
UNIVERSITY OF CINCINNATI

_____________ , 20 _____

I,__,
hereby submit this as part of the requirements for the
degree of:

__

in:

__

It is entitled:

__

__

__

__

Approved by:

Bit Stream Modification to Improve the
Debugging Capabilities of Reconfigurable

Computing Systems

A Thesis submitted to the

Division of Research and Advance Studies
of the University of Cincinnati

In partial fulfillment of the
requirements for the degree of

 MASTER OF SCIENCE

In the Department of Electrical and Computer Engineering
and Computer Science of the College of Engineering

November 2002

By

Faisal Muslehuddin

Bachelor of Engineering

In
 Electronics and Communication

Osmania University, Hyderabad, INDIA, 1999
Thesis Advisor and Committee chair: Dr. Karen Tomko

Abstract

With the increasing design complexity of applications implemented on Field
Programmable Gate Array (FPGA) based hardware platforms the time for debugging
becomes a major bottleneck in achieving early time to market goals. Traditionally
designs implemented on SRAM based FPGAs have been debugged in a manner similar to
ASIC designs using simulation during the early stages of the design process. However,
FPGA device features such as configuration readback, reprogramability, and clock
stepping support the debugging of designs directly on the FPGA-based target platform
thus speeding up the debugging and verification process.
Recently FPGA vendors and academic researchers have introduced integrated logic
analyzer (ILA) cores that are added to a user’s design in support of such in-situ
debugging. In this thesis we have developed a method to enable addition of such cores at
the last step of the FPGA design flow. This can ease and expedite the process of
debugging designs implemented on FPGA based systems by improving their execution
control, reducing the time taken to modify the debugging functionality and hence aid in
achieving early time to market goals. The process of developing these debugging
techniques was divided into two phases.

1. In the first phase a symbol table is created which contains information of the
mapping of the logical design synthesized by the synthesis tool to the physical
FPGA resources.

2. The goal of the next phase is to improve the execution control of the design. This
is achieved by adding bitstream generated Integrated Logic Analyzer Cores into
the designs using the JBits and JRoute bitstream modification tools.

The process of ILA core generation and addition was automated as a part of this

research. From the experiments that were conducted it was observed that the time taken
to add these ILA cores to the FPGA design was quite small. On average the technique
developed took 8-10 times less time for ILA core addition when compared to the other
techniques. In the case of complex designs the time saved was even more significant.

 Dedicated to my dear Parents

 Acknowledgements

 I thank the Almighty, the most beneficent, the most merciful for all the blessing He

bestowed on me and for fulfilling my dreams and aspirations.

 I sincerely and wholeheartedly thank my advisor, Dr. Karen Tomko for her

guidance and support during the course of my research at University of Cincinnati. It was

always a pleasure to work with her. I am also thankful to Dr. Hal Carter and Dr. Carla

Purdy for devoting some valuable time from their busy schedules for being on my

defense committee.

 It has been a pleasure to be a part of the Advanced Computing lab (ACL) where

my colleagues Hananiel, Sriram, Anurag, Sinthel, Priya, Sherif, Ellen and Amr were a

constant source of inspiration and always ready to help. I thank them for maintaining a

motivating and pleasant atmosphere in the lab. I am also thankful to my roommates

Jawad and Akber for their invaluable advice and suggestions during the course of my

research and I really enjoyed my stay with them.

 I would like to thank my parents from the deepest of my heart for their guidance

and support through the entire course of my career. They were always there to help me in

everyway they could whenever I needed them and I do not have enough words to express

my gratitude towards them. I would also like to convey my thanks to my sisters for all

their love and good wishes.

 Copyrights and Trademarks Notice

 Xilinx, Virtex, Virtex-II, Chipscope ILA and Xilinx Alliance tools are trademarks
of Xilinx Inc.

 Signal Tap Mega function ELA is trademark of Altera Corporation.
 JHDL is trademark of BYU.

 i

Contents

List of Figures

1. Introduction

 1.1 Introduction to Reconfigurable Computing ……………………..1
 1.2 Design Verification techniques for FPGA Based Systems………2

 1.2.1 Functional Verification …………………………………...4
 1.2.2 Timing Verification………………………………………..5
 1.3 Debugging …………………………………………………........5
 1.3.1 Controllability……………………………………………...6
 1.3.2 Observibility………………………………………….........6
 1.4 Motivation……………………………………………………….8
 1.5 Contribution of this thesis………………………………………11
 1.5.1 Logical to Physical Design Mapping………………........12
 1.5.2 Detection of free resources………………………………14
 1.5.3 Addition of Integrated Logic Analyzer Cores at
 Bitstream level using JBits & JRoute……………...........14
 1.6 Organization of the thesis……………………………………....15

 2. Background and Related Work
 2.1 Introduction to Virtex™ FPGA Architecture……………………..17
 2.1.1 Configurable Logic Blocks (CLBs)………………………..17
 2.1.2 Block RAMs……………………………………………….19
 2.1.3 Input Output Blocks (IOBs)………………………………..19
 2.2 Different Configuration Techniques………………………………19
 2.3 FPGA features useful in debugging…………………………….....22
 2.3.1 Configuration Readback…………………………………..23
 2.3.2 JTAG Boundary Scan Interface…………………………...25
 2.4 JBits and JRoute…………………………………………………...26
 2.4.1 Drawbacks of JBits and JRoute…………………………....28
 2.5 Related Work……………………………………………………...28
 2.5.1 Device Level Support for Debugging……………………..29
 2.5.2 FPGA Based Boards that support Debugging……………..31
 2.5.3 Hardware Debugging tools………………………………...32

 ii

 3. Process of Symbol Table creation
 3.1 Introduction………………………………………………………..43
 3.2 Process of Logical To Physical Design Mapping……………........45
 3.2.1 EDIF netlist file……………………………………………...46
 3.2.2 Information extracted from Logic Location (.ll) file………...46
 3.2.3 Considering the Design Optimization (.mrp)………………..54
 3.2.4 Tracing the FPGA resource usage information……………...58
 3.2.5 Putting it all together……………………………………..….59
 3.3 Limitation of Logical to Physical design Mapping
 technique………………………………………………………...64

4. Adding ILA Cores to Improve the Debugging
Capabilities of Designs

 4.1Introduction……………………………………………………...65
 4.2 Integrated Logic Analyzers……………………………………..69
 4.2.1 The ILA controller………………………………………...69
 4.2.2Trigger Logic…………………………………………… …70
 4.2.3 Data Storage Buffer…………………………………… ….71
 4.2.4 Address Generator…………………………………………72
 4.3 Process of adding ILA cores to the design using JBits
 and JRoute………………………………………………………73
 4.3.1 Providing the user with a logical view of the design………75
 4.3.2 Filling the Database with the used resources……………...77
 4.3.3 Tracking the free resources available in the device……….77
 4.3.4 Algorithm used to add the ILA core………………………77
 4.3.5 Connecting the data and trigger signal to the ILA………...80
 4.3.5 Creating the new bitstream and configuring the device…...80
 4.4. Example showing the process of Debugging Design using an
 ILA……………………………………………………………...81

 5. Results and Analysis
 5.1 Symbol table Creation for providing the user with
 a logical view of the ………………………………………...........86
 5.2 Addition and Modification of ILA cores …………………………87

 5.2.1 Description of the ILA cores added to the design…………...88
 5.2.2 Benchmarks used to test the effectiveness of the
 technique…………………………………………………….89
 5.2.3 Different methods used for adding the ILA cores to the
 design ………………………………………………………91

 iii

 5.3 Experiments and Results………………………………………….96
 5.4 Analysis of the results…………………………………………...105

 6. Conclusion and Future Work
 6.1 Work done as a part of this thesis……………………………….106
 6.1.1 Symbol Table Creation…………………………………..106
 6.1.2 ILA core addition through Bitstream Modification……...107
 6.2 Future Work…………………………………………………….108
 6.2.1 Improving the features supported by the ILA………........108
 6.2.2 Developing Compact and flexible ILA cores……………108
 6.2.3 Developing better Algorithms for ILA core placement….109
 6.2.4 Developing a integrated Tool……………………………109
 6.2.5 Developing a GUI to ease the process of debugging…….109

 Bibliography ………………………………………………111

 iv

List of Figures

 Fig 1.1 The FPGA design Flow………………………………………….3
 Fig 1.2 Example design implemented on FPGA…………………...........7
 Fig 1.3 Circuit with improved Observibility…………………………….7
 Fig 1.4 Different Steps during the addition of ILA cores………………13
 Fig 2.1 A Schematic of the Logic Cell in a Virtex™ CLB…………......18
 Fig 2.2 Schematic of Block Select Ram…………………………...........20
 Fig 2.3 Table showing different aspects Ratios for Block Rams…….....20
 Fig 2.4 Distribution of Frames in the Bitstream for Virtex XCV50
 Device……………………………………………………..........24
 Fig 2.5 Table showing the no. of configuration bits for each Virtex
 device ……………………………………………………….....25
 Fig 2.6 This table gives a brief description of each of the JTAG
 Commands……………………………………………………...27
 Fig 2.7 The different steps involved in modifying designs using
 JBits……………………………………………………………..29
 Fig 2.8 Different component of the ELA core………………………....36
 Fig 2.11The BoardScope Interface……………………………………...41
 Fig 3.1 List of files used for symbol table creation ………………........45
 Fig 3.2 Sample entries of the .instancehash file………………………...47
 Fig 3.3 Block Diagram of the Instance hash…………………………....48
 Fig 3.4 Sample .ll file entries……………………………………………49
 Fig 3.5 Possible latch entries for Virtex device…………………………50
 Fig 3.6 The formulae used to calculate the postion of bits in the
 readback Bitstream………………………………………………52
 Fig 3.7 Process of Ram Address Mapping………………………………53
 Fig 3.8 Block diagram of readback Block hash………………………....54
 Fig 3.9 Block Diagram of readback Ram hash……………………….....55
 Fig 3.10 Sample entries of Map report file………………………….......56
 Fig 3.11 Algorithm for keeping track of Net Merging………………......57
 Fig 3.12 Block Diagram of Nethash…………………………………......57
 Fig 3.13 Block Diagram of Instancemaphash……………………….......58
 Fig 3.14 Sample entry of the ASCII representation of .ncd file…………59
 Fig 3.15 Block Diagram of NCD hash…………………………………..60
 Fig 3.16 A list of Hash table created during the process of
 Logical to Physical design Mapping…………………………..61

 v

 Fig 3.17 Process of Logical to Physical Design mapping…………….....62
 Figure 3.18 Block Diagram of the final Symbol table…………………...63
 Fig 4.1 The different stages at which ILA cores can be
 added to the Design……………………………………………...68
 Fig 4.2 Integrated Logic Analyzer Core………………………………….70
 Fig 4.3 Trigger logic to test the less than or equal to condition………….72
 Fig 4.4 An instance where more than one trigger conditions can be
 tested simultaneously…………………………………………….72
 Fig 4.5 Table showing different buffer depths and Data widths………....73
 Fig 4.6 Flow chart showing the steps in the functioning of ILA………...74
 Fig 4.7 The different steps during the process of ILA addition………….76
 Fig 4.8 Block Diagram describing the process of tracking the free
 resources………………………………………………………….78
 Fig 4.9 Flow chart describing the algorithm used to add the ILA
 Core………………………………………………………………79
 Fig 4.10 Blocking diagram depicting the steps during addition of
 ILA core to a design…………………………………………….82
 Fig 4.11 The core view of the ILA added to the design………………….83
 Fig 4.12 Table showing the various signal values during
 simulation………………………………………………………83
 Fig 4.13 The state view of the ILA also showing the content
 of the Block Ram Used as Data Buffer…………………………84
 Fig 5.1 Table showing ILAs with different configurations used in
 the experiments………………………………………………….88
 Fig 5.2 Resources used by each ILA configuration………………….......90
 Fig 5.3 Resources used by each Benchmark……………………………..92
 Fig 5.4 Brief Description of each of he Benchmarks used……………….95
 Fig 5.5 ILA core Addition time for ILA_8_16…………………………..97
 Fig 5.6 ILA core Addition time for ILA_8_24…………………………..98
 Fig 5.7 ILA core Addition time for ILA_8_32…………………………..99
 Fig 5.8 ILA core Addition time for ILA_8_40 ………………………...100
 Fig 5.9 ILA core Addition time for ILA_8_48…………………………101
 Fig 5.10 ILA core Addition time for ILA_8_64………………………..102
 Fig 5.11ILA core Addition time for ILA_8_80………………………...103
 Fig 5.12ILA core Addition time for ILA_8_96………………………...104

 1

 CHAPTER 1
 INTRODUCTION

1 Introduction:

1.1 Introduction to Reconfigurable Computing: Reconfigurable Computing is an

innovative approach in the area of Computing Systems design, inorder to cope with the

drawbacks of the conventional Computing Systems, due to their general purpose nature.

It aims at reducing the gap between Hardware and Software Computing by trying to

achieve the advantages of both i.e. the flexibility of Software and the efficiency of

Hardware at the same time. In recent years there have been many instances in which the

potential of Reconfigurable Computing Systems has been demonstrated in many different

application domains. Survey [39] describes many FPGA based systems which have

demonstrated excellent performance for different applications. The following are some of

the systems which are mentioned in this survey.

a. The Splash system [40] gave 200 times better performance on genetic string

matching algorithms when compared to supercomputers implementations.

b. The DECPeRLe-1 system [41] achieved a very fast encryption rate of 185 kbps

with 970 bit keys and 600 kbps with 512 bit keys for data encryption based

applications.

 An FPGA in general can be viewed as a two dimensional network of

Configurable Logic Blocks which are surrounded by the Input Output Blocks on the

periphery of the chip. The different components that make up an SRAM based FPGA are

Configurable Logic Blocks (CLB), Input/Output Blocks (IOB), Block Rams, buffers and

the configurable interconnect resources that are used to connect these primitives together.

The CLBs consists of Look up Tables (LUTs) which can be configured to implement

 2

different Boolean functions and Flip Flops to implement components of the design that

need to save state such as registers, counters, control logic, etc. The Block Rams are used

to provide on chip memory for DSP and other applications [42] that require low memory

latency and high bandwidth as the data in the memory is accessed frequently.

 With the advent of multimillion gate FPGAs like the Vertex [1] FPGA architecture

from Xilinx which consists of more than 10 million gates the amount of reconfigurable

resources that are available on these devices have increased drastically. With

improvement in the VLSI chip technology and improvement in the Mapping, Placement

and Routing algorithms the execution speed of the designs that are mapped on the FPGAs

have also improved rapidly resulting in implementation of complex and high frequency

designs on FPGA Based Systems. Recently, Xilinx has introduced a new FPGA

architecture, the Vertex II [43] which in addition to providing traditional configurable

resources like CLBs, IOBs and Block Rams also includes dedicated resources such as

Multipliers, Adders, etc to speed up DSP and other applications which require fast

arithmetic computations.

1.2 Design Verification techniques for FPGA Based Systems:

 Design verification is a very important and time consuming step in the process to

bring a new system design to successful completion. Designs are verified at different

stages of the design process. In the case of FPGAs the different stages at which designs

are verified is depicted in Fig 1.1. Once the design is described in a Hardware

Description Language the first step is to verify the functional correctness as per the

given specifications, which is generally performed using a simulation environment. The

 3

later in the design cycle the bugs are detected the more time consuming and expensive,

it is to correct them. Hence it is desirable to detect and correct the errors in the early

stages of the design process which will help in reducing both the time and design effort.

Fig 1.1 The FPGA design Flow

There are some design errors, however, that can be detected only in the later stages of

the design process such as the timing violation which can be detected only after logic

synthesis or after the design is mapped onto an FPGA based System. The following is a

Design Entry
(Hardware Description

Language)

Design
Synthesis

Design Implementation
Using Placement and

Routing Tools

 Functional
 Simulation

Timing Verification

Configuring the
FPGA

In Circuit
Verification

 4

brief overview of the various verification techniques that are employed during the

development of FPGA based Systems.

1.2.1 Functional Verification:

 Functional verification is the process of verifying the functional correctness of

the design. Designs are verified by simulation tools which take the HDL description of

the design at various levels of design abstraction such as the Behavioral level, the RTL

level or the Gate level as input and verify the functional correctness by applying a set

of test vectors and verifying the output generated against the expected output for each of

the test vectors. The strengths of simulation include high controllability, observibility

and control over the execution of the design. But a linear increase in the complexity of

the design produces an exponential increase [48] in the number of test vectors required

to verify the functional correctness of the design making the process of simulation

impractical for complex designs since it becomes very time consuming to simulate for

all the test vectors that are necessary to exhaustively test the design functionality.

 An alternative technique to simulation is emulation, also called Rapid Prototyping,

where the designs are verified for their functionality directly in hardware by mapping

the synthesized design to an FPGA based emulator [43] and then verifying their

functionality by applying the set of test vectors as in the case of simulation. The

advantage of emulation is a reduction in execution time as the design is implemented

and executed directly on the hardware. There has been significant amount of work

reported in the literature [44] which has demonstrated the capabilities of in circuit

emulators.

 5

1.2.2 Timing Verification:

 Timing verification is the process of verifying that the system meets the desired

timing goals [45] such as achieving the desired clock frequency, satisfying the setup and

hold times of flip flops, etc. Timing verification is performed later in the design process

as can be observed from Fig 1.1 after the design is synthesized and also after the design

is mapped onto an FPGA. Timing analysis that is performed after the design is

synthesized is termed as static timing analysis where the critical paths in the design are

identified and this information is passed onto the Placement and Routing tools so that

the components that are a part of the critical path can be placed in close proximity to

each other to satisfy the timing goals and avoid any timing violations. In this step the

delays due to FPGA interconnect are not considered, so its accuracy is not as good as

the post placed and routed timing analysis. The next instance where the timing analysis

is performed is after the design has been mapped to the FPGA and this includes the

delays due to the FPGA interconnect. Thus the goal of timing analysis at different stages

in the FPGA design flow is to make sure that designs implemented on FPGA Based

Systems satisfy the desired timing specifications and design goals.

