
1

UNIVERSITY OF CINCINNATI

DATE: 05-28-02

I, SRINIVAS RAYAPROLU ,
hereby submit this as part of the requirements for the degree

of:
MASTERS

in:
COMPUTER SCIENCE

It is entitled:
USING COM OBJECT PROGRAMMING FOR ENHANCED LIBRARY

SEARCH APPLICATIONS

Approved by:
FRED S ANNEXTSEIN

KENNETH BERMAN

CHAI-YUNG HAN

2

USING COM OBJECT PROGRAMMING FOR ENHANCED
LIBRARY SEARCH APPLICATIONS

A thesis submitted to the

Division of Graduate Studies and Research of

University of Cincinnati

in partial fulfillment of the

requirements for the degree of

MASTERS OF SCIENCE

in the Department of

Electrical & Computer Engineering and Computer Science

of the College of Engineering

May, 2001

by

Srinivas Rayaprolu

B.E. in the Department of Computer Science
Osmania Univeristy, India, 1999

Thesis Advisors and Committee Chair Dr. Fred Annexstein and Dr. Kenneth
Berman

3

ABSTRACT

The number and diversity of information sources on the Internet is increasing rapidly.

With such an embarrassment of riches, a person who wishes to use the Internet as an

information resource is going to need some assistance. Current search tools are

inadequate in the sense that they cannot use multiple information sources in concert nor

can they index the hundreds of billions of highly valuable documents “hidden” in

proprietary databases.

It is the goal of this thesis to provide a set of integrated tools based on individual users

requirements, and we focus on an application specific search of the resources at the

University of Cincinnati library. We created a Software Tool for the Windows operating

systems platform called “UC Library ToolBar” which provides a simple interface for

searching not only the information on the web indexed by the search engines but also the

information available in the databases to the Faculty/Student of the University of

Cincinnati. For purpose of integration with existing browser software we choose the

popular Microsoft IE platform. This led us to research and develop on Microsoft

Component Object Model (COM) using ActiveX Template Library.

4

5

ACKNOWLEDGEMENTS

I would like to thank Dr. Fred Annexstein and Dr. Kenneth Berman, for their guidance

and encouragement during the duration of this thesis and the entire Masters program.

I would like to express my love and gratitude to my dad, Late R. Surya Prakasa Rao who

was a source of inspiration and the main motivation behind my doing my masters.

I would like to also thank my other family members for their constant support and

understanding.

I would like to thank my friends who helped me in discussing my research and the ideas

related to my thesis.

6

CONTENTS

1. Introduction
1.1 Goals of the thesis 8
1.2 Back Ground on the web 8
1.3 Major Problems 10
1.4 Focus of the Application 11
1.5 Toolbars 12
1.6 Organization of contents 13

2. Internet Explorer Programmable Interface
2.1 Band Objects 14
2.2 Implementing Band Objects 19
2.3 Windows registry and Internet Explorer 22

3. Component Object Model and ATL
3.1 Introduction 24
3.2 COM - What exactly is it? 26
3.3 Definition of the Basic Elements 30
3.4 Working with COM objects 32
3.5 ATL or MFC 41
3.6 ActiveX Template Library 43

4. ToolBar Design
4.1 Overview 63
4.2 Creating the Project 63
4.3 Creating the DeskBand Object 68
4.4 Creating the Window Classes 74
4.5 Additional Features 76

5. Conclusions and Future Directions
5.1 Conclusions 86
5.2 Future Directions 91

Bibliography

7

LIST OF FIGURES

Fig2.1: ToolBand

Fig 2.2: Sample DeskBand

Fig 2.3: Sample DeskTop Band

Fig 2.4: Sample DeskBand

Fig 3.1: Encapsulated Object

Fig 3.2: Interfaces: Communications with an object

Figure 3.3: C++ virtual function calls through interface pointer

Fig 4.1: Project Dialog Box

Fig 4.2: ATL COM AppWizard

Fig 4.3: ATL Object Wizard

Fig 4.4: ATL Object Properties Wizard

Fig 4.5: DeskBand ATL Object Wizard

Fig 4.6: COM object Derivation Diagram

Fig 5.1: The Library ToolBar

Fig 5.2:The HomePage Button

Fig 5.3: The Customize Option

Fig 5.4: The Web Button

Fig 5.5: The Library Button

Fig 5.6: The Journal Button

Fig 5.7: The DataBase Button

8

CHAPTER 1

INTRODUCTION

1.1: Goals of Thesis

The goal of this thesis is to design and implement an integrated search tool for the World

Wide Web. The motivation for this comes from a number of problems searching the web

using current existing tools. With the number and diversity of information sources on the

Internet increasing rapidly, a person who wishes to use the Internet as an information

resource is going to need some assistance. Currently there exist a number of standard

search tools, such as Google, Lycos, Alta Vista, and Yahoo, which help people find

information. However, the information covered by these Search Engines does not

actually represent the whole gamut of information sources available on the web. Also,

these Search Engines and the Directories are unable to interpret the results of their

searches or use multiple information sources in concert [10]. The Library Tool we

designed encapsulates all the existing search tools (search engines) and also allows access

to the different databases available through the University of Cincinnati.

1.2: Background On the Web

As the web billows in size, search sites cover less of it, and what they cover is more

likely to be popular commercial sites. According to a study, where once, as much as 40%

of the web was indexed, by 1999 no one engine indexed more than 16%. If search

technologies were to stand still, the phenomenal growth of the web would render them

useless. There are already more than a billion pages and even the widest reaching search

9

engine covers barely half of these [11]. Within two years, the web may grow to 13 billion

pages, and search engines face huge difficulties keeping pace.

A new study of the structure of the web provides little comfort. This contradicts earlier

suggestions that any two pages on the web are connected by a relatively small number of

hyperlinks [7]. The implication is that search engines must crawl from a greater diversity

of starting points if they are to have any hope of giving a reasonable breadth of coverage.

It’s beginning to appear that centralized approaches to creating web indexes may not

scale with the web’s explosive growth. Catching up will likely require adopting some sort

of distributed search approach.

One of the most worrisome developments on the Web is the inadequacy of the existing

search tools to work in an era when Web sites increasingly depend on database queries

and dynamically generated temporary URLs. Many sites have their own sophisticated

searches, but one must have to visit the site and enter the search string manually. Data is

generated dynamically for each query. There is no way for a search engine to find

information during a web crawl, because no URL exists until the user queries the

database. As a result the users never find many sites that have the information they want.

BrightPlanet has uncovered the "deep" Web – a vast reservoir of Internet content that is

500 times larger than the known "surface" World Wide Web [2]. What makes the

discovery of the deep Web so significant is the quality of content found within. There are

literally hundreds of billions of highly valuable documents hidden in searchable

10

databases that can’t be retrieved by conventional search engines. Searching on the

Internet today can be compared to dragging a net across the surface of the ocean. There is

a wealth of information that is deep and therefore missed. The reason is simple: basic

search methodology and technology have not evolved significantly since the inception of

the Internet.

The deep Web is qualitatively different from the surface Web [1]. Deep Web sources

store their content in searchable databases that only produce results dynamically in

response to a direct request. Since the search engines create their indexes by crawling the

web using static URLs, they cannot see or retrieve the content available in the deep web.

Considering the amount of information available in the deep web (7,500 terabytes of

information, compared to 19 terabytes of information in the surface Web) and the high

relevancy of the information to every need, market and domain, any approach which does

not try to include the information available in these databases does not represent an

effective information and search tool.

1.3: Major Problems

With such a massive amount of information not being retrieved by the search engines, a

searching strategy, which can access the information in the deep web, is necessary. There

are problems in designing a search engine, which encapsulates the information available

in the web sites as well as the web pages generated dynamically from the databases. First,

every database uses its own index, its own searching strategy and its own criteria in

ranking the results [3]. So to combine the results obtained from these databases is

11

practically impossible [9]. Second, if we could have the index available we could use our

own search strategy to generate results. But due to the commercial nature of these

databases they are not available.

A digital library provides one of the most important information environments in which

to retrieve and refer to appropriate information directly online. Millions of people

regularly access the Internet. However, this access is still more or less standardized in

that almost every one uses the same means of information retrieval. It is not the case that

one standardized way of information retrieval fits all needs. Different library users will

have different personal requirements and interests in the use of library materials [8].

Companies like BrightPlanet, Intelliseek, Vivisimo, Inktomi, etc are front-runners in

developing integrated search tools for searching the web and also customize the tools to

different customers using them. These companies use innovative search technology in

trying to design and develop tools suited to the different requirements of different users

and companies.

1.4: Focus of Application

The focus of this application is the information content available to the Student/Faculty

of the University of Cincinnati. Apart from the information available through the search

engines, a Student/Faculty has access to a lot of information through different databases

through the University Library. The experience of using one of these databases for

research is a hard one. Firstly, The organization of these databases buries them under a

myriad set of links, which makes it difficult to locate them. And after one has located the

12

database, one is confronted with a different interface to access the information available

in the different databases. So the same query has to be entered in each of these forms to

access the corresponding information associated with the databases. And this process has

to be repeated every time one wants to access a different database. The problem only gets

accentuated as the number of databases that the user wants to use regularly increases.

1.5: Toolbars

Toolbars provide one with an intuitive and easy to use interface. It provides one with a

feature to group together user selected options and in the case of the library toolbar

different databases and different search engines of the users choice. Once the toolbar has

been installed it appears along with the Internet explorer toolbar. This allows one to

search quickly from any website location, through different search engines and the

different databases without having to visit any of the individual websites for the

corresponding databases.

The toolbar provides a simple interface for searching the information on the web indexed

by the search engines and the information available in the databases. It provides a simple

interface to search through different search engines (Google, AltaVista, Yahoo,

MetaCrawler, AllTheWeb, DirectHit), Databases (ACM/IEEE), Journals available

through the Electronic Journal Center, the Library databases (UCLID and OHIOLINK).

There would be no need to load and enter queries in the many separate web-forms for

each of the different databases. A single query entered into a dialog toolbar (embedded as

13

a plug-in to the browser) could search these many databases according to the database

selected by a single mouse click.

1.6: Organization

Chapter 2 provides a detailed description of the Internet Explorer’s interface. Chapter 3

gives an introduction to COM and ATL. Chapter 4 explains the design issues of the

toolbar. Chapter 5 details the conclusions and future directions.

14

CHAPTER 2

INTERNET EXPLORER PROGRAMMABLE INTERFACE

2.1: BandObjects

Internet explorer consists of three main categories of band objects: Explorer bars (Info

and command bands), tool bands and desk bands. Info bands are vertical explorer bars

and Command bands are horizontal explorer bars. There are two types of explorer bars.

