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ABSTRACT

A numerical study is carried out to predict the velocity and temperature distributions in

fully developed, constant property, laminar flows in tubes containing twisted-tape inserts. The

tape inserts are characterized by the twist ratio y (ratio of 180° twist pitch of the tape H to the

tube inner diameter d), and the ratio of tape thickness δ to the tube diameter, δ /d. The swirl flow

is simulated by following the helically twisted flow path in the partitioned tube represented by a

semi-circular cross-section geometry. In this model, the tape thickness is neglected (δ = 0),

which is a reasonable first-order approximation as δ /d ∼ O[10-2] for most inserts used in

practice.

For the numerical solution of the velocity problem, the stream function and vorticity

formulation is employed. The corresponding non-linear governing differential equations for the

stream function, vorticity, axial velocity and temperature distributions are discretized using the

finite control-volume method. This procedure essentially retains the conservative forms of the

governing equations, and provides second-order discretization accuracy for the numerical

solution. For the heat transfer problem both the uniform wall temperature (UWT) and uniform

heat flux (UHF) boundary conditions at the tube wall are considered. In addition, two variations

of the tape surface condition are considered, namely, uniform temperature and zero heat flux.

These two cases model the tape as having infinite and zero fin efficiency, respectively.

Results for the variations in the velocity and temperature fields with flow Reynolds

number Re and tape twist ratio y are presented; the temperature distributions also reflects the
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influence of fluid Prandtl number Pr. The twisted-tape induced swirl flow field is characterized

by a single longitudinal vortex that breaks up into two counter-rotating helical vortices with

increasing Re or decreasing y. Correspondingly, both the friction factor f and Nusselt number Nu

increase substantially; in the case of heat transfer, Nusselt number also increases with Pr. The

results for f and Nu are found to agree very well with the respective Manglik and Bergles (1993)

correlations. This verifies the scaling of swirl flow effects by the parameter Sw (= ys /Re ) as

proposed by them.
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Ac flow area of cross-section, m2
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d, D tube inner diameter, m

dh hydraulic diameter, m

snwe DDDD ,,, diffusive strengths, Eq. (3.2)
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H pitch for 180° twist of tape, m

k thermal conductivity of fluid, KmW ⋅/

L axial length, m

m mass flow rate, skg /

M number of nodes in the angular direction

N  number  of nodes in the radial direction
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S source term, Eq. (2.19) and Table 2.1
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δ distance between two nodes, and tape thickness, Fig. 2.1

ε relative error

ζ dimensionless vorticity, Eq. (2.17a)

θ angular coordinate

λ coefficient of convective term with respect to r  in the general

differential equation, Eq. (2.19)

µ coefficient of convective term with respect to θ  in the general
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ν fluid kinetic viscosity, sm /2
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ψ dimensionless stream function, Eq. (2.17a)
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z axially local value



- 1 -

CHAPTER 1.   INTRODUCTION

Effective utilization, conservation, and recovery of heat are critical engineering problems

for the process industry. The economic design and operation of process plants are often governed

by the effective usage of heat. A majority of heat exchangers used in chemical, petrochemical,

biomedical, and food processing plants serve to heat and cool viscous fluids. These activities

involve multi-million dollar investments annually for both operation and capital costs. This is

further compounded by the fact that viscous fluids are usually characterized by a low Reynolds

number and laminar flow condition, whose heat transfer coefficient is relatively low and thus

becomes the dominant thermal resistance in a heat exchanger. The adverse impact of low heat

transfer coefficients of such flows on the size and cost of heat exchangers adds to excessive

energy, material, and monetary expenditures.

The need to optimize and conserve these expenditures has promoted the development of

more efficient heat exchangers. A variety of different techniques are employed for the heat

transfer process, which is generally referred to as heat transfer enhancement, and extensive

reviews of these methods and their applications have been given by Bergles (1998) and Webb

(1994). These techniques are broadly classified as active or passive techniques. Passive

techniques require no external energy input, except for pump or blower power to move the fluid,

and involve the use of roughened surfaces, extended surfaces, displaced promoters, and swirl
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flow devices, among some others. Active enhancement techniques, on the other hand, need extra

power to effect the process to improve heat transfer. Consequently, passive techniques are often

the preferred choice and they have seen wider applications.

Of the many enhancement techniques that can be employed, swirl flow generation by

means of full-length twisted-tape inserts is found to be extremely effective (Bergles, 1998;

Smithberg and Landis, 1964; Hong and Bergles, 1976; Date 1974; Manglik and Bergles, 1992,

2002; DuPlessis and Kröger, 1984, 1987). Significant heat transfer improvement can be

obtained, particularly in laminar flows. Other examples of techniques that promote swirl flows

include curved ducts, tangential fluid injection, and twisted or convoluted ducts. Their thermal-

hydraulic characteristics, heat transfer improvement potential, and typical applications have been

outlined by Nandakumar and Masliyah (1986), Bergles et al. (1991), Webb (1994) and Bergles

(1998).

1.1 Twisted-Tape Flow and Heat Transfer

It is well known that energy transport is considerably improved if the flow is stirred and

mixed well. This has been the underlying principle in the development of enhancement

techniques that generate swirl flows. Among the techniques that promote secondary flows,

twisted-tape inserts are perhaps the most convenient and effective (Manglik and Bergles, 2002).

They are relatively easy to fabricate and fit in the tubes of shell-and-tube or tube-fin type heat

exchangers. A typical usage in the multi-tube bundle of a shell-and-tube heat exchanger is shown

in Fig. 1.1. The geometrical features of a twisted tape, as depicted in Fig. 1.2, are described by its

180º twist pitch H, the thickness δ, and the width w. In most usage, where snug-to-tight-fitting

tapes are used, dw ≅ , and the severity of the tape twist is characterized by the dimensionless
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Fig. 1.1 Shell-and-tube heat exchanges with twisted-tape inserts
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Fig. 1.2 Twisted-tape geometry
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ratio y = (H / d). The helical twisting nature of the tape, besides providing the fluid a longer flow

path or a greater residence time, imposes a helical force on the bulk flow that promotes the

generation of secondary circulation. The consequent well-mixed helical swirl flow significantly

enhances the convective heat transfer (Manglik and Bergles, 2002, 1993a, 1993b). In most cases,

depending on how tightly the tape fits at the tube wall and what material it is made of, there may

be some tape-fin effects as well. The enhanced heat transfer due to twisted-tape inserts, is also

accompanied by an increase in pressure drop and suitable trade-offs must be considered by

designers to optimize their thermal-hydraulic performance.

Heat transfer enhancement in single-phase laminar flows has received considerable

attention in the literature, as documented in a very recent and exhaustive survey by Manglik and

Bergles (2002). Most of this work has been experimental, aimed at collecting pressure drop

(friction factor) and heat transfer (Nusselt number) data, and characterizing their dependence on

the geometry of the twisted-tape insert; see, for example, Hong and Bergles (1976), Marner and

Bergles (1978, 1989), Manglik and Bergles (1992, 1993a). The fully developed swirl flow

performance, in particular, has been found to be influenced by the severity of the tape's helical

twist y, and its tube blockage factor (δ / d), and the functional relationship can be expressed as

( )dyf /,Re, δφ=  (1.1a)

( )Pr,/,Re, dyNu δφ= (1.1b)

Many different correlations have been reported in the literature (see, for example, Hong

and Bergles, 1976; Donevski and Kulesza, 1978; Watanabe et al., 1983; DuPlessis and Kröger,

1984, 1987; and others) to represent these relationships in laminar or low Reynolds number

flows. The validity and applicability of these equations are discussed at length by Manglik and

Bergles (1991, 1993a, 2002).
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Based on a fundamental balance between inertia, viscous, and tape-geometry helical-

curvature induced forces, Manglik and Bergles (1993a) have proposed that tape-induced swirl

flows can be scaled by a swirl parameter defined as

ySw s /Re= (1.2)

where the swirl Reynolds number is based on the swirl velocity, and

µρ /Re dVss = (1.3a)

( )[ ] caas AmVyVV ρπ /,2/1 2
12 =+= (1.3b)

Correspondingly, they devised the following correlation to predict isothermal Fanning friction

factors in the laminar flow regime:

 ( ) ( ) 6
155.26101

/4
/2276.15Re Sw

d
df s

−+





−
−+=
δπ
δπ (1.4)

This equation has been shown to predict very well (within ± 10%) the experimental data for f

reported by several different investigations (Manglik and Bergles, 1993a; Manglik et al. 2001).