1.3 Debugging:

 The process of debugging a design consists of error detection, error diagnosis and

error correction [46]. Error detection is the process of detecting the location in the design

where the error has occurred which is responsible for the malfunctioning of the design.

Error diagnosis is the process of detecting the cause of the error and error correction is

the process of coming up with a remedy to resolve the problem or error.

 6

 For a design to be debugged efficiently it should have good controllability,

observibility and control over the execution of the design. The following is a brief

description emphasizing the importance of each of these techniques.

1.3.1 Controllability:

 Controllability is defined as the ability to set the value of any internal signal and

components in the design to a desired value. This is important when one is interested in

testing a given section of the design whose input cannot be controlled directly from the

primary input of the design. This is important when a designer is trying to detect an error

and inorder to narrow down the search of the actual location of the error the designer

might be interested in controlling the values of certain internal signals. In the case of

Application Specific Integrated Circuits (ASICs) this capability is provided by the

addition of Scan Chains and other ad hoc debugging techniques. There has been a lot of

research that has been reported in this area and one of the famous techniques for scan

chain design is the Level Sensitive Scan design [47] technique being employed at IBM.

1.3.2 Observibility:

 Observibility is defined as the ability to observe the value of any of the internal

signal and the components in a given design. This feature is important when the designer

is interested in monitoring the internal signals during the execution of the design. There

are some nodes in the design which are difficult to monitor and it is difficult to generate

test patterns so that the values on those nodes can be observed at the primary output. In

such cases the observibility of the design can be improved by adding debugging logic

 7

such as scan chains, multiplexers, etc to the design. Fig 1.3 demonstrated how the

observibility of the circuit given in Fig 1.2 can be improved by connecting a wire from

Primary I/P
 Primary O/P

 Fig 1.2 An example design implemented on FPGA

 Observation point

Primary I/P Primary O/P

 Fig 1.3 Circuit with improved Observibility

one of the output of C1 which is a internal node and connecting it to the primary output if

any unused I/O pin is available. In case of FPGA based designs the observibility can be

improved through readback which is the ability to read back the state of various elements

in the FPGA like flip flops, Block Rams, etc. The different families which support this

feature include the XC4000, Virtex and Spartan from Xilinx and Lucent FPGAs.

 Debugging of designs in case of ASICs differ from FPGAs as ASICs are tested for

manufacturing defects after the design has been fabricated, along with the debugging

logic that has been added to the design inorder to improve its debugging capabilities.

These design for testability (DFT) techniques help in improving the controllability,

 C1

 C2

 C1

 C2

 8

observibility and execution control of the design during the testing process after the chip

has been fabricated. This extra logic that is added in ASIC designs cannot be removed

from the chip after the design has been tested. The goal that needs to be achieved by the

addition of these debugging logic cores differ in ASICs and FPGAs. In case of ASICs as

discussed above the purpose of debugging logic is to aid in the testing of the chip for

manufacturing defects after fabrication but in case of FPGAs the purpose of debugging

logic is to aid in the process of functional and timing verification during the development

of the system and the debugging logic can be removed once the functionality and timing

of the system has been verified and this is possible due to the reprogrammable nature of

FPGAs.

1.4 Motivation:

 Traditionally designers who implement their designs on FPGA Based Systems

follow the same design flow as used for design of ASICs. During the initial stages of the

design process when the specifications of the design are available, designers try to

describe the design at the behavioral or RTL level depending on the complexity of the

design using a Hardware Description language and try to simulate the design using a

circuit simulator. The attractive feature of circuit simulation is in its ability to provide

almost complete visibility and control over the execution of the design during simulation.

These features include monitoring of internal signals, forcing the values of certain signals

as and when desired, halting the execution of the design on the occurrence of certain

trigger conditions, etc. These features are very important when the design is in its initial

stages of development when there are many issues that need to be resolved.

 9

 With the arrival of multimillion gate FPGAs into the market from vendor like Xilinx

and Altera the complexity of designs that are implemented on these FPGA based systems

is increasing rapidly. The time required for simulating these systems is high due to the

reasons discussed in section 1.2.1.

 An alternative technique which tries to mitigate the long simulation times of these

complex systems is Rapid Prototyping or in circuit emulation which was also discussed

in section 1.2.1. But there are some issues that have to be addressed when considering in

circuit emulation. Controllability and observibility must be available during execution of

the designs to make it a viable alternative to simulation.

 Designs tools for implementing circuits with FPGA based system as their final target

platform similar to ASIC design systems which are verified using the emulation

environments have to address this problem of poor debugging capabilities. SRAM based

FPGAs with flexible resources like CLBs, IOBs, Block Rams and Configurable

interconnect and features such as configuration readback, configuration writeback,

reprogramability and JTAG Boundary Scan interface have the potential for supporting

the desired debugging capabilities as discussed above. Towards achieving the goal for

supporting improved debugging capabilities for FPGA based designs using these unique

features of FPGAs many researchers in both the academic and commercial domains have

come up with debugging circuits called Integrated Logic Analyzers (ILA) which can be

added to the design to improve its observibility and execution control. One of the

prominent academic tools include the ILA cores developed by researchers at BYU [25]

that support different debugging capabilities and the techniques used to add them to the

design at various stages of the design flow. This work supports the addition of ILA cores

 10

at the HDL stage before the commencement of logic synthesis and also in the logical

database before commencement of Xilinx design flow. Similarly the tools in the

commercial domain include the Chipscope ILA [11] [12] from Xilinx and Signal Tap

Logic Analyzer [8][9][10] form Altera Corporation. It is observed that the logic analyzers

that each of these tools support provide good debugging capabilities. But the problem

with these tools lies in the time taken to add and modify the ILA cores based on the

designer’s requirements, as the entire Xilinx flow has to be repeated whenever these

changes are made. It is observed that as the complexity of designs increases the time

taken to make these changes also increases drastically. Hence it is desirable to develop a

technique that can be used to add the ILA cores to the design as late as possible so that

the ILA core addition or modification takes less time. The latest stage at which the ILA

cores can be added is at the bitstream stage after the process of bitstream generation

which is last stage before the device is configured. Hence, the aim of this thesis is to

develop techniques to add the ILA cores to the design at the bitstream stage so that the

time taken for addition and modification of these ILAs cores is minimal. By developing

such a technique which may be a part of a comprehensive Hardware debugging

environment, along with the speed up that is achieved by debugging the design directly

on the FPGA hardware, the designer can improve the debugging capabilities of the design

by adding and modifying the ILA cores as needed and hence have a rich and flexible

investigative tool for his/her debugging needs.

1.5 Contribution of this thesis: In this thesis we have investigated a technique to add

and modify ILA cores to the design which takes very less time when compared to the

 11

conventional approaches in both the academic and commercial domains to support a

hardware debugging environment so that designs can be debugged directly on the FPGA

hardware which is their target platform. The main contribution of this thesis has been the

demonstration of the ability to add Integrated Logic Analyzer cores to the design at the

bitstream level using the bitstream modification tools such as JBits and JRoute after the

user has been provided with a logical view of the design through the process of logical to

physical design mapping for the creation of symbol table, which is implemented as a part

of this thesis. The process of logic to physical design mapping is also useful to find the

state of the logical elements such as flip flops, Ram, etc during hardware execution when

readback is carried out, which is another way of improving the observibility of designs.

So instead of simulating designs using cycle based or event based simulators which are

very slow in simulating complex designs, a hardware debugging environment with the

techniques investigated in this thesis and several other capabilities demonstrated by other

systems can be developed to verify the functional correctness of the design directly on the

target platform.

 The following are the steps taken during the process of adding ILA cores to a

design as shown in the context of FPGA design flow in Fig 1.4 the goal of each step is

given along with a brief description.

1. Logical to Physical design mapping to provide the user with the logical view of the

 design.

2. Detecting the free resources in the FPGA so that these resources can be used for the

 addition of debugging logic.

3. Modifying the designs at the bitstream level using JBits and JRoute for adding the

 12

 necessary debugging logic.

 4. Configuring the FPGA chip using the new debug modified bitstream.

 This process speeds up the modification of ILA logic while maintaining the

same level of observibility and execution control.

1.5.1 Logical to Physical Design Mapping:

 Logical to Physical design mapping is defined as the process of creating a

symbol table from the information of the mapping of the logical netlist of the design

generated by the synthesis tools to the physical resources in the FPGA after the design

has been placed and routed to the device by the FPGA vendors CAD tools. This mapping

is important when designs are debugged directly on the FPGA based platform, as the user

is familiar with the components in the logical netlist and he/she doesn’t have a clear

picture of how the design has been mapped to the primitives in the FPGA. Along with the

generation of a bitstream used to configure the FPGA CAD tools also generate several

files which have information of how the logical components or instances in the design are

mapped to their physical counterparts in the FPGA. To achieve good observibility and

control over the execution of the design it is necessary to provide a mapping of all the

signals and components in the FPGA that are a part of the netlist to their logical

counterparts so that debugging can be carried out efficiently. Since the user is familiar

with the logical design he/she should be provided with the logical view even when the

design is being executed on the FPGA hardware. For instance if the designer is interested

in reading the content of a particular flip flop in the logical design then the user should

not need to know what it corresponds to in the physical FPGA. This should be taken care

 13

 Start

 .edf (netlist) Bitstream(.bit)

 .ncd, .ll,
 .mrp

Fig 1.4 Different Steps to add ILA cores

of by the design environment so he/she can concentrate on the more important task of

error detection at hand. Thus this information of logical to physical design mapping is

HDL
description of

the Design

Logic
Synthesis

Logical to
Physical Design

Mapping
(Symbol table)

Xilinx
Placement and

Routing

Addition of
ILA cores
Using Jbits
and Jroute

Configure the
FPGA using
the modified

bitstream

 14

gathered in a Symbol Table which will be referred to by the Hardware Debugging

Environment whenever the information is desired.

1.5.2 Detection of free resources:

 Once the design has been mapped to the FPGA based system not all of the

resources in the FPGA are used. Depending on the complexity of the design being

implemented different percentage of resources remain free. For instance the user might

be interested in controlling some of the signals in the design. An example of such

improved observability is depicted in Fig 1.3. Inorder to achieve this some of the free

resources inside the FPGA along with the unused interconnect can be used to implement

debugging logic cores which provide this improved debugging capability. Inorder to do

this first the free resources in the FPGA have to be identified. The information of the

resources utilized to implement a particular design are present in Native Circuit

Description (NCD) file and by parsing this file a table with the free resources can be

created which is used to guide the process of debugging logic addition without disturbing

the already implemented design on the FPGA. In this thesis we have implemented a

parser which parses this NCD file and generates a table with the information of the free

resources which is utilized for the addition of debugging logic.

1.5.3 Addition of Integrated Logic Analyzer Cores at Bitstream level using JBits &

JRoute:

 Once the Logical to Physical design mapping symbol table is created and the free

resources in the FPGA are identified the next step involves the improvement in the

 15

debugging capabilities of the design. The debugging capabilities required for a rich

interactive tool includes features like single or multi stepping the clock, reading back the

state of the intermediate and internal signals, generation of interrupt signals on the

occurrence of certain trigger conditions, saving the intermediate state of certain signals in

data buffers, stopping the clock on the occurrence of certain trigger condition, forcing the

values of certain internal signals, etc. Inorder to achieve these goals Integrated Logic

Analyzers (ILA) have to be added to the FPGA designs[9][10][11][12][25]. There are

many stages in the design flow where these ILA cores can be added. But since one might

be interested in making changes to these ILA cores depending on the debugging

capabilities that the user wants while diagnosing a problem, the best case scenario would

be to add it in the latter stages of the design process so that the overhead in terms of time

taken can be minimized. Towards achieving this goal we have developed techniques to

add the ILA cores at the bitstream level after the configuration bitstream for the design is

generated. From our experiments it has been observed that on the average it takes 8 times

less time to add the ILA cores at the bitstream level when compared to the time taken for

the addition of the debugging logic at the earlier stages of the design flow.

1.6 Organization of the thesis:

 The following is the organization of the rest of this thesis. Chapter 2 will provide an

introduction to the different features of FPGAs, the different capabilities that are

available in FPGA Based System that are utilized, the design tools used in this thesis and

the background to the previous work done. Chapter 3 will describe in detail the process of

logic to physical design mapping for the creation of a Symbol table. Chapter 4 will

 16

explain the process of modifying the designs at the bitstream level using JBits and JRoute

inorder to add the Integrated Logic Analyzer cores to improve the debugging capabilities

of the designs. Chapter 5 will describe the experiments that were conducted and the

insight gained from those experiments. Finally, Chapter 6 will conclude the thesis and

provides a brief introduction to the potential future work related to this thesis.

 17

 CHAPTER 2
BACKGROUND AND RELATED WORK

 This chapter will give a detailed description of the Virtex™ FPGA architecture

from Xilinx, the different configuration techniques supported by Virtex™ FPGAs

and the different features available in this architecture that are utilized in this thesis to

improve the debugging capabilities of designs. It also gives an introduction to JBits

and JRoute, the Java Based APIs developed by Xilinx which are used in this thesis for

the modification of designs at the bitstream level inorder to add the desired debugging

logic to the design. Finally, the chapter concludes with a description of the previous

work done in this area.

2.1 Introduction to Virtex™ FPGA Architecture:

 The different components that make up a Virtex™ [1] FPGA architecture

include Configurable logic Blocks (CLBs), Block Rams, Input Output Blocks (IOBs),

buffers and the configurable routing resources. A brief description of each of the

components is given below.

2.1.1 Configurable Logic Blocks (CLBs):

 Each Virtex™ CLB consists of four Logic cells (LC) which are the basic

component that make up a CLB. A CLB consists of two slices where each slice

contains two Logic Cells and some other configurable resources that are a part of the

CLB, which can be used to handle different situations and requirements as discussed

below.

 18

 Each Logic cells consists of a 4-input Lookup table (LUT), carry logic and the

storage element. Figure 2.1 gives a schematic of a typical LC of a Virtex™ CLB.

The LUT in a LC can be used to implement any function of four variables. It can also

be used as a 16x1 SRAM or as a 16 bit shift register. In order to implement functions

of more than four variables the LUTs from different LCs can be combined to handle

this situation. For instance a function of five variables can be implemented by

combining the outputs of the two 4 input LUTs and passing them as input to a

 X

 F4

 F3 XQ

 F2

 F1

 Bx

 Clk

 Fig 2.1 A Schematic of the Logic Cell in a Virtex™ CLB

multiplexer which is a part of the CLB. Similarly functions of more than five variables

can also be implemented using similar techniques. Thus the availability of ample

configurable resources in the CLB provides a great deal of flexibility.

 The LCs also contains dedicated carry logic which is used to expedite the carry

operation in case of arithmetic computations for DSP and other applications. Each slice

of the CLB implements 2 bits of the carry logic chain. Some extra resources like an XOR

gate are available in each LC which can be utilized to implement a 1 bit full adder in each

of the LCs.

 LUT Carry

Logic
D

Clk

 19

 The storage element available in each LC can be used either as an edge triggered flip

flop or level sensitive latche. The input to the storage element can be the output of the

LUT or a direct input to the slice.

2.1.2 Block RAMs:

 For applications which access the contents of memory frequently such as DSP

applications it is desirable to provide on chip RAM to reduce the latency of memory

access. Towards serving this goal Xilinx has provided on chip memory in the form of

Block Rams modules each containing 4096 bits of storage space. Fig 2.2 shows a block

diagram of a Virtex™ Block Ram. Each of the 4096 bit blocks can be configured as

memory module with varying aspect ratios ranging from 4096x1 to 256x16. The table in

Fig 2.3 gives the different aspect ratios to which each of the Block Rams can be

configured.

2.1.3 Input Output Blocks (IOBs):

 The Input Output Blocks in the FPGA act as an interface between the IO pads and

the internal FPGA resources. Each IOB contains three storage elements each of which

can be used as a D flip flop or a level sensitive latch. The IOBs have capabilities to

support various I/O modes.

2.2 Different Configuration Techniques:

 Configuration is defined as the process of storing the bitstream generated by the

FPGA CAD tools for configuring the FPGA in its configuration memory. The

 20

configuration bitstream includes data which is used to configure various configurable

resources in the FPGA like LUTs to implement a particular Boolean function or as a

Fig 2.2 Schematic of Block Select Ram taken from the application notes [1]

Fig 2.3 Table showing different aspects Ratios for Block Rams

Data Width Data
 Depth

Address
Width

1 4096 12
2 2048 11
4 1024 10
8 512 9
16 256 8

WEA
RSTA DOA
CLKA
ADDRA
DIA

BLOCKRAM_S#_S#

WEB
RSTB DOB
CLKB
ADDRB

 21

16x1 RAM, Block Rams as memory elements with different aspect ratios as discussed in

the previous section, a particular IOB as input or output port, configuring the interconnect

inorder to connect the FPGA configurable resources together as required by the current

design, etc. The various Configuration techniques that are employed to configure the

FPGAs can broadly be classified into static Reconfiguration and Runtime or Dynamic

reconfiguration. The following is a brief overview of each of these techniques and issues

related to each one of them.

