAR 

B12 104 538 151 

B14 201 753 238 

B15 237 779 237 

B17 277 1342 264 

B18 415 1678 596 

B20 244 1076 223 

B21 254 987 274 

B22 303 1494 265 
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Fig 5.8 ILA core Addition time for ILA_8_40 

 Fast 
Build 

Normal 
Build 

Guided 
PAR 

BMOD

B12 38 136 44 17.48 

B14 64 185 67 21.32 

B15 73 247 83 26.28 

B17 183 746 181 48.11 

B18 554 1801 638 101.63 

B20 93 315 185 28.38 

B21 92 295 98 27.91 

B22 131 500 134 34.45 

 Fast 
Build 

Normal 
Build 

Guided 
PAR 

B12 117 678 151 

B14 200 767 214 

B15 177 839 215 

B17 280 1450 276 

B18 455 1672 527 

B20 227 1009 551 

B21 229 956 251 

B22 279 1351 288 
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ILA core with 48 bit trigger signal and 8 bit data signal
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Fig 5.9 ILA core Addition time for ILA_8_48 

 Fast 
Build 

Normal  
Build 

Guided 
PAR 

BMOD

B12 35 106 47 17.64 

B14 71 190 76 21.96 

B15 82 219 88 26.48 

B17 175 646 178 48.92 

B18 529 1934 736 102.53 

B20 95 341 85 29.48 

B21 97 320 100 28.56 

B22 136 521 136 34.6 

 Fast 
Build 

Normal  
Build 

Guided 
PAR 

B12 98 500 166 

B14 223 765 246 

B15 209 727 232 

B17 257 1220 263 

B18 415 1786 617 

B20 222 1056 188 

B21 239 1024 250 

B22 293 1405 293 
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                                 Fig 5.10 ILA core Addition time for ILA_8_64 

 Fast 
Build 

Normal  
Build 

Guided 
PAR 

BMOD

B12 51 118 61 17.97 

B14 80 191 81 22.44 

B15 90 239 101 26.57 

B17 226 880 231 49.67 

B18 525 2122 705 102.97 

B20 104 307 213 29.05 

B21 106 303 110 28.57 

B22 163 515 164 35.18 

 Fast 
Build 

Normal  
Build 

Guided 
PAR 

B12 183 556 239 

B14 257 751 260 

B15 238 799 280 

B17 355 1671 365 

B18 409 1960 584 

B20 258 956 646 

B21 271 960 285 

B22 363 1363 366 
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Fig 5.11 ILA core Addition time for ILA_8_80 

 Fast 
Build 

Normal  
Build 

Guided 
PAR 

BMOD 

B12 35 97 45 18.69 

B14 64 163 67 23.07 

B15 75 190 84 26.94 

B17 179 624 179 49.34 

B18 530 2405 682 103.14 

B20 99 251 84 29.31 

B21 91 257 91 29.21 

B22 123 388 120 35.93 

 Fast 
Build 

Normal 
Build 
 

Guided 
PAR 

B12 87 418 140 

B14 177 606 190 

B15 178 605 211 

B17 262 1164 262 

B18 413 2231 561 

B20 237 756 186 

B21 211 779 211 

B22 242 979 233 
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Fig 5.12 ILA core Addition time for ILA_8_96 

 Fast 
Build 

Normal 
Build 

Guided 
PAR 

BMOD

B12 40 108 63 19.59 

B14 70 184 80 24.16 

B15 82 259 97 27.77 

B17 185 771 232 50.11 

B18 647 2545 958 105.1 

B20 111 331 225 30.29 

B21 104 305 109 28.52 

B22 156 525 168 36.15 

 Fast 
Build 

Normal 
Build 

Guided 
PAR 

B12 104 451 221 

B14 189 661 231 

B15 195 832 249 

B17 269 1438 362 

B18 515 2321 811 

B20 266 992 642 

B21 264 969 282 

B22 331 1352 364 
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5.4 Analysis of the results:  From the results it is observed that the time taken for the 

addition of the ILA cores using BMOD is quite a bit less than the time taken by the other 

three methods. It is also observed that as the complexity of the design increase the 

percentage improvement in the time taken also increases. It is observed form the graphs 

in Fig(d) for each of the ILA configurations, b18 which is the most complex design 

utilizing 72% of the FPGA resources has the highest percentage of improvement in terms 

of time taken fro ILA core addition using Jbtis and Jroute over other methods. This is 

highly desired as designs which are complex require more number of debugging 

iterations with different debugging capabilities during each iteration such as the change in 

the width of the trigger and data bus, the change in the  buffer depth, the change in the 

signals being monitored, etc  during the debugging process. Thus if the designer is able to 

make these desired changes in less time the debugging process can be made more 

efficient. Towards achieving this goal bitstream modification of designs for ILA core 

addition and modification can be an effective and desired technique for a Hardware 

Debugging environment.                   
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Chapter 6 
Conclusion and Future Work 

 
 

6.1 Work done as a part of this thesis:   

       In this thesis we have developed debugging techniques that will result in improving 

the debugging capabilities of designs implemented on FPGA Based Systems. These 

techniques facilitate the process of verification and debugging and reduce the debugging 

time to achieve early time to market goals. Integrated Logic Analyzer Cores can be added 

to the FPGA based designs to improve their execution control. In this thesis we have 

developed a technique to enable addition of such cores at the last step of the FPGA 

design flow. This can ease and expedite the process of debugging designs implemented 

on FPGA based systems by improving their execution control, reducing the time taken to 

modify the debugging functionality and hence aid in achieving early time to market 

goals. The techniques developed in this thesis can be part of a comprehensive Debugging 

Environment which incorporates many other debugging capabilities in addition to the 

techniques developed as a part of this research. 

