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This research begins a critical assessment of a machine learning model’s robust-

ness, focusing on its resistance to adversarial attacks. We specifcally look into how 

Carlini Wagner (CW) and Model Inversion (MI) adversarial attacks afect the model’s 

performance and stability. The predefned model used for these attacks aims to cate-

gorize Android applications as malicious or benign. It bases its decisions on examining 

permissions as the input features. We duplicated the original model to conduct our 

experiments without afecting the integrity of the original model. We may see and 

evaluate the efects of adversarial samples using this method without afecting the 

performance of the initial model. We next trained several models with various algo-

rithms using the adversarial data generated by two adversarial attacks. Each model 

performed training using the original and the adversarial samples, simulating a real-

world situation in which adversarial instances might be present in the training data. 

After training, the models were saved as pickle fles to be reused later. The second 

step of our study was to develop a specialized classifer with the primary objective of 

separating original and adversarial samples. This classifer was intended to serve as 

a flter that would discard adversarial data while allowing actual samples to be sent 

to the trained model for predictions. It was established as a defense mechanism. We 

thoroughly evaluated the performance of our suggested strategy, the models, and the 
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classifer using a variety of performance indicators. At each stage of the procedure, we 

investigated their accuracy, false positive and false negative rates, and the F-measure 

to thoroughly assess the system’s performance. The results of this work highlight 

the importance of comprehending and mitigating the efects of adversarial attacks on 

machine learning models, especially in the context of identifying Android malware. 

Our efort contributes to the broader discussion about improving the robustness of 

machine learning models against adversarial threats by exposing the vulnerability of 

these models to adversarial attacks and outlining a defense mechanism. This helps to 

ensure more secure and reliable malware detection, which is crucial for using Android 

applications securely. . 
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Chapter 1 

Introduction 

Android is an open-source operating system, the most popular one worldwide. 

This platform allows developers to innovate and produce applications that meet cus-

tomer requirements. However, due to its widespread use and open-source nature, it 

is frequently the target of disgraceful actions. Android malware, or programs created 

to harm or interfere with Android systems, continues to be a concern online. Robust 

detection solutions must continually advance as hackers develop new ways to evade 

detection and compromise equipment [8]. Malware can be discovered using several 

diferent techniques [6]. Adversarial samples are malware designed to evade detec-

tion by anti-malware programs. [48] Adversarial samples or adversarial examples are 

data sets intended to trick a model. Adversarial samples are frequently produced 

by making slight modifcations to the original data, which are invisible to humans 

yet signifcantly impact the results of ML models. These modifcations are precisely 

created to take advantage of the model’s weaknesses in decision-making, which may 

lead to incorrect predictions or classifcations. They can be developed for various 
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ML applications, such as speech recognition, image recognition, and natural language 

processing. They are commonly employed to assess ML models’ attack susceptibility 

and resistance. These adversarial attacks try to trick or infuence ML algorithms by 

carefully crafting perturbations to input data. Adversarial attacks on Android mal-

ware detection models are the focus of this study. We present a defense mechanism 

using classifers trained on adversarial and original samples to strengthen the model’s 

resistance to these sophisticated attacks [26]. 

1.1 Overview 

This examines adversarial learning and how it afects ML models. The study of 

adversarial attacks and countermeasures aimed at boosting the robustness and re-

silience of ML models against such attacks is called adversarial learning. We want 

to create strong defenses and enhance these models’ efectiveness by comprehending 

their faws and limitations. Introduction to adversarial attacks, which are deliberate 

attempts to trick or manipulate ML models by adding purposefully designed pertur-

bations to input data, comes frst [7]. We use an Android malware prediction model 

with permissions as the input. We investigate adversarial attack types in depth, in-

cluding the CW and MI attacks. These assaults show how sensitive ML models are 

to small changes in input data. 

In adversarial ML, CW and MI are characterized as white-box attacks. In a white 

box attack, the attacker is fully aware of the architecture, parameters, and training 

data of the ML model that is being attacked. The attacker can access the model’s 

internal workings and use this knowledge to create adversarial samples that exploit 

the model’s faws or vulnerabilities. On the other hand, black box attacks are a sort 

of adversarial attack in which the attacker has little knowledge of the parameters or 

internal workings of the target ML model [17]. 
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An optimization-based attack called the CW attack seeks to identify disturbances 

in the input data to produce adversarial samples [13]. It assumes the target model’s 

architecture, parameters, and gradients are available. Conversely, MI is a technique 

that seeks to retrieve private data from the training set used to develop an ML 

model. It might be seen as a white box attack because it needs access to the model’s 

predictions and knowledge of its architecture. 

Additionally, we provide a cutting-edge security method that uses a specifc clas-

sifer to recognize and remove adversarial samples before sending them to the primary 

malware detection model. We intend to improve the existing detection system’s ac-

curacy and robustness to adversarial attacks by including this defense mechanism. 

1.2 Purpose and Scope 

This thesis examines how adversarial attacks afect ML models that categorize 

Android malware. Adversarial attacks try to change the input data to modify the 

outputs of ML models. These attacks could lead to a model misclassifying a mali-

cious application as benign in Android malware classifcation, allowing the malware to 

evade security safeguards. To increase the security and robustness of these systems, it 

is essential to understand how vulnerable ML models are to adversarial attacks. The 

vulnerability of ML models to adversarial attacks could substantially impact the secu-

rity of digital systems, given that these models are increasingly used in cybersecurity 

for tasks like malware detection. 

Examining multiple adversarial attack types will be a crucial aspect of the study. 

Additionally, the study aims to evaluate how well pre-trained models function when 

subjected to these adversarial attacks. We tested the models’ capacity to correctly 

categorize Android apps as malicious or safe, even in the face of adversarial attacks. 

This step is crucial for understanding the models’ current strengths and limitations 
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and potential areas for improvement. 

The study also suggests designing and training a dedicated classifer for recogniz-

ing adversarial samples to increase the resilience of ML models against adversarial 

attacks. By diferentiating malicious and original inputs, the classifer could shield 

the model’s performance against adversarial attacks. Finally, this defense mecha-

nism’s performance in identifying and countering adversary threats will be assessed. 

Ensuring the suggested solution will improve the model’s robustness is essential. The 

thesis aims to develop the feld of ML security by following these goals. It aims to 

suggest methods to increase ML models’ resistance to adversarial attacks, ensuring 

their dependability and efciency in practical situations. 

1.3 Organization of Thesis 

Chapter 1 - Introduction: This chapter summarizes the research area—android 

malware detection—and explains why it is essential to understand adversarial attacks. 

The chapter also describes the overview of the thesis’s structure and organization. 

Chapter 2 - Background: This chapter gives background information on the 

technologies and concepts relevant to the research. It covers machine learning and its 

applications in malware detection. Additionally, it discusses adversarial learning and 

explains the idea of adversarial attacks, in which data points are created with the 

intention of tricking machine learning algorithms. The chapter reviews related liter-

ature that discusses current methods for classifying Android malware in the context 

of adversarial sample detection. 

Chapter 3 - Performance of a Pre-trained ML Model under Adversarial 

Attacks: This chapter assesses a machine learning model’s performance in the pres-

ence of adversarial assaults. The model and dataset utilized in the experiments are 
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described. The replication and launch of adversarial assaults, particularly CW and 

MI attacks, are covered in this chapter. It talks about gathering adversarial samples 

and conducting training and testing on original and adversarial samples. The fndings 

of the CW and MI assaults are presented in the chapter’s performance evaluation of 

the attacks. 

Chapter 4 - Classifer Development: Design, Training, and Predictions: 

The main focus of this chapter is the design and training of a classifer to diferentiate 

between original and adversarial data. It comprises a performance evaluation of 

various classifers to determine the most efcient. The chapter further investigates 

the classifer’s integration with the initial model and assesses the model’s overall 

performance following integration. 

Chapter 5 - Conclusion and Future Work: This chapter concludes, summarizes 

the results, explores the consequences, and suggests directions for further research. 
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Chapter 2 

Background 

2.1 Machine Learning (ML) 

In Machine Learning, computers may automatically learn from experience, adapt, 

and improve without being explicitly programmed. It focuses on creating and im-

proving algorithms that provide computers with data access so they can use it to 

anticipate the future or make judgments. It feeds on enormous amounts of data, 

which it can analyze to precisely identify patterns and trends that could elude the 

human eye. One of machine learning’s most important uses is in the feld of cyber-

security. Traditional security methods, particularly those that rely on known attack 

signatures and human interaction, must be revised due to data’s sheer volume and 

complexity as the digital world expands exponentially rate [50]. In this scenario ML 

appears as a powerful tool that may use its capacity to recognize anomalies, patterns, 

or deviations in massive datasets, which are frequently signs of possible cyber threats. 
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ML algorithms can learn from previous occurrences and historical data, giving them 

the predictive ability to anticipate and recognize potential hazards frequently before 

they happen. This capacity is essential in cybersecurity since it can drastically re-

duce the duration between a breach and an attack response, potentially saving time, 

money, and sensitive information. ML has critical applications across multiple aspects 

of cybersecurity. ML is essential in malware detection systems (IDS) for analyzing 

network trafc data and spotting out-of-the-ordinary or suspicious activities [12]. To 

identify potential incursions and quickly react to them, it is benefcial to have the 

ability to analyze massive databases and uncover hidden patterns. ML may signif-

cantly increase the detection rates for malware due to its predictive capabilities. ML 

models may recognize subtle patterns and signs by extracting characteristics from 

previously identifed benign and malicious fles, improving the accuracy of malware 

detection, and reducing the number of false positives [23]. Phishing attacks, a se-

vere cybersecurity threat, can also be successfully reduced with ML. ML algorithms 

can accurately detect phishing websites and emails by studying the characteristics 

of known phishing instances [40]. ML ofers a strong defense against such threats 

by picking up on hidden warnings and patterns typical of phishing attacks. Spam 

fltering has long been a complex problem [35]. ML can accurately identify and flter 

out spam emails or messages using complex algorithms, improving user experience 

and system security. In terms of cybersecurity, ML is a game-changer. ML holds 

out the promise of an efcient, proactive, and fexible security mechanism capable of 

staying one step ahead of cyber adversaries as we continue to deal with constantly 

developing cyber threats. 

2.1.1 Random Forest (RF) 

A fexible and reliable ML model called Random Forest (RF) is frequently used 

for classifcation and regression problems. It is a component of ensemble learning 
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methods, a strategy that combines various learning models to provide predictions 

that are more precise and reliable than those that could be made using just one 

of the individual learning algorithms. During the training phase, the RF method 

generates many decision trees, each built using a random portion of the training 

data [46]. The output is either the mode of the classes for classifcation tasks or 

the mean estimate of the individual trees for regression tasks. This method creates 

a ”forest” of decision trees, combining their predictions to make the result [1]. A 

decision tree is a structure like a fowchart where each internal node represents a test 

on an attribute, each branch a test result, and each leaf node a class label. However, A 

single decision tree is susceptible to changes in the dataset and frequently overfts the 

training data, resulting in poor performance on unobserved data. The RF approach 

deals with this issue, which builds many trees and averages their outputs to boost 

model robustness and reduce overftting. The diversity and simplicity of the RF 

are what gives it its power. The model successfully captures diverse elements of 

the dataset by constructing several decision trees from random subsets of the data, 

leading to improved performance. The RF algorithm is a popular choice for various 

applications in machine learning because, despite its intricacy, it is reasonably simple 

to use and requires little hyperparameter modifcation. 

2.1.2 Logistic Regression (LR) 

A popular ML approach for binary classifcation issues is logistic regression (LR). 

A logistic function is used in this statistical model to simulate a binary dependent 

variable. The LR model calculates the likelihood that a specifc input point falls 

under the [59]. The logistic function, the sigmoid function, is the fundamental idea 

underpinning logistic regression. An S-shaped curve maps any real-valued number to 

a value between 0 and 1. The term ”logistic” refers to the fact that the outcome pre-

diction in logistic regression is logarithmic rather than linear. This ratio is subjected 
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to the logistic function to determine the possibility or log odds. The estimated prob-

ability can then be used to predict a binary outcome; if it exceeds a certain threshold, 

the model will predict the positive class; if not, it will indicate the negative category. 

The fact that LR not only ofers a prediction but also the probabilities corresponding 

to the predictions is one of its benefts. When we need to estimate the prediction’s 

level of certainty, this feature is useful. LR may be easily applied to numerical and 

categorical data by transforming categorical data into dummy variables. Addition-

ally, by including a penalty to the loss function that the model minimizes, LR can be 

regularized to prevent overftting to the training set of data. Due to its interpretabil-

ity and robustness, logistic regression is frequently employed in many felds. It is 

notably used in the fnancial sector, where it is used to forecast the risk that a client 

would default on a loan, as well as in healthcare, where it is used to predict disease 

outcomes based on various warning signs. LR is a potent tool in ML and statistical 

modeling weapons because of its efectiveness, simplicity, and insightful information 

it provides about the variables infuencing the prediction [36]. 

2.1.3 Support Vector Machine (SVM) 

A powerful supervised learning technique, the Support Vector Machine (SVM), is 

mainly employed for binary classifcation. At the same time, it can also be utilized to 

solve multi-class classifcation and regression issues. The fundamental idea of SVM 

is to locate a hyperplane that divides the data into two classes in the best possible 

way [41]. The hyperplane is selected to maximize the margin, which is determined 

by measuring how far each class’s nearest data points are from the hyperplane. As it 

seeks to establish the broadest ”street” between types, this method makes the SVM 

robust to overftting and lowers the possibility of misclassifcation. The ability of 

SVM to handle high-dimensional data is its main strength. The kernel trick, also 

known as projecting data onto a higher-dimensional space where it can be linearly 
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separated, is a technique SVM uses to handle data that cannot be linearly separated 

in the original environment [16]. The input data are transformed by kernel functions 

like the linear, polynomial, radial basis function (RBF), or sigmoid kernels, allowing 

SVM to locate complex decision boundaries in the transformed space. SVM is adapt-

able and capable of handling challenging, real-world datasets due to the freedom to 

select a suitable kernel function. SVM is one of the most well-liked machine learning 

algorithms because of its reliability, adaptability, and high performance across vari-

ous areas. It has been extensively employed in multiple domains, including general 

pattern recognition tasks, hand-written character identifcation, picture recognition, 

bioinformatics, and text and hypertext categorization. 

2.1.4 K-Nearest Neighbors (KNN) 

The lazy learning algorithms include instance-based learning algorithms such as 

KNN. The name ”lazy” alludes to the fact that KNN waits until prediction time to use 

the training data instead of building a generalized model during the training phase. 

It is also regarded as a non-parametric technique because no explicit assumptions are 

made on the functional form of the data [28]. KNN is very useful when the data 

distribution is uncertain or does not adhere to the assumptions of parametric models 

because of this characteristic. The fundamental idea behind KNN is to categorize an 

object based on how it resembles instances in the training set. KNN determines the 

’k’ examples from the training dataset closest to the new instance when a prediction 

is needed for an unobserved instance (thus the name K-Nearest Neighbors). Stan-

dard distance metrics determining ”closeness” include Euclidean, Manhattan, and 

Minkowski distances. The method then places the new instance in the class with the 

most members among its closest ’k’ neighbors. The object is put into the category of 

its nearest neighbor when k is equal to 1. 

KNN’s ease of use, interpretability, and capacity for multi-class issues have made 
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it useful in various applications. It is frequently utilized in disciplines including pat-

tern recognition, anomaly detection, text mining, and recommendation systems [53]. 

Despite its advantages, KNN is susceptible to the dimensionality curse. When man-

aging high-dimensional data, dimensionality reduction techniques may be necessary 

because the performance rapidly declines as the feature space’s dimensions rise. Ad-

ditionally, because KNN is a lazy learner, it can be expensive to compute and slow 

when making predictions, especially for large datasets. Despite this, the KNN algo-

rithm is adequate for various data-driven applications, especially those that beneft 

from its simple and intuitive approach to classifcation and regression. 

2.1.5 Extra Trees Classifer (ETC) 

Extremely Randomized Trees, another name for the ETC, is an ensemble learning 

technique that produces many decision trees and aggregates their results. It belongs 

to the same class of ensemble approaches as Random Forest and Gradient Boosting. 

Still, because it adds more randomization throughout the model-building process, it 

further lowers the variance of the model [10]. The fundamental tenet of ensemble 

methods, such as ETC, is that a collection of ”weak learners” can combine to create 

a ”strong learner.” A random subset of the data is used to build each decision tree 

in the ensemble independently. The way ETC separates nodes sets it apart from 

previous ensemble decision tree-based approaches. ETC employs randomly chosen 

split points instead of Decision Trees and Random Forests, which select optimal split 

points. In exchange for a reduction in variance and an increase in bias, the model 

is more resistant to overftting [2]. Because no optimal rule is searched for each 

node, this random selection of characteristics and thresholds to split upon results 

in a higher bias, ofset by a minor variance (because the trees difer more from one 

another). A crucial hyperparameter for ETC is the number of trees in the forest. 

Due to its higher randomness, ETC typically requires more trees than a Random 
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Forest to achieve comparable performance levels. However, as each tree is generated 

individually, the training of ETC can be done entirely in parallel, resulting in quick 

computation. The fact that ETC uses random thresholds and is hence insensitive to 

input scaling can make it more user-friendly than other techniques that call for input 

standardization. ETC is a robust and practical ensemble learning method that excels 

at working with sizable datasets with high dimensional space and can be applied to 

regression and classifcation applications. 

2.1.6 Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting, or XGBoost, is a powerful, scalable ML method that 

excels at predictive modeling applications due to its high performance and efec-

tiveness. Its foundation is the gradient boosting framework, which iteratively com-

bines weak predictive models, typically decision trees, to produce a robust predictive 

model [18]. The technique of gradient descent optimization to reduce the loss function 

is called gradient boosting. Due to its accuracy and processing capacity, XGBoost 

has become extremely well-known in the data science community and has been the 

algorithm of choice in many winning solutions of machine learning competitions. One 

unique aspect of XGBoost is its regularization process, which works to prevent over-

ftting by limiting the complexity of the model. While most boosting algorithms use 

a loss function, XGBoost augments this function with a regularization term. Both L1 

(Lasso Regression) and L2 (Ridge Regression) regularization are included in the regu-

larization term. By setting some feature weights to zero, L1 regularization encourages 

sparsity, whereas L2 regularization reduces the coefcients of less signifcant features 

but leaves them in place. Compared to conventional gradient boosting, XGBoost is 

a more generalized model because of the extra complexity control [25]. The built-in 

routine for addressing missing values in XGBoost is another essential feature. In real-

world datasets, missing data is a frequent problem that can signifcantly impact how 
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well machine learning algorithms perform. XGBoost is more resistant to missing data 

than other algorithms since it automatically determines the appropriate imputation 

technique based on the training loss. The capacity to process information in parallel, 

which accelerates learning, and built-in cross-validation at each iteration, which min-

imizes the amount of boosting iterations, are two further benefts of XGBoost. For 

many machine learning problems, XGBoost is the algorithm of choice because of its 

speed, performance, and adaptability. 

2.1.7 Adaptive Boosting (AdaBoost) 

The adaptive boosting machine learning algorithm, called AdaBoost, is employed 

for classifcation and regression issues. One of the earliest and best ensemble algo-

rithms, it combines several weak classifers to produce a robust classifer. Simply 

put, a weak classifer performs poorly but is still superior to guessing at random [20]. 

AdaBoost is adaptive in that it iteratively modifes the distribution of the data to 

emphasize cases that were incorrectly classifed in the past, enhancing the ensemble’s 

performance. Each weak classifer in AdaBoost is trained using a random subset of the 

entire dataset. Each training example in the dataset is given a weight by AdaBoost 

after each training round, which establishes the likelihood that each instance will be 

included in the training set for the following classifer. To increase their chance of 

being used as part of the training set for the subsequent classifer, samples incorrectly 

identifed in the previous round are given greater weight. This procedure continues 

for numerous rounds or until the algorithm has added a predetermined number of 

weak learners, whichever comes frst. Thus, the fnal model comprises numerous vul-

nerable learners, each focusing on a particular data area that was challenging for the 

prior models. AdaBoost has the beneft of being less prone to overftting than other 

learning algorithms. It strives to ft each point exactly. Hence it is sensitive to noisy 

data and outliers [49]. AdaBoost is highly adaptable and may be used for binary and 
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multiclass classifcation problems. It can also incorporate any learning technique. 

AdaBoost can be used with any form of classifer, even though it is commonly em-

ployed with decision tree classifers. As a result, a robust classifer is created that 

combines the advantages of each member while also making up for any faws. 

2.2 Adversarial Learning 

A sophisticated branch of ML called adversarial learning concentrates on learning 

in a hostile environment. Adversarial learning algorithms focus on scenarios where 

the data distribution may be purposefully modifed or adversely afected by an op-

ponent, unlike typical ML algorithms, which learn from a fxed data distribution. 

The adversary’s objective is typically to make the ML algorithm produce errors. In 

contrast, the learner aims to categorize or predict data, even hostile data accurately. 

In traditional ML, we typically assume that the data distribution is stationary and 

that the distribution of the test data looks similar to that of the training distribution. 

This is no more true in hostile circumstances when attackers can deliberately modify 

the data [43]. As a result, adversarial learning algorithms are made to be stronger 

and more resistant to these tricks. 

This project aims to strengthen the Android malware detection system’s resilience 

against adversarial attacks. In this case, adversarial samples act as fake entities 

to defeat the model’s detection mechanism [42]. The approach includes adversarial 

learning mechanisms to address this. As a result, it can efectively learn from benign 

and adversarial samples and produce precise predictions. Using adversarial learning 

considerably boosts the system’s efectiveness and strengthens its defenses against 

potential security breaches and adversarial attacks. 
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2.2.1 Adversarial Attacks 

In ML, adversarial attacks involve modifying the input data to confuse the ML 

models and cause them to provide false results. These assaults use the models’ built-

in weaknesses and pose severe risks to ML and DL models. White-box and black-box 

attacks are the two main types of adversarial attacks. Attackers using white-box 

techniques can access the model’s architecture, parameters, and training data. The 

attacker can design sophisticated attacks using this knowledge that frequently go 

undetected [44]. In contrast, black-box attacks assume that the attacker is only 

aware of the model’s inputs and outputs and is mindful of how the model functions 

internally. In these situations, the attacker attempts to create malicious programs 

using this input-output information. 

Serious concerns about the dependability and robustness of ML models have been 

raised due to their vulnerability to adversarial attacks. The potential impact of 

adversarial attacks could be extensive and harmful as ML models are increasingly used 

in crucial domains, including cybersecurity, healthcare, and autonomous cars [21]. To 

ensure the safe and efcient usage of ML models, it is essential to comprehend and 

mitigate adversarial attacks [43]. 

2.3 Literature Review 

2.3.1 Overview of Android Malware Classifcation 

Malware attacks on the Android platform have signifcantly increased due to the 

widespread availability of Android smartphones over the past ten years. Android mal-

ware classifcation has been the subject of numerous studies, particularly on ML-based 

solutions, due to their performance benefts over traditional rule-based approaches. 

Typically, collections of Android applications classifed as benign or malicious are 
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used to train ML models. To categorize new, undiscovered applications, they learn 

the characteristics that set these categories apart, such as requested permissions, API 

requests, or network activities [27]. Numerous ML methods have been used to catego-

rize Android malware over time, including Decision Trees, Random Forests, Support 

Vector Machines, Neural Networks, and others [5]. Researchers have also looked into 

feature selection techniques to reduce the dimensionality of the data and enhance 

model performance. Malware categorization has also seen an increase in the applica-

tion of DL. Since they can automatically learn feature representations from raw data, 

models like CNNs and RNNs have proven particularly efective [4]. This eliminates 

the need for manual feature extraction. However, adversarial attacks, which alter the 

input data to make the model misclassify the application, can seriously damage the 

efcacy of these models. Due to this difculty, the categorization of Android malware 

using adversarial ML algorithms has been studied. 

2.3.2 Adversarial Attacks in Machine Learning 

The safety and reliability of machine learning models are now seriously threatened 

by adversarial attacks. An adversarial attack involves altering the input data to a 

machine learning model in a way that leads to inaccurate predictions or classifcations 

by the model. These alterations, often called adversarial instances, are frequently 

subtle and invisible to the naked eye yet signifcantly impact a model’s output. 

Three categories can be used to classify adversarial attacks broadly [15]. Evasion 

attack is an adversarial attack that occurs during testing, where the attacker modifes 

the input data in a way that leads to an error in the machine learning model. These 

modifcations to the input data are frequently made to be undetectable and hidden 

[39]. Poisoning attack is an adversarial attack during a machine learning model’s 

training phase. The attacker inserts carefully constructed samples into the training 

set to control the learning process. As a result, the model learns wrong associations 
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and generates false predictions or conclusions. Exploratory attack, the adversary aims 

to comprehend or expose the model’s internals, such as its parameters or structure. 

This attack often involves querying the model to learn how it behaves. 

These attacks severely impact applications for image recognition, natural language 

processing, and malware detection [34] [30]. They take advantage of ML models’ 

great dimensionality and complexity, which make it challenging to predict and pro-

tect against all potential weaknesses. Adversarial attacks against Android malware 

detection may involve adding, removing, or altering dangerous software features to 

avoid detection. These dangers highlight the necessity of strong models that can 

withstand adversarial attacks and continue to deliver accurate and trustworthy pre-

dictions. Understanding and countering adversarial attacks has been the subject of 

extensive research, resulting in developing defense mechanisms and improving mod-

els. However, the adverse circumstances are still changing. Therefore this is a very 

active area of research. 

2.3.3 Existing Techniques for Adversarial Sample Detection 

To protect ML models against adversarial attacks, adversarial sample detection 

is essential. This component aims to identify and eliminate changing inputs that 

attempt to reduce the reliability and accuracy of model predictions. Many diferent 

strategies have been suggested over time to deal with this issue. 

Adversarial training is one of the approaches that is frequently employed. Ad-

versarial samples are included in the training process to strengthen the model’s resis-

tance to adversarial attacks, which is the basic idea underlying adversarial training. 

The idea is predicated on the concept that exposing the model to adversarial samples 

during training will allow it to identify and categorize such instances later efectively. 

Although this method requires a lot of resources, the outcomes have been encourag-

ing. With the development of the fast gradient sign method, which has since been 
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widely used, Goodfellow and colleagues were signifcant in helping to establish this 

concept [24]. 

Defensive distillation aims to make ML models more resilient to adversarial 

attacks. Similar to how distillation in chemistry produces a pure substance from a 

mixture, the term ”distillation” is a metaphorical description of the process when a 

model is trained to generalize the softer output of another model. Two rounds of 

model training are used in the technique. In the frst round, a standard model is 

trained to provide output probabilities for each class [38]. The targets for the second 

round of training are then replaced with the output probabilities from the initial 

training rather than the complex labels at the beginning. The goal is to reduce the 

sensitivity of the model’s decision boundaries by smoothing and strengthening them. 

Defensive distillation was proposed by Papernot et al. [38]. 

Feature squeezing is an adversarial detection method that reduces the search 

space that can be exploited by simplifying the representations of model inputs and 

making it more challenging to produce adversarial samples. This can be done by 

reducing the color depth of the images, applying a spatial flter to smooth out the 

images, or compressing the input data. This approach has been proved by Xu et al. 

in their study [56]. 

Gradient Masking or Regularization is a defense strategy used in ML to 

strengthen the model’s resistance to adversarial attacks. To make it more difcult 

for adversaries to provide adversarial samples, it operates by modifying or masking 

the gradients of the loss function related to the input during the training phase [11]. 

The decision boundaries of the model are smoothed or made fat to reduce the impact 

of adversarial perturbations. Gradient masking can prevent gradient-based attacks 

but may not always increase system robustness, leaving the system open to other 

attacks [9]. 
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Chapter 3 

Performance of a Pre-trained ML 

Model under Adversarial Attacks 

3.1 Model and Dataset Description 

A sophisticated NATICUSdroid system is an ML, specifcally on the Random 

Forest Classifer. This model aims to distinguish between benign (harmless) and ma-

licious (harmful) Android applications. The system’s capacity to diferentiate between 

the two proposes a practical solution for the growing malware problem in the Android 

ecosystem, as stated in [33]. The efcacy of NATICUSdroid is primarily due to how 

it examines the permissions that the applications request. The system analyzed the 

permission conditions of over 29,000 excellent and harmful Android applications over 

approximately ten years (2010-2019). These permissions specify how an application 

may use features or access specifc data on a device. NATICUSdroid can determine 
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the most critical permissions by carefully examining historical trends in these per-

missions. These permissions are a combination of native (included in the Android 

system) and custom (specifed by the app developers) permissions. The system gath-

ers and examines these permissions to distinguish between good and bad applications. 

An application may be marked as suspicious if it requests many permissions or per-

missions that are not ordinarily required for its stated function. NATICUSdroid can 

determine the essential permissions by carefully examining historical trends in these 

permissions. These permissions are a combination of native (included in the An-

droid system) and custom (specifed by the app developers) permissions. The system 

gathers and examines these permissions to distinguish between good and bad appli-

cations. An application may be marked as suspicious if it requests many permissions 

or permissions that are not ordinarily required for its stated function. 

3.2 Adversarial Attack methods 

Adversarial attacks are techniques used to confuse ML algorithms by supplying 

carefully crafted data. These attacks exploit the model’s weaknesses and could lead to 

inaccurate predictions or classifcations. We have employed the CW Attack and the 

MI Attack, two well-known adversarial attack strategies, to evaluate NATICUSdroid’s 

robustness 3-1 this shows the workfow of the attack. 
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Figure 3-1: Workfow of Launching the Adversarial Attack 

3.2.1 Carlini Wagner (CW) 

Due to the CW Attack’s shown efciency in producing adversarial scenarios and 

evaluating the resilience of machine learning models, we decided to use it in our 

research. This particular kind of adversarial approach, which Nicholas Carlini and 

David Wagner frst described in 2017, excels at creating adversarial samples that are 

challenging for models to recognize and require minor modifcations from the initial 

input [14]. In applying the CW Attack on our NATICUSdroid model, we began by 

defning an optimization problem. The objective of this challenge was to fnd the 

lowest perturbation that could be added to the initial input to alter the model’s 
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output, thereby making it an adversarial example. 

The formulation of this adversarial attack can be represented as 

minδ∥δ∥p + c.f(x + δ)where x + δ ϵ {−1, 0, 1}n (3.1) 

In equation (3.1), x represents an original input instance, δ denotes the adversarial 

perturbation, f(x + δ) is the classifcation function that guides the perturbation to 

trigger misclassifcation and n is the number of dimensions [58]. The term ||δ||p 

represents the Lp norm, serving as the distance metric to measure the magnitude 

of the perturbation. Here, ||δ||p is minimized while ensuring that f(x + δ) guides 

the model to the target class. The function f is carefully crafted to become less 

than or equal to zero when the perturbed instance is misclassifed as the target class. 

To maintain valid binary values (0 or 1), the adversarial examples are clipped and 

rounded after the perturbation is added. 

To solve this optimization problem, the CW attack leverages the change of vari-

ables and reformulates the problem as follows 

1 1 
minimize|| (tanh(w) + 1) − x||22 + e.f( (tanh(w)) + 1) (3.2)

2 2 

This approach enables using standard gradient-based optimization algorithms, 

such as the trust region method in your implementation, to address the issue. The 

CW attack, which provides high fooling rates while preserving imperceptible pertur-

bations, thus serves as an efcient adversarial attack strategy in our project. 

Hyperparameters can afect the learning process, including how complex the learned 

model is, how quickly it learns, and how well it performs. 3.1 shows the table for 

hyperparameters. 
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Table 3.1: Hyperparameters for CW attack. 

Parameter Value 

Epsilon 0.3 

Perturbation Factor 0.76 

Number of Iterations 300 

Learning Rate 0.1 

As the maximum permitted perturbation for each pixel in the image (or feature 

in the data), epsilon is frequently utilized in adversarial attacks. It is a method 

of regulating the size of the perturbation and, consequently, the visibility of the 

adversarial example. The perturbation factor is likely a hyperparameter specifc to 

this CW attack technique. It is generally possible to scale the noise added during the 

attack using the perturbation factor. 

The attack optimization process runs for the specifed number of steps or itera-

tions. More iterations may produce adversarial instances that are more efective, but 

they also take longer to calculate. 

The CW attack’s gradient descent optimization approach uses Learning Rate as 

a hyperparameter. The learning rate determines how much the input needs to be 

changed in response to the computed gradient of the loss function. A higher learning 

rate will result in more drastic input changes at each step, which could speed up 

convergence and increase the risk of overshooting the loss function’s minimum [45]. 

3.2.2 Model Inversion (MI) 

Fredrikson frst proposed the idea of MI attacks, an adversarial attack strategy 

that tries to extract sensitive data from a machine learning model by fipping the 

model’s behavior [22]. It involves reconstructing inputs and replicating the initial 
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training data using the model’s predictions. In other words, the approach aims to 

recover the input data from the output by reversing the model’s decision-making 

process. 

Utilizing access to the model and its outputs, a MI attack against the NATICUS-

droid model tried to aim to extract private information about the training data. This 

sensitive information is the features (Android permissions) of benign or malware apps 

that the model has trained to recognize as essential [57]. 

Table 3.2: Hyperparameters for MI attack. 

Parameter Value 

max iter 300 

learning rate 0.1 

threshold 0.5 

The max iter indicates the function’s maximum number of iterations. The func-

tion will have more possibilities to identify a successful adversarial sample if this 

number is more signifcant, but it will also take longer. Learning rate defnes how 

much the inputs are modifed throughout each iteration based on the determined gra-

dient. The threshold is the cutof used to determine when a prediction is sufciently 

close to the target label. Lowering this amount will raise the threshold for a prediction 

to be declared a match, potentially making the attack more difcult but the matches 

more precise. 

3.3 Collection of Adversarial Samples 

Adversarial samples are carefully crafted adjustments to the original data that 

are almost unnoticeable to humans but signifcantly afect the predictions or classif-
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cations made by ML models [48]. Creating adversarial samples often entails making 

minor changes to the original input data. These perturbations, for instance, can 

involve gently modifying the pixel values in an image or the numerical values in a 

data set. These adjustments aim to trick the ML model into making a wrong pre-

diction or categorization. Adversarial attacks are techniques used to confuse ML 

algorithms by supplying carefully crafted data. These attacks exploit the model’s 

weaknesses and could lead to inaccurate predictions or classifcations. In the context 

of your study, adversarial samples are generated using the CW Attack and the MI, 

two well-known adversarial attack techniques [37]. The performance and robustness 

of the NATICUSdroid model are then evaluated under challenging circumstances us-

ing these adversarial samples. Testing with adversarial samples is like simulating an 

adversarial attack on the model. If the model fails to perform well when adversarial 

examples are included (i.e., misclassifying many instances), this refers to model faws 

that must be fxed. This procedure can highlight the model’s weak points susceptible 

to such adversarial manipulation. The model’s resilience against such sophisticated 

attacks can be strengthened by identifying these weak places, improving the model’s 

performance in real-world situations. The goal is to harden NATICUSdroid to with-

stand attacks that use adversarial samples to trick the system and continue to do a 

successful job of malware identifcation. 

3.4 Performance Evaluation of the Attacks 

This section assesses the efectiveness of adversarial attacks such as the CW and 

MI attacks. Evaluation metrics are derived by initiating these hostile attacks on a 

NATICUSdroid model. I created a replica of the model and launched the attacks [55]. 

Evaluation measures used to evaluate their performance includes Accuracy deter-

mined by how many positive and negative predictions were accurate.FPR measures 
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the proportion of negative occurrences mistakenly labeled as positive, FNR measures 

the proportion of positive occurrences mistakenly labeled as negative. F-measure is 

harmonic means of Precision (the proportion of correct positive identifcations), and 

Recall (the percentage of genuine positives that were correctly identifed). These 

analyses were carried out for each batch of 100 samples. 

3.4.1 Results of Carlini Wagner 

The results of CW attacks show that the attack is successful as the Accuracy of the 

NATICUSdroid model reduced after the attack. The evaluation is done for every 100 

samples, and the results before and after the attack were also mentioned. 3.3 shows 

the results before and after the CW attack. The results were also plotted as 3-2. As 

shown by the drastic shifts in evaluation measures, the observed pattern indicates 

the model’s performance after the CW attack is considerably impacted during the 

frst 5000 samples. This may result from the model adjusting to the adversarial 

manipulation caused by the CW attack. 

The performance indications change less drastically after processing 5000 samples. 

This may be because the model is more stable. After all, it has already adapted to 

the patterns of the adversarial data [29]. However, it’s crucial to remember that, 

depending on how this model is applied, even minor deviations in fndings could have 

a signifcant impact. 
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Table 3.3: Performance Metrics Before and After CW Attack 

Performance Metric Before CW Attack After CW Attack 

Accuracy 97.88 67.55 

False Positive Rate 1.69 4.13 

False Negative Rate 2.54 60.63 

F-Measure 97.88 54.88 

Figure 3-2: Results of CW attack for every 100 Samples 

A comparison of numerous evaluation metrics for an ML model both before and 

after the CW adversarial attack is shown in the table 3.3 and 3-2 shows the results 

in a graph. The Accuracy metric gauges how accurately the model predicts things in 

general. Before the CW attack, the model had a remarkable accuracy of 97.88%, cor-

rectly classifying 97.88% of the data. However, following the CW strike, the model’s 

accuracy drastically decreased to 67.55%, showing that it needed to be more suc-

cessful at making accurate forecasts under hostile circumstances. The false positive 

rate is the percentage of benign (or negative) samples mistakenly labeled as mali-
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cious (or positive). The false positive rate was low before the CW attack, at 1.69%, 

but increased to 4.13% afterward. This growth indicates that the attack may have 

mistakenly caused the model to label more innocuous samples as malicious. The per-

centage of harmful (or positive) samples mistakenly classifed as benign (or negative) 

is known as the False Negative Rate. In this instance, the false negative rate increased 

from 2.54% before the CW attack to 60.63% afterward. This suggests that the model 

underwent adversarial conditions and failed to accurately recognize a sizable number 

of false samples, which raises substantial security concerns. Finally, a measure that 

combines precision and recall—the F-Measure or F-score—also drastically dropped 

from 97.88% before the CW strike to 54.88% afterward. The decline in the F-score 

indicates that the CW attack signifcantly reduced the model’s precision and recall, 

suggesting a compromise in the model’s efectiveness in its prediction capability. 

3.4.2 Results of Model Inversion 

Performance measurements for the Model Inversion (MI) attack indicate success. 

Each of these adversarial attack strategies was assessed for every 100 samples. Perfor-

mance metrics were monitored before and after the attacks, allowing for a complete 

evaluation of its resilience and susceptibility to attack 3-3 shows the performance 

metrics before and after the attack. 

We observed a considerable diference in the performance metrics throughout the 

frst 1200 samples of the MI attack 3.4 shows the plot for every 100 samples. This 

suggests that the attack signifcantly afected the performance. The accuracy rate 

decreased, and the FPR had minor changes, but the FNR experienced the most 

signifcant change, increasing drastically. As a result, the F-measure, which considered 

both precision and recall, decreased signifcantly. 
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Table 3.4: Performance Metrics Before and After MI Attack 

Performance Metric Before MI Attack After MI Attack 

Accuracy 97.88 50.1 

False Positive Rate 1.69 0.09 

False Negative Rate 2.54 99.41 

F-Measure 97.88 1.17 

Figure 3-3: Results of MI attack for every 100 Samples 

The comparison of various evaluation metrics for an ML model before and after 

it was subjected to the MI adversarial attack is shown in the table 3.4 and 3-3 shows 

the graphical representation of the results. The overall accuracy of the model’s pre-

dictions is measured by its accuracy. The model had a high accuracy of 97.88% before 

the MI attack, correctly classifying 97.88% of the occurrences. But after being sub-

jected to the MI attack, the model’s accuracy dropped to 50.1%. This signifcant fall 

indicates a considerable decline in the model’s capacity to produce reliable predictions 

in the face of opposition. The FPR measures how many benign (or negative) samples 

29 



are mistakenly classifed as malicious (or positive). Interestingly, in this instance, the 

FPR drops from 1.69% prior to the MI attack to a meager 0.09% following the strike. 

This suggests that fewer innocuous cases were mistakenly labeled as harmful due to 

the attack. The percentage of harmful (or positive) samples that were mistakenly 

classifed as benign (or negative) is known as the FNR. Here we notice a signifcant 

shift: the FNR soars from 2.54% before the MI attack to an unsettling 99.41% follow-

ing the strike. This considerable rise shows that the model misidentifed most harmful 

cases under adversarial circumstances. Last, the F-assessment, commonly known as 

the F-score, a balanced assessment of precision and recall, decreased sharply from 

97.88% before the MI attack to just 1.17% after that. The MI assault caused a sig-

nifcant decrease in the model’s prediction precision and recall, which is indicated by 

the sharp drop in the F-score. 
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3.5 Training with Adversarial and Original Sam-

ples 

Figure 3-4: Training process of the classifers with adversarial samples 

A key component in enhancing the robustness and resilience of machine learning 

models to adversarial attacks is adversarial training. This strategy is essential in ML, 

especially in felds where models could be subject to attacks meant to trick or mislead 

them. Both adversarial and original samples are used in the training set for adver-

sarial training. Adversarial samples have been marginally altered to make the model 

forecast incorrect. On the other hand, original samples are the typical, unaltered 

data the model intends to learn from. The machine learning model gains experience 

with adversarial samples in addition to conventional data by integrating both types 
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of samples in the training set. This procedure enhances the model’s capacity to iden-

tify and correctly categorize adversarial samples by training it to operate in a hostile, 

more diversifed environment [51]. Several machine learning classifers are used during 

the adversarial training process. They are K-Nearest Neighbors (KN), Support Vec-

tor Classifer (SVC), Random Forest (RF), Extra Trees Classifer (ETC), XGBoost 

(XG), and AdaBoost (AB). Each classifer has advantages and disadvantages, adding 

to the model’s overall resilience. 3-4 This shows how the classifer training process 

takes place. These trained classifers are saved as pickle fles after the training step is 

over. The trained classifers can be readily loaded using these pickle fles in the future 

without retraining them. ML frequently uses this technique since it uses less time 

and computing power [31]. The training results are then displayed, demonstrating the 

efectiveness of each of these classifers in percentages. These outcomes, which show 

how well each classifer can handle adversarial and original data, could be accuracy 

scores, precision, recall, or any other applicable performance parameter. 

Classifer Training Accuracy Validation Accuracy Test Accuracy Test F-Score 

LR 88.80 88.73 88.73 0.89 

KN 92.52 90.36 90.39 0.90 

SVC 94.17 90.72 90.57 0.90 

RF 98.50 89.40 89.46 0.89 

ETC 97.70 89.46 89.49 0.89 

XGBoost 95.54 90.39 90.45 0.90 

AdaBoost 86.32 86.30 85.86 0.86 

Table 3.5: Training, Validation, and Testing results for various classifers on 

original and adversarial samples generated at CW Attack. 
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Figure 3-5: Training and Testing Accuracy results of the classifers on origi-

nal and adversarial samples generated at CW Attack 

In 3.5, numerous classifer performances are described in detail. KNN performed 

slightly better, achieving training accuracy of 92.52%, validation accuracy of 90.36%, 

test accuracy of 90.39%, and test F-Score of 0.90, compared to LR, which achieved 

88.80%, 88.73%, 88.73%, and 0.89 respectively. 3-5 gives a comparison of Training 

and Testing accuracy of the classifers. With a training accuracy of 94.17%, a val-

idation accuracy of 90.72%, a test accuracy of 90.57%, and a test F-Score of 0.90, 

SVC performed even better. With a training accuracy of 98.50%, the RF classifer 

performed admirably. Still, its validation and test accuracies were only marginally 

better, at 89.40% and 89.46%, respectively, with a test F-Score of 0.89. 

With a training accuracy of 97.70%, validation accuracy of 89.46%, test accuracy 

of 89.49%, and test F-Score of 0.89. ETC performed similarly to the RF classifer. 

With a training accuracy of 95.54%, a validation accuracy of 90.39%, a test accuracy 

of 90.45%, and a test F-Score of 0.90, XGBoost demonstrated a solid balance be-

tween training and testing. AdaBoost has lesser performance metrics with a training 
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accuracy of 86.32 validation accuracy of 86.30%, test accuracy of 85.86%, and a test 

F-Score of 0.86. In general, there were observable diferences in the training accu-

racies of classifers, even though most of them had comparable test accuracies and 

F-scores. These variations should be considered when choosing a classifer since they 

may afect their capacity to generalize to new data. 

Classifer Training Accuracy Validation Accuracy Test Accuracy Test F-Score 

LR 97.37 97.32 97.51 0.95 

KNN 97.99 97.49 97.64 0.95 

SVC 98.04 97.82 97.95 0.96 

RF 98.90 98.05 98.24 0.97 

ETC 98.55 97.91 98.09 0.96 

XGBoost 98.73 98.09 98.29 0.97 

AdaBoost 95.59 95.58 95.81 0.92 

Table 3.6: Training, Validation, and Testing results for various classifers on 

original and adversarial samples generated at MI Attack 
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Figure 3-6: Training and Testing Accuracy results of the classifers on origi-

nal and adversarial samples generated at MI Attack 

This 3.6 shows the results for seven diferent classifers, each trained using both 

adversarial samples generated by MI and original samples. 3-6 gives a comparison of 

Training and Testing accuracy of the classifers. With a Test F-Score of 0.95, the LR 

classifer achieved a training accuracy of 97.37%, validation accuracy of 97.32%, and 

test accuracy of 97.51%. With a similar Test F-Score of 0.95, K-Nearest Neighbors 

(KN) obtained greater training accuracy of 97.99%, validation accuracy of 97.49%, 

and test accuracy of 97.64%. With a training accuracy of 98.04%, validation accuracy 

of 97.82%, and test accuracy of 97.95%, the SVC classifer advanced further. A bit 

higher, at 0.96, was the Test F-Score. 

With RF achieving the maximum training accuracy of 98.90%, validation accuracy 

of 98.05%, and test accuracy of 98.24%, the RF and ET classifers performed better 

than expected. The Test F-Score, at 0.97, was also the highest. With a Test F-Score of 

0.96, the ET classifer reported a training accuracy of 98.55%, validation accuracy of 

97.91%, and test accuracy of 98.09%. With a training accuracy of 98.73%, validation 
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accuracy of 98.09%, and test accuracy of 98.29%, the XGBoost classifer performed 

similarly to RF, ETC. It received a Test F-Score of 0.97 as well. Last, the AdaBoost 

classifer returned accuracy values for training, validation, and testing of 95.59%, 

95.58%, and 95.81%, respectively. Its Test F-Score of 0.92 was the lowest of any 

classifers. 
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Chapter 4 

Classifer Development: Design, Train-

ing, and Predictions 

4.1 Performance Comparison of Classifers for De-

fense Mechanism 

By serving as a defense mechanism that diferentiates between original and ad-

versarial samples, classifers are crucial to an entire architecture. By acting as a 

gatekeeper to the primary Android malware detection model, these classifers en-

sure that only ”clean” or original samples are processed further. This project uses 

several diferent classifers (LR, KN, SVC, RF, ETC, XGBoost, and AdaBoost) [3], 

each using a diferent ML algorithm, 4-2 shows the image of the classifers, training 

with both adversarial and original samples. These classifers can distinguish between 

the two, given that they trained on a dataset that included original and adversarial 
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samples [47]. 

Once trained, the classifers divide the test set’s data into two groups: original 

and adversarial. The important part is that only the data identifed by these classi-

fers as ”original” are forwarded to the primary model for additional processing and 

predictions. This approach reduces the possibility that adversarial samples would 

afect the performance of the primary model, increasing its robustness and reliability 

in recognizing Android malware. 

The efectiveness of these classifers is crucial since it directly afects the system’s 

ability to detect malware on Android devices as an entire system. Each classifer’s 

performance can be compared using a range of measures (Training Accuracy, Test 

Accuracy, FPR, FNR, and F-Measure) [54], allowing one to choose which classifer(s) 

would be most suited for further integration with the primary model. These classifers 

defend against adversarial attacks, preserving the accuracy of the primary model’s 

malware detection while protecting the integrity of the data it processes. ?? shows 

the performance comparison of diferent classifers [52]. 

Classifer Training Accuracy Test Accuracy FPR FNR F-measure 

LR 94.85 94.86 4.05 6.24 0.95 

KNN 72.31 66.77 0.07 66.55 0.50 

SV 99.17 98.60 1.09 1.72 0.99 

RF 99.89 97.96 2.06 2.02 0.98 

ETC 99.48 97.82 2.47 1.89 0.98 

XGBoost 99.52 98.78 0.83 1.61 0.99 

AdaBoost 91.36 91.65 3.03 13.70 0.91 

Table 4.1: Performance comparison of diferent classifers. 
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Figure 4-1: Comparison of Training and Testing Accuracy results of the dif-

ferent classifers 

Figure 4-2: Training the classifers with original and adversarial samples 
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The results of the classifers used as a defense mechanism against adversarial at-

tacks is presented in 4.1. The LR classifer demonstrated a consistent and robust 

predictive performance on both visible (training) and unseen (test) data, achieving 

training and test accuracy of 94.55% and 94.60%, respectively. 4-1 shows the compar-

ison chart of the training and testing accuracy of diferent classifers. It kept its FPR 

and FNR at comparatively low levels of 4.44% and 6.38%, respectively, indicating 

that it struck a decent balance in reducing both false alarms and misses. The high 

harmonic means of precision and recall shown by the F-measure of 0.95 further attests 

to its remarkable performance. When compared to other classifers, the K-Nearest 

Neighbors (KNN) classifer performs signifcantly worse, with training accuracy of 

73.48% and test accuracy of 68.02%. The model has a very low FPR, which is im-

pressive at 0.05%. It has a high FNR of 64.18%, though, which means there were 

a lot of missed detections. The F-measure of 0.53, which is signifcantly lower than 

those of other classifers, refects this. The Random Forest (RF) and Support Vector 

(SV) classifers outperform the competition, obtaining above 99% training and 97% 

test accuracy. They continue to have low FPR and FNR scores, indicating good 

class separation. Both have an F-measure of 0.98, which shows almost perfect recall 

and precision. With training accuracy above 99%, test accuracy around 98%, and 

an F-measure of 0.98, the Extra Trees (ET) and XGBoost (XG) classifers perform 

similarly to the SV and RF classifers. These classifers handle adversarial attacks 

efectively overall, with ET having a little higher FPR than SV and RF and XG hav-

ing a signifcantly higher FNR. Last, the AdaBoost (AB) classifer performs worse, 

with training and test accuracy of 91.54% and 91.47%, respectively. Although it still 

has a fare FPR of 3.30 percent, the FNR is more signifcant than average at 13.8 

percent, which indicates more misses. Despite being lower than the others, it shows 

a reasonable precision and recall balance with an F-measure of 0.91. 
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4.2 Classifer Workfow as a Defense Mechanism 

and Model Predictions 

4-3 describes the workfow of classifer and model predictions. 

Figure 4-3: The Classifer’s Workfow and Model Predictions 

4.3 Integration with the Model 

In our study, the classifers are meant to improve the original model rather than 

replace it to make it more resilient to adversarial attacks. This section explains the 

steps taken to combine these classifers with the original model to detect dangers 

that could occur [19]. The classifers serve as a flter or gateway to the original 

model after being trained on a dataset that includes original and adversarial samples. 

These classifers efciently divide incoming samples into two groups: adversarial and 

original. The original samples are then saved to send to the primary model for 
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additional prediction tasks while the adversarial instances are marked [32]. 

The architecture will therefore be more resistant to adversarial attacks by integrat-

ing the classifers with the original model. The classifers work to prevent competing 

samples from changing the original model’s prediction, preserving the precision and 

consistency of the model’s output. However, it’s crucial to remember that the suc-

cess of this approach primarily depends on how well the classifers can diferentiate 

between the original and adversarial samples. To select the best classifers for integra-

tion with the original model, it is essential to consider the performance comparison 

of these classifers outlined in the previous section. 

4.4 Performance of the Model 

The original samples are provided to the model for additional predictions when the 

classifer distinguishes between the original and adversarial examples. In this stage, 

the model’s performance on the original samples is evaluated, and its robustness to 

potential adversarial attacks is determined. The evaluation’s fndings indicate how 

well the model works with the original samples and whether it can continue to predict 

correctly even when faced with adversarial examples. These fndings demonstrate the 

model’s capacity to generalize and produce accurate predictions based on actual data. 

The term ”classifer” in the context of the results presented refers to a particular model 

or technique used for classifcation. Every classifer is an individual model or algorithm 

trained to categorize samples into specifc classes. The results below show how well 

the model—as determined by the particular classifer—performed in predicting the 

labels of the original samples. The previously mentioned metrics, including accuracy, 

FPR, FNR, and F-measure, thoroughly assess the model’s efectiveness on the original 

samples. FPR and FNR ofer information on the model’s capacity to avoid making 

false positive and false negative predictions, while F-measure provides a fair evaluation 
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of precision and recall. Accuracy assesses the overall accuracy of the predictions. 

Classifer Accuracy FPR FNR F-measure 

LR 94.23 7.17 4.39 0.94 

AdaBoost 90.91 11.45 6.74 0.91 

ETC 96.68 3.16 3.48 0.97 

KNN 96.22 4.44 3.12 0.96 

RF 97.05 2.62 3.28 0.97 

SVC 95.97 4.42 3.64 0.96 

XGBoost 96.32 3.89 3.46 0.96 

Table 4.2: Prediction Results of Diferent Models on Classifer-Identifed 

Original Samples 

Figure 4-4: Comparison of Prediction Accuracy of the Models 

The accuracy metric shows the percentage of samples that each classifer correctly 

classifes. 4.2 shows the prediction results of diferent models. A higher accuracy 
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demonstrates improved performance in correctly classifying positive and negative ex-

amples 4-4 compares models’ accuracy. In this instance, the classifers had accuracy 

levels between 90.91% and 97.05%. The FPR calculates the frequency with which 

negative samples are incorrectly deemed positive. A decreased FPR suggests an im-

proved capacity to reduce the misclassifcation of negative examples. The FPR values 

that the classifers achieved ranged from 2.62% to 11.45%. The FNR measures the 

frequency of incorrectly labeling positive samples as negative. A lower FNR sug-

gests a better capacity to classify positive samples accurately. The FNR values the 

classifers achieved ranged from 3.12% to 6.74%. The F-measure, which combines 

precision and recall measurements, evaluates the classifer’s performance. It provides 

a balanced assessment by considering false positive and false negative rates. The 

classifers’ F-measure scores ranged from 0.91 to 0.97. 
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Chapter 5 

Conclusion and Future Work 

The study aimed to increase an Android malware detection model’s resistance to 

adversarial attacks. A classifer was used as a frst line of defense and successfully 

identifed adversary samples apart from the original samples. As a result, the primary 

predictive model was protected from direct adversarial disturbance, enabling better 

predictions. The model was strengthened against attacks by training on adversarial 

samples. The trained model’s resiliency against these adversarial attacks proved this 

method’s efectiveness. The addition of the classifer system improved the model’s 

performance and decreased the possibility of adversarial samples passing undetected. 

This demonstrates how such layered defensive measures might strengthen the model’s 

resistance to adversary manipulation. 

As this project progresses, several important areas will be the focus for enhance-

ment and exploration. The model’s exposure to various adversarial attacks is one of 

the main areas of interest. The model has only been trained and tested against a small 

number of adversarial techniques at this time. We seek to improve the robustness of 
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the model against unidentifed or sophisticated adversarial samples, hence maintain-

ing a high level of performance, by broadening the range of adversarial attacks used 

during model training. Exploring other defense mechanisms to make the model much 

stronger. Our evaluation was limited to binary datasets (0 or 1) and did not include 

other categorical or decimal data. There is potential for future research to extend 

these tests to explore other types of datasets. 
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Appendix A 

Source Code Snippets for Adversarial Attacks 

A.1 CW 

def c a l i g a r i w a g e r a t t a c k (X, y , model , 

e p s i l o n =0.3 , p e r t u r b f a c t o r =0.76 , 

num i t e ra t i ons =300 , l e a r n i n g r a t e =0 .3) : 

p roce s s ed sample s = [ ] 

a c c u r a c i e s = [ ] 

f a l s e p o s i t i v e r a t e s = [ ] 

f a l s e n e g a t i v e r a t e s = [ ] 

fmeasures = [ ] 

def ob j f unc ( perturbat ion , x , y ta rge t , model , e p s i l o n ) : 
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x adv = x + pe r t u r b a t i on 

x adv = np . round( x adv ) 

x adv = np . c l i p ( x adv , 0 , 1) 

y pred = model . p r e d i c t ( x adv . reshape (1 , −1)) 

y pred = int ( y pred [ 0 ] ) 

l o s s = 0 i f y pred == y t a r g e t else 1 

c o n s t r a i n t = np .sum( np . abs ( pe r t u r ba t i o n ) ) − e p s i l o n 

pena l ty = 1 e3 i f c o n s t r a i n t > 0 else 0 

return l o s s + pena l ty 

X adv = np . copy (X) 

p e r t u r b a t i o n s = np . z e r o s l i k e (X) 

for i in range (X. shape [ 0 ] ) : 

x = X[ i ] 

y t a r g e t = int ( y [ i ] ) 

bounds = [ ( None , None ) for in range (X. shape [ 1 ] ) ] 

i n i t i a l p e r t u r b a t i o n = np . random . c h o i c e ( [ −1 , 0 , 1 ] , 

p=[ e p s i l o n / 2 , 1 − e p s i l o n , e p s i l o n / 2 ] ) 

s i z e=X. shape [ 1 ] , 

op t i ons = { 

’ maxiter ’ : 

’ i n i t i a l t r 

} 

num i te rat ions , 

r a d i u s ’ : l e a r n i n g r a t e 

a t t a c k r e s u l t = s c i p y . opt imize . minimize 
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( ob j func , i n i t i a l p e r t u r b a t i o n , a rgs =(x , y ta rge t , model , e p s i l o n ) , 

method=’ t rus t −cons t r ’ , bounds=bounds , opt i ons=opt ions ) 

pe r tu rbat i on = a t t a c k r e s u l t . x 

p e r tu rba t i on s [ i ] = pe r tu rbat i on 

x adv = x + p e r t u r b f a c t o r ∗ per turbat i on 

X adv [ i ] = np . round( x adv ) 

X adv [ i ] = np . c l i p ( X adv [ i ] , 0 , 1) 

i f ( i + 1) % 100 == 0 : 

y pred adv = model . p r e d i c t ( X adv [ : i + 1 ] ) 

acc , fpr , fnr , fmeasure = c a l c u l a t e p e r f o r m a n c e m e t r i c s 

( y [ : i + 1 ] , y pred adv ) 

p roce s s ed sample s . append ( i + 1) 

a c c u r a c i e s . append ( acc ∗ 100) 

f a l s e p o s i t i v e r a t e s . append ( fp r ∗ 100) 

f a l s e n e g a t i v e r a t e s . append ( fn r ∗ 100) 

fmeasures . append ( fmeasure ∗ 100) 

print ( f ”PROCESSED { i + 1} SAMPLES” ) 

print ( f ”Accuracy a f t e r p r o c e s s i n g { i + 1} samples : { acc ∗ 1 0 0 : . 2 f}%” ) 

print ( f ” Fa l se p o s i t i v e r a t e a f t e r p r o c e s s i n g { i + 1} 

∗samples : { f p r 

print ( f ” Fa l se 

samples : { f n r 

1 0 0 : . 2 f}%” ) 

negat ive r a t e a f t e r p r o c e s s i n g { i + 1} 

∗ 1 0 0 : . 2 f}%” ) 

print ( f ”F−measure 

samples : { fmeasure 

a f t e r p r o c e s s i n g { i + 1} 

∗ 1 0 0 : . 2 f}%” ) 
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return X adv , pe r turbat ions , processed samples , 

a c cu rac i e s , f a l s e p o s i t i v e r a t e s , 

f a l s e n e g a t i v e r a t e s , fmeasures 

A.2 MI 

def i nver t mode l ( model , t a r g e t l a b e l , max i te r =1000 , 

l e a r n i n g r a t e =0.01 , th r e sho ld =0 .5) : 

x i nv e r t e d = np . random . uniform (0 , 1 , s i z e=X. shape [ 1 ] ) 

for in range ( max i te r ) : 

x i nv e r t e d = np . c l i p ( x inver ted , 0 , 1) 

p r e d i c t i o n = model . p r ed i c t p roba ( x i nve r t e d . reshape (1 , −1)) 

g rad i en t = p r e d i c t i o n [ : , t a r g e t l a b e l ] − th r e sho ld 

x i nve r t e d −= l e a r n i n g r a t e ∗ grad i en t 

return x i nve r t e d 

proce s s ed sample s = [ ] 

a c c u r a c i e s = [ ] 

f a l s e p o s i t i v e r a t e s = [ ] 

f a l s e n e g a t i v e r a t e s = [ ] 

fmeasures = [ ] 

# Generate ad v e r s a r i a l samples us ing the 

Model I n ve r s i on Attack for the e n t i r e datase t 

X adv = np . z e r o s l i k e (X) 

for i , t a r g e t l a b e l in enumerate ( y ) : 

58 



X adv [ i ] = inver t mode l ( model , t a r g e t l a b e l ) 

i f ( i + 1) % 100 == 0 : 

y pred adv = model . p r e d i c t ( X adv [ : i + 1 ] ) 

a c c a f t e r , f p r a f t e r , f n r a f t e r , 

f m e a s u r e a f t e r = c a l c u l a t e p e r f o r m a n c e m e t r i c s ( y [ : i + 1 ] , y pred adv ) 

p roce s s ed sample s . append ( i + 1) 

a c c u r a c i e s . append ( a c c a f t e r ∗ 100) 

f a l s e p o s i t i v e r a t e s . append ( f p r a f t e r ∗ 100) 

f a l s e n e g a t i v e r a t e s . append ( f n r a f t e r ∗ 100) 

fmeasures . append ( f m e a s u r e a f t e r ∗ 100) 

print ( f ”PROCESSED { i + 1} SAMPLES” ) 

print ( f ”Accuracy AFTER p r o c e s s i n g { i + 1} samples : { a c c a f t e r ∗ 1 0 0 : . 2 f}%” ) 

print ( f ” Fa l se p o s i t i v e r a t e AFTER p r o c e s s i n g { i + 1} 

samples : { f p r a f t e r ∗ 1 0 0 : . 2 f}%” ) 

print ( f ” Fa l se negat ive r a t e AFTER p r o c e s s i n g { i + 1} 

samples : { f n r a f t e r ∗ 1 0 0 : . 2 f}%” ) 

print ( f ”F−measure AFTER p r o c e s s i n g { i + 1} 

samples : { f m e a s u r e a f t e r ∗ 1 0 0 : . 2 f}%” ) 
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Appendix B 

Source Code Snippets for Training Classifers 

def model l ing ( key , c l a s s i f i e r ) : 

r o c l s t = [ ] 

t r a i n s t a r t = time ( ) 

c l a s s i f i e r . f i t ( X tra in , y t r a i n ) 

t r a i n end = time ( ) 

t rn t ime = t r a in end − t r a i n s t a r t 

t r a i n a c c = c l a s s i f i e r . s c o r e ( X tra in , y t r a i n )∗100 

# c a l c u l a t i n g the t r a i n i n g accuracy 

d e t c t i o n s t a r t = time ( ) 

y pred = c l a s s i f i e r . p r e d i c t ( X te s t ) 
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de t e c t i on end = time ( ) 

t s t t i m e = de t e c t i on end − d e t c t i o n s t a r t 

cm = con fus i on mat r ix ( y t e s t , y pred ) 

cm dict [ key ] = cm 

probs = c l a s s i f i e r . p r ed i c t p roba ( X te s t ) 

probs = probs [ : , 1 ] 

r o c l s t . append ( [ y t e s t , probs ] ) 

r o c d i c t [ key ] = r o c l s t 

t s t a c c = a c cu ra cy s co r e ( y t e s t , y pred )∗100 

f S co r e = f 1 s c o r e ( y t e s t , y pred ) 

va l = c r o s s v a l s c o r e ( e s t imator = c l a s s i f i e r , 

X = X train , y = y t ra in , cv = 10 , n j obs = −1) 

v a l a c c = va l . mean()∗100 

return t r a i n a c c , va l acc , t s t a c c , fScore , t rn t ime , t s t t ime , cm dict [ key ] 

datase t = pd . r ead c sv ( ” binarydata . csv ” ) 

#da ta s e t = s h u f f l e ( da t a s e t ) 

# Load the ad v e r s a r i a l samples 

a d v e r s a r i a l d a t a s e t = pd . r ead c sv ( ” ad ve r s a r i a l s amp l e s 2 9 33 3 . csv ” ) 

# Concatenate the o r i g i n a l and ad v e r s a r i a l samples 
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combined dataset = pd . concat ( [ dataset , a d v e r s a r i a l d a t a s e t ] ) 

# Shu f f l e the combined da t a s e t 

combined dataset = s h u f f l e ( combined dataset ) 

from s k l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t , c r o s s v a l s c o r e 

from s k l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n 

from s k l e a rn . ne ighbors import KNe ighbo r sC la s s i f i e r 

from s k l e a rn . svm import SVC 

from s k l e a rn . ensemble import RandomForestClass i f i e r 

from s k l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r 

from s k l e a rn . ensemble import AdaBoos tC la s s i f i e r 

from xgboost import XGBClass i f i er 

from s k l e a rn . ensemble import B a g g i n g C l a s s i f i e r 

from s k l e a rn . t r e e import D e c i s i o n T r e e C l a s s i f i e r 

models = { 

’LR ’ : L o g i s t i c R e g r e s s i o n ( random state = 0 , n j ob s = −1) , 

’KN’ : KNe i ghbo r sC la s s i f i e r 

( n ne ighbors =5, p=2, metr ic = ’ minkowski ’ ) , 

’SV ’ : SVC( ke rne l = ’ rb f ’ , random state =0, p r o b a b i l i t y=True ) , 

’RF ’ : RandomForestClass i f i e r 

( c r i t e r i o n=’ g i n i ’ , random state = 0 , n e s t imato r s =10, n j ob s = −1) , 

’ET ’ : E x t r a T r e e s C l a s s i f i e r 

( c r i t e r i o n=’ g i n i ’ , m in s amp l e s l e a f = 2 , n e s t imato r s =5, n j ob s = −1) , 

’XG’ : XGBClass i f i er ( n j ob s = −1) , 

’AB’ : AdaBoos tC la s s i f i e r ( l e a r n i n g r a t e =0.1 , n e s t imato r s =70) , 

} 

62 



e =42)

Appendix C 

Source Code Snippets for Classifer as a defense 

mechanism 

# Shu f f l e the combined da t a s e t 

combined dataset = s h u f f l e ( combined dataset ) 

# Separate the f e a t u r e s (X) from the t a r g e t v a r i a b l e ( y ) 

X = combined dataset . i l o c [ : , : − 1 ] . va lue s 

y = combined dataset . i l o c [ : , − 1 ] . va lue s 

# S p l i t the data i n t o t r a i n i n g and t e s t s e t s 

X train , X test , y t r a in , y t e s t = t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.3 , random stat 

# Define your c l a s s i f i e r s 
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, n j obs = −1) ,

5, n j obs = −1) ,

’ , ’FPR ’ , ’FNR’ , ’F−measure ’ ] )

)

cy = { t e s t a c c u r a c y : . 2 f }%, FPR = { f p r : . 2 f }%, FNR = { f n r : . 2 f }%, F−measure = { fmeasure : . 2 f}%” )

c l a s s i f i e r s = { 

’LR ’ : L o g i s t i c R e g r e s s i o n ( random state = 0 , n j ob s = −1) , 

’KN’ : KNe ighbo r sC la s s i f i e r ( n ne ighbors =5, p=2, metr ic = ’ minkowski ’ ) , 

’SV ’ : SVC( ke rne l = ’ rb f ’ , random state =0, p r o b a b i l i t y=True ) , 

’RF ’ : RandomForestClass i f i e r ( c r i t e r i o n=’ g i n i ’ , random state = 0 , n e s t imato r s =10 

’ET ’ : E x t r a T r e e s C l a s s i f i e r ( c r i t e r i o n=’ g i n i ’ , m in s amp l e s l e a f = 2 , n e s t imato r s = 

’XG’ : XGBClass i f i er ( n j ob s = −1) , 

’AB ’ : AdaBoos tC la s s i f i e r ( l e a r n i n g r a t e =0.1 , n e s t imato r s =70) , 

} 

# Create an empty DataFrame to s t o r e the r e s u l t s 

r e s u l t s d f = pd . DataFrame ( columns=[ ’ C l a s s i f i e r ’ , ’ Tra in ing Accuracy ’ , ’ Test Accuracy 

# Train each c l a s s i f i e r and e va l ua t e i t s performance 

for key , c l a s s i f i e r in c l a s s i f i e r s . i tems ( ) : 

c l a s s i f i e r . f i t ( X tra in , y t r a i n ) 

# Ca l cu l a t e t r a i n i n g accuracy 

y t r a i n p r e d = c l a s s i f i e r . p r e d i c t ( X t ra in ) 

t r a i n a c c u r a c y = a c cu ra cy s co r e ( y t r a in , y t r a i n p r e d ) ∗ 100 

# Ca l cu l a t e t e s t metr ic s 

y pred = c l a s s i f i e r . p r e d i c t ( X te s t ) 

t e s t a c cu racy , fpr , fnr , fmeasure = c a l c u l a t e p e r f o r m a n c e m e t r i c s ( y t e s t , y pred 

print ( f ”{key} c l a s s i f i e r : Tra in ing accuracy = { t r a i n a c c u r a c y : . 2 f }%, Test accura 

# Save the c l a s s i f i e r 
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/{key} c l a s s i f i e r . pkl ” )

f i e r r e s u l t s . csv ’ , index=False )

j o b l i b . dump( c l a s s i f i e r , f ”D: / Attack Defense / Mult ip l e c l a s s i f i e r s / New Integrat ion 

print ( f ”{key} c l a s s i f i e r i s dumped” ) 

# Append the r e s u l t s to the r e s u l t s d f 

r e s u l t s d f = r e s u l t s d f . append ({ 

’ C l a s s i f i e r ’ : key , 

’ Tra in ing Accuracy ’ : t r a in a c curacy , 

’ Test Accuracy ’ : t e s t a c cu racy , 

’FPR ’ : fpr , 

’FNR’ : fnr , 

’F−measure ’ : fmeasure } , 

i gno r e i n de x=True ) 

# Save the r e s u l t s to a CSV f i l e 

r e s u l t s d f . t o c s v ( ’D: / Attack Defense / Mult ip l e c l a s s i f i e r s / New Integrat ion / c l a s s i 

print ( ” Resu l t s o f c l a s s i f i e r are p r in ted ” ) 
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	Introduction 
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	InadversarialML,CWandMIarecharacterizedaswhite-boxattacks.Inawhiteboxattack,theattackerisfullyawareofthearchitecture,parameters,andtrainingdataoftheMLmodelthatisbeingattacked.Theattackercanaccessthemodel’sinternalworkingsandusethisknowledgetocreateadversarialsamplesthatexploitthemodel’sflawsorvulnerabilities.Ontheotherhand,blackboxattacksareasortofadversarialattackinwhichtheattackerhaslittleknowledgeoftheparametersorinternalworkingsofthetargetMLmodel[17].
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	intheinputdatatoproduceadversarialsamples[13].Itassumesthetargetmodel’sarchitecture,parameters,andgradientsareavailable.Conversely,MIisatechniquethatseekstoretrieveprivatedatafromthetrainingsetusedtodevelopanMLmodel.Itmightbeseenasawhiteboxattackbecauseitneedsaccesstothemodel’spredictionsandknowledgeofitsarchitecture.
	Additionally,weprovideacutting-edgesecuritymethodthatusesaspecificclassifiertorecognizeandremoveadversarialsamplesbeforesendingthemtotheprimarymalwaredetectionmodel.Weintendtoimprovetheexistingdetectionsystem’saccuracyandrobustnesstoadversarialattacksbyincludingthisdefensemechanism.
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	1.2 Purpose and Scope 
	1.2 Purpose and Scope 
	ThisthesisexamineshowadversarialattacksaffectMLmodelsthatcategorizeAndroidmalware.AdversarialattackstrytochangetheinputdatatomodifytheoutputsofMLmodels.TheseattackscouldleadtoamodelmisclassifyingamaliciousapplicationasbenigninAndroidmalwareclassification,allowingthemalwaretoevadesecuritysafeguards.Toincreasethesecurityandrobustnessofthesesystems,itisessentialtounderstandhowvulnerableMLmodelsaretoadversarialattacks.ThevulnerabilityofMLmodelstoadversarialattackscouldsubstantiallyimpactthesecurityofdigitalsyst
	-
	-

	Examiningmultipleadversarialattacktypeswillbeacrucialaspectofthestudy.Additionally,thestudyaimstoevaluatehowwellpre-trainedmodelsfunctionwhensubjectedtotheseadversarialattacks.Wetestedthemodels’capacitytocorrectlycategorizeAndroidappsasmaliciousorsafe,eveninthefaceofadversarialattacks.Thisstepiscrucialforunderstandingthemodels’currentstrengthsandlimitations
	andpotentialareasforimprovement.
	ThestudyalsosuggestsdesigningandtrainingadedicatedclassifierforrecognizingadversarialsamplestoincreasetheresilienceofMLmodelsagainstadversarialattacks.Bydifferentiatingmaliciousandoriginalinputs,theclassifiercouldshieldthemodel’sperformanceagainstadversarialattacks.Finally,thisdefensemechanism’sperformanceinidentifyingandcounteringadversarythreatswillbeassessed.Ensuringthesuggestedsolutionwillimprovethemodel’srobustnessisessential.ThethesisaimstodevelopthefieldofMLsecuritybyfollowingthesegoals.Itaimstosugge
	-
	-


	1.3 Organization of Thesis 
	1.3 Organization of Thesis 
	Chapter 1 -Introduction: Thischaptersummarizestheresearcharea—androidmalwaredetection—andexplainswhyitisessentialtounderstandadversarialattacks.Thechapteralsodescribestheoverviewofthethesis’sstructureandorganization.
	Chapter 2 -Background: Thischaptergivesbackgroundinformationonthetechnologiesandconceptsrelevanttotheresearch.Itcoversmachinelearninganditsapplicationsinmalwaredetection.Additionally,itdiscussesadversariallearningandexplainstheideaofadversarialattacks,inwhichdatapointsarecreatedwiththeintentionoftrickingmachinelearningalgorithms.ThechapterreviewsrelatedliteraturethatdiscussescurrentmethodsforclassifyingAndroidmalwareinthecontextofadversarialsampledetection.
	-

	Chapter 3 -Performance of a Pre-trained ML Model under Adversarial Attacks: Thischapterassessesamachinelearningmodel’sperformanceinthepresenceofadversarialassaults.Themodelanddatasetutilizedintheexperimentsare
	-

	described.Thereplicationandlaunchofadversarialassaults,particularlyCWand
	MIattacks,arecoveredinthischapter.Ittalksaboutgatheringadversarialsamplesandconductingtrainingandtestingonoriginalandadversarialsamples.ThefindingsoftheCWandMIassaultsarepresentedinthechapter’sperformanceevaluationoftheattacks.
	Chapter 4 -Classifier Development: Design, Training, and Predictions: 
	Themainfocusofthischapteristhedesignandtrainingofaclassifiertodifferentiatebetweenoriginalandadversarialdata.Itcomprisesaperformanceevaluationofvariousclassifierstodeterminethemostefficient.Thechapterfurtherinvestigatestheclassifier’sintegrationwiththeinitialmodelandassessesthemodel’soverallperformancefollowingintegration.
	Chapter 5 -Conclusion and Future Work: Thischapterconcludes,summarizestheresults,explorestheconsequences,andsuggestsdirectionsforfurtherresearch.
	Chapter 2 


	Background 
	Background 
	2.1 Machine Learning (ML) 
	2.1 Machine Learning (ML) 
	InMachineLearning,computersmayautomaticallylearnfromexperience,adapt,andimprovewithoutbeingexplicitlyprogrammed.Itfocusesoncreatingandimprovingalgorithmsthatprovidecomputerswithdataaccesssotheycanuseittoanticipatethefutureormakejudgments.Itfeedsonenormousamountsofdata,whichitcananalyzetopreciselyidentifypatternsandtrendsthatcouldeludethehumaneye.Oneofmachinelearning’smostimportantusesisinthefieldofcybersecurity.Traditionalsecuritymethods,particularlythosethatrelyonknownattacksignaturesandhumaninteraction,mu
	-
	-

	MLalgorithmscanlearnfrompreviousoccurrencesandhistoricaldata,givingthem
	thepredictiveabilitytoanticipateandrecognizepotentialhazardsfrequentlybeforetheyhappen.Thiscapacityisessentialincybersecuritysinceitcandrasticallyreducethedurationbetweenabreachandanattackresponse,potentiallysavingtime,money,andsensitiveinformation.MLhascriticalapplicationsacrossmultipleaspectsofcybersecurity.MLisessentialinmalwaredetectionsystems(IDS)foranalyzingnetworktrafficdataandspottingout-of-the-ordinaryorsuspiciousactivities[12].Toidentifypotentialincursionsandquicklyreacttothem,itisbeneficialtohave
	-
	-
	-

	2.1.1 Random Forest (RF) 
	2.1.1 Random Forest (RF) 
	AflexibleandreliableMLmodelcalledRandomForest(RF)isfrequentlyusedforclassificationandregressionproblems.Itisacomponentofensemblelearning
	methods,astrategythatcombinesvariouslearningmodelstoprovidepredictionsthataremorepreciseandreliablethanthosethatcouldbemadeusingjustoneoftheindividuallearningalgorithms.Duringthetrainingphase,theRFmethodgeneratesmanydecisiontrees,eachbuiltusingarandomportionofthetrainingdata[46].Theoutputiseitherthemodeoftheclassesforclassificationtasksorthemeanestimateoftheindividualtreesforregressiontasks.Thismethodcreatesa”forest”ofdecisiontrees,combiningtheirpredictionstomaketheresult[1].Adecisiontreeisastructurelikeafl

	2.1.2 Logistic Regression (LR) 
	2.1.2 Logistic Regression (LR) 
	ApopularMLapproachforbinaryclassificationissuesislogisticregression(LR).Alogisticfunctionisusedinthisstatisticalmodeltosimulateabinarydependentvariable.TheLRmodelcalculatesthelikelihoodthataspecificinputpointfallsunderthe[59].Thelogisticfunction,thesigmoidfunction,isthefundamentalideaunderpinninglogisticregression.AnS-shapedcurvemapsanyreal-valuednumbertoavaluebetween0and1.Theterm”logistic”referstothefactthattheoutcomepredictioninlogisticregressionislogarithmicratherthanlinear.Thisratioissubjected
	-

	tothelogisticfunctiontodeterminethepossibilityorlogodds.Theestimatedprob
	-

	abilitycanthenbeusedtopredictabinaryoutcome;ifitexceedsacertainthreshold,themodelwillpredictthepositiveclass;ifnot,itwillindicatethenegativecategory.ThefactthatLRnotonlyoffersapredictionbutalsotheprobabilitiescorrespondingtothepredictionsisoneofitsbenefits.Whenweneedtoestimatetheprediction’slevelofcertainty,thisfeatureisuseful.LRmaybeeasilyappliedtonumericalandcategoricaldatabytransformingcategoricaldataintodummyvariables.Additionally,byincludingapenaltytothelossfunctionthatthemodelminimizes,LRcanberegulari
	-
	-


	2.1.3 Support Vector Machine (SVM) 
	2.1.3 Support Vector Machine (SVM) 
	Apowerfulsupervisedlearningtechnique,theSupportVectorMachine(SVM),ismainlyemployedforbinaryclassification.Atthesametime,itcanalsobeutilizedtosolvemulti-classclassificationandregressionissues.ThefundamentalideaofSVMistolocateahyperplanethatdividesthedataintotwoclassesinthebestpossibleway[41].Thehyperplaneisselectedtomaximizethemargin,whichisdeterminedbymeasuringhowfareachclass’snearestdatapointsarefromthehyperplane.Asitseekstoestablishthebroadest”street”betweentypes,thismethodmakestheSVMrobusttooverfittingan
	Apowerfulsupervisedlearningtechnique,theSupportVectorMachine(SVM),ismainlyemployedforbinaryclassification.Atthesametime,itcanalsobeutilizedtosolvemulti-classclassificationandregressionissues.ThefundamentalideaofSVMistolocateahyperplanethatdividesthedataintotwoclassesinthebestpossibleway[41].Thehyperplaneisselectedtomaximizethemargin,whichisdeterminedbymeasuringhowfareachclass’snearestdatapointsarefromthehyperplane.Asitseekstoestablishthebroadest”street”betweentypes,thismethodmakestheSVMrobusttooverfittingan
	separated,isatechniqueSVMusestohandledatathatcannotbelinearlyseparatedintheoriginalenvironment[16].Theinputdataaretransformedbykernelfunctionslikethelinear,polynomial,radialbasisfunction(RBF),orsigmoidkernels,allowingSVMtolocatecomplexdecisionboundariesinthetransformedspace.SVMisadaptableandcapableofhandlingchallenging,real-worlddatasetsduetothefreedomtoselectasuitablekernelfunction.SVMisoneofthemostwell-likedmachinelearningalgorithmsbecauseofitsreliability,adaptability,andhighperformanceacrossvariousareas.
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	2.1.4 K-Nearest Neighbors (KNN) 
	2.1.4 K-Nearest Neighbors (KNN) 
	Thelazylearningalgorithmsincludeinstance-basedlearningalgorithmssuchasKNN.Thename”lazy”alludestothefactthatKNNwaitsuntilpredictiontimetousethetrainingdatainsteadofbuildingageneralizedmodelduringthetrainingphase.Itisalsoregardedasanon-parametrictechniquebecausenoexplicitassumptionsaremadeonthefunctionalformofthedata[28].KNNisveryusefulwhenthedatadistributionisuncertainordoesnotadheretotheassumptionsofparametricmodelsbecauseofthischaracteristic.ThefundamentalideabehindKNNistocategorizeanobjectbasedonhowitrese
	-

	KNN’seaseofuse,interpretability,andcapacityformulti-classissueshavemade
	itusefulinvariousapplications.Itisfrequentlyutilizedindisciplinesincludingpat
	-

	ternrecognition,anomalydetection,textmining,andrecommendationsystems[53].Despiteitsadvantages,KNNissusceptibletothedimensionalitycurse.Whenmanaginghigh-dimensionaldata,dimensionalityreductiontechniquesmaybenecessarybecausetheperformancerapidlydeclinesasthefeaturespace’sdimensionsrise.Additionally,becauseKNNisalazylearner,itcanbeexpensivetocomputeandslowwhenmakingpredictions,especiallyforlargedatasets.Despitethis,theKNNalgorithmisadequateforvariousdata-drivenapplications,especiallythosethatbenefitfromitssimp
	-
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	2.1.5 Extra Trees Classifier (ETC) 
	2.1.5 Extra Trees Classifier (ETC) 
	ExtremelyRandomizedTrees,anothernamefortheETC,isanensemblelearningtechniquethatproducesmanydecisiontreesandaggregatestheirresults.ItbelongstothesameclassofensembleapproachesasRandomForestandGradientBoosting.Still,becauseitaddsmorerandomizationthroughoutthemodel-buildingprocess,itfurtherlowersthevarianceofthemodel[10].Thefundamentaltenetofensemblemethods,suchasETC,isthatacollectionof”weaklearners”cancombinetocreatea”stronglearner.”Arandomsubsetofthedataisusedtobuildeachdecisiontreeintheensembleindependently.
	Foresttoachievecomparableperformancelevels.However,aseachtreeisgenerated
	individually,thetrainingofETCcanbedoneentirelyinparallel,resultinginquickcomputation.ThefactthatETCusesrandomthresholdsandishenceinsensitivetoinputscalingcanmakeitmoreuser-friendlythanothertechniquesthatcallforinputstandardization.ETCisarobustandpracticalensemblelearningmethodthatexcelsatworkingwithsizabledatasetswithhighdimensionalspaceandcanbeappliedtoregressionandclassificationapplications.

	2.1.6 Extreme Gradient Boosting (XGBoost) 
	2.1.6 Extreme Gradient Boosting (XGBoost) 
	ExtremeGradientBoosting,orXGBoost,isapowerful,scalableMLmethodthatexcelsatpredictivemodelingapplicationsduetoitshighperformanceandeffectiveness.Itsfoundationisthegradientboostingframework,whichiterativelycombinesweakpredictivemodels,typicallydecisiontrees,toproducearobustpredictivemodel[18].Thetechniqueofgradientdescentoptimizationtoreducethelossfunctioniscalledgradientboosting.Duetoitsaccuracyandprocessingcapacity,XGBoosthasbecomeextremelywell-knowninthedatasciencecommunityandhasbeenthealgorithmofchoiceinm
	-
	-
	-

	wellmachinelearningalgorithmsperform.XGBoostismoreresistanttomissingdata
	thanotheralgorithmssinceitautomaticallydeterminestheappropriateimputationtechniquebasedonthetrainingloss.Thecapacitytoprocessinformationinparallel,whichaccelerateslearning,andbuilt-incross-validationateachiteration,whichminimizestheamountofboostingiterations,aretwofurtherbenefitsofXGBoost.Formanymachinelearningproblems,XGBoostisthealgorithmofchoicebecauseofitsspeed,performance,andadaptability.
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	2.1.7 Adaptive Boosting (AdaBoost) 
	2.1.7 Adaptive Boosting (AdaBoost) 
	Theadaptiveboostingmachinelearningalgorithm,calledAdaBoost,isemployedforclassificationandregressionissues.Oneoftheearliestandbestensemblealgorithms,itcombinesseveralweakclassifierstoproducearobustclassifier.Simplyput,aweakclassifierperformspoorlybutisstillsuperiortoguessingatrandom[20].AdaBoostisadaptiveinthatititerativelymodifiesthedistributionofthedatatoemphasizecasesthatwereincorrectlyclassifiedinthepast,enhancingtheensemble’sperformance.EachweakclassifierinAdaBoostistrainedusingarandomsubsetoftheentired
	-
	-

	multiclassclassificationproblems.Itcanalsoincorporateanylearningtechnique.
	AdaBoostcanbeusedwithanyformofclassifier,eventhoughitiscommonlyemployedwithdecisiontreeclassifiers.Asaresult,arobustclassifieriscreatedthatcombinestheadvantagesofeachmemberwhilealsomakingupforanyflaws.
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	2.2 Adversarial Learning 
	2.2 Adversarial Learning 
	AsophisticatedbranchofMLcalledadversariallearningconcentratesonlearninginahostileenvironment.Adversariallearningalgorithmsfocusonscenarioswherethedatadistributionmaybepurposefullymodifiedoradverselyaffectedbyanopponent,unliketypicalMLalgorithms,whichlearnfromafixeddatadistribution.Theadversary’sobjectiveistypicallytomaketheMLalgorithmproduceerrors.Incontrast,thelearneraimstocategorizeorpredictdata,evenhostiledataaccurately.
	-

	IntraditionalML,wetypicallyassumethatthedatadistributionisstationaryandthatthedistributionofthetestdatalookssimilartothatofthetrainingdistribution.Thisisnomoretrueinhostilecircumstanceswhenattackerscandeliberatelymodifythedata[43].Asaresult,adversariallearningalgorithmsaremadetobestrongerandmoreresistanttothesetricks.
	ThisprojectaimstostrengthentheAndroidmalwaredetectionsystem’sresilienceagainstadversarialattacks.Inthiscase,adversarialsamplesactasfakeentitiestodefeatthemodel’sdetectionmechanism[42].Theapproachincludesadversariallearningmechanismstoaddressthis.Asaresult,itcaneffectivelylearnfrombenignandadversarialsamplesandproduceprecisepredictions.Usingadversariallearningconsiderablybooststhesystem’seffectivenessandstrengthensitsdefensesagainstpotentialsecuritybreachesandadversarialattacks.
	2.2.1 Adversarial Attacks 
	2.2.1 Adversarial Attacks 
	InML,adversarialattacksinvolvemodifyingtheinputdatatoconfusetheMLmodelsandcausethemtoprovidefalseresults.Theseassaultsusethemodels’built-inweaknessesandposesevereriskstoMLandDLmodels.White-boxandblack-boxattacksarethetwomaintypesofadversarialattacks.Attackersusingwhite-boxtechniquescanaccessthemodel’sarchitecture,parameters,andtrainingdata.Theattackercandesignsophisticatedattacksusingthisknowledgethatfrequentlygoundetected[44].Incontrast,black-boxattacksassumethattheattackerisonlyawareofthemodel’sinputsando
	SeriousconcernsaboutthedependabilityandrobustnessofMLmodelshavebeenraisedduetotheirvulnerabilitytoadversarialattacks.ThepotentialimpactofadversarialattackscouldbeextensiveandharmfulasMLmodelsareincreasinglyusedincrucialdomains,includingcybersecurity,healthcare,andautonomouscars[21].ToensurethesafeandefficientusageofMLmodels,itisessentialtocomprehendandmitigateadversarialattacks[43].
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	2.3.1 Overview of Android Malware Classification 
	2.3.1 Overview of Android Malware Classification 
	MalwareattacksontheAndroidplatformhavesignificantlyincreasedduetothewidespreadavailabilityofAndroidsmartphonesoverthepasttenyears.Androidmalwareclassificationhasbeenthesubjectofnumerousstudies,particularlyonML-basedsolutions,duetotheirperformancebenefitsovertraditionalrule-basedapproaches.Typically,collectionsofAndroidapplicationsclassifiedasbenignormaliciousare
	-

	usedtotrainMLmodels.Tocategorizenew,undiscoveredapplications,theylearn
	thecharacteristicsthatsetthesecategoriesapart,suchasrequestedpermissions,APIrequests,ornetworkactivities[27].NumerousMLmethodshavebeenusedtocategorizeAndroidmalwareovertime,includingDecisionTrees,RandomForests,SupportVectorMachines,NeuralNetworks,andothers[5].Researchershavealsolookedintofeatureselectiontechniquestoreducethedimensionalityofthedataandenhancemodelperformance.MalwarecategorizationhasalsoseenanincreaseintheapplicationofDL.Sincetheycanautomaticallylearnfeaturerepresentationsfromrawdata,modelslik
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	2.3.2 Adversarial Attacks in Machine Learning 
	2.3.2 Adversarial Attacks in Machine Learning 
	Thesafetyandreliabilityofmachinelearningmodelsarenowseriouslythreatenedbyadversarialattacks.Anadversarialattackinvolvesalteringtheinputdatatoamachinelearningmodelinawaythatleadstoinaccuratepredictionsorclassificationsbythemodel.Thesealterations,oftencalledadversarialinstances,arefrequentlysubtleandinvisibletothenakedeyeyetsignificantlyimpactamodel’soutput.
	Threecategoriescanbeusedtoclassifyadversarialattacksbroadly[15].Evasion attack isanadversarialattackthatoccursduringtesting,wheretheattackermodifiestheinputdatainawaythatleadstoanerrorinthemachinelearningmodel.Thesemodificationstotheinputdataarefrequentlymadetobeundetectableandhidden[39].Poisoning attack isanadversarialattackduringamachinelearningmodel’strainingphase.Theattackerinsertscarefullyconstructedsamplesintothetrainingsettocontrolthelearningprocess.Asaresult,themodellearnswrongassociations
	andgeneratesfalsepredictionsorconclusions.Exploratory attack,theadversaryaims
	tocomprehendorexposethemodel’sinternals,suchasitsparametersorstructure.Thisattackofteninvolvesqueryingthemodeltolearnhowitbehaves.
	Theseattacksseverelyimpactapplicationsforimagerecognition,naturallanguageprocessing,andmalwaredetection[34][30].TheytakeadvantageofMLmodels’greatdimensionalityandcomplexity,whichmakeitchallengingtopredictandprotectagainstallpotentialweaknesses.AdversarialattacksagainstAndroidmalwaredetectionmayinvolveadding,removing,oralteringdangeroussoftwarefeaturestoavoiddetection.Thesedangershighlightthenecessityofstrongmodelsthatcanwithstandadversarialattacksandcontinuetodeliveraccurateandtrustworthypredictions.Underst
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	2.3.3 Existing Techniques for Adversarial Sample Detection 
	2.3.3 Existing Techniques for Adversarial Sample Detection 
	ToprotectMLmodelsagainstadversarialattacks,adversarialsampledetectionisessential.Thiscomponentaimstoidentifyandeliminatechanginginputsthatattempttoreducethereliabilityandaccuracyofmodelpredictions.Manydifferentstrategieshavebeensuggestedovertimetodealwiththisissue.
	Adversarial training isoneoftheapproachesthatisfrequentlyemployed.Adversarialsamplesareincludedinthetrainingprocesstostrengthenthemodel’sresistancetoadversarialattacks,whichisthebasicideaunderlyingadversarialtraining.Theideaispredicatedontheconceptthatexposingthemodeltoadversarialsamplesduringtrainingwillallowittoidentifyandcategorizesuchinstanceslatereffectively.Althoughthismethodrequiresalotofresources,theoutcomeshavebeenencouraging.Withthedevelopmentofthefastgradientsignmethod,whichhassincebeen
	Adversarial training isoneoftheapproachesthatisfrequentlyemployed.Adversarialsamplesareincludedinthetrainingprocesstostrengthenthemodel’sresistancetoadversarialattacks,whichisthebasicideaunderlyingadversarialtraining.Theideaispredicatedontheconceptthatexposingthemodeltoadversarialsamplesduringtrainingwillallowittoidentifyandcategorizesuchinstanceslatereffectively.Althoughthismethodrequiresalotofresources,theoutcomeshavebeenencouraging.Withthedevelopmentofthefastgradientsignmethod,whichhassincebeen
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	widelyused,Goodfellowandcolleaguesweresignificantinhelpingtoestablishthisconcept[24].

	Defensive distillation aimstomakeMLmodelsmoreresilienttoadversarialattacks.Similartohowdistillationinchemistryproducesapuresubstancefromamixture,theterm”distillation”isametaphoricaldescriptionoftheprocesswhenamodelistrainedtogeneralizethesofteroutputofanothermodel.Tworoundsofmodeltrainingareusedinthetechnique.Inthefirstround,astandardmodelistrainedtoprovideoutputprobabilitiesforeachclass[38].Thetargetsforthesecondroundoftrainingarethenreplacedwiththeoutputprobabilitiesfromtheinitialtrainingratherthanthecomp
	Feature squeezing isanadversarialdetectionmethodthatreducesthesearchspacethatcanbeexploitedbysimplifyingtherepresentationsofmodelinputsandmakingitmorechallengingtoproduceadversarialsamples.Thiscanbedonebyreducingthecolordepthoftheimages,applyingaspatialfiltertosmoothouttheimages,orcompressingtheinputdata.ThisapproachhasbeenprovedbyXuetal.intheirstudy[56].
	Gradient Masking or Regularization isadefensestrategyusedinMLtostrengthenthemodel’sresistancetoadversarialattacks.Tomakeitmoredifficultforadversariestoprovideadversarialsamples,itoperatesbymodifyingormaskingthegradientsofthelossfunctionrelatedtotheinputduringthetrainingphase[11].Thedecisionboundariesofthemodelaresmoothedormadeflattoreducetheimpactofadversarialperturbations.Gradientmaskingcanpreventgradient-basedattacksbutmaynotalwaysincreasesystemrobustness,leavingthesystemopentootherattacks[9].
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	3.1 Model and Dataset Description 
	3.1 Model and Dataset Description 
	AsophisticatedNATICUSdroidsystemisanML,specificallyontheRandomForestClassifier.Thismodelaimstodistinguishbetweenbenign(harmless)andmalicious(harmful)Androidapplications.Thesystem’scapacitytodifferentiatebetweenthetwoproposesapracticalsolutionforthegrowingmalwareproblemintheAndroidecosystem,asstatedin[33].TheefficacyofNATICUSdroidisprimarilyduetohowitexaminesthepermissionsthattheapplicationsrequest.Thesystemanalyzedthepermissionconditionsofover29,000excellentandharmfulAndroidapplicationsoverapproximatelyteny
	AsophisticatedNATICUSdroidsystemisanML,specificallyontheRandomForestClassifier.Thismodelaimstodistinguishbetweenbenign(harmless)andmalicious(harmful)Androidapplications.Thesystem’scapacitytodifferentiatebetweenthetwoproposesapracticalsolutionforthegrowingmalwareproblemintheAndroidecosystem,asstatedin[33].TheefficacyofNATICUSdroidisprimarilyduetohowitexaminesthepermissionsthattheapplicationsrequest.Thesystemanalyzedthepermissionconditionsofover29,000excellentandharmfulAndroidapplicationsoverapproximatelyteny
	-

	themostcriticalpermissionsbycarefullyexamininghistoricaltrendsinthesepermissions.Thesepermissionsareacombinationofnative(includedintheAndroidsystem)andcustom(specifiedbytheappdevelopers)permissions.Thesystemgathersandexaminesthesepermissionstodistinguishbetweengoodandbadapplications.Anapplicationmaybemarkedassuspiciousifitrequestsmanypermissionsorpermissionsthatarenotordinarilyrequiredforitsstatedfunction.NATICUSdroidcandeterminetheessentialpermissionsbycarefullyexamininghistoricaltrendsinthesepermissions.T
	-
	-
	-
	-
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	3.2 Adversarial Attack methods 
	3.2 Adversarial Attack methods 
	AdversarialattacksaretechniquesusedtoconfuseMLalgorithmsbysupplyingcarefullycrafteddata.Theseattacksexploitthemodel’sweaknessesandcouldleadtoinaccuratepredictionsorclassifications.WehaveemployedtheCWAttackandtheMIAttack,twowell-knownadversarialattackstrategies,toevaluateNATICUSdroid’srobustness3-1thisshowstheworkflowoftheattack.
	Figure
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	3.2.1 Carlini Wagner (CW) 
	3.2.1 Carlini Wagner (CW) 
	DuetotheCWAttack’sshownefficiencyinproducingadversarialscenariosandevaluatingtheresilienceofmachinelearningmodels,wedecidedtouseitinourresearch.Thisparticularkindofadversarialapproach,whichNicholasCarliniandDavidWagnerfirstdescribedin2017,excelsatcreatingadversarialsamplesthatarechallengingformodelstorecognizeandrequireminormodificationsfromtheinitialinput[14].InapplyingtheCWAttackonourNATICUSdroidmodel,webeganbydefininganoptimizationproblem.Theobjectiveofthischallengewastofindthelowestperturbationthatcould
	output,therebymakingitanadversarialexample.
	Theformulationofthisadversarialattackcanberepresentedas
	minδ∥δ∥p +c.f(x +δ)where x +δϵ {−1, 0, 1}(3.1)
	n 

	Inequation(3.1),x representsanoriginalinputinstance,δ denotestheadversarialperturbation,f(x +δ)istheclassificationfunctionthatguidestheperturbationtop representstheLpnorm,servingasthedistancemetrictomeasurethemagnitudeoftheperturbation.Here,||δ||p isminimizedwhileensuringthatf(x +δ)guidesthemodeltothetargetclass.Thefunctionf iscarefullycraftedtobecomelessthanorequaltozerowhentheperturbedinstanceismisclassifiedasthetargetclass.Tomaintainvalidbinaryvalues(0or1),theadversarialexamplesareclippedandroundedaftert
	triggermisclassificationandn isthenumberofdimensions[58].Theterm
	||
	δ
	||

	Tosolvethisoptimizationproblem,theCWattackleveragesthechangeofvariablesandreformulatestheproblemasfollows
	-

	11
	minimize|| (tanh(w)+1)− x||+e.f((tanh(w))+1)(3.2)
	2
	2 

	22Thisapproachenablesusingstandardgradient-basedoptimizationalgorithms,suchasthetrustregionmethodinyourimplementation,toaddresstheissue.TheCWattack,whichprovideshighfoolingrateswhilepreservingimperceptibleperturbations,thusservesasanefficientadversarialattackstrategyinourproject.Hyperparameterscanaffectthelearningprocess,includinghowcomplexthelearnedmodelis,howquicklyitlearns,andhowwellitperforms.3.1showsthetableforhyperparameters.
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	Table3.1:HyperparametersforCWattack.
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	Table3.1:HyperparametersforCWattack.

	Parameter 
	Parameter 
	Value 

	Epsilon
	Epsilon
	0.3

	PerturbationFactor
	PerturbationFactor
	0.76

	NumberofIterations
	NumberofIterations
	300

	LearningRate
	LearningRate
	0.1


	Asthemaximumpermittedperturbationforeachpixelintheimage(orfeatureinthedata),epsilon isfrequentlyutilizedinadversarialattacks.Itisamethodofregulatingthesizeoftheperturbationand,consequently,thevisibilityoftheadversarialexample.Theperturbation factorislikelyahyperparameterspecifictothisCWattacktechnique.Itisgenerallypossibletoscalethenoiseaddedduringtheattackusingtheperturbationfactor.
	Theattackoptimizationprocessrunsforthespecifiednumber of steps or iterations.Moreiterationsmayproduceadversarialinstancesthataremoreeffective,buttheyalsotakelongertocalculate.
	-

	TheCWattack’sgradientdescentoptimizationapproachusesLearning Rate asahyperparameter.Thelearningratedetermineshowmuchtheinputneedstobechangedinresponsetothecomputedgradientofthelossfunction.Ahigherlearningratewillresultinmoredrasticinputchangesateachstep,whichcouldspeedupconvergenceandincreasetheriskofovershootingthelossfunction’sminimum[45].

	3.2.2 Model Inversion (MI) 
	3.2.2 Model Inversion (MI) 
	FredriksonfirstproposedtheideaofMIattacks,anadversarialattackstrategythattriestoextractsensitivedatafromamachinelearningmodelbyflippingthemodel’sbehavior[22].Itinvolvesreconstructinginputsandreplicatingtheinitial
	trainingdatausingthemodel’spredictions.Inotherwords,theapproachaimsto
	recovertheinputdatafromtheoutputbyreversingthemodel’sdecision-makingprocess.
	Utilizingaccesstothemodelanditsoutputs,aMIattackagainsttheNATICUS-droidmodeltriedtoaimtoextractprivateinformationaboutthetrainingdata.Thissensitiveinformationisthefeatures(Androidpermissions)ofbenignormalwareappsthatthemodelhastrainedtorecognizeasessential[57].
	Table3.2:HyperparametersforMIattack.
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	Table3.2:HyperparametersforMIattack.

	Parameter 
	Parameter 
	Value 

	maxiter
	maxiter
	300

	learningrate
	learningrate
	0.1

	threshold
	threshold
	0.5


	Themax iter indicatesthefunction’smaximumnumberofiterations.Thefunctionwillhavemorepossibilitiestoidentifyasuccessfuladversarialsampleifthisnumberismoresignificant,butitwillalsotakelonger.Learning rate defineshowmuchtheinputsaremodifiedthroughouteachiterationbasedonthedeterminedgradient.Thethreshold isthecutoffusedtodeterminewhenapredictionissufficientlyclosetothetargetlabel.Loweringthisamountwillraisethethreshold forapredictiontobedeclaredamatch,potentiallymakingtheattackmoredifficultbutthematchesmorepreci
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	3.3 Collection of Adversarial Samples 
	3.3 Collection of Adversarial Samples 
	Adversarialsamplesarecarefullycraftedadjustmentstotheoriginaldatathatarealmostunnoticeabletohumansbutsignificantlyaffectthepredictionsorclassifi
	-

	cationsmadebyMLmodels[48].Creatingadversarialsamplesoftenentailsmaking
	minorchangestotheoriginalinputdata.Theseperturbations,forinstance,caninvolvegentlymodifyingthepixelvaluesinanimageorthenumericalvaluesinadataset.TheseadjustmentsaimtotricktheMLmodelintomakingawrongpredictionorcategorization.AdversarialattacksaretechniquesusedtoconfuseMLalgorithmsbysupplyingcarefullycrafteddata.Theseattacksexploitthemodel’sweaknessesandcouldleadtoinaccuratepredictionsorclassifications.Inthecontextofyourstudy,adversarialsamplesaregeneratedusingtheCWAttackandtheMI,twowell-knownadversarialattac
	-
	-
	-


	3.4 Performance Evaluation of the Attacks 
	3.4 Performance Evaluation of the Attacks 
	ThissectionassessestheeffectivenessofadversarialattackssuchastheCWandMIattacks.EvaluationmetricsarederivedbyinitiatingthesehostileattacksonaNATICUSdroidmodel.Icreatedareplicaofthemodelandlaunchedtheattacks[55].
	EvaluationmeasuresusedtoevaluatetheirperformanceincludesAccuracydeterminedbyhowmanypositiveandnegativepredictionswereaccurate.FPRmeasures
	-

	theproportionofnegativeoccurrencesmistakenlylabeledaspositive,FNRmeasures
	theproportionofpositiveoccurrencesmistakenlylabeledasnegative.F-measureisharmonicmeansofPrecision(theproportionofcorrectpositiveidentifications),andRecall(thepercentageofgenuinepositivesthatwerecorrectlyidentified).Theseanalyseswerecarriedoutforeachbatchof100samples.
	3.4.1 Results of Carlini Wagner 
	3.4.1 Results of Carlini Wagner 
	TheresultsofCWattacksshowthattheattackissuccessfulastheAccuracyoftheNATICUSdroidmodelreducedaftertheattack.Theevaluationisdoneforevery100samples,andtheresultsbeforeandaftertheattackwerealsomentioned.3.3showstheresultsbeforeandaftertheCWattack.Theresultswerealsoplottedas3-2.Asshownbythedrasticshiftsinevaluationmeasures,theobservedpatternindicatesthemodel’sperformanceaftertheCWattackisconsiderablyimpactedduringthefirst5000samples.ThismayresultfromthemodeladjustingtotheadversarialmanipulationcausedbytheCWattac
	Theperformanceindicationschangelessdrasticallyafterprocessing5000samples.Thismaybebecausethemodelismorestable.Afterall,ithasalreadyadaptedtothepatternsoftheadversarialdata[29].However,it’scrucialtorememberthat,dependingonhowthismodelisapplied,evenminordeviationsinfindingscouldhaveasignificantimpact.
	Table3.3:PerformanceMetricsBeforeandAfterCWAttack
	Table3.3:PerformanceMetricsBeforeandAfterCWAttack
	Table3.3:PerformanceMetricsBeforeandAfterCWAttack

	Performance Metric 
	Performance Metric 
	Before CW Attack 
	After CW Attack 

	Accuracy
	Accuracy
	97.88
	67.55

	FalsePositiveRate
	FalsePositiveRate
	1.69
	4.13

	FalseNegativeRate
	FalseNegativeRate
	2.54
	60.63

	F-Measure
	F-Measure
	97.88
	54.88


	Figure
	Figure3-2:ResultsofCWattackforevery100Samples
	Figure3-2:ResultsofCWattackforevery100Samples


	AcomparisonofnumerousevaluationmetricsforanMLmodelbothbeforeandaftertheCWadversarialattackisshowninthetable3.3and3-2showstheresultsinagraph.TheAccuracymetricgaugeshowaccuratelythemodelpredictsthingsingeneral.BeforetheCWattack,themodelhadaremarkableaccuracyof97.88%,correctlyclassifying97.88%ofthedata.However,followingtheCWstrike,themodel’saccuracydrasticallydecreasedto67.55%,showingthatitneededtobemoresuccessfulatmakingaccurateforecastsunderhostilecircumstances.Thefalsepositiverateisthepercentageofbenign(orn
	AcomparisonofnumerousevaluationmetricsforanMLmodelbothbeforeandaftertheCWadversarialattackisshowninthetable3.3and3-2showstheresultsinagraph.TheAccuracymetricgaugeshowaccuratelythemodelpredictsthingsingeneral.BeforetheCWattack,themodelhadaremarkableaccuracyof97.88%,correctlyclassifying97.88%ofthedata.However,followingtheCWstrike,themodel’saccuracydrasticallydecreasedto67.55%,showingthatitneededtobemoresuccessfulatmakingaccurateforecastsunderhostilecircumstances.Thefalsepositiverateisthepercentageofbenign(orn
	-
	-
	-

	cious(orpositive).ThefalsepositiveratewaslowbeforetheCWattack,at1.69%,butincreasedto4.13%afterward.Thisgrowthindicatesthattheattackmayhavemistakenlycausedthemodeltolabelmoreinnocuoussamplesasmalicious.Thepercentageofharmful(orpositive)samplesmistakenlyclassifiedasbenign(ornegative)isknownastheFalseNegativeRate.Inthisinstance,thefalsenegativerateincreasedfrom2.54%beforetheCWattackto60.63%afterward.Thissuggeststhatthemodelunderwentadversarialconditionsandfailedtoaccuratelyrecognizeasizablenumberoffalsesamples
	-



	3.4.2 Results of Model Inversion 
	3.4.2 Results of Model Inversion 
	PerformancemeasurementsfortheModelInversion(MI)attackindicatesuccess.Eachoftheseadversarialattackstrategieswasassessedforevery100samples.Performancemetricsweremonitoredbeforeandaftertheattacks,allowingforacompleteevaluationofitsresilienceandsusceptibilitytoattack3-3showstheperformancemetricsbeforeandaftertheattack.
	-

	Weobservedaconsiderabledifferenceintheperformancemetricsthroughoutthefirst1200samplesoftheMIattack3.4showstheplotforevery100samples.Thissuggeststhattheattacksignificantlyaffectedtheperformance.Theaccuracyratedecreased,andtheFPRhadminorchanges,buttheFNRexperiencedthemostsignificantchange,increasingdrastically.Asaresult,theF-measure,whichconsideredbothprecisionandrecall,decreasedsignificantly.
	Table3.4:PerformanceMetricsBeforeandAfterMIAttack
	Table3.4:PerformanceMetricsBeforeandAfterMIAttack
	Table3.4:PerformanceMetricsBeforeandAfterMIAttack

	Performance Metric 
	Performance Metric 
	Before MI Attack 
	After MI Attack 

	Accuracy
	Accuracy
	97.88
	50.1

	FalsePositiveRate
	FalsePositiveRate
	1.69
	0.09

	FalseNegativeRate
	FalseNegativeRate
	2.54
	99.41

	F-Measure
	F-Measure
	97.88
	1.17


	Figure
	Figure3-3:ResultsofMIattackforevery100Samples
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	ThecomparisonofvariousevaluationmetricsforanMLmodelbeforeandafteritwassubjectedtotheMIadversarialattackisshowninthetable3.4and3-3showsthegraphicalrepresentationoftheresults.Theoverallaccuracyofthemodel’spredictionsismeasuredbyitsaccuracy.Themodelhadahighaccuracyof97.88%beforetheMIattack,correctlyclassifying97.88%oftheoccurrences.ButafterbeingsubjectedtotheMIattack,themodel’saccuracydroppedto50.1%.Thissignificantfallindicatesaconsiderabledeclineinthemodel’scapacitytoproducereliablepredictionsinthefaceofoppos
	ThecomparisonofvariousevaluationmetricsforanMLmodelbeforeandafteritwassubjectedtotheMIadversarialattackisshowninthetable3.4and3-3showsthegraphicalrepresentationoftheresults.Theoverallaccuracyofthemodel’spredictionsismeasuredbyitsaccuracy.Themodelhadahighaccuracyof97.88%beforetheMIattack,correctlyclassifying97.88%oftheoccurrences.ButafterbeingsubjectedtotheMIattack,themodel’saccuracydroppedto50.1%.Thissignificantfallindicatesaconsiderabledeclineinthemodel’scapacitytoproducereliablepredictionsinthefaceofoppos
	-
	-

	aremistakenlyclassifiedasmalicious(orpositive).Interestingly,inthisinstance,theFPRdropsfrom1.69%priortotheMIattacktoameager0.09%followingthestrike.Thissuggeststhatfewerinnocuouscasesweremistakenlylabeledasharmfulduetotheattack.Thepercentageofharmful(orpositive)samplesthatweremistakenlyclassifiedasbenign(ornegative)isknownastheFNR.Herewenoticeasignificantshift:theFNRsoarsfrom2.54%beforetheMIattacktoanunsettling99.41%followingthestrike.Thisconsiderableriseshowsthatthemodelmisidentifiedmostharmfulcasesunderadv
	-
	-




	3.5 Training with Adversarial and Original Samples 
	3.5 Training with Adversarial and Original Samples 
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	Figure
	Figure3-4:Trainingprocessoftheclassifierswithadversarialsamples
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	Akeycomponentinenhancingtherobustnessandresilienceofmachinelearningmodelstoadversarialattacksisadversarialtraining.ThisstrategyisessentialinML,especiallyinfieldswheremodelscouldbesubjecttoattacksmeanttotrickormisleadthem.Bothadversarialandoriginalsamplesareusedinthetrainingsetforadversarialtraining.Adversarialsampleshavebeenmarginallyalteredtomakethemodelforecastincorrect.Ontheotherhand,originalsamplesarethetypical,unaltereddatathemodelintendstolearnfrom.Themachinelearningmodelgainsexperiencewithadversarial
	-

	ofsamplesinthetrainingset.Thisprocedureenhancesthemodel’scapacitytoiden
	-

	tifyandcorrectlycategorizeadversarialsamplesbytrainingittooperateinahostile,morediversifiedenvironment[51].Severalmachinelearningclassifiersareusedduringtheadversarialtrainingprocess.TheyareK-NearestNeighbors(KN),SupportVectorClassifier(SVC),RandomForest(RF),ExtraTreesClassifier(ETC),XGBoost(XG),andAdaBoost(AB).Eachclassifierhasadvantagesanddisadvantages,addingtothemodel’soverallresilience.3-4Thisshowshowtheclassifiertrainingprocesstakesplace.Thesetrainedclassifiersaresavedaspicklefilesafterthetrainingstepi
	-

	Classifier 
	Classifier 
	Classifier 
	Training Accuracy 
	Validation Accuracy 
	Test Accuracy 
	Test F-Score 

	LR
	LR
	88.80
	88.73
	88.73
	0.89

	KN
	KN
	92.52
	90.36
	90.39
	0.90

	SVC
	SVC
	94.17
	90.72
	90.57
	0.90

	RF
	RF
	98.50
	89.40
	89.46
	0.89

	ETC
	ETC
	97.70
	89.46
	89.49
	0.89

	XGBoost
	XGBoost
	95.54
	90.39
	90.45
	0.90

	AdaBoost
	AdaBoost
	86.32
	86.30
	85.86
	0.86

	Table3.5:Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack.
	Table3.5:Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack.
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	Figure3-5:TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack
	Figure3-5:TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack
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	In3.5,numerousclassifierperformancesaredescribedindetail.KNNperformedslightlybetter,achievingtrainingaccuracyof92.52%,validationaccuracyof90.36%,testaccuracyof90.39%,andtestF-Scoreof0.90,comparedtoLR,whichachieved88.80%,88.73%,88.73%,and0.89respectively.3-5givesacomparisonofTrainingandTestingaccuracyoftheclassifiers.Withatrainingaccuracyof94.17%,avalidationaccuracyof90.72%,atestaccuracyof90.57%,andatestF-Scoreof0.90,SVCperformedevenbetter.Withatrainingaccuracyof98.50%,theRFclassifierperformedadmirably.Still
	-

	Withatrainingaccuracyof97.70%,validationaccuracyof89.46%,testaccuracyof89.49%,andtestF-Scoreof0.89.ETCperformedsimilarlytotheRFclassifier.Withatrainingaccuracyof95.54%,avalidationaccuracyof90.39%,atestaccuracyof90.45%,andatestF-Scoreof0.90,XGBoostdemonstratedasolidbalancebetweentrainingandtesting.AdaBoosthaslesserperformancemetricswithatraining
	Withatrainingaccuracyof97.70%,validationaccuracyof89.46%,testaccuracyof89.49%,andtestF-Scoreof0.89.ETCperformedsimilarlytotheRFclassifier.Withatrainingaccuracyof95.54%,avalidationaccuracyof90.39%,atestaccuracyof90.45%,andatestF-Scoreof0.90,XGBoostdemonstratedasolidbalancebetweentrainingandtesting.AdaBoosthaslesserperformancemetricswithatraining
	-

	accuracyof86.32validationaccuracyof86.30%,testaccuracyof85.86%,andatestF-Scoreof0.86.Ingeneral,therewereobservabledifferencesinthetrainingaccuraciesofclassifiers,eventhoughmostofthemhadcomparabletestaccuraciesandF-scores.Thesevariationsshouldbeconsideredwhenchoosingaclassifiersincetheymayaffecttheircapacitytogeneralizetonewdata.
	-


	Classifier 
	Classifier 
	Classifier 
	Training Accuracy 
	Validation Accuracy 
	Test Accuracy 
	Test F-Score 

	LR
	LR
	97.37
	97.32
	97.51
	0.95

	KNN
	KNN
	97.99
	97.49
	97.64
	0.95

	SVC
	SVC
	98.04
	97.82
	97.95
	0.96

	RF
	RF
	98.90
	98.05
	98.24
	0.97

	ETC
	ETC
	98.55
	97.91
	98.09
	0.96

	XGBoost
	XGBoost
	98.73
	98.09
	98.29
	0.97

	AdaBoost
	AdaBoost
	95.59
	95.58
	95.81
	0.92

	Table3.6:Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack
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	Figure3-6:TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack
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	This3.6showstheresultsforsevendifferentclassifiers,eachtrainedusingbothadversarialsamplesgeneratedbyMIandoriginalsamples.3-6givesacomparisonofTrainingandTestingaccuracyoftheclassifiers.WithaTestF-Scoreof0.95,theLRclassifierachievedatrainingaccuracyof97.37%,validationaccuracyof97.32%,andtestaccuracyof97.51%.WithasimilarTestF-Scoreof0.95,K-NearestNeighbors(KN)obtainedgreatertrainingaccuracyof97.99%,validationaccuracyof97.49%,andtestaccuracyof97.64%.Withatrainingaccuracyof98.04%,validationaccuracyof97.82%,andt
	WithRFachievingthemaximumtrainingaccuracyof98.90%,validationaccuracyof98.05%,andtestaccuracyof98.24%,theRFandETclassifiersperformedbetterthanexpected.TheTestF-Score,at0.97,wasalsothehighest.WithaTestF-Scoreof0.96,theETclassifierreportedatrainingaccuracyof98.55%,validationaccuracyof97.91%,andtestaccuracyof98.09%.Withatrainingaccuracyof98.73%,validation
	WithRFachievingthemaximumtrainingaccuracyof98.90%,validationaccuracyof98.05%,andtestaccuracyof98.24%,theRFandETclassifiersperformedbetterthanexpected.TheTestF-Score,at0.97,wasalsothehighest.WithaTestF-Scoreof0.96,theETclassifierreportedatrainingaccuracyof98.55%,validationaccuracyof97.91%,andtestaccuracyof98.09%.Withatrainingaccuracyof98.73%,validation
	accuracyof98.09%,andtestaccuracyof98.29%,theXGBoostclassifierperformedsimilarlytoRF,ETC.ItreceivedaTestF-Scoreof0.97aswell.Last,theAdaBoostclassifierreturnedaccuracyvaluesfortraining,validation,andtestingof95.59%,95.58%,and95.81%,respectively.ItsTestF-Scoreof0.92wasthelowestofanyclassifiers.
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	4.1 Performance Comparison of Classifiers for Defense Mechanism 
	4.1 Performance Comparison of Classifiers for Defense Mechanism 
	-

	Byservingasadefensemechanismthatdifferentiatesbetweenoriginalandadversarialsamples,classifiersarecrucialtoanentirearchitecture.ByactingasagatekeepertotheprimaryAndroidmalwaredetectionmodel,theseclassifiersensurethatonly”clean”ororiginalsamplesareprocessedfurther.Thisprojectusesseveraldifferentclassifiers(LR,KN,SVC,RF,ETC,XGBoost,andAdaBoost)[3],eachusingadifferentMLalgorithm,4-2showstheimageoftheclassifiers,trainingwithbothadversarialandoriginalsamples.Theseclassifierscandistinguishbetweenthetwo,giventhatth
	Byservingasadefensemechanismthatdifferentiatesbetweenoriginalandadversarialsamples,classifiersarecrucialtoanentirearchitecture.ByactingasagatekeepertotheprimaryAndroidmalwaredetectionmodel,theseclassifiersensurethatonly”clean”ororiginalsamplesareprocessedfurther.Thisprojectusesseveraldifferentclassifiers(LR,KN,SVC,RF,ETC,XGBoost,andAdaBoost)[3],eachusingadifferentMLalgorithm,4-2showstheimageoftheclassifiers,trainingwithbothadversarialandoriginalsamples.Theseclassifierscandistinguishbetweenthetwo,giventhatth
	-
	-

	samples[47].

	Oncetrained,theclassifiersdividethetestset’sdataintotwogroups:originalandadversarial.Theimportantpartisthatonlythedataidentifiedbytheseclassifiersas”original”areforwardedtotheprimarymodelforadditionalprocessingandpredictions.Thisapproachreducesthepossibilitythatadversarialsampleswouldaffecttheperformanceoftheprimarymodel,increasingitsrobustnessandreliabilityinrecognizingAndroidmalware.
	-

	Theeffectivenessoftheseclassifiersiscrucialsinceitdirectlyaffectsthesystem’sabilitytodetectmalwareonAndroiddevicesasanentiresystem.Eachclassifier’sperformancecanbecomparedusingarangeofmeasures(TrainingAccuracy,TestAccuracy,FPR,FNR,andF-Measure)[54],allowingonetochoosewhichclassifier(s)wouldbemostsuitedforfurtherintegrationwiththeprimarymodel.Theseclassifiersdefendagainstadversarialattacks,preservingtheaccuracyoftheprimarymodel’smalwaredetectionwhileprotectingtheintegrityofthedataitprocesses.?? showstheperfo
	Classifier 
	Classifier 
	Classifier 
	Training Accuracy 
	Test Accuracy 
	FPR 
	FNR 
	F-measure 

	LR
	LR
	94.85
	94.86
	4.05
	6.24
	0.95

	KNN
	KNN
	72.31
	66.77
	0.07
	66.55
	0.50

	SV
	SV
	99.17
	98.60
	1.09
	1.72
	0.99

	RF
	RF
	99.89
	97.96
	2.06
	2.02
	0.98

	ETC
	ETC
	99.48
	97.82
	2.47
	1.89
	0.98

	XGBoost
	XGBoost
	99.52
	98.78
	0.83
	1.61
	0.99

	AdaBoost
	AdaBoost
	91.36
	91.65
	3.03
	13.70
	0.91

	Table4.1:Performancecomparisonofdifferentclassifiers.
	Table4.1:Performancecomparisonofdifferentclassifiers.
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	Figure4-1:ComparisonofTrainingandTestingAccuracyresultsofthedifferentclassifiers
	Figure4-1:ComparisonofTrainingandTestingAccuracyresultsofthedifferentclassifiers
	-



	Figure
	Figure4-2:Trainingtheclassifierswithoriginalandadversarialsamples
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	Theresultsoftheclassifiersusedasadefensemechanismagainstadversarialattacksispresentedin4.1.TheLRclassifierdemonstratedaconsistentandrobustpredictiveperformanceonbothvisible(training)andunseen(test)data,achievingtrainingandtestaccuracyof94.55%and94.60%,respectively.4-1showsthecomparisonchartofthetrainingandtestingaccuracyofdifferentclassifiers.ItkeptitsFPRandFNRatcomparativelylowlevelsof4.44%and6.38%,respectively,indicatingthatitstruckadecentbalanceinreducingbothfalsealarmsandmisses.Thehighharmonicmeansofpre
	-
	-
	-
	-


	4.2 Classifier Workflow as a Defense Mechanism and Model Predictions 
	4.2 Classifier Workflow as a Defense Mechanism and Model Predictions 
	4-3describestheworkflowofclassifierandmodelpredictions.
	Figure
	Figure4-3:TheClassifier’sWorkflowandModelPredictions
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	4.3 Integration with the Model 
	4.3 Integration with the Model 
	Inourstudy,theclassifiersaremeanttoimprovetheoriginalmodelratherthanreplaceittomakeitmoreresilienttoadversarialattacks.Thissectionexplainsthestepstakentocombinetheseclassifierswiththeoriginalmodeltodetectdangersthatcouldoccur[19].Theclassifiersserveasafilterorgatewaytotheoriginalmodelafterbeingtrainedonadatasetthatincludesoriginalandadversarialsamples.Theseclassifiersefficientlydivideincomingsamplesintotwogroups:adversarialandoriginal.Theoriginalsamplesarethensavedtosendtotheprimarymodelfor
	Inourstudy,theclassifiersaremeanttoimprovetheoriginalmodelratherthanreplaceittomakeitmoreresilienttoadversarialattacks.Thissectionexplainsthestepstakentocombinetheseclassifierswiththeoriginalmodeltodetectdangersthatcouldoccur[19].Theclassifiersserveasafilterorgatewaytotheoriginalmodelafterbeingtrainedonadatasetthatincludesoriginalandadversarialsamples.Theseclassifiersefficientlydivideincomingsamplesintotwogroups:adversarialandoriginal.Theoriginalsamplesarethensavedtosendtotheprimarymodelfor
	additionalpredictiontaskswhiletheadversarialinstancesaremarked[32].

	Thearchitecturewillthereforebemoreresistanttoadversarialattacksbyintegratingtheclassifierswiththeoriginalmodel.Theclassifiersworktopreventcompetingsamplesfromchangingtheoriginalmodel’sprediction,preservingtheprecisionandconsistencyofthemodel’soutput.However,it’scrucialtorememberthatthesuccessofthisapproachprimarilydependsonhowwelltheclassifierscandifferentiatebetweentheoriginalandadversarialsamples.Toselectthebestclassifiersforintegrationwiththeoriginalmodel,itisessentialtoconsidertheperformancecomparisonof
	-
	-
	-


	4.4 Performance of the Model 
	4.4 Performance of the Model 
	Theoriginalsamplesareprovidedtothemodelforadditionalpredictionswhentheclassifierdistinguishesbetweentheoriginalandadversarialexamples.Inthisstage,themodel’sperformanceontheoriginalsamplesisevaluated,anditsrobustnesstopotentialadversarialattacksisdetermined.Theevaluation’sfindingsindicatehowwellthemodelworkswiththeoriginalsamplesandwhetheritcancontinuetopredictcorrectlyevenwhenfacedwithadversarialexamples.Thesefindingsdemonstratethemodel’scapacitytogeneralizeandproduceaccuratepredictionsbasedonactualdata.The
	ofprecisionandrecall.Accuracyassessestheoverallaccuracyofthepredictions.
	Classifier 
	Classifier 
	Classifier 
	Accuracy 
	FPR 
	FNR 
	F-measure 

	LR
	LR
	94.23
	7.17
	4.39
	0.94

	AdaBoost
	AdaBoost
	90.91
	11.45
	6.74
	0.91

	ETC
	ETC
	96.68
	3.16
	3.48
	0.97

	KNN
	KNN
	96.22
	4.44
	3.12
	0.96

	RF
	RF
	97.05
	2.62
	3.28
	0.97

	SVC
	SVC
	95.97
	4.42
	3.64
	0.96

	XGBoost
	XGBoost
	96.32
	3.89
	3.46
	0.96

	Table4.2:PredictionResultsofDifferentModelsonClassifier-IdentifiedOriginalSamples
	Table4.2:PredictionResultsofDifferentModelsonClassifier-IdentifiedOriginalSamples
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	Theaccuracymetricshowsthepercentageofsamplesthateachclassifiercorrectlyclassifies.4.2showsthepredictionresultsofdifferentmodels.Ahigheraccuracy
	demonstratesimprovedperformanceincorrectlyclassifyingpositiveandnegativeex
	-

	amples4-4comparesmodels’accuracy.Inthisinstance,theclassifiershadaccuracylevelsbetween90.91%and97.05%.TheFPRcalculatesthefrequencywithwhichnegativesamplesareincorrectlydeemedpositive.AdecreasedFPRsuggestsanimprovedcapacitytoreducethemisclassificationofnegativeexamples.TheFPRvaluesthattheclassifiersachievedrangedfrom2.62%to11.45%.TheFNRmeasuresthefrequencyofincorrectlylabelingpositivesamplesasnegative.AlowerFNRsuggestsabettercapacitytoclassifypositivesamplesaccurately.TheFNRvaluestheclassifiersachievedranged
	-
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	Conclusion and Future Work 
	Conclusion and Future Work 
	ThestudyaimedtoincreaseanAndroidmalwaredetectionmodel’sresistancetoadversarialattacks.Aclassifierwasusedasafirstlineofdefenseandsuccessfullyidentifiedadversarysamplesapartfromtheoriginalsamples.Asaresult,theprimarypredictivemodelwasprotectedfromdirectadversarialdisturbance,enablingbetterpredictions.Themodelwasstrengthenedagainstattacksbytrainingonadversarialsamples.Thetrainedmodel’sresiliencyagainsttheseadversarialattacksprovedthismethod’seffectiveness.Theadditionoftheclassifiersystemimprovedthemodel’sperfo
	Asthisprojectprogresses,severalimportantareaswillbethefocusforenhancementandexploration.Themodel’sexposuretovariousadversarialattacksisoneofthemainareasofinterest.Themodelhasonlybeentrainedandtestedagainstasmallnumberofadversarialtechniquesatthistime.Weseektoimprovetherobustnessof
	-

	themodelagainstunidentifiedorsophisticatedadversarialsamples,hencemaintain
	-

	ingahighlevelofperformance,bybroadeningtherangeofadversarialattacksusedduringmodeltraining.Exploringotherdefensemechanismstomakethemodelmuchstronger.Ourevaluationwaslimitedtobinarydatasets(0or1)anddidnotincludeothercategoricalordecimaldata.Thereispotentialforfutureresearchtoextendtheseteststoexploreothertypesofdatasets.

	References 
	References 
	[1]NasibaMahdiAbdulkareemandAdnanMohsinAbdulazeez.Machinelearningclassificationbasedonradomforestalgorithm:Areview.International journal of science and business,5(2):128–142,2021.
	[2]LAbhishek.Opticalcharacterrecognitionusingensembleofsvm,mlpandextratreesclassifier.In2020 International Conference for Emerging Technology (INCET),pages1–4.IEEE,2020.
	[3]PrernaAgrawalandBhushanTrivedi.Machinelearningclassifiersforandroidmalwaredetection.InData Management, Analytics and Innovation: Proceedings of ICDMAI 2020, Volume 1,pages311–322.Springer,2021.
	[4]MohammedKAlzaylaee,SuleimanYYerima,andSakirSezer.Dl-droid:Deeplearningbasedandroidmalwaredetectionusingrealdevices.Computers & Security,89:101663,2020.
	-

	[5]BrandonAmos,HamiltonTurner,andJulesWhite.Applyingmachinelearningclassifierstodynamicandroidmalwaredetectionatscale.In2013 9th inter
	-

	national wireless communications and mobile computing conference (IWCMC),pages1666–1671.IEEE,2013.
	[6]BelaAmro.Malwaredetectiontechniquesformobiledevices.arXiv preprint arXiv:1801.02837,2018.
	[7]KshitizAryal,MaanakGupta,andMahmoudAbdelsalam.Asurveyonadversarialattacksformalwareanalysis.arXiv preprint arXiv:2111.08223,2021.
	-

	[8]MosesAprofinAshawaandSarahMorris.Analysisofandroidmalwaredetectiontechniques:asystematicreview.2019.
	[9]AnishAthalye,NicholasCarlini,andDavidWagner.Obfuscatedgradientsgiveafalsesenseofsecurity:Circumventingdefensestoadversarialexamples.InInternational conference on machine learning,pages274–283.PMLR,2018.
	[10]BhoopeshSinghBhatiandCSRai.Ensemblebasedapproachforintrusiondetectionusingextratreeclassifier.InIntelligent Computing in Engineering: Select Proceedings of RICE 2019,pages213–220.Springer,2020.
	[11]FranziskaBoenisch,PhilipSperl,andKonstantinB¨ottinger.Gradientmaskingandtheunderestimatedrobustnessthreatsofdifferentialprivacyindeeplearning.arXiv preprint arXiv:2105.07985,2021.
	[12]AnnaLBuczakandErhanGuven.Asurveyofdataminingandmachinelearningmethodsforcybersecurityintrusiondetection.IEEE Communications surveys & tutorials,18(2):1153–1176,2015.
	[13]NicholasCarliniandDavidWagner.Adversarialexamplesarenoteasilydetected:Bypassingtendetectionmethods.InProceedings of the 10th ACM workshop on artificial intelligence and security,pages3–14,2017.
	-
	-

	[14]NicholasCarliniandDavidWagner.Towardsevaluatingtherobustnessofneuralnetworks.In2017 ieee symposium on security and privacy (sp),pages39–57.Ieee,2017.
	[15]AnirbanChakraborty,ManaarAlam,VishalDey,AnupamChattopadhyay,andDebdeepMukhopadhyay.Asurveyonadversarialattacksanddefences.CAAI Transactions on Intelligence Technology,6(1):25–45,2021.
	[16]MayankAryaChandraandSSBedi.Surveyonsvmandtheirapplicationinimageclassification.International Journal of Information Technology,13:1–11,2021.
	[17]StevenChen,NicholasCarlini,andDavidWagner.Statefuldetectionofblack-boxadversarialattacks.InProceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence,pages30–39,2020.
	[18]IyadLahsenCherifandAbdesselemKortebi.Onusingextremegradientboosting(xgboost)machinelearningalgorithmforhomenetworktrafficclassification.In2019 Wireless Days (WD),pages1–6.IEEE,2019.
	[19]ReubenFeinman,RyanRCurtin,SaurabhShintre,andAndrewBGardner.Detectingadversarialsamplesfromartifacts.arXiv preprint arXiv:1703.00410,2017.
	[20]De-ChengFeng,Zhen-TaoLiu,Xiao-DanWang,YinChen,Jia-QiChang,Dong-FangWei,andZhong-MingJiang.Machinelearning-basedcompressivestrengthpredictionforconcrete:Anadaptiveboostingapproach.Construction and Building Materials,230:117000,2020.
	-

	[21]SamuelGFinlayson,JohnDBowers,JoichiIto,JonathanLZittrain,AndrewLBeam,andIsaacSKohane.Adversarialattacksonmedicalmachinelearning.Science,363(6433):1287–1289,2019.
	[22]MattFredrikson,SomeshJha,andThomasRistenpart.Modelinversionattacksthatexploitconfidenceinformationandbasiccountermeasures.InProceedings of the 22nd ACM SIGSAC conference on computer and communications security,pages1322–1333,2015.
	[23]Drago¸sGavrilut¸,MihaiCimpoe¸su,DanAnton,andLiviuCiortuz.Malwaredetectionusingmachinelearning.In2009 International multiconference on computer science and information technology,pages735–741.IEEE,2009.
	-
	-

	[24]IanJGoodfellow,JonathonShlens,andChristianSzegedy.Explainingandharnessingadversarialexamples.arXiv preprint arXiv:1412.6572,2014.
	[25]FlorianHuber,ArtemYushchenko,BenediktStratmann,andVolkerSteinhage.Extremegradientboostingforyieldestimationcomparedwithdeeplearningapproaches.Computers and Electronics in Agriculture,202:107346,2022.
	[26]OlakunleIbitoye,RanaAbou-Khamis,AshrafMatrawy,andMOmairShafiq.Thethreatofadversarialattacksonmachinelearninginnetworksecurity–asurvey.arXiv preprint arXiv:1911.02621,2019.
	[27]JinLi,LichaoSun,QibenYan,ZhiqiangLi,WitawasSrisa-An,andHengYe.Significantpermissionidentificationformachine-learning-basedandroidmalwaredetection.IEEE Transactions on Industrial Informatics,14(7):3216–3225,2018.
	[28]YannanLi,JingboWang,andChaoWang.Provingrobustnessofknnagainstadversarialdatapoisoning.InCONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN–FMCAD 2022,page7,2022.
	[29]JingLin,LaurentLNjilla,andKaiqiXiong.Securemachinelearningagainstadversarialsamplesattesttime.EURASIP Journal on Information Security,2022(1):1,2022.
	[30]XiangLing,LingfeiWu,JiangyuZhang,ZhenqingQu,WeiDeng,XiangChen,YaguanQian,ChunmingWu,ShoulingJi,TianyueLuo,etal.Adversarialattacksagainstwindowspemalwaredetection:Asurveyofthestate-of-the-art.Computers & Security,page103134,2023.
	-

	[31]AleksanderMadry,AleksandarMakelov,LudwigSchmidt,DimitrisTsipras,andAdrianVladu.Towardsdeeplearningmodelsresistanttoadversarialattacks.arXiv preprint arXiv:1706.06083,2017.
	[32]ChengzhiMao,ZiyuanZhong,JunfengYang,CarlVondrick,andBaishakhiRay.Metriclearningforadversarialrobustness.Advances in neural information processing systems,32,2019.
	-

	[33]AkshayMathur,LaxmiMounikaPodila,KeyurKulkarni,QuamarNiyaz,andAhmadYJavaid.Naticusdroid:Amalwaredetectionframeworkforandroidusingnativeandcustompermissions.Journal of Information Security and Applications,58:102696,2021.
	-

	[34]KMeenakshiandGMaragatham.Areviewonsecurityattacksandprotectivestrategiesofmachinelearning.Emerging Trends in Computing and Expert Technology,pages1076–1087,2020.
	-

	[35]PavasNavaney,GauravDubey,andAjayRana.Smsspamfilteringusingsupervisedmachinelearningalgorithms.In2018 8th international conference on cloud computing, data science & engineering (confluence),pages43–48.IEEE,2018.
	-

	[36]FredCPampel.Logistic regression: A primer.Number132.Sagepublications,2020.
	[37]NicolasPapernot,PatrickMcDaniel,IanGoodfellow,SomeshJha,ZBerkayCelik,andAnanthramSwami.Practicalblack-boxattacksagainstmachinelearn
	-
	-

	ing.InProceedings of the 2017 ACM on Asia conference on computer and com
	-

	munications security,pages506–519,2017.
	[38]NicolasPapernot,PatrickMcDaniel,XiWu,SomeshJha,andAnanthramSwami.Distillationasadefensetoadversarialperturbationsagainstdeepneuralnetworks.In2016 IEEE symposium on security and privacy (SP),pages582–597.IEEE,2016.
	[39]MarekPawlicki,MichalChora´s,andRafalKozik.Defendingnetworkintrusiondetectionsystemsagainstadversarialevasionattacks.Future Generation Computer Systems,110:148–154,2020.
	-

	[40]TianruiPeng,IanHarris,andYukiSawa.Detectingphishingattacksusingnaturallanguageprocessingandmachinelearning.In2018 ieee 12th international conference on semantic computing (icsc),pages300–301.IEEE,2018.
	-

	[41]AshisPradhan.Supportvectormachine-asurvey.International Journal of Emerging Technology and Advanced Engineering,2(8):82–85,2012.
	[42]HemantRathore,SanjayKSahay,PiyushNikam,andMohitSewak.Robustandroidmalwaredetectionsystemagainstadversarialattacksusingq-learning.Information Systems Frontiers,23:867–882,2021.
	[43]IshaiRosenberg,AsafShabtai,YuvalElovici,andLiorRokach.Adversarialmachinelearningattacksanddefensemethodsinthecybersecuritydomain.ACM Computing Surveys (CSUR),54(5):1–36,2021.
	[44]BitaDarvishRouani,MohammadSamragh,TaraJavidi,andFarinazKoushanfar.Safemachinelearninganddefeatingadversarialattacks.IEEE Security & Privacy,17(2):31–38,2019.
	-

	[45]WenjieRuan,XinpingYi,andXiaoweiHuang.Adversarialrobustnessofdeeplearning:Theory,algorithms,andapplications.InProceedings of the 30th ACM international conference on information & knowledge management,pages4866–4869,2021.
	[46]AnjaneyuluBabuShaikandSujathaSrinivasan.Abriefsurveyonrandomforestensemblesinclassificationmodel.InInternational Conference on Innovative Computing and Communications: Proceedings of ICICC 2018, Volume 2,pages253–260.Springer,2019.
	[47]LwinKhinShar,BiniamFissehaDemissie,MarianoCeccato,andWeiMinn.Experimentalcomparisonoffeaturesandclassifiersforandroidmalwaredetection.InProceedings of the IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems,pages50–60,2020.
	-

	[48]ChristianSzegedy,WojciechZaremba,IlyaSutskever,JoanBruna,DumitruErhan,IanGoodfellow,andRobFergus.Intriguingpropertiesofneuralnetworks.arXiv preprint arXiv:1312.6199,2013.
	-

	[49]AboozarTaherkhani,GeorginaCosma,andTMartinMcGinnity.Adaboostcnn:Anadaptiveboostingalgorithmforconvolutionalneuralnetworkstoclassifymulti-classimbalanceddatasetsusingtransferlearning.Neurocomputing,404:351–366,2020.
	-
	-

	[50]TonyThomas,AthiraP.Vijayaraghavan,SabuEmmanuel,TonyThomas,Athira
	P.Vijayaraghavan,andSabuEmmanuel.Machinelearningandcybersecurity.Machine Learning Approaches in Cyber Security Analytics,pages37–47,2020.
	[51]FlorianTram`er,NicolasPapernot,IanGoodfellow,DanBoneh,andPatrickMcDaniel.Thespaceoftransferableadversarialexamples.arXiv preprint arXiv:1704.03453,2017.
	[52]ChenyueWang,LinlinZhang,KaiZhao,XuhuiDing,andXushengWang.Advandmal:Adversarialtrainingforandroidmalwaredetectionandfamilyclassification.Symmetry,13(6):1081,2021.
	-
	-

	[53]LishanWang.Researchandimplementationofmachinelearningclassifierbasedonknn.InIOP Conference Series: Materials Science and Engineering,volume677,page052038.IOPpublishing,2019.
	[54]YuandiWang.Performancecomparisonofandroidmalwaredetectionmethods.InJournal of Physics: Conference Series,volume1827,page012176.IOPPublishing,2021.
	-

	[55]JingWu,MingyiZhou,CeZhu,YipengLiu,MehrtashHarandi,andLiLi.Performanceevaluationofadversarialattacks:Discrepanciesandsolutions.arXiv preprint arXiv:2104.11103,2021.
	-

	[56]WeilinXu,DavidEvans,andYanjunQi.Featuresqueezing:Detectingadversarialexamplesindeepneuralnetworks.arXiv preprint arXiv:1704.01155,2017.
	-

	[57]YingchaoYu,XueyongLiu,andZuoningChen.Attacksanddefensestowardsmachinelearningbasedsystems.InProceedings of the 2nd International Conference on Computer Science and Application Engineering,pages1–7,2018.
	-

	[58]XiaoyongYuan,PanHe,QileZhu,andXiaolinLi.Adversarialexamples:Attacksanddefensesfordeeplearning.IEEE transactions on neural networks and learning systems,30(9):2805–2824,2019.
	-

	[59]XiaonanZou,YongHu,ZhewenTian,andKaiyuanShen.Logisticregressionmodeloptimizationandcaseanalysis.In2019 IEEE 7th international conference on computer science and network technology (ICCSNT),pages135–139.IEEE,2019.
	Appendix A 
	Source Code Snippets for Adversarial Attacks 
	A.1 CW 
	def caligariwagerattack(X,y,model,epsilon=0.3,perturbfactor=0.76,numiterations=300,learningrate=0.3):
	processedsamples=[]accuracies=[]falsepositiverates=[]falsenegativerates=[]fmeasures=[]
	def objfunc(perturbation,x,ytarget,model,epsilon):
	55
	xadv=x+perturbationxadv=np.round(xadv)xadv=np.clip(xadv,0,1)ypred=model.predict(xadv.reshape(1,−1))ypred=int (ypred[0])loss=0i f ypred==ytargetelse 1constraint=np.sum(np.abs (perturbation))− epsilonpenalty=1e3i f constraint> 0else 0return loss+penaltyXadv=np.copy(X)perturbations=np.zeroslike(X)for iin range (X.shape[0]):x=X[i]ytarget=int (y[i])
	xadv=x+perturbationxadv=np.round(xadv)xadv=np.clip(xadv,0,1)ypred=model.predict(xadv.reshape(1,−1))ypred=int (ypred[0])loss=0i f ypred==ytargetelse 1constraint=np.sum(np.abs (perturbation))− epsilonpenalty=1e3i f constraint> 0else 0return loss+penaltyXadv=np.copy(X)perturbations=np.zeroslike(X)for iin range (X.shape[0]):x=X[i]ytarget=int (y[i])
	xadv=x+perturbationxadv=np.round(xadv)xadv=np.clip(xadv,0,1)ypred=model.predict(xadv.reshape(1,−1))ypred=int (ypred[0])loss=0i f ypred==ytargetelse 1constraint=np.sum(np.abs (perturbation))− epsilonpenalty=1e3i f constraint> 0else 0return loss+penaltyXadv=np.copy(X)perturbations=np.zeroslike(X)for iin range (X.shape[0]):x=X[i]ytarget=int (y[i])

	bounds=[(None,None)for in range (X.shape[1])]initialperturbation=np.random.choice([−1,0,1],p=[epsilon/2,1− epsilon,epsilon/2])
	bounds=[(None,None)for in range (X.shape[1])]initialperturbation=np.random.choice([−1,0,1],p=[epsilon/2,1− epsilon,epsilon/2])
	size=X.shape[1],

	options={ ’maxiter’:’initialtr} 
	options={ ’maxiter’:’initialtr} 
	numiterations,radius’:learning
	rate

	attack
	attack
	result
	=
	scipy.optimize.minimize


	56
	(objfunc,initialperturbation,args=(x,ytarget,model,epsilon),method=’trust−constr’,bounds=bounds,options=options)perturbation=attackresult.xperturbations[i]=perturbationxadv=x+perturbfactor∗ perturbationXadv[i]=np.round(xadv)Xadv[i]=np.clip(Xadv[i],0,1)
	if (i+1)%100==0:ypredadv=model.predict(Xadv[:i+1])acc,fpr,fnr,fmeasure=calculateperformancemetrics(y[:i+1],ypredadv)processedsamples.append(i+1)accuracies.append(acc∗ 100)falsepositiverates.append(fpr∗ 100)falsenegativerates.append(fnr∗ 100)fmeasures.append(fmeasure∗ 100)print (f”PROCESSED
	{ i
	+
	+
	1} 

	SAMPLES”)print (f”Accuracy
	afterprocessing{ i+1} samples:{ acc∗ 
	100:.2f}%”)print (f”False
	positive
	positive
	rate

	after
	processing
	{ i
	+
	+
	1} 

	∗
	samples:{ fprprint (f”Falsesamples:
	{ fnr
	100:.2f}%”)negative
	rate
	rate
	after
	processing

	{ i
	+
	+
	1} 

	∗ 100:.2f}%”)
	print (f”F−measuresamples:
	{ fmeasure
	{ fmeasure
	after

	processing
	{ i
	+
	1} 
	∗ 100:.2f}%”)
	57
	return Xadv,perturbations,processedsamples,accuracies,falsepositiverates,falsenegativerates,fmeasures
	A.2 MI 
	def invertmodel(model,targetlabel,maxiter=1000,
	learningrate=0.01,threshold=0.5):xinverted=np.random.uniform(0,1,size=X.shape[1])for in range (maxiter):
	xinverted=np.clip(xinverted,0,1)prediction=model.predictproba(xinverted.reshape(1,−1))gradient=prediction[:,targetlabel]− thresholdxinverted−=learningrate∗ gradient
	return xinverted
	processedsamples=[]accuracies=[]falsepositiverates=[]falsenegativerates=[]fmeasures=[]
	# Generate adversarial samples using the 
	ModelInversionAttackfor theentiredatasetXadv=np.zeroslike(X)for i,targetlabelin enumerate(y):
	58
	Xadv[i]=invertmodel(model,targetlabel)
	if (i+1)%100==0:ypredadv=model.predict(Xadv[:i+1])accafter,fprafter,fnrafter,fmeasureafter=calculateperformancemetrics(y[:i+1],ypredadv)processedsamples.append(i+1)accuracies.append(accafter∗ 100)falsepositiverates.append(fprafter∗ 100)falsenegativerates.append(fnrafter∗ 100)fmeasures.append(fmeasureafter∗ 100)print (f”PROCESSED
	{ i
	+
	+
	1} 

	SAMPLES”)print (f”Accuracy
	AFTERprocessing{ i+1} samples:{ accafter∗ 
	100:.2f}%”)print (f”False
	positive
	positive
	rate
	AFTER

	processing
	{ i
	+
	1} samples:{ fprafter∗ 
	100:.2f}%”)print (f”False
	negative
	rate
	AFTER
	processing
	{ i
	+
	1} samples:{ fnrafter∗ 
	100:.2f}%”)print (f”F−measure
	AFTER
	AFTER
	processing

	{ i
	+
	1} samples:{ fmeasureafter∗ 
	100:.2f}%”)
	59
	Appendix B 

	Source Code Snippets for Training Classifiers 
	Source Code Snippets for Training Classifiers 
	def modelling(key,classifier):roclst=[]
	trainstart=time()
	classifier.fit(Xtrain,ytrain)
	trainend=time()
	trntime=trainend− trainstart
	trainacc=classifier.score(Xtrain,ytrain)∗100
	# calculating the training accuracy 
	detctionstart=time()ypred=classifier.predict(Xtest)
	60
	detectionend=time()tsttime=detectionend− detctionstart
	cm=confusionmatrix(ytest,ypred)cmdict[key]=cm
	probs=classifier.predictproba(Xtest)probs=probs[:,1]roclst.append([ytest,probs])rocdict[key]=roclst
	tstacc=accuracyscore(ytest,ypred)∗100fScore=f1score(ytest,ypred)
	val=crossvalscore(estimator=classifier,X=Xtrain,y=ytrain,cv=10,njobs=−1)valacc=val.mean()∗100
	return trainacc,valacc,tstacc,fScore,trntime,tsttime,cmdict[key]
	dataset=pd.readcsv(”binarydata.csv”)
	#dataset = shuffle (dataset) 
	# Load the adversarial samples 
	adversarialdataset=pd.readcsv(”adversarialsamples29333.csv”)
	# Concatenate the original and adversarial samples 
	61
	combineddataset=pd.concat([dataset,adversarialdataset])
	# Shuffle the combined dataset combineddataset=shuffle(combineddataset)from sklearn.modelselectionimport traintestsplit,crossvalscorefrom sklearn.linearmodelimport LogisticRegressionfrom sklearn.neighborsimport KNeighborsClassifierfrom sklearn.svmimport SVCfrom sklearn.ensembleimport RandomForestClassifierfrom sklearn.ensembleimport ExtraTreesClassifierfrom sklearn.ensembleimport AdaBoostClassifierfrom xgboostimport XGBClassifierfrom sklearn.ensembleimport BaggingClassifierfrom sklearn.treeimport DecisionTr
	62
	Appendix C 

	Source Code Snippets for Classifier as a defense mechanism 
	Source Code Snippets for Classifier as a defense mechanism 
	# Shuffle the combined dataset 
	combineddataset=shuffle(combineddataset)
	# Separate the features (X) from the target variable (y) 
	X=combineddataset.iloc[:,:− 1].valuesy=combineddataset.iloc[:,− 1].values
	# Split the data into training and test sets 
	Xtrain,Xtest,ytrain,ytest=traintestsplit(X,y,testsize=0.3,randomstat
	# Define your classifiers 
	63
	classifiers={ ’LR’:LogisticRegression(randomstate=0,njobs=−1),’KN’:KNeighborsClassifier(nneighbors=5,p=2,metric=’minkowski’),’SV’:SVC(kernel=’rbf’,randomstate=0,probability=True),’RF’:RandomForestClassifier(criterion=’gini’,randomstate=0,nestimators=10’ET’:ExtraTreesClassifier(criterion=’gini’,minsamplesleaf=2,nestimators=’XG’:XGBClassifier(njobs=−1),’AB’:AdaBoostClassifier(learningrate=0.1,nestimators=70),
	} 
	# Create an empty DataFrame to store the results 
	resultsdf=pd.DataFrame(columns=[’Classifier’,’TrainingAccuracy’,’TestAccuracy
	# Train each classifier and evaluate its performance 
	for key,classifierin classifiers.items():classifier.fit(Xtrain,ytrain)
	# Calculate training accuracy 
	ytrainpred=classifier.predict(Xtrain)trainaccuracy=accuracyscore(ytrain,ytrainpred)∗ 100
	# Calculate test metrics 
	ypred=classifier.predict(Xtest)testaccuracy,fpr,fnr,fmeasure=calculateperformancemetrics(ytest,ypredprint (f”{key} classifier:Trainingaccuracy=
	{ trainaccuracy:.2f}%,
	Test
	accura
	# Save the classifier 
	64
	joblib.dump(classifier,f”D:/Attack
	Defense/Multiple
	classifiers/NewIntegrationprint (f”{key} classifier
	is
	is
	dumped”)

	# Append the results to the results df 
	resultsdf=resultsdf.append({ ’Classifier’:key,’Training
	Accuracy’:trainaccuracy,’Test
	Accuracy’:testaccuracy,’FPR’:fpr,’FNR’:fnr,’F−measure’:fmeasure} ,ignoreindex=True)
	# Save the results to a CSV fil e 
	resultsdf.tocsv(’D:/Attack
	resultsdf.tocsv(’D:/Attack
	Defense/Multiple

	classifiers/NewIntegration/classiprint (”Resultsofclassifierareprinted”)
	65