 Static reconfiguration is the process of reconfiguring the FPGA after the design

has been synthesized by the synthesis tools and mapped, Placed and Routed using the

FPGA vendors CAD tool. The bitstream generated by the FPGA vendors CAD tool is

used to configure the FPGA and once this is done there are no changes made in the

configuration of the device when the design is being executed on the FPGA Based

System. This process of configuring the device once and not altering its configuration

till the execution is complete is termed as static reconfiguration. The advantage of static

reconfiguration lies in the time saved as the device is configured once for a single run of

the execution. But if a design is complex and does not fit on the available FPGA

resources then such designs cannot be implemented on the given FPGA system using

static or compile time reconfiguration. This drawback can be addressed by Runtime or

Dynamic Reconfiguration. Using Dynamic reconfiguration [2][3] designs which cannot

be accommodated on the available FPGA hardware can also be implemented. Here at a

given instance only those components of the design are using during computations are

mapped to the FPGA and the other components are swapped in and out of the system as

and when required.

 22

 The Configuration bitstream is divided into frames each of which is used to

configure a different portion of the FPGA. A frame is a smallest possible set of bitstream

data that can be used to configure a particular section of the FPGA. So incase of partial

reconfiguration the smallest possible unit of reconfiguration that can be used is a frame.

This feature of reading back or configuring the device using individual frames is

important in many different applications. In some applications which support dynamic or

partial reconfiguration only a portion of the FPGA needs to be reconfigured and only

those frames need to be used which are responsible for configuring the corresponding

portions of the FPGA. Similarly incase of debugging designs if the designer is interested

in checking the content of a particular flip flop in the design he/she can figure out the

frame that contains the content of that particular storage element and then read back only

that particular frame. This feature is very useful as reading back the entire configuration

of the device would be unnecessary for checking the content of a single storage element.

Application note [5] for Virtex™ FPGA gives a detailed description of each frame and

their arrangement in the configuration bitstream.

2.3 FPGA features useful in debugging:

 Inorder to debug designs on FPGA based systems there are many features available

in present day FPGAs which can be utilized towards achieving this goal. These features

include configuration readback, writeback, reprogrammability, JTAG Boundary Scan

interface, etc. A brief introduction to each of these features available in Virtex™ FPGA

and their significance with respect to improving the debugging capabilities of the designs

is given below.

 23

2.3.1 Configuration Readback:

 Readback is defined as the process of reading back the configuration of the FPGA

[4]. Reading back the configuration is useful in many instances. One application of

readback is for checking whether the FPGA has been configured using the proper data

and any unwanted bit inversion during configuration of the device can be detected

through readback.

 Configuration readback is used as a means of tracing the content of memory

components like Block Select Rams, Flip Flops, and LUTs during the execution of the

design. Inorder to relate the content of these components to the data read back one needs

to be familiar with the layout of data in the frames of the configuration bitstream and

their distribution. The configuration bitstream for Virtex™ FPGAs is divided into

columns with each column containing several frames as shown in Fig 2.5 for a Virtex

XCV50 device.

 Each column has a Major Address and each frame within the column will have a

Minor Address. Hence each frame in the configuration bitstream is identified using a

combination of Major and Minor addresses. As can be observed in Fig 2.4 different

frames in the bitstream are used to configure different resources in the FPGA. For

instance the left most and the right most columns contain frames for configuring the

IOBs in the left and right column. Similarly the second from the left and the second from

the right columns are used to configure the Block Rams in the designs and the remaining

frames are used to configure the CLBs, the IOBs in each column and the clock driver as

 24

…..

Figure 2.4 Distribution of Frames in the Bitstream for Virtex XCV50 device taken

 Form the application notes [5]

the Virtex FPGA provides resources for different clock configurations. Different frames

in an FPGA contain a different no. of configuration bits depending on the type of

resource the particular frame is used to configure. Another point to be noticed is that each

frame contains padding bits at the beginning and the end of the frame for demarcation of

different frames. The number of configuration bits used to configure different devices in

the Virtex™ family is given in the table of Fig 2.5. In summary configuration readback is

a very important feature available in the Xilinx Virtex™ FPGA family which can be used

for debugging designs during design execution.

L
ef

t I
O

B
 C

lo
um

n(
 5

4
fr

am
es

)

B
lo

ck
 R

am
 C

on
te

nt
(6

4
fr

am
es

)

 B
lo

ck
 R

am
 In

te
rc

on
ne

ct
(2

7
fr

am
e)

2
IO

B
s

C
L

B
 c

ol
um

n(
48

 fr
am

es
)

2
IO

B
s

2
IO

B
s

 C

L
B

 c
ol

um
n(

48
 fr

am
es

)

2

IO
B

s

 B
lo

ck
 R

am
 In

te
rc

on
ne

ct
(2

7
fr

am
es

)

B
lo

ck
 R

am
 C

on
te

nt
(6

4
fr

am
es

)

L
ef

t I
O

B
 C

lo
um

n(
 5

4
fr

am
es

)

2
IO

B
s

C
L

B
 c

ol
um

n(
48

 fr
am

es
)

2
IO

B
s

 G
C

L
K

 2

 C
L

B
 c

ol
um

n(
48

 fr
am

es
)

 G
C

L
K

 2

2
IO

B
s

C
L

B
 c

ol
um

n(
48

 fr
am

es
)

2
IO

B
s

 25

Device No of Configuration bits

XCV50 559,200

XCV100 781,216

XCV150 1,040,096

XCV200 1,335,840

XCV300 1,751,808

XCV400 2,546,048

XCV600 3,607,968

XCV800 4,715,616

XCV1000 6,127,744

 Fig 2.5 Table showing the no. of configuration bits for each Virtex
 device taken from Application notes [5]

2.3.2 JTAG Boundary Scan Interface:

 JTAG is an acronym for Joint Test Action Group. It is an IEEE standard which was

introduced to support board level testing of designs. Virtex™ FPGAs support this

standard and hence contain the circuitry which implements the Boundary Scan controller

and the logic which is required to support the operation of the Boundary Scan circuitry

within the FPGA. A Virtex™ FPGA contains four ports which are used to communicate

with boundary scan circuitry inside the FPGA. They are TDI(test data input) which is

used to input the data serially to the data and instruction registers of the Boundary Scan

circuitry present in the FPGA, TDO(test Data Output) is the test data output port which

 26

acts as an output interface to the test bus circuitry, TMS(test mode select) is used to

control the state of the Boundary scan controller which is in one of the

16 possible states and Tclk which is the clock signal used for clocking the Boundary

Scan JTAG interface. JTAG interface is used for configuring the FPGA serially as well

as for configuration readback. No extra FPGA pins are used for configuring the device as

JTAG interface has the dedicated JTAG pins which are sufficient to carry out these tasks

of configuring the device and reading back the configuration. In addition to configuration

and readback of designs the Boundary Scan interface also supports many other debugging

capabilities. Fig 2.6 gives a list of instruction that are supported by the JTAG interface

which facilitate both chip level and board level debugging of designs implemented on

FPGA based systems.

2.4 JBits and JRoute:

 JBits [6] is a Java Based Application Program Interface (API) which can be used to

configure the Virtex™ device at the bitstream level. As JBits works at the bitstream level

one should be familiar with the Virtex™ architecture inorder to use this tool efficiently.

It supports both static and dynamic or Runtime reconfiguration. Designs implemented

using traditional CAD tools can be modified using JBits which takes as input the original

bitstream generated by the normal design flow and can make the necessary changes to the

design at the bitstream level inorder to provide the desired functionality. So JBits can be

used to construct new designs or modify existing designs. Fig 2.7 shows the various steps

involved in bitstream modification using JBits and JRoute. The CLBs inside a Virtex™

 27

Fig 2.6 This table gives a brief description of each of the JTAG commands

Taken from the Virtex Data Book [4]

FPGA are represented in JBits as a two dimensional array of configurable logic blocks.

Each CLB in the FPGA is represented by an X and Y coordinate which is used to identify

the particular CLB. Similar is the case with Block Rams and IOBs.

 JBits can be used to implement designs using the Runtime Parameterizable (RTP)

cores at the bitstream level that have been provided along with the API. These cores

include adders, multipliers, comparators, counters, registers, etc whose bus width can be

customized to implements designs with the desired specification. Using these cores to

implement the desired design is easier as the designer does not need to worry about the

details of the Virtex™ architecture as he/she uses the RTP cores and connects them

JTAG

Commands

Opcode
5 bit

Description of
Command

Extest 00000 Enable boundary Scan external test for testing
inter chip interconnect

Sample/Preload 00001 Enable boundary Scan sample/ preload
USER1 00010 Command for accessing user defined Register1
USER2 00011 Command for access user defined Register 2
CFG_OUT 00100 The configuration bus is accessed for

read operation
CFG_IN 00101 The configuration bus is accessed for

Write operation
INTEST 00111 Test the internal components of the FPGA
USERCODE 01000 Enable shifting the user code to the output
IDCODE 01001 Enable shifting the content of instruction register
HIGHZ 01010 3 state output pin while enabling the bypass register
JSTART 01011 Clock the startup sequence
BYPASS 11111 Enable bypassing of data
RESERVED All other

 cases
Other reserved instructions

 28

together using the JRoute API calls. Using these RTP cores enables the designer to work

at a higher level of abstraction which is desirable when the designs are complex.

JRoute is a java based API used to route the nets in a Virtex™ device. It can be used to

route a single net or a group of nets using a single command. It can also be used to

unroute nets in case the need arises using simple API calls. If one is modifying designs

using JBits and JRoute then it is important that the routing resources that are already used

should not be reused. Inorder to prevent JRoute from reusing the reserved resources the

JRoute database is preloaded with the used resources.

2.4.1 Drawbacks of JBits and JRoute:

 The following are some of the drawbacks of using JBits and JRoute which were

realized while using them during the course of this thesis.

1. There is no way of finding the maximum frequency at which the design can be

executed after it has modified using JBits and JRoute.

2. Limited to the Virtex™ chips.

3. No way of determining which routing resources have been used when a net is

 added with Jroute.

 4. User needs to be familiar with the FPGA device architecture to use these tools as

 one works at a low level of abstraction.

2.5 Related Work: In this section we will try to give an overview of the previous work

that has been done in the area of debugging designs on FPGA based systems. We will try

 29

to discuss the FPGA Based Systems and software that have been developed to improve

the debugging

 Start

Fig 2.7 The different steps involved in modifying designs using JBits

capabilities of designs and the research that has been done in this area. We will discuss

both the commercial and academic systems and software that have been developed and

features among controllability, observibility and execution control that they support.

2.5.1 Device Level Support for Debugging: There are many FPGA devices available in

the market which supports features that are useful in debugging designs. FPGA vendors

Modify the
bitstream

using JBits

Generate
the new

Bitstream

Read
Bitstream

Configure
the FPGA

 30

like Xilinx and Altera provide many features like configuration readback and JTAG

Boundary Scan interface as discussed in the previous sections which have been used

successfully for debugging designs. For instance the Virtex™ FPGA from Xilinx

provides the ability to configure the FPGA partially or completely. In addition it also

provides the capability to readback the configuration partially as well as completely.

Through readback the designer can observe the content of resources inside the FPGA like

LUTs, Block Rams, IOBs and Flip Flops [5]. Thus readback helps in improving the

observibility of the designs.

 Similarly through partial reconfiguration that is supported by the Vitrex™ and

Spartan™ FPGAs from Xilinx [5] one can improve the controllability of designs. For

instance one can add some small debugging logic cores into the design which will help in

controlling the internal values of signals. Also design level scan chains can be added to

the design so that the content of the storage elements like flip flops can both be observed

and controlled.

 Recently introduced devices from Xilinx, the Virtex-II [7] series of devices have

Phase Locked Loops (PLL), Delay Locked Loops (DLL) and Digital clock manager.

These features are available for implementing system on a chip solution where there can

be multiple clocks that are used by the system. They also provide support for single or

multi stepping the clock, turning off the clock to certain parts of the system and

configuring the clock on the fly through partial reconfiguration. These features can be

utilized for controlling the execution of the design during debugging. They provide the

ability to stop the clock on the occurrence of certain trigger condition, change the

frequency of the clock during debugging through partial reconfiguration, etc.

 31

 Device from both Xilinx and Altera support the JTAG boundary Scan interface.

Generally JTAG port is used for debugging designs by providing controllability and

observibility. In the case of FPGAs in addition to supporting these above mentioned

features it is also used for some other purposes.

 In the Altera Apex 20k [8] device family the JTAG interface is used for configuring

the device. In addition to this, Altera provides the capability of adding Embedded Logic

Analyzer (ELA) cores called SignalTap Megafunction [9] [10] into the design to improve

the observibility and execution control of the design. The user can communicate with the

ELAs added to the design through the JTAG interface. These ELAs and the capabilities

that they support are discussed in more detail in the following sections.

 A similar type of capability is also supported by the Virtex™ FPGAs from Xilinx

through the JTAG interface. Virtex™ devices use the JTAG port for configuration

readback and write back. In addition to these features Xilinx also supports the addition of

Integrated Logic Analyzer cores using the software called ChipScope [11] [12] into the

designs which have quite powerful capabilities for debugging designs. These capabilities

are discussed in detail in a separate section on the various software tools that are

available for debugging FPGA Based designs.

 2.5.2 FPGA Based Boards that support Debugging: There are many FPGA Based

boards that have been developed which support different type of debugging capabilities.

A brief discussion of these systems and the debugging capabilities that they support is

discussed below.

 32

 Designs that are implemented on FPGA based boards are implemented in a

Hardware Description Language and simulated using a simulation environment and once

verified are implemented on the given target platform. In order to communicate with the

FPGA devices on the board software support needs to be provided so that the features

supported by the device like configuration readback, partial reconfiguration, clock control

like single and multi stepping of clock, etc can be supported at board level. In order to

support these features at the board Application Program interfaces (API) are developed in

languages like C, C++, Java and through the API calls these features described above are

supported.

 There are many FPGA based Boards developed that support several debugging

capabilities. The prominent among them are Wildfire [13], Pamette [14], Splash [15],

Splash 2 [16], Teramac [17] and SLACC[18]. All these boards support configuration

readback and write back. In addition the Wildfire and Splash 2 boards provide capability

for relating the extracted symbols in the design to their values in the read back bitstream

which is useful when debugging designs. The SLAAC series of FPGA boards support

features like single and muti stepping the clock which is an important feature for

supporting execution control and partial reconfiguration can be utilized for making

changes in the design at runtime which can be used to improve the controllability of

designs.

2.5.3 Hardware Debugging tools :

 There have been many hardware debugging tools both commercial and academic

that have been developed that support excellent debugging capabilities. These include

 33

Signaltap Megafunction from Altera, ChipScope Logic Analyzer from Xilinx, JHDL

Design Environment developed by researchers at BYU [19] and BoardScope [20] from

Xilinx. Each of these tools and the features they support is described below.

SignalTap Megafunction:

 The SignalTap megafunction is an Embedded Logic Analyzer (ELA) developed by

Altera for the APEX II and APEX 20K devices (including APEX 20K, APEX 20KE, and

APEX 20KC devices), which can be added to the design to improve the observibility of

the design. The user can communicate with this ELA through the JTAG Boundary Scan

interface of the FPGA. It can basically be considered to be a piece of hardware that is

added to the design before the design is placed and routed by the placement and routing

tools.

 The ELA consists of three ports i.e. the debugging port, the ELA port and the

triggering port. The debugging port connects the ELA to the data signal in the design that

are captured on the occurrence of certain trigger condition. There can be several

debugging ports in the design based on the number of data signals that need to be

monitored. The debugging port can be connected internally to the logic analyzer so that

the data can be captured on the occurrence of certain trigger condition or it can also be

connected to the I/O pins of the FPGA so that data can be saved in a buffer external to the

device if the resources on the device are scarce. On the FPGA the storage buffer is

implemented using the Embedded System Blocks (ESB) which are the block Rams

available inside the FPGA. Fig 2.8 gives an overview of the various components of the

SignalTap MegaFunction ELA.

 34

 The ELA port is used for communicating with the ELA. In addition to the JTAG

interface USB and other parallel ports can also be used to communicate with the ELA.

An ELA functions in three different modes. They are the Run mode, the Autorun and

Stop mode. In the Run mode data is saved in the buffer on the occurrence of the specified

trigger and the ELA goes into the stop mode where the ELA is not active. In the case of

Autorun mode the ELA continues sampling the data on the occurrence of the trigger

condition and it continues doing so until the status is changed to the stop mode.

 The list of possible trigger conditions that are supported by the ELA include the

rising edge, the falling edge and the level trigger conditions. There are three different

positions at which the trigger can be placed when saving the data on the occurrence of

certain trigger condition. Since the buffer used is a circular buffer the trigger can be

placed at 12%, 50% of 88% of the trigger point i.e. for instance in case of a 12% trigger

condition, 12% of the data saved in the buffer is before the occurrence of trigger

condition and 88 % comprises of data after the occurrence of the trigger condition. The

trigger signals are connected to the ELA through the trigger ports and if necessary the

trigger single signal can be connected to the I/O pin of the FPGA informing the user on

the occurrence of certain trigger condition. But the trigger port itself cannot be connected

to the I/O pins of the FPGA. The ELA cores are added to the design before placement

and routing the design after the design has been synthesized by the synthesis tool. Thus

no changes need to be made in the HDL source code inorder to add the ELA into the

design. Modifications can be made to the ELA cores that are already present in the design

without repeating the process of placement and routing the design. These changes include

changing the trigger pattern, new signals can be connected to the ELA or the mode of the

 35

ELA can be changed. But if the designer wants to increase the depth of the buffer, the

width of the trigger bus, or the width of the data bus, these changes can be incorporated

only by repeating the entire process of placement and routing as significant modifications

have been made to the ELAs.

 ChipScope:

 Similar to Altera, Xilinx also provides the support to add Integrated Logic

Analyzer (ILA) Cores into the design through their hardware debugging tool called

Chipscope. This feature is supported for Virtex and Spartan II family of FPGAs. The

different features of the ILA cores are as follows

 There are from 1 to 256 user selectable data channels.