Furthermore, for laminar flow heat transfer in tubes subject to UWT conditions, Manglik

and Bergles (1993a) have given the following mean or average Nusselt number correlation:

( ) ( ){ }
( )

1.0

23.214

2835.3391.095.2894.0
14.0

Re10132.2
Pr10413.60951.01612.4













⋅×+
⋅×++







=

−

−

Ra
SwGzNu

w

b
m µ

µ
(1.5)

It may be noted that the uniform wall temperature (UWT) condition is frequently encountered in

two-fluid process heat exchangers where the heating/cooling fluid undergoes phase change

(condensation/boiling). For uniformly heated (UHF) tubes, the older Hong and Bergles (1976)

correlation given below, which does not employ the swirl parameter, is often cited:

( )[ ] 2
125.17.03 Re/Pr10484.51172.5 yNuz

−×+= (1.6)

This equation, of course, correlates the axially local Nusselt number, rather than the mean value.
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Few attempts have been made to characterize and understand the structure of twisted-tape-

induced swirl flows. In perhaps the first and only such work for laminar flows, Manglik and

Ranganathan (1997) have visualized the secondary flow patterns using smoke injection

techniques. From their observations of a limited number of cases, they suggest a three-zone flow

behavior: viscous-flow, no swirl regime; swirl-transition regime; and fully developed swirl-flow

regime. The fully established swirl was found to consist of two dissimilar, counter-rotating,

helical vortices. This latter structure had earlier been suggested by Seymour (1966) as well in

another flow visualization study, but for turbulent flows.

Computational simulations are also very useful for determining the local flow and thermal

characteristics. However, the reported numerical investigations (Date and Singham, 1972; Date,

1974; Duplessis and Kröger, 1984, 1987; Date, 2000) have primarily focussed on evaluating

global thermal-hydraulic behavior (friction factor, Nusselt number and the relative heat transfer

enhancement) rather than the structure of velocity and temperature fields. This is rather

unfortunate, as computational techniques are ideally suited for extracting such information.

Nevertheless, the axial velocity distributions presented by Date (1974), with two local peaks,

implicitly suggest a double-vortex structure of fully developed swirl flows.

1.2  Aim and Scope of Study

The objective of this thesis is to investigate the swirl flow behavior and the laminar

convective heat transfer in a circular tube with twisted-tape inserts. The fluid flow and thermal

fields are simulated computationally in an effort to characterize their structure. The local wall

shear stress and heat flux or temperature distributions are determined, along with the average

friction factors and Nusselt numbers for different flow Reynolds numbers, twisted-tape
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geometry, and wall thermal boundary conditions. Both the uniform wall temperature (UWT or T)

and uniform wall heat flux (UHF or H) conditions are considered with two variations.

Furthermore, the heat transfer results are obtained for different fluids that are represented by the

Prandtl number range of 1  Pr  80. The results highlight the influence of tape geometry and

fluid flow conditions in promoting swirl flows and the consequent enhanced heat transfer. The

nature of the swirl (or vortex structure) is delineated, and shown to corroborate the observations

made in an earlier flow visualization experiment (Manglik and Ranganathan, 1997). Finally, the

friction factor and Nusselt number results are compared with those predicted by the Manglik and

Bergles (1993a) correlations, where the remarkable agreement is noted.

The mathematical formulation of the swirl-flow convection problem is described in

Chapter 2. The governing equations for the momentum and energy transport are transformed in a

helical coordinate system, which follows the path of a semi-circular channel that is axially

twisting in a regular helix. For the velocity field, the stream function-vorticity formulation is

outlined, so also the mathematical development for the local wall shear stress and heat transfer

coefficient, and the average friction factor and Nusselt number.

The numerical methodology of the finite control volume technique, and the associated

discretization of the governing equations are outlined in Chapter 3. It includes algorithm for

obtaining computational solutions, and the selection and refinement of the grid.

Chapter 4 has the presentation of results and their discussion. The velocity and temperature

distributions, wall shear stress, and average friction factors and Nusselt numbers are presented,

and their variations with the tape-twist ratio y, flow Reynolds number, and fluid Prandtl number

(in the case of heat transfer) are delineated. Also the computational results are compared with

experimental data and correlations.
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Finally, the main conclusions drawn from the results of this computational study, and the

recommendations for future work are outlined in Chapter 5.
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CHAPTER 2.   TWISTED-TAPE GENERATED

SWIRL FLOW CONVECTION

2.1 Physical Model

A twisted-tape insert essentially partitions the tube into circular-segment flow cross

sections with a helically twisting longitudinal path. Though the tape has a finite thickness, it is

usually small (δ /d ∼ O[10-2]; Manglik et al., 2001) and, to a good first-order approximation, can

be ignored (δ ∼ 0). As such, swirl flows that are induced by twisted-tape inserts in straight

circular tubes can be modeled by considering a semi-circular flow cross section with a regular

helix twist geometry. This model also excludes the flow leakage from tape ends that might occur

in snug-to-loose-fitting tapes that are commonly employed in practice; an extremely tight fit

between the tape and the tube would eliminate the end leakage. Another simplification inherent

in this model is that it ignores the small surface curvature that tapes have when fitted inside a

tube in actual practice, and the two partitioned flow cross sections on either side of the tape are

not symmetrically identical (Fig. 2.1(a)). These effects are, however, difficult to simulate, and

the simplified physical representation shown in Fig. 2.1(b) provides a reasonable first-order

computational model.



δ

R

(a) Curved finite-thickness tape

(b) Flat negligible-thickness tape

R

Fig. 2.1 Representation of tube cross-section with a twisted-tape insert:
             (a) actual geometry; (b) simplified geometry for numerical solution
- 11 -
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Besides the geometry of the flow model, another important aspect is the description of

thermal boundary conditions that correspond to the heating/cooling load at the tube wall as well

as the tape surface. Depending upon how the twisted-tape insert fits in the tube and its edge

contact with the tube wall, the tape insert may have a significant fin effect. Complete modeling

of the tape surface thermal conditions entails a rather complex problem with a conjugate

treatment of the fin equation for the tape. However, the following two cases describe the extreme

limits of the fin-effect:

(a) The tape surface is adiabatic, or has zero fin efficiency, i.e., the tape is either made of

an insulating material or is in very poor thermal contact with the tube.

(b) The tape surface is at the same temperature as the inside tube wall, i.e., it has 100% fin

efficiency and is in very good thermal contact with the tube wall.

Furthermore, the tube wall itself could be at uniform wall temperature (UWT) or have a uniform

wall heat flux (UHF) applied to it. The UWT condition, for example, simulates heating/cooling

by steam condensation or refrigerant evaporation; the UHF condition models heating/cooling in a

two-fluid heat exchanger with equal heat capacity rate flows. These boundary conditions are

schematically shown in Fig. 2.2.

