
A Dissertation

entitled

A Study on Behaviors of Machine Learning-Powered

Intrusion Detection Systems under Normal and Adversarial Settings

by

Medha Rani Pujari

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Doctor of Philosophy Degree in Computer Science

Dr. Weiqing Sun, Committee Chair

Dr. Ahmad Y. Javaid, Committee Co-Chair

Dr. Mohammed Niamat, Committee Member

Dr. Devinder Kaur, Committee Member

Dr. Junghwan Kim, Committee Member

Dr. Scott Molitor, Acting Dean
College of Graduate Studies

The University of Toledo

March 2023

Copyright 2023, Medha Rani Pujari

This document is copyrighted material. Under copyright law, no parts of this
document may be reproduced without the expressed permission of the author.

An Abstract of

A Study on Behaviors of Machine Learning-Powered
Intrusion Detection Systems under Normal and Adversarial Settings

by

Medha Rani Pujari

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Doctor of Philosophy Degree in Computer Science

The University of Toledo
March 2023

Intrusion detection systems (IDSs) have evolved significantly since the first time

they were introduced and have become one of the most essential defenses in a network.

With the advent of machine learning (ML), several improvements and enhancements

have been made to the capabilities of traditional IDSs. However, every advancement

brings with it a range of new challenges and threats. Although ML expanded the

abilities of IDSs, there are certain problems that need to be investigated and this

research attempts to highlight and address some of the existing problems. One of

the problems is that a major portion of the research progress involving IDSs has

been achieved using decades-old datasets. This work aims to study recently pub-

lished research IDS datasets and analyze the performances of ML-based IDS models

when trained with such datasets. Another problem focused on in this research is

the vulnerabilities of ML models to adversarial environments. The work identifies

that a majority of research progress achieved relevant to ML-powered IDSs is to-

ward the direction of improving the performance efficiency of the IDS models under

iii

normal settings, i.e., toward optimizing the detection rates with genuine data. Rel-

atively little progress is made towards making the IDS models robust to adversarial

environments and deceptive inputs that target the IDSs rather than the premises

(networks or hosts) guarded by them. This is a serious concern in cybersecurity

which needs more investigation and problem-solving. In regard to this concern, var-

ious types of adversarial attacks are studied, and the behaviors of IDSs in certain

white-box adversarial settings are assessed when the models are trained with mod-

ern research datasets. The study extends further by developing a defense mechanism

against a white-box evasion attack which is considered to be very powerful for image-

classification-based models. As the IDS models deployed in real-world environments

are more susceptible to black-box attacks, this research pursues to develop a defense

for IDSs against adversarial black-box evasion attacks, in particular, the query-based

attacks that rely on the decisions made by their target model(s).

Query-based black-box evasion attacks have become more popular lately, target-

ing MLaaS (ML as a Service) models, and those deployed in commercial/real-time

environments. The latest module of work in this research focuses on studying the

performance of an IDS model when provided with the data generated by an adver-

sarial black-box attack algorithm called genetic algorithm (GA). It extends further

by proposing a defense mechanism to mitigate the impact of such powerful black-box

algorithms. Experimental and evaluation results are presented and analyzed.

iv

This work and dissertation are dedicated to my dear husband and the best mentor

of my life, Yeshwanth Rangineni. He is the one who trusts me the most and stands

by me in all my endeavors.

Acknowledgments

I would like to express my appreciation and gratitude to my advisor Dr. Weiqing Sun,

who has been a great mentor for me throughout my Master’s and Doctoral studies.

I honestly could not have asked for a better advisor in life to succeed. He is not only

a great advisor and mentor but is also my inspiration and someone I look up to. I

would also like to especially thank my research co-advisor, Dr. Ahmad Javaid, for his

immense support and guidance throughout my journey at the University of Toledo

(UT). I have been very fortunate to have obtained guidance and support from two

wonderful people. Their support in offering me teaching and research assistantships

and believing in my capabilities is also greatly appreciated. I am grateful to all

my dissertation committee members who have been very supportive and inspiring.

Their service has been very valuable to me and I very much appreciate their roles in

my learning process. I have deeply enjoyed my journey with UT and would like to

express my special thanks to the entire family of UT!