1. At a given time upto 15 independent ILA cores can be added to the design.

2. The trigger bus can be separate from the data bus with its width ranging from 1-64 bits.

3. All trigger and data operations are synchronous to the user clock.

4. The user can set multiple trigger setting simultaneously.

 Using Chipscope ILA cores can be added to the design. A GUI is provided

using which the user can specify the various trigger and data signals that need to be

monitored, the depth of the storage buffer, the width of the data and trigger signals, etc.

The Chipscope tool includes the Core Generator which is used to generate ILA cores

depending on the various requirements supplied by the user through the GUI. The ILA

cores generated can be in the form of an Edif netlist or the VHDL components, which can

be added to the design at various stages of the design process. Once the ILA core is

 36

generated it can be added to the design using a Core Inserter before or after synthesis.

Adding the ILA core before synthesis is accomplished by instantiating the HDL

 Fig 2.8 Different component of the ELA core [9][10]

components into the HDL sources code of the design. One can also add the ILA cores

after synthesis directly into the Edif netlist of the design before placement and routing of

the design begins.

 The different components of Chipscope toolkit include the ICON and the ILA cores.

ICON is the integrated logic controller which controls the operation of the various

components of the ILA. The ILA core incorporates the hardware which contains the

trigger logic and it communicates with ICON on the occurrence of certain trigger

Trigger
Logic

Control
Logic

Signals from
Internal Nodes

Trigger In

Clk

Data Output

JTAG Port

Storage
Buffer

 37

condition so that the values on the data signals can be saved into the storage buffer. The

triggering can occur on the rising or falling or both edges of the signal or at a stable

value. The trigger logic can work in basic or extended trigger mode. In the case of basic

mode there can be a single match unit or at the most two match units. For instance when

the designer is interested in checking whether a signal lies in a particular range two match

units are used. In the extended mode in addition to the individual match units for each

ILA the output of each ILA triger unit is ‘Ored’ to give the overall trigger signal. This is

useful when one is interested in relating the various trigger signals in the design. The data

saved in the storage buffer can be analyzed using the Chipscope Analyzer which is a part

of the tool. The analyzer comprises of a waveform viewer which displays the content of

the storage buffer. The Chipscope Analyzer can communicate with the PC or workstation

through the Xilinx MultiLINX™ and Parallel Cable III download cables.

 Similar to Altera’s SignalTap megafunction, the Chipscope tool allows small changes

in the ILA core like the changes in trigger condition, the control and data signals being

monitored without repeating the process of placement and routing of the design. For

making significant changes like the alteration in the depth of the buffer, the width of the

trigger and data ports, the process of Placement and Routing has to be repeated after

making the necessary alterations at the HDL source file or the EDIF netlist stage.

JHDL Design Environment for Debugging: There has been a lot of research being

done by researchers at BYU [21] [22] to improve the debugging capabilities of designs

implemented on FPGA Custom Computing Machines (FCCMs). We will try to give a

 38

brief description of the JHDL design environment that they have developed and how it

has inspired the work that has been done in this thesis.

 JHDL is a simulation environment that provides Java Based APIs. Designs

implemented on FPGA based systems can be described and simulated using the tools

supported by the JHDL Design Environment. Only structural designs can be described

using JHDL which treats each of the components of the design as a java object. The

researchers at BYU have developed a framework for integrating hardware execution and

simulation [23] [24]. Here the information of the mapping of the logical design to the

physical FPGA resources is stored in the form of a symbol table using the Java based

APIs and once this is done the user can execute the design in a unified framework

switching back and forth between hardware execution and software simulation when

desired based on the requirements. For instance when the designer has reached a

particular phase of the design execution where excellent observibility is desired then

he/she can switch from hardware execution to software simulation which provides

excellent observibility. The creation of a symbol table from the information of logical to

physical design mapping which is a part of the process of developing an integrated

debugging environment is also useful for many other purposes as will become clear in

subsequent chapters.

 In our thesis we have also developed an algorithm for the creation of a symbol table

which contains the information of the logical to physical design mapping so that the user

can be provided with a logical view of the design even after the design has been mapped

to the FPGA and he/she doesn’t need to worry about the mapping information as the

symbol table contains this information. So whenever the designer refers to a particular

 39

logical component in the netlist the correspondent resource in the FPGA is referred to

using the information in the symbol table which is desired as the user is familiar with the

logical design.

 In addition to this work on Logical to Physical Design mapping there has been a

considerable amount of work done at BYU on improving the debugging capabilities of

design through the addition of debugging logic for better controllability , observibility

and execution control [25] [26][27] of the design. In this work they have demonstrated

the various stages of the design process where the debugging logic can be added and the

trade offs involved.

 Since there are some similarities between our work and the work done at BYU so we

will try to explain the various aspects in which our work differs from theirs. The work at

BYU targets the JHDL design environment whereas our design environment supports

general HDLs like VHDL or Verilog which are the industry standard and used by most of

the designers. Also to our knowledge in their work the debugging logic is added to the

design through the logical database before the process of Placement and Routing,

whereas we have been able to add the debugging logic directly at the bitstream stage

using JBits and JRoute which is one of the main contributions of our work.

BoardScope:

 There has been considerable amount of work reported in the literature [28] [29] [30]

describing the various capabilities supported by Boardscope, a tool developed by Xilinx

for debugging designs. After the bitstream is modified using JBits and JRoute the new

bitstream generated can be debugged using BoardScope [31]. It comes as a part of JBits

 40

package. A view of the BoardScope interface is given in Fig 2.9 which can be used to

view the configuration information in different views which includes Core view, State

View, Power View and Routing density View. Using Boardscope one can communicate

with the design implemented on the FPGA board through the Xilinx hardware interface.

BoardScope can be used to invoke the Virtex device simulator which is a simulation tool

used to simulate designs implemented on the Virtex FPGAs. In this thesis we have used

this Virtex Device Simulator to verify the functionality of the designs after the addition of

Integrated Logic Analyzer cores. Virtex device simulator provides feature for debugging

designs like single stepping or multi stepping the clock, reading back the content of Flip

Flops, IOBs and Block Rams during simulation, etc. The designer can also use the

command line interface for controlling the simulation of the design using DDT Script

commands which are a part of the BoardScope interface. The current version of

BoardScope is slow for complex designs.

Other Hardware Debugging Tools:

 In addition to the debugging tools discussed above there are many other debugging

tools that have been developed over a period of time. The prominent among them are the

InnerView hardware debugger from the virtual wires group at MIT[32], the Splash

reconfigurable coprocessor board which also supports a runtime debugging environment

called T2 [16], the Teramac [17] FPGA based system developed at the HP laboratories

also has a debugging tool using which the state of the resources inside the FPGA like flip

flops, LUTs, etc can be read back. My colleague Anurag Tiwari has also studied different

 41

techniques [33] [34] to add small and compact debugging logic cores called hardware

watchpoints to speed up the debugging process of complex designs. He has also been

 Fig 2.11 The BoardScope Interface

 42

 working on using the features of FPGAs to support debugging, such as LUTs being used

as shift registers to add and make changes to the watchpoint logic at runtime to improve

the debugging capabilities [35].

 In this chapter we have given an overview of the various features of the Virtex™

FPGAs from Xilinx which can be used for improving the debugging capabilities of

designs. In addition to this some FPGA based Hardware debugging systems and tools

relevant to the work done in this thesis which have been developed over the past decade

were also discussed.

 43

Chapter 3

Process of Symbol Table Creation

 In chapter 1 we have explained the importance of the process of logical to physical

design mapping for the creation of a symbol table. This idea of symbol table creation was

first proposed by researchers at BYU [24].As discussed this will help in providing the

designer with a logical view of the design which the designer is familiar with, instead of

the physical view after the design has been mapped to the FPGA. This is the first step

towards the process of improving the debugging capabilities of the design by adding the

Integrated Logic Analyzer (ILA) cores to the design at the bit stream level. Due to the

presence of the mapping information in the symbol table the debugging environment can

provide support for various debugging capabilities like selection of signals to be

monitored by connecting them to the ILA, flip flops whose content is to be readback to

improve the observibility of the design, etc using the logical view and the circuit

modifications to support these capabilities can be carried out at the bitstream level using

the bitstream modification tools such as JBits and JRoute.

3.1 Introduction:

 The process of Logical to Physical design mapping for creating the symbol table is

quite involved. In this chapter we will try to give a detailed explanation of this process

for Virtex™ FPGAs and the issues involved. A similar mapping process is described in

ref [24] and [25]. We will start with an overview of this process and then try to explain

each step in detail. This process of Symbol table creation can be broadly divided into

three steps which are as follows

 44

1. The process of extracting the relationship between the FPGA state elements such

as flip flops, LUTs, Block Rams, IOB, etc. to the location of their state in the

readback bitstream.

2. The process of mapping the physical FPGA elements to their counterparts in the

logical netlist.

3. The tracing of the LUT Ram address permutations and taking these permutations

into account while determining the location of the LUT Ram state in the read back

bitstream.

 This process of logic to physical design mapping can be accomplished by using

the information form various files generated by the synthesis and the Xilinx Placement

and Routing tools. The table in Fig 3.1 gives a brief description of each of the files that

will be used in the creation of the symbol table and their content and they are explain in

detail below.

a. .edf: This EDIF (electronic design interchange format) file is generated by the

synthesis tool. It is a standard format used to represent the logical netlist generated by the

synthesis tool.

b. .mrp: This map report file is generated by the Xilinx Mapping tool. The “.mrp” file

contains information of the various design optimization that have been performed by the

mapping tool. It also provides information regarding the relationship between the logical

instances and the FPGA resources used in implementing the design.

c. .ll: This logic location file is an ASCII representation of information of the

corresponding flip flops and Ram state values in the readback bitstream. This file is

 45

generated bt “bitgen” which is the bitstream generation program provided as part of the

Xilinx CAD tool kit.

d. .ncd: This native circuit description file provides the information of all the used

resources in the FPGA for implementing the particular design. As this file is in a non

readable format Xilinx provides a utility called “ncdread” which can be used to generate

a textual description of this file in ASCII format.

Fig 3.1 List of files used for symbol table creation

3.2 Process of Logical to Physical Design mapping:

 This section will describe the process of Logical to Physical

design mapping in detail. This process will lead us to the creation of the symbol table that

we refer to as “.rbstable”. We will start with a detailed description of the information that

File name Content of the file

.edf It generated by the synthesis tool and contains the list

of all the logical instances in the design

.ll The logic location file which contains the information of the

Sampled FPGA state in the readback bitstream

.mrp This file contains contains information of the mapping of the the

Logical instances in the design to the physical resources in the FPGA

and the optimizations performed on the logical design.

.ncd this is binary file which contains information of the resoures in the FPGA

that have been used for the implementation of the given circuit

.ncdtext This file is an ASCII representation of the FPGA resources used for

implementing the given design.

 46

is contained in each of the files and how this information is utilized for constructing the

symbol table.

3.2.1 EDIF netlist file (“.edf”):

 The first file we will describe is the “.edf” file generated by the synthesis

tool. This file contains information of the logical instances (which are the components

from the FPGA design library used by the synthesis tool to implement the design) in

the design and the way they are inter connected to each other to form the netlist of the

design. We used an “.edf” parser which was developed at Rice University for a

project on “Optimizing VHDL Intermediate Representations” [37]. The parser is

available as open source and we have customized this parser for our research. A hash

table called “.instancehash” is generated by parsing the .edf file. This hashtable is

keyed on the name of the instances in the design. Each entry in the hashtable contains

the name of the instance, the name of the each port of the instance and the direction of

 the ports (whether input or output or both) and the net connected to each of the ports.

 Fig 3.2 gives some sample entries of this hashtable. This includes an instance which is

 mapped to a flip flop and another instance which is mapped to a LUT. Fig 3.3 gives a

 block diagram of the “.instancehash”. The information in this hashtable will be used

 for achieving the one to one mapping of the logical instance to the physical

 components in the FPGA.

3.2.2 Information extracted from Logic Location (.ll) file: The logic location file is

used during the construction of the symbol table inorder to trace the position of the state

 47

for various resources which includes Flip Flops, Block Rams and LUTs in the readback

bitstream. Once a one to one mapping of the

A_BLOCK/ACOUNT/HRS_OUT[3] FDPE

 ah(3) Q OUTPUT

 hrs_out_8(3) D INPUT

 CLK_c C INPUT

 RESET_c PRE INPUT

A_BLOCK/ACOUNT/un7_inc_mins LUT4

 am(5) I3 INPUT

 am(4) I2 INPUT

 G_31 I1 INPUT

 un7_inc_mins O OUTPUT

 un7_inc_mins_1 I0 INPUT

Figure 3.2 Sample entries of the .instancehash file

logical instances and the Physical FPGA resources is established the information in the

“.ll” file will assist in tracing the location of the data read back from each component.

There are several issues that are to be considered and resolved when using the

information provided in the .ll file to construct a hashtable. We will explain in detail the

 48

possible entries in a logic location file, the information available in this file and how this

information is used.

Fig 3.3 Block Diagram of the “.instancehash”

 A list of sample entries of the Logic Location file is given in Fig 3.4. The first

entry is the state of output flip flop of IOB AK25. As discussed in section 2.1.1 each

Virtex CLB contains two slices designated by S0 and S1, each containing pair of Flip

Flops and LUTs. The second entry in the sample .ll file gives the position of the FFY flip

flop of CLB located on row 60 and column 16 in slice S0 . The other entries are for Block

Rams and LUTs used as Ram. Here the .ll file provides information that can be used to

calculate the position of the content of each Ram bit in the bitstream.

 As discussed above the different possible readback entries include the state of

latches and the content of LUT and Block Rams in the case of Virtex™ FPGAs. The

1.Net Name
2.Port Name
3.Direction

1. Net Name
2. Port Name
3. Direction

1.Net Name
2.Port Name
3 Direction

1. Net Name
2.PortName
3.Direction

Instance
Name1

Instance
Name2

 49

possible latch entries in the .ll file are given in Fig 3.5. They include the I,T ports which

are the outputs of the IOBs and the IQ, O ports which are the inputs to the IOBs. In

addition to this the latch entries include the state of flip flops which are a part of the

Virtex™ CLB slice. The detailed functional diagram of the IOBs and CLB and block

Ram can be found in reference [1].

 Offset framenum frameoff

Bit 3938642 0x00843400 1170 Block=AK25 Latch=O

 Net=b14_comp/addr_35_enl(18)

Bit 3954777 0x00844e00 1081 Block=CLB_R60C16.S0 Latch=YQ

 Net=b14_comp/reg3(8)

Bit 204927 0x00b01000 160 Block=CLB_R9C6.S1 Ram=M:16

Bit 6122057 0x02027c00 585 Block=RAMB4_R7C1 Ram=B:BIT2027

Bit 6122058 0x02027c00 586 Block=RAMB4_R7C1 Ram=B:BIT2023

 Fig 3.4 Sample .ll file entries

 The process of relating LUT and Block Rams to their state in the

readback bitstream is very involved. We will start by describing the different possible

configuration in which the LUTs and Block Rams in the design can be used. The LUTs in

the CLB slices can be used as individual 16x1 single port Rams or the two LUTs

combine to form a single 32x1 single port Ram depending on the requirement. In case of

 50

Virtex™ series of FPGA the F4 port represents the MSB of the address line and F1

represents its LSB. If the two LUTs are combined together to form a 32x1 Ram then the

F LUT holds the lower 16 bit of data and the G LUT holds the higher 16 bit of the data

and the BY port which is the input to the slice acts as the MSB of the address bus. If the

LUTs in the slice are used as two individual 16x1 Rams that the entries in the .ll file are

represented as Ram=F:<address> and Ram=G:<address> where the address ranges from

0 to 15. In the case when the two LUTs are combined to form a 32x1 Ram the Ram

entries are represented as Ram=M:<address> where the address ranges form 0 to 31.

Possible latch entries Explanation of each type

IQ This is the input to the user circuit which is the

Output of the IOB resgister in the FPGA

O The output of the IOB (it’s the output form the user circuit)

I It’s the input to the user circuit which is the output of the IOB

XQ, YQ These are the output of the flip flops in the CLB slices

T The IOB output which is the output form the user circuit. It’s a

tristate flipflop

 Fig 3.5 Possible latch entries for Virtex device

 As discussed in chapter 2 the block Rams are additional memory resources

provided in the Virtex™ series of FPGA. The entries of the Block Rams are also

available in the .ll file. The Block Rams can be configured with different aspect ratios

 51

such as 4096x1 bit, 2048x2 bit, 1024x4 bit, 512x8 bit and 256x16 bit based on the users

requirement.

 The Xilinx Placement and Routing tools perform address signal permutations

during the process of Placement and Routing for Rams implemented using the LUTs in

the slices inorder to improve the routing. Fig 3.7 depicts possible address signal

permutation that can be performed by the Xilinx PAR tool. In 3.7 (a) the logical instance

has the address signal with F4 being the MSB and F1 being the LSB. But inorder to

reduce the congestion during routing the Xilinx PAR tool might permute the signal as

shown in Fig 3.7 (b). One need to take this permuation into account when performing the

task of calculating the bit position of each Ram state. Fig 3.7 (c) depicts the mapping of

the logical address to their physical counterparts inorder to relate the logical Ram state to

their Physical counterpart. In case of block Ram, the Xilinx placement and Routing tool

do not perform any address signal permutations due to the abundance of Routing

resources.

 A parser has been implemented for parsing the .ll file so that

the information in the .ll file can be used during readback. Towards achieving this goal

two hashtable are generated from this process. The first hashtable called “.rbblockhash”

contains the information of all the latches in the FPGA that have been used in the design

which includes the latches in the IOBs and the CLBs. The second hashtable called

“.rbramhash” contains the readback information of the LUT and BlockRams used in the

design. Each entry in the .ll file, as observed in Fig 3.4 includes the absolute bit offset

(ao), the frame number (fn) and the frame offset (fo). This information along with the

 52

information in references [4][38] is used to calculate the exact location of the state of the

respective elements in the readback bitstream.