Vertical explorer bars are sometimes called Info bands and horizontal explorer bars,

called command bands. Implementation of both is same. The Internet Explorer History,

Favorites, and Search windows are all info bands [13].

Band objects are essentially COM objects that exist within a container. The container of a

band object depends on the type to which the band object belongs. If the band object is a

tool band, the Rebar Control that holds Internet Explorer’s toolbars will contain it; if it is

an Explorer Bar, it will be contained by Internet Explorer. Despite the difference between

their functionalities, their basic implementations are similar. What really makes the

difference is how the band object is registered, which in turn controls the type of the

object and its container.

The Explorer Bar was introduced with Microsoft® Internet Explorer 4.0 to provide a

display area adjacent to the browser pane. It is basically a child window within the

Internet Explorer window, and it can be used to display information and interact with the

15

user in much the same way. Explorer Bars are most commonly displayed as a vertical

pane on the left-hand side of the browser pane. However, an Explorer Bar can also be

displayed horizontally, below the browser pane.

Tool Bands

IE5 introduced tool bands, which provide a convenient mechanism for adding bands to

the browser's rebar. The bands can contain toolbars, or combo boxes, or radio controls, or

whatever. This feature provides a way to put a window on a band contained by the Rebar

Control that holds Internet Explorer's toolbars.

Fig 2.1: ToolBand

This toolbar essentially consists of a rebar control with four bands: three toolbars and a

menu bar. Because it is implemented with the common controls application-programming

interface (API), developers can create toolbars with any or all of its features.

16

The Rebar Control

The underlying structure of the Internet Explorer toolbar is provided by a rebar control.

This control provides a way for users to customize the arrangement of a collection of

tools. An application assigns child windows, which are often other controls, to a rebar

control band. Rebar controls contain one or more bands, and each band can have any

combination of a gripper bar, a bitmap, a text label, and a child window. However, bands

cannot contain more than one child window. A rebar control displays the child window

over a specified background bitmap. As one dynamically repositions a rebar control band,

the rebar control manages the size and position of the child window assigned to that band.

The rebar control displays its bands in a rectangular area, typically at the top of the

window. This rectangle is subdivided into one or more strips that are the height of a band.

Each band can be on a separate strip, or multiple bands can be placed on the same strip. A

rebar control provides users with two ways to arrange their tools. Each band usually has a

gripper at its left-hand edge. Grippers are used when two or more bands on a single strip

exceed the width of the window. By dragging the gripper to the left or right, users can

control how much space is allocated to each band. Users can move the bands within the

rebar's display rectangle by dragging and dropping. The rebar control then changes the

display to accommodate the new arrangement of bands. If all the bands are removed from

a strip, the height of the rebar will be reduced, enlarging the viewing area.

An application can add or remove bands as needed. Typically, applications enable users

to select, which bands they want to have displayed through the View menu or a shortcut

17

menu. If the combined width of the bands on a strip exceeds the width of the window, the

rebar control will adjust their widths as needed. Some of the tools might be covered by

the adjacent band. Version 5.80 of the common controls provides a way to make tools

that have been covered by another band accessible to the user. If one sets the

RBBS_USECHEVRON flag in the fStyle member of the band's REBARBANDINFO

structure, a chevron will be displayed for toolbars that have been covered. When a user

clicks the chevron, a menu is displayed that allows him or her to use the hidden tools.

Since each band contains a control, one can provide additional flexibility through the

control's API.

Desk Bands

Band objects can also be used to create desk bands. While their basic implementation is

similar to Explorer Bars, desk bands are unrelated to Internet Explorer. A desk band is

basically a way to create a dockable window on the desktop. The user selects it by right-

clicking the taskbar and selecting it from the Toolbars submenu.

18

Fig 2.2: Sample DeskBand

Initially, desk bands are docked on the taskbar.

Fig 2.3: Sample Desktop Band

The user can then drag the desk band to the desktop, and it will appear as a normal

window.

19

Fig 2.4: Sample DeskBand

2.2: Implementing Band Objects

Although they can be used much like normal windows, band objects are COM objects

that exist within a container. Explorer Bars are contained by Internet Explorer, and desk

bands are contained by the shell. The shell in terms of Windows is a graphical user

interface provided by Windows that allows you to access the various components of the

operating system. While they serve different functions, their basic implementation is very

similar. The primary difference is in how the band object is registered, which in turn

controls the type of object and its container. In addition to IUnknown and IClassFactory,

all band objects must implement the following interfaces:

• IDeskBand

• IObjectWithSite

• IPersistStream

• IInputObject (optional)

• IContextMenu (optional)

20

• ICommandTarget (optional)

IDeskBand

IDeskBand is used to obtain information about a band object. This interface is used by

the browser to obtain the display information for a band. This interface is derived from

IDockingWindow. IDockingWindow interface provides docking feature to band objects

so they can be docked inside a Windows Explorer window. This interface has three

methods. These methods are

Methods Description

CloseDW Notifies the docking window object that it is about to be removed

ResizeBorderDW
Notifies the docking window object that the frame's border space has

changed

ShowDW Instructs the docking window object to show or hide itself.

IObjectWithSite

This interface provides communication between a band object and its container, a

browser. An object implements this interface so its container can supply it with an

interface pointer for its site object. Then the object can communicate directly with the

site. It has two methods:

Methods Description

SetSite Provides the site's IUnknown pointer to the object being managed.

GetSite Retrieves the last site set with IObjectWithSite::SetSite.

IPersistStream

21

Applications handle data in many ways, including displaying, moving, loading, and

saving it. As a distributed object model system, COM has its own way of handling these

standard-programming tasks. COM handles object persistence—the ability to move an

object's state between the object in memory and a piece of persistent media such as a disk

file through this interface.

IInputObject

The browser uses this interface. The IInputObject interface is used to notify the object of

UI activation change and translate keyboard accelerators. If a band object accepts user

input then this interface must be implemented. Internet Explorer implements

IInputObjectSite and uses IInputObject to maintain proper user input focus when it has

more than one contained window. There are three methods that need to be implemented

by an Explorer Bar: IInputObject::UIActivateIO, IInputObject::HasFocusIO, and

IInputObject::TranslateAcceleratorIO. Internet Explorer calls

IInputObject::UIActivateIO to inform the Explorer Bar that it is being activated or

deactivated. When activated, the Explorer Bar sample calls

IOleInPlaceSiteWindowless::SetFocus to set the focus to its window. Internet Explorer

calls IInputObject::HasFocusIO when it is attempting to determine which window has

focus. If the Explorer Bar's window or one of its descendants has focus,

IInputObject::HasFocusIO should return S_OK. If not, it should return S_FALSE.

TranslateAcceleratorIO allows the object to process keyboard accelerators.

IContextMenu

22

This interface is used to create a context menu for a band object. This interface must be

implemented if one wants to create context menus. Otherwise there is no need to

implement this interface. This will create a menu on right mouse click of the explorer bar.

IContextMenu has three functions.

Methods Description

GetCommandString Retrieves a command's text.

QueryContextMenu Adds commands to a context menu.

InvokeCommand Carries out the command associated with a context menu item.

Band objects provide a flexible and powerful way to extend the capabilities of Internet

Explorer by creating custom Explorer Bars. Implementing a desk band allows you to

extend the capabilities of normal windows. Although some COM programming is

required, it ultimately serves to provide you with a child window for your user interface.

From there, the bulk of the implementation can use familiar Windows programming

techniques. All the above necessary features of a band object can be readily extended to

create a unique and powerful user interface.

2.3: Windows registry and Internet Explorer

Windows registry plays a vital role in customizing IE. One can explore registry by

running regedit from command line. The regedit is a registry editor, which displays a tree

structure of registry database. The GUIDEN utility comes with Visual Studio. It

generates a GUID. All information about IE settings is stored in the registry under two

keys. These keys are:

23

HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer and

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer.

If one wants an option to all users then add use HKEY_LOCAL_MACHINE or if the

option is only for the current user then one uses HKEY_CURRENT_USER key.

CHAPTER 3

COMPONENT OBJECT MODEL AND ATL

24

3.1: Introduction

As a software developer one cannot avoid COM these days. It is everywhere. DirectDraw

is based on COM; Windows scripting is based on COM; ASP is based on COM and when

you insert a Visio drawing into a Word document you are using COM. If one wants to

write an application that will be Internet ready, using distributed transactions and

message queuing, then one will be using COM.

COM stands for the Component Object Model. The plus in COM+ means that the version

of COM in Windows 2000 will be the newest version available. In fact, people are

already calling it COM+ 1.0 expecting COM+ 2.0 to appear sometime in the future - it

would be nice if Microsoft rationalized their versioning. Then there is DCOM or

Distributed COM. People talk about DCOM objects as if they are something special,

something exciting, as if they add something to COM objects. They do not. A DCOM

object is a COM object.

One hears about OLE objects and ActiveX objects. They are simply COM objects. The

term OLE is not as trendy as it was a few years ago, but basically COM first appeared as

OLE 2.0 on 16-bit Windows 3.1 which was used to allow you to take objects like Excel

tables and link and embed them in Word documents (and visa versa). OLE stood for

Object Linking and Embedding. These days people generally use the term when talking

about the desktop technologies of compound documents (the generic term for documents

that can contain objects from other applications) or the OLE controls that one sees used

25

on VB forms (the scriptable 'widgets' that are used to show grids or calendars). Similarly

ActiveX, they are just COM objects.

Wind the clock a bit further forward and one comes to MTS components and to the more

up to date term of COM+ components. Again, these are just COM objects, albeit COM

objects that 'live' in a special environment. As the name suggests, a component that runs

under Microsoft Transaction Server can be run under a transaction. This is a great boon

for the bankers, but it is also vitally important for any distributed application.

A transaction, groups together, COM objects that are involved to perform some task.

These may live in many places on the network, and if one object throws an error you will

want to ensure that the other objects in the transaction know about this. (Imagine a relay

race where the second runner gives up and goes home; someone has to tell the third and

fourth runners otherwise they will remain standing on the track waiting for the baton.)

MTS transactions ensure that every work in the transaction is performed correctly, or if

just one object reports an error then the entire work in the transaction is undone.

COM+ components take this a step further by allowing the component to have access to

other facilities including Microsoft Message Queue Server. But again, the actual object

itself is a COM object, you write it the same way as you would write any other COM

object - they just have access to different facilities.

26

3.2: COM - What exactly is it?

The Component Object Model (COM) is a way for software components to communicate

with each other. It's a binary and network standard that allows any two components to

communicate regardless of what machine they're running on (as long as the machines are

connected), what operating systems the machines are running (as long as it supports

COM), and what language the components are written in. COM further provides location

transparency: it doesn't matter when one writes one’s components whether the other

components are in-process DLLs, local EXEs, or components located on some other

machine.