Finally, I would like to thank my husband, Yeshwanth Rangineni, who is my

greatest support system in life. He has been the driving force that enabled me to

pursue my interests and follow my dreams. I would also like to thank my family

for their constant support and encouragement. The confidence they have in me has

been a boosting power for me to be persistent in my efforts and keep going forward.

vi

Contents

Abstract iii

Acknowledgments vi

Contents vii

List of Tables xii

List of Figures xvi

List of Abbreviations xviii

1 Introduction 1

2 A Comparative Study on Contemporary Intrusion Detection Datasets 5

2.1 Datasets . 6

2.1.1 UNSW-NB15 . 6

2.1.2 Bot-IoT . 6

2.1.3 CSE-CIC-IDS2018 . 7

2.2 Classification Algorithms . 8

2.2.1 Random Forest . 8

vii

2.2.2 Support Vector Machine . 8

2.2.3 Deep Learning . 9

2.2.4 Xtreme Gradient Boost . 9

2.3 Experimental Setup . 9

2.3.1 Software Specification . 11

2.3.2 Preprocessing . 11

2.3.3 Standardization and classifier model 11

2.4 Experimental Setup . 12

2.4.1 Analysis of Performance using RF and SVM 12

2.4.2 Analysis of performance using DL implementation 13

2.4.3 Analysis of performance using XGBoost 18

2.4.4 Analysis of false predictions 18

2.5 Conclusion and Future Work . 20

3 Impact of Adversarial Machine Learning Attacks on Contemporary

Intrusion Detection Datasets 22

3.1 Adversarial Attack Algorithms . 23

3.1.1 Jacobian-based Saliency Map Attack 23

3.1.2 Fast Gradient Sign Method 25

3.1.3 Carlini Wagner . 25

3.2 Contemporary Datasets . 26

3.3 Classification Algorithms . 26

3.3.1 OnevsRest Classification . 28

3.4 Experimental Setup and Evaluation 28

viii

3.4.1 Software Specifications . 28

3.4.2 Data Pre-Processing . 28

3.4.2.1 One-Hot Encoding 29

3.4.2.2 Min-Max Normalization 29

3.4.3 Experiment . 29

3.4.4 Evaluation Metrics . 31

3.4.5 Analysis of Evaluation Results 32

3.5 Conclusion and Future Work . 39

4 An Approach to Improve the Robustness of Machine Learning based

Intrusion Detection System Models Against the Carlini-Wagner At-

tack 42

4.1 A Brief Background . 43

4.1.1 Dataset Overview . 43

4.1.2 The Carlini Wagner Attack 43

4.1.3 Generative Adversarial Network 44

4.1.4 Classification Algorithms . 45

4.2 Architecture and Workflow of the Proposed Approach 46

4.2.1 Classification Goal . 47

4.2.2 Resources Used for the Experiment 47

4.2.3 Configuration of the Internal Components 47

4.2.3.1 Generator Configuration 47

4.2.3.2 Discriminator Configuration 48

4.2.3.3 The Core IDS . 48

ix

4.3 Implementation and Evaluation . 49

4.3.1 Preprocessing . 49

4.3.2 Evaluation of Baseline Model in Adversarial Settings 49

4.3.3 Evaluation of the Defense . 52

4.4 Evaluation Results and Performance Comparison 52

4.4.1 Comparison with Related Work 55

4.5 Conclusion . 56

5 Towards the Defense of Machine Learning based Intrusion Detec-

tion Systems Against Adversarial Black-box Attacks 57

5.1 Background . 59

5.1.1 Adversarial Black-box Attacks 59

5.1.2 Query-Based Black-Box Attack: Genetic Algorithm 59

5.1.3 Classification Algorithms . 61

5.1.4 Dataset . 61

5.2 Architecture of the Proposed Defense 62

5.2.1 Ideology for the Detection of Adversarial Inputs 64

5.3 Experiment Setup and Methodology 64

5.3.1 Data Preprocessing . 64

5.3.2 Train the IDS . 65

5.3.3 Adversarial Data Generation 66

5.3.4 Querying the Target Model with Adversarial Data 68

5.3.5 Prepare the Defense Layer . 69

5.3.6 Evaluate the Target Model with Defense 71

x

5.4 Evaluation Results: Discussion and Analysis 71

5.5 Conclusion and Future Work . 79

6 Conclusion and Future Work 80

6.1 Contributions . 81

6.2 Directions for Future Work . 82

References 83

A Source Code Snippets for Adversarial White-box Attacks and De-

fense 91

A.1 JSMA . 91

A.2 FGSM . 94

A.3 CW . 95

B Source Code Snippet for GAN-based Defense 97