 The formulae used to calculate the absolute position of the state bit in the

readback bitstream for all the Rams and latches in the design is given in Fig 3.6. The

different terms used in the formulae include the frame length fl, the frame number fn the

bitmap length bm which varies for various Virtex™ devices as given in reference[4], the

frame offset fo and the pad word length pwl which is 32 for the Virtex™ devices. The

values of 63 and 93 used in the formulae for calculating the actual bit position for

BlockRam came from reference [38] as this did not appear in the Xilinx documentation.

 Actual position = fl* fn + bm – fo + pwl
 (if the component is in CLB or IOB)

 Actual position = fl* (fn -63) + bm – fo + pwl
 (if component is in Blockram column 0)

 Actual position = fl* (fn -93) + bm – fo + pwl
 (if component is in Blockram column 1)

Figure 3.6 The formulae used to calculate the postion of bits in the readback
bitstream

 Once the bit position of each Ram Bit and latch in the readback bitstream is know

the “.rbblockhash” and the “.llramhash” are created with the necessary information. Fig

3.8 represent information contained in the “.rbblockhash” for latches in the design and

Fig 3.9 the information for the Ram entities. Thus these hashtable provide comprehensive

 53

 Addr1 Addr3

 Addr2 Addr1

 Addr3 Addr4

 Addr4 Addr2

 Writeen Writeen

 data data

 Clk Clk

 (a) Logical Instance (b) Physical Ram Counterpart

 (c) Process of Ram Address Mapping

 Fig 3.7

Logical Address Physical Address
0000 0000
0001 0010
0010 1000
0011 1010
0100 0001
0101 0011
0110 1001
0111 1011
1000 0100
1001 0110
1010 1100
1011 1110
1100 0101
1101 0111
1110 1101
1111 1111

I1

I2

I3 Ram
 16x1
I4

We

Datain
 clk

F1

F2

F3 LUT
 Ram
F4

We

Datain
 clk

 54

information that is utilized to relate the Latch and Ram entries to their state in the

readback bitstream.

 Fig 3.8 Block diagram of readback Block hash

3.2.3 Considering the Design Optimization (.mrp):

 The map report file (.mrp) file generated by the Xilinx Cad tools contain

information of the various design optimization that have been performed by the mapper

while mapping the logical design to the physical FPGA resources. The “Merged Signal”

section of this “.mrp” file contains information of the nets that have been removed or

merged with some other nets during this process. Fig 3.10 shows some sample entries of

1.Port Name
 2.Bit Position

1.Port Name
 2.Bit Position

1.Port Name
 2.Bit Position

1.Port Name
 2.Bit Position

CLB or
IOB name

CLB or
IOB name

 55

Fig 3.9 Block Diagram of readback Ram hash

this file where the information of the merged nets is provided. The possible net

optimization that can be performed include the merging of two nets, for instance net n1

can be merged with net n2 . It may also happen that net n1 is merged into n2 and net n2 is

merged into n3 so after optimization only n3 is left . So inorder to keep track of these

optimizations we have implemented a parser for the map report file which creates a hash

table called “.nethash” with each entry keyed on the old net and the nets that have been

optimized will contain the name of the new net into which it has been merged as the

entry. The algorithm used to keep track of these optimizations and the information

1 Function generator
2 Address location
3 Bit location

1 Address location
2 Bit location

1 Function generator
2 Address location
3 Bit location

1.Address location
2. Bit location

CLB name

Block Ram

 56

Merged Signal(s):

 -The signal “PrgmCntr/un3_stack1_cry_2” was merged into signal

“PrgmCntr/un3_stack1_cry_2/O”.

 -The signal “PrgmCntr/un3_stack1_axb_1” was merged into signal “pc(1)”

 -

 -

Symbol Cross-Reference:

 - "DECODE/ALUOP[0]" (FDP) mapped to: aluop(0) (SLICE)

 - "porta_iobuf[0]" (IOBUF) mapped to: porta(0) (IOB)

Fig 3.10 Sample entries of Map report file

contained in the hashtable generated is shown in Fig 3.11 and Fig 3.12 respectively. The

algorithm implemented handles only two levels of merging, as it was observed from the

map report files generated for different designs that the Xilinx CAD tools at the most

performs two levels of merging. But it is not difficult to implement an algorithm which

can handle more than 2 levels of merging.

 The second hashtable generated from the map

report file is called the “.instancemaphash”. This hash table contains the information of

one to one mapping of the logical instance in the design to the corresponding physical

FPGA resources which is extracted from the “symbol cross reference” section of the map

report file. The block diagram in Fig 3.13 depicts the information contained in this hash.

 57

 Start

 No

 No

 No No

 Yes Yes

 Yes

 Fig 3.11 Algorithm for keeping track of Net Merging

 Fig 3.12 Block Diagram of Nethash

 Old Net
 Name

New Net

Name

New Net
Name

 Old Net
 Name

 Create a list
 of all nets

For each old
net check if
merged into

new net?

Enter new
net name as

entry

Are all
nets

checked?
Replace

previous entry
with new net

name

 Done

For each new
net check if
merged again?

Are all
nets

checked?

 58

 Fig 3.13 Block Diagram of Instancemaphash

3.2.4 Tracing the FPGA resource usage information (Native Circuit Description):

 The native circuit description (“.ncd”) file generated by the Xilinx Placement

and Routing tools contains information of all the resources of the FPGA used in the

design. A textual description of this file is available in ASCII format which is parsed to

create a hash table which provides information of the resources used. Fig 3.14 shows a

sample entry of this file. It contains the information of the Physical resource which is a

Slice S1 of the CLB located at Row 4, Column 13 and the ports of the CLB that have

been used in the designs and the nets connected to these ports. Fig 3.15 gives a block

diagram representing the information contained in this hashtable.

 Instance
 Name

 Instance
 Name

Symbol

Reference

Symbol

Reference

 59

3.2.5 Putting it altogether: The information extracted from various files as described

above is used to create a symbol table called “.rbstable” which provides detailed

information of

NC_COMP:2 - <status_z_write> site = CLB_R4C13.S1

 Config String: <CYSELF:#OFF CYSELG:#OFF CKINV:1 COUTUSED:#OFF

 YUSED:0 XUSED:#OFF XBUSED:#OFF F5USED:#OFF YBMUX:#OFF CYINIT:#OFF

 DYMUX:#OFF DXMUX:1 CY0F:#OFF CY0G:#OFF

 F:#LUT:D=(~A1*~A2*~A3*~A4)+(~A1*~A2*~A3*A4)+(~A1*~A2*A3*A4)

 G:#LUT:D=(~A3*~A2*~A1) RAMCONFIG:#OFF REVUSED:#OFF BYMUX:#OFF

 BXMUX:#OFF CEMUX:#OFF SRMUX:SR_B GYMUX:G FXMUX:F SYNC_ATTR:ASYNC

 SRFFMUX:0 INITY:#OFF FFX:#FF FFY:#OFF INITX:LOW>

 23 pins -

 pin 4 - CLK: <clock_c>

 pin 6 - F1: <DECODE/G_142>

 pin 7 - F2: <DECODE/N_162>

 pin 8 - F3: <DECODE/N_259>

 pin 9 - F4: <inst(7)>

 pin 12 - G1: <inst(9)>

 pin 13 - G2: <inst(8)>

 pin 14 - G3: <inst(6)>

 pin 16 - SR: <resetn_c>

 pin 19 - XQ: <status_z_write>

 pin 20 - Y: <DECODE/N_259>

 Fig 3.14 Sample entry of the ASCII representation of .ncd file

 60

 Fig 3.15 Block Diagram of NCD hash

the logical to physical design mapping. The table in figure 3.16 gives a list of all the

intermediate hashtables generated during this process and the data contained in each of

the hashtables that is used for the creation of final symbol table. This entire process

which is depicted in Fig 3.17 begins by mapping all the logical instances in the

“.instancehash” to their counterparts in the “.ncdhash” using the information in the

“.maphash” and the “.ncdhash” which contains the information of this mapping to create

the “.instancemaphash”. Once this mapping is done the information in “.llblockhash” and

the “.llramhash” is used to relate each of the Latches, Flip flops and Rams in the design

 Symbol
Refrence

Symbol
Refrence 1 Port Name

2 Net Name
1 Port Name
2 Net Name

1 Port Name
2 Net Name

1 Port Name
2 Net Name

 61

 Fig 3.16 A list of Hash table created during the process of

 Logical to Physical design Mapping

with the location of their state in the readback bitstream. Inorder to take the address

signal permutation for LUTs being used as 16x1 or 32x1 Rams into account the

Hashtables

generated

Key of the hashtable Data entry in the hashtable

.instancehash Instance name It’s a linked list of all the

ports of this instances with the

Direction of the ports

.rbblockhash CLB or IOB latch

Name

The location of the corresponding

state in the readback bitstream

.rbramhash LUT or block Ram The location of the corresponding

state of each of the Ram entries.

.maphash Logical Instance name Output Port of Each of the

Corresponding physical resource

.nethash Old net name Net net name into which the old

Net has been merged

.ncdhash Name of the physical resource

used in the implementing the

design

A linked list of all the ports of

this resource and the net nets

connected to each of the ports

.instancemaphash Logical Instance Name Corresponding Phyical resource

to which it has been mapped

.rbstable Logical Instance Name Corresponding physical instance,

the corresponding port mapping,

the corresponding net mapping

for Rams, CLBs and IOBs.

 62

information from the “.ncdhash” and the “.instancehash” is used to compare the signals

connected to the ports of these components and correspondence between the ports is

established utilizing the information form the “.nethash” which contains information of

 Fig 3.17 Process of Logical to Physical Design mapping

Synthesis

Tools
(.edf)

Xilinx Placement and
Routing Tools
(.mrp, .ll, .ncd,

.ncdtext)

Instance Hash
Created form
the “.edf” file

(.instancehash)

Ncd hash
created from the

.ncdtext file
(.ncdhash)

Mapping the logical
instances to their

physical counterparts
For creation of

instance map hash
(.instancemaphash)

1. Calculating
sampled FPGA
state in readback
bitstream.
2.Taking care of
Lut Ram address
permutations

Final symbol
table created
(.rbstable)

Map hash and Net
hash created from

the .mrp file
(.maphash,
.nethash)

Ram Hash and
block hash

created from the
.ll file

(.rbblockhash,
 .rbramhash)

 63

those signal that have been merged. With the information gathered through this procedure

a symbol table as shown in Fig 3.18 is created which contains comprehensive information

Figure 3.18 Block Diagram of the final Symbol table

of the mapping of the logical instances in the design to the corresponding resources of the

FPGA. Some of the entries in the symbol table are empty as those instances in the design

1.Instance Name
2.Corresponding

Comp Name
(in case of CLB

or IOB)

1.Instance Name
2.Corresponding

Comp Name
(in case of LUT

Ram)

1.Instance Name
2.Corresponding

Comp Name
(in Case of Block

Ram)

1.Instance portname
2.Corresponding comp portname
3.Direction
4.Netname

1 Instance portname
 2 Corresponding comp portname
 3 Direction
4 Netname

1.Function generator(M or F or G)
2 Ram Address
3.Bit position
4 Instance address port
5Corresponding comp Address Port
6.Net name

1 Function generator (M or F or G)
2 Ram Address
3 Bit position
4 Instance address port
5 Corresponding comp Address Port
6 Net name

1. Ram Address
2. Bit position
3. Instance address port
4. Corresponding comp Address Port
5. Net name

1. Ram Address
2. Bit position
3. Instance address port
4. Corresponding comp Address Port
5. Net name

 64

are optimized by the Xilinx CAD tools. This information in the symbol table will be

utilized during the process of ILA core addition using JBits and JRoute.

3.3 Limitation of Logical to Physical design Mapping technique: The limitation of

this technique lies in the fact that the process of symbol table creation starts at the Edif

netlist stage and the design optimizations performed by the synthesis tool are not

accounted for by this technique. Some signals may be optimized by the synthesis tools

and are not present in the design after synthesis. The symbol able does not contain any

information about these. There is a greater chance that designs described at the behavioral

stage will have many signal names changed or compared to designs described at the

structural level using a HDL language. So the process of symbol table creation which

starts after synthesis is more useful fro the case of designs described at the structural

level.

 65

Chapter 4

Adding ILA Cores to Improve the Debugging Capabilities of Designs

 This chapter will give a detailed description of the process of adding Integrated

Logic Analyzer (ILA) cores to the design at the bitstream level using JBits and JRoute,

the Java based APIs that can be used to modify designs at this level. The main advantage

of adding the ILA cores at the bitstream level lies in the time saved in making the

necessary modification to the ILAs depending on the users requirement, such as the

change in trigger condition, the change in the depth of the data buffer, etc as these

changes are made late in the design process. Another advantage is that the placement and

routing of the original design is not changed with the addition of debugging logic. Hence

the placement is the same with or without the addition of debugging logic. Using this

technique also provides flexibility which is a very important factor when the design is in

the early stage of development and several iterations with modifications in the debugging

logic are required.

4.1 Introduction:

 ILA cores are a specialized form of logic that is added to the design inorder to

improve the observibility and execution control of the design. They are in some ways

similar to the Logic Analyzers that are used to test the fabricated chips. But there are

some very important distinctions which are as follows

 66

a. Logic analyzers for Chip testing are used after the system is already implemented and

fabricated whereas ILAs are used in aiding the debugging of designs during the

development of the system.

b. Logic Analyzers can only be used to probe the I/O pins of the design whereas ILA

cores are added to the design due to which they are capable of probing even the internal

signals. This is a very important feature as the no. of I/O pins available for testing

purpose is very limited and it is desired that all the internal signals are observable.

 There have been many instances in both commercial and academic domains which

have demonstrated the capability of adding the ILA cores into the design to aid the

debugging process. Prominent among the commercial tools are the SignalTap Logic

Analyzer from Altera and the ChipScope Logic Analyzer from Xilinx. These tools have

been discussed in chapter 2. Using SignalTap, an ILA cores can be added in the Logical

Database before commencing the process of PAR carried out by FPGA vendors CAD

tools. Any significant changes to be made in the debugging tool such as the change in the

width of capture data, change in the trigger bus width, changes in the buffer depth require

repeating the entire process of PAR which is quite time consuming. In the case of

ChipScope Logic Analyzer from Xilinx the ILA core can be added by modifying the

HDL source code or making the changes in the EDIF netlist before the process of PAR

and this process has to be repeated whenever significant changes are made to the ILA as

described above. An instance of an effort in the academic domain was carried out by

researchers at BYU which targeted the JHDL design environment. It demonstrated the

ability of ILA core addition in the JHDL source file and connecting the signals in the

design to the ILA core using Jroute API calls. The time required for repeating this

 67

process using the methods described is quite high in case of complex designs. To

circumvent these excessive times for ILA core modifications, in this thesis we have

developed a procedure for adding as well as modifying the ILA cores late into design

process at the bitstream stage. By doing so a considerable amount of time is saved which

is highly desirable.

 ILA cores can be added to the design at various stages of the design process as

depicted in Fig 4.1. The earliest stage at which the ILA cores can be added is in the HDL

source code of the design. The Chipscope tool supports this feature. Adding the ILA core

at this stage will result in design optimization being applied to the Logic Analyzer by the

synthesis tools resulting in less resources being used by the ILA. But the main

disadvantage is the inflexibility as any changes to be made to the ILA will require the

repetition of the entire synthesis and PAR process. This results in the user being tempted

to make the ILA very generic so that it can support various debugging capabilities as

desired at the given instance. Such a generic ILA will use up lot of FPGA resources

instead of supporting only those capabilities as desired at that instance. The next stage at

which the ILA cores can be added is in the EDIF netlist generated by the synthesis. This

capability is supported by ChipScope. Logic Analyzers can also be added after the

process of Placement and Routing by the FPGA CAD tool. In case of Xilinx the

modification can be made in the Native Circuit Description (NCD) file. The placed and

routed design can be modified using the FPGA Editor from Xilinx which reads the NCD

file of the design as input and a new NCD file is created after the necessary modification.

A script can be written for modifying the ILA. The latest stage at which the ILA cores

can be added is at the bitstream stage by using bitstream modification tools like JBits and

 68

JRoute. The main advantage in using JBits and Jroute as discussed at the beginning of

this chapter is in the time saved which is highly desirable. There are some disadvantages

in making the modification so late in the design process which are as follows.

 Fig 4.1 The different stages at which ILA cores can be added to the design

1. The modification made at the bitstream stage is less optimized in terms of area

and speed.

2. Since modifications are made at the bitstream stage which is the lowest level of

abstraction the user has to be familiar with the detailed architecture of the device.

Hdl Source Code
or Schematic

Capture
(Chipscope)

Logical Edif

Netlist
(Chipscope)

Bitstream
Modification

(Jbits and
Jroute)

After PAR
(FPGA editor
from Xilinx)

Configure the

FPGA

 69

4.2 Integrated Logic Analyzers: In this section we will give a detailed description of the

various aspects of the ILA. Fig 4.2 gives a block diagram of an ILA core. As described in

the previous section an ILA can be added at various stages in the design process. One of

the aims in this thesis was to demonstrate that such ILA cores can be added to the design

at the bitstream level in a minimum amount of time.

 The components that make up an ILA include the ILA controller, the trigger logic,

the address generator and the data buffer. This section will explain the overall functioning

of the ILA. The trigger input to the trigger logic is checked for the occurrence of certain

trigger condition. On the occurrence of the trigger condition the control logic enable the

address generator. The address generator generates the address where the data signal is to

be saved in the storage buffer. The control logic also enables the write enable signal of

the storage buffer so that data can be written in the particular location. When the buffer is

full the buffer full output of the control logic goes high. The data saved in the data buffer

can be analyzed once the hardware execution is terminated. The following is a brief

description of the different components that make up an ILA.