2.2 Mathematical Formulation

Steady, incompressible, fully developed laminar swirl flows are considered in this study,

with the following simplifications:

• Newtonian fluid, having constant properties

• Negligible axial heat conduction (Pe >> 1)

• Negligible viscous dissipation (Br < 1)



∂
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Fig. 2.2 Thermal boundary conditions: (a) Case 1; (b) Case 2
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With these assumptions, the general transport equations for mass, momentum, and energy

transportation,

         Continuity: 0V =⋅∇

         Momentum: VpVV 2∇+−∇=∇⋅ µρ                                     (2.1)

         Energy: TT 2)( ∇=∇⋅ αV

can be cast in a cylindrical coordinate system ),,( zr θ , shown in Fig.2.3, as follows:

         Continuity:
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         Radial momentum:









∂
∂−−

∂
∂+

∂
∂+

∂
∂+

∂
∂

+
∂
∂−=

∂
∂+−

∂
∂+

∂
∂

θ
υ

θ
ν

ρ
υ

θ
υ

222

2

2

2

22

2

2

211

1

rr
u

z
uu

rr
u

rr
u

r
p

z
uw

r
u

rr
uu

(2.2c)

         Angular momentum:
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         Energy:
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2.2.1 Helical coordinate system

The governing transport equations can be recast in a helical coordinate system ( zr ′′′ ,,θ ),

which takes the helical longitudinal path of the tape and where the angular coordinate is always

measured from its surface. This coordinate system is defined relative to the stationary cylindrical

coordinate system  ),,( zr θ  (see Fig. 2.3) as follows:

zz
H
z

rr

=′

+=′

=′
πθθ (2.3)

Here, the positive sign before the ( Hz /π ) term implies anti-clockwise rotation of the tape as z

increases, when z  and z′  are measured in the direction of the axial flow, and θ and θ ′  are

measured in the clockwise direction at the tape surface. By applying the chain rule, the following

relations can then be written for the respective derivatives:
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Furthermore, for hydrodynamically fully developed flow conditions, the velocity profile is

independent of z′coordinate, and

0,0,0 =
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For thermally fully developed  flow, on the other hand, the “invariant” temperatrue profile is

mathematically represented by
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The simplification of this equation yields
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for the UWT boundary condition, and
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for the UHF boundary condition. Thus, with these considerations, the governing  equations of

continuity, momentum, and energy can be stated in the helical coordinates as follows:

01 =
′∂

∂+
′∂

∂
′

+
′

+
′∂

∂
θ

π
θ
υ w

Hrr
u

r
u (2.8a)









′∂

∂






+

′
+







′∂
∂′

′∂
∂

′
+

′∂
∂−=

′∂
∂+

′∂
∂

′
+

′∂
∂

2

2

2

2

2

11

1

θ
π

ρθ
π

θ
υ

w
Hrr

wr
rr

v

z
pw

H
ww

rr
wu

(2.8b)









′∂

∂
′

−
′∂

∂






+

′
+

′
−







′∂
∂′

′∂
∂

′
+

′∂
∂−=

′∂
∂+

′
−

′∂
∂

′
+

′∂
∂

θ
υ

θ
π

ρθ
πυ

θ
υ

22

2

2

2

22

2

211

1

r
u

Hrr
u

r
ur

rr
v

r
pu

H
w

r
u

rr
uu

(2.8c)









′∂

∂
′

+
′∂

∂






+

′
+

′
−







′∂
∂′

′∂
∂

′
+

′∂
∂−=

′∂
∂+

′
−

′∂
∂

′
+

′∂
∂

θθ
υπυυ

θρθ
υπυ

θ
υυυ

u
rHrrr

r
rr

v

p
H
w

r
u

rr
u

22

2

2

2

22

211

1

(2.8d)









′∂

∂






+

′
+





′∂
∂′

′∂
∂

′

=
′∂

∂+
∂
∂+

′∂
∂

′
+

′∂
∂

2

2

2

2

2

11
θ

πα

θ
π

θ
υ

T
Hrr

Tr
rr

T
H
w

z
TwT

rr
Tu

(2.8e)



- 18 -

These are essentially two-dimensional equations, because ( zdpd ′/ ) is a known constant, and the

dependent variables  wu ,,υ  and T  are functions of r′  and θ ′  only. Equations (2.8a) – (2.8d)

are subject to the no-slip wall boundary condition, i.e.,

0=== wu υ (2.9)

at both the tube wall and the tape surface. For the temperature problem of Equation (2.8e), as

explained in the previous sub-section, the two different wall boundary conditions considered

here are as follows

    Case 1:          wTT =  at both the tube wall and the tape surface (2.10a)

    Case 2:          wTT =  at the tube wall, and

                         0=
∂
∂

n
T  at the tape surface.                                    (2.10b)

Equation (2.10) holds good for both UWT and UHF conditions.

2.2.2 Stream function and vorticity formulation

From the point of view of numerical solutions, the presence of pressure p in the

momentum equations poses certain computational difficulties. It may be noted that while cross-

differentiating the radial and tangential momentum equations can eliminate the pressure terms, it

renders the equations to have third-order terms. However, this can be remedied by introducing

vorticity ζ , which is defined as the axial component of the curl of the velocity vector as follows:
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The vorticity equation can then be developed by differentiating Eq. (2.8c) with respect to θ ′ , and

Eq. (2.8d) with respect to r', and subtracting the first from the second. Thus, by using the

definition in Eq. (2.11), the resulting expression for the vorticity equation is
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Next, the stream function ψ  can be introduced such that the mass conservation is implicitly

satisfied, and ψ  is defined as:
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This along with the difinition of vorticity yields the following stream function  equation:
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The essential advantages of considering the ψ  and ζ  formulation of the problem can be

summed up as follows:

• Because the stream function  equation  satisfies mass conservation exactly, no

explicit resourse to the continuity equation  is necessary.

• With the introduction of ζ , the radial and tangential momentum equations are

replaced by a single equation  for ζ .

Thus, the equations for stream function ψ , vorticity ζ , axial velocity w  and temperature T ,

Eqs. (2.14), (2.12), (2.8b), and (2.8e), respectively, provide the complete mathematical

description of the twisted-tape-induced swirl flow and heat transfer problem. The no-slip



- 20 -

condition for velocity implies that the stream function has a constant value at the boundaries; this

is set to zero for convenience here. The boundary  conditions for vorticity, on the other hand, can

be derived from its own definition, and can be mathematically stated as follows

  (i) Rr =′ , 0 <  < :
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2.2.3 Dimensionless formulation

The transformed governing differential equations can be restated in a dimensionless form

by introducing the following variables:
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Thus, the governing equations can be re-written as

     Stream function equation:
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     Vorticity equation:
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     Axial velocity equation:
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     Energy Equation for the UWT condition:
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     Energy equation for the UHF condition:
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A review of these equations shows that the dimensionless velocity profile is independent of fluid

properties whereas the dimensionless temperature  profile is influenced by the fluid Prandtl

number.

2.2.4 Generalized presentation of governing equations

It should be noted that each of the governing differential equations that need to be solved

contain similar terms. With each dependent variable represented by a general function φ , the

following common terms can be identified:
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            Convective terms:
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The only exception is in the stream function equation where the coefficients for its convective

terms are zero. The remaining parts of the differential equations can be included in one single

term - source term. Thus a general equation for all dependent variables can be written as
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where expressions for λ, β, μ, and φS  for each dependent variable representation in φ is given in

Table 2.1. Also, the boundary conditions for each case are summarized in Table 2.2.

2.3 Friction Factor and Nusselt Number

Knowing the velocity and temperature distributions, the global parameters of engineering

interest, the isothermal friction factor and the Nusselt Number, and their variation with flow

Reynolds number and tape-insert ratio can be calculated. These are essentially based on the

average wall shear stress and wall heat flux, respectively.

The Fanning friction factor is generally defined as
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Table 2.1 General Equations for ψ, ζ, w and Τ
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Table 2.2 Boundary conditions for ψ, ζ, w and Τ

       φ            0 < r  1,θ = 0      r = 1, 0  θ   π      0 < r  1, θ = π      r = 0, 0  θ  π

      ψ                      0                             0                             0                             0

      ζ               2

2

2

1
θ
ψ

∂
∂−

r
        





∂
∂+

∂
∂−

r
w

yr 22

2 πψ        2

2

2

1
θ
ψ

∂
∂−

r
                2

2

r∂
∂−

ψ

      w                      0                             0                              0                            0

      T (Case 1)        0                             0                              0                            0

         (Case 2)     0=
∂
∂
θ
T                       0                         0=

∂
∂
θ
T                  0=

∂
∂

r
T



- 25 -

where the axial mean velocity is given by its usual definition
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The average wall shear stress can be obtained from a force balance in terms of the constant

pressure gradient as
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Thus, in terms of dimensionless variables, the friction factor can be expressed as
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It should be noted that Eq. (2.23) is based on the hydraulic diameter hd , which is given by

   ddh 2+
=

π
π             (2.24)

However, as per the recommendation of Marner et al. (1983), it is preferable to present

enhancement results in terms of the tube inner diameter. In this case, Eq. (2.24) reduce to

Re
4Re Gf = (2.25)

The details of the development of these equations can be found in Appendix A.