C Source Code Snippets for Adversarial Black-box Attack and its De-

fense 102

C.1 Genetic Algorithm . 102

C.2 GAN-based Defense . 104

xi

List of Tables

2.1 Predictions on unseen malicious data using RF and SVM 13

2.2 Predictions on unseen malicious data using DL. 16

2.3 Predictions on unseen malicious data using XGBoost. 18

3.1 Hyperparameters for multi-layer perceptron algorithm. 27

3.2 Hyperparameters for decision tree algorithm. 27

3.3 Hyperparameters for random forest algorithm. 27

3.4 Hyperparameters for support vector machine algorithm. 28

3.5 Hyperparameters for JSMA attack. 31

3.6 Hyperparameters for FGSM attack. 32

3.7 Hyperparameters for CW attack. 32

3.8 Summary of accuracy scores in normal (baseline) and adversarial settings

for UNSW-NB15 dataset. 33

3.9 Summary of F1-scores in normal (baseline) and adversarial settings for

UNSW-NB15 dataset. 33

3.10 Summary of recall scores in normal (baseline) and adversarial settings for

UNSW-NB15 dataset. 34

xii

3.11 Summary of AUC scores in normal (baseline) and adversarial settings for

UNSW-NB15 dataset. 34

3.12 Summary of accuracy scores in normal (baseline) and adversarial settings

for Bot-IoT dataset. 35

3.13 Summary of F1-scores in normal (baseline) and adversarial settings for

Bot-IoT dataset. 35

3.14 Summary of recall scores in normal (baseline) and adversarial settings for

Bot-IoT dataset. 36

3.15 Summary of AUC scores in normal (baseline) and adversarial settings for

Bot-IoT dataset. 36

3.16 Summary of accuracy scores in normal (baseline) and adversarial settings

for CSE-CIC-IDS2018 dataset. 37

3.17 Summary of F1-scores in normal (baseline) and adversarial settings for

CSE-CIC-IDS2018 dataset. 37

3.18 Summary of recall scores in normal (baseline) and adversarial settings for

CSE-CIC-IDS2018 dataset. 38

3.19 Summary of AUC scores in normal (baseline) and adversarial settings for

CSE-CIC-IDS2018 dataset. 38

4.1 Accuracy scores in normal and adversarial settings. 50

4.2 F1 scores in normal and adversarial settings. 50

4.3 Recall scores in normal and adversarial settings. 51

4.4 AUC in normal and adversarial settings. 51

4.5 Accuracy scores in adversarial settings without and with defense. 53

xiii

4.6 F1 scores in adversarial settings without and with defense. 53

4.7 Recall scores in adversarial settings without and with defense. 54

4.8 AUC in adversarial settings without and with defense. 54

5.1 Hyperparameters for decision tree algorithm. 66

5.2 Hyperparameters for random forest algorithm. 67

5.3 Hyperparameters for support vector machine algorithm. 67

5.4 The hyperparameters for random forest algorithm used during adversarial

data generation. 69

5.5 Architecture of GAN’s generator network. 70

5.6 Architecture of GAN’s discriminator network. 71

5.7 Comparison of accuracy scores of IDS classifier in normal and adversarial

settings. 72

5.8 Comparison of F1 scores of IDS classifier in normal and adversarial settings. 72

5.9 Comparison of recall scores of IDS classifier in normal and adversarial

settings. 72

5.10 Comparison of AUC scores of IDS classifier in normal and adversarial

settings. 73

5.11 Comparison of accuracy scores of IDS classifier in adversarial settings

without and with defense. 73

5.12 Comparison of F1 scores of IDS classifier in adversarial settings without

and with defense. 73

5.13 Comparison of recall scores of IDS classifier in adversarial settings without

and with defense. 74

xiv

5.14 Comparison of AUC scores of IDS classifier in adversarial settings without

and with defense. 74

xv

List of Figures

2-1 Protocols in the datasets. 7

2-2 workflow of the experiment. 10

2-3 Confusion matrix for RF classifier on 44 malicious records of UNSW-NB15. 14

2-4 Confusion matrix for RF classifier on 65 malicious records of Bot-IoT. . . 14