4.2.1 The ILA controller: An ILA controller is a state machine which controls the

functioning of the ILA and coordinates the communication between different

components. For instance on the occurrence of certain trigger condition the ILA

controller asserts the write enable input of the data buffer so that data can be saved in it.

When the buffer is full the control logic asserts a trigger signal indication that no more

data can be sampled by the storage buffer.

 70

 4.2.2Trigger Logic: The trigger logic is used to support various types of trigger

conditions. The different trigger conditions include

• Equal to
• Not equal to
• Greater than
• Greater than or equal to
• Less than
• Less than or equal to

 On the occurrence of the trigger condition data can be captured on the

• The rising edge
• The falling edge
• The rising edge or the falling edge

 Fig 4.2 Integrated Logic Analyzer Core

Trigger
Logic

de Clk

Control Logic
re
 we enable

 De
 Data
Register

Trigger
Register

 Data we

Data

Buffer

 enable

Address

Generator

 71

 Some instances of the trigger logic are shown in Fig 4.3 and Fig 4.4 which is used to

implemented different types of trigger conditions. In Fig 4.3 the input trigger signal is

checked for less than or equal to condition. When the given trigger condition occurs the

output of the trigger logic goes high. A trigger logic which supports

more than one trigger input can also be generated as shown the trigger logic in Fig 4.4.

Here the trigger logic supports two input signal which can be tested for certain trigger

condition and a logical operation between the individual output such as a logical OR in

the given example will give the overall trigger output. The RTP cores supplied by JBits

can be used to implement the trigger logic to support the different type of trigger

conditions and different trigger widths. The different possible trigger widths are 8, 16, 24

and 32. Depending on the requirement the use can select any particular trigger width.

4.2.3 Data Storage Buffer:

 The storage buffer is used to save the value of the signals on the data lines on

the occurrence of a certain trigger condition. When the trigger occurs, the address

generator increments the address on the address line and the control logic asserts the

write enable input of the storage buffer so that the data on the data input can be saved in

the storage buffer. The data storage buffer is implemented using the block Rams available

in the Virtex™ devices. A single block Ram in a Virtex™ device has 4096 bits. Data

buffers of different aspect ratios can be implemented using these Block Rams. So in our

thesis we have implemented storage buffers of varying depths and data widths as shown

in the table of Fig 4.5.

 72

 Trigger input Trigger Out

 Fig 4.3 Trigger logic to test the less than or equal to condition

Trigger Input1

 Trigger out

Trigger input2

Fig 4.4 An instance where more than one trigger conditions can be tested
simultaneously

4.2.4 Address Generator:

 An address generator is used to generate the address of the memory location in the

data buffer where the next data value is saved. This address generator is implemented

 Gt

Comparator
 Lt

 Eq

 Gt

 Lt
Comparator 1

 Eq

 Gt

Comparator2
 Lt

 Eq

 73

using a counter which is incremented on the occurrence of certain trigger condition and

this value of the counter forms the address input to the storage buffer. The flow chart in

Fig 4.6 depicts the functioning of the ILA core.

Data Width Buffer Depth

16 256

8 512

4 1024

2 2048

1 4096

Fig 4.5 Table showing different buffer depths and Data widths

4.3 Process of adding ILA cores to the design using JBits and JRoute:

 In this section we will describe the procedure of adding ILA cores to the

design at the bitstream level. We have used JBits and JRoute to add the ILA cores at the

bitstream stage. Towards achieving this goal we have used the Runtime Parameterizable

(RTP) cores supplied with the JBits tool kit. These RTP cores include various

components like counters, registers, comparators, adders, etc. Since these cores are

parameterizable different types of debugging logic can be generated at the bitstream level

using JBits and JRoute. These RTP cores enable us to work at a higher level of

abstraction as against the case where the designer is required to configure the bitstream at

 74

 Start

 No

 Yes

 Yes

 No

 Buffer Full
 Fig 4.6 Flow chart showing the steps in the functioning of ILA

Input to the
Trigger
Logic

Is the trigger
Condition
Satisfied

Is the buffer
full?

Write Enable storage
buffer

Enable address generator to
generate the new address

Save the content in
the Storage Buffer

 75

a very low level. Each of the steps involved is explained in detail below and the block

diagram depicting this process is given in Fig 4.7.

4.3.1 Providing the user with a logical view of the design: After the design has been

synthesized by the synthesis tool and then mapped, placed and routed by the Xilinx

FPGA tools it is desired that the user is provided with a logical view of the design even

after mapping the design to the physical FPGA resources. Towards achieving this goal

we have generated a symbol called “.rbstable” which contains detailed information of the

logical to physical mapping. This process of symbol table creation was described in detail

in the previous chapter. The symbol table provides the mapping of the each of the

instance in the design to their Physical counterparts and the nets connected to each of the

ports for all the instances. When the user is provided with a logical view of the design

he/she can select the signal to be monitored in the logical view and as the environment is

familiar with the physical counterparts of these signals whose information is available in

the symbol table the corresponding signals are monitored in the physical design. The

information provided by the user for the creation of ILA cores is as follows.

1. The depth of the storage buffer.

2. The width of the data signal

3. The width of the trigger signal or signals depending on the no of trigger signals.

4. The data signal in the design that is to be monitored

5. The trigger signal or signals that are to be monitored.

 Based on this information provided by the user ILA cores are

automatically generated by the ILA core generator.

 76

 Fig 4.7 The different steps during the process of ILA addition

Input Design
Using HDL
(.vhd, .v)

Use supplied
inputs(buffer

depth, data width,
trigger width,

trigger signal, data
signal)

Database
with list of

free
resources

 Xilinx PAR

Logic

Synthesis

Logical view
of the design

Symbol table
 Creation
(.rbstable)

Adding the
ILA cores to
the design

Filling the
JBits

Database
with the

resources
already used

Generate
new

Bitstream

Configure
the FPGA
with the new
Bitstream

JRoute API call to
connect the

Trigger and data
signal to the ILA

core

 77

4.3.2 Filling the Database with the used resources: Before adding the ILA core to the

design the designer has to make sure that the resources that are already used by the actual

design are not disturbed during the process of adding the ILA cores. Towards achieving

this goal the JBits and JRoute Database is filled with the information of the used

resources before commencing the process of ILA core addition.

4.3.3 Tracking the free resources available in the device: Inorder to add the ILA core

to the design the information of the free resources in the FPGA should be known. The

NCD file generated by the Xilinx placement and routing tool contains information of the

used resources in the FPGA. A textual format of this file is generated using a utility

called “ncdread” provided by Xilinx. A 2 Dimensional array representing the CLB slices

inside the FPGA is created and all of the entries are marked as free. The ncd file parser

which is implemented as a part of this thesis parses this file and fills the 2D array with the

information of the used resources as depicted in the diagram of Fig 4.8. Thus this array

will contain the information of the free resources which is referred to while adding the

ILA core to the design so that only the free resources that are left are used during the

process of ILA core addition.

4.3.4 Algorithm used to add the ILA core: In this section we will describe the

algorithm that we have used to add the ILA cores to the design. In the previous sections

we have described different components that make up an ILA. If the designs are dense it

might not be possible to add the entire ILA as a single entity but it has to be split and add

at different locations in the FPGA based on the availability of resources. Fig 4.9 shows

 78

Fig 4.8 Block Diagram describing the process of tracking the free resources

the flow chart of the algorithm that we have used inorder to add the ILA cores to the

design. First a list of all the components that make up the ILA such as the trigger logic,

the address generator, the control logic, etc is created. Now the entire FPGA is traversed

inorder to find the free resources inside the FPGA. When a free slice is found the

algorithm tries to find all the slices that are free both in the X and Y direction with this

slice located at the bottom left corner of other free resources. Now the component with

 Xilinx PAR
(textual format of
the .ncd file)

Create a 2D Array
representing the
FPGA resources
and mark all the
resources as free

Parse the .ncd file
and fill the 2D

array with the used
resources

The array generated
will contain the

information of free
resources that

can be used for
adding the ILA core

 79

 Start

 Yes

 No
 No

 Yes

 Yes
 No

 No
 Yes

 Fig 4.9 Flow chart describing the algorithm used to add the ILA core

Create a list of all
components that form an

ILA core

Traverse the FPGA with
X ranging form 0 to R-1
Y ranging form 0 to C-1

Find the granularity of free
resources with slice at (x,y) as
the bottom left slice and let A
and B be its granularity in X
and Y direction respectively

Is the slice
at (x,y)
empty?

Find the largest
component with

granularity m,n such
that m<=A and n<=B

Is any
component

found?

Place the component,
mark the resources as used

and remove the
component from the list

Is list
empty?

ILA core
successfully

added

Traverse the
FPGA

Is X<=R-1,

Y<=C-1?

Unable to
add the

ILA core to
the Design

 80

the highest granularity in the X and Y direction that can fit into these free resources is

selected from the list and placed in these free resources. Once this is done the placed

component is removed form the list and the resources used are marked so that they won’t

be used again. This process is repeated until all the components of the ILA are placed, or

the entire array has been searched. The algorithm terminates when all the components are

placed and declares success but if sufficient resource are not available to accommodate

all the components of the ILA the algorithm terminates by declaring a failure.

4.3.5 Connecting the data and trigger signal to the ILA: Once the ILA is added to the

design the trigger and data signals are connected to the ILA so that the process of

debugging can start. Inorder to connect these signals to the ILA core we use the JRoute

tool to connect the nets. This tool provides support for API calls which take the end point

of the net (i.e. the ports) as parameters so that the two ports can be connected via a net.

The symbol table (“.rbstable”) that we have created contains the corresponding physical

ports information of the logical ports the user has selected, which is provided as input to

the JRoute function calls so that the trigger and data signals can be hooked to the ILA.

4.3.5 Creating the new bitstream and configuring the device: Once the ILA core is

added and connected to the design a new bitstream is generated which contains the

configuration data for the design with the ILA added. This new bitstream is used to

configure the FPGA. Once the FPGA is configured the ILA core can be used for

debugging the design.

 81

4.4. Example showing the process of Debugging Design using an ILA: We will now

describe the process of debugging a design using an ILA with the help of an example.

Consider a design which contains two counters as shown in Fig 4.10 (a). One of the

counters output is used as a trigger signal and the output of other counter is used as a data

signal. Counter1 is a 4 bit counter. The output of this counter will be used as the trigger

signal. Counter2 is an 8 bit counter whose output is used as the data signal that is sampled

and saved in the data buffer on the occurrence of certain trigger condition.

 First the signals to be monitored are identified which include the 4 bit

trigger signal from counter1 and the 8 bit data signal from counter2. The ILA core is

generated and added to the design as shown in Fig 4.10 (b). Now the 4 bit trigger signal

 Trigger signal

 d [0..3]

 Data signal

 Rst
 t [0…7]

 clk

 Fig 4.10(a) Original design

Clk

Counter1

Rst

Rst

 Counter2
Clk

 82

 t [0..3]

 Buffer out

 Rst d [0…8]

 Fig 4.10(b) Adding the ILA core to the design using JBits

 t [0..3]

 Buffer
 out

 Rst d [0…8]

 Clk

Fig 4.10 (c) Connecting the data and trigger signals to the ILA core using JRouteFig

Fig 4.10 Blocking diagram depicting the steps in addition of ILA core to a design

Trigger Input

Integrated Logic
Analyzer Core

Data Input

Clk

Counter1

Rst

Rst

Counter2

Clk

Trigger Input

Integrated Logic
Analyzer Core

Data Input

Clk

Counter1

Rst

Rst

Counter2

Clk

 83

 Fig 4.11 The core view of the ILA added to the design

Clock Cycle Trigger Signal
T [0…3] (hex)

Data Signal
D[0…7] (hex)

Value saved in Data buffer
(hex)

16

F 0A 0A

32

F 1A 1A

48

F 2A 2A

64

F 3A 3A

80

F 4A 4A

96

F 5A 5A

 Fig 4.12 Table showing the various signal values during simulation

 84

Fig 4.13 The state view of the ILA also showing the content of the Block Ram
Used as Data Buffer

t [0…3] and the 8 bit data signal d [0…7] are connected to ILA using the JRoute API

calls as shown in Fig 4.10 (c). Fig 4.11 shows the core view of the ILA in BoardScope

after the ILA core is added. We have used the Virtex device simulator which s a part of

the BoardScope tool kit to simulate the working of the ILA after it has been added to the

 85

design. The trigger value in this example is set to 15. So whenever the value on the

trigger bus reaches 15 the content of the counter2 or the content on the data bus is saved

in the data buffer. Fig 4.13 shows the content of the data buffer after some 1500 clock

cycles. The value on the trigger bus and the data bus and the content of the data buffer for

certain sample clock cycles is shown in Fig 4.12.

 Thus in this chapter we have explained this process of ILA core addition using

bitstream modification tools like JBits and JRoute in great detail. Thus using the readback

capability as discussed in chapter 3 and the features supported by the ILA cores as

discussed in this chapter the observibility and execution control of the designs can be

enhanced considerably.

 86

Chapter 5

Results and Analysis

 This chapter will give a detailed description of the experiments that were conducted and

the conclusions and insight gained from this research. In chapters 3 and 4 we have

described in detail the different steps that are involved to automate the process of ILA

core addition and modification which has been developed as a part of this research to

improve the observibility and execution control of the designs implemented on FPGA

Based systems. This technique which was studied extensively consists of the process of

ILA core addition by modifying the bitstream generated by the Xilinx PAR tools and

making changes to these ILA cores at the bitstream stage as desired based on the

particular debugging needs. Logical to Physical design mapping for creation of symbol

table is an important step towards developing such a technique as discussed in the

previous chapters. In this chapter we will try to summarize the different aspects of this

technique and provide results obtained by using this technique and try to gain some

insight.

.

 5.1 Symbol table Creation for providing the user with a logical view of the designs

during ILA core addition: The process of Logical to Physical design mapping for the

creation of Symbol table is very involved and this entire process has been automated as a

part of this research. We have implemented the parsers for various files that are generated

by the synthesis and the FPGA vendors CAD tools which are utilized during this process.

These parsers were implemented using UNIX utilities, Lex and YACC. The information

 87

gathered from various files is put together to create a symbol table. This symbol table

created by the mapper provides a logical view of the design to the user with the

information of all the logical instance in the design including the information of the ports

of each of these instances and the nets connected to these ports even after the design has

been mapped to the physical FPGA. With the information of the mapping available in the

symbol table the designer can select the signals in the design that he/she is interested in

and the corresponding signal in the physical FPGA which are recognized by the Jbits and

Jroute tools is selected in the physical FPGA.

 The information in the symbol table can be used for other debugging purposes

such as readback which was demonstrated by the researchers at BYU [24] for the JHDL

design environment. In this research we are targeting a design environment in which

designs are described in a hardware description language like VHDL or Verilog. Using

the information in the symbol table similar type of debugging capabilities can be

provided for the VHDL or Verilog design environment.

5.2 Addition and Modification of ILA cores:

 The process of adding the ILA cores and modifying them at the bitstream level

using bitstream modification tools like JBits and JRoute have been explained in great

detailed in the previous chapter. The main metric that was used to test the effectiveness of

the techniques developed lies in the time saved in adding the ILA cores at the bitstream

stage rather than before the start of PAR, which will result in drastic improvement. We

used the BoardScope debugger from Xilinx to debug the designs modified using Jbits and

Jroute at the bitstream stage for adding the ILA cores.

 88

5.2.1 Description of the ILA cores added to the design:

 We added ILA cores with different configurations to the designs using JBits and

JRoute. The different configurations of the ILA cores depend on the width of the trigger

and data signals that each of the ILA supports. In the experiments conducted we used the

ILA cores with the following Trigger and Data widths.

ILA configuration Trigger Width Data Width

ILA_8_16 16 8

ILA_8_24 24 8

ILA_8_32 32 8

ILA_8_40 40 8

ILA_8_48 48 8

ILA_8_64 64 8

ILA_8_80 80 8

ILA_8_96 96 8

 Fig 5.1 ILAs with different configurations used in the experiments

 We have used a specific format to represent each of the ILA cores based

on its configuration. The format used is as follows.

 ILA_# of Data bits_# of Trigger bits

 For instance an ILA core with an 8 bit Data signal and a 48 bit trigger signal can

be represented using the above mentioned format as ILA_8_48. Each of these ILA cores

utilize different amount of FPGA resources based on its configuration. In the experiments

 89

we have used a single BRAM in the Virtex device to implement the data buffer in which

the sampled values are saved on the occurrence of certain trigger condition. The table in

Figure 5.2(a) gives the information of the resources used by each of the ILA cores based

on its configuration when the ILA cores are added to the design using the bitstream

modification techniques (BMOD) and the same is also depicted with the help of a bar

graph in Fig 5.2(b). Similarly Fig 5.2(a) also shows the resources used by ILA cores with

similar configuration when they are added into the VHDL source code before the

commencement of PAR and a bar graph representing the same is shown in Fig 5.2(b). It

is observed that the ILA cores add at the VHDL stage use less resource than the bitstream

modification technique. This is due to the optimizations performed by the synthesis and

Xilinx tools for ILAs added in VHDL which is not the case for ILA core added using the

bitstream modification method.