This is unlike the C++ approach, which promotes reuse of source code. ATL is a perfect

example of this. While source-level reuse works fine, it only works for C++. It also

introduces the possibility of name collisions, not to mention bloat from having multiple

copies of the code in your projects.

In the most simplistic terms COM is merely a code maintenance utility. Windows uses

dynamic link libraries (DLLs) to dynamically load code as and when it is needed. This

way code can be shared between several applications (they just load the same DLL) and

the application can be efficient with memory because when it no longer needs a DLL it

can unload it, and Windows will remove it from memory.

Windows lets one share the code at the binary level using DLLs. After all, that's how

Windows apps function - reusing kernel32.dll, user32.dll, etc. But since the DLLs are

27

written to a C interface, they can only be used by C or languages that understand the C

calling convention. This puts the burden of sharing on the programming language

implementer, instead of on the DLL itself.

Although this sounds easy it is fraught with problems, which it can be summarized to

three:

• To locate and load the DLL

• To obtain the code in the DLL

• To unload the DLL

COM solves all these problems by defining a binary standard, meaning that COM

specifies that the binary modules (the DLLs and EXEs) must be compiled to match a

specific structure. The standard also specifies exactly how COM objects must be

organized in memory. The binaries must also not depend on any feature of any

programming language (such as name decoration in C++). Once that's done, the modules

can be accessed easily from any programming language. A binary standard puts the

burden of compatibility on the compiler that produces the binaries, which makes it much

easier for the folks who come along later and need to use those binaries.

Windows provides a function, called LoadLibrary, to load DLLs. The DLL is loaded

after finding it using either the hard coded path or a search performed by windows to

locate the DLL. Generally, hard coded paths are not used because one cannot guarantee

that the path will exist on other machines. So this means that most developers allowed

28

Windows to locate the DLL. The problem with this was to make sure that the DLL was

picked up before any other with the same name. Most developers took one of two

approaches. Either they put all of their DLLs in the Windows System folder (along side

the system DLLs) or they put them in the application's current folder.

The immediate problem with the first was that the System folder got filled with lots of

DLLs many of which were private to specific applications. Often if an application was

uninstalled its DLLs would remain and your hard disk got gradually smaller and smaller

as more and more DLLs ate it.

More concerning was that if an application needed a specific version of one of the system

DLLs then installing it in the System folder meant that it would overwrite an existing

DLL, possibly preventing other applications from working. The other solution was to put

the DLLs in an application's folder. This meant that these DLLs were essentially private

to the application and this led to the problem of multiple versions of the same DLL in lots

of folders on a disk. Moreover, if these folders were in the search path then this meant

that LoadLibrary called by another application could pick up the wrong version.

Once the correct version of the DLL was loaded, the next task would be to obtain the

code in the DLL. This process was tedious, it only worked well if the functions were C

functions and was called in a specific way, and as a consequence it was error prone. Once

the DLL has been loaded and get access to its code then there is one more issue to face.

DLLs take up memory and so once one has finished using it, must be unloaded. This

29

allows the DLL to release any resources it may have loaded and free up the memory the

DLL took up. Failing to unload DLLs results in applications using more and more

memory.

COM DLLs are called COM servers and before an application can use one the DLL must

be registered with the system, identifying the code in the server using unique IDs. This is

a once-only registration. After that, applications can use code in the DLL by referring to

the unique IDs, it does not use the DLL name or its path. COM will locate the right DLL

using a specified ID and load it for the application; it will go through all the tedious

process of getting access to the code in the DLL and it will unload the DLL when one no

longer needs it. Real dynamic linking without the pain.

Since one registers the DLL's location with COM, it means that the DLL can be

anywhere on the local machine, and since the DLL name is unimportant you can use any

name that you like. But this is a rather rosy view, so what happens if one DLL overwrites

another one? Well, the code in a DLL knows about the unique IDs that one registers and

when COM loads the DLL it asks the DLL for the required code. If the DLL does not

recognize the ID then it returns an error, which COM will pass back to the application.

This means that the application will not have the facilities that it wanted and possibly it

will signal an error to the user. However, there is no way that incorrect code can be

loaded and run by accident, so the possibility of a catastrophic failure is reduced.

30

With a single DLL, the code can be accessed remotely or by other processes on the local

machine, or loaded within the process that calls it. The DLL is written in the same way in

all cases and the application that uses the code calls it in the same way irrespective of

where the code is located. This is called location transparency and is a very powerful

feature of COM.

3.3: Definitions of the Basic Elements

An interface is simply a group of functions. Those functions are called methods.

Interface names start with I, for example IShellLink. In C++, an interface is written as an

abstract base class that has only pure virtual functions. Interfaces may inherit from other

interfaces. Inheritance works just like single inheritance in C++. Multiple inheritance is

not allowed with interfaces.

A coclass (short for component object class) is contained in a DLL or EXE, and contains

the code behind one or more interfaces. The coclass is said to implement those interfaces.

A COM object is an instance of a coclass in memory. A COM "class" is not the same as a

C++ "class", although it is often the case that the implementation of a COM class is a

C++ class.

A COM server is a binary (DLL or EXE) that contains one or more coclasses.

31

Registration is the process of creating registry entries that tell Windows where a COM

server is located. Unregistration is the opposite - removing those registry entries.

A GUID (rhymes with "fluid", stands for globally unique identifier) is a 128-bit number.

GUIDs are COM's language-independent way of identifying things. Each interface and

coclass has a GUID. Since GUIDs are unique throughout the world, name collisions are

avoided (as long as one uses the COM API to create them). The term UUID (which

stands for universally unique identifier) is also used at times. UUIDs and GUIDs are, for

all practical purposes, the same. The objects and interfaces will need the same identifier

on all machines so that any client can use the component. Further, no other object or

interface may use that identifier, no matter where it came from. In other words, these

identifiers must be globally unique. Fortunately, algorithms and data formats exist for

creating such identifiers. By using the machine's unique network card ID, the current

time, and other data, the identifiers, called GUIDs (globally unique identifiers) is created

by a program called GUIDGEN.EXE. GUIDs are stored in 16-byte (128 bit) structures,

giving 2128 possible GUIDs.

A class ID, or CLSID, is a GUID that names a coclass. An interface ID, or IID, is a

GUID that names an interface.

There are two reasons GUIDs are used so extensively in COM:

• GUIDs are just numbers under the hood, and any programming language can

handle them.

32

• Every GUID created, by anyone on any machine, is unique when created

properly. Therefore, COM developers can create GUIDs on their own with no

chance of two developers choosing the same GUID. This eliminates the need for a

central authority to issue GUIDs.

An HRESULT is an integral type used by COM to return error and success codes. It is not

a "handle" to anything, despite the H prefix.

Finally, the COM library is the part of the OS that one interacts with when doing COM-

related stuff.

3.4: Working with COM Objects

COM is based on objects—but the objects aren't quite the objects one is used to in C++ or

Visual Basic. First, COM objects are well encapsulated. One cannot gain access to the

internal implementation of the object; there is no way of knowing what data structures the

object might be using. In fact, the objects are so well encapsulated that COM objects are

usually just drawn as boxes. Below is a drawing of an utterly encapsulated object. The

implementation details are hidden completely.

Fig 3.1: Encapsulated Object

Interfaces: Communications with an object

33

The only way to access a COM object is through an interface. One can draw an interface

called IFoo on an object like the one shown in Figure 2.

Fig 3.2: Interfaces: Communications with an object

For instance, the definition of IFoo might be:

class IFoo {

virtual void Func1(void) = 0;

virtual void Func2(int nCount) = 0;

};

There can be more than one function in the interface and that all of the functions are pure

virtual functions: they do not have implementations in class IFoo. One is defining what

functions are in the interface. Second—and more importantly—an interface is a contract

between the component and its clients. In other words, an interface not only defines what

functions are available, it also defines what the object does when the functions are called.

This semantic definition is not in terms of the specific implementation of the object, so

there's no way to represent it in C++ code (although one can provide a specific

implementation in C++). Rather, the definition is in terms of the object's behavior, so that

revisions to the object and/or new objects that also implement the interface (contract) are

possible. In fact, the object is free to implement the contract in any way it chooses (as

34

long as it honors the contract). In other words, the contract has to be documented outside

of the source code. This is especially important since clients won't get (and don't need)

the source code.

This notion of a specific contract is crucial to COM and to component software in

general. Without "ironclad" contracts, it would be impossible to interchange components.

Interface contracts, like diamonds, are forever. In COM, once an interface is published

contract by shipping a component, the contract is immutable—it cannot be changed in

any way. One cannot add, delete or modify, because other components are depending on

the contract. If a contract is changed, one will break that software. The internal

implementation can be improved as long as the contract is honored.

If something is forgotten or if requirements change or do need to make modifications,

one has to write a new contract. The standard OLE interface list has many of these:

IClassFactory and IClassFactory2, IViewObject and IViewObject2, and so on. So if a

new contract is written, how does software that only knows about the old contract still

use the new components? Won't that mess old components up? COM objects can support

multiple interfaces—they can implement multiple contracts. In fact, all useful COM

objects support at least two interfaces. Visual ActiveX controls support about a dozen

interfaces, most of them standard interfaces. In order for a component to support an

interface, it has to implement each and every method in that interface, so this is a very

substantial task. That's why tools like the Active Template Library (ATL) and so forth are

popular: they provide implementation for all of the interfaces.

35

On the other hand, since these interfaces have something in common, it is not required to

rewrite the whole implementation just to add a new interface that's almost exactly the

same as the old one. COM supports inheritance of interfaces. As long as the functions

already in IFoo, for example are not changed, another interface IFoo2 can be defined

as follows:

class IFoo2 : public IFoo {

// Inherited Func1, Func2

virtual void Func2Ex(double nCount) = 0;

};

The COM binary standard applies to method calls, too—so COM defines what happens

in order to call the function. Specifically, the same thing happens that happens for a

virtual function call:

pFoo is dereferenced to find the vtable pointer in the object.

The vtable pointer is dereferenced and indexed to find the address of the function to be

called. The function is called.

See Figure 3.3 for the numbered steps:

36

Figure 3.3: C++ virtual function calls through interface pointer

Every language has its own way of dealing with objects. For example, in C++ you create

them on the stack, or use new to dynamically allocate them. Since COM must be

language-neutral, the COM library provides its own object-management routines. A

comparison of COM and C++ object management is listed below:

Creating a new object

• In C++, use operator new or create an object on the stack.

• In COM, call an API in the COM library.

Deleting objects

• In C++, use operator delete or let a stack object go out of scope.

• In COM, all objects keep their own reference counts. The caller must tell the

object when the caller is done using the object. COM objects free themselves

from memory when the reference count reaches 0.

37

Now, in between those two stages of creating and destroying the object, you actually

have to use it. When you create a COM object, you tell the COM library what interface

you need. If the object is created successfully, the COM library returns a pointer to the

requested interface. You can then call methods through that pointer, just as if it were a

pointer to a regular C++ object.

Creating a COM object

To create a COM object and get an interface from the object, you call the COM library

API CoCreateInstance(). The prototype for CoCreateInstance() is:

HRESULT CoCreateInstance (

REFCLSID rclsid,

LPUNKNOWN pUnkOuter,

DWORD dwClsContext,

REFIID riid,

LPVOID* ppv);

The parameters are:

rclsid

The CLSID of the coclass. For example, you can pass CLSID_ShellLink to create a COM

object used to create shortcuts.

pUnkOuter

38

This is only used when aggregating COM objects, which is a way of taking an existing

coclass and adding new methods to it. For our purposes, we can just pass NULL to

indicate we're not using aggregation.

dwClsContext

Indicates what kind of COM servers we want to use. For this article, we will always be

using the simplest kind of server, an in-process DLL, so we'll pass

CLSCTX_INPROC_SERVER. One caveat: you should not use CLSCTX_ALL (which is

the default in ATL) because it will fail on Windows 95 systems that do not have DCOM

installed.

riid

The IID of the interface you want returned. For example, you can pass IID_IShellLink to

get a pointer to an IShellLink interface.

ppv

Address of an interface pointer. The COM library returns the requested interface through

this parameter.

When one calls CoCreateInstance(), it handles looking up the CLSID in the registry,

reading the location of the server, loading the server into memory, and creating an

instance of the coclass you requested.

Deleting a COM object

As stated before, you don't free COM objects, you just tell them that you're done using

them. The IUnknown interface, which every COM object implements, has a method

39

Release(). You call this method to tell the COM object that you no longer need it. Once

you call Release(), you must not use the interface pointer any more, since the COM

object may disappear from memory at any time.

If your app uses a lot of different COM objects, it's vitally important to call Release()

whenever you're done using an interface. If you don't release interfaces, the COM objects

(and the DLLs that contain the code) will remain in memory, and will needlessly add to

your app's working set. If your app will be running for a long time, you should call the

CoFreeUnusedLibraries() API during your idle processing. This API unloads any COM

servers that have no outstanding references, so this also reduces your app's memory

usage.

Continuing the above example, here's how you would use Release():

// Create COM object as above. Then...

if (SUCCEEDED (hr))

{

// Call methods using pISL here.

// Tell the COM object that we're done with it.

pISL->Release();

}

40

The Base Interface - IUnknown

Every COM interface is derived from IUnknown. The name is a bit misleading, in that it's

not an unknown interface. The name signifies that if you have an IUnknown pointer to a

COM object, you don't know what the underlying object is, since every COM object

implements IUnknown.

IUnknown has three methods:

AddRef() - Tells the COM object to increment its reference count. You would use this

method if you made a copy of an interface pointer, and both the original and the copy

would still be used.

Release() - Tells the COM object to decrement its reference count.

QueryInterface() - Requests an interface pointer from a COM object. You use this when

a coclass implements more than one interface.

When a COM object is created with CoCreateInstance(), an interface pointer is returned.

If the COM object implements more than one interface (not counting IUnknown), one

uses QueryInterface() to get any additional interface pointers that you need. The

prototype of QueryInterface() is:

HRESULT IUnknown::QueryInterface (

REFIID iid,

void** ppv);

41

The parameters are:

Iid - The IID of the interface you're requesting.

ppv - Address of an interface pointer.

QueryInterface() returns the interface through this parameter if it is successful. One must

also call the Release() function to tell the COM object once they are done using the

interface.

C++ can't express everything that needs to be expressed in an interface. COM objects can

be DLLs to be used in-process, meaning in the same address space. So if one passes a

pointer to some data to an in-process server, the server can dereference the pointer

directly. But COM object can also be a local (out-of-process) server in separate EXE

address spaces, or even accessed remotely. If one needs to pass a pointer to a COM

method in such an object, the pointer is meaningless in any other address space. What's

meaningful is the data to which the pointer points. This data has to be copied into the

other address space—and perhaps back. This process of copying the right data is called

marshalling. Thankfully, COM does the marshalling in most cases.

3.5: ATL or MFC

Most current ActiveX development uses MFC because MFC has been around the longest

and many C++ developers know it. Also, unlike the other techniques, MFC enables

developers to concentrate on the behavior of the object rather than the interface. The

42

downside (especially for Internet distribution) is the size of the controls and the need for

run time DLL to exist with the container.

ATL is able to generate code each time you need it using templates. Thus, you don't need

libraries or DLLs that have to ship along with the control. ATL requires that a class be

derived from the several base classes existing as templates. Typically, developers will use

the ATL wizard to create the classes automatically. ATL also has drawbacks. It's much

more difficult to deal with interfaces using ATL since one must create each interface one

needs for the application. Also, ATL does not support the Class Wizard that's able to

automatically keep the Object Description Language and interface definition language

files in synch with your code. The wizards leave a lot to be desired.

MFC, Visual Basic, Visual J++, Visual FoxPro, and Delphi are so popular for writing

ActiveX controls: their run times implement all the methods of the dozen or so interfaces,

allowing one to concentrate on the problem at hand. But using these techniques to

implement your ActiveX controls is a Faustian bargain: the run times for all of these

products are, to one degree or another, big and slow. If you need your controls to be small

and fast, you'll either implement them in C++ directly or you'll use ATL.

ATL's forte is in the development of components but not necessarily in the use of

component's. Dean McCrory, one of the key developers of Microsoft Foundation Classes,

has often said that one of the big advantages of using MFC is that you get to reuse code

that you didn't write or debug—someone else's code. So MFC gives you print preview

43

virtually for free—that's several thousand lines of code one doesn’t have to write. And it

makes it easy to write OLE in-place editing servers.

That code is especially valuable when it's been tested and debugged. No library is perfect.

But the code in a mature library has been used and debugged by many, many

programmers—and, the libraries are likely to be faster and more robust than one has time

to write by himself. They basically encapsulate all of the developer's expert knowledge

and allow one to stand on their shoulders by reusing it.

Some of the reasons for using ATL instead of MFC:

• ATL provides dual interface support as part of its basic implementation. MFC

requires a lot of additional work to add dual support.

• ATL provides support for all of COM's threading models, in particular the free

threading model. MFC does not and probably will never support the free

threading model because MFC is thread safe only at the class level.

• ATL does not require MFC's 1 Meg runtime (MFC40.DLL). This isn't necessarily

an issue because it is present on most systems, however it definitely increases

load times for your component.

3.6: ActiveX Template Library

ATL was originally designed as a way to write fast, small COM components. It was

especially intended for Automation components that could, for instance, implement

business rules and database access in a multitier architecture. In its first version, ATL did

44

not have any facilities for any sort of user interface—ATL 1.0 controls could not be

visual ActiveX controls, for instance (not without almost as much work as implementing

it in C++ without ATL, that is). Version 2.0 added the templates necessary to build visual

ActiveX controls.

Features

ATL gives you several important features, including:

• All of the power of C++.

• No run-time library, unless one wants to use it.

• A relatively high-level way of abstracting objects and interfaces.

• Automatic handling of class factory, object creation, reference counting, and

QueryInterface.

• Stock implementations of standard interfaces.

• The need for speed—with ease

ATL gives you the leanest, meanest code around. First off, it relies on no run-time

libraries at all—so the only time your control needs to use a run-time library is if your

code makes use of it. Second, through the magic of templates, ATL controls contain only

the code they actually need. So ATL controls are very comparable in size and speed to

controls hand-coded by COM experts in C++. But they're far easier to write.

Since a module (a DLL or EXE) can implement more than one component, the ATL

Wizards break the component creation process in the integrated development

45

environment (IDE) up into two steps. First, you create the module, and then you add the

components into the module.

Handling Messages

The most basic ATL window class is CWindow, an object-oriented wrapper for the

Windows API. CWindow makes window manipulation easier, and remarkably, adds no

overhead. Unfortunately, CWindow does not let you define how a window responds to

messages. One can use CWindow functions to center a window or hide a window, even

send a message to a window, but what happens when the message reaches the window

depends on its window class, and that was determined when the window was created. If it

was created as an instance of the "button" class, it acts as a button; if it's a "list box" then

that's how it behaves. There is no way, using CWindow, to alter that.

Fortunately, ATL has another class, CWindowImpl, which does allow you to specify

new behavior for a window. CWindowImpl inherits from CWindow, one can still use

all those handy CWindow member functions, but what makes CWindowImpl special is

that it also lets you define message-handling behavior. In traditional Windows

programming, when one wants to specify a window's response to messages, one writes a

window procedure; in ATL, one defines a "message map" in the ATL window class.

First, one derives the class from CWindowImpl,

class CMyWindow : public CWindowImpl<CMyWindow>

{

46

The new class's name must be passed as an argument to the CWindowImpl template.

Within the class definition, the message map is defined as:

BEGIN_MSG_MAP(CMyWindow)

MESSAGE_HANDLER(WM_PAINT,OnPaint)

END_MSG_MAP ()

The following line:

MESSAGE_HANDLER (WM_PAINT, OnPaint)

means, "When the window receives a WM_PAINT message, invoke member function

CMyWindow::OnPaint". The member functions that handle the messages are defined

as:

LRESULT OnPaint(

UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled)

{ ... }

The four arguments to the handler functions are the message identifier, two parameters

whose contents depends on the message, and a flag that the handler can use to indicate

that the message has been dealt with or needs further processing. When the window

receives a message, the message map entries are examined starting at the top, so it's a

good idea to put the most frequent messages first. If no matching entry is found in the

message map, the message is passed to the default window procedure.

47

Message Maps

There are three groups of message handling macros:

• Message handlers, for all messages (such as WM_CREATE, WM_PAINT,..)

• Command handlers, specifically for WM_COMMAND messages (typically

sent by predefined child window controls, such as buttons or menu items).

• Notification handlers, specifically for WM_NOTIFY messages (typically sent

by common controls, such as status bars or list view controls).

Message Handler Macros

There are two message handler macros:

MESSAGE_HANDLER

MESSAGE_RANGE_HANDLER

The first macro maps a specific message to a handler function; the second maps a range

of messages to a handler. Message handler functions have the following prototype:

LRESULT MessageHandler(UINT uMsg, WPARAM wParam, LPARAM lParam,

BOOL& bHandled);

where uMsg identifies the message, and wParam and lParam are the message

parameters (their contents depend on the message). A handler function uses the bHandled

flag to indicate whether it handled the message. If bhandled is set to FALSE in the

handler function, the rest of the message map will be searched for another handler for the

message. This can be useful when one wants to have multiple handlers for the same

message, perhaps in different classes using chaining, or if one just wants to do something

48

in response to a message but not actually handle it. The bHandled flag is set to TRUE

before the function is called, so unless the function explicitly sets bHandled to FALSE,

no further message map processing will be performed.