Similarly, from the fully-developed swirl flow temperature distribution and its variation

with Re, Pr, and y, the Nusselt number can be determined from its usual definition. This can be

restated, as shown in Appendix B, in terms of the axial enthalpy change of the fluid for the two

cases of the thermal boundary condition as follows:
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Here the dimensionless bulk-mean fluid temperature is given by
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Another way to calculate the Nusselt number is to integrate the local-wall temperature gradients

over the heated perimeters of the duct. This approach produces the following different

expressions for the average Nusselt number:
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Note that both Eqs. (2.26) and (2.28) are based on the tube inside diameter in accordance with

the Marner et al. (1983) recommendations. The detailed formulation for these expressions is

outlined in Appendix B.
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CHAPTER 3.   NUMERICAL SOLUTION

Techniques for obtaining numerical solutions of elliptic partial differential equations that

govern two-dimensional flows and their applications have long been reported in literature. One

of the earliest works was perhaps that of Thom (1933), who considered the flow around a

circular cylinder. The resulting algebraic equations were solved by an iterative, successive

substitution procedure; a solution instability problem occurred, however, at high Reynolds

number flows. In much of the computational literature, several different strategies have evolved

to address this difficulty as well as some others that are typically encountered in two-dimensional

problems and their associated non-linear flow equations (Anderson et al., 1984; Jaluria, 1980;

Patankar, 1975).

The accuracy and efficiency of numerical solutions, in general, depend on the method that

is used to obtain the discretized equations and the subsequent convergence of the solution of the

resulting non-linear algebraic equations. The main differences between these methods are

associated with the manner in which the dependent variables for convection are approximated,

and the discretization of the governing differential equations. A brief description of the three

techniques that are most often used is given in the following.

Finite difference methods describe the unknowns φ  of the flow problem by means of point

samples at the node points of a grid of coordinate lines. Truncated Taylor series expansions are
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often used to generate finite difference approximations for the derivatives of φ  in terms of point

samples of φ  at each grid point and its immediate neighbors. These derivatives appearing in the

governing equations are then replaced by finite difference representations, yielding an algebraic

equation for the values of φ  at each grid point. Smith (1985), Patankar (1975), and Anderson et

al. (1984), among others, have given a comprehensive account of all aspects of the finite

difference methods.

Finite element methods use simple piecewise functions (e.g. linear or quadratic) to describe

the local variations of unknown flow variables φ  and its conservation across a discrete element.

If the piecewise approximating functions for φ  are substituted into the governing differential

equation, it will not hold exactly and a residual is defined to measure the errors. Next the

residuals (and hence the errors) are minimized in some sense by multiplying them by a set of

weighting functions and integration. As a result of this process, a set of algebraic equations is

obtained for the unknown coefficients of the approximating functions, which are then solved

iteratively. The theory of finite elements has been developed initially for structural stress

analysis. A description of the techniques for fluid flow applications is given by Zienkiewicz and

Taylor (1991).

Spectral Methods approximate the unknowns by means of truncated Fourier series or series

of Chebyshev polynomials. Unlike the finite difference or finite element approaches, the

approximations are not local but valid throughout the entire computational domain. Again the

unknowns in the governing differential equations are replaced by the truncated series. To obtain

the set of algebraic equations for the coefficients of the Fourier or Chebyshev series, the

appropriate constraint is provided by a weighted residuals concept. This is similar to that used in

the finite element method, where the approximate function is made to coincide with the exact
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solution at a number of grid points. Extended aspects of this specialized method and its

application can be found in Gottlieb and Orszag (1977).

3.1 Finite Control Volume Method

The finite volume method was originally developed as a special, "conservation" form of

the finite difference formulation. The computational algorithm for obtaining a complete

numerical solution consists of the following steps:

• Formal integration of the governing equations for fluid flow and heat energy transport

over all the finite control volumes of the computational domain.

• Discretization by means of the substitution of a variety of finite-difference-type

approximations for the terms in the integrated equation representing flow processes such

as convection, diffusion, and sources. This converts the integral equations into a system

of algebraic equations.

• Solution of the algebraic equations by an iterative method.

The first step, the control-volume integration, distinguishes the finite volume method from

all other CFD techniques. The resulting statements express the exact conservation of relevant

dependent properties (velocity and temperature, for example) for each finite-size cell. This clear

relationship between the numerical algorithm and the underlying physical conservation principle

forms one of the main attractions of the finite volume method, and makes its concepts much

more simple to understand and apply to convective transport, in particular, than finite element

and spectral methods. The conservation of a general flow variable φ , for example the velocity

component or enthalpy, within a finite control volume can be generally expressed as a balance

between the various fluxes as follows:



- 30 -

           Rate of change                 Net flux of                     Net flux of                      Net rate
              of φ in the                       φ  due to                        φ  due to                       of creation
           control volume      =        convection          +          diffusion           +             of φ
             with respect                       into the                         into the                        inside the
                 to time                     control volume             control volume              control volume

This, when expressed as a differential equation, essentially forms the basis for the conservative

form of the governing transport equations.

3.2 Discretization of Governing Differential Equation

The general differential equation that governs the transport of mass, momentum, and

energy has been given in Chapter 2  (Section 2.2.3) as follows:
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The corresponding boundary conditions for each dependent variable are listed in Table 2.2. The

finite control-volume procedure adopted to solve this type of partial differential equation is

described in detail by Patankar (1980), and a detailed example of applying the central-

differencing scheme is outlined in Appendix C. Therefore, only the final discretization equations

are presented here.

The partial differential equation (2.19) is basically converted into a set of algebraic

equations that can be expressed as

                            baaaaa SSNNEEWWPP ++++= φφφφφ             (3.1)

where a’s are the coefficients that determine the relative "weighting" of  the neighboring values

of φ  in the evaluation of Pφ . The effects of sources of φ  are contained in the term b. There is

one such equation for each variable φ  at every interior node of the grid (node referred to by P in
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Fig. C.1), with conditions specified on boundary nodes. Therefore, there will be as many

equations as there are unknowns. The set of algebraic equations given by Eq. (3.1) can be solved

by an iterative procedure. The iterative calculations are required because the a’s and b depend

upon the values of φ ’s and the strength of convective and diffusive fluxes, as shown below.
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where F’s represent the following convective fluxes:
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and D’s represent the following diffusive fluxes:
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and ( )PA  is a function of Peclet number (P = F / D), which has different forms for various

schemes, such as upwind and power-law, etc. (see Appendix C for details).

It should be noted from the derivation of Eq. (3.1) that only the diffusive terms and the

source term are always discretized by central difference approximation, whereas the convective

terms are treated by various schemes (upwind, power-law, etc.).
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3.3 Solution Procedure

The Gauss-Seidel iteration procedure is adopted to solve the set of algebraic equations

given by Eq. (3.1), incorporating the line-by-line successive substitution (or relaxation) formula.

For the twisted-tape flow equations described in Chapter 2, this standard iteration procedure does

not always produce convergence. For instance, in computations at high Re and low y , the source

term of vorticity equation becomes very large. Under these conditions, a given flow perturbation

(i.e. a change in w and ψ ) produces a large change in Pζ . This change in Pζ  causes the stream

function to be altered greatly, because Pζ  appears in the source term of the stream function

equation. This greatly altered stream function distribution in turns perturbs the flow further.

Clearly this computation scheme can become unstable, although the physical flow situation is a

stable one. Gosman and Spalding (1970) suggested an iterative procedure to cure such an

instability, which was called the “multi-point circulation adjustment” (MPCA) procedure. In the

present study, the commonly used under-relaxation technique is employed to achieve

convergence. It is found that this technique is simple and effective when only applied to the

source term in the vorticity equation as follows:

oldnew SRFSRFS ζζξ ⋅−+⋅= )1( (3.5)

The relaxation factor, RF, varied from 0.1 through 0.8, for Reynolds number up to 1200 and

twist ratio y as low as 3.0.

As can be seen from Eqs. (2.18), the solution of the energy equation depends on the

velocity distribution, but does not contribute to the hydraulic problem, i.e., they are decoupled.

The solution strategy is then to first solve the equations of w ,ψ and ζ  to get convergent results,

and subsequently use the predicted distribution of w  and ψ , along with the input value of
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Prandtl number, to solve for the temperature profile. The convergence criterion for the iterative

solutions was imposed such that the relative error, defined as

 old

oldnew

φ
φφε −= (3.6)

was than 10-6. Here, the error in φ  mainly represents the vorticity ζ , because it is usually the

"last" variable to convergent. All the numerical integrations, required to obtain the mean axial

velocity and bulk-mean fluid temperature, were performed using the Simpson scheme.