5.2.2 Benchmarks used to test the effectiveness of the technique:

 The following is a brief description of each of the benchmarks that are used

to test the technique developed. We have used the ITC 99’ Benchmarks developed by the

CAD group at Politecnico di Torino (I99T). It is considered that the characteristics of

these circuits closely resemble those of the synthesized circuits [36]. We have

implemented each of the Benchmarks on a Virtex XCV1000 chip. The ILA cores with

the different configuration are added to each of these benchmarks after they have been

synthesized, mapped, placed and routed. The benchmarks vary in size with ‘b12’ being

the smallest one utilizing 1% of the FPGA slices and the largest being the ‘b18’

 90

benchmark that utilizes 72% of the slices in a Virtex™ XCV1000 FPGA. The table in Fig

5.3 gives a list of the FPGA resources used by each of the benchmarks. Using

 (a)

Resources used for ILA core generation using different
techniques

0

10

20

30

40

50

60

70

80

ILA
_8

_1
6

ILA
_8

_2
4

ILA
_8

_3
2

ILA
_8

_4
0

ILA
_8

_4
8

ILA
_8

_6
4

ILA
_8

_8
0

ILA
_8

_9
6

ILA configuration

No
. o

f s
lic

es
 u

se
d

resources used for HDL addition

resources used for BMOD
addition

 (b)
 Fig 5.2 Resources used by each ILA configuration

 BMOD Added in HDL Configuration

of the ILA
No. of Slices

used

No of BRAMs

used

No. of Slices
used

No of BRAMs
used

ILA_8_16 19 1 15 1

ILA_8_24 24 1 20 1

ILA-8_32 29 1 25 1

ILA_8_40 34 1 30 1

ILA_8_48 39 1 35 1

ILA_8_64 49 1 45 1

ILA_8_80 59 1 55 1

ILA_8_96 69 1 65 1

 91

benchmarks with a large variation is size will help in analyzing the improvement in

timing obtained by applying the technique developed inorder to add the ILA cores to the

designs in this research and how the complexity of the designs governs this

improvement?. An important aspect of these benchmarks lies in the fact that they were

developed to test new techniques which help in improving the debugging capabilities of

designs. Fig 5.4 gives a brief description of the 8 circuits from among the 22 available

circuits that we used as benchmarks.

 All these benchmarks are available in synthesizable RT Vhdl format or Edif

netlist format. These benchmarks use only the IEEE standard library components which

make it easy to synthesize them with any of the available synthesis tools. Some of these

benchmarks are quite complex. For instance the b18 benchmark is reasonable more

complex than the largest ISCAS’89 benchmarks. This is important to test the effect of

time taken for ILA core addition as the complexity of designs change drastically. Another

important aspect of these benchmarks is the fact that they use single clock which

synchronizes all the flip flops in the design and makes it easy to test the capabilities of

the ILA cores after they are added to the design. The number of primary input pins for

each of these benchmarks varies form 1 to 37 and the number of output pins varies from

1 to 97. This variation in the number of I/O pins requires ILA cores with varying

capabilities for each of the benchmarks.

5.2.3 Different methods used for adding the ILA cores to the design:

 Inorder to test the degree of improvement that can be achieved by using the

technique of bitstream modification as developed as a part of this thesis we have also

 92

added the ILA cores to the benchmarks at the HDL stages of the design process so that

the relative improvement achieved can be analyzed. We can add the ILA cores to the

design directly in the HDL description of the design before the synthesis of the design is

 Fig 5.3 Resources used by each Benchmark

initiated. All the commercial as well as academic tools add the ILA cores before the

commencement of the Xilinx CAD flow. For instance the Chipscope tool from Xilinx

supports the addition of ILA core at the VHDL stage or after synthesis. The Signal Tap

Logic Analyzer from Xilinx supports the ILA core addition in the logic database before

commencing the process of placement and routing of the design. Similarly the JHDL

Benchmarks No of Slices

used

% of Slices

used

No. of Nets in

the design

B12

185

1% 1289

B14 637 5% 4468

B15 1085 8% 7420

B17 3374 27% 22745

B18 8965 72% 60182

B20 1355 11% 9039

B21 1313 10% 8991

B22 1974 16% 13413

 93

debugging tools also adds the ILA in the logical database or directly in the JHDL source

code which is before the start of PAR. So we try to find the time taken for ILA core

addition by repeating the process of PAR as each of these techniques discussed above

atleast require the repetition of this process of PAR, we compare the PAR time with the

time taken to add the ILA cores using our technique which adds the ILA at the bitstream

stage without repeating the PAR step. Since we are considering only the time taken for

the process of PAR it is the best case scenario for these other techniques as some of these

techniques even require the repetition of logic synthesis as is the case with Chipscope

ILA, which may result in this process of ILA core addition taking even more time. Once

the ILA core is added to the design there are many options that are supported by the

Xilinx Placement and Routing tools to place and route the designs like the Normal build,

Guided PAR and fast build. In addition to these, the technique we developed is used to

add the ILA cores directly at the bitstream stage which does not require the repetition of

process of PAR each time modification are made to the ILA. We refer to this technique

as Bitstream addition and modification of ILA (BMOD) .We use the Jbits and Jroute

tools from Xilinx to modify the bitstream of the original design to add the ILA core and

connecting the signals in the design to the ILA. Even though the routing algorithm used

by Jroute is slow it was observed that the improvement in terms of time taken for ILA

core addition was very less when compared to the other techniques. This is because using

Jbits and Jroute the placement and routing of the original design is not disturbed and only

the new resources in the FPGA for ILA core addition are configured and only the signals

in the design to be monitored are routed using JRoute. Hence we are comparing the time

taken to repeat the process of PAR for adding the ILA cores as is done by the other

 94

methods against the time taken by our technique (BMOD) which utilizes the process of

bitstream modification for ILA core addition and does not require the repetition of PAR.

The following gives a brief description of each of the methods that have been employed

to add the ILA cores to the designs and the time taken by each of these four techniques

for ILA core addition is used to compare the effectiveness of each of these techniques.

Normal Build: In case of Normal Build the process of Placement and Routing (PAR) is

performed by the Xilinx CAD tool with an average effort level for PAR. This is generally

used when the design meets the timing goals with this average effort level. If the design

does not meet the timing goals using this method then a high design effort is applied so

that desired goals can be accomplished.

Fast Build: In the case of Fast Build the process of PAR which is most time consuming

is performed with the least effort level. This method is used when the design being

mapped easily meets the design goals like frequency, 100 % routing of the design, etc.

Guided PAR: In the case of Guided PAR the information from previously placed and

routed design, without the ILA core added to it is used. The Native Circuit description

file acts as the guide file to guide the process of PAR so that time can be saved during the

process of mapping as well as placement and routing the design.

 Bitstream modification of designs (BMOD) : As explained in chapter 4 after the

design is paced and routed by the Xilinx CAD tools we take the user inputs such as the

signals to be monitored in the logical view, the width of the trigger signal, the width of

the data signal and the depth of the storage buffer, an ILA core is automatically generated

and using the information in the symbol table which has the information of the Logical to

 95

Physical design mapping modification are made to the design at the bitstream level using

JBits and JRoute inorder to add the ILA core to the design and connect the signals to be

monitored in the design to the corresponding ILA inputs.

Circuits Description

B12 1-player game (guess a sequence)

B14 Viper processor (subset)

B15 80386 processor (subset)

B17 Three copies of b15

B18 Two copies of b14 and two of b17

B20 A copy of b14 and a modified version of b14

B21 Two copies of b14

B22 A copy of b14 and two modified versions of b14

Fig 5.4 Brief Description of each of he Benchmarks used

 We have measured the time taken by each of the four techniques discussed

above inorder to show that the fourth technique that we have developed is better in terms

of time saved when adding the ILA cores as well as modifying them. We compare the

time taken by the first three methods for mapping, placing and routing the design which

is indicative of the time taken by the other tools in both academic and commercial

domains which add the ILA cores before the start of PAR and comparing it with the time

taken in modifying the bitstream to add the ILA cores using JBits and JRoute and using

 96

this as a metric to show the improvement in terms of time taken by each of these methods

for ILA core addition.

5.3 Experiments and Results:

 We have added eight ILA cores with varying configuration to each of the circuits.

These different ILA cores added to each of the designs include ILA_8_16, ILA_8_24,

ILA_8_32, ILA_8_40, ILA_8_48, ILA_8_64, ILA_8_80, ILA_8_96. We have

performed these extensive experiments to gain an insight as to how the ILA addition time

varies with respect to the complexity of the designs as well as the complexity of the ILA

cores. Each of the figures from Fig 5.5 – Fig 5.12 gives a detailed information of the data

that was gathered form the experiments. Each of these figures shows the time taken for

the addition of all the an ILA core with a particular configuration each of the eight

circuits. In each of these figures the table in Fig (a) gives the time taken to add the ILA

core of particular configuration using different methods which include Normal Build,

Fast Build, Guided PAR and the technique of ILA core addition using BMOD which

utilizes Jbits and Jroute and developed as a part of this thesis. Fig(b) in each of these

figures shows the percentage improvement in time taken using BMOD over each of the

other techniques for ILA core addition which include Fast Build, Normal Build and

Guided PAR. The graphs in Fig (c) shows in a visual format the time taken for adding

ILA core to the design using all the four methods. Similarly the graphs in Fig(d) show a

visual picture of the improvement in the ILA addition time using BMOD over the other

techniques. With this data available we will try to perform a detailed analysis.

 97

ILA core with 16 bit trigger signal and 8 bit data signal

0

500

1000

1500

2000

2500

b12 b14 b15 b17 b18 b20 b21 b22

Benchmarks

Ti
m

e(
se

c)

Fast Build
Normal Build
Guided PAR
BMOD

 (a) (b)

Percentage Improvement in ILA addition time using BMOD over
other techniques

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fast Build Normal Build Guided PAR

Methods used for PAR

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t i
n

IL
A

 a
dd

iti
on

tim

e
us

in
g

B
M

O
D

b12
b14
b15
b17
b18
b20
b21
b22

 (c) (d)

Fig 5.5 ILA core Addition time for ILA_8_16

 Fast
Build

Normal
Build

Guided
PAR

BMOD

B12 50 102 60 16.81

B14 72 165 79 21.5

B15 85 206 94 25.4

B17 221 755 234 46.72

B18 666 1956 612 100.44

B20 100 307 110 28.06

B21 102 311 108 28.12

B22 150 468 164 33.78

 Fast
Build

Normal
Build

Guided
PAR

B12 197 506 256

B14 234 667 267

B15 234 711 270

B17 373 1516 400

B18 563 1847 509

B20 256 994 292

B21 262 1005 284

B22 344 1285 385

 98

ILA core with 24 bit trigger signal and 8 bit data signal

0

500

1000

1500

2000

2500

b12 b14 b15 b17 b18 b20 b21 b22

Benchmarks

Ti
m

e(
se

c)

Fast Build
Normal Build
Guided PAR
BMOD

 (a) (b)

Percentage improvement in ILA addition time using BMOD over
other techniques

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fast Build Normal Build Guided PAR

Methods for PAR

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t i
n

IL
A

ad
di

tio
n

tim
e

us
in

g
BM

O
D b12

b14
b15
b17
b18
b20
b21
b22

 (c) (d)

Fig 5.6 ILA core Addition time for ILA_8_24

 Fast
Build

Normal
Build

Guided
PAR

BMOD

B12 37 117 44 16.54

B14 70 181 73 21.03

B15 74 213 84 25.86

B17 179 753 178 47

B18 585 1965 605 101.42

B20 84 336 83 27.93

B21 93 310 97 27.38

B22 128 488 133 33.76

 Fast
Build

Normal
Build

Guided
PAR

B12 123 607 166

B14 232 760 247

B15 186 723 224

B17 280 1502 278

B18 476 1837 496

B20 200 1103 197

B21 239 1032 254

B22 279 1345 293

 99

ILA core with 32 bit Trigger signal and 8 bit Data signal

0

200

400

600

800

1000

1200

1400

1600

1800

2000

b12 b14 b15 b17 b18 b20 b21 b22

Benchmarks

Ti
m

e(
se

c)

Fast Build
Normal Build
Guided PAR
BMOD

 (a) (b)

Percentage improvement in ILA addition time using BMOD over
other techniques

0

200

400

600

800

1000

1200

1400

1600

1800

Fast Build Normal Build Guided PAR

Methods for PAR

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t i
n

IL
A

ad
di

tio
n

tim
e

us
in

g
BM

O
D b12

b14
b15
b17
b18
b20
b21
b22

 (c) (d)

Fig 5.7 ILA core Addition time for ILA_8_32

 Fast
Build

Normal
Build

Guided
PAR

BMOD

B12 35 109 43 17.08

B14 65 184 73 21.55

B15 87 227 87 25.8

B17 180 688 174 47.68

B18 529 1823 714 102.48

B20 97 331 91 28.13

B21 98 301 104 27.68

B22 138 545 125 34.18

 Fast
Build

Normal
Build

Guided
PAR

B12 104 538 151

B14 201 753 238

B15 237 779 237

B17 277 1342 264

B18 415 1678 596

B20 244 1076 223

B21 254 987 274

B22 303 1494 265

 100

ILA core with 40 bit trigger signal and 8 bit Data
Signal

0

200

400

600

800

1000

1200

1400

1600

1800

2000

b12 b14 b15 b17 b18 b20 b21 b22

Benchmarks

Ti
em

(s
ec

) Fast Build
Normal Build
Guided PAR
BMOD

(a) (b)

Percentage improvement in ILA addition time using BMOD over
other Techniques

0

200

400

600

800

1000

1200

1400

1600

1800

Fast Build Normal Build Guided PAR

Methods for PAR

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t i
n

IL
A

ad
di

tio
n

tim
e

us
in

g
BM

O
D b12

b14
b15
b17
b18
b20
b21
b22

 (d)
 (c)

Fig 5.8 ILA core Addition time for ILA_8_40

 Fast
Build

Normal
Build

Guided
PAR

BMOD

B12 38 136 44 17.48

B14 64 185 67 21.32

B15 73 247 83 26.28

B17 183 746 181 48.11

B18 554 1801 638 101.63

B20 93 315 185 28.38

B21 92 295 98 27.91

B22 131 500 134 34.45

 Fast
Build

Normal
Build

Guided
PAR

B12 117 678 151

B14 200 767 214

B15 177 839 215

B17 280 1450 276

B18 455 1672 527

B20 227 1009 551

B21 229 956 251

B22 279 1351 288

 101

ILA core with 48 bit trigger signal and 8 bit data signal

0

500

1000

1500

2000

2500

b12 b14 b15 b17 b18 b20 b21 b22

Benchmarks

Ti
m

e(
se

c)

Fast Build
Normal Build
Guided PAR
BMOD

 (a) (b)

Percentage Improvement in ILA addition time using BMOD over
other Techniques

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fast Build Normal Build Guided PAR

Methods for PAR

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t i
n

IL
A

ad
di

tio
n

tim
e

us
in

g
BM

O
D b12

b14
b15
b17
b18
b20
b21
b22

 (c) (d)

Fig 5.9 ILA core Addition time for ILA_8_48

 Fast
Build

Normal
Build

Guided
PAR

BMOD

B12 35 106 47 17.64

B14 71 190 76 21.96

B15 82 219 88 26.48

B17 175 646 178 48.92

B18 529 1934 736 102.53

B20 95 341 85 29.48

B21 97 320 100 28.56

B22 136 521 136 34.6

 Fast
Build

Normal
Build

Guided
PAR

B12 98 500 166

B14 223 765 246

B15 209 727 232

B17 257 1220 263

B18 415 1786 617

B20 222 1056 188

B21 239 1024 250

B22 293 1405 293

 102

ILA core addition with 64 bit Trigger signal and 8 bit Data signal

0

500

1000

1500

2000

2500

b12 b14 b15 b17 b18 b20 b21 b22

Benchmarks

Ti
m

e(
se

c)

Fast Build
Normal Build
Guided PAR
BMOD

 (a) (b)

Percentage Improvement in ILA addition time using BMOD over
other techniques

0

500

1000

1500

2000

2500

Fast Build Normal Build Guided Par

Methods for PAR

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t i
n

IL
A

ad
di

tio
n

tim
e

us
in

g
BM

O
D b12

b14
b15
b17
b18
b20
b21
b22

 (c) (d)
 Fig 5.10 ILA core Addition time for ILA_8_64

 Fast
Build

Normal
Build

Guided
PAR

BMOD

B12 51 118 61 17.97

B14 80 191 81 22.44

B15 90 239 101 26.57

B17 226 880 231 49.67

B18 525 2122 705 102.97

B20 104 307 213 29.05

B21 106 303 110 28.57

B22 163 515 164 35.18

 Fast
Build

Normal
Build

Guided
PAR

B12 183 556 239

B14 257 751 260

B15 238 799 280

B17 355 1671 365

B18 409 1960 584

B20 258 956 646

B21 271 960 285

B22 363 1363 366

 103

ILA core with 80 bit Trigger signal and 8 bit Data signal

0

500

1000

1500

2000

2500

3000

b12 b14 b15 b17 b18 b20 b21 b22

Benchmarks

Ti
m

e(
se

c)

Fast Build
Normal Build
Guided PAR
BMOD

 (a) (b)

Percentage Improvement in ILA addition time using BMOD over
other Techniques

0

500

1000

1500

2000

2500

Fast Build Normal Build Guided PAR

Methods for PAR

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t i
n

IL
A

ad
di

tio
n

tim
e

us
in

g
BM

O
D b12

b14
b15
b17
b18
b20
b21
b22

 (c) (d)

Fig 5.11 ILA core Addition time for ILA_8_80

 Fast
Build

Normal
Build

Guided
PAR

BMOD

B12 35 97 45 18.69

B14 64 163 67 23.07

B15 75 190 84 26.94

B17 179 624 179 49.34

B18 530 2405 682 103.14

B20 99 251 84 29.31

B21 91 257 91 29.21

B22 123 388 120 35.93

 Fast
Build

Normal
Build

Guided
PAR

B12 87 418 140

B14 177 606 190

B15 178 605 211

B17 262 1164 262

B18 413 2231 561

B20 237 756 186

B21 211 779 211

B22 242 979 233

 104

ILA core with 96 bit Trigger signal and 8 bit Data signal

0

500

1000

1500

2000

2500

3000

b12 b14 b15 b17 b18 b20 b21 b22

Benchmarks

Ti
m

e(
se

c)

Fast Build
Normal Build
Guided PAR
BMOD

 (a) (b)

Percentage Improvement in ILA addition time using BMOD over
other techniques

0

500

1000

1500

2000

2500

Fast Build Normal Build Guided PAR

Methods for PAR

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t i
n

IL
A

ad
di

tio
n

tim
e

us
in

g
BM

O
D b12

b14
b15
b17
b18
b20
b21
b22

 (c) (d)

Fig 5.12 ILA core Addition time for ILA_8_96

 Fast
Build

Normal
Build

Guided
PAR

BMOD

B12 40 108 63 19.59

B14 70 184 80 24.16

B15 82 259 97 27.77

B17 185 771 232 50.11

B18 647 2545 958 105.1

B20 111 331 225 30.29

B21 104 305 109 28.52

B22 156 525 168 36.15

 Fast
Build

Normal
Build

Guided
PAR

B12 104 451 221

B14 189 661 231

B15 195 832 249

B17 269 1438 362

B18 515 2321 811

B20 266 992 642

B21 264 969 282

B22 331 1352 364

 105

5.4 Analysis of the results: From the results it is observed that the time taken for the

addition of the ILA cores using BMOD is quite a bit less than the time taken by the other

three methods. It is also observed that as the complexity of the design increase the

percentage improvement in the time taken also increases. It is observed form the graphs

in Fig(d) for each of the ILA configurations, b18 which is the most complex design

utilizing 72% of the FPGA resources has the highest percentage of improvement in terms

of time taken fro ILA core addition using Jbtis and Jroute over other methods. This is

highly desired as designs which are complex require more number of debugging

iterations with different debugging capabilities during each iteration such as the change in

the width of the trigger and data bus, the change in the buffer depth, the change in the

signals being monitored, etc during the debugging process. Thus if the designer is able to

make these desired changes in less time the debugging process can be made more

efficient. Towards achieving this goal bitstream modification of designs for ILA core

addition and modification can be an effective and desired technique for a Hardware

Debugging environment.