2-5 Confusion matrix for RF classifier on 53 malicious records of CSE-CIC-

IDS2018. 14

2-6 Confusion matrix for SVM classifier on 44 malicious records of UNSW-

NB15. 15

2-7 Confusion matrix for SVM classifier on 65 malicious records of Bot-IoT. . 15

2-8 Confusion matrix for SVM classifier on 53 malicious records of CSE-CIC-

IDS2018. 15

2-9 Confusion matrix for DL classifier on 44 malicious records of UNSW-NB15. 16

2-10 Confusion matrix for DL classifier on 65 malicious records of Bot-IoT. . . 17

2-11 Confusion matrix for DL classifier on 53 malicious records of CSE-CIC-

IDS2018. 17

2-12 Confusion matrix for XGBoost classifier on 44 malicious records of UNSW-

NB15. 19

2-13 Confusion matrix for XGBoost classifier on 65 malicious records of Bot-IoT. 19

xvi

2-14 Confusion matrix for XGBoost classifier on 53 malicious records of CSE-

CIC-IDS2018. 19

2-15 Summary of false predictions. 20

3-1 Stage 1 of the experiment. 30

3-2 Stage 2 of the experiment. 31

4-1 Training phase of the experiment. 46

4-2 Testing phase of the experiment. 46

4-3 An overall comparison of accuracy scores. 55

5-1 An outline of the architecture. 62

5-2 Inside the GAN-based defense layer: Training phase 63

5-3 Inside the GAN-based defense layer: Testing phase 63

5-4 Training the IDS classifier with original data. 66

5-5 Adversarial data is separated into training and test sets. 68

5-6 Adversarial data is generated by interacting with the target black-box

model and using the local model. 68

5-7 Preparation of the defense layer by training the GAN. 70

5-8 Changes in the performance of target model with respect to accuracy scores. 75

5-9 Changes in the performance of target model with respect to F1 scores. . 76

5-10 Changes in the performance of target model with respect to recall scores. 76

5-11 Changes in the performance of target model with respect to AUC scores. 77

xvii

List of Abbreviations

AML . Adversarial machine learning

AUC . Area under the curve

CIC . Canadian institute of cybersecurity

CSE . Communications security establishment

CW . Carlini Wagner

DL . Deep learning

DT . Decision tree

EA . Evolutionary Algorithm

FGSM . Fast gradient sign method

GA . Genetic algorithm

GAN . Generative adversarial network

GB . Gradient Boosting

IDS . Intrusion detection system

JSMA . Jacobian-based saliency map attack

ML . Machine learning

MLaaS . ML as a service

MLP . Multi layer perceptron

NN . Neural network

RF . Random forest

SVM . Support vector machine

UNSW . University of New South Wales

XGBoost Xtreme gradient boost

ZOO . Zeroth Order Optimization

xviii

Chapter 1

Introduction

Intrusion detection systems (IDSs) were first designed to proactively monitor a

network’s traffic and raise alerts when suspicious traffic enters the network, or if an

unusual event occurs [1]. Since then, the IDS technology underwent several enhance-

ments [2]. However, despite the advancements, there was no significant improvement

in the detection rates of IDSs and the number of false alarms. To address such per-

formance issues, research emerged in the late 1990s to use machine learning (ML)

techniques in IDS development [3]. The IDS models powered by ML could take de-

cisions on unseen patterns of data, in addition to the ones they are aware of, unlike

the traditional IDSs. Furthermore, the traditional detection systems took a long

time to analyze and respond to new or complex signatures, whereas the ML-based

models could do that in very less time [4]. Thereafter, research progressed toward

improving the efficiency of ML-based IDSs while also bringing down false detections.

Nevertheless, a system is never totally secure because the concept of security is only

relative. There are always ways for adversaries to exploit and get through a secured

perimeter. This research emphasizes some of the existing problems in relevance to

1

the area of IDSs, and analyzes their impacts. It also puts forth approaches that can

reduce the impact and make the IDSs more immune to the discussed problems. The

remainder of this chapter elaborates on the problems and discusses the work done

(and in progress) to address them.