Furthermore, wall-derivatives were calculated by a second-order differencing (Tannehill et al.,

1997).

The procedure to solve the discretised equations of w , ψ  and ζ  includes the following

steps:

(1) Input Re and y: the twist ratio y is determined by the geometry and thus is a natural input.

Some previous studies took the pressure drop zdpd ′  as a known value and then

calculated Reynolds number from the velocity profile. Here Re is given and the pressure

drop constant G  is evaluated during the computation. This treatment provides obvious

one-on-one relations between Re, f, and Nu.

(2) Initialize the distributions of w, ψ and ζ. For low Re and large y , they can be considered

to be uniform over the cross section and set at zeros. It was found that much more

iterations were required for high Re and small y. To obtain convergence quickly for these

cases, the solutions for low Re and large y were used as "initial" profiles of w , ψ and ζ

for subsequent cases with higher Re and/or smaller y.

(3) Calculate the normalized axial velocity ŵ from its definition

 
G
ww =ˆ (3.7)
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whereby the constant G  in the axial momentum equation is eliminated and the source

term reduces to unity. The iterative solution for ŵ, ψ and ζ is then obtained, in which

every interior node is swept once and their values are updated instantaneously.

(4) Evaluate the pressure drop constant G. Once the profile of ŵ is updated, the value of G is

given by (see Appendix A for details)

 

∫ ∫
= 1

0 0

ˆ4

Re
π

θ

π

drrdw
G (3.8)

(5) Convert ŵ into w via Eq. (3.7) for the computations of ψ and ζ.

(6) Compute the stream function ψ. A linear algorithm was suggested by Yang (1986) for

such highly nonlinear system of equations. Here ψ and ζ  are still solved separately

because convergence has been guaranteed.

(7) Compute the vorticity ζ. This is incorporated with the under-relaxation of the source term.

Before sweeping the interior nodes, the values of ζ  at boundary nodes need to be

specified using the updated distribution of w  and ψ  (see Appendix E for details).

(8) Check the relative error ε . If 610−<ε , it can be concluded that convergence is achieved.

Otherwise, Steps (3) through (7) need to be repeated.

The grid size or meshing of the computational domain is important for obtaining accurate

solutions. Generally, the more cells the domain is divided into, the closer the results approach the

exact solutions. The difference between various schemes also becomes smaller. This does not,

however, justify that the grid can be established to be as small as possible, because the memory

capacity of the computer and the running speed may pose a problem. An appropriate number of

grid points should be such that the computational memory requirement is met with the hardware

and the running time is acceptable, and yet "good" accuracy is ensured.
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A numerical experiment was conducted on a 400 MHz personal computer to find out the

optimum grid size: a particular case was selected at Re = 400, and y = 3, and the grid size varied

from 11 x 21 to 31 x 91 (radical x angular). The numerical results fRe, the relative improvement

compared to previous larger grid size, and the computational time are listed in the following

table. As can be seen, the numerical results are improved by increasing the number of grids;

however, the difference becomes insignificant and the convergence time increases dramatically.

The optimum grid size should be such that further mesh refinement would not have much effect

on the numerical results and the time consumption is tremendous. Therefore, the grid size 21 x

61 is selected for the computational domain.

Table 3.1 Numerical experiment results of grid size sensitivity (Re = 400, y = 3)

Grid size
(r x θ)

11 x 21 11 x 31 21 x 31 21 x 41 21 x 61 31 x 61 31 x 91

fRe 55.76 54.62 53.74 53.31 53.02 52.83 52.70
Improveme

nt (%)
2.04 1.61 0.80 0.54 0.36 0.25

Time
(seconds)

2 8 34 57 97 212 493
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CHAPTER 4.   RESULTS AND DISCUSSIONS

The problem of constant properties, fully developed laminar swirl flow in a circular tube

with a negligible thickness twisted-tape insert has been analyzed. This is computationally

modeled as a helically twisted semi-circular tube. For the heat transfer problem, both the UWT

and UHF thermal boundary conditions are considered, with the flat wall idealized as at

UWT/UHF, or adiabatic. This study models the tape insert as having 100% or zero fin efficiency.

Fluid flow and heat transfer results are obtained for the following range of conditions:

=y 3, 6, 12, ∞

Pr = 1, 6, 80

20  Re  1200

The velocity and temperature distributions, and the associated friction factors and Nusselt

numbers are presented in the ensuing sections.

4.1 Flow Field

The laminar flow field is strongly influenced by the flow Reynolds number and twist ratio

y. To illustrate this, it is instructive to consider the cross-section velocity vectors along with the

stream function ψ and axial velocity profiles. To make the cross-section velocity vector plots, the
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radial velocity (u) and tangential velocity (υ) can be calculated from the definition of stream

function in two different ways. One is to consider

rw
yrr

u
2

,1 πψυ
θ
ψ −

∂
∂−=

∂
∂= (4.1)

which is based on the dimensionless helical coordinates ),,( zr θ , and implies that we observe the

flow field standing on the surface of the twisted tape moving axially with its twist. This is an

incorrect representation, and the actual velocity vectors have to be based on the stationary

cylindrical coordinates ),,( zr θ , and u and υ are given by

rr
u

∂
∂−=

∂
∂= ψυ
θ
ψ ,1 (4.2)

Also, the graphing of the actual velocity vectors requires that the velocity components be on the

Cartesian coordinates further transformed as follows

θυθυθυθ cossin,sincos +=−= uuu xyxy (4.3)

The vectorial combination of uxy and υxy thus gives the cross-stream swirl flow field.

4.1.1 Velocity distribution

The centrifugal-type force that is induced by the helical curvature of the twisted-tape

inserts is directly proportional to the square of Reynolds number and inversely proportional to

twist ratio (Manglik and Bergles, 1993a; Manglik et al. 2001). Increasing Re or decreasing y

essentially produces the same trends in the flow patterns. The influence of these two parameters

on the velocity distribution, and their role in generating swirl flows are discussed in this section.

The stream function distribution, axial velocity contours, and cross-section velocity vector

plot in Fig. 4.1 shows the effect of Re on the flow field with a fixed tape twist ratio 3=y . With
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a clockwise rotation of the tape in the axial flow direction, the tape curvature-induced force is

seen to produce an anti-clockwise secondary circulation in Fig. 4.1 (a). The consequent helical

core-flow acceleration causes the mean axial peak velocity location to be skewed off-center in an

anti-clockwise direction ( 90>θ ).  As Re increases, a second re-circulation cell is formed near

the 0≈θ  flat tape surface. This vortex grows with Re to engulf almost half of the partitioned

duct, and attains a strength comparable to that of the primary cell. This swirl behavior is also

reflected in the axial velocity contour lines, which gradually tend to redistribute with increasing

Re till a second peak of about equal size appears in the 90<θ  region. The influence of Re on

the secondary flow structure is further illustrated in the cross-section velocity vectors in Fig. 4.1,

where the onset and growth of a double-vortex swirl structure is clearly evident.

The influence of decreasing y, or increasing severity of tape twist, on the velocity

distribution is illustrated in Fig. 4.2. Here the variations in ψ, w, and θrV  with y = 12, 6, and 3,

for a fixed flow rate of Re = 800 are graphed. The helical swirl flows that are generated by the

curvature of the twisted tape are clearly seen. The single-cell vortex that develops with a gentler

twist tape (y = 12), gradually grows into a two-cell structure, composed of two counter-rotating

vortices of approximately equal size and magnitude, with increasing tape-twist severity (y = 3).

Correspondingly, in the latter case, the axial velocity distribution shows two peaks near the core

of the vortices. This swirl behavior with decreasing y (12 → 3) with fixed Re (= 800) is similar

to that seen in Fig. 4.1 for fixed y (= 3) and increasing Re (= 200 → 1000).
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4.1.2 Shear stress distribution

The local shear stress distributions on the tube wall and surface of the twisted tape is useful

in gaining an insight in the effects of tape-induced swirl on the axial flow resistance. The shear

stress can be obtained from the local axial velocity distribution by its definition as

walln
w

∂
∂−= µτ (4.4)

Here wallnw )( ∂∂  is the normal wall gradient of the axial velocity. Thus, in terms of the

cylindrical coordinate system that describes the semi-circular flow cross-section geometry, the

local wall shear stress can be stated as

)( rww ∂∂−= µτ ; Rr = , πθ <<0 , and 0=r (4.5a)

)()( θµτ ∂∂−= wrw ; 0=θ  and π , Rr <<0 (4.5b)

Equation (4.5) can again be recast in a dimensionless from by introducing

)( 22 Rvρττ = (4.6)

and the dimensionless cylindrical coordinates and velocity of Eqs. (2.16) and (2.17a),

respectively, to yield

)( rww ∂∂−=τ ; 0=r  and 1, πθ <<0 (4.7a)

)( θτ ∂∂−= ww ; 0=θ  and π , 10 << r (4.7b)

The influences of the tape-twist ratio y and flow Re on the wall shear stress distribution are

shown in Figs. 4.3 and 4.4. The development of tape-induced swirl from a single-cell circulation

into a double-cell structure is also seen in these figures. In Fig. 4.3, as y decreases (12 → 3), the

shear stress profile displays two peaks correspondingly to the two counter-rotating vortices that

are formed with y = 3 and Re = 800. A similar
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behavior is depicted in Fig. 4.4 for y = 6 and increasing flow rates (Re = 200 → 1000).

Furthermore, it is seen that the location of the maximum wall shear stress moves in the opposite

direction of the tape twist as y decreases or Re increases, which is consistent with the axial

velocity distributions shown in Figs. 4.1 and 4.2. Also, the second peak that develops with

increasing swirl tends to be higher than the first peak at the tube wall, but is always lower on the

tape surface. This is because the clockwise twisting of the tape results in a “push” effect on the

°= 180θ  end and “draw” effect on the 0=θ end, which causes the axial velocity gradients to be

greater on the “push” end than the “draw” end on the tape surface with a converse effect at the

tube wall.

Another inference from Figs. 4.3 and 4.4 is that the flow Reynolds number has a greater

impact on the change in the wall shear stress compared to that of the twist ratio. For a fixed

Reynolds number (Re = 800 in Fig. 4.3), while the decrease in twist ratio changes the shear stress

distribution significantly, the average value of the shear stress does not change appreciably.

However, in Fig. 4.4, with a fixed twist ratio of y = 6, the local wall shear stress distribution as

well as its average value increases drastically with increasing Re (200 → 1000).

4.1.3 Friction factor

The predicted friction factors for different twist ratios y and flow rates Re are listed in

Table 4.1. The values of fRe are based on the tube inside diameter or envelope, and are also

graphed in Fig. 4.5 to show the variation with Re and y, along with the analytical solution for

fully developed flows in a semi-circular tube (Sparron and Haji-Shcikh, 1966) given by

23.42Re =f (4.8)
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This result, it may be noted, represents the y = , δ = 0 case. As would be expected, for the same

Re, the friction factor increases as y decreases or the severity of the tape twist increases. Also, at

low Reynolds numbers, the results approach that for the ∞=y  limit, thereby implying that the

twist ratio has a greater influence on the friction factor in the higher Reynolds numbers regime.

The results are nevertheless slightly greater for each y< , which suggests the higher pressure

loss due to the longer helical flow path. The increase in pressure drop due to the twisted-tape

insert can thus be considered to mainly consist of two parts: a straight tape insert that increases

fRe = 16 to fRe = 42.23 over which is superimposed the higher friction due to the helical flow

twisting and swirl at high Reynolds numbers.

To check the accuracy of the computational results, comparisons are made with previously

reported (Manglik and Bergles, 1992) experimental data and correlation. The comparison with a

typical set of data for y = 6 in the range 100  Re  1200 is given in Fig. 4.6. It can be seen from

the graph that the present results agree rather well with the experimental data, except for the

relatively larger difference in the low Re region. This can be explained by the difference between

the flow cross section geometry modeled for the numerical analysis and that encountered in

practical situation. As described previously in Chapter 2 and schematically illustrated in Fig. 2.1,

the tape in an actual tube has a finite thickness and is slightly curved. Consequently the two

partitioned flow channels are different from a semi-circular cross section. Also, the fit between

the tape edges and the tube wall is not tight enough so that leakage occurs in the flow path. All of

these factors contribute to the differences seen in the friction factor results, particularly at low

flow rates.

Finally, the predicted friction factor fRe is compared with the correlation suggested by

Manglik and Bergles (1993a), which is based on the Swirl number (Sw) that was proposed to
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Table 4.1 Fanning friction factors for different twist ratios (y) and flow rates (Re)
for fully developed swirl flows in circular tube with twisted-tape inserts

y = 3 y = 6 y = 12
Re Sw fRe Sw fRe Sw fRe

20 13.03 43.20 8.44 42.54 5.82 42.38
50 32.59 43.28 21.10 42.55 14.56 42.38
100 65.17 43.97 42.20 42.63 29.11 42.39
200 130.3 46.80 84.40 43.32 58.23 42.64
400 260.6 53.02 168.8 46.13 116.5 44.11
600 391.0 57.49 253.2 49.23 174.7 45.68
800 521.3 64.70 337.6 54.30 232.9 47.42
1000 651.7 69.49 422.0 57.23 291.1 49.17
1200 782.0 75.16 506.4 59.97 349.4 50.88
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scale the tape-induced swirl flows. It represents the interaction between the twisted tape's helical-

curvature induced force, and the convective inertia and viscous forces expressed as

( )( )
( ) yDV

DVHV
forceViscous

forceConvectiveforceCentrifual s

s

ss
2

22

22

2

Re
/

//
)(

))(( ==
µ

ρρ (4.9)

Here the reference velocity Vs is the actual swirl flow velocity at the tube wall, which directly

influence the shear stress, and is given in terms of its axial and tangential velocity components as

follows:
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Furthermore, because the square of Reynolds number becomes very large in magnitude, the swirl

parameter is redefined as
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Sw s π (4.11)

as previously expressed in Eq. (1.2). Thus, the empirical friction factor of Eq. (1.4), given by

Manglik and Bergles (1993a), reduces to

( ) ( ) 6
155.2610123.42Re Swf s

−+= (4.12)

for the case of a zero-thickness (δ = 0) tape. The comparison with its predictions is graphed in

Fig. 4.7, where the remarkable agreements (within  5%) is clearly evident. This striking result

not only verifies the accuracy of the present computational simulations, but also establishes the

unequivocal efficacy of the swirl parameter Sw of Eq. (4.11) in scaling and correlation the helical

secondary flows generated by twisted-tape inserts.



- 50 -

Fig. 4.7 Comparison of the computational fRe results with the correlation of Manglik and Bergles (1993a)
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4.2 Heat Transfer

The temperature field of the fully developed laminar swirl flow is dependent on the

velocity distributions and Prandtl number Pr and, therefore, is strongly influenced by the flow

Reynolds number Re, twist ratio y and Prandtl number Pr. In the mean time, the variation of the

fin efficiency of the twisted tape could change the thermal boundaries of the energy equation and

consequently result in different temperature distributions. The influences of these factors on the

temperature distributions can be illustrated by plotting the temperature profiles along with the

stream function ψ for both Case 1 and Case 2, where the ratio of the local temperature to the

mean temperature (T / Tm) is calculated and graphed in contour lines. The variations of Nusselt

number with Re, y, and Pr are also graphed to show their influences on the heat transfer of the

laminar swirl flow.

4.2.1 Temperature distribution

As discussed in Section 4.1.1, increasing Reynolds number Re or decreasing twist ratio y

has essentially similar effects on the velocity distributions. The temperature distribution follows

the same trends as well.