 106

Chapter 6
Conclusion and Future Work

6.1 Work done as a part of this thesis:

 In this thesis we have developed debugging techniques that will result in improving

the debugging capabilities of designs implemented on FPGA Based Systems. These

techniques facilitate the process of verification and debugging and reduce the debugging

time to achieve early time to market goals. Integrated Logic Analyzer Cores can be added

to the FPGA based designs to improve their execution control. In this thesis we have

developed a technique to enable addition of such cores at the last step of the FPGA

design flow. This can ease and expedite the process of debugging designs implemented

on FPGA based systems by improving their execution control, reducing the time taken to

modify the debugging functionality and hence aid in achieving early time to market

goals. The techniques developed in this thesis can be part of a comprehensive Debugging

Environment which incorporates many other debugging capabilities in addition to the

techniques developed as a part of this research.

 The following subsections will summarize the techniques developed.

6.1.1 Symbol Table Creation:

 As a part of this research the information of logical to physical design mapping is

provided in the form of a symbol table. The symbol table contains information of all the

logical instances in the design with their input and output ports, the nets connected to

those ports and their detailed mapping to the physical components in the FPGA. This

process of symbol table creation utilizes information from files generated by both the

 107

synthesis tool and the Xilinx placement and routing tool. As a part of this research this

process of symbol table creation has been automated. The information contained in this

symbol table in utilized in the techniques developed in this thesis to improve the

debugging capabilities of the designs.

6.1.2 ILA core addition through Bitstream Modification:

 Inorder to improve the observibility and execution control of designs Integrated

Logic Analyzer (ILA) cores which are a specialized form of logic are added at the

bitstream stage using the bitstream modification tools called JBits and JRoute. The main

components of an ILA core include trigger logic, control logic and data buffer. In the ILA

created in this project, trigger signals from the design are monitored by the trigger logic

and the value on the data line is saved into the data buffer on the occurrence of the user

specified trigger condition. The width of the trigger, the width of the data signals and the

depth of the data buffer can be changed as desired. The process of ILA core addition or

modification also utilizes the information in the symbol table which is developed as a part

of this research. Once the ILA cores are added to the design using JBits the designer

selects the data and trigger signals in the logical view and the corresponding signals in

the physical FPGA are connected to the ILA cores using JRoute. As a part of this

research we have automated the process of ILA core generation. We have also developed

and implemented a placement algorithm which is used to add the ILA cores into the

design using the free resources in the FPGA. The main contribution of this research was

the demonstration that these ILA cores can be added very late in the design process so

 108

that a considerable amount of time can be saved when compared to performing the same

task using other techniques.

 The process of ILA core generation and addition was automated as a part of this

research. From the experiments that were conducted it was observed that the time taken

to add these ILA cores to the FPGA design was quite small. On average the technique

developed took 8-10 times less time for ILA core addition when compared to the other

techniques. In the case of complex designs the time saved was even more significant

6.2 Future Work: In this section we will try to give a brief description of the

direction of future work.

6.2.1 Improving the features supported by the ILA: The ILA cores developed and

tested in this research helps in improving the observibility and execution control of the

design. They support a limited number of debugging capabilities like observing the state

of various signals in the design and saving the sates of signal on the occurrence of certain

trigger condition. ILA cores with more debugging features like clock control so that

single and multi stepping of clock is supported, forcing the values of signals in the

design, etc can be supported so that the controllability, observibility and execution

control of the design can be improved.

6.2.2 Developing Compact and flexible ILA cores: The ILA cores generated can be

made more compact and flexible by using the features supported by the Virtex FPGA.

For instance an LUT can also act as a shift register. This feature can be used, so that

trigger logic to support varying trigger conditions can easily be implemented [35]. In case

 109

of complex designs which occupies almost the entire FPGA it is desirable to generate

ILA cores which are compact, as more number of signals are to be monitored and less

space is available to place these cores.

6.2.3 Developing better Algorithms for ILA core placement: The placement algorithm

that is developed as a part of this research to place the ILA cores in the design can be

improved in many ways. It is desired that the ILA cores be placed near to the signals

being monitored. This is important to prevent the data or trigger signal connected to the

ILA from becoming a part of the critical path. Also in the case of complex designs where

there is a scarcity of free resources algorithms should be developed which can utilize

these free resources in the best possible way while adding the ILA cores.

6.2.4 Developing a integrated Tool: In this thesis the process of Logical to physical

design mapping was implemented in C using the Unix utilities Lex and Yacc while the

addition of ILA cores is performed using JBits and JRoute which are Java based API.

Due to the incompatibilities of these environments intermediate files are generated to

pass the information from one environment to another. This results in wasted time and

effort. So it is highly desirable to perform the task of symbol table creation and ILA core

addition in a single program so that this overhead can be avoided.

6.2.5 Developing a GUI to ease the process of debugging: A GUI can be developed to

ease the debugging process for the designer. The GUI can be used to provide the designer

with a logical view of the design so the desired signals to be monitored can be selected

 110

and observed. The designer can use this interface to enter the desired configuration of the

ILA such as the depth of the storage buffer, the width of the data and trigger signals, etc.

An interface can also be provided for observing the content of the storage buffer during

design execution through partial readback as well.

 111

Bibliography:

[1] Xilinx, “Virtex 2.5 V field programmable gate arrays: Module 2, detailed
 functional description”, Datasheet DS003-2, Xilinx, San Jose, CA, April 2001, v. 2.5.

[2] K. Compton, S. Hauck, "Reconfigurable Computing: A Survey of Systems and
 Software" ,in the proceedings of ACM Computing Surveys, June 2002, Vol. 34,
 No. 2. pages 171-210.

[3] Wo, D.; Forward, K.;”Compiling to the gate level for a reconfigurable co-
 processor”, in the proceedings of IEEE Workshop on FPGAs for Custom Computing
 Machines, 1994, pages 147 -154.

[4] Xilinx, “Virtex FPGA series configuration and readback”, Application Note
 XAPP138, Xilinx, San Jose, CA, July 2002.

[5] Xilinx, “Virtex series configuration architecture user guide”, Application Note
 XAPP151, Xilinx, San Jose, CA, September 2000.

[6] S. A. Guccione, D. Levi, and P. Sundararajan, “JBits: A Java-based interface for
 reconfigurable computing”, in the proceedings of Second Annual conference on
 Military and Aerospace Applications of Programmable Devices and Technologies
 (MAPLD), September 1999.

[7] Xilinx, “Virtex-II 1.5 V field programmable gate arrays: Module 2, detailed
 functional description”, Datasheet DS031-2, Xilinx, San Jose, CA, January 2001,
 v. 1.3.

 [8] Altera Corporation, San Jose, CA, APEX 20K Programmable Logic Device Family
 Data Sheet, ver. 2.06 edition, March 2000.

[9] Altera Corporation, San Jose, CA, SignalTap User’s Guide, 1999.10 (revision 2)
 edition, November 1999.

[10] Altera Corporation, San Jose, CA, SignalTap Embedded Logic Analyzer
 Megafunction Data Sheet, ver. 1.01 edition, January 2000.

[11] Xilinx, San Jose, CA, ChipScope Software and ILA Cores User Manual, v. 4.1
 edition, October 2001.

[12] Xilinx, San Jose, CA, ChipScope Software Tools tutorial, v. 4.1 edition,
 October 2001.

 112

[13] B. K. Fross, R. L. Donaldson, and D. J. Palmer, “Pci-based WILDFIRE
 reconfigurable computing engines”, in the proceedings of SPIE—The International
 Society for Optical Engineering, Bellingham, WA, November 1996, vol. 2914,
 pages 170–179.

[14] L. Moll and M. Shand, “Systems performance measurement on PCI pamette”, in the
 proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, Napa,
 CA, Apr. 1997, pages 125–133.

[15] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and D.
 Lopresti, “Building and using a highly parallel programmable logic array”, In the
 proceeding of IEEE transaction on Computer, Jan 1991, vol. 24, no. 1, pages 81–89.

[16] J. M. Arnold, D. A. Buell, and E. G. Davis, “Splash 2”, in the proceedings of the
 4th Annual ACM Symposium on Parallel Algorithms and Architectures, June 1992,
 pages 316–324.

[17] R. Amerson, R. Carter, B. Culbertson, P. Kuekes, and G. Snider, “Teramac–
 configurable custom computing”, in Proceedings of IEEE Workshop on FPGAs for
 Custom Computing Machines, Napa, CA, Apr.1995, pages 32–38.

[18] B. Schott, S. Crago, C. Chen, J. Czarnaski, M. French, I. Hom, T. Tho, and T.
 Valenti, “Reconfigurable architectures for systems level applications of adaptive
 computing”, In the proceedings of IEEE transaction on VLSI Design, 2000, vol. 10,
 no. 3, pages 265–279.

[19] P. Bellows and B. L. Hutchings, “JHDL—an HDL for reconfigurable systems”, in
 the proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
 Napa, CA, Apr. 1998, pp. 175–184.

[20] Xilinx, San Jose, CA, BoardScope User’s Guide, 2.8.1 edition, Oct 2001, Part of the
 HTML documentation provided with JBits 2.8.1.

[21] Hutchings, B.; Nelson, B.;”Developing and debugging FPGA applications
 in hardware with JHDL“, in the proceedings of Conference on Signals,
 Systems, and Computers, 1999. Volume: 1, pages 554 -558.

[22] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, and M. Rytting, “A
 CAD suite for high-performance FPGA design”, in the proceedings of the IEEE
 Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 1999,
 pages 12–24.

 113

[23] Hutchings, B.L.; Nelson, B.E.;” Unifying simulation and execution in a
 design environment for FPGA systems”, In the proceedings of IEEE Transactions
 on Very Large Scale Integration (VLSI) Systems, Feb 2001, Volume: 9 Issue: 1 ,
 pages 201-205.

 [24] Graham, P.; Hutchings, B.; Nelson, B.; “Improving the FPGA design process
 through determining and applying logical-to-physical design mappings”
 In the proceedings of Conference on Field-Programmable Custom Computing
 Machines, 2000, pages 305 -306.

[25] Paul Graham,” Logical Hardware Debuggers for FPGA-Based Systems”, PhD
 Thesis, Brigham Young University, Electrical and Computer Engineering
 Department, December 2001

[26] T. Wheeler, “Improving design observability and controllability for circuit
 debugging in FPGAs using design-level scan techniques”, Master’s thesis,
 Brigham Young University, Provo, UT, 2001.

[27] Paul Graham, “Instrumenting Bitstreams for Debugging FPGA Circuits”, in
 the Proceedings IEEE workshop on FPGA for Custom Computing Machines, 2001.

[28] Steven A. Guccione and Delon Levi, “Run-Time Parameterizable Cores”, In
 the Proceedings of the 9th International Workshop on Field-Programmable
 Logic and Applications, August / September 1999, pages 215-222.

 [29] Scott P. McMillan, Brandon J. Blodget and Steven A. Guccione, “VirtexDS:
 A Device Simulator for Virtex”, In the Proceedings of SPIE - The
 International Society for Optical Engineering, Bellingham, WA, November
 2000, pages 50-56.

[30] Tim Price, Delon Levi and Steven A. Guccione, “Debug of Reconfigurable
 Systems”, In the Proceedings of SPIE - The International Society for
 Optical Engineering, Bellingham, WA, November 2000, pages 181-187.

[31] Delon Levi and Steven A. Guccione,” BoardScope: A Debug Tool for
 Reconfigurable Systems”. In the proceedings of SPIE- The International
 Society for Optical Engineering, Bellingham, WA, November 1998, pages
 239-246.

 114

[32] S. Z. Hanono, “Innerview hardware debugger: A logic analysis tool for the virtual
 wires emulation system”, Master’s thesis, Massachusetts Institute of Technology,
 February 1995.

[33] Karen A. Tomko, Anurag Tiwari, “Design Techniques to Implement Reconfigurable
 Hardware Watch-Points for Hardware/Software Co-Debugging”, In the Proceeding
 of conference on Engineering of Reconfigurable Systems and Algorithms, June
 2001.

[34] Anurag Tiwari, “Hardware/software Co-debugging for Reconfigurable Computing
 Applications”, M.S thesis, University of Cincinnati, Dept of ECECS, November
 2001.

[35] A. Tiwari, K.A. Tomko, “Scan-chain Based Watch-points for Efficient RunTime
 Debugging and Verification of FPGA Designs”, Proceeding of the ASPDAC,
 Jan 2003.

[36] Corno, F.; Reorda, M.S.; Squillero, G. ,”RT-level ITC'99 benchmarks and first
 ATPG results”, in the IEEE Transaction on Design & Test of Computers , Volume:
 17, Issue: 3, July-Sept. 2000, pp. 44 -53

[37] Keith D. Cooper, John Bennett, Linda Torczon, “Optimizing VHDL Intermediate

 Forms”, Final Report, http://www.cs.rice.edu/~keith/VHDL/FinalReport.pdf

[38] Annapolis Micro Systems, Annapolis, MD, Addendum: WILDSTAR Reference
 Manual, Version 3.3 and STARFIRE Reference Manual Version 2.2, Topic:
 Readback, March 2000.

[39] S. Hauck, The Role of FPGAs in Reconfigurable Systems, Proceedings of the IEEE,
 Vol. 86, No. 4, April, 1998, pp. 615-638.

[40] M. Gokhale, B. Holmes, A. Kopser, D. Kunze, D. Lopresti, S. Lucas,
 R. Minnich, P. Olsen, “Splash: A Reconfigurable Linear Logic Array”,
 International Conference on Parallel Processing, 1990, pp. 526-532.

[41] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard,
 “Programmable Active Memories: Reconfigurable Systems Come of Age”, IEEE
 Transactions on VLSI Systems, Vol. 4, No.1, March, 1996, pp 56-69.

[42] R. Tessier and W. Burleson, “Reconfigurable Computing and Digital Signal
 Processing: A Survey”, In the Journal of VLSI Signal Processing, May/June 2001.

[43] S. Walters, “Computer-aided prototyping for asic-based systems”, IEEE Design
 and Test of Computers, vol. 8, no. 2, June 1991, pp. 4–10.

 115

[44] J. Varghese, M. Butts, and J. Batcheller, “An efficient logic emulation system”,
 IEEE Transactions on Very Large Scale Integration Systems, vol. 1, no. 2,
 June1993, pp. 171–174.

[45] Krishnamachary, A.; Abraham, J.A.; Tupuri, R.S., “Timing verification and delay
 test generation for hierarchical designs”, Fourteenth International Conference on
 VLSI Design, 2001, pp 157 -162.

[46] Lach, J.; Mangione-Smith, W.H.; Potkonjak, M. “Efficient error detection,
 localization, and correction for FPGA-based debugging”, In Proceedings of the 37th
 Design Automation Conference, 2000, pp 207 -212.

[47] Miron Abramovici, Melvin A. Breuer, Arthur D. Friedman, “Digital Systems
 Testing and Testable Design”, IEEE Press, 1990.

[48] Walters, S., “Reprogrammable hardware emulation for ASICs makes through
 design verification practical” , Proceedings of COMPCON Spring
 Conference, 1989, pp. 484 -486

	date: 25th Nov.
	year: 02
	candidatename: Faisal Muslehuddin
	degree: Master of Science
	program: Computer Engineering
	title1: Bit Stream Modification to Improve the Debugging
	title2: Capabilities of Re configurable Computing Systems
	title3:
	title4:
	cmember1: Dr. Karen Tomko
	cmember3: Dr. Carla Purdy
	cmember2: Dr. Harold W. Carter
	cmember4:
	cmember5:

