
UNIVERSITY OF CINCINNATI

_____________ , 20 _____

I,______________________________________________,
hereby submit this as part of the requirements for the
degree of:

________________________________________________

in:

________________________________________________

It is entitled:

________________________________________________

________________________________________________

________________________________________________

________________________________________________

Approved by:
________________________
________________________
________________________
________________________
________________________



 Optimization of Performance and Sizing of Two Stage and Folded 
Cascode Op Amps 

  
 
 

A Thesis Submitted to the 
 
 
 

Division of Research and Advanced Studies 
of the University of Cincinnati 

 
 
 

in partial fulfillment of the 
requirements for the degree of 

 
 
 

MASTER OF SCIENCE 
 
 
 
 

in the Department of Electrical and Computer Engineering and Computer Science 
of the College of Engineering 

 
2002 

 
 

by 
 

Avinash Bhangaonkar 
 
 
 
 

B.E. University of Mumbai, 1999 
 

 
 
Committee chair: Dr. Joseph H. Nevin 

 



 ii 

Abstract 

The design of an opamp is a fairly complex task in itself. This thesis deals with the 

optimization of two-stage and folded cascode opamps. The optimization problems are 

considered to be non- linear constrained optimization problems; the constraints being non-

linear. The cost function and constraints are formulated using the level 1 MOSFET 

model. The Matlab function ‘fmincon’ has been used for the actual optimization process. 

A GUI is provided for the user so that the specifications can be readily changed. The GUI 

designed in Visual Basic accepts the specifications and then writes the constraints file 

based on that. It then proceeds to optimize the design in Matlab. In case of a two-stage 

opamp, there is an option to choose the set of functions whose weight can be varied in the 

cost function. The cost functions are, DC gain, size, power and gain bandwidth. The 

optimization process creates an array of points for the design and allows the user to select 

any point for simulation with PSpice. For a folded cascode operational amplifier 

optimization, the initial guess is very important, because the problem is highly non- linear. 

Taking this into consideration, the cost function is kept fixed as the size and the initial 

guesses are varied over a wide range, which can also be changed by the user. The plots in 

this case are the parametrical functions of the opamp, viz. DC gain vs. size vs. power, and 

gain bandwidth vs. phase margin vs. slew rate. Again, the user can select any point from 

the plot to simulate in SPICE. The software writes a SPICE netlist for the specified point 

and also launches PSpice, so that the design can be readily verified. This tool has been 

developed for analog designers who can appreciate the tradeoffs in the design procedure. 

A variety of optimal points is generated so that the designer can decide for 
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herself/himself the specifications that can be compromised. An Excel file is written so 

that the details of the design elements are accessible to the user. 
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1. Introduction 

 

a. Need for Analog Design Automation  

ASICs usually comprise of both analog and digital parts. Though the analog part occupies 

a very small percentage of the circuit and its area, it takes up most of the time for 

development. The analog part is indispensable for such circuits, because the real world 

inputs are invariably continuous in nature. So at the least, an A-to-D converter and D-to-

A converter are integral parts of the interface of these circuits. The time-to-market and 

product life cycles have been reducing over the years and place additional constraints on 

the design development and implementation time for them. The design complexity has 

also increased manifold for such circuits, and only advanced CAD tools can deal with 

these stringent constraints. Such tools are very well developed for the digital part, but 

they still have a very long way to go for the analog part. 

 

b. Current Approaches 

Analog design is made up of two distinct phases, synthesis and layout[1]. Synthesis is the 

front end step in which the netlist is developed on the basis of the specifications for the 

circuit. Layout primarily concerns itself with the translation of netlists to masks. 

It has been approached in two ways 

1) Top Down Approach 

• Topology Selection 

• Circuit Sizing 

• Design Verification 
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2) Bottom Up Approach 

• Layout Generation 

• Detailed Design Verification 

 

Synthesis 

Synthesis has two well defined steps for its implementation, topology selection and 

sizing. Topology can be defined hierarchically in terms of the lower- level sub-blocks. 

The one that best suits the purpose is selected by the designer. The performance criteria 

trickle down the design path to the lowest level, so that each of the constituent blocks 

satisfies the required constraints. At the most fundamental level, each of these blocks is a 

set of devices. Each of these devices is sized according to the specifications and also 

taking into consideration some design objective such minimum area or minimal power 

dissipation[5]. Sizing essentially determines the bias parameters, element values and 

device sizes. 

 

Approaches to Synthesis 

Synthesis is the exact opposite of analysis, where the device sizes and bias values are 

given and performance is measured by using a simulator such as SPICE. Thus during 

synthesis the devices and bias values do not have one to one correspondence with the 

performance specifications. That is, for a particular set of specifications, there can be 

many circuit designs. 
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Knowledge based approach requires encoding of specific heuristic design equations in a 

computer executable form for the topology under consideration[8]. Such methods have an 

advantage in terms of fast execution speed which allows more size possibilities to be 

explored. But these need manual input of design equations in the form of constraints and 

objective function for the specified performance objectives. Thus the lead time into the 

project is lot higher than other symbolic simulator using methodologies. This approach 

keeps the door closed for automatic inclusion of new circuit schematics. 

 

In equation based optimization approaches, analytic closed form design equations need to 

be hand coded to describe the system performance. In OPASYN[23] and CADICS[22] the 

design equations required the designer to derive and code the equations, which 

OPTIMAN[16] tried to solve by adding a symbolic simulator ISAAC[17] to make addition 

of new schematics an easier job. 

 

An alternative approach was to simulate the entire circuit during individual iterations, so 

that the time needed to design the equations and code them is saved[13]. But the 

disadvantage of tackling the synthesis problem with such an approach is that the search 

space is too large leading to longer run times and it is almost impossible to guarantee a 

good starting point. 

 

An in-between approach is used by ASTRX/OBLX[29] tool from CMU, where small-

signal characteristics are simulated efficiently, whereas other equations have to be 

provided.  
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Closed form approaches obviously failed on the market place and the open system 

approaches have a large overhead of CPU times and software resources. A delicate 

balance has to be achieved so that the trade-off between these two conflicting 

requirements is taken care of. 

 

Layout 

Layout of analog circuits is more matured than synthesis because ideas from digital 

layout can be directly utilized for the analog counterpart. Cell layout is concerned with 

the conversion of transistor level schematic to a mask, whereas system assembly deals 

with the placement of basic functional blocks and creation of a floorplan. 

 

Cell Layout Strategies 

Changes in circuit design often require the devices to be reshaped and reoriented. 

Individual devices are resized and placed, while a router interconnects them taking into 

consideration the parasitics and couplings that affect the circuit performance. 

ANAGRAM and KOAN/ANAGRAM II[9] has the optimizer in the placer itself, so that 

the size is optimized while placing the devices. These take into account the compatibility 

of wires (e.g. noisy and sensitive wires) while routing them. 

 

Latest generation of analog cell layout tools have categorized the task into two phases, 

device stacking followed by stack placement. The circuit is rendered as a graph of 

interconnected sources and drains and clusters of devices that ought to be stacks are 
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identified. An optimizer that judges the right stacking and placement of each stack then 

places these optimal stacks. 

 

An important issue to be handled while laying out analog cells is the sensitivity of the 

circuit to various parasitic couplings. Symmetric cells tend be behave better in case of 

analog circuits because the parasitics associated are also symmetric. The sensitivities are 

handled as constraints for the layout. Since the placement and routing steps are separate, 

a major problem posed is the estimation of space to be left around the devices for wires. 

One strategy is to leave some extra space around the devices as they are placed, route 

them and then minimize the area by analog compaction. Another approach is to place and 

route simultaneously so that as the devices are placed, the wires are placed too. 

 

The problem is further accentuated for a mixed-signal circuit. In this case the interference 

between the analog and the digital parts have also to be taken into consideration. The 

wires carrying analog signals have to be kept as far as possible from the digital lines. 

Also the power supply lines for these two have to be kept separate. In high performance 

chips, fast switching digital parts have to be removed far from the sensitive analog parts. 

 

Thus the analog and mixed signal design is much more complex than a purely digital 

circuit and needs more elegant handling and rigorously built tools.  
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2. Symbolic Analysis 

 

a. Definition 

Symbolic analysis is a method in which closed form analytic expressions are used as 

opposed to the numerical analysis where the variables are represented as numbers[15]. The 

variables such as currents and voltages in a circuit are dependent variables, whereas time 

and frequency are independent variables. The behavior of the circuit is described in terms 

of the dependent and independent variables with the circuit elements represented as 

symbols. 

 

Symbolic analysis does not actually compete with the numerical counterpart. It goes 

hand- in-hand with the numerical analysis in designing the circuit. Numerical analysis 

provides a series of numbers in a tabulated format and can verify the circuit behavior 

very quickly. But they are for a particular set of numbers, and can in no way suggest what 

parameters need to be changed to achieve the required performance. For studying the 

effect of changing the parameter values many simulations need to be carried out[31]. A 

symbolic simulator can return a first time correct analytical expressions for complex 

characteristics that cannot be worked out by hand. Good ins ight is offered by such 

expressions that describe the circuit behavior. The limitation of symbolic simulation is 

that it takes much more CPU time than numerical simulation. 
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b. Advantages 

When using symbolic simulators for circuit sizing, the expressions need to be accurate 

and compact. A nested format suits such an application[11],[14]. For the analysis of circuit 

behavior, the expressions should rather be expanded and simplified, so that the effect of 

the parameters can be studied better. New circuits can be analyzed faster and more 

accurately with symbolic simulators[7]. The effect of adding or removing components can 

be immediately seen with the change in the expression. Once a code is compiled, 

repetitive simulations can be carried out much faster than can be for a full numerical 

simulation at each step. 

Limitations  

Analysis of circuits was restricted to lumped, linear analog circuits for a while. MOS and 

bipolar devices are linearized around the operating point to get the symbolic expressions 

for CMRR and other attributes. The expressions for analog circuits are usually very large 

and unwieldy. To use them for gaining insight into the circuit behavior requires them to 

be approximated, so that the insignificant terms in the expression are neglected. The 

number of terms increases exponentially with the complexity of an analog circuit. This 

causes a rapid increase in the memory storage and processing time, especially with the 

size of the circuit. One way that has been used to overcome this limitation is by using 

nested formula evaluation. 

c. Algorithmic Aspects 

The methods that have been reported in the literature of symbolic analysis use one of the 

following techniques 

1) Matrix and determinant methods 
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2) Signal- flow-graph methods 

3) Tree-enumeration methods 

4) Parameter extraction methods 

5) Interpolation methods 

 

Signal flow graph method has been used frequently and is quite efficient. It is based on 

finding paths and all loops in a graph representing the circuit equations and constructed 

according to well-defined rules. Determinant methods are also popular and use 

determinants to solve the circuit equations. 

 

Approximation of terms is also an important and involved task in itself. The coefficients 

of the transfer function in terms of the frequency need to be dealt with in nested 

expressions. So an inherent possibility is that a term that may appear insignificant at the 

first glance for the innermost nested expression, may gain importance for the overall 

expression. So cancellation of terms has to been very precise. 

 

Hierarchical decomposition has been used for larger circuits so that the expression for the 

smallest possible sub-circuit is first developed and then the whole thing is combined 

bottom-up from there on. The Volterra series technique is used for weakly non-linear 

circuits, where the higher order response is added as a correction to the lower order 

response. 
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3. Optimization 

 

a. Introduction 

Improvement in computational power has been instrumental in designing complex 

engineering systems. Large amounts of data can be processed efficiently with the 

increase in computing resources. This has aided the corresponding development of 

designing techniques. These days solving a problem is not restricted to just getting the 

solution to a set of equations. The push is towards getting the best solution for the 

question at hand. The process of getting the best answer for a problem is optimization. 

As shown in Fig. 1(a) conventional design processes require the designer to use her/his 

experience and intuition for making the decisions. This is an advantage because 

conceptual changes can be brought about in the design. The conventional procedure is 

therefore less formal. The optimization procedure is mathematically rigorous and uses 

trend information to make decisions as illustrated in Fig. 1(b). The best approach for 

design of systems would be to integrate both the systems, so that the optimization can 

benefit from the designers experience[3]. At the same time, the computer conveniently 

handles the mathematically complex part. 

 b. Approaches in Optimization 

Optimization is a very wide topic to be addressed completely. The classification is 

possible in many different ways. One could be linear and non linear optimization. When 

the equations for a particular problem are linear, the optimization to reach any particular 

objective is called linear optimization. Non- linear optimization is the one in which at 

least  
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Note: Flow chart of the optimization processes as shown in “Introduction to Optimum 
Design”, by Arora, J. (1989) New York: McGraw-Hill. 
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one of the equations is non- linear. Another classification is constrained and unconstrained 

optimization. When for a given problem, there are certain equations or functions that 

have an upper or lower bound, they effectively constrain the solution space. Hence such 

problems are known as constrained optimization problems. Apart from the classification 

of optimization, there are many different algorithms that are used to tackle these 

problems. Examples of these would be genetic algorithms[24], geometric 

optimization[20][26], quadratic programming etc. 

c. Terminology 

Design Variables 

Parameters chosen to describe the design of a system are called the design variables. The 

very first and important step in the formulation of an optimization problem is choosing 

the set of design variables. The choice of the design variables is completely left to the 

designer. All options need to be investigated before zeroing on a set of the design 

variables. It may be beneficial to have more variables than needed for added flexibility to 

the problem. A numerical value can be assigned to any of those so that they are 

eliminated from problem formulation. Usually it is better to have design variables that are 

independent, so that any of those can be changed without any need to change any of the 

others. 

They are usually represented by ‘x’. 
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Cost Function 

Final design of a problem is completely dependent on the cost function. This is a scalar 

whose value is determined when the design variables are specified. It is basically a 

function of the design variables. Optimization is defined as the process of finding the 

minimum value for the cost function. For a particular problem the cost function may be a 

combination of many different functions. Such a problem is defined as a multi-objective 

design optimization[35]. There is no fixed method for solving such problems. One 

approach is to give weight factors to each of the components of this combined cost 

function. This helps in identifying the most important, because the one with a higher 

weight factor has a greater influence on the design. The weight factors are also needed to 

normalize the functions since they may not have the same order or units. 

It is usually represented by f(x). 

 

Design Constraints 

All restrictions placed on a design are collectively called constraints. Most of the designs 

require certain functions to be greater or lesser than a particular value. Some variables 

also have conditions imposed on them. For instance, they may not make sense if 

negative. These conditions are translated into problem as constraints, which need to be 

satisfied by the design solution.  
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Feasibility 

The problem solution that satisfies all constraints is called a feasible solution. The 

optimum solution obviously is a feasible solution. A solution that violates at least one 

constraint is called an infeasible solution. 

Implicit Constraints 

Some constraints are indirectly influenced by the design variables. It is not possible to 

express them explicitly in terms of the variables. Such constraints are called implicit 

constraints. 

Linear/Non Linear Constraints 

Constraint functions that have only first order terms of the design variables are called 

linear constraints. If the constraint has at least one term having order higher than one, 

then it is called a non- linear constraint. 

Equality/Inequality Constraints 

Constraints that need to have an exact value for a problem are called equality constraints. 

Most of the constraints need to have a value of “at least” or “at the most” a particular 

number. Such constraints are inequality constraints, and problems having only such 

constraints have inherently a bigger solution set. 

Equality constraints are usually represented by h(x)=0 and inequality constraints by 

g(x)≤0. 

Constraint Set 

A set of all the feasible designs is known as the constraint set. Typically, it increases 

when the number of constraints on a problem is reduced. 
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Active/Inactive/Violated Constraints 

For an inequality constraint, when the constraint is satisfied at the design solution i.e. 

gi(x) = 0, then it is called an active or tight or binding constraint. When the constraint is 

satisfied, i.e. gi(x) < 0 then it is called an inactive constraint. And for gi(x) > 0 it is called 

a violated constraint. Obviously, an equality constraint has to be either active or violated. 

 

Gradient Vector 

Let f(x) be a function of n variables x1,x2…xn. Let ci be the partial derivative of the 

function with respect to xi for i =1 to n. 

Hence,
x

xf
c

i
i

∂

∂
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L  … (2) 

Geometrically, the vector is normal to the tangent plane at x*. It represents the direction 

of maximum increase in the function. 

 

Hessian Matrix 

If the gradient vector is partially differentiated again with respect to each of the elements 

of x, then the n x n matrix obtained is known as the Hessian matrix. The Hessian is 

denoted by H or ∇2f. Each element of this matrix is a function in itself that has to be 

evaluated at x*. Since the function is assumed to be twice continuously differentiable, the 

cross partial derivatives are equal and the matrix is symmetrical.  
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Standard Optimization Model Attributes 

1) The number of independent equality constraints must be less than or at the most 

equal to the number of design variables.  If the number of equality constraints 

exceeds the number of design variables then an overdetermined set of equations 

exists. This may mean that there are either redundant conditions or formulation of 

the problem is incorrect. In case the number of constraints is equal to the number 

of design variables then the solution cannot be optimized because the only 

candidate solutions are the solutions to that set of equations. In case the number of 

constraints is lesser than the number of design variables, the optimum solution 

can be found. 

2) There is no restriction on the number of inequality constraints. These constraints 

are always represented as ‘ ≤ 0 ’. If there is a ‘ ≥ ’ constraint, then it is multiplied 

by –1 and represented in the standard form. 

3) If no constraints are present then it is known as an unconstrained optimization 

problem. 

4) If all the constraints and cost function are linear, then such a problem is known as 

a linear programming problem and is typically easy to solve. 

5) Multiplication of the cost function or any constraint does not change the design, 

though it changes the value of the function. Similarly addition of a positive 

number does not change the design. 
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d. Global vs. Local 

Global Minimum 

If a function f(x) has an absolute minimum at a point x* such that, 

f(x*) ≤ f(x) for all x in the feasible region, … (3) 

then it has a global minimum at x*. 

It is called a strict global minimum if the strict inequality holds. 

 

Local Minimum 

If a function holds the inequality, 

f(x*) ≤ f(x), for ||x-x*|| < δ , δ > 0, … (4) 

then it is said to have a local or a relative minimum at x*. 

 

Weierstrass Theorem for existence of global minimum 

If f(x) is continuous on the feasible set S which is closed and bounded, then f(x) has a 

global minimum in S. 

 

A closed set is the one in which the boundary points are also included and every sequence 

of points has a subsequence that converges to a point in the set. A bounded set is the one 

in which, for any point x, xTx < c, where c is a finite number. 

When the conditions of Weierstrass theorem are satisfied, it guarantees the existence of a 

global minimum. The converse is not true, i.e. a global minimum may still exist even if 

the conditions are satisfied. That is, it is a sufficient condition, not a necessary one. 
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Constrained Optimization 

In the general model, the aim is to find the design variable vector x* to minimize the cost 

function, f(x) 

subject to the equality constraints, 

hi(x) = 0 , i = 1 to p … (5) 

and the inequality constraints, 

gi(x) ≤ 0 , i = 1 to m ... (6) 

 

A point of the design space satisfying the equality constraints is a regular point if the 

gradients at that point are linearly independent. 

 

Each constraint has a multiplier associated with it, which is called a Lagrange multiplier. 

Lagrange multipliers are represented by ‘v’ for equality constraints and by ‘u’ for 

inequality constraints. 

 

Kuhn Tucker Conditions  

These are a set of necessary and sufficient conditions for regular points. Any regular 

point that is a minimum point must satisfy the K-T conditions. 

Necessary conditions for a point x* to be an optimal point 

 

Equality constraints 

 hi(x*) = 0, i = 1 to p … (7) 

 ∇f(x*) + v∇h(x*) = 0 … (8) 
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In words, it means that at the candidate minimum point, the gradients of cost function and 

constraints lie along the same line and the Lagrange multiplier is the proportionality 

factor. The multiplier can be both positive and negative for equality constraints. Any 

change in the design vector is accompanied by an increase in the cost function value 

when moving along a feasible direction. Any reduction in the cost function value is 

possible only with the violation of a constraint. 

 

Inequality constraints 

 ∇f(x*) + u∇g(x*) = 0 ... (9) 

 gi(x*) ≤ 0, i = 1 to m ... (10) 

 ui* ≥ 0, i = 1 to m ... (11) 

 ui*gi(x*) = 0, i = 1 to m ... (12) 

 

For a problem having both equality and inequality constraints, a Lagrangian or a 

Lagrange function can be defined as 

L = f(x) + vTh(x) + uTg(x) … (13) 

And the necessary condition becomes, ∇L = 0 … (14) 

in addition to the constraint satisfaction and the requirement that the Lagrange multipliers 

of the inequality constraints be non-negative. 
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e. Convex vs. Non-Convex 

A question of global optimality can be tackled in two different ways. 

1) For a closed and bounded set, calculate all the optimum points, and the one 

having the least function value is the global optimum. The Weierstrass theorem 

guarantees global optimality in such a case. 

2) Show that the optimization problem is convex, so that the local optimum is in fact 

the global one. 

 

Convex Sets 

If P1 and P2 are any points in a convex set S, then the entire line segment P1-P2 is also in 

S. 

                 

      (a)           (b)        

            

            

            

     (c)          (d)        

           

 Fig.2. (a) and (b) Convex Sets (c) and (d) Non-Convex Sets  

                                                                          

For an n dimensional space, the line segment between any points x(1) and x(2) can be 

written as, 

x = α x(1) + (1-α) x(2); 0 ≤ α ≤ 1 … (15) 
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Convex Functions  

A function is said to be convex if it lies below the line joining any two points on the 

curve f(x). 

For an n dimensional space this can be mathematically represented by 

f(α x(2) + (1-α) x(1)) ≤ α f(x(2)) + (1-α) f(x(1)); for 0 ≤ α ≤ 1 ... (16) 

for any two points x(1) and x(2) in S. 

This can be difficult to check since it requires taking into consideration an infinite 

number of pairs of points. An easier method to verify the convexity of a function is by 

evaluating the Hessian of the function. If the Hessian of a function is positive 

semidefinite, or positive definite at all points, then the function is convex. If the Hessian 

is positive definite, then the function is strictly convex. 

 

Convex Programming Problem 

The intersection of convex sets is always convex. For all convex gi(x), gi(x) ≤ ei is also 

convex, where ei is a constant. Intersection of all gi(x) ≤ ei gives rise to a convex set. 

The set S defined by 

S = {x | gi(x) ≤ 0, i = 1 to m ; hj(x) = 0, j = 1 to p} … (17) 

is convex if gi are convex and hj are linear. 

If any of the equality constraints is non- linear, then the set S is always non-convex. A 

constraint has to be convex if it has only linear equality and inequality constraints. 

If for a particular problem, the set S is convex and the cost function is also convex over 

the set S, then it is a convex programming problem. 
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For any Convex Programming Problem, the local minimum is also the global 

minimum. 

However convexity is a sufficient condition for global optimality. A non convex problem 

can have a global optimum, but to claim that requires a more exhaustive search of the 

design variable space. 

The second order necessary and sufficient conditions for an optimal point are obtained by 

writing the Taylor expansion of the Lagrange function in the feasible direction d. 

The necessary condition for the point to be a minimum point is that the second order term 

of the expansion must be non-negative. For the necessary conditions all active 

inequalities with non-negative multipliers are considered for determining the direction d. 

The sufficient condition is that the second order term is positive for all d in the constraint 

tangent plane. For the sufficient condition only the active inequalities with positive 

multipliers are considered for the determination of direction d. 

According to the strong sufficient condition, if ∇2L(x*) is a positive definite matrix, then 

the point is an isolated minimum point. 
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f. Optimization in Matlab 

For this work, Matlab was used as a tool for optimization. The ‘fmincon’ function was 

used in particular. This is how the fmincon algorithm works. 

In constrained optimization, the general aim is to transform the problem into an easier 

subproblem that can then be solved and used as the basis of an iterative process.  

The solution of the KT equations forms the basis to many nonlinear programming 

algorithms. These algorithms attempt to compute directly the Lagrange multipliers. 

Constrained quasi-Newton methods guarantee superlinear convergence by accumulating 

second order information regarding the KT equations using a quasi-Newton updating 

procedure. Matlab uses these Sequential Quadratic Programming methods, which solve a 

Quadratic Programming Problem at every major iteration. 

At each major iteration an approximation is made of the Hessian of the Lagrangian 

function using a quasi-Newton updating method. This is then used to generate a QP 

subproblem whose solution is used to form a search direction for a line search procedure. 

An SQP Algorithm has the following major steps 

1) Hessian Matrix update of the Lagrangian function 

2) QP Problem Solution 

3) Line search and Merit function calculation 
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Updating the Hessian Matrix 

At each major iteration a positive definite quasi-Newton approximation of the Hessian of 

the Lagrangian function, H, is calculated using the BFGS method. When the Hessian has 

to be modified using the first phase of the procedure to keep it positive definite, then 

“Hessian modified” is displayed. If the Hessian has to be modified again using the second 

phase, then “Hessian modified twice” is displayed. When the QP subproblem is 

infeasible, then “Infeasible” is displayed. Such displays are usually not a cause for 

concern but indicate that the problem is highly nonlinear and that convergence may take 

longer than usual. Sometimes the message “No update” is displayed. This can be an 

indication that the problem setup is wrong or that the function is discontinuous. 

 

QP Problem Solution 

At each major iteration of the SQP method a QP problem is solved. The method used in 

the Optimization Toolbox is an active set strategy. It has been modified for both Linear 

Programming (LP) and Quadratic Programming (QP) problems.  

The solution procedure involves two phases: the first phase involves the calculation of a 

feasible point (if one exists), the second phase involves the generation of an iterative 

sequence of feasible points that converge to the solution. In this method an active set is 

maintained, which is an estimate of the active constraints (i.e., which are on the constraint 

boundaries) at the solution point. 

The active set is updated at each iteration, and this is used to form a basis for a search 

direction. Equality constraints always remain in the active set. The search direction is 

calculated that minimizes the objective function while remaining on any active constraint 
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boundaries. The search direction is guaranteed to remain on the boundaries of the active 

constraints.  
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4. Algorithm Development 

 

Many designers using a multitude of techniques have approached analog circuit design 

automation. There are always some advantages and some limitations for any particular 

method. So choosing a method for analog synthesis is somewhat “analog” in itself. There 

are trade-offs to handle when a method is decided upon. The most common trade-off is 

that between CPU time and accuracy. As the equations become more and more accurate, 

their complexity naturally increases and so does the burden on the CPU. 

 

a. Intended Audience 

This work is concentrated on analog synthesis. It basically aims to build a frontend tool 

that will convert a set of specifications to a sized circuit. The backend, i.e. the conversion 

from circuit to a layout is not in the scope of this work. This has been designed primarily 

for a designer who has at least some understanding and appreciation of analog circuit 

design. Opamps are the building blocks of many analog circuits and hence have been 

dealt in detail in this work. Designing an opamp is a very involved task in itself. So to 

build up circuits containing one or more opamps is a challenge even for an expert 

designer. This work tries to ease that aspect of the circuit design. If the technique needed 

to synthesize the device sizes from circuit specifications of an opamp is made available to 

a designer, then she/he can concentrate on other areas of the design. 
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b. Targeted Problem 

Using automated design helps further in optimizing the sizes of the devices for a 

particular cost function. Usually one of the parameters such as power dissipation, or area 

or DC gain is considered as a cost function and others are constraints for the design. 

Expert designers use their experience and rules of thumb to size the circuit. This does not 

push the circuit design to the edge, and hence is more conservative in nature. The circuit 

design usually stops when the designer is satisfied that it will work and is within 

reasonable limits. Thus seldom does such a hand-designed circuit give the very best 

performance it can. The aim of this work is to relieve the designer of doing the iterations 

needed to get the circuit designed. 

 

Nonlinear circuits exhibit a very subtle quality of being sensitive to initial guess. Many 

consider this as a problem and thus they try to linearize the equations as much as possible 

to get the same solution for any starting point. On the contrary this nonlinearity provides 

richness to the designing alternatives. A small change in the initial point can give rise to a 

dynamic difference in the solution. This behavior can be exploited to the fullest to 

generate a larger solution space. Inherently such a design problem can offer more options 

during optimization than a linear one. Thus the nonlinearity has been left as is in the 

design equations. The designer can choose from the array of solutions created because of 

different starting guesses. The variety provided by such a handling of the problem 

outweighs the limitations due to the complexity of the equations and the resultant 

computational time. 
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This tool has been designed keeping in mind users who will be able to appreciate the 

tradeoffs between different design constraints. For example, the slew rate of an opamp 

decides the speed with which the opamp reacts to a change in signal. For a two-stage 

opamp it is defined as a ratio of the current in a particular branch to the coupling 

capacitor. And the capacitor value cannot be reduced below a certain limit. So the way to 

increase the slew rate is by increasing the current. But this implicitly means that the 

power dissipation associated with the circuit is increased. Thus depending on the initial 

guess, the program returns different solutions, some of which have a higher slew rate. 

These designs also show higher power dissipation. The designer using this software 

should be able to judge the best design to suit her/his purpose. For instance, some 

applications may require the design to be dissipating the least possible power, even if it is 

at the expense of speed of response from the circuit. On the other hand some applications 

might need a faster change in output with a change in input, and may be able to tolerate 

higher power. 

 

c. Approach used and its justification 

This tool is designed so that it can be used on as broad a gamut of machines as possible. 

It was imperative to use standard software to meet this end. Hence MATLAB was chosen 

as the workhorse for this project. MATLAB also suits the requirement because it has an 

built- in subroutine for constrained optimization problems. In particular ‘fmincon’ was 

used for the optimizer. 
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d. Algorithm and the flow of logic 

At the heart of the algorithm are three files that interact with each other, as shown in 

Fig.3. 

• The first one contains information regarding the cost function. It contains the cost 

function itself and its gradient. Though providing the gradient is not strictly 

necessary, it does help processing the program faster. It also has global and other 

local variables needed to compute the cost function value. 

• The second file stores all the constraints for the current problem and its gradients. 

It definitely helps to provide gradients in this file as well because there are 

numerous constraints, so the processing time is reduced to a larger extent. 

• The third file is the main file that basically does all the processing. The first two 

files are function files that just return the cost function, constraints and their 

gradients. This file accepts the function values from the previous files and uses it 

to generate an optimum point for the current case. The circuit equations are non-

linear and hence the solution definitely depends on the initial guess. So numerous 

guesses are tried to generate a large solution space. This offers further flexibility 

to the designer. 
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Fig.3. Interaction among MATLAB files. 

 

Though the basic approach to the optimization is the same, there is a subtle difference 

between the two-stage and folded cascode optimization. 

 

The two stage optimization problem behaves like a convex programming problem. For 

about 800 different starting points, the solution was found to be the same. This 

completely defeats the purpose of giving a large solution space to the user. This 

shortcoming is annulled by varying the cost function. The problem is treated as a multi-

objective constrained optimization. 

 

The obvious choices for the cost function variables are DC Gain, Power Dissipation and 

Size of the circuit. The first variable needs to be maximized and the other two minimized. 

There are two major hurdles in such multi-objective optimization. Firstly the units of 

these functions are not the same, so they need to be normalized before clubbing them 

together. This normalization is usually done by dividing the individual cost functions by 
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their respective values at the initial guess. The other important issue to be tackled is the 

magnitude of these functions. For instance, the DC gain is in thousands, power 

dissipation is in hundreds and size ranges from tens to hundreds, depending on the 

specifications. These two things are simultaneously taken care of by the cost multipliers 

function multipliers. The multipliers are then varied with successive iterations so that an 

array of solutions can be obtained. 

 

For the folded cascode case, the cost function is kept fixed as the size of the circuit. Here 

just changing the initial variable values yields a variety of different solutions. They are 

then represented graphically in the form of plots with the axes as power dissipation, size 

and DC gain, and slew rate, phase margin and gain bandwidth. The designers then have 

the choice of selecting any of the solutions and verify the design using SPICE. 

 

e. Interface Development 

The interface for this software has been designed in Visual Basic and MATLAB[27]. 

There is a tradeoff between user flexibility and designing complexity for any kind of 

software. A designer will definitely like to have as much flexibility as possible, which in 

turn means additional coding overhead for the software designer. A concerted effort has 

been made to optimize the flexibility keeping a track of the constraint of design 

complexity. 

 

In order to elucidate the interface design, a flow chart has been prepared to describe the 

logical trend in the program. 
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As seen in the flow charts in Fig.4 and 5, there is a need for an interface right at 

beginning, where the circuit specifications are read in. These are useful for creating the 

constraint equations for the problem. The specifications are maximum power dissipation, 

minimum slew rate, maximum and minimum common mode ranges and outputs, 

minimum phase margin, minimum gain bandwidth product, and minimum DC gain. In 

addition to reading in these values, the interface has five buttons. 
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Optimization 
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The five functions that the buttons on the interface perform are as follows  

Submit 

This button accepts the specifications from the user. It checks whether all the fields are 

provided and then proceeds to write a constraint file in Matlab. If any of the field is left 

empty, then it displays an error message to the user. It also asks for the path where all 

other files are stored and sets that path for rest of the files. The constraint file is written in 

the same directory as the path.  

Reset 

 This button provides default values to the specifications. It also displays a message to the 

user asking her/him to press the “Submit” button if the values are correct and acceptable.  

Optimize  

When clicked it first launches Matlab and then executes a couple of commands in the 

Matlab environment. It sets the path for Matlab and then executes the optimization 

routine, which is assumed to be stored in the same directory.  

Write SPICE File 

It reads the array index number written by the Matlab routine. It then reads the details for 

those particular solutions from the Excel file written previously during Matlab 

simulation. It then writes a SPICE file in the same directory.  
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Launch PSpice 

On clicking this button PSpice is launched. 
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5. Two-Stage OpAmp Circuit 

 

Transistor Model 

A model is a representation of a device in the form of equations so that the behavior of a 

circuit can be predicted or the performance of the system verified. An MOS transistor is a 

non- linear device because of the large signal I-V characteristic. However, it can be 

linearized around the operating point for the small signal model[2]. The voltage and 

current variables for N and P channel MOSFETs are shown in Fig. 6. 

 

 

    N-channel     P-channel 

Fig.6. Conventions and symbols for N and P channel MOSFETs 

 

a. Large Signal Model 

The Shichman and Hodges Model or Level 1 SPICE model is described here for an 

NMOS device[6][10][33]. The same model can be used to describe a PMOS device by 

multiplying all the voltages and currents by -1 and using the absolute value for p-channel 

threshold. 

 

This model is developed from the following equation 
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The parameters in this equation are 

µ0 = surface mobility of the channel for the NMOS and PMOS device (cm2 /V-s) 

Cox = e/tox = capacitance per unit area of the gate oxide (F/cm2) 

W = Effective Gate Width 

L = Effective Gate Length 

l = channel length modulation parameter (volt -1)  

 

The threshold voltage is given by 
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FF = strong inversion surface potential (V) 
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FMS = FF (substrate) - FF (gate) … (7) 
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FF (gate) 
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n
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q
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GATEln   [n-channel with n+ polysilicon gate] … (9) 

QSS = oxide charge = q NSS … (10) 

k = Boltzmann’s constant 

T = temperature (K) 

ni = intrinsic carrier concentration 

 

The behavior of MOS transistors depends on the source to bulk voltage and hence they 

are treated as four terminal devices. The equations are better represented by electrical 

parameters rather than physical ones when being used for circuit design[18]. Hence the 

drain current is often expressed as 
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where the transconductance parameter ß is defined in terms of physical parameters as 
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There are various regions of operation for an MOS transistor. These regions depend on 

the value of (vGS-VT). 

 

When (vGS-VT) = 0, the MOSFET is said to be in the cutoff region and the channel acts 

like an open-circuit. 

ID = 0, (vGS-VT) = 0 … (13) 
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The next two regions of operation depend on the value of vDS(sat) = (vGS-VT). 

If vDS is less than vDS(sat) then the transistor is in the non-saturated region and the drain 

current is given by 

( ) ( )VvvvvVv
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W
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 −−′= 0;

2
 … (14) 

For vDS greater than vDS(sat), the drain current becomes independent of vDS and transistor 

is said to be in saturation. In such an operation, the current is given by 
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In reality the drain current is not independent of the drain-source voltage because the 

channel length is shortened as the voltage increases, resulting in higher current. This 

phenomenon is called channel length modulation and is incorporated in the equation by 

introducing a parameter l. The factor multiplied in the equation is (1+lvDS). And the 

entire equation is given as, 

( ) ( ) ( )VvvvVv
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2
2 λ  … (16) 

A circuit version of this large signal model has a current source that depends on the drain, 

source, and bulk and gate voltages. This model is completely defined by l, VT , g, 2|FF| 

and K'. The function of the large signal model is to solve for the drain current and 

terminal voltages of the device. 
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The charge storage capacitances are given by following relations 

Off 

CGB = Cox Weff Leff + 2 CGBO Leff … (17) 

CGS = Cox LD Weff = CGSO Weff … (18) 

CGD = Cox LD Weff = CGDO Weff … (19) 

Saturation 

CGB = CGBO Leff … (20) 

CGS = Cox (LD + 0.67 Leff) (Weff) = CGSO Weff + 0.67 Cox (Weff) (Leff) … (21) 

CGD = Cox LD Weff = CGDO Weff … (22) 

Non – Saturation 

CGB = CGBO Leff … (23) 

CGS = Cox (LD + 0.5 Leff) (Weff) = CGSO Weff + 0.5 Cox (Weff) (Leff) … (24) 

CGD = Cox (LD + 0.5 Leff) (Weff) = CGDO Weff + 0.5 Cox (Weff) (Leff) … (25) 

The large signal model is shown in Fig. 7. 
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Fig.7. Large Signal Model 

 

b. Small Signal Model 

Once the operating point is determined, the small signal model comes into play. It is a 

linearized model that is valid only over a small range where large signal voltages and 

currents can be represented by a straight line. 

 

Small signal model parameters are represented as the ratio of small perturbations of large 

signal models or as a partial differentiation of one large signal parameter with respect to 

another. 
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The bulk-drain and bulk-source conductances are negligible at the operating point, as 

these junctions are normally reverse biased. 
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The channel conductances are defined as 
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The values that these small signal parameters take depend on the region of operation of 

the transistor. Thus these values are completely dependent on the large signal parameters. 

 

The values in saturation region are given by 
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In the non-saturation region the values of the small signal parameters are given by the 

following equations. 
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Fig. 8 shows the small signal model. 

 

Fig.8. Small Signal Model 

The large signal model used here neglects many second order effects, especially the ones 

due to short and narrow channel dimensions. But this model has been chosen because its 

simplicity allows equations to be developed for complex circuits such as the opamps. 
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Fig.9. Two-Stage Operational Amplifier 

 

c. Description of the circuit 

Fig. 9 is a schematic of a typical two-stage opamp[19][21]. Transistors M1 and M2 are 

NMOS transistors and form the differential input gain stage. Gate of M1 is the inverting 

terminal and that of M2 is the non- inverting input of the opamp. The gain of this stage is 

the transconductance of M2 multiplied by the output resistance at its drain. The output 

resistance is contributed by the differential input transistors and the current mirror pair 

M3 and M4. The current mirror pair increases the resistance in a much smaller area than 

a passive resistance and also converts the dual ended input to single ended output. The 

differential input does not really contribute towards the actual gain. This is provided by 

the second stage formed by M6 and M7. The PMOS transistor M6 is in the common 

source mode and hence provides a good transconductance value. The resistance at the 
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drain of M6 is the output resistance of M6 itself, output resistance of M7 and the load 

resistance.  

 

d. Mathematical Equations  

The transfer function of the opamp in Fig.9, as returned by the program SAPWIN[34], is  
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The poles and zeros of this circuit can be determined by assuming that the poles and 

zeros are far apart. They are 
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The specifications for an operational amplifier circuit are given in terms of parameters 

such as the DC gain, unity gain bandwidth product, phase margin, slew rate and the input 

and output ranges. These have to be expressed in terms of the sizes of the transistors so 

that they may be used for the optimization procedure. 
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e. Optimization approach 

The sizing problem is a non- linear optimization issue that has been solved by using the 

optimization subroutine of MATLAB. Here a cost function is provided and design 

specifications are considered to be constraints for the optimization problem. The non-

linear constraints render the design problem to be non-convex. This leads to the issue of 

sensitivity of the design to the initial guess. There are two ways in which this topic is 

perceived. This non-linearity causes the dynamics of the optimization problem to be rich 

in behavior. There is a possibility of getting very good solutions in such cases. If, on the 

other hand, the problem is conceived to be a convex one, then the final design is 

independent of the starting point and for the given set of specifications there is only a 

single optimal solution. 

 

The routine perceives every variable and parameter as just a number. To keep the 

program as accurate and as effective as possible, it is necessary to decide the units for the 

variables and other parameters so that they do not become unwieldy for the optimization 
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software. Values of capacitances are seldom more than a few nano-farads whereas the 

Unity Gain Bandwidth is usually in MHz. Thus in the same problem there are about 15 

orders of magnitude difference. For the routine to work properly it is imperative to keep 

the orders of all the quantities about the same. Otherwise the variables with greater 

magnitudes render the smaller quantities ineffective. 

 

For this particular problem, the units are decided upon as depicted in the Table 1. 

Table.1. Quantities and units 

Variable Units 

Voltage Volts 

Current µA 

Resistance MΩ  

Capacitance  pF 

Power µW 

Frequency MHz 

 

f. Cost function and constraint formulation 

Sizing of the circuit requires the designer to decide the magnitude of Cc, Ws and Ls for 

all the transistors, branch currents I5 and I6, and bias voltage Vgg. It can be easily inferred 

that M1 and M2 have to be exactly matched as must be M3 and M4. Thus M1 and M3 

can be replaced by M2 and M4 respectively. This reduces the dimensionality of the 

problem. Also the gms, IDs and W/Ls of the transistors are related. So for a given 
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transistor either two of these three can be selected as a variable. For the calculation of the 

auxiliary bias voltage Vgg,  
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can be used. 

Thus the design variable space is much smaller than it appears to be. 

 

A DC offset in the design should be avoided or at least reduced as far as possible. The 

DC offset the output voltage present without the input. So in order to make the DC 

operating point such that there is no DC offset, the simplified topology is considered, as 

shown in Fig.10. 

 

Fig.10. Topology for determining DC operating point 
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The gate-source voltages of the transistors M5* and M7 are the same, and likewise for 

M4 and M6. If the output voltage has to be zero when the input is absent, then the 

following relations must hold. 
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The independent variables chosen are gm2, gm5, gm6, I5, I6 and Cc. Thus the design is 

restricted to be a six variable problem even if at the first glance the number of variables 

seems to be much higher. 

 

The constraints are directly designed from the expressions used to define them and using 

the variables fixed for the problem formulation. The cost function can be area which can 

be adequately represented as the sum of the W/L ratios of the transistors, or it can be 

power dissipation or DC gain. The final design values returned primarily depend on the 

initial guess and the cost function, since the constraints are the same for all the different 

design objectives. 

 

For example, the minimum output voltage is given by Vss + 2I6/gm7. But the design 

variables does not include gm7, hence it is necessary to express gm7 in terms of the design 

variables viz., gm7 = (gm5 I6)/I5. 

Hence 
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Similarly all other constraints are converted from their regular forms to the required 

variable set. 
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6. Folded Cascode Operational Amplifier 

 

a. Description of the circuit 

All amplifier circuits can be reduced to the simple relation between the gain, 

transconductance and output impedance. 

Gain = gm Ro … (1) 

The gain can thus be increased by making the output impedance larger[25]. This is exactly 

the idea used in a cascode opamps. But in a simple telescopic cascode stage there is an 

inherent problem tha t the increase in gain is at the cost of reduction in the input range 

since the cascode stage comes directly inline with the gain amplifiers. A method used to 

overcome this hurdle is by using transistors of the opposite type as the cascode stages, 

thus they form a separate branch leaving the input range unchanged. There is always a 

price to pay for improving any circuit performance in analog design. The cascode stages 

obviously need more transistors and hence larger area. 

 

In Fig.11, transistors M12 through M19 determine the common mode feedback output to 

be fed to the amplification stage. In this thesis only the sizing of the gain stage or the 

amplification stage has been considered. This stage is made up of M1 through 

M11assuming that the bias stage does not much affect the AC characteristics of the 

amplification stage. 

 

From the topology it can be found out that the transistor pairs, M1 and M2, M4 and M5, 

M6 and M7, and M8 and M9, must have the same size. 
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b. Mathematical Equations  

The performance specifications are given as 
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Fig.11. Fully Differential Folded-Cascode Op-amp 
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In the above relations CL1 = Cgd4 + Cdb4 + Cdb1 + Cgs6 + Cgd6 +Cgd1 … (11) 

The optimization strategy is the same as that for the two stage op-amp. In this case the 

variables are chosen to be Iss, Icasc, gm1, gm3, gm4, gm6, and gm8. Constraints are formed 

using the same methods. 

 

c. Optimization Approach 

There is a very subtle difference between the approach to two-stage and folded cascode 

opamp optimization. In case of a two-stage opamp, it behaves almost like a convex 

problem. Hence to generate more solutions, the cost function is varied. In case of a folded 

cascode opamp, the problem is highly non- linear and hence is very sensitive to the choice 

of initial points. This behavior is taken into consideration and the initial points are varied 

to give the user a greater selection of solutions. 

d. Cost function and constraints formulation 

The cost function and constraints are formed in exactly the same manner as the two-stage 

opamp. 
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7. Results and Discussion 

 

The optimization problems were tackled with two different approaches. The two stage 

opamp was designed by varying the cost function and the sizes of the transistors for the 

folded cascode opamp were decided by changing the initial guess. This is done because 

the two stage opamp behaves like a convex problem with the given set of equations and 

constraints. Hence the starting point for the optimization process does not make any 

difference and solution converges to the same point. Whereas, for the folded cascode 

case, the problem is highly non- linear and non-convex, making it imperative to find out at 

least a few different design possibilities for the designer. 

 

a. Two Stage OpAmp 

For the purpose of testing the software, the following design specifications were 

considered. 

 

DC Gain = 4000; Gain Bandwidth = 1MHz; Power Dissipation = 1000 µW; 

Slew Rate = 2 V/µs; Minimum Output = -2V; Maximum Output = 2V; 

Minimum CMR = -1V; Maximum CMR = 1V; Phase Margin = 45º 

Other related parameters were fixed as follows. 

Positive supply voltage Vdd = 2.5V 

Negative supply voltage Vss=-2.5V 

Load Capacitance CL = 5pF 

Load Resistance RL = 1M Ω  
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Results for variation in Size and DC gain multipliers  
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Fig.12. Power vs. DC Gain and Size  Multipliers  

 

Fig .12 shows that the minimum power possible for these design specifications is 70µW. 

Also as the magnitude of the DC Gain multiplier increases for a constant size multiplier, 

the power dissipated keeps on increasing. This is due to the fact that both of them are 

proportional to I6, in a way. The increase in power is much faster when the size multiplier 

is small in magnitude. As the size multiplier grows in magnitude, this rate of change in 

power is gradual. 
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Fig.13. Size vs. DC Gain and Size Multipliers  

 

Fig.13 shows more varied distribution than the corresponding power plot. The size in this 

algorithm is given by the summation of the W to L ratios of all the transistors. The 

minimum sum is seen to be around 13 and the maximum is seen around 400. The 

maximum size is reached when the size multiplier is zero and the DC gain multiplier is 

the highest. This is expected because, when the cost multiplier for the size is zero, the 

weight assigned to that in the overall cost function is zero. Hence it is the least effective 

of them all. For quite a few cost multiplier values, the smallest possible size of the circuit 

is obtained. The graph shows a very interesting characteristic regarding the change in 

values of size. The optimal size suddenly increases from around 25 to 250 for a small 

change in the DC Gain multiplier. The reason for this is switching constraints. 

Specifically the case of c1=2.5 and c2=0.004 and 0.006 was considered. For these values, 

a change in size from 13.8 to 214 was observed. The active constraints for the first set of 
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values are DC gain, slew rate, phase margin, minimum CMR and the lower bound on Cc 

was also reached. Whereas for the second set, the active constraints were slew rate, phase 

margin, minimum output, W to L ratio for M6 and the lower limit of Cc was again 

reached. The Lagrangian multipliers also changed their values for the common active 

constraints for the two cases. For instance, the multiplier for slew rate for case (1) was 61 

which changed to 253 and that of phase margin was 0.75, which increased to 4.3. The 

increase in a constraint multiplier value indicates the bearing that the constraint has on 

the solution. So when the constraint having the highest value of multiplier is varied, it has 

the biggest impact on the solutions. These switching conditions cause the sudden changes 

in the optimum value. 

 

0
1

2
3

4
5

6

0

0.005

0.01

0.015

0.02
0

2

4

6

8

10

12

14

16

x 10
4

Size Multiplier(c1)

DC Gain

DCGain Multiplier(c3)

D
C

 G
ai

n

 

Fig.14. DC Gain vs. DC Gain and Size Multipliers  
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DC gain exhibits a plethora of different values as the multipliers vary. As can be logically 

deduced, the gain is highest when the multiplier related to it is high and other multipliers 

are smaller. The minimum possible gain is predominant in the region where gain 

multiplier is low and the size multiplier is quite high. The minimum possible gain given 

in the specifications is 4000. A condition similar to that of the size plot is seen in this plot 

in Fig.14 too. The change in DC gain from minimum to a very large number can also be 

attributed to the switching constraints. 
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Fig.15. Gain Bandwidth vs. DC Gain and Size Multipliers  

 

The trend seen in the gain bandwidth plot in Fig.15 is not different from the other three. 

For lower values of gain multiplier and higher size multiplier, the gain bandwidth latches 

on to the minimum limit. As the factor determining the relative weight of gain multiplier 
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in the combined cost- function increases, the gain bandwidth product increases. There is a 

twofold increase in the gain bandwidth product with the change in cost factors. 

 

Analyzing all the plots at the same time gives a very good perspective of the entire 

opamp design process in specific and of any analog design process in general. For 

obtaining higher gain and higher bandwidth for a given set of specifications, a price has 

to be paid in terms of real estate and heat dissipation. This is because there is a 

tremendous increase in both size of the circuit and the power dissipated by the circuit. 

The slew rate, which is proportional to current, also increases with an increase in power, 

which is proportional to the square of current. It is almost impossible to overemphasize 

that there is no single best general solution for analog design. The keyword to dwell upon 

over here is “general”. Most of the analog design problems are highly specific and 

application oriented. 
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Results for variation in size and power multipliers  
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Fig.16. Power vs. Power and Size Multipliers  

 

As can be seen in Fig.16, the power decreases with an increase in the power and size 

multipliers. At very low values of power multiplier, the power is quite high around 

150µW, but it reduces to about 70µW as the cost multiplier increases in relative weight. 

For a constant power multiplier, the power dissipation increases with a reduction in the 

magnitude of the size multiplier. For higher power cost function factors, the power 

remains low for a longer time and then switches to its higher value. This can be deduced, 

because a higher factor for the power cost function translates into more relative weight 

for power in the overall cost. 
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Fig.17. Size vs. Power and Size Multipliers  

 

In Fig.17, the plot of size vs. multipliers reveals that the size remains quite small for a 

large range of multiplier values. This gives the designer an additional advantage of sorts 

because for a larger solution set, the size, which in many cases is the most important 

aspect of design, is quite small. On the whole, the size decreases with an increase in 

weight of size multiplier and power multiplier.  
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Fig.18. DC Gain vs. Power and Size Multipliers  

 

The DC gain trend, as seen in Fig.18, is very similar to that of the plot of size. For all the 

points that show minimum size, corresponding points on the DC gain plot also 

demonstrate minimum allowable gain. This could also be thought of as a trade-off in the 

cost functions. For a higher DC gain, higher power dissipation has to be allowed in a 

larger circuit. When the specific values of c1=3 and c1=3.5, for c2=2 were analyzed, as 

expected, switching constraints were observed. The minimum output and upper limit of 

W to L ratio for M6 switched off when c1 was changed from 3 to 3.5. Conversely the 

constraints for CMR min and DC gain became active. Such switching constraints are 

responsible for the change in cost function values. 
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Fig.19. Gain Bandwidth vs. Power and Size Multipliers  

 

The gain bandwidth plot, as shown in Fig.19, also exhibits one-to-one correspondence 

with the DC gain and size plots. The maximum possible value is seen to be about 

4.2MHz and the lower limit is reached at the other end of the spectrum. The fluctuations 

in gain bandwidth have repercussions on the other cost functions. It grows in tandem with 

the dc gain and at the expense of power and size. As the weight assigned to the size 

decreases, its relative impact in the overall cost function reduces. Hence the size of the 

circuit increases, due to the increase in the transconductance of M2. This translates into a 

higher gain bandwidth product. 
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Results for variation in power and DC gain multipliers  
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Fig.20. Power vs. DC Gain and Power Multipliers  

 

As seen in Fig.20, the distribution of the power function over the power and DC gain 

multiplier axes has its minimum when the multiplier for power is high and that of the DC 

gain is low. The value increases as the power multiplier reduces or the DC gain multiplier 

increases. When two points were considered with c2=1.5 and c3=0.004 and c2=1.5 and 

c3=0.006, they too showed a tremendous change in the cost function components with 

such a small variation in the cost function multiplying factors. The gain increased from 

72dB to 100dB, size increased from 13.8 to 250, and power dissipated from 70µW to 

95µW. This stupendous change can be attributed to constraints which were inactive 

becoming active and some which were active becoming inactive. Apart from this, the 

Lagrangian multipliers of the constraints continuing to remain active did change too. For 
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instance, DC gain, which was latched on to the lower limit, increased by more than an 

order to make the DC gain constraint inactive, the slew rate constraint multiplier changed 

almost by a factor of 10 and so did that of the phase margin by more than a factor of 3, 

from .75 to 2.5. Also min CMR constraint became inactive, whereas that of minimum 

output and the upper limit of W to L ratio of M6 became active. 
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Fig.21. Size vs. DC Gain and Power Multipliers  

 

Again in Fig.21, it can be observed that the summation of W to L ratios is quite low when 

the power multiplier is high. As the DC gain multiplier increases in value, the total W to 

L ratio tends to increase. The higher value is seen to be around 300. Power and size 

increase and decrease together.  

 



 74 

0
1

2
3

4
5

6

0

0.005

0.01

0.015

0.02
0

0.5

1

1.5

2

x 10
5

Power Multiplier(c2)

DC Gain

DCGain Multiplier(c3)

D
C

 G
ai

n

 

Fig.22. DC Gain vs. DC Gain and Power Multipliers  

0

1

2

3

4

5

6

0

0.005

0.01

0.015

0.02
0

1

2

3

4

5

Power Multiplier(c2)

Gain BW (MHz)

DCGain Multiplier(c3)

G
ai

n 
B

an
dw

id
th

 

Fig.23. Gain Bandwidth vs. DC Gain and Power Multipliers  
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Similar trends are seen in the plot of DC gain and gain bandwidth, illustrated in Figs. 22 

and 23. But an important point to consider here is that a designer would like to have 

higher DC gain and gain bandwidth, but rather keep the size and power low. Even if the 

trends are similar, they are opposite in nature, so far as the objectives are concerned. 

Hence analog design is usually a compromise between two conflicting cost functions. 

 

SPICE Simulation 

 

 

Fig.24. Gain plot of a two stage opamp 

 

A certain point is chosen from the array of solutions and using those values, the circuit is 

verified using PSpice[28][30]. As seen in Fig.24, the DC gain is more than 70, which is the 

specified minimum. The sum of W to L ratios is 13.5.  
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b. Folded Cascode Opamp 
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50
100

150
200

250

80

85

90

95

0

1000

2000

3000

4000

5000

Size

Optimal Solutions

DC Gain

P
ow

er

 

Fig.25. DC Gain vs. Size vs. Power 

 

The plot in Fig.25 of DC gain vs. Size vs. Power does not really describe any trend 

because it is essentially a plot of three different parameters describing the folded cascode 

opamp circuit. That does not in any way mean that it is not insightful to analyze this 

graph. Another view of the same, shown in Fig.26, which can aid the process, is the one 

looking over the top of the box, so that Size forms the x-axis, DC gain forms the y-axis 

and Power on the z-axis is just seen as points on this graph. The color coding is such that, 

for the entire range of power values, the lowest one fourth of the range is blue, next is 
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green, next is magenta and the top one fourth is red. This distribution is not according to 

the number of points; it is according to the absolute value of power dissipation, because 

the decision of the designer is going to be based on it. 
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Fig.26. DC Gain vs. Size  

 

These solutions have been obtained by changing the initial guess, the cost function, 

specifications remaining the same. The most primitive deduction from this plot is that the 

problem is non- linear. There are 68 different solutions obtained from 2187 initial guesses. 

A criterion for accepting solutions has been put in place so that the user is not 

overwhelmed by sheer numbers. Since the enhancement of any cost function is at the 

expense of some other, the maximum additional allowable cost is limited to thrice the 

minimum of the costs obtained. So in effect, if the cost function is Size, and the least size 
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value obtained is ‘x’ then an acceptable solution has a size of at the most ‘4x’. This keeps 

all the values within reasonable limits. 

 

Other two dimensional views can clarify the distribution further. 
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Fig.27. Power vs. DC Gain 

 

As seen in Fig.27, the initial points make a lot of difference in the convergence of 

solutions. For some of the initial points, the DC gain is very low and power is quite high; 

which in turn means that the slew rate is going to be high for such a point. For some other 

solutions, the DC gain is high and the power dissipated is quite low. The formula for DC 

gain has the current terms in its denominator, whereas the power value is directly 

proportional to the current. Hence the distribution of the solutions is such that the terms 

having higher DC gain, have lower power. 
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Fig.28. Power vs. Size  

 

In the other plot, Fig.28, the distribution is quite informative. Many solutions have large 

sizes and smaller power. This is because the power is directly proportional to the currents 

and size is inversely proportional to them. Thus an increase in one is accompanied by a 

decrease in the other. But there are othe r factors responsible for the size value such as the 

transconductance values of the transistors. Hence there are quite a few points which have 

both lower power and lower size, but these points effectively have lower values for DC 

gain too.  
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Gain Bandwidth, Phase Margin and Slew Rate 
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Fig.29. Phase Margin vs. Gain Bandwidth vs. Slew Rate 

 

For the same set of 68 solutions, the next three functions plotted are gain bandwidth, 

phase margin and slew rate. This plot in Fig.29 exhibits more uniformity than the 

previous one. There are certain trends that can be more readily observed with the help of 

two dimensional projections of these three dimensional plots. The color coding is similar 

to that of the previous one, and the only difference being, the functions that are plotted. 

So the colors of the stem graph are proportional to the slew rate of the solution point.  
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Fig.30. Gain Bandwidth vs. Phase Margin 

 

In the “Top View” of the plot, illustrated in Fig.30, the distribution of points along the 

gain bandwidth and phase margin can be seen. If a trend line is drawn for the given 

points, it exhibits a negative slope, signifying that the phase margin and gain bandwidth 

are functions that increase in the opposite directions. This can be attributed to their 

dependence on the transconductance value of M1. Increase in gm1 causes an increase in 

gain bandwidth, whereas a reduction in phase margin. 
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Fig.31. Phase Margin vs. Slew Rate 

 

In Fig.31, slew rate and phase margin too can be seen to be increasing in the opposite 

directions. Hence a solution having smaller phase margin has a higher slew rate; which 

can be considered to be a representative of the power dissipation of the opamp. The phase 

margin is inversely proportional to the transconductance of M2 and the slew rate is 

proportional to current. As gm2 reduces to decrease the size, the current too drops. This 

causes a reduction in slew rate explaining the negative slope of the trend line. 
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Fig.32. Gain Bandwidth vs. Slew Rate 

 

The gain bandwidth and the slew rate are seen to be increasing together in Fig.32. They 

are complementary functions, because it is desirable to have higher values for both of 

them, and it is possible to have such a solution. 
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8. Conclusion and suggestions for future work 

 

This work is just one of the ways in which the entire gamut of analog circuits has been 

tackled. The problem decided beforehand was successfully tackled with reasonably good 

results. This thesis was an attempt to provide a tool for optimizing opamp circuits to be 

used by analog designers. In that respect the goal was accomplished. This program is able 

to provide a GUI for the user so that the circuit specifications can be easily changed. It 

optimizes a circuit and provides many design alternatives to be chosen from. Then any 

particular design can be verified by using SPICE, because the package has the ability to 

generate a SPICE netlist. Thus it provides a complete “tool” to the designer of an opamp. 

But there is always a room for improvement. Some of the changes that can be suggested 

are 

1) The transistor model used in this case is the level 1 model. To get more accurate 

results, a more developed model such as the BSIM or EKV model can be used. 

2) Now that the basic skeletal design of the algorithm has been verified to be working for 

two topologies, more can be added to the same. 

3) More intelligence can be added to the software after adding more topologies, so that 

the program is in a position to choose the correct one for the given problem. 
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Instructions for the user 

 

1) Start the software by either double-clicking on the executable “.exe” file or 

opening the project in Visual Basic environment and then clicking on the run 

button. 

2) This should open a window which will have fields to accept the specifications. 

This window also has five buttons labeled as “Submit”, “Reset”, “Optimize”, 

“Write Spice File”, and “Launch PSpice”. 

3) After entering the specification values (hit the “Reset” key if default values are 

needed), click on “Submit”. This will open a text input box that asks for a path 

where all the files are stored. Remember to put a ‘\’ at the end of the path. For 

example, if the path is a directory called “users” in the C drive, then enter the path 

as “c:\users\”. A message displaying the path will be shown after which another 

message asking the user to hit “Optimize” will be shown. 

4) Hit “Optimize” to run the optimization routine which should start Matlab. 

a. In case of a two stage opamp optimization, at this point the software will 

ask the user to choose among three sets of cost functions, viz. DC gain and 

size, DC gain and power, and size and power. Choose the pair of functions 

whose relative weight needs to be varied in the overall cost function. 

Clicking on one of these three should start the actual optimization routine. 

The message “Simulation in Progress” will be displayed on the screen.  

b. In case of the folded cascode opamp, as soon as “Optimize” is clicked, 

Matlab starts executing the optimization routine with different initial 
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points. The message “Simulation in Progress” will be displayed on the 

screen. 

This can take a while depending on the number of steps in cost function multiplying 

factors in case of two stage opamp and the number of initial points in case of folded 

cascode opamp. 

5) At the end of the optimization, Matlab will plot graphs and will write the data into 

Excel files. “Solutions.xls” for two stage opamp and “FCsolutions.xls” for folded 

cascode opamp. Note: This is done every time “Optimize” is clicked, so 

whenever an Excel file is written again, it will display a message saying 

“solutions.xls exists. Do you want to overwrite?”; hit “Yes” to overwrite, 

because it is necessary that the data be stored in “solutions.xls”/ 

“FCsolutions.xls” for the proper functioning of the program. 

6) In the case of folded cascode opamp, after the Excel file is written, an option 

window pops up, where the functions to be plotted against each other can be 

chosen. The choice is between “Power vs. DC Gain vs. Size” and “Slew Rate vs. 

Gain Bandwidth vs. Phase Margin” in the case of folded cascode optimization. 

7) There should be plots on the screen in either case at this point. Also a set of 

guidelines is displayed on screen. These plots are basically three-dimensional 

stem3 plots from Matlab which have been displayed in the two-dimensional 

format. 

a. In case of two stage opamp, these plots have the two cost function multipliers 

as the x and y axes and a function as the z axis. These have been color coded 

such that the entire range of the cost function being plotted is divided into four 
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parts. The smallest 1/4th are colored blue, the next 1/4th are colored green, next 

1/4th are magenta and the highest quarter of them are red. Note that this 

division is in terms of the value of the cost function and not that of the number 

of points in that range. The graph can be rotated in 3-d to analyze the behavior 

of the cost functions. To get the original 2-d view of the plot, bring the 

concerned plot window to the top. For instance if “size” is  being analyzed, 

then bring that window to the top, and then select the Matlab command 

window, and type in view(0,90)  in the command window or else rotate the 

plot till the desired view is obtained. 

b. In case of the folded cascode opamp, “DC gain and size form the x and y axes 

and power forms the z-axis” and “phase margin and gain bandwidth form the 

x and y axes, and slew rate forms the z-axis”. In this case too the color coding 

is the same, in the sense that the z-axis is divided into four parts and so forth. 

This plot is also a stem3 plot and can be manipulated in the same manner as 

that of the two stage opamp. 

8) Any of the points generated on the plots can be taken into consideration for 

simulation using PSpice. To this end a point must be selected on the plots. It has 

been seen that it is easiest to select a point with the “view(0,90)”. This is because 

when a point is selected, the x and y coordinates are stored by the program. And 

this correspondence between user visualization and computer interpretation can 

be the best with this view. To select any point, first click inside the window once, 

this should change the arrow to a set of perpendicular lines. Wait for a few 

seconds if the change does not occur immediately. Once the perpendicular lines 
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appear, place the cross on the point of interest. The lines should change to an 

arrow again. When this happens, the point is correctly realized and stored for the 

purpose of simulation. 

9) After the point is chosen, go back to the main window with the five buttons. Click 

on the button labeled “Write Spice File” to create a SPICE netlist for the selected 

point. This will ask for a path to store the file and then give an acknowledgement 

after having written the file. 

10) To launch the PSpice program, click on the button labeled “Launch PSpice”. Then 

the file created can be verified by simulation. 

 

The following files are a part of the entire package. 

1) Matlab Files 

a) Common files 

“Simulation in progress” files: siminprog.fig, siminprog.m 

“Guidelines” file: twostagehelp.fig, twostagehelp.m 

b) Two stage opamp 

Main optimization files: meshlinear.m, meshlinear12.m, meshlinear23.m 

Cost function file: combfun1.m 

Constraint functions file: projnlcon1.m (This file may be absent. This is written by VB 

during the program execution) 

File for the window providing option between cost functions: twostageoption.fig, 

twostageoption.m 
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c) Folded cascode opamp 

Main optimization file: fc10per.m 

Cost function file: foldcasfun.m 

Constraint functions file: foldcascon.m 

File for the window providing the option between different functions to plot: 

foldcasoption.fig, foldcasoption.m 

Files for plotting functions: 

BW_SR_PM.m (gain bandwidth, slew rate and phase margin) 

trialplot.m (power, DC gain and size) 

 

2) Visual Basic Files 

a) Two stage opamp 

finalproj.vbp, constraint.frm and other associated files. 

b) Folded cascode opamp 

foldcasgrp1.vbp, mainform1.frm and other associated files. 

 

Tweaking the program 

a) Two Stage Opamp 

A few important places where the program can be tuned are as follows: 

The meshlinear, meshlinear12 and meshlinear23 files basically scan the solution space 

for changing cost multipliers. The multiplier for size is c1, power is c2, DC gain is c3 and 

gain bandwidth is c4. The range of this cost multipliers depends on the magnitude of the 

individual func tion. For example the DC gain is in thousands whereas the gain bandwidth 
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never goes beyond single digits. This disparity requires the multiplier for DC gain 

approximately in the range 0.001 – 0.02. The multipliers for size and power are in single 

digits say 1 – 5 and that of the gain bandwidth around 10. To change the range over 

which the optimization routine explores the solutions, open the required from these three 

‘.m’ files. That is, if the multipliers for size and power are to be varied then open 

meshlinear12.m. In this there are two matrices, xmat and ymat, for c1 and c2 

respectively. Change the arrays to the required range. For instance change xmat to [1 2 3 

4 5] and ymat to [0.5 1.5 2.5 3.5]. The number of elements in the array do not matter, but 

it is necessary to keep the difference between successive elements to be the same. 

Similar changes can be carried out in meshlinear.m and meshlinear23.m as needed. 

 

b) Folded Cascode Opamp 

The main change in this optimization can be carried out in the fc10per.m. This 

optimization basically iterates between different initial values of x. Hence to change the 

number of points to be calculated it is necessary to change the upper limit and the step 

size of the “for loops”. This upper limit can be changed by changing the quantity 

“xupper” in the fc10per file and the step size can be changed by “deltax” variable. Two 

very important things to be kept in mind are first and foremost, the upper limit is for the 

design variables. So for the results to be reasonable, it is necessary that this be realistic. 

Secondly, it is important to realize that there are 7 nested for loops, hence the step size 

will determine the number of initial guesses along with the upper limit. That is, if the 

upper limit is 500 and step size is 50, then each for loop will have 10 steps, hence the 

number of initial guess will be a whopping 107 = 10,000,000. 
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c) Location of PSpice program 

For the Two Stage Opamp change the code for “Launch PSpice” button by opening the 

project in Visual Basic environment and by double clicking on the button in the design 

mode. Or go to the SpiceOpen_Click() subroutine and change the address in the shell 

command. 

For the folded cascode opamp, change the same piece of code in the 

PSpiceLaunch_Click() subroutine. 

 

d) Excel files 

In case of the two stage opamp, the parameters written in the Excel file “solutions.xls” 

are (W/L)2, (W/L)4, (W/L)5, (W/L)6, (W/L)7, coupling capacitor Cc and gate bias voltage 

for M5, Vgg, in columns A, B, C, D, E, F and G respectively. 

In case of the folded cascode opamp, the parameters written in the Excel file 

“FCsolutions.xls” are (W/L)1, (W/L)3, (W/L)4, (W/L)6, (W/L)8, (W/L)10 and gate bias 

voltages Vb1, Vb2, Vb3 and Vgg in columns A through J respectively. 

If the Visual Basic program is unable to open Excel file, make sure that the “Excel 

object” reference is added to the Visual Basic project. 
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