 The following subsections will summarize the techniques developed. 

 

6.1.1 Symbol Table Creation:  

           As a part of this research the information of logical to physical design mapping is 

provided in the form of a symbol table. The symbol table contains information of all the 

logical instances in the design with their input and output ports, the nets connected to 

those ports and their detailed mapping to the physical components in the FPGA. This 

process of symbol table creation utilizes information from files generated by both the 
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synthesis tool and the Xilinx placement and routing tool. As a part of this research this 

process of symbol table creation has been automated. The information contained in this 

symbol table in utilized in the techniques developed in this thesis to improve the 

debugging capabilities of the designs. 

 

6.1.2 ILA core addition through Bitstream Modification:  

        Inorder to improve the observibility and execution control of designs Integrated 

Logic Analyzer (ILA) cores which are a specialized form of logic are added at the 

bitstream stage using the bitstream modification tools called JBits and JRoute. The main 

components of an ILA core include trigger logic, control logic and data buffer. In the ILA 

created in this project, trigger signals from the design are monitored by the trigger logic 

and the value on the data line is saved into the data buffer on the occurrence of the user 

specified trigger condition. The width of the trigger, the width of the data signals and the 

depth of the data buffer can be changed as desired. The process of ILA core addition or 

modification also utilizes the information in the symbol table which is developed as a part 

of this research. Once the ILA cores are added to the design using JBits the designer 

selects the data and trigger signals in the logical view and the corresponding signals in 

the physical FPGA are connected to the ILA cores using JRoute. As a part of this 

research we have automated the process of ILA core generation. We have also developed 

and implemented a placement algorithm which is used to add the ILA cores into the 

design using the free resources in the FPGA. The main contribution of this research was 

the demonstration that these ILA cores can be added very late in the design process so 
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that a considerable amount of time can be saved when compared to performing the same 

task using other techniques. 

       The process of ILA core generation and addition was automated as a part of this 

research. From the experiments that were conducted it was observed that the time taken 

to add these ILA cores to the FPGA design was quite small. On average the technique 

developed took 8-10 times less time for ILA core addition when compared to the other 

techniques. In the case of complex designs the time saved was even more significant  

 

6.2 Future Work: In  this section we will try to give a brief description of the     

direction of future work. 

6.2.1 Improving the features supported by the ILA: The ILA cores developed and 

tested in this research helps in improving the observibility and execution control of the 

design. They support a limited number of debugging capabilities like observing the state 

of various signals in the design and saving the sates of signal on the occurrence of certain 

trigger condition. ILA cores with more debugging features like clock control so that 

single and multi stepping of clock is supported, forcing the values of signals in the 

design, etc can be supported so that the controllability, observibility and execution 

control of the design can be improved. 

 

6.2.2 Developing Compact and flexible ILA cores:  The ILA cores generated can be 

made more compact and flexible by using the features supported by the Virtex FPGA. 

For instance an LUT can also act as a shift register. This feature can be used, so that 

trigger logic to support varying trigger conditions can easily be implemented [35]. In case 
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of complex designs which occupies almost the entire FPGA it is desirable to generate 

ILA cores which are compact, as more number of signals are to be monitored and less 

space is available to place these cores.             

 

6.2.3 Developing better Algorithms for ILA core placement: The placement algorithm 

that is developed as a part of this research to place the ILA cores in the design can be 

improved in many ways. It is desired that the ILA cores be placed near to the signals 

being monitored. This is important to prevent the data or trigger signal connected to the 

ILA from becoming a part of the critical path. Also in the case of complex designs where 

there is a scarcity of free resources algorithms should be developed which can utilize 

these free resources in the best possible way while adding the ILA cores. 

 

6.2.4 Developing a integrated Tool: In this thesis the process of Logical to physical 

design mapping was implemented in C using the Unix utilities Lex and Yacc while the 

addition of ILA cores is performed using JBits and JRoute which are Java based API. 

Due to the incompatibilities of these environments intermediate files are generated to 

pass the information from one environment to another. This results in wasted time and 

effort. So it is highly desirable to perform the task of symbol table creation and ILA core 

addition in a single program so that this overhead can be avoided.    

   

6.2.5 Developing a GUI to ease the process of debugging: A GUI can be developed to 

ease the debugging process for the designer. The GUI can be used to provide the designer 

with a logical view of the design so the desired signals to be monitored can be selected 
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and observed. The designer can use this interface to enter the desired configuration of the 

ILA such as the depth of the storage buffer, the width of the data and trigger signals, etc. 

An interface can also be provided for observing the content of the storage buffer during 

design execution through partial readback as well. 
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