Command Handler Macros

Command handler macros only handle commands (WM_COMMAND messages), but

they allow one to specify the mapping in terms of the command code or the identifier of

the control sending the command.

COMMAND_HANDLER maps commands with a specified command code from a

specified control to a handler function.

COMMAND_ID_HANDLER maps commands with any command code from a

specified control to a handler function.

COMMAND_CODE_HANDLER maps commands with a specified command code

from any control to a handler function.

COMMAND_RANGE_HANDLER maps commands with any command code from a

range of controls to a handler function.

COMMAND_RANGE_CODE_HANDLER maps commands with a specified

command code from a range controls to a handler function.

Command handler functions have the following prototype:

LRESULT CommandHandler(WORD wNotifyCode, WORD wID, HWND

hWndCtl, BOOL& bHandled);

49

where wNotifyCode is the notification code, wID is the identifier of the control sending

the command, hWndCtl is the handle of the control sending the command, and

bHandled is as described previously.

Notification Handler Macros

Notification handler macros map notifications (WM_NOTIFY messages) to functions,

depending on the notification code and the identifier of the control sending the

notification. These macros are equivalent to the command handler macros, except that

these handle notifications, not commands. The different Notification handler macros are

NOTIFY_HANDLER

NOTIFY_ID_HANDLER

NOTIFY_CODE_HANDLER

NOTIFY_RANGE_HANDLER

NOTIFY_RANGE_CODE_HANDLER

Notification handler functions have the following prototype:

LRESULT NotifyHandler(int idCtrl, LPNMHDR pnmh, BOOL& bHandled);

where idCtrl is the identifier of the control sending the notification, pnmh is a pointer to

an NMHDR structure, and bHandled is as described previously.

50

Notifications include a pointer to a notification-specific structure; for example, when a

list view sends a notification, it includes a pointer to a NMLVDISPINFO structure. All

such structures have an NMHDR header, which is what pnmh points to.

Adding Functionality to Existing Window Classes

There are several ways to add functionality to an existing window class. If the class is an

ATL window class, one can derive a new class from it, as described in Base Class

Chaining. This is basically C++ inheritance with just a small twist because of message

maps. To extend the capabilities of a predefined window class, such as the button or list

box controls, one can super class it. This defines a new class that is based on the

predefined class, but with a message map that adds to the functionality of the underlying

window class.

Sometimes one will want to modify the behavior of a window instance, rather than a

class—perhaps one needs an edit control on a dialog box to do something special. In that

case one can write an ATL window class that subclasses the existing edit control.

Messages directed to the edit control are routed first through the message map of the sub

classing object.

Also one could make the edit control a contained window, a window that passes the

messages it receives to the message map of its containing class for processing; the

containing class can implement special message handling behavior for the contained

window.

51

Finally, there is message reflection, in which the window receiving a message does not

handle it, but instead reflects it back to the sending window, which must then handle the

message itself. This technique can help make controls more self-contained.

Base Class Chaining

Having defined an ATL windowing class with some functionality, one can derive a new

class from it to take advantage of inheritance. For example:

class CBase: public CWindowImpl< CBase >

// simple base window class: shuts down app when closed

{ BEGIN_MSG_MAP(CBase)

MESSAGE_HANDLER(WM_DESTROY, OnDestroy)

END_MSG_MAP()

LRESULT OnDestroy(UINT, WPARAM, LPARAM, BOOL&)

{ PostQuitMessage(0);

return 0;

} };

class CDerived: public CBase

// derived from CBase; handles mouse button events

{ BEGIN_MSG_MAP(CDerived)

MESSAGE_HANDLER(WM_LBUTTONDOWN, OnButtonDown)

52

END_MSG_MAP()

LRESULT OnButtonDown(UINT, WPARAM, LPARAM, BOOL&)

{ ATLTRACE("button down\n");

return 0;

}};

// in WinMain():

...

CDerived win;

win.Create(NULL, CWindow::rcDefault, "derived window");

The problem with this code is that when one run’s this program in the debugger, a

window will appear. If one clicks inside the window, "button down" will appear in the

Debug output window. This is behavior of CDerived. However, when closes the

CDerived window, the application will not stop executing, even though CBase handles

WM_DESTROY messages and CDerived inherits from CBase.

The reason is that one has to explicitly "chain" one message map to another:

BEGIN_MSG_MAP(CDerived)

MESSAGE_HANDLER(WM_LBUTTONDOWN, OnButtonDown)

CHAIN_MSG_MAP(CBase) // chain to base class

END_MSG_MAP()

Any messages not handled in the message map of CDerived will be passed to the

message map of CBase for processing. The chaining is not done automatic because

53

of multiple inheritance, which is fundamental to ATL's architecture. In general, there is

no way to know which one of multiple base classes to chain to, so the decision is left to

the programmer.

Alternate Message Maps

Message map chaining allows one message map to handle messages from multiple

window classes, which creates a problem: The same WM_PAINT handler (for instance)

is called for all window classes in the chain, even though you presumably want different

painting behavior depending on the class. To solve this problem, ATL uses alternate

message maps: it divides a message map into sections, each identified by a number. Each

such section is an alternate message map:

// in class CBase:

BEGIN_MSG_MAP(CBase)

MESSAGE_HANDLER(WM_CREATE, OnCreate1)

MESSAGE_HANDLER(WM_PAINT, OnPaint1)

ALT_MSG_MAP(100)

MESSAGE_HANDLER(WM_CREATE, OnCreate2)

MESSAGE_HANDLER(WM_PAINT, OnPaint2)

ALT_MSG_MAP(101)

MESSAGE_HANDLER(WM_CREATE, OnCreate3)

MESSAGE_HANDLER(WM_PAINT, OnPaint3)

END_MSG_MAP()

54

The message map of CBase consists of three sections: the default message map

(implicitly numbered 0) and two alternate message maps (numbered 100 and 101).

When the message map is chained, the identifier of the desired alternate message map is

specified. For example:

class CDerived: public CBase {

BEGIN_MSG_MAP(CDerived)

CHAIN_MSG_MAP_ALT(CBase, 100)

END_MSG_MAP()

...

The message map of CDerived chains to alternate message map 100 in CBase, so when a

CDerived window receives a WM_PAINT message, handler function

CBase::OnPaint2 will be invoked.

Message Reflection

Message reflection involves getting a window to respond to messages that it sends out.

When the user interacts with a control, the control typically informs its parent window by

sending it a WM_COMMAND or WM_NOTIFY message; the parent window then

takes some action in response. For example:

class CParentWindow: CWindowImpl<CParentWindow>

{

// assume that this window will have a child

// button control with an ID of ID_BUTTON

55

BEGIN_MSG_MAP(CParentWindow)

COMMAND_ID_HANDLER(ID_BUTTON, OnButton)

MESSAGE_HANDLER(WM_CTLCOLORBUTTON, OnColorButton)

...

When the button is clicked, it sends a command to the parent window, and

CParentWindow::OnButton is invoked. Similarly, when the button is about to be

drawn, it sends a WM_CTLCOLORBUTTON message to the parent;

CParentWindow::OnColorButton responds with the handle of a brush. In some cases,

it is useful to have the control itself respond to the messages it sends, rather than the

parent window. ATL provides a facility for message reflection: when a control sends its

parent a message, the parent can reflect the message back to the control.

class CParentWindow: CWindowImpl<CParentWindow>

{

BEGIN_MSG_MAP(CParentWindow)

MESSAGE_HANDLER(WM_CREATE, OnCreate)

MESSAGE_HANDLER(WM_DESTROY, OnDestroy)

...other messages that CParentWindow will handle...

REFLECT_NOTIFICATIONS()

END_MSG_MAP()

...

When the parent window receives a message, it examines its message map; if none of the

message map entries match the message, the REFLECT_NOTIFICATIONS macro

56

causes the message to be sent back to the control that sent it. The control provides

handlers for the reflected messages, like this:

class CHandlesItsOwnMessages: CWindowImpl<CHandlesItsOwnMessage>

{

public:

DECLARE_WND_SUPERCLASS(_T("Superbutton"), _T("button"))

BEGIN_MSG_MAP(CHandlesItsOwnMessage)

MESSAGE_HANDLER(OCM_COMMAND, OnCommand)

MESSAGE_HANDLER(OCM_CTLCOLORBUTTON, OnColorButton)

DEFAULT_REFLECTION_HANDLER()

END_MSG_MAP()

...

The message identifiers for reflected messages start with OCM_, not WM_. This allows

one to distinguish between messages originally intended for the control and messages that

have been reflected back to the control. The DEFAULT_REFLECTION_HANDLER

macro takes care of unhandled reflected messages.

ATL Dialog Box Classes

ATL provides CSimpleDialog and CDialogImpl to simplify using a dialog box resource

from within your application. CSimpleDialog is a class that creates modal dialog boxes

from templates. It provides command handlers for standard buttons such as OK and

57

Cancel. One can think of CSimpleDialog as a kind of message box, except that you

design the "message box" in the dialog box editor so you have control over its layout.

To display such a dialog box in response to, say, a user clicking About in your

application's Help menu, you would add the following command handler to your main

window's class:

BEGIN_MSG_MAP(CMyMainWindow)

COMMAND_ID_HANDLER(ID_HELP_ABOUT, OnHelpAbout)

...

LRESULT OnHelpAbout(WORD, WORD, HWND, BOOL&)

{

CSimpleDialog<IDD_DIALOG1> dlg;

int ret = dlg.DoModal();

return 0;

}

The ID of the dialog box resource (IDD_DIALOG1) is passed to the CSimpleDialog

template. DoModal displays the dialog box. When the user clicks OK, CSimpleDialog

closes the dialog box and returns the ID of the button. (CSimpleDialog has command

handlers for IDOK, IDCANCEL, IDABORT, IDRETRY, IDIGNORE, IDYES, and

IDNO.)

58

CSimpleDialog only handles simple modal dialog boxes. For more complicated dialog

boxes, or for modeless dialog boxes, there is CDialogImpl. (CSimpleDialog is actually a

limited kind of CDialogImpl). To implement a modeless dialog box, one has to derive a

class from CDialogImpl. Pass the name of the new class as a template argument to

CDialogImpl, as you would for CWindowImpl:

class CMyModelessDialog: public CDialogImpl<CMyModelessDialog>

{

Unlike CSimpleDialog, one doesn't pass the dialog box resource identifier as a template

argument; however, one still have to "connect" this class with a dialog box resource, and

that is achieved by defining an enum in the class:

public:

enum { IDD = IDD_DIALOG1 };

To declare a message map:

BEGIN_MSG_MAP(CMyDialog)

MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

MESSAGE_HANDLER(WM_CLOSE, OnClose)

...

