
A Thesis

entitled

Evaluating the Resilience of Machine Learning Model

to Adversarial Attacks

by

Sai Suma Sudha

Submitted to the Graduate Faculty as partial fulfllment of the requirements for the

Masters of Engineering Science Degree in Computer Science

Dr. Ahmad Y Javaid, Committee Chair

Dr. Devinder Kaur, Committee Member

Dr. Weiqing Sun, Committee Member

Dr. Scott Molitor, Dean
College of Graduate Studies

The University of Toledo

August 2023

Copyright 2023, Sai Suma Sudha

This document is copyrighted material. Under copyright law, no parts of this
document may be reproduced without the expressed permission of the author.

An Abstract of

Evaluating the Resilience of Machine Learning Model
to Adversarial Attacks

by

Sai Suma Sudha

Submitted to the Graduate Faculty as partial fulfllment of the requirements for the
Masters of Engineering Science Degree in Computer Science

The University of Toledo
August 2023

This research begins a critical assessment of a machine learning model’s robust-

ness, focusing on its resistance to adversarial attacks. We specifcally look into how

Carlini Wagner (CW) and Model Inversion (MI) adversarial attacks afect the model’s

performance and stability. The predefned model used for these attacks aims to cate-

gorize Android applications as malicious or benign. It bases its decisions on examining

permissions as the input features. We duplicated the original model to conduct our

experiments without afecting the integrity of the original model. We may see and

evaluate the efects of adversarial samples using this method without afecting the

performance of the initial model. We next trained several models with various algo-

rithms using the adversarial data generated by two adversarial attacks. Each model

performed training using the original and the adversarial samples, simulating a real-

world situation in which adversarial instances might be present in the training data.

After training, the models were saved as pickle fles to be reused later. The second

step of our study was to develop a specialized classifer with the primary objective of

separating original and adversarial samples. This classifer was intended to serve as

a flter that would discard adversarial data while allowing actual samples to be sent

to the trained model for predictions. It was established as a defense mechanism. We

thoroughly evaluated the performance of our suggested strategy, the models, and the

iii

classifer using a variety of performance indicators. At each stage of the procedure, we

investigated their accuracy, false positive and false negative rates, and the F-measure

to thoroughly assess the system’s performance. The results of this work highlight

the importance of comprehending and mitigating the efects of adversarial attacks on

machine learning models, especially in the context of identifying Android malware.

Our efort contributes to the broader discussion about improving the robustness of

machine learning models against adversarial threats by exposing the vulnerability of

these models to adversarial attacks and outlining a defense mechanism. This helps to

ensure more secure and reliable malware detection, which is crucial for using Android

applications securely. .

iv

I would like to dedicate this thesis to my family. Their love and belief in me have

been a constant source of motivation, guiding me toward achieving my goals. I am

especially grateful to my husband, Manikanta Rayala, and my sister, Sai Sushmitha

Sudha, for their faith in my abilities and their consistent motivation throughout this

process. Their presence by my side has given me strength and determination during

challenging times.

Acknowledgments

I express deep gratitude to my advisor, Dr. Ahmad Javaid, whose exceptional guid-

ance and insightful ideas were crucial in successfully completing my master’s degree

in study and research. I am also grateful to Dr. Weiqing Sun and Dr. Devinder Kaur

for their valuable contributions as members of my thesis committee. I want to thank

the Department of Electrical Engineering and Computer Science for supporting me

through a Research Assistantship. I thank my friends and colleagues at the CSTAR

Lab (NE 2033) at the University of Toledo for their support throughout my academic

journey. Lastly, I am deeply grateful to my family members for their encouragement

and belief in my abilities.

vi

Table of Contents

Abstract iii

Acknowledgments vi

List of Abbreviations xii

Preface xiii

1 Introduction 1

1.1 Overview . 2

1.2 Purpose and Scope . 3

1.3 Organization of Thesis . 4

2 Background 6

2.1 Machine Learning (ML) . 6

2.1.1 Random Forest (RF) . 7

2.1.2 Logistic Regression (LR) . 8

2.1.3 Support Vector Machine (SVM) 9

2.1.4 K-Nearest Neighbors (KNN) 10

2.1.5 Extra Trees Classifer (ETC) 11

vii

2.1.6 Extreme Gradient Boosting (XGBoost) 12

2.1.7 Adaptive Boosting (AdaBoost) 13

2.2 Adversarial Learning . 14

2.2.1 Adversarial Attacks . 15

2.3 Literature Review . 15

2.3.1 Overview of Android Malware Classifcation 15

2.3.2 Adversarial Attacks in Machine Learning 16

2.3.3 Existing Techniques for Adversarial Sample Detection 17

3 Performance of a Pre-trained ML Model under Adversarial Attacks 19

3.1 Model and Dataset Description . 19

3.2 Adversarial Attack methods . 20

3.2.1 Carlini Wagner (CW) . 21

3.2.2 Model Inversion (MI) . 23

3.3 Collection of Adversarial Samples . 24

3.4 Performance Evaluation of the Attacks 25

3.4.1 Results of Carlini Wagner . 26

3.4.2 Results of Model Inversion . 28

3.5 Training with Adversarial and Original Samples 31

4 Classifer Development: Design, Training, and Predictions 37

4.1 Performance Comparison of Classifers for Defense Mechanism 37

4.2 Classifer Workfow as a Defense Mechanism and Model Predictions . 41

4.3 Integration with the Model . 41

4.4 Performance of the Model . 42

5 Conclusion and Future Work 45

References 47

viii

55 A Source Code Snippets for Adversarial Attacks

A.1 CW . 55

A.2 MI . 58

B Source Code Snippets for Training Classifers 60

C Source Code Snippets for Classifer as a defense mechanism 63

ix

List of Tables

3.1 Hyperparameters for CW attack. 23

3.2 Hyperparameters for MI attack. 24

3.3 Performance Metrics Before and After CW Attack 27

3.4 Performance Metrics Before and After MI Attack 29

3.5 Training, Validation, and Testing results for various classifers on orig-

inal and adversarial samples generated at CW Attack. 32

3.6 Training, Validation, and Testing results for various classifers on orig-

inal and adversarial samples generated at MI Attack 34

4.1 Performance comparison of diferent classifers. 38

4.2 Prediction Results of Diferent Models on Classifer-Identifed Original

Samples . 43

x

List of Figures

3-1 Workfow of Launching the Adversarial Attack 21

3-2 Results of CW attack for every 100 Samples 27

3-3 Results of MI attack for every 100 Samples 29

3-4 Training process of the classifers with adversarial samples 31

3-5 Training and Testing Accuracy results of the classifers on original and

adversarial samples generated at CW Attack 33

3-6 Training and Testing Accuracy results of the classifers on original and

adversarial samples generated at MI Attack 35

4-1 Comparison of Training and Testing Accuracy results of the diferent

classifers . 39

4-2 Training the classifers with original and adversarial samples 39

4-3 The Classifer’s Workfow and Model Predictions 41

4-4 Comparison of Prediction Accuracy of the Models 43

xi

List of Abbreviations

CW .

ML .

KNN .

MI .

LR .

SVC .

RF .

ETC .

XGBoost

AdaBoost

FPR .

FNR .

IDS .

CNNs .

RNNs .

DL .

S

Carlini Wagner

Machine learning

K-Nearest Neighbors

Model Inversion

Logistic Regression

Support Vector Classifer

Random Forest

Extra Trees Classifer

Extreme Gradient Boosting

Adaptive Boosting

False Positive Rate

False Negative Rate

Intrusion Detection Systems

Convolutional Neural Networks

Recurrent Neural Networks

Deep Learning

xii

Preface

This thesis is submitted to the University of Toledo for a Master of Engineering

Science. The research presented in this thesis was conducted under the guidance and

supervision of Dr. Ahmad Javaid in the Department of Electrical Engineering and

Computer Science at the University of Toledo from May 2022 to July 2023. The

work presented in this thesis is original to my knowledge, except where explicitly

acknowledged and referenced. No part of this thesis or signifcantly similar work has

been submitted to any other university for any degree, diploma, or qualifcation.

Sai Suma Sudha

July, 2023

xiii

Chapter 1

Introduction

Android is an open-source operating system, the most popular one worldwide.

This platform allows developers to innovate and produce applications that meet cus-

tomer requirements. However, due to its widespread use and open-source nature, it

is frequently the target of disgraceful actions. Android malware, or programs created

to harm or interfere with Android systems, continues to be a concern online. Robust

detection solutions must continually advance as hackers develop new ways to evade

detection and compromise equipment [8]. Malware can be discovered using several

diferent techniques [6]. Adversarial samples are malware designed to evade detec-

tion by anti-malware programs. [48] Adversarial samples or adversarial examples are

data sets intended to trick a model. Adversarial samples are frequently produced

by making slight modifcations to the original data, which are invisible to humans

yet signifcantly impact the results of ML models. These modifcations are precisely

created to take advantage of the model’s weaknesses in decision-making, which may

lead to incorrect predictions or classifcations. They can be developed for various

1

ML applications, such as speech recognition, image recognition, and natural language

processing. They are commonly employed to assess ML models’ attack susceptibility

and resistance. These adversarial attacks try to trick or infuence ML algorithms by

carefully crafting perturbations to input data. Adversarial attacks on Android mal-

ware detection models are the focus of this study. We present a defense mechanism

using classifers trained on adversarial and original samples to strengthen the model’s

resistance to these sophisticated attacks [26].

1.1 Overview

This examines adversarial learning and how it afects ML models. The study of

adversarial attacks and countermeasures aimed at boosting the robustness and re-

silience of ML models against such attacks is called adversarial learning. We want

to create strong defenses and enhance these models’ efectiveness by comprehending

their faws and limitations. Introduction to adversarial attacks, which are deliberate

attempts to trick or manipulate ML models by adding purposefully designed pertur-

bations to input data, comes frst [7]. We use an Android malware prediction model

with permissions as the input. We investigate adversarial attack types in depth, in-

cluding the CW and MI attacks. These assaults show how sensitive ML models are

to small changes in input data.

In adversarial ML, CW and MI are characterized as white-box attacks. In a white

box attack, the attacker is fully aware of the architecture, parameters, and training

data of the ML model that is being attacked. The attacker can access the model’s

internal workings and use this knowledge to create adversarial samples that exploit

the model’s faws or vulnerabilities. On the other hand, black box attacks are a sort

of adversarial attack in which the attacker has little knowledge of the parameters or

internal workings of the target ML model [17].

2

An optimization-based attack called the CW attack seeks to identify disturbances

in the input data to produce adversarial samples [13]. It assumes the target model’s

architecture, parameters, and gradients are available. Conversely, MI is a technique

that seeks to retrieve private data from the training set used to develop an ML

model. It might be seen as a white box attack because it needs access to the model’s

predictions and knowledge of its architecture.

Additionally, we provide a cutting-edge security method that uses a specifc clas-

sifer to recognize and remove adversarial samples before sending them to the primary

malware detection model. We intend to improve the existing detection system’s ac-

curacy and robustness to adversarial attacks by including this defense mechanism.

1.2 Purpose and Scope

This thesis examines how adversarial attacks afect ML models that categorize

Android malware. Adversarial attacks try to change the input data to modify the

outputs of ML models. These attacks could lead to a model misclassifying a mali-

cious application as benign in Android malware classifcation, allowing the malware to

evade security safeguards. To increase the security and robustness of these systems, it

is essential to understand how vulnerable ML models are to adversarial attacks. The

vulnerability of ML models to adversarial attacks could substantially impact the secu-

rity of digital systems, given that these models are increasingly used in cybersecurity

for tasks like malware detection.

Examining multiple adversarial attack types will be a crucial aspect of the study.

Additionally, the study aims to evaluate how well pre-trained models function when

subjected to these adversarial attacks. We tested the models’ capacity to correctly

categorize Android apps as malicious or safe, even in the face of adversarial attacks.

This step is crucial for understanding the models’ current strengths and limitations

3

and potential areas for improvement.

The study also suggests designing and training a dedicated classifer for recogniz-

ing adversarial samples to increase the resilience of ML models against adversarial

attacks. By diferentiating malicious and original inputs, the classifer could shield

the model’s performance against adversarial attacks. Finally, this defense mecha-

nism’s performance in identifying and countering adversary threats will be assessed.

Ensuring the suggested solution will improve the model’s robustness is essential. The

thesis aims to develop the feld of ML security by following these goals. It aims to

suggest methods to increase ML models’ resistance to adversarial attacks, ensuring

their dependability and efciency in practical situations.

1.3 Organization of Thesis

Chapter 1 - Introduction: This chapter summarizes the research area—android

malware detection—and explains why it is essential to understand adversarial attacks.

The chapter also describes the overview of the thesis’s structure and organization.

Chapter 2 - Background: This chapter gives background information on the

technologies and concepts relevant to the research. It covers machine learning and its

applications in malware detection. Additionally, it discusses adversarial learning and

explains the idea of adversarial attacks, in which data points are created with the

intention of tricking machine learning algorithms. The chapter reviews related liter-

ature that discusses current methods for classifying Android malware in the context

of adversarial sample detection.

Chapter 3 - Performance of a Pre-trained ML Model under Adversarial

Attacks: This chapter assesses a machine learning model’s performance in the pres-

ence of adversarial assaults. The model and dataset utilized in the experiments are

4

described. The replication and launch of adversarial assaults, particularly CW and

MI attacks, are covered in this chapter. It talks about gathering adversarial samples

and conducting training and testing on original and adversarial samples. The fndings

of the CW and MI assaults are presented in the chapter’s performance evaluation of

the attacks.

Chapter 4 - Classifer Development: Design, Training, and Predictions:

The main focus of this chapter is the design and training of a classifer to diferentiate

between original and adversarial data. It comprises a performance evaluation of

various classifers to determine the most efcient. The chapter further investigates

the classifer’s integration with the initial model and assesses the model’s overall

performance following integration.

Chapter 5 - Conclusion and Future Work: This chapter concludes, summarizes

the results, explores the consequences, and suggests directions for further research.

5

Chapter 2

Background

2.1 Machine Learning (ML)

In Machine Learning, computers may automatically learn from experience, adapt,

and improve without being explicitly programmed. It focuses on creating and im-

proving algorithms that provide computers with data access so they can use it to

anticipate the future or make judgments. It feeds on enormous amounts of data,

which it can analyze to precisely identify patterns and trends that could elude the

human eye. One of machine learning’s most important uses is in the feld of cyber-

security. Traditional security methods, particularly those that rely on known attack

signatures and human interaction, must be revised due to data’s sheer volume and

complexity as the digital world expands exponentially rate [50]. In this scenario ML

appears as a powerful tool that may use its capacity to recognize anomalies, patterns,

or deviations in massive datasets, which are frequently signs of possible cyber threats.

6

ML algorithms can learn from previous occurrences and historical data, giving them

the predictive ability to anticipate and recognize potential hazards frequently before

they happen. This capacity is essential in cybersecurity since it can drastically re-

duce the duration between a breach and an attack response, potentially saving time,

money, and sensitive information. ML has critical applications across multiple aspects

of cybersecurity. ML is essential in malware detection systems (IDS) for analyzing

network trafc data and spotting out-of-the-ordinary or suspicious activities [12]. To

identify potential incursions and quickly react to them, it is benefcial to have the

ability to analyze massive databases and uncover hidden patterns. ML may signif-

cantly increase the detection rates for malware due to its predictive capabilities. ML

models may recognize subtle patterns and signs by extracting characteristics from

previously identifed benign and malicious fles, improving the accuracy of malware

detection, and reducing the number of false positives [23]. Phishing attacks, a se-

vere cybersecurity threat, can also be successfully reduced with ML. ML algorithms

can accurately detect phishing websites and emails by studying the characteristics

of known phishing instances [40]. ML ofers a strong defense against such threats

by picking up on hidden warnings and patterns typical of phishing attacks. Spam

fltering has long been a complex problem [35]. ML can accurately identify and flter

out spam emails or messages using complex algorithms, improving user experience

and system security. In terms of cybersecurity, ML is a game-changer. ML holds

out the promise of an efcient, proactive, and fexible security mechanism capable of

staying one step ahead of cyber adversaries as we continue to deal with constantly

developing cyber threats.

2.1.1 Random Forest (RF)

A fexible and reliable ML model called Random Forest (RF) is frequently used

for classifcation and regression problems. It is a component of ensemble learning

7

methods, a strategy that combines various learning models to provide predictions

that are more precise and reliable than those that could be made using just one

of the individual learning algorithms. During the training phase, the RF method

generates many decision trees, each built using a random portion of the training

data [46]. The output is either the mode of the classes for classifcation tasks or

the mean estimate of the individual trees for regression tasks. This method creates

a ”forest” of decision trees, combining their predictions to make the result [1]. A

decision tree is a structure like a fowchart where each internal node represents a test

on an attribute, each branch a test result, and each leaf node a class label. However, A

single decision tree is susceptible to changes in the dataset and frequently overfts the

training data, resulting in poor performance on unobserved data. The RF approach

deals with this issue, which builds many trees and averages their outputs to boost

model robustness and reduce overftting. The diversity and simplicity of the RF

are what gives it its power. The model successfully captures diverse elements of

the dataset by constructing several decision trees from random subsets of the data,

leading to improved performance. The RF algorithm is a popular choice for various

applications in machine learning because, despite its intricacy, it is reasonably simple

to use and requires little hyperparameter modifcation.

2.1.2 Logistic Regression (LR)

A popular ML approach for binary classifcation issues is logistic regression (LR).

A logistic function is used in this statistical model to simulate a binary dependent

variable. The LR model calculates the likelihood that a specifc input point falls

under the [59]. The logistic function, the sigmoid function, is the fundamental idea

underpinning logistic regression. An S-shaped curve maps any real-valued number to

a value between 0 and 1. The term ”logistic” refers to the fact that the outcome pre-

diction in logistic regression is logarithmic rather than linear. This ratio is subjected

8

to the logistic function to determine the possibility or log odds. The estimated prob-

ability can then be used to predict a binary outcome; if it exceeds a certain threshold,

the model will predict the positive class; if not, it will indicate the negative category.

The fact that LR not only ofers a prediction but also the probabilities corresponding

to the predictions is one of its benefts. When we need to estimate the prediction’s

level of certainty, this feature is useful. LR may be easily applied to numerical and

categorical data by transforming categorical data into dummy variables. Addition-

ally, by including a penalty to the loss function that the model minimizes, LR can be

regularized to prevent overftting to the training set of data. Due to its interpretabil-

ity and robustness, logistic regression is frequently employed in many felds. It is

notably used in the fnancial sector, where it is used to forecast the risk that a client

would default on a loan, as well as in healthcare, where it is used to predict disease

outcomes based on various warning signs. LR is a potent tool in ML and statistical

modeling weapons because of its efectiveness, simplicity, and insightful information

it provides about the variables infuencing the prediction [36].

2.1.3 Support Vector Machine (SVM)

A powerful supervised learning technique, the Support Vector Machine (SVM), is

mainly employed for binary classifcation. At the same time, it can also be utilized to

solve multi-class classifcation and regression issues. The fundamental idea of SVM

is to locate a hyperplane that divides the data into two classes in the best possible

way [41]. The hyperplane is selected to maximize the margin, which is determined

by measuring how far each class’s nearest data points are from the hyperplane. As it

seeks to establish the broadest ”street” between types, this method makes the SVM

robust to overftting and lowers the possibility of misclassifcation. The ability of

SVM to handle high-dimensional data is its main strength. The kernel trick, also

known as projecting data onto a higher-dimensional space where it can be linearly

9

separated, is a technique SVM uses to handle data that cannot be linearly separated

in the original environment [16]. The input data are transformed by kernel functions

like the linear, polynomial, radial basis function (RBF), or sigmoid kernels, allowing

SVM to locate complex decision boundaries in the transformed space. SVM is adapt-

able and capable of handling challenging, real-world datasets due to the freedom to

select a suitable kernel function. SVM is one of the most well-liked machine learning

algorithms because of its reliability, adaptability, and high performance across vari-

ous areas. It has been extensively employed in multiple domains, including general

pattern recognition tasks, hand-written character identifcation, picture recognition,

bioinformatics, and text and hypertext categorization.

2.1.4 K-Nearest Neighbors (KNN)

The lazy learning algorithms include instance-based learning algorithms such as

KNN. The name ”lazy” alludes to the fact that KNN waits until prediction time to use

the training data instead of building a generalized model during the training phase.

It is also regarded as a non-parametric technique because no explicit assumptions are

made on the functional form of the data [28]. KNN is very useful when the data

distribution is uncertain or does not adhere to the assumptions of parametric models

because of this characteristic. The fundamental idea behind KNN is to categorize an

object based on how it resembles instances in the training set. KNN determines the

’k’ examples from the training dataset closest to the new instance when a prediction

is needed for an unobserved instance (thus the name K-Nearest Neighbors). Stan-

dard distance metrics determining ”closeness” include Euclidean, Manhattan, and

Minkowski distances. The method then places the new instance in the class with the

most members among its closest ’k’ neighbors. The object is put into the category of

its nearest neighbor when k is equal to 1.

KNN’s ease of use, interpretability, and capacity for multi-class issues have made

10

it useful in various applications. It is frequently utilized in disciplines including pat-

tern recognition, anomaly detection, text mining, and recommendation systems [53].

Despite its advantages, KNN is susceptible to the dimensionality curse. When man-

aging high-dimensional data, dimensionality reduction techniques may be necessary

because the performance rapidly declines as the feature space’s dimensions rise. Ad-

ditionally, because KNN is a lazy learner, it can be expensive to compute and slow

when making predictions, especially for large datasets. Despite this, the KNN algo-

rithm is adequate for various data-driven applications, especially those that beneft

from its simple and intuitive approach to classifcation and regression.

2.1.5 Extra Trees Classifer (ETC)

Extremely Randomized Trees, another name for the ETC, is an ensemble learning

technique that produces many decision trees and aggregates their results. It belongs

to the same class of ensemble approaches as Random Forest and Gradient Boosting.

Still, because it adds more randomization throughout the model-building process, it

further lowers the variance of the model [10]. The fundamental tenet of ensemble

methods, such as ETC, is that a collection of ”weak learners” can combine to create

a ”strong learner.” A random subset of the data is used to build each decision tree

in the ensemble independently. The way ETC separates nodes sets it apart from

previous ensemble decision tree-based approaches. ETC employs randomly chosen

split points instead of Decision Trees and Random Forests, which select optimal split

points. In exchange for a reduction in variance and an increase in bias, the model

is more resistant to overftting [2]. Because no optimal rule is searched for each

node, this random selection of characteristics and thresholds to split upon results

in a higher bias, ofset by a minor variance (because the trees difer more from one

another). A crucial hyperparameter for ETC is the number of trees in the forest.

Due to its higher randomness, ETC typically requires more trees than a Random

11

Forest to achieve comparable performance levels. However, as each tree is generated

individually, the training of ETC can be done entirely in parallel, resulting in quick

computation. The fact that ETC uses random thresholds and is hence insensitive to

input scaling can make it more user-friendly than other techniques that call for input

standardization. ETC is a robust and practical ensemble learning method that excels

at working with sizable datasets with high dimensional space and can be applied to

regression and classifcation applications.

2.1.6 Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting, or XGBoost, is a powerful, scalable ML method that

excels at predictive modeling applications due to its high performance and efec-

tiveness. Its foundation is the gradient boosting framework, which iteratively com-

bines weak predictive models, typically decision trees, to produce a robust predictive

model [18]. The technique of gradient descent optimization to reduce the loss function

is called gradient boosting. Due to its accuracy and processing capacity, XGBoost

has become extremely well-known in the data science community and has been the

algorithm of choice in many winning solutions of machine learning competitions. One

unique aspect of XGBoost is its regularization process, which works to prevent over-

ftting by limiting the complexity of the model. While most boosting algorithms use

a loss function, XGBoost augments this function with a regularization term. Both L1

(Lasso Regression) and L2 (Ridge Regression) regularization are included in the regu-

larization term. By setting some feature weights to zero, L1 regularization encourages

sparsity, whereas L2 regularization reduces the coefcients of less signifcant features

but leaves them in place. Compared to conventional gradient boosting, XGBoost is

a more generalized model because of the extra complexity control [25]. The built-in

routine for addressing missing values in XGBoost is another essential feature. In real-

world datasets, missing data is a frequent problem that can signifcantly impact how

12

well machine learning algorithms perform. XGBoost is more resistant to missing data

than other algorithms since it automatically determines the appropriate imputation

technique based on the training loss. The capacity to process information in parallel,

which accelerates learning, and built-in cross-validation at each iteration, which min-

imizes the amount of boosting iterations, are two further benefts of XGBoost. For

many machine learning problems, XGBoost is the algorithm of choice because of its

speed, performance, and adaptability.

2.1.7 Adaptive Boosting (AdaBoost)

The adaptive boosting machine learning algorithm, called AdaBoost, is employed

for classifcation and regression issues. One of the earliest and best ensemble algo-

rithms, it combines several weak classifers to produce a robust classifer. Simply

put, a weak classifer performs poorly but is still superior to guessing at random [20].

AdaBoost is adaptive in that it iteratively modifes the distribution of the data to

emphasize cases that were incorrectly classifed in the past, enhancing the ensemble’s

performance. Each weak classifer in AdaBoost is trained using a random subset of the

entire dataset. Each training example in the dataset is given a weight by AdaBoost

after each training round, which establishes the likelihood that each instance will be

included in the training set for the following classifer. To increase their chance of

being used as part of the training set for the subsequent classifer, samples incorrectly

identifed in the previous round are given greater weight. This procedure continues

for numerous rounds or until the algorithm has added a predetermined number of

weak learners, whichever comes frst. Thus, the fnal model comprises numerous vul-

nerable learners, each focusing on a particular data area that was challenging for the

prior models. AdaBoost has the beneft of being less prone to overftting than other

learning algorithms. It strives to ft each point exactly. Hence it is sensitive to noisy

data and outliers [49]. AdaBoost is highly adaptable and may be used for binary and

13

multiclass classifcation problems. It can also incorporate any learning technique.

AdaBoost can be used with any form of classifer, even though it is commonly em-

ployed with decision tree classifers. As a result, a robust classifer is created that

combines the advantages of each member while also making up for any faws.

2.2 Adversarial Learning

A sophisticated branch of ML called adversarial learning concentrates on learning

in a hostile environment. Adversarial learning algorithms focus on scenarios where

the data distribution may be purposefully modifed or adversely afected by an op-

ponent, unlike typical ML algorithms, which learn from a fxed data distribution.

The adversary’s objective is typically to make the ML algorithm produce errors. In

contrast, the learner aims to categorize or predict data, even hostile data accurately.

In traditional ML, we typically assume that the data distribution is stationary and

that the distribution of the test data looks similar to that of the training distribution.

This is no more true in hostile circumstances when attackers can deliberately modify

the data [43]. As a result, adversarial learning algorithms are made to be stronger

and more resistant to these tricks.

This project aims to strengthen the Android malware detection system’s resilience

against adversarial attacks. In this case, adversarial samples act as fake entities

to defeat the model’s detection mechanism [42]. The approach includes adversarial

learning mechanisms to address this. As a result, it can efectively learn from benign

and adversarial samples and produce precise predictions. Using adversarial learning

considerably boosts the system’s efectiveness and strengthens its defenses against

potential security breaches and adversarial attacks.

14

2.2.1 Adversarial Attacks

In ML, adversarial attacks involve modifying the input data to confuse the ML

models and cause them to provide false results. These assaults use the models’ built-

in weaknesses and pose severe risks to ML and DL models. White-box and black-box

attacks are the two main types of adversarial attacks. Attackers using white-box

techniques can access the model’s architecture, parameters, and training data. The

attacker can design sophisticated attacks using this knowledge that frequently go

undetected [44]. In contrast, black-box attacks assume that the attacker is only

aware of the model’s inputs and outputs and is mindful of how the model functions

internally. In these situations, the attacker attempts to create malicious programs

using this input-output information.

Serious concerns about the dependability and robustness of ML models have been

raised due to their vulnerability to adversarial attacks. The potential impact of

adversarial attacks could be extensive and harmful as ML models are increasingly used

in crucial domains, including cybersecurity, healthcare, and autonomous cars [21]. To

ensure the safe and efcient usage of ML models, it is essential to comprehend and

mitigate adversarial attacks [43].

2.3 Literature Review

2.3.1 Overview of Android Malware Classifcation

Malware attacks on the Android platform have signifcantly increased due to the

widespread availability of Android smartphones over the past ten years. Android mal-

ware classifcation has been the subject of numerous studies, particularly on ML-based

solutions, due to their performance benefts over traditional rule-based approaches.

Typically, collections of Android applications classifed as benign or malicious are

15

used to train ML models. To categorize new, undiscovered applications, they learn

the characteristics that set these categories apart, such as requested permissions, API

requests, or network activities [27]. Numerous ML methods have been used to catego-

rize Android malware over time, including Decision Trees, Random Forests, Support

Vector Machines, Neural Networks, and others [5]. Researchers have also looked into

feature selection techniques to reduce the dimensionality of the data and enhance

model performance. Malware categorization has also seen an increase in the applica-

tion of DL. Since they can automatically learn feature representations from raw data,

models like CNNs and RNNs have proven particularly efective [4]. This eliminates

the need for manual feature extraction. However, adversarial attacks, which alter the

input data to make the model misclassify the application, can seriously damage the

efcacy of these models. Due to this difculty, the categorization of Android malware

using adversarial ML algorithms has been studied.

2.3.2 Adversarial Attacks in Machine Learning

The safety and reliability of machine learning models are now seriously threatened

by adversarial attacks. An adversarial attack involves altering the input data to a

machine learning model in a way that leads to inaccurate predictions or classifcations

by the model. These alterations, often called adversarial instances, are frequently

subtle and invisible to the naked eye yet signifcantly impact a model’s output.

Three categories can be used to classify adversarial attacks broadly [15]. Evasion

attack is an adversarial attack that occurs during testing, where the attacker modifes

the input data in a way that leads to an error in the machine learning model. These

modifcations to the input data are frequently made to be undetectable and hidden

[39]. Poisoning attack is an adversarial attack during a machine learning model’s

training phase. The attacker inserts carefully constructed samples into the training

set to control the learning process. As a result, the model learns wrong associations

16

and generates false predictions or conclusions. Exploratory attack, the adversary aims

to comprehend or expose the model’s internals, such as its parameters or structure.

This attack often involves querying the model to learn how it behaves.

These attacks severely impact applications for image recognition, natural language

processing, and malware detection [34] [30]. They take advantage of ML models’

great dimensionality and complexity, which make it challenging to predict and pro-

tect against all potential weaknesses. Adversarial attacks against Android malware

detection may involve adding, removing, or altering dangerous software features to

avoid detection. These dangers highlight the necessity of strong models that can

withstand adversarial attacks and continue to deliver accurate and trustworthy pre-

dictions. Understanding and countering adversarial attacks has been the subject of

extensive research, resulting in developing defense mechanisms and improving mod-

els. However, the adverse circumstances are still changing. Therefore this is a very

active area of research.

2.3.3 Existing Techniques for Adversarial Sample Detection

To protect ML models against adversarial attacks, adversarial sample detection

is essential. This component aims to identify and eliminate changing inputs that

attempt to reduce the reliability and accuracy of model predictions. Many diferent

strategies have been suggested over time to deal with this issue.

Adversarial training is one of the approaches that is frequently employed. Ad-

versarial samples are included in the training process to strengthen the model’s resis-

tance to adversarial attacks, which is the basic idea underlying adversarial training.

The idea is predicated on the concept that exposing the model to adversarial samples

during training will allow it to identify and categorize such instances later efectively.

Although this method requires a lot of resources, the outcomes have been encourag-

ing. With the development of the fast gradient sign method, which has since been

17

widely used, Goodfellow and colleagues were signifcant in helping to establish this

concept [24].

Defensive distillation aims to make ML models more resilient to adversarial

attacks. Similar to how distillation in chemistry produces a pure substance from a

mixture, the term ”distillation” is a metaphorical description of the process when a

model is trained to generalize the softer output of another model. Two rounds of

model training are used in the technique. In the frst round, a standard model is

trained to provide output probabilities for each class [38]. The targets for the second

round of training are then replaced with the output probabilities from the initial

training rather than the complex labels at the beginning. The goal is to reduce the

sensitivity of the model’s decision boundaries by smoothing and strengthening them.

Defensive distillation was proposed by Papernot et al. [38].

Feature squeezing is an adversarial detection method that reduces the search

space that can be exploited by simplifying the representations of model inputs and

making it more challenging to produce adversarial samples. This can be done by

reducing the color depth of the images, applying a spatial flter to smooth out the

images, or compressing the input data. This approach has been proved by Xu et al.

in their study [56].

Gradient Masking or Regularization is a defense strategy used in ML to

strengthen the model’s resistance to adversarial attacks. To make it more difcult

for adversaries to provide adversarial samples, it operates by modifying or masking

the gradients of the loss function related to the input during the training phase [11].

The decision boundaries of the model are smoothed or made fat to reduce the impact

of adversarial perturbations. Gradient masking can prevent gradient-based attacks

but may not always increase system robustness, leaving the system open to other

attacks [9].

18

Chapter 3

Performance of a Pre-trained ML

Model under Adversarial Attacks

3.1 Model and Dataset Description

A sophisticated NATICUSdroid system is an ML, specifcally on the Random

Forest Classifer. This model aims to distinguish between benign (harmless) and ma-

licious (harmful) Android applications. The system’s capacity to diferentiate between

the two proposes a practical solution for the growing malware problem in the Android

ecosystem, as stated in [33]. The efcacy of NATICUSdroid is primarily due to how

it examines the permissions that the applications request. The system analyzed the

permission conditions of over 29,000 excellent and harmful Android applications over

approximately ten years (2010-2019). These permissions specify how an application

may use features or access specifc data on a device. NATICUSdroid can determine

19

the most critical permissions by carefully examining historical trends in these per-

missions. These permissions are a combination of native (included in the Android

system) and custom (specifed by the app developers) permissions. The system gath-

ers and examines these permissions to distinguish between good and bad applications.

An application may be marked as suspicious if it requests many permissions or per-

missions that are not ordinarily required for its stated function. NATICUSdroid can

determine the essential permissions by carefully examining historical trends in these

permissions. These permissions are a combination of native (included in the An-

droid system) and custom (specifed by the app developers) permissions. The system

gathers and examines these permissions to distinguish between good and bad appli-

cations. An application may be marked as suspicious if it requests many permissions

or permissions that are not ordinarily required for its stated function.

3.2 Adversarial Attack methods

Adversarial attacks are techniques used to confuse ML algorithms by supplying

carefully crafted data. These attacks exploit the model’s weaknesses and could lead to

inaccurate predictions or classifcations. We have employed the CW Attack and the

MI Attack, two well-known adversarial attack strategies, to evaluate NATICUSdroid’s

robustness 3-1 this shows the workfow of the attack.

20

Figure 3-1: Workfow of Launching the Adversarial Attack

3.2.1 Carlini Wagner (CW)

Due to the CW Attack’s shown efciency in producing adversarial scenarios and

evaluating the resilience of machine learning models, we decided to use it in our

research. This particular kind of adversarial approach, which Nicholas Carlini and

David Wagner frst described in 2017, excels at creating adversarial samples that are

challenging for models to recognize and require minor modifcations from the initial

input [14]. In applying the CW Attack on our NATICUSdroid model, we began by

defning an optimization problem. The objective of this challenge was to fnd the

lowest perturbation that could be added to the initial input to alter the model’s

21

output, thereby making it an adversarial example.

The formulation of this adversarial attack can be represented as

minδ∥δ∥p + c.f(x + δ)where x + δ ϵ {−1, 0, 1}n (3.1)

In equation (3.1), x represents an original input instance, δ denotes the adversarial

perturbation, f(x + δ) is the classifcation function that guides the perturbation to

trigger misclassifcation and n is the number of dimensions [58]. The term ||δ||p

represents the Lp norm, serving as the distance metric to measure the magnitude

of the perturbation. Here, ||δ||p is minimized while ensuring that f(x + δ) guides

the model to the target class. The function f is carefully crafted to become less

than or equal to zero when the perturbed instance is misclassifed as the target class.

To maintain valid binary values (0 or 1), the adversarial examples are clipped and

rounded after the perturbation is added.

To solve this optimization problem, the CW attack leverages the change of vari-

ables and reformulates the problem as follows

1 1
minimize|| (tanh(w) + 1) − x||22 + e.f((tanh(w)) + 1) (3.2)

2 2

This approach enables using standard gradient-based optimization algorithms,

such as the trust region method in your implementation, to address the issue. The

CW attack, which provides high fooling rates while preserving imperceptible pertur-

bations, thus serves as an efcient adversarial attack strategy in our project.

Hyperparameters can afect the learning process, including how complex the learned

model is, how quickly it learns, and how well it performs. 3.1 shows the table for

hyperparameters.

22

Table 3.1: Hyperparameters for CW attack.

Parameter Value

Epsilon 0.3

Perturbation Factor 0.76

Number of Iterations 300

Learning Rate 0.1

As the maximum permitted perturbation for each pixel in the image (or feature

in the data), epsilon is frequently utilized in adversarial attacks. It is a method

of regulating the size of the perturbation and, consequently, the visibility of the

adversarial example. The perturbation factor is likely a hyperparameter specifc to

this CW attack technique. It is generally possible to scale the noise added during the

attack using the perturbation factor.

The attack optimization process runs for the specifed number of steps or itera-

tions. More iterations may produce adversarial instances that are more efective, but

they also take longer to calculate.

The CW attack’s gradient descent optimization approach uses Learning Rate as

a hyperparameter. The learning rate determines how much the input needs to be

changed in response to the computed gradient of the loss function. A higher learning

rate will result in more drastic input changes at each step, which could speed up

convergence and increase the risk of overshooting the loss function’s minimum [45].

3.2.2 Model Inversion (MI)

Fredrikson frst proposed the idea of MI attacks, an adversarial attack strategy

that tries to extract sensitive data from a machine learning model by fipping the

model’s behavior [22]. It involves reconstructing inputs and replicating the initial

23

training data using the model’s predictions. In other words, the approach aims to

recover the input data from the output by reversing the model’s decision-making

process.

Utilizing access to the model and its outputs, a MI attack against the NATICUS-

droid model tried to aim to extract private information about the training data. This

sensitive information is the features (Android permissions) of benign or malware apps

that the model has trained to recognize as essential [57].

Table 3.2: Hyperparameters for MI attack.

Parameter Value

max iter 300

learning rate 0.1

threshold 0.5

The max iter indicates the function’s maximum number of iterations. The func-

tion will have more possibilities to identify a successful adversarial sample if this

number is more signifcant, but it will also take longer. Learning rate defnes how

much the inputs are modifed throughout each iteration based on the determined gra-

dient. The threshold is the cutof used to determine when a prediction is sufciently

close to the target label. Lowering this amount will raise the threshold for a prediction

to be declared a match, potentially making the attack more difcult but the matches

more precise.

3.3 Collection of Adversarial Samples

Adversarial samples are carefully crafted adjustments to the original data that

are almost unnoticeable to humans but signifcantly afect the predictions or classif-

24

cations made by ML models [48]. Creating adversarial samples often entails making

minor changes to the original input data. These perturbations, for instance, can

involve gently modifying the pixel values in an image or the numerical values in a

data set. These adjustments aim to trick the ML model into making a wrong pre-

diction or categorization. Adversarial attacks are techniques used to confuse ML

algorithms by supplying carefully crafted data. These attacks exploit the model’s

weaknesses and could lead to inaccurate predictions or classifcations. In the context

of your study, adversarial samples are generated using the CW Attack and the MI,

two well-known adversarial attack techniques [37]. The performance and robustness

of the NATICUSdroid model are then evaluated under challenging circumstances us-

ing these adversarial samples. Testing with adversarial samples is like simulating an

adversarial attack on the model. If the model fails to perform well when adversarial

examples are included (i.e., misclassifying many instances), this refers to model faws

that must be fxed. This procedure can highlight the model’s weak points susceptible

to such adversarial manipulation. The model’s resilience against such sophisticated

attacks can be strengthened by identifying these weak places, improving the model’s

performance in real-world situations. The goal is to harden NATICUSdroid to with-

stand attacks that use adversarial samples to trick the system and continue to do a

successful job of malware identifcation.

3.4 Performance Evaluation of the Attacks

This section assesses the efectiveness of adversarial attacks such as the CW and

MI attacks. Evaluation metrics are derived by initiating these hostile attacks on a

NATICUSdroid model. I created a replica of the model and launched the attacks [55].

Evaluation measures used to evaluate their performance includes Accuracy deter-

mined by how many positive and negative predictions were accurate.FPR measures

25

the proportion of negative occurrences mistakenly labeled as positive, FNR measures

the proportion of positive occurrences mistakenly labeled as negative. F-measure is

harmonic means of Precision (the proportion of correct positive identifcations), and

Recall (the percentage of genuine positives that were correctly identifed). These

analyses were carried out for each batch of 100 samples.

3.4.1 Results of Carlini Wagner

The results of CW attacks show that the attack is successful as the Accuracy of the

NATICUSdroid model reduced after the attack. The evaluation is done for every 100

samples, and the results before and after the attack were also mentioned. 3.3 shows

the results before and after the CW attack. The results were also plotted as 3-2. As

shown by the drastic shifts in evaluation measures, the observed pattern indicates

the model’s performance after the CW attack is considerably impacted during the

frst 5000 samples. This may result from the model adjusting to the adversarial

manipulation caused by the CW attack.

The performance indications change less drastically after processing 5000 samples.

This may be because the model is more stable. After all, it has already adapted to

the patterns of the adversarial data [29]. However, it’s crucial to remember that,

depending on how this model is applied, even minor deviations in fndings could have

a signifcant impact.

26

Table 3.3: Performance Metrics Before and After CW Attack

Performance Metric Before CW Attack After CW Attack

Accuracy 97.88 67.55

False Positive Rate 1.69 4.13

False Negative Rate 2.54 60.63

F-Measure 97.88 54.88

Figure 3-2: Results of CW attack for every 100 Samples

A comparison of numerous evaluation metrics for an ML model both before and

after the CW adversarial attack is shown in the table 3.3 and 3-2 shows the results

in a graph. The Accuracy metric gauges how accurately the model predicts things in

general. Before the CW attack, the model had a remarkable accuracy of 97.88%, cor-

rectly classifying 97.88% of the data. However, following the CW strike, the model’s

accuracy drastically decreased to 67.55%, showing that it needed to be more suc-

cessful at making accurate forecasts under hostile circumstances. The false positive

rate is the percentage of benign (or negative) samples mistakenly labeled as mali-

27

cious (or positive). The false positive rate was low before the CW attack, at 1.69%,

but increased to 4.13% afterward. This growth indicates that the attack may have

mistakenly caused the model to label more innocuous samples as malicious. The per-

centage of harmful (or positive) samples mistakenly classifed as benign (or negative)

is known as the False Negative Rate. In this instance, the false negative rate increased

from 2.54% before the CW attack to 60.63% afterward. This suggests that the model

underwent adversarial conditions and failed to accurately recognize a sizable number

of false samples, which raises substantial security concerns. Finally, a measure that

combines precision and recall—the F-Measure or F-score—also drastically dropped

from 97.88% before the CW strike to 54.88% afterward. The decline in the F-score

indicates that the CW attack signifcantly reduced the model’s precision and recall,

suggesting a compromise in the model’s efectiveness in its prediction capability.

3.4.2 Results of Model Inversion

Performance measurements for the Model Inversion (MI) attack indicate success.

Each of these adversarial attack strategies was assessed for every 100 samples. Perfor-

mance metrics were monitored before and after the attacks, allowing for a complete

evaluation of its resilience and susceptibility to attack 3-3 shows the performance

metrics before and after the attack.

We observed a considerable diference in the performance metrics throughout the

frst 1200 samples of the MI attack 3.4 shows the plot for every 100 samples. This

suggests that the attack signifcantly afected the performance. The accuracy rate

decreased, and the FPR had minor changes, but the FNR experienced the most

signifcant change, increasing drastically. As a result, the F-measure, which considered

both precision and recall, decreased signifcantly.

28

Table 3.4: Performance Metrics Before and After MI Attack

Performance Metric Before MI Attack After MI Attack

Accuracy 97.88 50.1

False Positive Rate 1.69 0.09

False Negative Rate 2.54 99.41

F-Measure 97.88 1.17

Figure 3-3: Results of MI attack for every 100 Samples

The comparison of various evaluation metrics for an ML model before and after

it was subjected to the MI adversarial attack is shown in the table 3.4 and 3-3 shows

the graphical representation of the results. The overall accuracy of the model’s pre-

dictions is measured by its accuracy. The model had a high accuracy of 97.88% before

the MI attack, correctly classifying 97.88% of the occurrences. But after being sub-

jected to the MI attack, the model’s accuracy dropped to 50.1%. This signifcant fall

indicates a considerable decline in the model’s capacity to produce reliable predictions

in the face of opposition. The FPR measures how many benign (or negative) samples

29

are mistakenly classifed as malicious (or positive). Interestingly, in this instance, the

FPR drops from 1.69% prior to the MI attack to a meager 0.09% following the strike.

This suggests that fewer innocuous cases were mistakenly labeled as harmful due to

the attack. The percentage of harmful (or positive) samples that were mistakenly

classifed as benign (or negative) is known as the FNR. Here we notice a signifcant

shift: the FNR soars from 2.54% before the MI attack to an unsettling 99.41% follow-

ing the strike. This considerable rise shows that the model misidentifed most harmful

cases under adversarial circumstances. Last, the F-assessment, commonly known as

the F-score, a balanced assessment of precision and recall, decreased sharply from

97.88% before the MI attack to just 1.17% after that. The MI assault caused a sig-

nifcant decrease in the model’s prediction precision and recall, which is indicated by

the sharp drop in the F-score.

30

3.5 Training with Adversarial and Original Sam-

ples

Figure 3-4: Training process of the classifers with adversarial samples

A key component in enhancing the robustness and resilience of machine learning

models to adversarial attacks is adversarial training. This strategy is essential in ML,

especially in felds where models could be subject to attacks meant to trick or mislead

them. Both adversarial and original samples are used in the training set for adver-

sarial training. Adversarial samples have been marginally altered to make the model

forecast incorrect. On the other hand, original samples are the typical, unaltered

data the model intends to learn from. The machine learning model gains experience

with adversarial samples in addition to conventional data by integrating both types

31

of samples in the training set. This procedure enhances the model’s capacity to iden-

tify and correctly categorize adversarial samples by training it to operate in a hostile,

more diversifed environment [51]. Several machine learning classifers are used during

the adversarial training process. They are K-Nearest Neighbors (KN), Support Vec-

tor Classifer (SVC), Random Forest (RF), Extra Trees Classifer (ETC), XGBoost

(XG), and AdaBoost (AB). Each classifer has advantages and disadvantages, adding

to the model’s overall resilience. 3-4 This shows how the classifer training process

takes place. These trained classifers are saved as pickle fles after the training step is

over. The trained classifers can be readily loaded using these pickle fles in the future

without retraining them. ML frequently uses this technique since it uses less time

and computing power [31]. The training results are then displayed, demonstrating the

efectiveness of each of these classifers in percentages. These outcomes, which show

how well each classifer can handle adversarial and original data, could be accuracy

scores, precision, recall, or any other applicable performance parameter.

Classifer Training Accuracy Validation Accuracy Test Accuracy Test F-Score

LR 88.80 88.73 88.73 0.89

KN 92.52 90.36 90.39 0.90

SVC 94.17 90.72 90.57 0.90

RF 98.50 89.40 89.46 0.89

ETC 97.70 89.46 89.49 0.89

XGBoost 95.54 90.39 90.45 0.90

AdaBoost 86.32 86.30 85.86 0.86

Table 3.5: Training, Validation, and Testing results for various classifers on

original and adversarial samples generated at CW Attack.

32

Figure 3-5: Training and Testing Accuracy results of the classifers on origi-

nal and adversarial samples generated at CW Attack

In 3.5, numerous classifer performances are described in detail. KNN performed

slightly better, achieving training accuracy of 92.52%, validation accuracy of 90.36%,

test accuracy of 90.39%, and test F-Score of 0.90, compared to LR, which achieved

88.80%, 88.73%, 88.73%, and 0.89 respectively. 3-5 gives a comparison of Training

and Testing accuracy of the classifers. With a training accuracy of 94.17%, a val-

idation accuracy of 90.72%, a test accuracy of 90.57%, and a test F-Score of 0.90,

SVC performed even better. With a training accuracy of 98.50%, the RF classifer

performed admirably. Still, its validation and test accuracies were only marginally

better, at 89.40% and 89.46%, respectively, with a test F-Score of 0.89.

With a training accuracy of 97.70%, validation accuracy of 89.46%, test accuracy

of 89.49%, and test F-Score of 0.89. ETC performed similarly to the RF classifer.

With a training accuracy of 95.54%, a validation accuracy of 90.39%, a test accuracy

of 90.45%, and a test F-Score of 0.90, XGBoost demonstrated a solid balance be-

tween training and testing. AdaBoost has lesser performance metrics with a training

33

accuracy of 86.32 validation accuracy of 86.30%, test accuracy of 85.86%, and a test

F-Score of 0.86. In general, there were observable diferences in the training accu-

racies of classifers, even though most of them had comparable test accuracies and

F-scores. These variations should be considered when choosing a classifer since they

may afect their capacity to generalize to new data.

Classifer Training Accuracy Validation Accuracy Test Accuracy Test F-Score

LR 97.37 97.32 97.51 0.95

KNN 97.99 97.49 97.64 0.95

SVC 98.04 97.82 97.95 0.96

RF 98.90 98.05 98.24 0.97

ETC 98.55 97.91 98.09 0.96

XGBoost 98.73 98.09 98.29 0.97

AdaBoost 95.59 95.58 95.81 0.92

Table 3.6: Training, Validation, and Testing results for various classifers on

original and adversarial samples generated at MI Attack

34

Figure 3-6: Training and Testing Accuracy results of the classifers on origi-

nal and adversarial samples generated at MI Attack

This 3.6 shows the results for seven diferent classifers, each trained using both

adversarial samples generated by MI and original samples. 3-6 gives a comparison of

Training and Testing accuracy of the classifers. With a Test F-Score of 0.95, the LR

classifer achieved a training accuracy of 97.37%, validation accuracy of 97.32%, and

test accuracy of 97.51%. With a similar Test F-Score of 0.95, K-Nearest Neighbors

(KN) obtained greater training accuracy of 97.99%, validation accuracy of 97.49%,

and test accuracy of 97.64%. With a training accuracy of 98.04%, validation accuracy

of 97.82%, and test accuracy of 97.95%, the SVC classifer advanced further. A bit

higher, at 0.96, was the Test F-Score.

With RF achieving the maximum training accuracy of 98.90%, validation accuracy

of 98.05%, and test accuracy of 98.24%, the RF and ET classifers performed better

than expected. The Test F-Score, at 0.97, was also the highest. With a Test F-Score of

0.96, the ET classifer reported a training accuracy of 98.55%, validation accuracy of

97.91%, and test accuracy of 98.09%. With a training accuracy of 98.73%, validation

35

accuracy of 98.09%, and test accuracy of 98.29%, the XGBoost classifer performed

similarly to RF, ETC. It received a Test F-Score of 0.97 as well. Last, the AdaBoost

classifer returned accuracy values for training, validation, and testing of 95.59%,

95.58%, and 95.81%, respectively. Its Test F-Score of 0.92 was the lowest of any

classifers.

36

Chapter 4

Classifer Development: Design, Train-

ing, and Predictions

4.1 Performance Comparison of Classifers for De-

fense Mechanism

By serving as a defense mechanism that diferentiates between original and ad-

versarial samples, classifers are crucial to an entire architecture. By acting as a

gatekeeper to the primary Android malware detection model, these classifers en-

sure that only ”clean” or original samples are processed further. This project uses

several diferent classifers (LR, KN, SVC, RF, ETC, XGBoost, and AdaBoost) [3],

each using a diferent ML algorithm, 4-2 shows the image of the classifers, training

with both adversarial and original samples. These classifers can distinguish between

the two, given that they trained on a dataset that included original and adversarial

37

samples [47].

Once trained, the classifers divide the test set’s data into two groups: original

and adversarial. The important part is that only the data identifed by these classi-

fers as ”original” are forwarded to the primary model for additional processing and

predictions. This approach reduces the possibility that adversarial samples would

afect the performance of the primary model, increasing its robustness and reliability

in recognizing Android malware.

The efectiveness of these classifers is crucial since it directly afects the system’s

ability to detect malware on Android devices as an entire system. Each classifer’s

performance can be compared using a range of measures (Training Accuracy, Test

Accuracy, FPR, FNR, and F-Measure) [54], allowing one to choose which classifer(s)

would be most suited for further integration with the primary model. These classifers

defend against adversarial attacks, preserving the accuracy of the primary model’s

malware detection while protecting the integrity of the data it processes. ?? shows

the performance comparison of diferent classifers [52].

Classifer Training Accuracy Test Accuracy FPR FNR F-measure

LR 94.85 94.86 4.05 6.24 0.95

KNN 72.31 66.77 0.07 66.55 0.50

SV 99.17 98.60 1.09 1.72 0.99

RF 99.89 97.96 2.06 2.02 0.98

ETC 99.48 97.82 2.47 1.89 0.98

XGBoost 99.52 98.78 0.83 1.61 0.99

AdaBoost 91.36 91.65 3.03 13.70 0.91

Table 4.1: Performance comparison of diferent classifers.

38

Figure 4-1: Comparison of Training and Testing Accuracy results of the dif-

ferent classifers

Figure 4-2: Training the classifers with original and adversarial samples

39

The results of the classifers used as a defense mechanism against adversarial at-

tacks is presented in 4.1. The LR classifer demonstrated a consistent and robust

predictive performance on both visible (training) and unseen (test) data, achieving

training and test accuracy of 94.55% and 94.60%, respectively. 4-1 shows the compar-

ison chart of the training and testing accuracy of diferent classifers. It kept its FPR

and FNR at comparatively low levels of 4.44% and 6.38%, respectively, indicating

that it struck a decent balance in reducing both false alarms and misses. The high

harmonic means of precision and recall shown by the F-measure of 0.95 further attests

to its remarkable performance. When compared to other classifers, the K-Nearest

Neighbors (KNN) classifer performs signifcantly worse, with training accuracy of

73.48% and test accuracy of 68.02%. The model has a very low FPR, which is im-

pressive at 0.05%. It has a high FNR of 64.18%, though, which means there were

a lot of missed detections. The F-measure of 0.53, which is signifcantly lower than

those of other classifers, refects this. The Random Forest (RF) and Support Vector

(SV) classifers outperform the competition, obtaining above 99% training and 97%

test accuracy. They continue to have low FPR and FNR scores, indicating good

class separation. Both have an F-measure of 0.98, which shows almost perfect recall

and precision. With training accuracy above 99%, test accuracy around 98%, and

an F-measure of 0.98, the Extra Trees (ET) and XGBoost (XG) classifers perform

similarly to the SV and RF classifers. These classifers handle adversarial attacks

efectively overall, with ET having a little higher FPR than SV and RF and XG hav-

ing a signifcantly higher FNR. Last, the AdaBoost (AB) classifer performs worse,

with training and test accuracy of 91.54% and 91.47%, respectively. Although it still

has a fare FPR of 3.30 percent, the FNR is more signifcant than average at 13.8

percent, which indicates more misses. Despite being lower than the others, it shows

a reasonable precision and recall balance with an F-measure of 0.91.

40

4.2 Classifer Workfow as a Defense Mechanism

and Model Predictions

4-3 describes the workfow of classifer and model predictions.

Figure 4-3: The Classifer’s Workfow and Model Predictions

4.3 Integration with the Model

In our study, the classifers are meant to improve the original model rather than

replace it to make it more resilient to adversarial attacks. This section explains the

steps taken to combine these classifers with the original model to detect dangers

that could occur [19]. The classifers serve as a flter or gateway to the original

model after being trained on a dataset that includes original and adversarial samples.

These classifers efciently divide incoming samples into two groups: adversarial and

original. The original samples are then saved to send to the primary model for

41

additional prediction tasks while the adversarial instances are marked [32].

The architecture will therefore be more resistant to adversarial attacks by integrat-

ing the classifers with the original model. The classifers work to prevent competing

samples from changing the original model’s prediction, preserving the precision and

consistency of the model’s output. However, it’s crucial to remember that the suc-

cess of this approach primarily depends on how well the classifers can diferentiate

between the original and adversarial samples. To select the best classifers for integra-

tion with the original model, it is essential to consider the performance comparison

of these classifers outlined in the previous section.

4.4 Performance of the Model

The original samples are provided to the model for additional predictions when the

classifer distinguishes between the original and adversarial examples. In this stage,

the model’s performance on the original samples is evaluated, and its robustness to

potential adversarial attacks is determined. The evaluation’s fndings indicate how

well the model works with the original samples and whether it can continue to predict

correctly even when faced with adversarial examples. These fndings demonstrate the

model’s capacity to generalize and produce accurate predictions based on actual data.

The term ”classifer” in the context of the results presented refers to a particular model

or technique used for classifcation. Every classifer is an individual model or algorithm

trained to categorize samples into specifc classes. The results below show how well

the model—as determined by the particular classifer—performed in predicting the

labels of the original samples. The previously mentioned metrics, including accuracy,

FPR, FNR, and F-measure, thoroughly assess the model’s efectiveness on the original

samples. FPR and FNR ofer information on the model’s capacity to avoid making

false positive and false negative predictions, while F-measure provides a fair evaluation

42

of precision and recall. Accuracy assesses the overall accuracy of the predictions.

Classifer Accuracy FPR FNR F-measure

LR 94.23 7.17 4.39 0.94

AdaBoost 90.91 11.45 6.74 0.91

ETC 96.68 3.16 3.48 0.97

KNN 96.22 4.44 3.12 0.96

RF 97.05 2.62 3.28 0.97

SVC 95.97 4.42 3.64 0.96

XGBoost 96.32 3.89 3.46 0.96

Table 4.2: Prediction Results of Diferent Models on Classifer-Identifed

Original Samples

Figure 4-4: Comparison of Prediction Accuracy of the Models

The accuracy metric shows the percentage of samples that each classifer correctly

classifes. 4.2 shows the prediction results of diferent models. A higher accuracy

43

demonstrates improved performance in correctly classifying positive and negative ex-

amples 4-4 compares models’ accuracy. In this instance, the classifers had accuracy

levels between 90.91% and 97.05%. The FPR calculates the frequency with which

negative samples are incorrectly deemed positive. A decreased FPR suggests an im-

proved capacity to reduce the misclassifcation of negative examples. The FPR values

that the classifers achieved ranged from 2.62% to 11.45%. The FNR measures the

frequency of incorrectly labeling positive samples as negative. A lower FNR sug-

gests a better capacity to classify positive samples accurately. The FNR values the

classifers achieved ranged from 3.12% to 6.74%. The F-measure, which combines

precision and recall measurements, evaluates the classifer’s performance. It provides

a balanced assessment by considering false positive and false negative rates. The

classifers’ F-measure scores ranged from 0.91 to 0.97.

44

Chapter 5

Conclusion and Future Work

The study aimed to increase an Android malware detection model’s resistance to

adversarial attacks. A classifer was used as a frst line of defense and successfully

identifed adversary samples apart from the original samples. As a result, the primary

predictive model was protected from direct adversarial disturbance, enabling better

predictions. The model was strengthened against attacks by training on adversarial

samples. The trained model’s resiliency against these adversarial attacks proved this

method’s efectiveness. The addition of the classifer system improved the model’s

performance and decreased the possibility of adversarial samples passing undetected.

This demonstrates how such layered defensive measures might strengthen the model’s

resistance to adversary manipulation.

As this project progresses, several important areas will be the focus for enhance-

ment and exploration. The model’s exposure to various adversarial attacks is one of

the main areas of interest. The model has only been trained and tested against a small

number of adversarial techniques at this time. We seek to improve the robustness of

45

the model against unidentifed or sophisticated adversarial samples, hence maintain-

ing a high level of performance, by broadening the range of adversarial attacks used

during model training. Exploring other defense mechanisms to make the model much

stronger. Our evaluation was limited to binary datasets (0 or 1) and did not include

other categorical or decimal data. There is potential for future research to extend

these tests to explore other types of datasets.

46

References

[1] Nasiba Mahdi Abdulkareem and Adnan Mohsin Abdulazeez. Machine learning

classifcation based on radom forest algorithm: A review. International journal

of science and business, 5(2):128–142, 2021.

[2] L Abhishek. Optical character recognition using ensemble of svm, mlp and

extra trees classifer. In 2020 International Conference for Emerging Technology

(INCET), pages 1–4. IEEE, 2020.

[3] Prerna Agrawal and Bhushan Trivedi. Machine learning classifers for android

malware detection. In Data Management, Analytics and Innovation: Proceedings

of ICDMAI 2020, Volume 1, pages 311–322. Springer, 2021.

[4] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer. Dl-droid: Deep

learning based android malware detection using real devices. Computers & Se-

curity, 89:101663, 2020.

[5] Brandon Amos, Hamilton Turner, and Jules White. Applying machine learning

classifers to dynamic android malware detection at scale. In 2013 9th inter-

47

national wireless communications and mobile computing conference (IWCMC),

pages 1666–1671. IEEE, 2013.

[6] Bela Amro. Malware detection techniques for mobile devices. arXiv preprint

arXiv:1801.02837, 2018.

[7] Kshitiz Aryal, Maanak Gupta, and Mahmoud Abdelsalam. A survey on adver-

sarial attacks for malware analysis. arXiv preprint arXiv:2111.08223, 2021.

[8] Moses Aprofn Ashawa and Sarah Morris. Analysis of android malware detection

techniques: a systematic review. 2019.

[9] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give

a false sense of security: Circumventing defenses to adversarial examples. In

International conference on machine learning, pages 274–283. PMLR, 2018.

[10] Bhoopesh Singh Bhati and CS Rai. Ensemble based approach for intrusion

detection using extra tree classifer. In Intelligent Computing in Engineering:

Select Proceedings of RICE 2019, pages 213–220. Springer, 2020.

[11] Franziska Boenisch, Philip Sperl, and Konstantin Böttinger. Gradient masking

and the underestimated robustness threats of diferential privacy in deep learning.

arXiv preprint arXiv:2105.07985, 2021.

[12] Anna L Buczak and Erhan Guven. A survey of data mining and machine learning

methods for cyber security intrusion detection. IEEE Communications surveys

& tutorials, 18(2):1153–1176, 2015.

[13] Nicholas Carlini and David Wagner. Adversarial examples are not easily de-

tected: Bypassing ten detection methods. In Proceedings of the 10th ACM work-

shop on artifcial intelligence and security, pages 3–14, 2017.

48

[14] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural

networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. Ieee,

2017.

[15] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and

Debdeep Mukhopadhyay. A survey on adversarial attacks and defences. CAAI

Transactions on Intelligence Technology, 6(1):25–45, 2021.

[16] Mayank Arya Chandra and SS Bedi. Survey on svm and their application in

image classifcation. International Journal of Information Technology, 13:1–11,

2021.

[17] Steven Chen, Nicholas Carlini, and David Wagner. Stateful detection of black-

box adversarial attacks. In Proceedings of the 1st ACM Workshop on Security

and Privacy on Artifcial Intelligence, pages 30–39, 2020.

[18] Iyad Lahsen Cherif and Abdesselem Kortebi. On using extreme gradient boosting

(xgboost) machine learning algorithm for home network trafc classifcation. In

2019 Wireless Days (WD), pages 1–6. IEEE, 2019.

[19] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner.

Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410,

2017.

[20] De-Cheng Feng, Zhen-Tao Liu, Xiao-Dan Wang, Yin Chen, Jia-Qi Chang, Dong-

Fang Wei, and Zhong-Ming Jiang. Machine learning-based compressive strength

prediction for concrete: An adaptive boosting approach. Construction and Build-

ing Materials, 230:117000, 2020.

[21] Samuel G Finlayson, John D Bowers, Joichi Ito, Jonathan L Zittrain, Andrew L

Beam, and Isaac S Kohane. Adversarial attacks on medical machine learning.

Science, 363(6433):1287–1289, 2019.

49

[22] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks

that exploit confdence information and basic countermeasures. In Proceedings of

the 22nd ACM SIGSAC conference on computer and communications security,

pages 1322–1333, 2015.

[23] Dragoş Gavriluţ, Mihai Cimpoeşu, Dan Anton, and Liviu Ciortuz. Malware de-

tection using machine learning. In 2009 International multiconference on com-

puter science and information technology, pages 735–741. IEEE, 2009.

[24] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[25] Florian Huber, Artem Yushchenko, Benedikt Stratmann, and Volker Steinhage.

Extreme gradient boosting for yield estimation compared with deep learning

approaches. Computers and Electronics in Agriculture, 202:107346, 2022.

[26] Olakunle Ibitoye, Rana Abou-Khamis, Ashraf Matrawy, and M Omair Shafq.

The threat of adversarial attacks on machine learning in network security–a

survey. arXiv preprint arXiv:1911.02621, 2019.

[27] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye.

Signifcant permission identifcation for machine-learning-based android malware

detection. IEEE Transactions on Industrial Informatics, 14(7):3216–3225, 2018.

[28] Yannan Li, Jingbo Wang, and Chao Wang. Proving robustness of knn against

adversarial data poisoning. In CONFERENCE ON FORMAL METHODS IN

COMPUTER-AIDED DESIGN–FMCAD 2022, page 7, 2022.

[29] Jing Lin, Laurent L Njilla, and Kaiqi Xiong. Secure machine learning against

adversarial samples at test time. EURASIP Journal on Information Security,

2022(1):1, 2022.

50

[30] Xiang Ling, Lingfei Wu, Jiangyu Zhang, Zhenqing Qu, Wei Deng, Xiang Chen,

Yaguan Qian, Chunming Wu, Shouling Ji, Tianyue Luo, et al. Adversarial at-

tacks against windows pe malware detection: A survey of the state-of-the-art.

Computers & Security, page 103134, 2023.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083, 2017.

[32] Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray.

Metric learning for adversarial robustness. Advances in neural information pro-

cessing systems, 32, 2019.

[33] Akshay Mathur, Laxmi Mounika Podila, Keyur Kulkarni, Quamar Niyaz, and

Ahmad Y Javaid. Naticusdroid: A malware detection framework for android

using native and custom permissions. Journal of Information Security and Ap-

plications, 58:102696, 2021.

[34] K Meenakshi and G Maragatham. A review on security attacks and protec-

tive strategies of machine learning. Emerging Trends in Computing and Expert

Technology, pages 1076–1087, 2020.

[35] Pavas Navaney, Gaurav Dubey, and Ajay Rana. Sms spam fltering using su-

pervised machine learning algorithms. In 2018 8th international conference on

cloud computing, data science & engineering (confuence), pages 43–48. IEEE,

2018.

[36] Fred C Pampel. Logistic regression: A primer. Number 132. Sage publications,

2020.

[37] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Ce-

lik, and Ananthram Swami. Practical black-box attacks against machine learn-

51

ing. In Proceedings of the 2017 ACM on Asia conference on computer and com-

munications security, pages 506–519, 2017.

[38] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram

Swami. Distillation as a defense to adversarial perturbations against deep neural

networks. In 2016 IEEE symposium on security and privacy (SP), pages 582–597.

IEEE, 2016.

[39] Marek Pawlicki, Michal Choraś, and Rafa l Kozik. Defending network intrusion

detection systems against adversarial evasion attacks. Future Generation Com-

puter Systems, 110:148–154, 2020.

[40] Tianrui Peng, Ian Harris, and Yuki Sawa. Detecting phishing attacks using nat-

ural language processing and machine learning. In 2018 ieee 12th international

conference on semantic computing (icsc), pages 300–301. IEEE, 2018.

[41] Ashis Pradhan. Support vector machine-a survey. International Journal of

Emerging Technology and Advanced Engineering, 2(8):82–85, 2012.

[42] Hemant Rathore, Sanjay K Sahay, Piyush Nikam, and Mohit Sewak. Robust

android malware detection system against adversarial attacks using q-learning.

Information Systems Frontiers, 23:867–882, 2021.

[43] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. Adversarial

machine learning attacks and defense methods in the cyber security domain.

ACM Computing Surveys (CSUR), 54(5):1–36, 2021.

[44] Bita Darvish Rouani, Mohammad Samragh, Tara Javidi, and Farinaz Koushan-

far. Safe machine learning and defeating adversarial attacks. IEEE Security &

Privacy, 17(2):31–38, 2019.

52

[45] Wenjie Ruan, Xinping Yi, and Xiaowei Huang. Adversarial robustness of deep

learning: Theory, algorithms, and applications. In Proceedings of the 30th ACM

international conference on information & knowledge management, pages 4866–

4869, 2021.

[46] Anjaneyulu Babu Shaik and Sujatha Srinivasan. A brief survey on random forest

ensembles in classifcation model. In International Conference on Innovative

Computing and Communications: Proceedings of ICICC 2018, Volume 2, pages

253–260. Springer, 2019.

[47] Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, and Wei Minn.

Experimental comparison of features and classifers for android malware detec-

tion. In Proceedings of the IEEE/ACM 7th International Conference on Mobile

Software Engineering and Systems, pages 50–60, 2020.

[48] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-

han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.

arXiv preprint arXiv:1312.6199, 2013.

[49] Aboozar Taherkhani, Georgina Cosma, and T Martin McGinnity. Adaboost-

cnn: An adaptive boosting algorithm for convolutional neural networks to clas-

sify multi-class imbalanced datasets using transfer learning. Neurocomputing,

404:351–366, 2020.

[50] Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel, Tony Thomas, Athira

P. Vijayaraghavan, and Sabu Emmanuel. Machine learning and cybersecurity.

Machine Learning Approaches in Cyber Security Analytics, pages 37–47, 2020.

[51] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick

McDaniel. The space of transferable adversarial examples. arXiv preprint

arXiv:1704.03453, 2017.

53

[52] Chenyue Wang, Linlin Zhang, Kai Zhao, Xuhui Ding, and Xusheng Wang. Ad-

vandmal: Adversarial training for android malware detection and family classi-

fcation. Symmetry, 13(6):1081, 2021.

[53] Lishan Wang. Research and implementation of machine learning classifer based

on knn. In IOP Conference Series: Materials Science and Engineering, volume

677, page 052038. IOP publishing, 2019.

[54] Yuandi Wang. Performance comparison of android malware detection methods.

In Journal of Physics: Conference Series, volume 1827, page 012176. IOP Pub-

lishing, 2021.

[55] Jing Wu, Mingyi Zhou, Ce Zhu, Yipeng Liu, Mehrtash Harandi, and Li Li. Per-

formance evaluation of adversarial attacks: Discrepancies and solutions. arXiv

preprint arXiv:2104.11103, 2021.

[56] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adver-

sarial examples in deep neural networks. arXiv preprint arXiv:1704.01155, 2017.

[57] Yingchao Yu, Xueyong Liu, and Zuoning Chen. Attacks and defenses towards

machine learning based systems. In Proceedings of the 2nd International Con-

ference on Computer Science and Application Engineering, pages 1–7, 2018.

[58] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: At-

tacks and defenses for deep learning. IEEE transactions on neural networks and

learning systems, 30(9):2805–2824, 2019.

[59] Xiaonan Zou, Yong Hu, Zhewen Tian, and Kaiyuan Shen. Logistic regression

model optimization and case analysis. In 2019 IEEE 7th international conference

on computer science and network technology (ICCSNT), pages 135–139. IEEE,

2019.

54

Appendix A

Source Code Snippets for Adversarial Attacks

A.1 CW

def c a l i g a r i w a g e r a t t a c k (X, y , model ,

e p s i l o n =0.3 , p e r t u r b f a c t o r =0.76 ,

num i t e ra t i ons =300 , l e a r n i n g r a t e =0 .3) :

p roce s s ed sample s = []

a c c u r a c i e s = []

f a l s e p o s i t i v e r a t e s = []

f a l s e n e g a t i v e r a t e s = []

fmeasures = []

def ob j f unc (perturbat ion , x , y ta rge t , model , e p s i l o n) :

55

x adv = x + pe r t u r b a t i on

x adv = np . round(x adv)

x adv = np . c l i p (x adv , 0 , 1)

y pred = model . p r e d i c t (x adv . reshape (1 , −1))

y pred = int (y pred [0])

l o s s = 0 i f y pred == y t a r g e t else 1

c o n s t r a i n t = np .sum(np . abs (pe r t u r ba t i o n)) − e p s i l o n

pena l ty = 1 e3 i f c o n s t r a i n t > 0 else 0

return l o s s + pena l ty

X adv = np . copy (X)

p e r t u r b a t i o n s = np . z e r o s l i k e (X)

for i in range (X. shape [0]) :

x = X[i]

y t a r g e t = int (y [i])

bounds = [(None , None) for in range (X. shape [1])]

i n i t i a l p e r t u r b a t i o n = np . random . c h o i c e ([−1 , 0 , 1] ,

p=[e p s i l o n / 2 , 1 − e p s i l o n , e p s i l o n / 2])

s i z e=X. shape [1] ,

op t i ons = {

’ maxiter ’ :

’ i n i t i a l t r

}

num i te rat ions ,

r a d i u s ’ : l e a r n i n g r a t e

a t t a c k r e s u l t = s c i p y . opt imize . minimize

56

(ob j func , i n i t i a l p e r t u r b a t i o n , a rgs =(x , y ta rge t , model , e p s i l o n) ,

method=’ t rus t −cons t r ’ , bounds=bounds , opt i ons=opt ions)

pe r tu rbat i on = a t t a c k r e s u l t . x

p e r tu rba t i on s [i] = pe r tu rbat i on

x adv = x + p e r t u r b f a c t o r ∗ per turbat i on

X adv [i] = np . round(x adv)

X adv [i] = np . c l i p (X adv [i] , 0 , 1)

i f (i + 1) % 100 == 0 :

y pred adv = model . p r e d i c t (X adv [: i + 1])

acc , fpr , fnr , fmeasure = c a l c u l a t e p e r f o r m a n c e m e t r i c s

(y [: i + 1] , y pred adv)

p roce s s ed sample s . append (i + 1)

a c c u r a c i e s . append (acc ∗ 100)

f a l s e p o s i t i v e r a t e s . append (fp r ∗ 100)

f a l s e n e g a t i v e r a t e s . append (fn r ∗ 100)

fmeasures . append (fmeasure ∗ 100)

print (f ”PROCESSED { i + 1} SAMPLES”)

print (f ”Accuracy a f t e r p r o c e s s i n g { i + 1} samples : { acc ∗ 1 0 0 : . 2 f}%”)

print (f ” Fa l se p o s i t i v e r a t e a f t e r p r o c e s s i n g { i + 1}

∗samples : { f p r

print (f ” Fa l se

samples : { f n r

1 0 0 : . 2 f}%”)

negat ive r a t e a f t e r p r o c e s s i n g { i + 1}

∗ 1 0 0 : . 2 f}%”)

print (f ”F−measure

samples : { fmeasure

a f t e r p r o c e s s i n g { i + 1}

∗ 1 0 0 : . 2 f}%”)

57

return X adv , pe r turbat ions , processed samples ,

a c cu rac i e s , f a l s e p o s i t i v e r a t e s ,

f a l s e n e g a t i v e r a t e s , fmeasures

A.2 MI

def i nver t mode l (model , t a r g e t l a b e l , max i te r =1000 ,

l e a r n i n g r a t e =0.01 , th r e sho ld =0 .5) :

x i nv e r t e d = np . random . uniform (0 , 1 , s i z e=X. shape [1])

for in range (max i te r) :

x i nv e r t e d = np . c l i p (x inver ted , 0 , 1)

p r e d i c t i o n = model . p r ed i c t p roba (x i nve r t e d . reshape (1 , −1))

g rad i en t = p r e d i c t i o n [: , t a r g e t l a b e l] − th r e sho ld

x i nve r t e d −= l e a r n i n g r a t e ∗ grad i en t

return x i nve r t e d

proce s s ed sample s = []

a c c u r a c i e s = []

f a l s e p o s i t i v e r a t e s = []

f a l s e n e g a t i v e r a t e s = []

fmeasures = []

Generate ad v e r s a r i a l samples us ing the

Model I n ve r s i on Attack for the e n t i r e datase t

X adv = np . z e r o s l i k e (X)

for i , t a r g e t l a b e l in enumerate (y) :

58

X adv [i] = inver t mode l (model , t a r g e t l a b e l)

i f (i + 1) % 100 == 0 :

y pred adv = model . p r e d i c t (X adv [: i + 1])

a c c a f t e r , f p r a f t e r , f n r a f t e r ,

f m e a s u r e a f t e r = c a l c u l a t e p e r f o r m a n c e m e t r i c s (y [: i + 1] , y pred adv)

p roce s s ed sample s . append (i + 1)

a c c u r a c i e s . append (a c c a f t e r ∗ 100)

f a l s e p o s i t i v e r a t e s . append (f p r a f t e r ∗ 100)

f a l s e n e g a t i v e r a t e s . append (f n r a f t e r ∗ 100)

fmeasures . append (f m e a s u r e a f t e r ∗ 100)

print (f ”PROCESSED { i + 1} SAMPLES”)

print (f ”Accuracy AFTER p r o c e s s i n g { i + 1} samples : { a c c a f t e r ∗ 1 0 0 : . 2 f}%”)

print (f ” Fa l se p o s i t i v e r a t e AFTER p r o c e s s i n g { i + 1}

samples : { f p r a f t e r ∗ 1 0 0 : . 2 f}%”)

print (f ” Fa l se negat ive r a t e AFTER p r o c e s s i n g { i + 1}

samples : { f n r a f t e r ∗ 1 0 0 : . 2 f}%”)

print (f ”F−measure AFTER p r o c e s s i n g { i + 1}

samples : { f m e a s u r e a f t e r ∗ 1 0 0 : . 2 f}%”)

59

Appendix B

Source Code Snippets for Training Classifers

def model l ing (key , c l a s s i f i e r) :

r o c l s t = []

t r a i n s t a r t = time ()

c l a s s i f i e r . f i t (X tra in , y t r a i n)

t r a i n end = time ()

t rn t ime = t r a in end − t r a i n s t a r t

t r a i n a c c = c l a s s i f i e r . s c o r e (X tra in , y t r a i n)∗100

c a l c u l a t i n g the t r a i n i n g accuracy

d e t c t i o n s t a r t = time ()

y pred = c l a s s i f i e r . p r e d i c t (X te s t)

60

de t e c t i on end = time ()

t s t t i m e = de t e c t i on end − d e t c t i o n s t a r t

cm = con fus i on mat r ix (y t e s t , y pred)

cm dict [key] = cm

probs = c l a s s i f i e r . p r ed i c t p roba (X te s t)

probs = probs [: , 1]

r o c l s t . append ([y t e s t , probs])

r o c d i c t [key] = r o c l s t

t s t a c c = a c cu ra cy s co r e (y t e s t , y pred)∗100

f S co r e = f 1 s c o r e (y t e s t , y pred)

va l = c r o s s v a l s c o r e (e s t imator = c l a s s i f i e r ,

X = X train , y = y t ra in , cv = 10 , n j obs = −1)

v a l a c c = va l . mean()∗100

return t r a i n a c c , va l acc , t s t a c c , fScore , t rn t ime , t s t t ime , cm dict [key]

datase t = pd . r ead c sv (” binarydata . csv ”)

#da ta s e t = s h u f f l e (da t a s e t)

Load the ad v e r s a r i a l samples

a d v e r s a r i a l d a t a s e t = pd . r ead c sv (” ad ve r s a r i a l s amp l e s 2 9 33 3 . csv ”)

Concatenate the o r i g i n a l and ad v e r s a r i a l samples

61

combined dataset = pd . concat ([dataset , a d v e r s a r i a l d a t a s e t])

Shu f f l e the combined da t a s e t

combined dataset = s h u f f l e (combined dataset)

from s k l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t , c r o s s v a l s c o r e

from s k l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n

from s k l e a rn . ne ighbors import KNe ighbo r sC la s s i f i e r

from s k l e a rn . svm import SVC

from s k l e a rn . ensemble import RandomForestClass i f i e r

from s k l e a rn . ensemble import E x t r a T r e e s C l a s s i f i e r

from s k l e a rn . ensemble import AdaBoos tC la s s i f i e r

from xgboost import XGBClass i f i er

from s k l e a rn . ensemble import B a g g i n g C l a s s i f i e r

from s k l e a rn . t r e e import D e c i s i o n T r e e C l a s s i f i e r

models = {

’LR ’ : L o g i s t i c R e g r e s s i o n (random state = 0 , n j ob s = −1) ,

’KN’ : KNe i ghbo r sC la s s i f i e r

(n ne ighbors =5, p=2, metr ic = ’ minkowski ’) ,

’SV ’ : SVC(ke rne l = ’ rb f ’ , random state =0, p r o b a b i l i t y=True) ,

’RF ’ : RandomForestClass i f i e r

(c r i t e r i o n=’ g i n i ’ , random state = 0 , n e s t imato r s =10, n j ob s = −1) ,

’ET ’ : E x t r a T r e e s C l a s s i f i e r

(c r i t e r i o n=’ g i n i ’ , m in s amp l e s l e a f = 2 , n e s t imato r s =5, n j ob s = −1) ,

’XG’ : XGBClass i f i er (n j ob s = −1) ,

’AB’ : AdaBoos tC la s s i f i e r (l e a r n i n g r a t e =0.1 , n e s t imato r s =70) ,

}

62

e =42)

Appendix C

Source Code Snippets for Classifer as a defense

mechanism

Shu f f l e the combined da t a s e t

combined dataset = s h u f f l e (combined dataset)

Separate the f e a t u r e s (X) from the t a r g e t v a r i a b l e (y)

X = combined dataset . i l o c [: , : − 1] . va lue s

y = combined dataset . i l o c [: , − 1] . va lue s

S p l i t the data i n t o t r a i n i n g and t e s t s e t s

X train , X test , y t r a in , y t e s t = t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.3 , random stat

Define your c l a s s i f i e r s

63

, n j obs = −1) ,

5, n j obs = −1) ,

’ , ’FPR ’ , ’FNR’ , ’F−measure ’])

)

cy = { t e s t a c c u r a c y : . 2 f }%, FPR = { f p r : . 2 f }%, FNR = { f n r : . 2 f }%, F−measure = { fmeasure : . 2 f}%”)

c l a s s i f i e r s = {

’LR ’ : L o g i s t i c R e g r e s s i o n (random state = 0 , n j ob s = −1) ,

’KN’ : KNe ighbo r sC la s s i f i e r (n ne ighbors =5, p=2, metr ic = ’ minkowski ’) ,

’SV ’ : SVC(ke rne l = ’ rb f ’ , random state =0, p r o b a b i l i t y=True) ,

’RF ’ : RandomForestClass i f i e r (c r i t e r i o n=’ g i n i ’ , random state = 0 , n e s t imato r s =10

’ET ’ : E x t r a T r e e s C l a s s i f i e r (c r i t e r i o n=’ g i n i ’ , m in s amp l e s l e a f = 2 , n e s t imato r s =

’XG’ : XGBClass i f i er (n j ob s = −1) ,

’AB ’ : AdaBoos tC la s s i f i e r (l e a r n i n g r a t e =0.1 , n e s t imato r s =70) ,

}

Create an empty DataFrame to s t o r e the r e s u l t s

r e s u l t s d f = pd . DataFrame (columns=[’ C l a s s i f i e r ’ , ’ Tra in ing Accuracy ’ , ’ Test Accuracy

Train each c l a s s i f i e r and e va l ua t e i t s performance

for key , c l a s s i f i e r in c l a s s i f i e r s . i tems () :

c l a s s i f i e r . f i t (X tra in , y t r a i n)

Ca l cu l a t e t r a i n i n g accuracy

y t r a i n p r e d = c l a s s i f i e r . p r e d i c t (X t ra in)

t r a i n a c c u r a c y = a c cu ra cy s co r e (y t r a in , y t r a i n p r e d) ∗ 100

Ca l cu l a t e t e s t metr ic s

y pred = c l a s s i f i e r . p r e d i c t (X te s t)

t e s t a c cu racy , fpr , fnr , fmeasure = c a l c u l a t e p e r f o r m a n c e m e t r i c s (y t e s t , y pred

print (f ”{key} c l a s s i f i e r : Tra in ing accuracy = { t r a i n a c c u r a c y : . 2 f }%, Test accura

Save the c l a s s i f i e r

64

/{key} c l a s s i f i e r . pkl ”)

f i e r r e s u l t s . csv ’ , index=False)

j o b l i b . dump(c l a s s i f i e r , f ”D: / Attack Defense / Mult ip l e c l a s s i f i e r s / New Integrat ion

print (f ”{key} c l a s s i f i e r i s dumped”)

Append the r e s u l t s to the r e s u l t s d f

r e s u l t s d f = r e s u l t s d f . append ({

’ C l a s s i f i e r ’ : key ,

’ Tra in ing Accuracy ’ : t r a in a c curacy ,

’ Test Accuracy ’ : t e s t a c cu racy ,

’FPR ’ : fpr ,

’FNR’ : fnr ,

’F−measure ’ : fmeasure } ,

i gno r e i n de x=True)

Save the r e s u l t s to a CSV f i l e

r e s u l t s d f . t o c s v (’D: / Attack Defense / Mult ip l e c l a s s i f i e r s / New Integrat ion / c l a s s i

print (” Resu l t s o f c l a s s i f i e r are p r in ted ”)

65

	Structure Bookmarks
	AThesis
	entitled
	EvaluatingtheResilienceofMachineLearningModeltoAdversarialAttacks
	bySaiSumaSudha
	SubmittedtotheGraduateFacultyaspartialfulfillmentoftherequirementsfortheMastersofEngineeringScienceDegreeinComputerScience
	Dr.AhmadYJavaid,CommitteeChair
	Dr.DevinderKaur,CommitteeMember
	Dr.WeiqingSun,CommitteeMember
	Dr.ScottMolitor,DeanCollegeofGraduateStudies
	TheUniversityofToledoAugust2023
	Copyright2023,SaiSumaSudha
	Thisdocumentiscopyrightedmaterial.Undercopyrightlaw,nopartsofthisdocumentmaybereproducedwithouttheexpressedpermissionoftheauthor.
	AnAbstractof
	AnAbstractof
	EvaluatingtheResilienceofMachineLearningModeltoAdversarialAttacksbySaiSumaSudha
	SubmittedtotheGraduateFacultyaspartialfulfillmentoftherequirementsfortheMastersofEngineeringScienceDegreeinComputerScience
	TheUniversityofToledoAugust2023
	Thisresearchbeginsacriticalassessmentofamachinelearningmodel’srobustness,focusingonitsresistancetoadversarialattacks.WespecificallylookintohowCarliniWagner(CW)andModelInversion(MI)adversarialattacksaffectthemodel’sperformanceandstability.ThepredefinedmodelusedfortheseattacksaimstocategorizeAndroidapplicationsasmaliciousorbenign.Itbasesitsdecisionsonexaminingpermissionsastheinputfeatures.Weduplicatedtheoriginalmodeltoconductourexperimentswithoutaffectingtheintegrityoftheoriginalmodel.Wemayseeandevaluatetheef
	Thisresearchbeginsacriticalassessmentofamachinelearningmodel’srobustness,focusingonitsresistancetoadversarialattacks.WespecificallylookintohowCarliniWagner(CW)andModelInversion(MI)adversarialattacksaffectthemodel’sperformanceandstability.ThepredefinedmodelusedfortheseattacksaimstocategorizeAndroidapplicationsasmaliciousorbenign.Itbasesitsdecisionsonexaminingpermissionsastheinputfeatures.Weduplicatedtheoriginalmodeltoconductourexperimentswithoutaffectingtheintegrityoftheoriginalmodel.Wemayseeandevaluatetheef
	-
	-
	-

	classifierusingavarietyofperformanceindicators.Ateachstageoftheprocedure,weinvestigatedtheiraccuracy,falsepositiveandfalsenegativerates,andtheF-measuretothoroughlyassessthesystem’sperformance.Theresultsofthisworkhighlighttheimportanceofcomprehendingandmitigatingtheeffectsofadversarialattacksonmachinelearningmodels,especiallyinthecontextofidentifyingAndroidmalware.Oureffortcontributestothebroaderdiscussionaboutimprovingtherobustnessofmachinelearningmodelsagainstadversarialthreatsbyexposingthevulnerabilityoft

	Iwouldliketodedicatethisthesistomyfamily.Theirloveandbeliefinmehavebeenaconstantsourceofmotivation,guidingmetowardachievingmygoals.Iamespeciallygratefultomyhusband,ManikantaRayala,andmysister,SaiSushmithaSudha,fortheirfaithinmyabilitiesandtheirconsistentmotivationthroughoutthisprocess.Theirpresencebymysidehasgivenmestrengthanddeterminationduringchallengingtimes.

	Acknowledgments
	Acknowledgments
	Iexpressdeepgratitudetomyadvisor,Dr.AhmadJavaid,whoseexceptionalguidanceandinsightfulideaswerecrucialinsuccessfullycompletingmymaster’sdegreeinstudyandresearch.IamalsogratefultoDr.WeiqingSunandDr.DevinderKaurfortheirvaluablecontributionsasmembersofmythesiscommittee.IwanttothanktheDepartmentofElectricalEngineeringandComputerScienceforsupportingmethroughaResearchAssistantship.IthankmyfriendsandcolleaguesattheCSTARLab(NE2033)attheUniversityofToledofortheirsupportthroughoutmyacademicjourney.Lastly,Iamdeeplygrat
	-

	Table of Contents
	Abstract
	Abstract
	Abstract
	iii

	Acknowledgments
	Acknowledgments
	vi

	List of Abbreviations
	List of Abbreviations
	xii

	Preface
	Preface
	xiii

	1 Introduction
	1 Introduction
	1

	1.1
	1.1
	Overview

	2

	1.2
	1.2
	PurposeandScope

	3

	1.3
	1.3
	OrganizationofThesis

	4

	2 Background
	2 Background
	6

	2.1
	2.1
	MachineLearning(ML)

	6

	2.1.1
	2.1.1
	RandomForest(RF)

	7

	2.1.2
	2.1.2
	LogisticRegression(LR)

	8

	2.1.3
	2.1.3
	SupportVectorMachine(SVM)

	9

	2.1.4
	2.1.4
	K-NearestNeighbors(KNN)

	10

	2.1.5
	2.1.5
	ExtraTreesClassifier(ETC)

	11

	2.1.6
	2.1.6
	ExtremeGradientBoosting(XGBoost)

	12

	2.1.7
	2.1.7
	AdaptiveBoosting(AdaBoost)

	13

	2.2
	2.2
	AdversarialLearning

	14

	2.2.1
	2.2.1
	AdversarialAttacks

	15

	2.3
	2.3
	LiteratureReview

	15

	2.3.1
	2.3.1
	OverviewofAndroidMalwareClassification

	15

	2.3.2
	2.3.2
	AdversarialAttacksinMachineLearning

	16

	2.3.3
	2.3.3
	ExistingTechniquesforAdversarialSampleDetection

	17

	3 Performance of a Pre-trained ML Model under Adversarial Attacks
	3 Performance of a Pre-trained ML Model under Adversarial Attacks
	19

	3.1
	3.1
	ModelandDatasetDescription

	19

	3.2
	3.2
	AdversarialAttackmethods

	20

	3.2.1
	3.2.1
	CarliniWagner(CW)

	21

	3.2.2
	3.2.2
	ModelInversion(MI)

	23

	3.3
	3.3
	CollectionofAdversarialSamples

	24

	3.4
	3.4
	PerformanceEvaluationoftheAttacks

	25

	3.4.1
	3.4.1
	ResultsofCarliniWagner

	26

	3.4.2
	3.4.2
	ResultsofModelInversion

	28

	3.5
	3.5
	TrainingwithAdversarialandOriginalSamples

	31

	4 Classifier Development: Design, Training, and Predictions
	4 Classifier Development: Design, Training, and Predictions
	37

	4.1
	4.1
	PerformanceComparisonofClassifiersforDefenseMechanism

	37

	4.2
	4.2
	ClassifierWorkflowasaDefenseMechanismandModelPredictions.
	41

	4.3
	4.3
	IntegrationwiththeModel

	41

	4.4
	4.4
	PerformanceoftheModel

	42

	5 Conclusion and Future Work
	5 Conclusion and Future Work
	45

	References
	References
	47

	A Source Code Snippets for Adversarial Attacks
	A.1
	A.1
	CW

	55

	A.2
	A.2
	MI

	58

	B Source Code Snippets for Training Classifiers
	B Source Code Snippets for Training Classifiers
	60

	C Source Code Snippets for Classifier as a defense mechanism
	C Source Code Snippets for Classifier as a defense mechanism
	63

	List of Tables
	3.1
	3.1
	HyperparametersforCWattack.

	23

	3.2
	3.2
	HyperparametersforMIattack.

	24

	3.3
	3.3
	PerformanceMetricsBeforeandAfterCWAttack

	27

	3.4
	3.4
	PerformanceMetricsBeforeandAfterMIAttack

	29

	3.5
	3.5
	Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack
	-

	32

	3.6
	3.6
	Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack
	-

	34

	4.1
	4.1
	Performancecomparisonofdifferentclassifiers

	38

	4.2
	4.2
	PredictionResultsofDifferentModelsonClassifier-IdentifiedOriginalSamples

	43

	List of Figures
	3-1WorkflowofLaunchingtheAdversarialAttack
	3-1WorkflowofLaunchingtheAdversarialAttack

	21

	3-2ResultsofCWattackforevery100Samples
	3-2ResultsofCWattackforevery100Samples

	27

	3-3ResultsofMIattackforevery100Samples
	3-3ResultsofMIattackforevery100Samples

	29

	3-4Trainingprocessoftheclassifierswithadversarialsamples
	3-4Trainingprocessoftheclassifierswithadversarialsamples

	31

	3-5TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack
	3-5TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack

	33

	3-6TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack
	3-6TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack

	35

	4-1ComparisonofTrainingandTestingAccuracyresultsofthedifferent
	4-1ComparisonofTrainingandTestingAccuracyresultsofthedifferent

	classifiers
	classifiers

	39

	4-2Trainingtheclassifierswithoriginalandadversarialsamples
	4-2Trainingtheclassifierswithoriginalandadversarialsamples

	39

	4-3TheClassifier’sWorkflowandModelPredictions
	4-3TheClassifier’sWorkflowandModelPredictions

	41

	4-4ComparisonofPredictionAccuracyoftheModels
	4-4ComparisonofPredictionAccuracyoftheModels

	43

	List of Abbreviations
	List of Abbreviations
	CW.......................ML.......................KNN......................MI........................LR........................SVC......................RF........................ETC......................XGBoost..................AdaBoost.................FPR......................FNR......................IDS.......................CNNs.....................RNNs.....................DL........................
	CW.......................ML.......................KNN......................MI........................LR........................SVC......................RF........................ETC......................XGBoost..................AdaBoost.................FPR......................FNR......................IDS.......................CNNs.....................RNNs.....................DL........................
	S
	S
	CarliniWagnerMachinelearningK-NearestNeighborsModelInversionLogisticRegressionSupportVectorClassifierRandomForestExtraTreesClassifierExtremeGradientBoostingAdaptiveBoostingFalsePositiveRateFalseNegativeRateIntrusionDetectionSystemsConvolutionalNeuralNetworksRecurrentNeuralNetworksDeepLearning

	Preface
	Preface
	ThisthesisissubmittedtotheUniversityofToledoforaMasterofEngineeringScience.TheresearchpresentedinthisthesiswasconductedundertheguidanceandsupervisionofDr.AhmadJavaidintheDepartmentofElectricalEngineeringandComputerScienceattheUniversityofToledofromMay2022toJuly2023.Theworkpresentedinthisthesisisoriginaltomyknowledge,exceptwhereexplicitlyacknowledgedandreferenced.Nopartofthisthesisorsignificantlysimilarworkhasbeensubmittedtoanyotheruniversityforanydegree,diploma,orqualification.
	SaiSumaSudha
	July,2023
	Chapter 1

	Introduction
	Introduction
	Androidisanopen-sourceoperatingsystem,themostpopularoneworldwide.Thisplatformallowsdeveloperstoinnovateandproduceapplicationsthatmeetcustomerrequirements.However,duetoitswidespreaduseandopen-sourcenature,itisfrequentlythetargetofdisgracefulactions.Androidmalware,orprogramscreatedtoharmorinterferewithAndroidsystems,continuestobeaconcernonline.Robustdetectionsolutionsmustcontinuallyadvanceashackersdevelopnewwaystoevadedetectionandcompromiseequipment[8].Malwarecanbediscoveredusingseveraldifferenttechniques[6].
	-
	-

	MLapplications,suchasspeechrecognition,imagerecognition,andnaturallanguage
	processing.TheyarecommonlyemployedtoassessMLmodels’attacksusceptibilityandresistance.TheseadversarialattackstrytotrickorinfluenceMLalgorithmsbycarefullycraftingperturbationstoinputdata.AdversarialattacksonAndroidmalwaredetectionmodelsarethefocusofthisstudy.Wepresentadefensemechanismusingclassifierstrainedonadversarialandoriginalsamplestostrengthenthemodel’sresistancetothesesophisticatedattacks[26].
	-

	1.1 Overview
	1.1 Overview
	ThisexaminesadversariallearningandhowitaffectsMLmodels.ThestudyofadversarialattacksandcountermeasuresaimedatboostingtherobustnessandresilienceofMLmodelsagainstsuchattacksiscalledadversariallearning.Wewanttocreatestrongdefensesandenhancethesemodels’effectivenessbycomprehendingtheirflawsandlimitations.Introductiontoadversarialattacks,whicharedeliberateattemptstotrickormanipulateMLmodelsbyaddingpurposefullydesignedperturbationstoinputdata,comesfirst[7].WeuseanAndroidmalwarepredictionmodelwithpermissionsasthein
	-
	-
	-

	InadversarialML,CWandMIarecharacterizedaswhite-boxattacks.Inawhiteboxattack,theattackerisfullyawareofthearchitecture,parameters,andtrainingdataoftheMLmodelthatisbeingattacked.Theattackercanaccessthemodel’sinternalworkingsandusethisknowledgetocreateadversarialsamplesthatexploitthemodel’sflawsorvulnerabilities.Ontheotherhand,blackboxattacksareasortofadversarialattackinwhichtheattackerhaslittleknowledgeoftheparametersorinternalworkingsofthetargetMLmodel[17].
	Anoptimization-basedattackcalledtheCWattackseekstoidentifydisturbances
	intheinputdatatoproduceadversarialsamples[13].Itassumesthetargetmodel’sarchitecture,parameters,andgradientsareavailable.Conversely,MIisatechniquethatseekstoretrieveprivatedatafromthetrainingsetusedtodevelopanMLmodel.Itmightbeseenasawhiteboxattackbecauseitneedsaccesstothemodel’spredictionsandknowledgeofitsarchitecture.
	Additionally,weprovideacutting-edgesecuritymethodthatusesaspecificclassifiertorecognizeandremoveadversarialsamplesbeforesendingthemtotheprimarymalwaredetectionmodel.Weintendtoimprovetheexistingdetectionsystem’saccuracyandrobustnesstoadversarialattacksbyincludingthisdefensemechanism.
	-
	-

	1.2 Purpose and Scope
	1.2 Purpose and Scope
	ThisthesisexamineshowadversarialattacksaffectMLmodelsthatcategorizeAndroidmalware.AdversarialattackstrytochangetheinputdatatomodifytheoutputsofMLmodels.TheseattackscouldleadtoamodelmisclassifyingamaliciousapplicationasbenigninAndroidmalwareclassification,allowingthemalwaretoevadesecuritysafeguards.Toincreasethesecurityandrobustnessofthesesystems,itisessentialtounderstandhowvulnerableMLmodelsaretoadversarialattacks.ThevulnerabilityofMLmodelstoadversarialattackscouldsubstantiallyimpactthesecurityofdigitalsyst
	-
	-

	Examiningmultipleadversarialattacktypeswillbeacrucialaspectofthestudy.Additionally,thestudyaimstoevaluatehowwellpre-trainedmodelsfunctionwhensubjectedtotheseadversarialattacks.Wetestedthemodels’capacitytocorrectlycategorizeAndroidappsasmaliciousorsafe,eveninthefaceofadversarialattacks.Thisstepiscrucialforunderstandingthemodels’currentstrengthsandlimitations
	andpotentialareasforimprovement.
	ThestudyalsosuggestsdesigningandtrainingadedicatedclassifierforrecognizingadversarialsamplestoincreasetheresilienceofMLmodelsagainstadversarialattacks.Bydifferentiatingmaliciousandoriginalinputs,theclassifiercouldshieldthemodel’sperformanceagainstadversarialattacks.Finally,thisdefensemechanism’sperformanceinidentifyingandcounteringadversarythreatswillbeassessed.Ensuringthesuggestedsolutionwillimprovethemodel’srobustnessisessential.ThethesisaimstodevelopthefieldofMLsecuritybyfollowingthesegoals.Itaimstosugge
	-
	-

	1.3 Organization of Thesis
	1.3 Organization of Thesis
	Chapter 1 -Introduction: Thischaptersummarizestheresearcharea—androidmalwaredetection—andexplainswhyitisessentialtounderstandadversarialattacks.Thechapteralsodescribestheoverviewofthethesis’sstructureandorganization.
	Chapter 2 -Background: Thischaptergivesbackgroundinformationonthetechnologiesandconceptsrelevanttotheresearch.Itcoversmachinelearninganditsapplicationsinmalwaredetection.Additionally,itdiscussesadversariallearningandexplainstheideaofadversarialattacks,inwhichdatapointsarecreatedwiththeintentionoftrickingmachinelearningalgorithms.ThechapterreviewsrelatedliteraturethatdiscussescurrentmethodsforclassifyingAndroidmalwareinthecontextofadversarialsampledetection.
	-

	Chapter 3 -Performance of a Pre-trained ML Model under Adversarial Attacks: Thischapterassessesamachinelearningmodel’sperformanceinthepresenceofadversarialassaults.Themodelanddatasetutilizedintheexperimentsare
	-

	described.Thereplicationandlaunchofadversarialassaults,particularlyCWand
	MIattacks,arecoveredinthischapter.Ittalksaboutgatheringadversarialsamplesandconductingtrainingandtestingonoriginalandadversarialsamples.ThefindingsoftheCWandMIassaultsarepresentedinthechapter’sperformanceevaluationoftheattacks.
	Chapter 4 -Classifier Development: Design, Training, and Predictions:
	Themainfocusofthischapteristhedesignandtrainingofaclassifiertodifferentiatebetweenoriginalandadversarialdata.Itcomprisesaperformanceevaluationofvariousclassifierstodeterminethemostefficient.Thechapterfurtherinvestigatestheclassifier’sintegrationwiththeinitialmodelandassessesthemodel’soverallperformancefollowingintegration.
	Chapter 5 -Conclusion and Future Work: Thischapterconcludes,summarizestheresults,explorestheconsequences,andsuggestsdirectionsforfurtherresearch.
	Chapter 2

	Background
	Background
	2.1 Machine Learning (ML)
	2.1 Machine Learning (ML)
	InMachineLearning,computersmayautomaticallylearnfromexperience,adapt,andimprovewithoutbeingexplicitlyprogrammed.Itfocusesoncreatingandimprovingalgorithmsthatprovidecomputerswithdataaccesssotheycanuseittoanticipatethefutureormakejudgments.Itfeedsonenormousamountsofdata,whichitcananalyzetopreciselyidentifypatternsandtrendsthatcouldeludethehumaneye.Oneofmachinelearning’smostimportantusesisinthefieldofcybersecurity.Traditionalsecuritymethods,particularlythosethatrelyonknownattacksignaturesandhumaninteraction,mu
	-
	-

	MLalgorithmscanlearnfrompreviousoccurrencesandhistoricaldata,givingthem
	thepredictiveabilitytoanticipateandrecognizepotentialhazardsfrequentlybeforetheyhappen.Thiscapacityisessentialincybersecuritysinceitcandrasticallyreducethedurationbetweenabreachandanattackresponse,potentiallysavingtime,money,andsensitiveinformation.MLhascriticalapplicationsacrossmultipleaspectsofcybersecurity.MLisessentialinmalwaredetectionsystems(IDS)foranalyzingnetworktrafficdataandspottingout-of-the-ordinaryorsuspiciousactivities[12].Toidentifypotentialincursionsandquicklyreacttothem,itisbeneficialtohave
	-
	-
	-

	2.1.1 Random Forest (RF)
	2.1.1 Random Forest (RF)
	AflexibleandreliableMLmodelcalledRandomForest(RF)isfrequentlyusedforclassificationandregressionproblems.Itisacomponentofensemblelearning
	methods,astrategythatcombinesvariouslearningmodelstoprovidepredictionsthataremorepreciseandreliablethanthosethatcouldbemadeusingjustoneoftheindividuallearningalgorithms.Duringthetrainingphase,theRFmethodgeneratesmanydecisiontrees,eachbuiltusingarandomportionofthetrainingdata[46].Theoutputiseitherthemodeoftheclassesforclassificationtasksorthemeanestimateoftheindividualtreesforregressiontasks.Thismethodcreatesa”forest”ofdecisiontrees,combiningtheirpredictionstomaketheresult[1].Adecisiontreeisastructurelikeafl

	2.1.2 Logistic Regression (LR)
	2.1.2 Logistic Regression (LR)
	ApopularMLapproachforbinaryclassificationissuesislogisticregression(LR).Alogisticfunctionisusedinthisstatisticalmodeltosimulateabinarydependentvariable.TheLRmodelcalculatesthelikelihoodthataspecificinputpointfallsunderthe[59].Thelogisticfunction,thesigmoidfunction,isthefundamentalideaunderpinninglogisticregression.AnS-shapedcurvemapsanyreal-valuednumbertoavaluebetween0and1.Theterm”logistic”referstothefactthattheoutcomepredictioninlogisticregressionislogarithmicratherthanlinear.Thisratioissubjected
	-

	tothelogisticfunctiontodeterminethepossibilityorlogodds.Theestimatedprob
	-

	abilitycanthenbeusedtopredictabinaryoutcome;ifitexceedsacertainthreshold,themodelwillpredictthepositiveclass;ifnot,itwillindicatethenegativecategory.ThefactthatLRnotonlyoffersapredictionbutalsotheprobabilitiescorrespondingtothepredictionsisoneofitsbenefits.Whenweneedtoestimatetheprediction’slevelofcertainty,thisfeatureisuseful.LRmaybeeasilyappliedtonumericalandcategoricaldatabytransformingcategoricaldataintodummyvariables.Additionally,byincludingapenaltytothelossfunctionthatthemodelminimizes,LRcanberegulari
	-
	-

	2.1.3 Support Vector Machine (SVM)
	2.1.3 Support Vector Machine (SVM)
	Apowerfulsupervisedlearningtechnique,theSupportVectorMachine(SVM),ismainlyemployedforbinaryclassification.Atthesametime,itcanalsobeutilizedtosolvemulti-classclassificationandregressionissues.ThefundamentalideaofSVMistolocateahyperplanethatdividesthedataintotwoclassesinthebestpossibleway[41].Thehyperplaneisselectedtomaximizethemargin,whichisdeterminedbymeasuringhowfareachclass’snearestdatapointsarefromthehyperplane.Asitseekstoestablishthebroadest”street”betweentypes,thismethodmakestheSVMrobusttooverfittingan
	Apowerfulsupervisedlearningtechnique,theSupportVectorMachine(SVM),ismainlyemployedforbinaryclassification.Atthesametime,itcanalsobeutilizedtosolvemulti-classclassificationandregressionissues.ThefundamentalideaofSVMistolocateahyperplanethatdividesthedataintotwoclassesinthebestpossibleway[41].Thehyperplaneisselectedtomaximizethemargin,whichisdeterminedbymeasuringhowfareachclass’snearestdatapointsarefromthehyperplane.Asitseekstoestablishthebroadest”street”betweentypes,thismethodmakestheSVMrobusttooverfittingan
	separated,isatechniqueSVMusestohandledatathatcannotbelinearlyseparatedintheoriginalenvironment[16].Theinputdataaretransformedbykernelfunctionslikethelinear,polynomial,radialbasisfunction(RBF),orsigmoidkernels,allowingSVMtolocatecomplexdecisionboundariesinthetransformedspace.SVMisadaptableandcapableofhandlingchallenging,real-worlddatasetsduetothefreedomtoselectasuitablekernelfunction.SVMisoneofthemostwell-likedmachinelearningalgorithmsbecauseofitsreliability,adaptability,andhighperformanceacrossvariousareas.
	-
	-

	2.1.4 K-Nearest Neighbors (KNN)
	2.1.4 K-Nearest Neighbors (KNN)
	Thelazylearningalgorithmsincludeinstance-basedlearningalgorithmssuchasKNN.Thename”lazy”alludestothefactthatKNNwaitsuntilpredictiontimetousethetrainingdatainsteadofbuildingageneralizedmodelduringthetrainingphase.Itisalsoregardedasanon-parametrictechniquebecausenoexplicitassumptionsaremadeonthefunctionalformofthedata[28].KNNisveryusefulwhenthedatadistributionisuncertainordoesnotadheretotheassumptionsofparametricmodelsbecauseofthischaracteristic.ThefundamentalideabehindKNNistocategorizeanobjectbasedonhowitrese
	-

	KNN’seaseofuse,interpretability,andcapacityformulti-classissueshavemade
	itusefulinvariousapplications.Itisfrequentlyutilizedindisciplinesincludingpat
	-

	ternrecognition,anomalydetection,textmining,andrecommendationsystems[53].Despiteitsadvantages,KNNissusceptibletothedimensionalitycurse.Whenmanaginghigh-dimensionaldata,dimensionalityreductiontechniquesmaybenecessarybecausetheperformancerapidlydeclinesasthefeaturespace’sdimensionsrise.Additionally,becauseKNNisalazylearner,itcanbeexpensivetocomputeandslowwhenmakingpredictions,especiallyforlargedatasets.Despitethis,theKNNalgorithmisadequateforvariousdata-drivenapplications,especiallythosethatbenefitfromitssimp
	-
	-
	-

	2.1.5 Extra Trees Classifier (ETC)
	2.1.5 Extra Trees Classifier (ETC)
	ExtremelyRandomizedTrees,anothernamefortheETC,isanensemblelearningtechniquethatproducesmanydecisiontreesandaggregatestheirresults.ItbelongstothesameclassofensembleapproachesasRandomForestandGradientBoosting.Still,becauseitaddsmorerandomizationthroughoutthemodel-buildingprocess,itfurtherlowersthevarianceofthemodel[10].Thefundamentaltenetofensemblemethods,suchasETC,isthatacollectionof”weaklearners”cancombinetocreatea”stronglearner.”Arandomsubsetofthedataisusedtobuildeachdecisiontreeintheensembleindependently.
	Foresttoachievecomparableperformancelevels.However,aseachtreeisgenerated
	individually,thetrainingofETCcanbedoneentirelyinparallel,resultinginquickcomputation.ThefactthatETCusesrandomthresholdsandishenceinsensitivetoinputscalingcanmakeitmoreuser-friendlythanothertechniquesthatcallforinputstandardization.ETCisarobustandpracticalensemblelearningmethodthatexcelsatworkingwithsizabledatasetswithhighdimensionalspaceandcanbeappliedtoregressionandclassificationapplications.

	2.1.6 Extreme Gradient Boosting (XGBoost)
	2.1.6 Extreme Gradient Boosting (XGBoost)
	ExtremeGradientBoosting,orXGBoost,isapowerful,scalableMLmethodthatexcelsatpredictivemodelingapplicationsduetoitshighperformanceandeffectiveness.Itsfoundationisthegradientboostingframework,whichiterativelycombinesweakpredictivemodels,typicallydecisiontrees,toproducearobustpredictivemodel[18].Thetechniqueofgradientdescentoptimizationtoreducethelossfunctioniscalledgradientboosting.Duetoitsaccuracyandprocessingcapacity,XGBoosthasbecomeextremelywell-knowninthedatasciencecommunityandhasbeenthealgorithmofchoiceinm
	-
	-
	-

	wellmachinelearningalgorithmsperform.XGBoostismoreresistanttomissingdata
	thanotheralgorithmssinceitautomaticallydeterminestheappropriateimputationtechniquebasedonthetrainingloss.Thecapacitytoprocessinformationinparallel,whichaccelerateslearning,andbuilt-incross-validationateachiteration,whichminimizestheamountofboostingiterations,aretwofurtherbenefitsofXGBoost.Formanymachinelearningproblems,XGBoostisthealgorithmofchoicebecauseofitsspeed,performance,andadaptability.
	-

	2.1.7 Adaptive Boosting (AdaBoost)
	2.1.7 Adaptive Boosting (AdaBoost)
	Theadaptiveboostingmachinelearningalgorithm,calledAdaBoost,isemployedforclassificationandregressionissues.Oneoftheearliestandbestensemblealgorithms,itcombinesseveralweakclassifierstoproducearobustclassifier.Simplyput,aweakclassifierperformspoorlybutisstillsuperiortoguessingatrandom[20].AdaBoostisadaptiveinthatititerativelymodifiesthedistributionofthedatatoemphasizecasesthatwereincorrectlyclassifiedinthepast,enhancingtheensemble’sperformance.EachweakclassifierinAdaBoostistrainedusingarandomsubsetoftheentired
	-
	-

	multiclassclassificationproblems.Itcanalsoincorporateanylearningtechnique.
	AdaBoostcanbeusedwithanyformofclassifier,eventhoughitiscommonlyemployedwithdecisiontreeclassifiers.Asaresult,arobustclassifieriscreatedthatcombinestheadvantagesofeachmemberwhilealsomakingupforanyflaws.
	-

	2.2 Adversarial Learning
	2.2 Adversarial Learning
	AsophisticatedbranchofMLcalledadversariallearningconcentratesonlearninginahostileenvironment.Adversariallearningalgorithmsfocusonscenarioswherethedatadistributionmaybepurposefullymodifiedoradverselyaffectedbyanopponent,unliketypicalMLalgorithms,whichlearnfromafixeddatadistribution.Theadversary’sobjectiveistypicallytomaketheMLalgorithmproduceerrors.Incontrast,thelearneraimstocategorizeorpredictdata,evenhostiledataaccurately.
	-

	IntraditionalML,wetypicallyassumethatthedatadistributionisstationaryandthatthedistributionofthetestdatalookssimilartothatofthetrainingdistribution.Thisisnomoretrueinhostilecircumstanceswhenattackerscandeliberatelymodifythedata[43].Asaresult,adversariallearningalgorithmsaremadetobestrongerandmoreresistanttothesetricks.
	ThisprojectaimstostrengthentheAndroidmalwaredetectionsystem’sresilienceagainstadversarialattacks.Inthiscase,adversarialsamplesactasfakeentitiestodefeatthemodel’sdetectionmechanism[42].Theapproachincludesadversariallearningmechanismstoaddressthis.Asaresult,itcaneffectivelylearnfrombenignandadversarialsamplesandproduceprecisepredictions.Usingadversariallearningconsiderablybooststhesystem’seffectivenessandstrengthensitsdefensesagainstpotentialsecuritybreachesandadversarialattacks.
	2.2.1 Adversarial Attacks
	2.2.1 Adversarial Attacks
	InML,adversarialattacksinvolvemodifyingtheinputdatatoconfusetheMLmodelsandcausethemtoprovidefalseresults.Theseassaultsusethemodels’built-inweaknessesandposesevereriskstoMLandDLmodels.White-boxandblack-boxattacksarethetwomaintypesofadversarialattacks.Attackersusingwhite-boxtechniquescanaccessthemodel’sarchitecture,parameters,andtrainingdata.Theattackercandesignsophisticatedattacksusingthisknowledgethatfrequentlygoundetected[44].Incontrast,black-boxattacksassumethattheattackerisonlyawareofthemodel’sinputsando
	SeriousconcernsaboutthedependabilityandrobustnessofMLmodelshavebeenraisedduetotheirvulnerabilitytoadversarialattacks.ThepotentialimpactofadversarialattackscouldbeextensiveandharmfulasMLmodelsareincreasinglyusedincrucialdomains,includingcybersecurity,healthcare,andautonomouscars[21].ToensurethesafeandefficientusageofMLmodels,itisessentialtocomprehendandmitigateadversarialattacks[43].

	2.3 Literature Review
	2.3 Literature Review
	2.3.1 Overview of Android Malware Classification
	2.3.1 Overview of Android Malware Classification
	MalwareattacksontheAndroidplatformhavesignificantlyincreasedduetothewidespreadavailabilityofAndroidsmartphonesoverthepasttenyears.Androidmalwareclassificationhasbeenthesubjectofnumerousstudies,particularlyonML-basedsolutions,duetotheirperformancebenefitsovertraditionalrule-basedapproaches.Typically,collectionsofAndroidapplicationsclassifiedasbenignormaliciousare
	-

	usedtotrainMLmodels.Tocategorizenew,undiscoveredapplications,theylearn
	thecharacteristicsthatsetthesecategoriesapart,suchasrequestedpermissions,APIrequests,ornetworkactivities[27].NumerousMLmethodshavebeenusedtocategorizeAndroidmalwareovertime,includingDecisionTrees,RandomForests,SupportVectorMachines,NeuralNetworks,andothers[5].Researchershavealsolookedintofeatureselectiontechniquestoreducethedimensionalityofthedataandenhancemodelperformance.MalwarecategorizationhasalsoseenanincreaseintheapplicationofDL.Sincetheycanautomaticallylearnfeaturerepresentationsfromrawdata,modelslik
	-
	-

	2.3.2 Adversarial Attacks in Machine Learning
	2.3.2 Adversarial Attacks in Machine Learning
	Thesafetyandreliabilityofmachinelearningmodelsarenowseriouslythreatenedbyadversarialattacks.Anadversarialattackinvolvesalteringtheinputdatatoamachinelearningmodelinawaythatleadstoinaccuratepredictionsorclassificationsbythemodel.Thesealterations,oftencalledadversarialinstances,arefrequentlysubtleandinvisibletothenakedeyeyetsignificantlyimpactamodel’soutput.
	Threecategoriescanbeusedtoclassifyadversarialattacksbroadly[15].Evasion attack isanadversarialattackthatoccursduringtesting,wheretheattackermodifiestheinputdatainawaythatleadstoanerrorinthemachinelearningmodel.Thesemodificationstotheinputdataarefrequentlymadetobeundetectableandhidden[39].Poisoning attack isanadversarialattackduringamachinelearningmodel’strainingphase.Theattackerinsertscarefullyconstructedsamplesintothetrainingsettocontrolthelearningprocess.Asaresult,themodellearnswrongassociations
	andgeneratesfalsepredictionsorconclusions.Exploratory attack,theadversaryaims
	tocomprehendorexposethemodel’sinternals,suchasitsparametersorstructure.Thisattackofteninvolvesqueryingthemodeltolearnhowitbehaves.
	Theseattacksseverelyimpactapplicationsforimagerecognition,naturallanguageprocessing,andmalwaredetection[34][30].TheytakeadvantageofMLmodels’greatdimensionalityandcomplexity,whichmakeitchallengingtopredictandprotectagainstallpotentialweaknesses.AdversarialattacksagainstAndroidmalwaredetectionmayinvolveadding,removing,oralteringdangeroussoftwarefeaturestoavoiddetection.Thesedangershighlightthenecessityofstrongmodelsthatcanwithstandadversarialattacksandcontinuetodeliveraccurateandtrustworthypredictions.Underst
	-
	-
	-

	2.3.3 Existing Techniques for Adversarial Sample Detection
	2.3.3 Existing Techniques for Adversarial Sample Detection
	ToprotectMLmodelsagainstadversarialattacks,adversarialsampledetectionisessential.Thiscomponentaimstoidentifyandeliminatechanginginputsthatattempttoreducethereliabilityandaccuracyofmodelpredictions.Manydifferentstrategieshavebeensuggestedovertimetodealwiththisissue.
	Adversarial training isoneoftheapproachesthatisfrequentlyemployed.Adversarialsamplesareincludedinthetrainingprocesstostrengthenthemodel’sresistancetoadversarialattacks,whichisthebasicideaunderlyingadversarialtraining.Theideaispredicatedontheconceptthatexposingthemodeltoadversarialsamplesduringtrainingwillallowittoidentifyandcategorizesuchinstanceslatereffectively.Althoughthismethodrequiresalotofresources,theoutcomeshavebeenencouraging.Withthedevelopmentofthefastgradientsignmethod,whichhassincebeen
	Adversarial training isoneoftheapproachesthatisfrequentlyemployed.Adversarialsamplesareincludedinthetrainingprocesstostrengthenthemodel’sresistancetoadversarialattacks,whichisthebasicideaunderlyingadversarialtraining.Theideaispredicatedontheconceptthatexposingthemodeltoadversarialsamplesduringtrainingwillallowittoidentifyandcategorizesuchinstanceslatereffectively.Althoughthismethodrequiresalotofresources,theoutcomeshavebeenencouraging.Withthedevelopmentofthefastgradientsignmethod,whichhassincebeen
	-
	-
	-

	widelyused,Goodfellowandcolleaguesweresignificantinhelpingtoestablishthisconcept[24].

	Defensive distillation aimstomakeMLmodelsmoreresilienttoadversarialattacks.Similartohowdistillationinchemistryproducesapuresubstancefromamixture,theterm”distillation”isametaphoricaldescriptionoftheprocesswhenamodelistrainedtogeneralizethesofteroutputofanothermodel.Tworoundsofmodeltrainingareusedinthetechnique.Inthefirstround,astandardmodelistrainedtoprovideoutputprobabilitiesforeachclass[38].Thetargetsforthesecondroundoftrainingarethenreplacedwiththeoutputprobabilitiesfromtheinitialtrainingratherthanthecomp
	Feature squeezing isanadversarialdetectionmethodthatreducesthesearchspacethatcanbeexploitedbysimplifyingtherepresentationsofmodelinputsandmakingitmorechallengingtoproduceadversarialsamples.Thiscanbedonebyreducingthecolordepthoftheimages,applyingaspatialfiltertosmoothouttheimages,orcompressingtheinputdata.ThisapproachhasbeenprovedbyXuetal.intheirstudy[56].
	Gradient Masking or Regularization isadefensestrategyusedinMLtostrengthenthemodel’sresistancetoadversarialattacks.Tomakeitmoredifficultforadversariestoprovideadversarialsamples,itoperatesbymodifyingormaskingthegradientsofthelossfunctionrelatedtotheinputduringthetrainingphase[11].Thedecisionboundariesofthemodelaresmoothedormadeflattoreducetheimpactofadversarialperturbations.Gradientmaskingcanpreventgradient-basedattacksbutmaynotalwaysincreasesystemrobustness,leavingthesystemopentootherattacks[9].
	Chapter 3

	Performance of a Pre-trained ML Model under Adversarial Attacks
	Performance of a Pre-trained ML Model under Adversarial Attacks
	3.1 Model and Dataset Description
	3.1 Model and Dataset Description
	AsophisticatedNATICUSdroidsystemisanML,specificallyontheRandomForestClassifier.Thismodelaimstodistinguishbetweenbenign(harmless)andmalicious(harmful)Androidapplications.Thesystem’scapacitytodifferentiatebetweenthetwoproposesapracticalsolutionforthegrowingmalwareproblemintheAndroidecosystem,asstatedin[33].TheefficacyofNATICUSdroidisprimarilyduetohowitexaminesthepermissionsthattheapplicationsrequest.Thesystemanalyzedthepermissionconditionsofover29,000excellentandharmfulAndroidapplicationsoverapproximatelyteny
	AsophisticatedNATICUSdroidsystemisanML,specificallyontheRandomForestClassifier.Thismodelaimstodistinguishbetweenbenign(harmless)andmalicious(harmful)Androidapplications.Thesystem’scapacitytodifferentiatebetweenthetwoproposesapracticalsolutionforthegrowingmalwareproblemintheAndroidecosystem,asstatedin[33].TheefficacyofNATICUSdroidisprimarilyduetohowitexaminesthepermissionsthattheapplicationsrequest.Thesystemanalyzedthepermissionconditionsofover29,000excellentandharmfulAndroidapplicationsoverapproximatelyteny
	-

	themostcriticalpermissionsbycarefullyexamininghistoricaltrendsinthesepermissions.Thesepermissionsareacombinationofnative(includedintheAndroidsystem)andcustom(specifiedbytheappdevelopers)permissions.Thesystemgathersandexaminesthesepermissionstodistinguishbetweengoodandbadapplications.Anapplicationmaybemarkedassuspiciousifitrequestsmanypermissionsorpermissionsthatarenotordinarilyrequiredforitsstatedfunction.NATICUSdroidcandeterminetheessentialpermissionsbycarefullyexamininghistoricaltrendsinthesepermissions.T
	-
	-
	-
	-
	-

	3.2 Adversarial Attack methods
	3.2 Adversarial Attack methods
	AdversarialattacksaretechniquesusedtoconfuseMLalgorithmsbysupplyingcarefullycrafteddata.Theseattacksexploitthemodel’sweaknessesandcouldleadtoinaccuratepredictionsorclassifications.WehaveemployedtheCWAttackandtheMIAttack,twowell-knownadversarialattackstrategies,toevaluateNATICUSdroid’srobustness3-1thisshowstheworkflowoftheattack.
	Figure
	Figure3-1:WorkflowofLaunchingtheAdversarialAttack
	Figure3-1:WorkflowofLaunchingtheAdversarialAttack

	3.2.1 Carlini Wagner (CW)
	3.2.1 Carlini Wagner (CW)
	DuetotheCWAttack’sshownefficiencyinproducingadversarialscenariosandevaluatingtheresilienceofmachinelearningmodels,wedecidedtouseitinourresearch.Thisparticularkindofadversarialapproach,whichNicholasCarliniandDavidWagnerfirstdescribedin2017,excelsatcreatingadversarialsamplesthatarechallengingformodelstorecognizeandrequireminormodificationsfromtheinitialinput[14].InapplyingtheCWAttackonourNATICUSdroidmodel,webeganbydefininganoptimizationproblem.Theobjectiveofthischallengewastofindthelowestperturbationthatcould
	output,therebymakingitanadversarialexample.
	Theformulationofthisadversarialattackcanberepresentedas
	minδ∥δ∥p +c.f(x +δ)where x +δϵ {−1, 0, 1}(3.1)
	n

	Inequation(3.1),x representsanoriginalinputinstance,δ denotestheadversarialperturbation,f(x +δ)istheclassificationfunctionthatguidestheperturbationtop representstheLpnorm,servingasthedistancemetrictomeasurethemagnitudeoftheperturbation.Here,||δ||p isminimizedwhileensuringthatf(x +δ)guidesthemodeltothetargetclass.Thefunctionf iscarefullycraftedtobecomelessthanorequaltozerowhentheperturbedinstanceismisclassifiedasthetargetclass.Tomaintainvalidbinaryvalues(0or1),theadversarialexamplesareclippedandroundedaftert
	triggermisclassificationandn isthenumberofdimensions[58].Theterm
	||
	δ
	||

	Tosolvethisoptimizationproblem,theCWattackleveragesthechangeofvariablesandreformulatestheproblemasfollows
	-

	11
	minimize|| (tanh(w)+1)− x||+e.f((tanh(w))+1)(3.2)
	2
	2

	22Thisapproachenablesusingstandardgradient-basedoptimizationalgorithms,suchasthetrustregionmethodinyourimplementation,toaddresstheissue.TheCWattack,whichprovideshighfoolingrateswhilepreservingimperceptibleperturbations,thusservesasanefficientadversarialattackstrategyinourproject.Hyperparameterscanaffectthelearningprocess,includinghowcomplexthelearnedmodelis,howquicklyitlearns,andhowwellitperforms.3.1showsthetableforhyperparameters.
	-

	Table3.1:HyperparametersforCWattack.
	Table3.1:HyperparametersforCWattack.
	Table3.1:HyperparametersforCWattack.

	Parameter
	Parameter
	Value

	Epsilon
	Epsilon
	0.3

	PerturbationFactor
	PerturbationFactor
	0.76

	NumberofIterations
	NumberofIterations
	300

	LearningRate
	LearningRate
	0.1

	Asthemaximumpermittedperturbationforeachpixelintheimage(orfeatureinthedata),epsilon isfrequentlyutilizedinadversarialattacks.Itisamethodofregulatingthesizeoftheperturbationand,consequently,thevisibilityoftheadversarialexample.Theperturbation factorislikelyahyperparameterspecifictothisCWattacktechnique.Itisgenerallypossibletoscalethenoiseaddedduringtheattackusingtheperturbationfactor.
	Theattackoptimizationprocessrunsforthespecifiednumber of steps or iterations.Moreiterationsmayproduceadversarialinstancesthataremoreeffective,buttheyalsotakelongertocalculate.
	-

	TheCWattack’sgradientdescentoptimizationapproachusesLearning Rate asahyperparameter.Thelearningratedetermineshowmuchtheinputneedstobechangedinresponsetothecomputedgradientofthelossfunction.Ahigherlearningratewillresultinmoredrasticinputchangesateachstep,whichcouldspeedupconvergenceandincreasetheriskofovershootingthelossfunction’sminimum[45].

	3.2.2 Model Inversion (MI)
	3.2.2 Model Inversion (MI)
	FredriksonfirstproposedtheideaofMIattacks,anadversarialattackstrategythattriestoextractsensitivedatafromamachinelearningmodelbyflippingthemodel’sbehavior[22].Itinvolvesreconstructinginputsandreplicatingtheinitial
	trainingdatausingthemodel’spredictions.Inotherwords,theapproachaimsto
	recovertheinputdatafromtheoutputbyreversingthemodel’sdecision-makingprocess.
	Utilizingaccesstothemodelanditsoutputs,aMIattackagainsttheNATICUS-droidmodeltriedtoaimtoextractprivateinformationaboutthetrainingdata.Thissensitiveinformationisthefeatures(Androidpermissions)ofbenignormalwareappsthatthemodelhastrainedtorecognizeasessential[57].
	Table3.2:HyperparametersforMIattack.
	Table3.2:HyperparametersforMIattack.
	Table3.2:HyperparametersforMIattack.

	Parameter
	Parameter
	Value

	maxiter
	maxiter
	300

	learningrate
	learningrate
	0.1

	threshold
	threshold
	0.5

	Themax iter indicatesthefunction’smaximumnumberofiterations.Thefunctionwillhavemorepossibilitiestoidentifyasuccessfuladversarialsampleifthisnumberismoresignificant,butitwillalsotakelonger.Learning rate defineshowmuchtheinputsaremodifiedthroughouteachiterationbasedonthedeterminedgradient.Thethreshold isthecutoffusedtodeterminewhenapredictionissufficientlyclosetothetargetlabel.Loweringthisamountwillraisethethreshold forapredictiontobedeclaredamatch,potentiallymakingtheattackmoredifficultbutthematchesmorepreci
	-
	-

	3.3 Collection of Adversarial Samples
	3.3 Collection of Adversarial Samples
	Adversarialsamplesarecarefullycraftedadjustmentstotheoriginaldatathatarealmostunnoticeabletohumansbutsignificantlyaffectthepredictionsorclassifi
	-

	cationsmadebyMLmodels[48].Creatingadversarialsamplesoftenentailsmaking
	minorchangestotheoriginalinputdata.Theseperturbations,forinstance,caninvolvegentlymodifyingthepixelvaluesinanimageorthenumericalvaluesinadataset.TheseadjustmentsaimtotricktheMLmodelintomakingawrongpredictionorcategorization.AdversarialattacksaretechniquesusedtoconfuseMLalgorithmsbysupplyingcarefullycrafteddata.Theseattacksexploitthemodel’sweaknessesandcouldleadtoinaccuratepredictionsorclassifications.Inthecontextofyourstudy,adversarialsamplesaregeneratedusingtheCWAttackandtheMI,twowell-knownadversarialattac
	-
	-
	-

	3.4 Performance Evaluation of the Attacks
	3.4 Performance Evaluation of the Attacks
	ThissectionassessestheeffectivenessofadversarialattackssuchastheCWandMIattacks.EvaluationmetricsarederivedbyinitiatingthesehostileattacksonaNATICUSdroidmodel.Icreatedareplicaofthemodelandlaunchedtheattacks[55].
	EvaluationmeasuresusedtoevaluatetheirperformanceincludesAccuracydeterminedbyhowmanypositiveandnegativepredictionswereaccurate.FPRmeasures
	-

	theproportionofnegativeoccurrencesmistakenlylabeledaspositive,FNRmeasures
	theproportionofpositiveoccurrencesmistakenlylabeledasnegative.F-measureisharmonicmeansofPrecision(theproportionofcorrectpositiveidentifications),andRecall(thepercentageofgenuinepositivesthatwerecorrectlyidentified).Theseanalyseswerecarriedoutforeachbatchof100samples.
	3.4.1 Results of Carlini Wagner
	3.4.1 Results of Carlini Wagner
	TheresultsofCWattacksshowthattheattackissuccessfulastheAccuracyoftheNATICUSdroidmodelreducedaftertheattack.Theevaluationisdoneforevery100samples,andtheresultsbeforeandaftertheattackwerealsomentioned.3.3showstheresultsbeforeandaftertheCWattack.Theresultswerealsoplottedas3-2.Asshownbythedrasticshiftsinevaluationmeasures,theobservedpatternindicatesthemodel’sperformanceaftertheCWattackisconsiderablyimpactedduringthefirst5000samples.ThismayresultfromthemodeladjustingtotheadversarialmanipulationcausedbytheCWattac
	Theperformanceindicationschangelessdrasticallyafterprocessing5000samples.Thismaybebecausethemodelismorestable.Afterall,ithasalreadyadaptedtothepatternsoftheadversarialdata[29].However,it’scrucialtorememberthat,dependingonhowthismodelisapplied,evenminordeviationsinfindingscouldhaveasignificantimpact.
	Table3.3:PerformanceMetricsBeforeandAfterCWAttack
	Table3.3:PerformanceMetricsBeforeandAfterCWAttack
	Table3.3:PerformanceMetricsBeforeandAfterCWAttack

	Performance Metric
	Performance Metric
	Before CW Attack
	After CW Attack

	Accuracy
	Accuracy
	97.88
	67.55

	FalsePositiveRate
	FalsePositiveRate
	1.69
	4.13

	FalseNegativeRate
	FalseNegativeRate
	2.54
	60.63

	F-Measure
	F-Measure
	97.88
	54.88

	Figure
	Figure3-2:ResultsofCWattackforevery100Samples
	Figure3-2:ResultsofCWattackforevery100Samples

	AcomparisonofnumerousevaluationmetricsforanMLmodelbothbeforeandaftertheCWadversarialattackisshowninthetable3.3and3-2showstheresultsinagraph.TheAccuracymetricgaugeshowaccuratelythemodelpredictsthingsingeneral.BeforetheCWattack,themodelhadaremarkableaccuracyof97.88%,correctlyclassifying97.88%ofthedata.However,followingtheCWstrike,themodel’saccuracydrasticallydecreasedto67.55%,showingthatitneededtobemoresuccessfulatmakingaccurateforecastsunderhostilecircumstances.Thefalsepositiverateisthepercentageofbenign(orn
	AcomparisonofnumerousevaluationmetricsforanMLmodelbothbeforeandaftertheCWadversarialattackisshowninthetable3.3and3-2showstheresultsinagraph.TheAccuracymetricgaugeshowaccuratelythemodelpredictsthingsingeneral.BeforetheCWattack,themodelhadaremarkableaccuracyof97.88%,correctlyclassifying97.88%ofthedata.However,followingtheCWstrike,themodel’saccuracydrasticallydecreasedto67.55%,showingthatitneededtobemoresuccessfulatmakingaccurateforecastsunderhostilecircumstances.Thefalsepositiverateisthepercentageofbenign(orn
	-
	-
	-

	cious(orpositive).ThefalsepositiveratewaslowbeforetheCWattack,at1.69%,butincreasedto4.13%afterward.Thisgrowthindicatesthattheattackmayhavemistakenlycausedthemodeltolabelmoreinnocuoussamplesasmalicious.Thepercentageofharmful(orpositive)samplesmistakenlyclassifiedasbenign(ornegative)isknownastheFalseNegativeRate.Inthisinstance,thefalsenegativerateincreasedfrom2.54%beforetheCWattackto60.63%afterward.Thissuggeststhatthemodelunderwentadversarialconditionsandfailedtoaccuratelyrecognizeasizablenumberoffalsesamples
	-

	3.4.2 Results of Model Inversion
	3.4.2 Results of Model Inversion
	PerformancemeasurementsfortheModelInversion(MI)attackindicatesuccess.Eachoftheseadversarialattackstrategieswasassessedforevery100samples.Performancemetricsweremonitoredbeforeandaftertheattacks,allowingforacompleteevaluationofitsresilienceandsusceptibilitytoattack3-3showstheperformancemetricsbeforeandaftertheattack.
	-

	Weobservedaconsiderabledifferenceintheperformancemetricsthroughoutthefirst1200samplesoftheMIattack3.4showstheplotforevery100samples.Thissuggeststhattheattacksignificantlyaffectedtheperformance.Theaccuracyratedecreased,andtheFPRhadminorchanges,buttheFNRexperiencedthemostsignificantchange,increasingdrastically.Asaresult,theF-measure,whichconsideredbothprecisionandrecall,decreasedsignificantly.
	Table3.4:PerformanceMetricsBeforeandAfterMIAttack
	Table3.4:PerformanceMetricsBeforeandAfterMIAttack
	Table3.4:PerformanceMetricsBeforeandAfterMIAttack

	Performance Metric
	Performance Metric
	Before MI Attack
	After MI Attack

	Accuracy
	Accuracy
	97.88
	50.1

	FalsePositiveRate
	FalsePositiveRate
	1.69
	0.09

	FalseNegativeRate
	FalseNegativeRate
	2.54
	99.41

	F-Measure
	F-Measure
	97.88
	1.17

	Figure
	Figure3-3:ResultsofMIattackforevery100Samples
	Figure3-3:ResultsofMIattackforevery100Samples

	ThecomparisonofvariousevaluationmetricsforanMLmodelbeforeandafteritwassubjectedtotheMIadversarialattackisshowninthetable3.4and3-3showsthegraphicalrepresentationoftheresults.Theoverallaccuracyofthemodel’spredictionsismeasuredbyitsaccuracy.Themodelhadahighaccuracyof97.88%beforetheMIattack,correctlyclassifying97.88%oftheoccurrences.ButafterbeingsubjectedtotheMIattack,themodel’saccuracydroppedto50.1%.Thissignificantfallindicatesaconsiderabledeclineinthemodel’scapacitytoproducereliablepredictionsinthefaceofoppos
	ThecomparisonofvariousevaluationmetricsforanMLmodelbeforeandafteritwassubjectedtotheMIadversarialattackisshowninthetable3.4and3-3showsthegraphicalrepresentationoftheresults.Theoverallaccuracyofthemodel’spredictionsismeasuredbyitsaccuracy.Themodelhadahighaccuracyof97.88%beforetheMIattack,correctlyclassifying97.88%oftheoccurrences.ButafterbeingsubjectedtotheMIattack,themodel’saccuracydroppedto50.1%.Thissignificantfallindicatesaconsiderabledeclineinthemodel’scapacitytoproducereliablepredictionsinthefaceofoppos
	-
	-

	aremistakenlyclassifiedasmalicious(orpositive).Interestingly,inthisinstance,theFPRdropsfrom1.69%priortotheMIattacktoameager0.09%followingthestrike.Thissuggeststhatfewerinnocuouscasesweremistakenlylabeledasharmfulduetotheattack.Thepercentageofharmful(orpositive)samplesthatweremistakenlyclassifiedasbenign(ornegative)isknownastheFNR.Herewenoticeasignificantshift:theFNRsoarsfrom2.54%beforetheMIattacktoanunsettling99.41%followingthestrike.Thisconsiderableriseshowsthatthemodelmisidentifiedmostharmfulcasesunderadv
	-
	-

	3.5 Training with Adversarial and Original Samples
	3.5 Training with Adversarial and Original Samples
	-

	Figure
	Figure3-4:Trainingprocessoftheclassifierswithadversarialsamples
	Figure3-4:Trainingprocessoftheclassifierswithadversarialsamples

	Akeycomponentinenhancingtherobustnessandresilienceofmachinelearningmodelstoadversarialattacksisadversarialtraining.ThisstrategyisessentialinML,especiallyinfieldswheremodelscouldbesubjecttoattacksmeanttotrickormisleadthem.Bothadversarialandoriginalsamplesareusedinthetrainingsetforadversarialtraining.Adversarialsampleshavebeenmarginallyalteredtomakethemodelforecastincorrect.Ontheotherhand,originalsamplesarethetypical,unaltereddatathemodelintendstolearnfrom.Themachinelearningmodelgainsexperiencewithadversarial
	-

	ofsamplesinthetrainingset.Thisprocedureenhancesthemodel’scapacitytoiden
	-

	tifyandcorrectlycategorizeadversarialsamplesbytrainingittooperateinahostile,morediversifiedenvironment[51].Severalmachinelearningclassifiersareusedduringtheadversarialtrainingprocess.TheyareK-NearestNeighbors(KN),SupportVectorClassifier(SVC),RandomForest(RF),ExtraTreesClassifier(ETC),XGBoost(XG),andAdaBoost(AB).Eachclassifierhasadvantagesanddisadvantages,addingtothemodel’soverallresilience.3-4Thisshowshowtheclassifiertrainingprocesstakesplace.Thesetrainedclassifiersaresavedaspicklefilesafterthetrainingstepi
	-

	Classifier
	Classifier
	Classifier
	Training Accuracy
	Validation Accuracy
	Test Accuracy
	Test F-Score

	LR
	LR
	88.80
	88.73
	88.73
	0.89

	KN
	KN
	92.52
	90.36
	90.39
	0.90

	SVC
	SVC
	94.17
	90.72
	90.57
	0.90

	RF
	RF
	98.50
	89.40
	89.46
	0.89

	ETC
	ETC
	97.70
	89.46
	89.49
	0.89

	XGBoost
	XGBoost
	95.54
	90.39
	90.45
	0.90

	AdaBoost
	AdaBoost
	86.32
	86.30
	85.86
	0.86

	Table3.5:Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack.
	Table3.5:Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack.

	Figure
	Figure3-5:TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack
	Figure3-5:TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatCWAttack
	-

	In3.5,numerousclassifierperformancesaredescribedindetail.KNNperformedslightlybetter,achievingtrainingaccuracyof92.52%,validationaccuracyof90.36%,testaccuracyof90.39%,andtestF-Scoreof0.90,comparedtoLR,whichachieved88.80%,88.73%,88.73%,and0.89respectively.3-5givesacomparisonofTrainingandTestingaccuracyoftheclassifiers.Withatrainingaccuracyof94.17%,avalidationaccuracyof90.72%,atestaccuracyof90.57%,andatestF-Scoreof0.90,SVCperformedevenbetter.Withatrainingaccuracyof98.50%,theRFclassifierperformedadmirably.Still
	-

	Withatrainingaccuracyof97.70%,validationaccuracyof89.46%,testaccuracyof89.49%,andtestF-Scoreof0.89.ETCperformedsimilarlytotheRFclassifier.Withatrainingaccuracyof95.54%,avalidationaccuracyof90.39%,atestaccuracyof90.45%,andatestF-Scoreof0.90,XGBoostdemonstratedasolidbalancebetweentrainingandtesting.AdaBoosthaslesserperformancemetricswithatraining
	Withatrainingaccuracyof97.70%,validationaccuracyof89.46%,testaccuracyof89.49%,andtestF-Scoreof0.89.ETCperformedsimilarlytotheRFclassifier.Withatrainingaccuracyof95.54%,avalidationaccuracyof90.39%,atestaccuracyof90.45%,andatestF-Scoreof0.90,XGBoostdemonstratedasolidbalancebetweentrainingandtesting.AdaBoosthaslesserperformancemetricswithatraining
	-

	accuracyof86.32validationaccuracyof86.30%,testaccuracyof85.86%,andatestF-Scoreof0.86.Ingeneral,therewereobservabledifferencesinthetrainingaccuraciesofclassifiers,eventhoughmostofthemhadcomparabletestaccuraciesandF-scores.Thesevariationsshouldbeconsideredwhenchoosingaclassifiersincetheymayaffecttheircapacitytogeneralizetonewdata.
	-

	Classifier
	Classifier
	Classifier
	Training Accuracy
	Validation Accuracy
	Test Accuracy
	Test F-Score

	LR
	LR
	97.37
	97.32
	97.51
	0.95

	KNN
	KNN
	97.99
	97.49
	97.64
	0.95

	SVC
	SVC
	98.04
	97.82
	97.95
	0.96

	RF
	RF
	98.90
	98.05
	98.24
	0.97

	ETC
	ETC
	98.55
	97.91
	98.09
	0.96

	XGBoost
	XGBoost
	98.73
	98.09
	98.29
	0.97

	AdaBoost
	AdaBoost
	95.59
	95.58
	95.81
	0.92

	Table3.6:Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack
	Table3.6:Training,Validation,andTestingresultsforvariousclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack

	Figure
	Figure3-6:TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack
	Figure3-6:TrainingandTestingAccuracyresultsoftheclassifiersonoriginalandadversarialsamplesgeneratedatMIAttack
	-

	This3.6showstheresultsforsevendifferentclassifiers,eachtrainedusingbothadversarialsamplesgeneratedbyMIandoriginalsamples.3-6givesacomparisonofTrainingandTestingaccuracyoftheclassifiers.WithaTestF-Scoreof0.95,theLRclassifierachievedatrainingaccuracyof97.37%,validationaccuracyof97.32%,andtestaccuracyof97.51%.WithasimilarTestF-Scoreof0.95,K-NearestNeighbors(KN)obtainedgreatertrainingaccuracyof97.99%,validationaccuracyof97.49%,andtestaccuracyof97.64%.Withatrainingaccuracyof98.04%,validationaccuracyof97.82%,andt
	WithRFachievingthemaximumtrainingaccuracyof98.90%,validationaccuracyof98.05%,andtestaccuracyof98.24%,theRFandETclassifiersperformedbetterthanexpected.TheTestF-Score,at0.97,wasalsothehighest.WithaTestF-Scoreof0.96,theETclassifierreportedatrainingaccuracyof98.55%,validationaccuracyof97.91%,andtestaccuracyof98.09%.Withatrainingaccuracyof98.73%,validation
	WithRFachievingthemaximumtrainingaccuracyof98.90%,validationaccuracyof98.05%,andtestaccuracyof98.24%,theRFandETclassifiersperformedbetterthanexpected.TheTestF-Score,at0.97,wasalsothehighest.WithaTestF-Scoreof0.96,theETclassifierreportedatrainingaccuracyof98.55%,validationaccuracyof97.91%,andtestaccuracyof98.09%.Withatrainingaccuracyof98.73%,validation
	accuracyof98.09%,andtestaccuracyof98.29%,theXGBoostclassifierperformedsimilarlytoRF,ETC.ItreceivedaTestF-Scoreof0.97aswell.Last,theAdaBoostclassifierreturnedaccuracyvaluesfortraining,validation,andtestingof95.59%,95.58%,and95.81%,respectively.ItsTestF-Scoreof0.92wasthelowestofanyclassifiers.

	Chapter 4

	Classifier Development: Design, Training, and Predictions
	Classifier Development: Design, Training, and Predictions
	-

	4.1 Performance Comparison of Classifiers for Defense Mechanism
	4.1 Performance Comparison of Classifiers for Defense Mechanism
	-

	Byservingasadefensemechanismthatdifferentiatesbetweenoriginalandadversarialsamples,classifiersarecrucialtoanentirearchitecture.ByactingasagatekeepertotheprimaryAndroidmalwaredetectionmodel,theseclassifiersensurethatonly”clean”ororiginalsamplesareprocessedfurther.Thisprojectusesseveraldifferentclassifiers(LR,KN,SVC,RF,ETC,XGBoost,andAdaBoost)[3],eachusingadifferentMLalgorithm,4-2showstheimageoftheclassifiers,trainingwithbothadversarialandoriginalsamples.Theseclassifierscandistinguishbetweenthetwo,giventhatth
	Byservingasadefensemechanismthatdifferentiatesbetweenoriginalandadversarialsamples,classifiersarecrucialtoanentirearchitecture.ByactingasagatekeepertotheprimaryAndroidmalwaredetectionmodel,theseclassifiersensurethatonly”clean”ororiginalsamplesareprocessedfurther.Thisprojectusesseveraldifferentclassifiers(LR,KN,SVC,RF,ETC,XGBoost,andAdaBoost)[3],eachusingadifferentMLalgorithm,4-2showstheimageoftheclassifiers,trainingwithbothadversarialandoriginalsamples.Theseclassifierscandistinguishbetweenthetwo,giventhatth
	-
	-

	samples[47].

	Oncetrained,theclassifiersdividethetestset’sdataintotwogroups:originalandadversarial.Theimportantpartisthatonlythedataidentifiedbytheseclassifiersas”original”areforwardedtotheprimarymodelforadditionalprocessingandpredictions.Thisapproachreducesthepossibilitythatadversarialsampleswouldaffecttheperformanceoftheprimarymodel,increasingitsrobustnessandreliabilityinrecognizingAndroidmalware.
	-

	Theeffectivenessoftheseclassifiersiscrucialsinceitdirectlyaffectsthesystem’sabilitytodetectmalwareonAndroiddevicesasanentiresystem.Eachclassifier’sperformancecanbecomparedusingarangeofmeasures(TrainingAccuracy,TestAccuracy,FPR,FNR,andF-Measure)[54],allowingonetochoosewhichclassifier(s)wouldbemostsuitedforfurtherintegrationwiththeprimarymodel.Theseclassifiersdefendagainstadversarialattacks,preservingtheaccuracyoftheprimarymodel’smalwaredetectionwhileprotectingtheintegrityofthedataitprocesses.?? showstheperfo
	Classifier
	Classifier
	Classifier
	Training Accuracy
	Test Accuracy
	FPR
	FNR
	F-measure

	LR
	LR
	94.85
	94.86
	4.05
	6.24
	0.95

	KNN
	KNN
	72.31
	66.77
	0.07
	66.55
	0.50

	SV
	SV
	99.17
	98.60
	1.09
	1.72
	0.99

	RF
	RF
	99.89
	97.96
	2.06
	2.02
	0.98

	ETC
	ETC
	99.48
	97.82
	2.47
	1.89
	0.98

	XGBoost
	XGBoost
	99.52
	98.78
	0.83
	1.61
	0.99

	AdaBoost
	AdaBoost
	91.36
	91.65
	3.03
	13.70
	0.91

	Table4.1:Performancecomparisonofdifferentclassifiers.
	Table4.1:Performancecomparisonofdifferentclassifiers.

	Figure
	Figure4-1:ComparisonofTrainingandTestingAccuracyresultsofthedifferentclassifiers
	Figure4-1:ComparisonofTrainingandTestingAccuracyresultsofthedifferentclassifiers
	-

	Figure
	Figure4-2:Trainingtheclassifierswithoriginalandadversarialsamples
	Figure4-2:Trainingtheclassifierswithoriginalandadversarialsamples

	Theresultsoftheclassifiersusedasadefensemechanismagainstadversarialattacksispresentedin4.1.TheLRclassifierdemonstratedaconsistentandrobustpredictiveperformanceonbothvisible(training)andunseen(test)data,achievingtrainingandtestaccuracyof94.55%and94.60%,respectively.4-1showsthecomparisonchartofthetrainingandtestingaccuracyofdifferentclassifiers.ItkeptitsFPRandFNRatcomparativelylowlevelsof4.44%and6.38%,respectively,indicatingthatitstruckadecentbalanceinreducingbothfalsealarmsandmisses.Thehighharmonicmeansofpre
	-
	-
	-
	-

	4.2 Classifier Workflow as a Defense Mechanism and Model Predictions
	4.2 Classifier Workflow as a Defense Mechanism and Model Predictions
	4-3describestheworkflowofclassifierandmodelpredictions.
	Figure
	Figure4-3:TheClassifier’sWorkflowandModelPredictions
	Figure4-3:TheClassifier’sWorkflowandModelPredictions

	4.3 Integration with the Model
	4.3 Integration with the Model
	Inourstudy,theclassifiersaremeanttoimprovetheoriginalmodelratherthanreplaceittomakeitmoreresilienttoadversarialattacks.Thissectionexplainsthestepstakentocombinetheseclassifierswiththeoriginalmodeltodetectdangersthatcouldoccur[19].Theclassifiersserveasafilterorgatewaytotheoriginalmodelafterbeingtrainedonadatasetthatincludesoriginalandadversarialsamples.Theseclassifiersefficientlydivideincomingsamplesintotwogroups:adversarialandoriginal.Theoriginalsamplesarethensavedtosendtotheprimarymodelfor
	Inourstudy,theclassifiersaremeanttoimprovetheoriginalmodelratherthanreplaceittomakeitmoreresilienttoadversarialattacks.Thissectionexplainsthestepstakentocombinetheseclassifierswiththeoriginalmodeltodetectdangersthatcouldoccur[19].Theclassifiersserveasafilterorgatewaytotheoriginalmodelafterbeingtrainedonadatasetthatincludesoriginalandadversarialsamples.Theseclassifiersefficientlydivideincomingsamplesintotwogroups:adversarialandoriginal.Theoriginalsamplesarethensavedtosendtotheprimarymodelfor
	additionalpredictiontaskswhiletheadversarialinstancesaremarked[32].

	Thearchitecturewillthereforebemoreresistanttoadversarialattacksbyintegratingtheclassifierswiththeoriginalmodel.Theclassifiersworktopreventcompetingsamplesfromchangingtheoriginalmodel’sprediction,preservingtheprecisionandconsistencyofthemodel’soutput.However,it’scrucialtorememberthatthesuccessofthisapproachprimarilydependsonhowwelltheclassifierscandifferentiatebetweentheoriginalandadversarialsamples.Toselectthebestclassifiersforintegrationwiththeoriginalmodel,itisessentialtoconsidertheperformancecomparisonof
	-
	-
	-

	4.4 Performance of the Model
	4.4 Performance of the Model
	Theoriginalsamplesareprovidedtothemodelforadditionalpredictionswhentheclassifierdistinguishesbetweentheoriginalandadversarialexamples.Inthisstage,themodel’sperformanceontheoriginalsamplesisevaluated,anditsrobustnesstopotentialadversarialattacksisdetermined.Theevaluation’sfindingsindicatehowwellthemodelworkswiththeoriginalsamplesandwhetheritcancontinuetopredictcorrectlyevenwhenfacedwithadversarialexamples.Thesefindingsdemonstratethemodel’scapacitytogeneralizeandproduceaccuratepredictionsbasedonactualdata.The
	ofprecisionandrecall.Accuracyassessestheoverallaccuracyofthepredictions.
	Classifier
	Classifier
	Classifier
	Accuracy
	FPR
	FNR
	F-measure

	LR
	LR
	94.23
	7.17
	4.39
	0.94

	AdaBoost
	AdaBoost
	90.91
	11.45
	6.74
	0.91

	ETC
	ETC
	96.68
	3.16
	3.48
	0.97

	KNN
	KNN
	96.22
	4.44
	3.12
	0.96

	RF
	RF
	97.05
	2.62
	3.28
	0.97

	SVC
	SVC
	95.97
	4.42
	3.64
	0.96

	XGBoost
	XGBoost
	96.32
	3.89
	3.46
	0.96

	Table4.2:PredictionResultsofDifferentModelsonClassifier-IdentifiedOriginalSamples
	Table4.2:PredictionResultsofDifferentModelsonClassifier-IdentifiedOriginalSamples

	Figure
	Figure4-4:ComparisonofPredictionAccuracyoftheModels
	Figure4-4:ComparisonofPredictionAccuracyoftheModels

	Theaccuracymetricshowsthepercentageofsamplesthateachclassifiercorrectlyclassifies.4.2showsthepredictionresultsofdifferentmodels.Ahigheraccuracy
	demonstratesimprovedperformanceincorrectlyclassifyingpositiveandnegativeex
	-

	amples4-4comparesmodels’accuracy.Inthisinstance,theclassifiershadaccuracylevelsbetween90.91%and97.05%.TheFPRcalculatesthefrequencywithwhichnegativesamplesareincorrectlydeemedpositive.AdecreasedFPRsuggestsanimprovedcapacitytoreducethemisclassificationofnegativeexamples.TheFPRvaluesthattheclassifiersachievedrangedfrom2.62%to11.45%.TheFNRmeasuresthefrequencyofincorrectlylabelingpositivesamplesasnegative.AlowerFNRsuggestsabettercapacitytoclassifypositivesamplesaccurately.TheFNRvaluestheclassifiersachievedranged
	-
	-

	Chapter 5

	Conclusion and Future Work
	Conclusion and Future Work
	ThestudyaimedtoincreaseanAndroidmalwaredetectionmodel’sresistancetoadversarialattacks.Aclassifierwasusedasafirstlineofdefenseandsuccessfullyidentifiedadversarysamplesapartfromtheoriginalsamples.Asaresult,theprimarypredictivemodelwasprotectedfromdirectadversarialdisturbance,enablingbetterpredictions.Themodelwasstrengthenedagainstattacksbytrainingonadversarialsamples.Thetrainedmodel’sresiliencyagainsttheseadversarialattacksprovedthismethod’seffectiveness.Theadditionoftheclassifiersystemimprovedthemodel’sperfo
	Asthisprojectprogresses,severalimportantareaswillbethefocusforenhancementandexploration.Themodel’sexposuretovariousadversarialattacksisoneofthemainareasofinterest.Themodelhasonlybeentrainedandtestedagainstasmallnumberofadversarialtechniquesatthistime.Weseektoimprovetherobustnessof
	-

	themodelagainstunidentifiedorsophisticatedadversarialsamples,hencemaintain
	-

	ingahighlevelofperformance,bybroadeningtherangeofadversarialattacksusedduringmodeltraining.Exploringotherdefensemechanismstomakethemodelmuchstronger.Ourevaluationwaslimitedtobinarydatasets(0or1)anddidnotincludeothercategoricalordecimaldata.Thereispotentialforfutureresearchtoextendtheseteststoexploreothertypesofdatasets.

	References
	References
	[1]NasibaMahdiAbdulkareemandAdnanMohsinAbdulazeez.Machinelearningclassificationbasedonradomforestalgorithm:Areview.International journal of science and business,5(2):128–142,2021.
	[2]LAbhishek.Opticalcharacterrecognitionusingensembleofsvm,mlpandextratreesclassifier.In2020 International Conference for Emerging Technology (INCET),pages1–4.IEEE,2020.
	[3]PrernaAgrawalandBhushanTrivedi.Machinelearningclassifiersforandroidmalwaredetection.InData Management, Analytics and Innovation: Proceedings of ICDMAI 2020, Volume 1,pages311–322.Springer,2021.
	[4]MohammedKAlzaylaee,SuleimanYYerima,andSakirSezer.Dl-droid:Deeplearningbasedandroidmalwaredetectionusingrealdevices.Computers & Security,89:101663,2020.
	-

	[5]BrandonAmos,HamiltonTurner,andJulesWhite.Applyingmachinelearningclassifierstodynamicandroidmalwaredetectionatscale.In2013 9th inter
	-

	national wireless communications and mobile computing conference (IWCMC),pages1666–1671.IEEE,2013.
	[6]BelaAmro.Malwaredetectiontechniquesformobiledevices.arXiv preprint arXiv:1801.02837,2018.
	[7]KshitizAryal,MaanakGupta,andMahmoudAbdelsalam.Asurveyonadversarialattacksformalwareanalysis.arXiv preprint arXiv:2111.08223,2021.
	-

	[8]MosesAprofinAshawaandSarahMorris.Analysisofandroidmalwaredetectiontechniques:asystematicreview.2019.
	[9]AnishAthalye,NicholasCarlini,andDavidWagner.Obfuscatedgradientsgiveafalsesenseofsecurity:Circumventingdefensestoadversarialexamples.InInternational conference on machine learning,pages274–283.PMLR,2018.
	[10]BhoopeshSinghBhatiandCSRai.Ensemblebasedapproachforintrusiondetectionusingextratreeclassifier.InIntelligent Computing in Engineering: Select Proceedings of RICE 2019,pages213–220.Springer,2020.
	[11]FranziskaBoenisch,PhilipSperl,andKonstantinB¨ottinger.Gradientmaskingandtheunderestimatedrobustnessthreatsofdifferentialprivacyindeeplearning.arXiv preprint arXiv:2105.07985,2021.
	[12]AnnaLBuczakandErhanGuven.Asurveyofdataminingandmachinelearningmethodsforcybersecurityintrusiondetection.IEEE Communications surveys & tutorials,18(2):1153–1176,2015.
	[13]NicholasCarliniandDavidWagner.Adversarialexamplesarenoteasilydetected:Bypassingtendetectionmethods.InProceedings of the 10th ACM workshop on artificial intelligence and security,pages3–14,2017.
	-
	-

	[14]NicholasCarliniandDavidWagner.Towardsevaluatingtherobustnessofneuralnetworks.In2017 ieee symposium on security and privacy (sp),pages39–57.Ieee,2017.
	[15]AnirbanChakraborty,ManaarAlam,VishalDey,AnupamChattopadhyay,andDebdeepMukhopadhyay.Asurveyonadversarialattacksanddefences.CAAI Transactions on Intelligence Technology,6(1):25–45,2021.
	[16]MayankAryaChandraandSSBedi.Surveyonsvmandtheirapplicationinimageclassification.International Journal of Information Technology,13:1–11,2021.
	[17]StevenChen,NicholasCarlini,andDavidWagner.Statefuldetectionofblack-boxadversarialattacks.InProceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence,pages30–39,2020.
	[18]IyadLahsenCherifandAbdesselemKortebi.Onusingextremegradientboosting(xgboost)machinelearningalgorithmforhomenetworktrafficclassification.In2019 Wireless Days (WD),pages1–6.IEEE,2019.
	[19]ReubenFeinman,RyanRCurtin,SaurabhShintre,andAndrewBGardner.Detectingadversarialsamplesfromartifacts.arXiv preprint arXiv:1703.00410,2017.
	[20]De-ChengFeng,Zhen-TaoLiu,Xiao-DanWang,YinChen,Jia-QiChang,Dong-FangWei,andZhong-MingJiang.Machinelearning-basedcompressivestrengthpredictionforconcrete:Anadaptiveboostingapproach.Construction and Building Materials,230:117000,2020.
	-

	[21]SamuelGFinlayson,JohnDBowers,JoichiIto,JonathanLZittrain,AndrewLBeam,andIsaacSKohane.Adversarialattacksonmedicalmachinelearning.Science,363(6433):1287–1289,2019.
	[22]MattFredrikson,SomeshJha,andThomasRistenpart.Modelinversionattacksthatexploitconfidenceinformationandbasiccountermeasures.InProceedings of the 22nd ACM SIGSAC conference on computer and communications security,pages1322–1333,2015.
	[23]Drago¸sGavrilut¸,MihaiCimpoe¸su,DanAnton,andLiviuCiortuz.Malwaredetectionusingmachinelearning.In2009 International multiconference on computer science and information technology,pages735–741.IEEE,2009.
	-
	-

	[24]IanJGoodfellow,JonathonShlens,andChristianSzegedy.Explainingandharnessingadversarialexamples.arXiv preprint arXiv:1412.6572,2014.
	[25]FlorianHuber,ArtemYushchenko,BenediktStratmann,andVolkerSteinhage.Extremegradientboostingforyieldestimationcomparedwithdeeplearningapproaches.Computers and Electronics in Agriculture,202:107346,2022.
	[26]OlakunleIbitoye,RanaAbou-Khamis,AshrafMatrawy,andMOmairShafiq.Thethreatofadversarialattacksonmachinelearninginnetworksecurity–asurvey.arXiv preprint arXiv:1911.02621,2019.
	[27]JinLi,LichaoSun,QibenYan,ZhiqiangLi,WitawasSrisa-An,andHengYe.Significantpermissionidentificationformachine-learning-basedandroidmalwaredetection.IEEE Transactions on Industrial Informatics,14(7):3216–3225,2018.
	[28]YannanLi,JingboWang,andChaoWang.Provingrobustnessofknnagainstadversarialdatapoisoning.InCONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN–FMCAD 2022,page7,2022.
	[29]JingLin,LaurentLNjilla,andKaiqiXiong.Securemachinelearningagainstadversarialsamplesattesttime.EURASIP Journal on Information Security,2022(1):1,2022.
	[30]XiangLing,LingfeiWu,JiangyuZhang,ZhenqingQu,WeiDeng,XiangChen,YaguanQian,ChunmingWu,ShoulingJi,TianyueLuo,etal.Adversarialattacksagainstwindowspemalwaredetection:Asurveyofthestate-of-the-art.Computers & Security,page103134,2023.
	-

	[31]AleksanderMadry,AleksandarMakelov,LudwigSchmidt,DimitrisTsipras,andAdrianVladu.Towardsdeeplearningmodelsresistanttoadversarialattacks.arXiv preprint arXiv:1706.06083,2017.
	[32]ChengzhiMao,ZiyuanZhong,JunfengYang,CarlVondrick,andBaishakhiRay.Metriclearningforadversarialrobustness.Advances in neural information processing systems,32,2019.
	-

	[33]AkshayMathur,LaxmiMounikaPodila,KeyurKulkarni,QuamarNiyaz,andAhmadYJavaid.Naticusdroid:Amalwaredetectionframeworkforandroidusingnativeandcustompermissions.Journal of Information Security and Applications,58:102696,2021.
	-

	[34]KMeenakshiandGMaragatham.Areviewonsecurityattacksandprotectivestrategiesofmachinelearning.Emerging Trends in Computing and Expert Technology,pages1076–1087,2020.
	-

	[35]PavasNavaney,GauravDubey,andAjayRana.Smsspamfilteringusingsupervisedmachinelearningalgorithms.In2018 8th international conference on cloud computing, data science & engineering (confluence),pages43–48.IEEE,2018.
	-

	[36]FredCPampel.Logistic regression: A primer.Number132.Sagepublications,2020.
	[37]NicolasPapernot,PatrickMcDaniel,IanGoodfellow,SomeshJha,ZBerkayCelik,andAnanthramSwami.Practicalblack-boxattacksagainstmachinelearn
	-
	-

	ing.InProceedings of the 2017 ACM on Asia conference on computer and com
	-

	munications security,pages506–519,2017.
	[38]NicolasPapernot,PatrickMcDaniel,XiWu,SomeshJha,andAnanthramSwami.Distillationasadefensetoadversarialperturbationsagainstdeepneuralnetworks.In2016 IEEE symposium on security and privacy (SP),pages582–597.IEEE,2016.
	[39]MarekPawlicki,MichalChora´s,andRafalKozik.Defendingnetworkintrusiondetectionsystemsagainstadversarialevasionattacks.Future Generation Computer Systems,110:148–154,2020.
	-

	[40]TianruiPeng,IanHarris,andYukiSawa.Detectingphishingattacksusingnaturallanguageprocessingandmachinelearning.In2018 ieee 12th international conference on semantic computing (icsc),pages300–301.IEEE,2018.
	-

	[41]AshisPradhan.Supportvectormachine-asurvey.International Journal of Emerging Technology and Advanced Engineering,2(8):82–85,2012.
	[42]HemantRathore,SanjayKSahay,PiyushNikam,andMohitSewak.Robustandroidmalwaredetectionsystemagainstadversarialattacksusingq-learning.Information Systems Frontiers,23:867–882,2021.
	[43]IshaiRosenberg,AsafShabtai,YuvalElovici,andLiorRokach.Adversarialmachinelearningattacksanddefensemethodsinthecybersecuritydomain.ACM Computing Surveys (CSUR),54(5):1–36,2021.
	[44]BitaDarvishRouani,MohammadSamragh,TaraJavidi,andFarinazKoushanfar.Safemachinelearninganddefeatingadversarialattacks.IEEE Security & Privacy,17(2):31–38,2019.
	-

	[45]WenjieRuan,XinpingYi,andXiaoweiHuang.Adversarialrobustnessofdeeplearning:Theory,algorithms,andapplications.InProceedings of the 30th ACM international conference on information & knowledge management,pages4866–4869,2021.
	[46]AnjaneyuluBabuShaikandSujathaSrinivasan.Abriefsurveyonrandomforestensemblesinclassificationmodel.InInternational Conference on Innovative Computing and Communications: Proceedings of ICICC 2018, Volume 2,pages253–260.Springer,2019.
	[47]LwinKhinShar,BiniamFissehaDemissie,MarianoCeccato,andWeiMinn.Experimentalcomparisonoffeaturesandclassifiersforandroidmalwaredetection.InProceedings of the IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems,pages50–60,2020.
	-

	[48]ChristianSzegedy,WojciechZaremba,IlyaSutskever,JoanBruna,DumitruErhan,IanGoodfellow,andRobFergus.Intriguingpropertiesofneuralnetworks.arXiv preprint arXiv:1312.6199,2013.
	-

	[49]AboozarTaherkhani,GeorginaCosma,andTMartinMcGinnity.Adaboostcnn:Anadaptiveboostingalgorithmforconvolutionalneuralnetworkstoclassifymulti-classimbalanceddatasetsusingtransferlearning.Neurocomputing,404:351–366,2020.
	-
	-

	[50]TonyThomas,AthiraP.Vijayaraghavan,SabuEmmanuel,TonyThomas,Athira
	P.Vijayaraghavan,andSabuEmmanuel.Machinelearningandcybersecurity.Machine Learning Approaches in Cyber Security Analytics,pages37–47,2020.
	[51]FlorianTram`er,NicolasPapernot,IanGoodfellow,DanBoneh,andPatrickMcDaniel.Thespaceoftransferableadversarialexamples.arXiv preprint arXiv:1704.03453,2017.
	[52]ChenyueWang,LinlinZhang,KaiZhao,XuhuiDing,andXushengWang.Advandmal:Adversarialtrainingforandroidmalwaredetectionandfamilyclassification.Symmetry,13(6):1081,2021.
	-
	-

	[53]LishanWang.Researchandimplementationofmachinelearningclassifierbasedonknn.InIOP Conference Series: Materials Science and Engineering,volume677,page052038.IOPpublishing,2019.
	[54]YuandiWang.Performancecomparisonofandroidmalwaredetectionmethods.InJournal of Physics: Conference Series,volume1827,page012176.IOPPublishing,2021.
	-

	[55]JingWu,MingyiZhou,CeZhu,YipengLiu,MehrtashHarandi,andLiLi.Performanceevaluationofadversarialattacks:Discrepanciesandsolutions.arXiv preprint arXiv:2104.11103,2021.
	-

	[56]WeilinXu,DavidEvans,andYanjunQi.Featuresqueezing:Detectingadversarialexamplesindeepneuralnetworks.arXiv preprint arXiv:1704.01155,2017.
	-

	[57]YingchaoYu,XueyongLiu,andZuoningChen.Attacksanddefensestowardsmachinelearningbasedsystems.InProceedings of the 2nd International Conference on Computer Science and Application Engineering,pages1–7,2018.
	-

	[58]XiaoyongYuan,PanHe,QileZhu,andXiaolinLi.Adversarialexamples:Attacksanddefensesfordeeplearning.IEEE transactions on neural networks and learning systems,30(9):2805–2824,2019.
	-

	[59]XiaonanZou,YongHu,ZhewenTian,andKaiyuanShen.Logisticregressionmodeloptimizationandcaseanalysis.In2019 IEEE 7th international conference on computer science and network technology (ICCSNT),pages135–139.IEEE,2019.
	Appendix A
	Source Code Snippets for Adversarial Attacks
	A.1 CW
	def caligariwagerattack(X,y,model,epsilon=0.3,perturbfactor=0.76,numiterations=300,learningrate=0.3):
	processedsamples=[]accuracies=[]falsepositiverates=[]falsenegativerates=[]fmeasures=[]
	def objfunc(perturbation,x,ytarget,model,epsilon):
	55
	xadv=x+perturbationxadv=np.round(xadv)xadv=np.clip(xadv,0,1)ypred=model.predict(xadv.reshape(1,−1))ypred=int (ypred[0])loss=0i f ypred==ytargetelse 1constraint=np.sum(np.abs (perturbation))− epsilonpenalty=1e3i f constraint> 0else 0return loss+penaltyXadv=np.copy(X)perturbations=np.zeroslike(X)for iin range (X.shape[0]):x=X[i]ytarget=int (y[i])
	xadv=x+perturbationxadv=np.round(xadv)xadv=np.clip(xadv,0,1)ypred=model.predict(xadv.reshape(1,−1))ypred=int (ypred[0])loss=0i f ypred==ytargetelse 1constraint=np.sum(np.abs (perturbation))− epsilonpenalty=1e3i f constraint> 0else 0return loss+penaltyXadv=np.copy(X)perturbations=np.zeroslike(X)for iin range (X.shape[0]):x=X[i]ytarget=int (y[i])
	xadv=x+perturbationxadv=np.round(xadv)xadv=np.clip(xadv,0,1)ypred=model.predict(xadv.reshape(1,−1))ypred=int (ypred[0])loss=0i f ypred==ytargetelse 1constraint=np.sum(np.abs (perturbation))− epsilonpenalty=1e3i f constraint> 0else 0return loss+penaltyXadv=np.copy(X)perturbations=np.zeroslike(X)for iin range (X.shape[0]):x=X[i]ytarget=int (y[i])

	bounds=[(None,None)for in range (X.shape[1])]initialperturbation=np.random.choice([−1,0,1],p=[epsilon/2,1− epsilon,epsilon/2])
	bounds=[(None,None)for in range (X.shape[1])]initialperturbation=np.random.choice([−1,0,1],p=[epsilon/2,1− epsilon,epsilon/2])
	size=X.shape[1],

	options={ ’maxiter’:’initialtr}
	options={ ’maxiter’:’initialtr}
	numiterations,radius’:learning
	rate

	attack
	attack
	result
	=
	scipy.optimize.minimize

	56
	(objfunc,initialperturbation,args=(x,ytarget,model,epsilon),method=’trust−constr’,bounds=bounds,options=options)perturbation=attackresult.xperturbations[i]=perturbationxadv=x+perturbfactor∗ perturbationXadv[i]=np.round(xadv)Xadv[i]=np.clip(Xadv[i],0,1)
	if (i+1)%100==0:ypredadv=model.predict(Xadv[:i+1])acc,fpr,fnr,fmeasure=calculateperformancemetrics(y[:i+1],ypredadv)processedsamples.append(i+1)accuracies.append(acc∗ 100)falsepositiverates.append(fpr∗ 100)falsenegativerates.append(fnr∗ 100)fmeasures.append(fmeasure∗ 100)print (f”PROCESSED
	{ i
	+
	+
	1}

	SAMPLES”)print (f”Accuracy
	afterprocessing{ i+1} samples:{ acc∗
	100:.2f}%”)print (f”False
	positive
	positive
	rate

	after
	processing
	{ i
	+
	+
	1}

	∗
	samples:{ fprprint (f”Falsesamples:
	{ fnr
	100:.2f}%”)negative
	rate
	rate
	after
	processing

	{ i
	+
	+
	1}

	∗ 100:.2f}%”)
	print (f”F−measuresamples:
	{ fmeasure
	{ fmeasure
	after

	processing
	{ i
	+
	1}
	∗ 100:.2f}%”)
	57
	return Xadv,perturbations,processedsamples,accuracies,falsepositiverates,falsenegativerates,fmeasures
	A.2 MI
	def invertmodel(model,targetlabel,maxiter=1000,
	learningrate=0.01,threshold=0.5):xinverted=np.random.uniform(0,1,size=X.shape[1])for in range (maxiter):
	xinverted=np.clip(xinverted,0,1)prediction=model.predictproba(xinverted.reshape(1,−1))gradient=prediction[:,targetlabel]− thresholdxinverted−=learningrate∗ gradient
	return xinverted
	processedsamples=[]accuracies=[]falsepositiverates=[]falsenegativerates=[]fmeasures=[]
	# Generate adversarial samples using the
	ModelInversionAttackfor theentiredatasetXadv=np.zeroslike(X)for i,targetlabelin enumerate(y):
	58
	Xadv[i]=invertmodel(model,targetlabel)
	if (i+1)%100==0:ypredadv=model.predict(Xadv[:i+1])accafter,fprafter,fnrafter,fmeasureafter=calculateperformancemetrics(y[:i+1],ypredadv)processedsamples.append(i+1)accuracies.append(accafter∗ 100)falsepositiverates.append(fprafter∗ 100)falsenegativerates.append(fnrafter∗ 100)fmeasures.append(fmeasureafter∗ 100)print (f”PROCESSED
	{ i
	+
	+
	1}

	SAMPLES”)print (f”Accuracy
	AFTERprocessing{ i+1} samples:{ accafter∗
	100:.2f}%”)print (f”False
	positive
	positive
	rate
	AFTER

	processing
	{ i
	+
	1} samples:{ fprafter∗
	100:.2f}%”)print (f”False
	negative
	rate
	AFTER
	processing
	{ i
	+
	1} samples:{ fnrafter∗
	100:.2f}%”)print (f”F−measure
	AFTER
	AFTER
	processing

	{ i
	+
	1} samples:{ fmeasureafter∗
	100:.2f}%”)
	59
	Appendix B

	Source Code Snippets for Training Classifiers
	Source Code Snippets for Training Classifiers
	def modelling(key,classifier):roclst=[]
	trainstart=time()
	classifier.fit(Xtrain,ytrain)
	trainend=time()
	trntime=trainend− trainstart
	trainacc=classifier.score(Xtrain,ytrain)∗100
	# calculating the training accuracy
	detctionstart=time()ypred=classifier.predict(Xtest)
	60
	detectionend=time()tsttime=detectionend− detctionstart
	cm=confusionmatrix(ytest,ypred)cmdict[key]=cm
	probs=classifier.predictproba(Xtest)probs=probs[:,1]roclst.append([ytest,probs])rocdict[key]=roclst
	tstacc=accuracyscore(ytest,ypred)∗100fScore=f1score(ytest,ypred)
	val=crossvalscore(estimator=classifier,X=Xtrain,y=ytrain,cv=10,njobs=−1)valacc=val.mean()∗100
	return trainacc,valacc,tstacc,fScore,trntime,tsttime,cmdict[key]
	dataset=pd.readcsv(”binarydata.csv”)
	#dataset = shuffle (dataset)
	# Load the adversarial samples
	adversarialdataset=pd.readcsv(”adversarialsamples29333.csv”)
	# Concatenate the original and adversarial samples
	61
	combineddataset=pd.concat([dataset,adversarialdataset])
	# Shuffle the combined dataset combineddataset=shuffle(combineddataset)from sklearn.modelselectionimport traintestsplit,crossvalscorefrom sklearn.linearmodelimport LogisticRegressionfrom sklearn.neighborsimport KNeighborsClassifierfrom sklearn.svmimport SVCfrom sklearn.ensembleimport RandomForestClassifierfrom sklearn.ensembleimport ExtraTreesClassifierfrom sklearn.ensembleimport AdaBoostClassifierfrom xgboostimport XGBClassifierfrom sklearn.ensembleimport BaggingClassifierfrom sklearn.treeimport DecisionTr
	62
	Appendix C

	Source Code Snippets for Classifier as a defense mechanism
	Source Code Snippets for Classifier as a defense mechanism
	# Shuffle the combined dataset
	combineddataset=shuffle(combineddataset)
	# Separate the features (X) from the target variable (y)
	X=combineddataset.iloc[:,:− 1].valuesy=combineddataset.iloc[:,− 1].values
	# Split the data into training and test sets
	Xtrain,Xtest,ytrain,ytest=traintestsplit(X,y,testsize=0.3,randomstat
	# Define your classifiers
	63
	classifiers={ ’LR’:LogisticRegression(randomstate=0,njobs=−1),’KN’:KNeighborsClassifier(nneighbors=5,p=2,metric=’minkowski’),’SV’:SVC(kernel=’rbf’,randomstate=0,probability=True),’RF’:RandomForestClassifier(criterion=’gini’,randomstate=0,nestimators=10’ET’:ExtraTreesClassifier(criterion=’gini’,minsamplesleaf=2,nestimators=’XG’:XGBClassifier(njobs=−1),’AB’:AdaBoostClassifier(learningrate=0.1,nestimators=70),
	}
	# Create an empty DataFrame to store the results
	resultsdf=pd.DataFrame(columns=[’Classifier’,’TrainingAccuracy’,’TestAccuracy
	# Train each classifier and evaluate its performance
	for key,classifierin classifiers.items():classifier.fit(Xtrain,ytrain)
	# Calculate training accuracy
	ytrainpred=classifier.predict(Xtrain)trainaccuracy=accuracyscore(ytrain,ytrainpred)∗ 100
	# Calculate test metrics
	ypred=classifier.predict(Xtest)testaccuracy,fpr,fnr,fmeasure=calculateperformancemetrics(ytest,ypredprint (f”{key} classifier:Trainingaccuracy=
	{ trainaccuracy:.2f}%,
	Test
	accura
	# Save the classifier
	64
	joblib.dump(classifier,f”D:/Attack
	Defense/Multiple
	classifiers/NewIntegrationprint (f”{key} classifier
	is
	is
	dumped”)

	# Append the results to the results df
	resultsdf=resultsdf.append({ ’Classifier’:key,’Training
	Accuracy’:trainaccuracy,’Test
	Accuracy’:testaccuracy,’FPR’:fpr,’FNR’:fnr,’F−measure’:fmeasure} ,ignoreindex=True)
	# Save the results to a CSV fil e
	resultsdf.tocsv(’D:/Attack
	resultsdf.tocsv(’D:/Attack
	Defense/Multiple

	classifiers/NewIntegration/classiprint (”Resultsofclassifierareprinted”)
	65