The influence of increasing Re, or the flow rate, on the temperature distributions is

illustrated in Fig. 4.8 with a fixed twist ratio y = 3 and Prandtl number Pr = 1 for both Case 1 and

Case 2. It can be seen that the temperature profiles for Case 1 are similar to that of the axial

velocity. With the tape twisting in the clockwise direction along the flow path, the peak of the

temperature contours shifts off-center in the anti-clockwise direction ( 90>θ ). As Re increases,

a second flow re-circulation is formed near the 0≈θ  flat tape surface. This vortex grows with

Re and causes the temperature contours to curve up near the tape surface. When the second cell
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grows large enough to occupy almost half the cross-section, the temperature contour lines are

forced to split from the center and, thus, a second peak of temperature contours appears in the

90<θ  region. This swirl-induced temperature re-distribution is also reflected in the

temperature profiles for Case 2. Because the tape is adiabatic in Case 2, the temperature contour

lines are perpendicular to the flat tape surface and the second temperature peak is further away

from the tape than Case 1.

The stream function distribution and the temperature contours in Fig. 4.9 shows the

influence of y on the temperature field with a fixed flow rate Re = 800 and Prandtl number Pr =

1. The helical swirl flow that is generated by the curvature of the gently twisted tape (y = 12) is

seen to form an anti-clockwise secondary circulation and thus force the temperature contour peak

shift to the 90>θ  region. With y decreasing or the tape twisted more severely, a second vortex

rotating in the clockwise direction is generated near the 0≈θ  tape surface. These two counter-

rotating vortices force the temperature contour lines to concave up till the second vortex grows

strong enough to produce another temperature contour peak. This temperature re-distribution

trend with decreasing y (12 → 3) with fixed Re (= 800) is similar to that seen in Fig. 4.8 for fixed

y (= 3) and increasing Re (200 → 1000).

The influence of Prandtl number Pr on the temperature distribution is illustrated in Fig.

4.10, where the variations in ψ and (T / Tm) are graphed with Pr = 1, 6, and 80, for a fixed flow

rate of Re = 600 and twist ratio y = 6. The Prandtl number is the ratio of the momentum

diffusivity to the thermal diffusivity of the fluid flow. At low Prandtl number (Pr = 1), the

convective energy transport is equivalent to the diffusive transport; accordingly, the temperature

profile approximately matches the axial velocity profile. As Prandtl number increases (1 → 80),

the convective energy transport is strengthened to dominate the heat transfer in the flow field.
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Although the velocity distribution does not change with Pr, the temperature field forms a second

contour peak over the second velocity vortex.

4.2.2 Nusselt number

The predicted Nusselt number for various flow rate Re, twist ratio y, and Prandtl number

Pr and for both Case 1 and Case 2 are given in Table 4.2 through 4.7. The values of Nu are based

on the tube inside diameter, and are also graphed in Fig.4.11 and 4.12 to show the influences of

twist ratio y and Prandtl number Pr on Nusselt numbers.

The variation of Nusselt number with Reynolds number at various twist ratios for Case 2

and UWT condition is shown in Fig. 4.11, with a fixed Prandtl number Pr = 1. The solid line in

this graph corresponds to the analytical solution for fully developed laminar flow in a semi-

circular tube given by

Nuy=∞ = 4.612 (4.13)

This result represents the y=∞, δ = 0 case, and is independent of Reynolds number and Prandtl

number. The dashed lines correspond to several finite twist ratios (y = 3, 6, and 12).  Due to the

existence of the secondary flow, the Nusselt number is influenced by the twist ratio y as well as

the Reynolds number. For the same Re, the Nusselt number increases as y decreases or the

severity of the tape twist increases. This is particularly significant at high Reynolds numbers. At

low Reynolds numbers, the Nusselt numbers approach the analytical solution and do not change

much with the twist ratio; thereby implying the twist ratio has a greater influence on the Nusselt

number in the higher Reynolds number regime.

The variation of Nusselt number with Reynolds number is shown in Fig. 4.12 for a fixed

twist ratio y = 6 and various Prandtl numbers for Case 2 and UWT condition, along with the



- 57 -

Table 4.2 Nusselt Numbers for Pr = 1 and Case 1

y = 3 y = 6 y = 12
Re UWT UHF UWT UHF UWT UHF
20 8.60 10.72 8.57 10.74 8.56 10.74
50 8.85 10.91 8.64 10.78 8.58 10.75
100 9.42 11.57 8.86 10.96 8.64 10.79
200 10.60 13.23 9.44 11.60 8.86 10.97
400 12.94 16.63 10.61 13.27 9.44 11.61
600 16.51 20.84 12.94 16.01 10.68 13.05
800 19.04 23.57 14.27 17.81 11.46 14.05
1000 21.03 24.52 15.46 19.43 12.22 15.05
1200 23.91 26.72 16.55 20.91 12.95 16.03

Table 4.3 Nusselt Numbers for Pr = 1 and Case 2

y = 3 y = 6 y = 12
Re UWT UHF UWT UHF UWT UHF
20 4.71 5.48 4.61 5.4 4.61 5.5
50 5.11 5.81 4.77 5.52 4.66 5.55
100 5.76 6.35 5.14 5.73 4.8 5.66
200 6.67 7.33 5.77 6.35 5.14 5.73
400 8.21 8.99 6.66 7.3 5.77 6.35
600 10.45 11.4 7.39 8.08 6.31 6.9
800 12.82 13.55 9.21 10.11 7.36 8.11
1000 15.14 15.68 10.77 11.78 8.28 9.09
1200 17.37 18.2 12.39 13.35 9.32 10.2
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Table 4.4 Nusselt Numbers for Pr = 6 and Case 1

y = 3 y = 6 y = 12
Re UWT UHF UWT UHF UWT UHF
20 8.79 10.86 8.66 10.78 8.59 10.75
50 9.16 11.34 8.87 10.96 8.71 10.81
100 10.16 12.70 9.19 11.38 8.88 10.97
200 13.30 16.76 10.21 12.77 9.20 11.40
400 19.47 24.59 13.42 16.90 10.23 12.79
600 26.60 33.25 19.51 23.83 13.94 16.89
800 30.93 38.20 22.32 27.48 15.92 19.33
1000 32.73 37.52 24.60 30.57 17.82 21.70
1200 44.39 46.50 26.59 33.30 19.53 23.86

Table 4.5 Nusselt Numbers for Pr = 6 and Case 2

y = 3 y = 6 y = 12
Re UWT UHF UWT UHF UWT UHF
20 5.82 6.30 5.18 5.73 4.80 5.54
50 6.71 7.30 6.06 6.55 5.38 5.88
100 7.42 8.19 6.70 7.30 6.06 6.55
200 8.67 9.73 7.40 8.18 6.70 7.30
400 13.00 14.42 9.92 10.96 7.39 8.18
600 18.72 19.80 12.68 13.55 9.49 10.23
800 22.44 23.39 15.79 16.94 11.70 12.50
1000 25.84 26.29 18.74 19.50 14.35 15.20
1200 30.02 30.37 22.06 22.74 15.88 16.74
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Table 4.6 Nusselt Numbers for Pr = 80 and Case 1

y = 3 y = 6 y = 12
Re UWT UHF UWT UHF UWT UHF
20 10.79 12.80 9.72 11.75 9.06 11.10
50 15.41 17.41 12.50 14.50 10.15 12.18
100 22.89 25.12 17.28 19.25 12.53 14.53
200 38.90 42.26 25.79 28.00 17.33 19.30
400 57.75 63.64 42.07 45.56 25.84 28.06
600 56.28 64.86 50.05 54.48 35.10 38.24
800 63.29 70.61 53.53 59.27 41.48 45.23
1000 59.30 63.41 54.86 62.26 46.56 50.59
1200 68.26 69.40 55.76 64.77 50.02 54.49

Table 4.7 Nusselt Numbers for Pr = 80 and Case 2

y = 3 y = 6 y = 12Re UWT UHF UWT UHF UWT UHF
20 7.93 8.81 7.277 8.061 6.82 7.47
50 10.08 10.95 8.227 9.139 7.43 8.258
100 13.65 14.32 10.09 10.95 7.88 8.8
200 19.45 19.87 13.67 14.34 10.08 10.95
400 28.02 28.22 19.47 19.89 16.77 17.41
600 38.22 38.49 28.92 29.22 20.12 20.59
800 49.5 49.57 32.82 33.1 26.74 26.99
1000 57.92 58.18 40.17 41.19 31.92 32.13
1200 67.94 68.15 45.08 45.28 35.66 35.83
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analytical solution for the fully developed laminar flow in a semi-circular tube given by Eq.