END_MSG_MAP()

59

The handler function definitions are custom, but one thing that has to be done is to call

DestroyWindow in response to a WM_CLOSE message since a modeless dialog box is

implemented:

LRESULT OnClose(UINT, WPARAM, LPARAM, BOOL&)

{

DestroyWindow();

return 0;

}

...

}; // CmyModelessDialog

To get this dialog box on the screen, an instance of the class has to be constructed and

call its Create function:

CMyModelessDialog dlg;

dlg.Create(wndParent);

ATL provides a simplified, elegant, and powerful Windows programming model. Beyond

the convenience of wrapper functions, message maps, and macros, techniques such as

chaining, window subclassing and superclassing, contained windows, and reflected

messages afford great flexibility in the design and implementation of window and dialog

box classes. Perhaps most impressive is that, even while providing all this power and

flexibility, ATL imposes only minimal memory and execution time overhead.

60

Threading Models

Every COM component has a Threading Model registry attribute that one can specify

when one develops the component. This attribute determines how the component's

objects are assigned to threads for method execution. If one thinks of the building as an

application's process, each apartment is a distinct area in which a COM object can be

created. The object wizard provides options to choose form while creating different

objects.

Apartment Threading Model (single threaded apartments)

This model was introduced in the first version of COM with Windows NT3.51 and later

Windows 95. The apartment model consists of a multithreaded process that contains only

one COM object per thread. Single Threaded Apartments (STA)- This also means that

each thread can be called an apartment and each apartment is single threaded. All calls

are passed through the Win32 message processing system. COM ensures that these calls

are synchronized. Each thread has its own apartment or execution context and at any

point in time, only one thread can access this apartment. Each thread in an apartment can

receive direct calls only from a thread that belongs to that apartment. The call parameters

have to be marshaled between apartments. COM handles marshalling between apartments

through the Windows messaging system.

Free threading Model(multi threaded apartments)

61

This model was introduced with Windows NT 4.0 and Windows95 with DCOM. The free

threaded model allows multiple threads to access a single COM object. Free threaded

COM objects have to ensure thread synchronization and they must implement message

handlers, which are thread aware and thread safe. Calls may not be passed through the

Win32 messaging system nor does COM synchronize the calls, since the same method

may be called from different processes simultaneously. Free threaded objects should be

able to handle calls to their methods from other threads at any time and to handle calls

from multiple threads simultaneously. Parameters are passed directly to any thread since

all free threads reside in the same apartment. These are also called Multi-Threaded

Apartments (MTA)

Both Apartment and Free threaded Model

It is possible for a process to have both the apartment and free threaded model. The only

restriction is that you can have only one free threaded apartment but you can have

multiple single threaded apartments. Interface pointers and data have to be marshaled

between apartments. Calls to objects within the STAs will be synchronized by Win32

whereas calls to the MTAs will not be synchronized at all.

Threaded Neutral Apartment Model

Components that use the Thread Neutral Apartment model (TNA), mark themselves as

Free Threaded or Both. Here the component instances run on the same thread type as the

caller's thread. Each instance of a COM class can run on a different thread each time a

method is called. When a thread is executing a method in a COM object, and that method

62

creates a new object, MTS will suspend the current thread and create a new thread to

handle the new object. Like the MTA, TNAs allow more than one thread to enter an

apartment. However, once a thread has entered an apartment, it obtains an apartment-

wide lock and no other thread can enter that apartment until it exits. This model was

introduced into MTS and COM+ to ensure that context switches are faster.

The interface chosen can be dual or custom. That means that the object can be called via

both the custom interface (like the ones developed by developers) and via the

Automation, or IDispatch, interface. Scripting languages use Automation interfaces only,

so selecting "Dual" allows the object to be used from a scripting language. The

performance is much better when using a custom interface, so if the client can use it

(most can), it should.

Aggregation is a special way of containing (or nesting) objects inside other objects.

Aggregation is normally quite tricky, but ATL handles all the details. The object is more

flexible if it's aggregated.

63

CHAPTER 4

TOOLBAR DESIGN

4.1: Overview

The IE toolbar consists of a COM component supporting IDeskband and a few other

necessary interfaces for which IE looks for when loading registered toolbars, explorer

bars and deskbands. The RBDeskband ATL Object Wizard provides most of the

framework for the toolbar. The design consists of creating a project, a new COM object

to house the toolbar, and a few CWindowImpl classes using the CWindowImpl ATL

Object Wizard. Then connecting these parts together, will produce the IE toolbar.

Visually the toolbar consists of an editbox and a toolbar with the five buttons on it. In

actuality the toolbar consists of the fore mentioned and a non-visible window that is used

to reflect messages to the Toolbar window, which will process or forward messages to

itself and the edit box.

4.2: Creating the Project

Creating the module is almost trivial: we select New… from the File menu, and then

select the Projects tab and fill in the directory and project name. The project dialog box

will look something like the following.

64

Fig 4.1: Project Dialog Box

When one clicks OK, the following wizard is shown

65

Fig 4.2: ATL COM AppWizard

The main choice here is the type of module—DLL (for in-process server), EXE (for out-

of-process server), or NT Service EXE. For the ToolBar an in-process (DLL) is chosen.

The last three check boxes are not required for this project since we're not using MFC,

MTS, or even proxy/stub code. On clicking Finish, a project that containing the

following group of files is created.

An .idl file for the project that contains only the initial declarations for the type library.

A linker .def file that contains exports for the four functions COM DLLs must export.

An .rc resource file that contains a version resource and a string for the project name.

A resource header file that contains resource ID definitions.

stdafx.h and stdafx.cpp files to do system includes properly for fast builds using

precompiled headers.

66

And finally, the source code .cpp file that contains implementations for all of the global

functions necessary for a COM DLL.

The ToolBand.cpp files includes the declaration of a global object and a map:

#include "stdafx.h"

#include "resource.h"

#include <initguid.h>

#include "ToolBand.h"

#include "ToolBand_i.c"

CComModule _Module;

BEGIN_OBJECT_MAP(ObjectMap)

END_OBJECT_MAP()

The file initguid.h is a standard OLE system file included in exactly one file in the

project so that the globally unique identifier (GUID) structures are defined.

ToolBand.h and ToolBand_i.c are generated by Microsoft Interface Definition

Language (MIDL) from the IDL file when the project is built. Because MIDL runs before

the C++ compiler does, the files will be created in plenty of time for the build.

ToolBand.h contains the declarations of the interfaces and components.

ToolBand_i.c contains the definitions of the GUIDs being used.

Next is a global declaration of a variable called _Module. This object contains the class

object (class factory) plus all of the other module-oriented code, such as registration of

67

classes, and so on. The object wizard will fill this map in. Each element of the map array

will contain a CLSID and a C++ class name. The _Module object reads this map so it

can create objects based on their CLSID.

The DllMain function simply calls Init and Term functions in the _Module object.

While Init initializes the data members Term releases the data members

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,

LPVOID /*lpReserved*/)

{

if (dwReason == DLL_PROCESS_ATTACH)

{

_Module.Init(ObjectMap, hInstance, &LIBID_BEEPCNTMODLib);

DisableThreadLibraryCalls(hInstance);

}

else if (dwReason == DLL_PROCESS_DETACH)

_Module.Term();

return TRUE; // ok

}

DllMain also calls DisableThreadLibraryCalls so the DLL won't get a call each time a

new thread attaches it.

The four functions COM DLLs must have are also in this file:

• STDAPI DllCanUnloadNow() determines whether the DLL that implements this

function is in use. If not, the caller can safely unload the DLL from memory.

68

• STDAPI DllGetClassObject() retrieves the class object from a DLL object

handler or object application. DllGetClassObject is called from within the

CoGetClassObject function when the class context is a DLL.

• STDAPI DllRegisterServer() instructs an in-process server to create its registry

entries for all classes supported in this server module. If this function fails, the

state of the registry for all its classes is indeterminate.

• STDAPI DllUnregisterServer() instructs an in-process server to remove only

those entries created through DllRegisterServer.

4.3: Creating The DeskBand Object

For the DLL to actually expose something, one needs to add an IDeskBand derived

component to the project container. The easiest way to add a COM component is to use

the ATL Object Wizard. Just select New ATL Object… from the Insert menu, to get a

dialog box that looks like the following.

Fig 4.3: ATL Object Wizard

69

Selecting DeskBand from the RadBytes category, the Wizard creates the files necessary

for the DeskBand's base implementation. Selecting Next opens a property sheet that

allows one to set the names of the object and to set its attributes.

Fig 4.4: ATL Object Properties Wizard

Clicking on the DeskBand ATL Object Wizard will provide a choice of creating the an

Internet explorer toolbar or a DeskBand or a Internet Explorer left side band or Internet

explorer Bottom side band. Since the project involves creating an Internet Explorer

ToolBar , the corresponding option is chosen.

70

Fig 4.5: DeskBand ATL Object Wizard

The ATL Object Wizard adds several files to the project and made changes to several

others. The wizard creates the following files

ToolBandObj.rgs, it consists of the register information for the toolbar project.

ToolBandObj.h, it defines all the COM interfaces needed for the toolbar and also

outlines the functions in each of the interface.

ToolBandObj.cpp, it provides implementation for all functions defined in the header

file.

The wizard also updates the idl file accordingly to associate a UUID for the interface

created. There are various attributes in the IDL, enclosed in square brackets. The

attributes always apply to the thing immediately after, so the UUID attribute applies to

the interface—it's the IID for the interface. (UUID, or universally unique identifier, is a

synonym for GUID). There is IDL code to define the object as well. For instance, the

code fragment to define the object might look like this:

71

[uuid(0E1230F8-EA50-42A9-983C-D22ABC2EED3B)]

coclass ToolBandObj

{

[default] interface IToolBandObj;

};

This is how the CLSID is associated with the class—and how the set of interfaces the

class implements is defined. The project has the DeskBand implementation that can be

modified to produce the toolbar needed for the project. Once the window classes have

been created needed and then make appropriate changes to the Desbkand object to use the

window classes. The ATL Object Wizard added implementation and header files for the

object. The ToolBandObj.h file contains the declaration of the component's

implementation class:

class ATL_NO_VTABLE CToolBandObj :

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CToolBandObj, &CLSID_ToolBandObj>,

public IDeskBand,

public IObjectWithSite,

public IPersistStream,

public IInputObject,

72

public IDispatchImpl<IToolBandObj, &IID_IToolBandObj,

&LIBID_TOOLBANDLib>

{

public:

CToolBandObj();

DECLARE_REGISTRY_RESOURCEID(IDR_TOOLBANDOBJ)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_CATEGORY_MAP(CToolBandObj)

// IMPLEMENTED_CATEGORY(CATID_InfoBand)

// IMPLEMENTED_CATEGORY(CATID_CommBand)

// IMPLEMENTED_CATEGORY(CATID_DeskBand)

END_CATEGORY_MAP()

BEGIN_COM_MAP(CToolBandObj)

COM_INTERFACE_ENTRY(IToolBandObj)

COM_INTERFACE_ENTRY(IOleWindow)

COM_INTERFACE_ENTRY_IID(IID_IDockingWindow,

IDockingWindow)

COM_INTERFACE_ENTRY(IObjectWithSite)

COM_INTERFACE_ENTRY_IID(IID_IDeskBand, IDeskBand)

COM_INTERFACE_ENTRY(IPersist)

COM_INTERFACE_ENTRY(IPersistStream)

COM_INTERFACE_ENTRY(IInputObject)

COM_INTERFACE_ENTRY(IDispatch)

73

END_COM_MAP()

It also has the COM map, used by ATL's implementation of QueryInterface, must

contain an entry for each and every interface (except IUnknown) used by the control.

The class also contains a number of macros. ATL_NO_VTABLE tells the compiler to

not construct a vtable for this class. This can only be used on classes that are not

themselves instantiated. ATL derives a class from CToolBandObj and instantiates that.

CToolBandObj doesn't need a vtable because no objects of exact type CToolBandObj

will ever be created, so we can save memory by using ATL_NO_VTABLE.

The object created will actually be of type CComObject< CToolBandObj >—in other

words, the CComObject template class will be used with the object type as a parameter.

A derivation diagram describing this follows.

Fig 4.6: COM object Derivation Diagram

The primary job of CComObject is to provide implementations of the IUnknown

methods. These must be provided in the most-derived class so that the implementations

74

can be shared by all of the interfaces that derive from IUnknown. CComObject's

methods just call the implementations in CComObjectRootEx.

The next thing to note is the COM map, which contains macros for the two interfaces we

implement—our custom interface and IDispatch, the Automation interface. An entry for

IUnknown is not present because it's assumed.

4.4: Creating the window classes

The project consists of three window classes. One for the Edit Box, one for the toolbar,

and one for message reflection back to the toolbar.

The Edit Window

This window is created by deriving the class from the standard EDIT Button window

class. Methods will be added to the class to help support functionality of the toolbar. The

files associated with this window are BandEditCtrl.h and BandEditCtrl.cpp. For the

EditQuote implementation, the keystrokes from the user must be processed and let the

host that created the deskband object know our edit box has focus. To accomplish the

first part, the DeskBand object will implement the IInputObject interface. So the host will

query for that interface and so that one can recieve messages and be given the chance to

recieve focus. When the host sends the band messages to process they come through the

IInputObject::TranslateAccelerator method. The DeskBand will implement this method

and it is best if the edit box, which will process the message, copy the

75

TranslateAcceleratorIO method definition so the Deskband can forward the message

easily through a logical method call.

The Toolbar Window

The toolbar can be created via the resource editor, Once you have your toolbar you need

to create the toolbar dynamically. The CBandToolBarCtrl is inherited from CToolBarCtrl

and is used to create the toolbar dynamically.

DWORD dStyle = WS_CHILD | WS_VISIBLE | WS_CLIPCHILDREN |

WS_CLIPSIBLINGS | CCS_NODIVIDER | CCS_NORESIZE |

CCS_NOPARENTALIGN | TBSTYLE_TOOLTIPS | TBSTYLE_FLAT;

HWND hWnd = m_wndToolBar.CreateSimpleToolBarCtrl(hWndChild,

IDR_TOOLBAR_TEST, FALSE, dStyle);

This is done in the RegisterAndCreateWindow function that is called from SetSite

method. The toolbar consists of one edit box and 5 buttons. Each button is associated

with a menu, which brings a different functionality to the toolbar. Each menu is created

in the resource editor and every menu item is associated with a different functionality.

The homepage button is associated with customizing and uninstallation. The web button

is used to search through the top search engines as well as the dictionary and thesaurus.

The library button is associated with searching the Uclid and OhioLink. The Journal

76

button is associated with the Electronic Journal Center and finally the database button is

associated with ACM and IEEE.

Invisible window

The best way to handle the messages of the toolbar is to let the control handle its own

messages via "Message Reflection". The best way to reflect the messages is to create an

invisible control that acts as the parent for the toolbar. The invisible control will reflect

the toolbar messages back to itself. See CBandToolBarReflectorCtrl class for the

invisible control that will be used. To differentiate the messages reflected from the

messages received directly macros are added to the stdafx.h. So for example e.g

WM_COMMAND reflected comes back as OCM_COMMAND.

4.5: Additional features

Dialog box

The dialog box is created to customize the menu under the journal button to the needs of

the user. The menu under the journal button changes according to the choice of subject

from the customize dialog box. The choice can be amongst Arts and Humanities,

Business, Computers, Chemistry, Mathematics, Earth Science, Engineering, Health

Sciences and Medicines, Life Science, Physics and Anatomy and Social Sciences. When

one of the subjects is chosen, it assigns a value to the variable, which determines the

menu that is loaded when the drop down arrow is chosen from the journal button.

77

Browser Navigation

In order to Navigate on the browser you need to instantiate the IWebBrowser2 COM

Object. This is usually done on the SetSite Method.

Registry

The file, ToolBandObj.rgs, contains the source for the script for ATL's registry

manipulation code. Most of it corresponds exactly to the registry entries that must be

made so the COM run time can find the control. For the toolband control, it looks like

this:

HKCR

{ ToolBand.ToolBandObj.1 = s 'ToolBand Sample'

{ CLSID = s '{0E1230F8-EA50-42A9-983C-D22ABC2EED3B}'

}

ToolBand.ToolBandObj = s 'ToolBand Sample'

{ CLSID = s '{0E1230F8-EA50-42A9-983C-D22ABC2EED3B}'

CurVer = s 'ToolBand.ToolBandObj.1'

}

NoRemove CLSID

{ ForceRemove {0E1230F8-EA50-42A9-983C-D22ABC2EED3B} = s

'ToolBand Sample'

{

ProgID = s 'ToolBand.ToolBandObj.1'

VersionIndependentProgID = s 'ToolBand.ToolBandObj'

78

ForceRemove 'Programmable'

InprocServer32 = s '%MODULE%'

{

val ThreadingModel = s 'Apartment'

}

'TypeLib' = s '{5297E905-1DFB-4A9C-9871-A4F95FD58945}'

} } }

HKCU

{ NoRemove Software

{ NoRemove Microsoft

{ NoRemove 'Internet Explorer'

{ NoRemove MenuExt

{ ForceRemove '&Google' = s

'res://%MODULE%/MENUSEARCH.HTM'

{ val Contexts = b '10'

} } } } } }

This script is used for both registering and unregistering the component. By default when

registering, all of the keys are added to whatever keys might already be in the registry.

The ForceRemove keyword modifies this behavior so that the key to which

ForceRemove is applied is removed (including subkeys) before it's added back in.

When unregistering, the default is to remove every key (and subkey of those) that's listed

in the script. It's crucial to override this for the CLSID key by using the NoRemove

79

keyword, as above. If this is not done, unregistering this component would remove the

entire CLSID tree, thereby unregistering every COM object on the user's system. So one

has to be very careful if you edit the registry script file. The wizard usually edits this files

as objects and interfaces are added. The resource compiler builds this script into the

components resource section, where it's available by ID (in this case,

IDR_TOOLBANDOBJ).

Adding entries to the context menu

Also in the rgs file is the way to add fields to the context menu. The line

ForceRemove '&Google' = s 'res://%MODULE%/MENUSEARCH.HTM'

Creates an entry for google in the context menu. The action to be performed when

google is selected from the context menu is defined in MENUSEARCH.HTM

One can add any number of items by adding more entries in to this file following the

above procedure.

Drag and Drop

The CBandEditCtrl class is inherited from a WTL CEdit control that has drag and drop

facility. i.e. one can drag text from the browser straight to the CEdit Control. The Edit

control in this module allows one to drag a URL or text from Explorer or any other

Dragable enabled container in to the edit box. Once the URL or text is dropped the

toolband will retrieve the results from the site specified(google here) with the text chosen

as the query.

80

The three functions:

• OnDragEnter. Called during a drag and drop when the cursor initially passes over the

window associated with the COleDropTarget object. In almost all cases, this function does

nothing except call OnDragOver.

• OnDragOver. Called during a drag and drop as the cursor moves over the window

associated with the COleDropTarget object. This function sets the current drop effect for the

cursor.

• OnDrop. Called when the user actually “drops” an object on the window associated with

the COleDragTarget object. This function must fetch the data from the OLE Clipboard

and paste it into the target window.

The class derived from COleDropTarget must be added to the CWnd-derived class as a

member variable. The window class must be registered as a drop target via the

COleDropTarget::Register function.

ToolTips

Tool tips are automatically displayed for buttons and other controls contained in a parent

window derived from CFrameWnd. This is because CFrameWnd has a default handler

for the TTN_GETDISPINFO notification, which handles TTN_NEEDTEXT

notifications from tool tip controls associated with controls. However, this default

handler is not called when the TTN_NEEDTEXT notification is sent from a tool tip

control associated with a control in a window that is not a CFrameWnd, such as a control

on a dialog box or a form view. Therefore, it is necessary to provide a handler function

for the TTN_NEEDTEXT notification message in order to display tool tips for child

81

controls. This can be easily done in WTL by using the following Message Handler in the

overriden ToolBar Control

NOTIFY_CODE_HANDLER(TTN_NEEDTEXT, OnToolbarNeedText);

Automatic Installation

Internet" and "download" are widely recognized terms, but there has been some

confusion over what exactly is meant by the word "component" in this context.

Component

A Web-bound software distribution package usually describes the smallest installable

component: a Microsoft ActiveX® Control (.ocx), a .dll, an .exe, a Java class file, or an

applet.

Packaging

Code authors need to package their software components for automatic download. The

packaging mechanism is usually a cabinet file addressed by the CODEBASE attribute of

an OBJECT element on a Web page.

Cabinet File

The cabinet format provides an efficient way to package multiple files. The key features

of the cabinet format are that multiple files may be stored in a single cabinet file (.cab)

and that data compression is performed across file boundaries, significantly improving

the compression ratio. Cabinet files are used to reduce file size and therefore the

82

associated download time for Web content. This is essentially the same technology that

has been used for years to compress software distributed on disks. Microsoft supplies a

cabinet resource kit containing tools a developer can use to build .cab files.Cabinet files

should be digitally signed.

Signing

Code received through the Internet lacks shrink-wrapped packaging and store clerks to

vouch for its reliability. Users are understandably wary when they're asked to download

software from the Internet. Digital signatures associate a software vendor's name with a

given file, providing accountability for software developers. A signature reassures your

users by creating a path from them to you if your software harms their systems. When a

user's security level is set at the default level, any object identified by the OBJECT tag

on a Web page must be digitally signed. Internet Explorer's default security setting won't

install a component that doesn't have a digital signature. One can purchase digital

signatures from a certificate authority, a company that validates your identity and issues a

certificate for you.

Certificate

A certificate is a set of data that identifies a software distributor. Certificates are issued

(and renewed) by a third party certification authority (CA) that verifies the software

distributor's identity. The CA may also provide the tools you need to digitally sign your

components. Your digital certificate is included with all components you digitally sign.

83

INF File

An information file (.inf) provides installation instructions that Internet Explorer uses to

install and register your software, as well as any files required by your software.

An INF file consists of any number of named sections, each containing one or more

items. Each section has a particular purpose—for example, to copy files or add entries to

the registry. Each of the items in a section contributes to the purpose of the section.

Signing and Marking ActiveX Controls

Internet Explorer has special security mechanisms for ActiveX controls. The ActiveX

controls you can automatically download over the Internet can do anything—including

things that would damage your system. Java attempts to solve this problem by severely

limiting what a Java™ applet can do. It can't, for instance, access the client computer's

file system. ActiveX controls take a different approach: they demand positive

identification of the author of the control, verify that the control hasn't been modified

since it was signed, and identify safe controls—kind of like shrink-wrapping a control for

download over the Internet. Because of this approach, ActiveX controls can use the full

power of the client's system safely.

To sign the control, one will need to obtain a certificate from a Certificate Authority such

as VeriSign, Inc. at http://digitalid.verisign.com/developer/ms_pick.htm.

There are two classes of digital IDs for Microsoft Authenticode™ technology. Class 2

certificates, for individuals who publish software, cost US$20 per year and require that

84

you provide your name, address, e-mail address, date of birth, and Social Security

Number. After VeriSign verifies this information, the certificate will be issued.

Class 3 certificates, for commercial software publishers, cost US$400 per year and

require a Dun and Bradstreet rating in addition to company name, location, and contacts.

Once the certificate is obtained, the SIGNCODE program provided with the ActiveX

software development kit (SDK) to sign the code. The code has to be re-signed if the

code is modified. The signatures are only checked when the control is first installed—the

signature is not checked every time Internet Explorer uses the control. Once the code is

signed, even users whose security setting is high will be able to download, install, and

register your controls.

Embedding the code in to a web page

Once the signed cabinet file has been generated it is embedded in to the webpage as

below.

<html> <head> <Title> The Library Toolbar</title>

<OBJECT ID="ToolBand"

CLASSID="CLSID:0E1230F8-EA50-42A9-983C-D22ABC2EED3B"

CODEBASE="http://www.ececs.uc.edu/~srayapro/ToolBandWorking.cab">

</OBJECT>

</head></html>

The CLASSID is the GUID of the control and the CODEBASE is the path to the server

where the cabinet file is saved. When a user visits the web page the Active X Control is

85

automatically installed on his machine. These two are embedded between the OBJECT

tag.

Installation using InstallShield

The toolbar can also be installed by creating a setup program using Installshield.

Installshield allows one to create a customized setup program that will allow one to

transfer the DLL on to the hard drive of any user. While using this procedure one will

have to run the regsvr32 utility to actually register the DLL.

86

CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1: Conclusions

This toolbar is an effort to provide a tool which provides the user with a simple interface

to search the WWW, Uclid/OhioLink, Electronic Journal Center and the ACM and IEEE

databases. Below you see the ToolBar as it would appear in the explorer window.

Fig 5.1: The Library ToolBar

The toolbar consists of 5 buttons(HomePage, Web, Library, Journal, Database). The

toolbar also consists of edit box, which is common to all the buttons. You only have to

enter the text in the toolbar once and choose one of the options from the Web or Library

or Journal or Database Button and get the corresponding results based on your choice.

When you leave the edit box empty and choose one of the option it will take you to the

corresponding web site where you can continue with a more specific search. Each button

is associated with a particular functionality. There is a default value associated with each

button. The homepage button consists of a customize option , a help option and an

uninstall option.

87

Fig 5.2:The HomePage Button

The Customize option is associated with the journal button. When you click on the

option, you will get the following wizard.

Fig 5.3: The Customize Option

88

through which you can choose which journal subject you want to search. Each choice is

associated with a explanation of subjects you would be searching through when you

select one of the option. To change the journal subject you want to search just select one

of the subjects and click Apply and then OK. One will notice the menu under the journal

button has changed accordingly. The Help option brings you to the current page, which

details the features of the toolbar. The Uninstall option is used to uninstall the toolbar.

Upon Uninstallation the toolbar will continue to appear in any windows already open but

will not appear in any new window.

The Web button consists of the most popular search engines: Google, AltaVista,

AllTheWeb, Yahoo, Direct Hit and Meta Crawler. It also consists of a Dictionary and a

Thesaurus.

Fig 5.4: The Web Button

The default value associated with the button is google i.e., when you enter the query and

click the button the results from google are returned. The Library button is used to

89

search UCLID and OHIOLINK available to the University of Cincinnati. You can

search Uclid or OhioLink with respect to Author, Title, Subject and Keyword.

Fig 5.5: The Library Button

The journal button is based on the Electronic Journal Center available through the

University of Cincinnati. The electronic journal center has different databases based on

the subject. By default when you click on the journal button you search through the

Computer Science journals and you will have options to search using the Author, Article

Title, ISSN, Keyword, Journal Title and Abstract. The subjects available through this

ToolBar are Arts and Humanities, Business, Computers, Chemistry, Mathematics, Earth

Sciences, Engineering, Health Sciences and Medicine, Life Sciences, Physics and

Astronomy and Social Sciences.

90

Fig 5.6: The Journal Button

The default value associated with the button is the Electronic Journal web site of

University of Cincinnati. Finally the Database button searches through ACM and IEEE

magazines.

Fig 5.7: The DataBase Button

The default value of the button takes you to a list of all the databases available online

through the University of Cincinnati.

91

5.2: Future Directions

Ideally the future extensions to the toolbar would be to design a tool, which combines the

results of all the different libraries and provides one common result. The division could

be on the basis of Web, Books, Journals, Databases, etc. When a user clicks on the web

button, if the results provided are a combination of all the search engines rather then a

specific search engine would be ideal.

The problem again in designing such a tool is that all the different information sources

have different interfaces, different criteria and different search algorithms. Until a

standard is decided in designing the way information is stored, the way the information is

retrieved and the criteria in which they are ranked, more and more customized tools

suiting the users personal choices will have to be designed. Personalization provides the

control on the kind of information sources chosen, the kind of information retrieved to

the user and thus providing high quality content and better interfaces to access them. The

toolbar can be extended to include more functionality, adding more digital libraries

available online. Also, features like query history can be added.

92

BIBLIOGRAPHY:

1. BrightPlanet.com LLC. " The Deep web: Surfacing Hidden Value." White

Paper, July 2000. http://completeplanet.com/tutorials/DeepWeb/index.asp.

2. Valerie S. Allen, Abe Lederman, “Searching the Deep Web- Distributed

Explorit directed Query Applications”, Proceedings of the 24th annual

international ACM SIGIR conference on Research and development in

information retrieval, September 9-12, 2001, New Orleans, Louisiana, United

States, Page-456.

3. Distributed Indexing/Searching Workshop, May 28-29,1996 in Cambridge,

Massachusetts, Sponsored by the World Wide Web Consortium,

http://www.w3.org/Search/9605-Indexing-Workshop/.

4. Dushay, N., J. C. French, et al., "A Characterization Study of NCSTRL

Distributed Searching," Cornell University Computer Science, Technical Report

TR99-1725, January 1999,

http://cs-tr.cs.cornell.edu:80/Dienst/UI/1.0/Display/ncstrl.cornell/TR99-1725.

5. Erik Selberg, Ron Daniel, Ken Weiss, Leslie Daigle, Luis Gravano, DISW’96

Query routing and Searching Breakout,

http://www.w3.org/Search/9605IndexingWorkshop/ReportOutcomes/S6Group1.h

tml.

93

5. Marti A Hearst, Luis Gravano (Ed.) “Next Generation Web Search: Setting Our

Sites”, IEEE Data Engineering Bulletin, Special issue on Next Generation Web

Search, September 2000, Page-38.

6. Monika Henzinger, Luis Gravano (Ed.), “Link Analysis in Web Information

Retrieval”, IEEE Data Engineering Bulletin, Special issue on Next Generation

Web Search, September 2000, Page 3.

8. Steve Lawrence, Luis Gravano (Ed.), “Context in Web Search”, IEEE Data

Engineering Bulletin, Special issue on Next Generation Web Search, September

2000, Page 25.

9. Ross Tyner, M.L.S., “Sink or Swim: Internet Search Tools & Techniques”,

February 18, 2002, http://www.ouc.bc.ca/libr/connect96/search.htm.

10. William Cohen, Andrew McCallum, Dallan Quass, Luis Gravano (Ed.),

“Learning to Understand the Web”, IEEE Data Engineering Bulletin, Special

issue on Next Generation Web Search, September 2000, Page 17.

11. Internet Exceeds 2 Billion Pages. July 10, 2000,

http://www.cyveillance.com/us/newsroom/pressr/000710.asp.

12. Chris Sherman, “The Future Revisited: What’s New with Web Search”, May

2000, Information Today, Inc., Online Journal,

http://www.infotoday.com/online/OL2000/sherman5.html.

13. MSDN library, October 2001.

14. The Code Project Developers Website, http://www.codeproject.com/

15. The Mind Cracker Developers Website, http://www.mindcracker.com/

16. The Code Guru Developers Website, http://www.codeguru.com.

94

17. The Windows Developers Website, http://www.idevresource.com/

18. The Development Forum, http://www.devx.com/

19. The Microsoft Home Page, http://www.microsoft.com/

20. The COM Developers Resources, http://www.widgetware.com/

21. The MSDN Online Edition, http://msdn.microsoft.com/

22. The COM Threading Model,

http://www.execpc.com/~gopalan/com/com_threading.html

23. The ATL Object Wizard for designing BandObjects, http://www.radbytes.com

24. Ivor Horton’s “Beginning Visual C++ 6”

25. Chris H. Pappas & William H. Murray, III “The Complete Reference Visual C++

6”