(4.13). It’s seen that, for the same Re, the Nusselt number increases as Pr increases. This is

particularly significant at high Reynolds numbers. At low Reynolds numbers, the Nusselt

numbers approach the analytical solution and do not change much with the Prandtl number;

thereby implying the Prandtl number has a greater influence on the Nusselt number in the higher

Reynolds number regime.

The variation of the ratio of the computational Nusselt number to that for y =  limit (Nu /

Nuy=∞) with different values of SwPr0.391 is compared with the empirical correlation suggested by

Manglik and Bergles (1993a) for Case 2 and UWT boundary condition. Since assumptions are

made in the present study that the fluid properties are constant and the buoyancy effect is

neglected, the Nusselt number correlation of Eq. (1.5), given by Manglik and Bergles (1993a),

reduces to

                       ( ) 2.0835.3391.09 )Pr(10413.61612.4 ⋅×+= − SwNu     (4.14)

The comparison with the predicted Nusselt numbers is graphed in Fig. 4.13. It is seen that the

trend followed by the numerical results is slightly different from that by the correlation.

According to the correlation, the Nusselt numbers level off when Sw*Pr0.391 is less than 100;

after that the values of Nusselt number increase at a constant rate. The prediction of the present

study, however, shows that Nusselt number starts to increase at low Sw*Pr0.391. Therefore the

difference between the correlation and numerical method is relatively large around Sw*Pr0.391 =

100 region. This could be explained by several reasons. In the experiment setup, the adiabatic

flat wall condition was not ideally achieved since the twisted tape was not deliberately insulated

so as for additional temperature gradient at the tape surface. Also, the correlation took into

consideration fluid property variation, while the present study assumes constant properties.
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 Finally for high Sw*Pr0.391 the secondary flow distributes heat evenly and thus causes large

temperature gradients at the tube wall, too large to be precisely described by the finite control

method used in this study. A more robust scheme should be adopted that takes property variation

and buoyancy force into consideration.
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CHAPTER 5.   CONCLUSIONS AND

RECOMMENDATIONS

5.1 Conclusions

The main conclusions that can be drawn from this computational study are as follows:

• The fully developed laminar swirl flow induced by twisted-tape inserts can be modeled

by a semi-circular flow with an axially helical geometry.

• The Finite Control Volume Method can be applied to discretize the governing differential

equations.

• The twisted-tape-curvature-induced centrifugal forces promote the secondary circulation

in the flow cross section. As Re increases or y decreases, the single-cell vortex structure

develops into a double-cell structure with two counter-rotating helical vortices.

• Due to the tape twist, the highest local shear stress on the tape surface is on the side of the

primary vortex, and the highest local shear stress at the tube wall is on the side of the

secondary vortex.

• The average wall shear stress does not change much with the twist ratio y; therefore, Re

has a greater influence on the friction factor than y.

• The computational results of friction factors agree very well (within ±5%) with the

available experimental data and predictive correlation.
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• The temperature distributions in the flow field are seen to be strongly influenced by Pr, as

well as Re and y.

• The computational predictions of Nusselt numbers indicate that significant augmentation

in heat transfer can be obtained at high Reynolds number, high Prandtl number, and low

twist ratio.

• The numerical results are again in good agreement (within ±5%) with the available

experimental-data-based correlation in the fully developed swirl regime. In the early swirl

onset regime, however, the computations require some additional resolution.

5.2 Recommendations

The quantitative disagreement between the predicted results and the Manglik and Bergles

(1993a) correlation for Nusselt numbers exposes somewhat the inadequacy of simplifications

and assumptions in modeling the twisted-tape flow and heat transfer problem. In practice, the

twisted-tape always has some fin efficiency, which may significantly change the thermal

boundary conditions. Also, the buoyancy effect may not have been neglected because the natural

convection does exist in the actual flow fluid. Future work needs to take these factors into

considerations.
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Appendix A.   Mean Velocity and Friction Factor

The mean flow velocity is defined as
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The dimensionless variables are introduced in Chapter 2 as follows

R
ww
/ν

=  , 
R
rr
′

=  , and θθ ′=

Thus

∫ ∫==
1

0 0

2
/

π
θ

πν
drwrd

R
ww m

m (A.2)

The Reynolds number is defined as
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This relation shows that once the Reynolds number is input, the dimensionless mean velocity is

known. The problem thereafter is to solve the velocity distribution. When solving the axial

momentum equation, the normalized velocity ŵ (= w / G) is firstly solved, where G is the

pressure drop constant and defined as
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After ŵ is obtained, G can be calculated as
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From a force balance over an elemental duct segment of length dz, the average wall shear stress

is
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The fanning friction factor is defined as
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Substitution of wτ  and mw  yields
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Note this is the same result from another definition of f :
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Therefore Eq. (A7) is based on the hydraulic diameter dh, and can be reduced to the following

equation

Re
4Re Gf = (A.9)

which is based on the tube inside diameter d.
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Appendix B.   Mean temperature and Nusselt number

The mean flow temperature is defined as

∫=
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The dimensionless temperature is introduced as
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Substitution of these expressions into Eq. (B.1) produces
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After the temperature distribution is determined, the Nusselt number can be evaluated in

terms of the mean temperature. From an energy balance over an elemental duct segment of

length zd ′ ,
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From Newton’s Cooling Law, the heat transfer coefficient is
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The Nusselt number thus can be calculated as
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where Ph is the hydraulic peripherals
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Therefore, the Nusselt numbers can be calculated from the following equations:
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Appendix C.   Discretization of Governing Equations

The general different eqution is given in Section 2.2.4 as follows
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where λ, β, μ, and S  are given in Table 1 for each dependent variable.

The continuity equation can be rewritten as
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Combining Eqs. (2.19) and (C.1) yields
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Introducing a term total flux, which is the sum of convective and diffusive terms, by defining
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Integrating this equation over the control volume shown in Fig. C.1, we have
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which can be re-written as
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Substituting Eq.(C.3) produces
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The diffusive term must be expressed with the central difference schemes, as follows
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The convective terms can be interpreted by several schemes; only central differencing and

upwind scheme are described in detail.

Central Differencing Scheme
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we have
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Upwind Differencing Scheme

Let                  
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The coefficients of the discretized equation can be generalized for various schemes:
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where P = F / D (Peclet Number) and the function A(|P|) is listed the following table.

Table C.1  Function A(|P|) for different schemes

Schemes A(|P|)

Central differencing 1 - 0.5|P|

Upwind differencing 1

Power law max{0, (1 - 0.1|P|)5}

Hybrid max{0, 1 - 0.5|P|}
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Appendix D.   Convective, Diffusive, and Source Terms

For the stream function ψ :
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The convective terms for ŵ  and ζ  are:
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The convective term for T is:
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The diffusive terms for ŵ ,ζ and T are:
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        Axial velocity:          1, =jiS

        Stream function:       ji
jijijiji

ji y
w

r
ww

y
r

S ,
,1,1,,

, 22
ζ

ππ
++

∆
−

= −+

        Vorticy: 















+

∆
−

+
∆

+−
∆
−−= −+−+−+

y
w

rrr
ww

y
S jijiji

ji

jijijiii
ji

,1,1,

,
2

1,,1,11
, 2

12
22

πψψψψψ
θ

π

                                           



∆∆

−−+
∆
−

− +−−+−−++−+

θ
ψψψψ

rr
ww jijijijijiji

42
1,11,11,11,11,1,

        Temperature:           
m

ji

m

ji
ji T

T
w
w

S ,,
, =   for UWT

                                         
m

ji
ji w

w
S ,

, =         for UHF



- 80 -

Appendix E.   Implementation of Boundary Conditions

All the dependent variables are zero at the boundaries except the vorticity and temperature,

which needs extra treatment. Taylor series can be applied to express second order terms, but it

lacks sufficient accuracy for the first order term
Nr

w
∂
∂ . A better solution is to use third-order

interpolation, which results in
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Therefore, the discretized expressions for vorticity are as follows:
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For adiabatic tape insert, the tape surface temperature is determined by the following

thermal boundary condition:
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Similarly, a third-order interpolation is applied to yield
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where T1 and T2 are the two adjacent points vertically above the boundary node T0 and can be

expressed in terms of the neighboring mesh points:
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