For a long time, the experiments were based on research datasets such as DARPA

98, KDD99, and NSL-KDD, which were created in the late 1990s. Although they

had been very useful in research experiments and findings, with rapidly changing

network behaviors and attacks growing more sophisticated day by day, these datasets

become less usable as they do not reflect modern traffic behaviors. As significant as

a research experiment is, its applicability will be in question because the data it has

learned and understood does not include contemporary data patterns and scenarios.

Therefore, generating more datasets that reflect modern attack scenarios and are

realistic enough to make a model fit in a real-time network is necessary. As there

are recently published datasets published for the research community, a study on

their properties and influence on the performance of IDS models is beneficial to the

researchers. This work is discussed in detail in Chapter 2.

In the early 2000s, a study by N. Dalvi et al. [5] revealed a concerning vulner-

ability of ML algorithms when exposed to adversarial inputs. Later, it was shown

that deep learning (DL) and neural networks (NNs) are more vulnerable to adver-

sarial perturbations [6–12]. Various adversarial attack scenarios were developed, and

classifiers were evaluated by subjecting them to the adversarial samples generated

through attack algorithms. Defense mechanisms had also been proposed to reduce

the impact of adversarial perturbations on the models [13]. However, much of this

2

progress was made in image-based areas, like computer vision, image processing,

etcetera. Relatively lesser progress has been made in the IDS domain [14]. One of

the major concerns about training IDSs is datasets. The performance of an IDS

hugely depends on the quality of the data it learns from.

Three adversarial white-box evasion attack algorithms – Jacobian-based Saliency

Map Attack (JSMA), Fast Gradient Sign Method (FGSM), and Carlini Wagner (CW)

– were used to study their impact on the performance of the models. The novelty of

this part of the work lies in the combination of the components such as the contempo-

rary datasets, attack algorithms, and the domain itself. Unlike image data, network

traffic data is more complex to analyze, process, and work with. The experiment is

discussed in detail in Chapter 3.

White-box evasion attacks are considered the attacks with the maximum impact

on the target models because the attack algorithms have almost complete knowledge

of the model and control over its dataset. This research proposes a defense that can

reduce the impact of a powerful white-box evasion attack, i.e., the CW. The defense

is based on a generative adversarial network (GAN). The CSE-CIC-IDS2018 [15–17]

dataset is used for the experiment, which is discussed in Chapter 4.

White-box attacks are mostly implemented in controlled, and in particular, re-

search or experimental environments. They are less common to occur in real-world

networks because it is not likely for an adversary to have complete knowledge of the

target model. In practice, an adversary has zero to partial knowledge of a target

model, which is the case of a black-box or a gray-box attack, respectively. This

research moves forward toward developing a defense against adversarial black-box

3

evasion attacks. The goal is to detect query-based black-box attacks and block such

attack inputs to prevent the model from processing the deceptive inputs.

The outline of the remainder of this document is as follows. Chapter 2 covers the

evaluation of contemporary datasets using various efficient classification algorithms.

Chapter 3 discusses the analysis of the impact of adversarial white-box evasion at-

tack algorithms on the model’s performance when it is trained with contemporary

datasets. Chapter 4 is on the evaluation of the proposed defense mechanism to make

IDS models resistant to the CW attack. Chapter 5 is about the work that is currently

in progress to develop a defense technique to tackle adversarial black-box evasion at-

tacks. Chapter 6 concludes the proposal document by discussing the dissertation

milestones.

4

Chapter 2

A Comparative Study on

Contemporary Intrusion Detection

Datasets

The datasets used for this study are UNSW-NB15, Bot-IoT, and CSE-CIC-

IDS2018. Some of the factors behind choosing these datasets are the modern attack

scenarios they include, the number of protocols, and the types of attacks. Based on

the efficiency demonstrated in the literature, four classification algorithms – random

forest (RF), support vector machine (SVM), keras-based deep learning (DL), and

xtreme gradient boost (XGBoost) – are used.

5

2.1 Datasets

2.1.1 UNSW-NB15

This dataset was created in a synthetic environment at the University of New

South Wales (UNSW) cybersecurity lab. The dataset has 49 features, with 9 types

of attacks, and normal traffic. The data records are pre-split into training and test

sets [18]. It has a total of 2,218,761 malicious traffic instances and 321,283 normal

traffic instances. Since this dataset has a relatively smaller difference between the

number of normal and malicious instances than that of the other two datasets, we

consider it to be less imbalanced (or more balanced) than the others. This dataset’s

balance (normal:malign) ratio is approximately 1:0.14. The categories of attacks it

includes are – fuzzers, analysis, backdoor, DoS, exploits, generic, reconnaissance,

shellcode, and worms [19].

2.1.2 Bot-IoT

This dataset was generated in 2018. It consists of simulated IoT network traffic,

with various types of IoT attacks. It is available in the form of pre-split training and

test sets, with a total of about 9,543 normal traffic instances and 73,360,900 malicious

traffic instances, resulting in a huge imbalance between the number of normal and

malicious traffic instances. The balance ratio in this dataset is approximately 1:7687.

6

Figure 2-1: Protocols in the datasets.

2.1.3 CSE-CIC-IDS2018

This dataset is a collaborative effort of the Communications Security Establish-

ment (CSE) and the Canadian Institute for Cybersecurity (CIC). Created in the year

2018, this dataset was generated using a vast network of machines to make it close

to real-world traffic data. The testbed has a victim network with 420 computers

and 30 servers. The dataset includes the network traffic and logs from each of the

machines present in the victim network. A fair fraction of this dataset consists of

1,048,010 normal scenario records with only 567 malicious scenario records, resulting

in a balance ratio of 1848:1. It does not have available pre-split training and test

sets. The summary of protocols in the three datasets is shown in Figure 2-1 [20].

7

2.2 Classification Algorithms

2.2.1 Random Forest

The RF classifier, as the name suggests, is an ensemble learning technique that

consists of a large number of individual decision trees. Each tree in the RF performs

the classification of a label and the label with the majority votes becomes the outcome

of a prediction. A reason it is a powerful algorithm is that it results in trees that

are not only trained on different sets of data (bagging) but also use different sets

of features to make decisions. The main idea is to combine hundreds or thousands

of decision trees and train each one on a slightly different set of observations while

splitting nodes in each tree [21]. The final predictions of the algorithm are made

by averaging the predictions of each tree. RF is also used as a feature selection

algorithm as each tree predicts random features and gives out high accuracy based

on those random selections of features.

2.2.2 Support Vector Machine

An SVM is described as a discriminative classifier that works by generating a

hyperplane. In other words, given labeled training data (supervised learning), this

algorithm outputs an optimal hyperplane that categorizes new examples. In two-

dimensional space, this hyperplane is a line that divides the plane into two parts

where each of the classes lay on either side. When perfect separation is not possible,

the classifier maximizes the margins and minimizes the misclassifications. It tries to

maintain the slack variable to zero while maximizing the margin. A slack variable is

8

used to penalize the objective function when the SVM misclassifies [22].

2.2.3 Deep Learning

DL is a class of ML algorithms that uses multiple layers to extract progressively

higher-level features from the raw input. The deep in ”deep learning” is the various

layers through which the data is transformed. It allows training to predict outputs

based on a set of inputs. It uses a neural network to imitate human intelligence. The

neural network consists of three or more layers of neurons [23].

2.2.4 Xtreme Gradient Boost

XGBoost is an ensemble technique that sequentially adds predictors and corrects

previous models. Its implementation offers multiple advanced features such as model

tuning, computing environments, and algorithm enhancement. In addition to stan-

dard gradient boosting (GB), this algorithm is capable of performing two other major

forms of GB - stochastic GB and regularized GB. XGBoost supports fine-tuning and

the addition of regularization parameters.

2.3 Experimental Setup

Figure 2-2 shows the workflow of the experiment.

9

Figure 2-2: workflow of the experiment.

10

2.3.1 Software Specification

Spyder workspace, which comes in-built with Anaconda software, was used for

coding the model. All the necessary packages, such as pandas, numpy, and other

classification models were imported from the scikit-learn package.

2.3.2 Preprocessing

The impute module of the scikit-learn package was used to replace the NULL/-

NaN values in the datasets with mean or median, based on the nature of values in

the columns in which they were found. Feature selection is performed to determine

which features contribute the most to the output. For this experiment, the ten best

features were selected from each dataset, and then the columns were divided into fea-

tures and labels. Label encoding was also applied to categorical features and classes

to make them more suitable for analysis.

2.3.3 Standardization and classifier model

After feature selection, the dataset was split into train and test sets in a ratio

of 75:25. K-fold-cross validation was used to form randomized validation sets. The

results from five-, eight-, and ten-fold cross-validations suggested that the five-fold

validation was almost as good as eight- and ten-fold, and the latter ones took much

longer execution time than five-fold. Additionally, due to resource constraints, five-

fold turned out to be a fair choice. The training data was standardized before training

the model to make data in all the columns fall in the same range. The model was

11

trained in an under-sampling manner, instead of over-sampling, to avoid any bias

that the model can learn during the training process. The training data used from the

CSE-CIC-IDS2018 dataset was only about 10 percent of its total available training-

set size, due to limited hardware resources. For the other two datasets, the entire

pre-split training sets of data were used. The portion from the CSE-CIC-IDS2018

dataset was carefully chosen to make sure it has all the types of attacks covered, but

with a relatively fewer number of records. It was made sure that this portion of the

dataset has a similar balance ratio to that of the complete dataset.

2.4 Experimental Setup

There are two scenarios followed to evaluate the datasets. The first scenario is to

assess each dataset by training the model with each of the selected algorithms. In

the second scenario, as an additional step, a class of attacks is separated, and the

model is trained with the remaining classes and is then evaluated to know whether

it can identify the untrained attacks. This methodology lets us understand if the

trained ML models can identify new and unseen attacks.

2.4.1 Analysis of Performance using RF and SVM

Table 2.1 [20] shows the outcomes of the classification of unseen malicious pro-

files. The results show that RF performs better overall in classifying the untrained

malicious instances for all three datasets. Bot-IoT has all the predictions correct.

The reason could be that the majority of profiles in Bot-IoT are about malicious

12

data and the model might be biased towards malicious instances. In the case of

CSE-CIC-IDS2018, the majority of its profiles belong to normal data, and hence the

model tends to predict the test inputs as normal, particularly when the SVM algo-

rithm is used. Similarly, the classification seems to be unbiased for UNSWNB-15 in

identifying the Worms although the prediction accuracy is not so impressive.

A summary of the number of false predictions made when trained with each of

the datasets is presented at the end of this section.

Table 2.1: Predictions on unseen malicious data using RF and SVM .

Datasets Malicious Profiles RF SVM
UNSW-NB15 Worms (44) 27 Malicious 28 Malicious

17 Normal 16 Normal
Bot-IoT Theft (65) 65 Malicious 63 Malicious

2 Normal
CSE-CIC-IDS2018 SQL Injection (53) 22 Malicious 7 Malicious

31 Normal 46 Normal

Figures 2-3 - 2-8 are the confusion matrices showing the classification by RF and

SVM algorithms when trained with the UNSW-NB15 dataset.

2.4.2 Analysis of performance using DL implementation

The prediction results on unseen malicious instances as seen in Table 2.2 show

how the performance of the model varies depending on the balance ratio of the profiles

in the datasets. The classification of the untrained Worms profile in UNSW-NB15

is fair with 26 identified as malicious and 18 as normal. For the Bot-IoT dataset,

which has a dominating number of malicious profiles, the classification of Theft is

13

Figure 2-3: Confusion matrix for RF classifier on 44 malicious records of
UNSW-NB15.

Figure 2-4: Confusion matrix for RF classifier on 65 malicious records of
Bot-IoT.

Figure 2-5: Confusion matrix for RF classifier on 53 malicious records of
CSE-CIC-IDS2018.

14

Figure 2-6: Confusion matrix for SVM classifier on 44 malicious records of
UNSW-NB15.

Figure 2-7: Confusion matrix for SVM classifier on 65 malicious records of
Bot-IoT.

Figure 2-8: Confusion matrix for SVM classifier on 53 malicious records of
CSE-CIC-IDS2018.

15

Figure 2-9: Confusion matrix for DL classifier on 44 malicious records of
UNSW-NB15.

perfect, with no false prediction. Similarly, for CSE-CIC-IDS2018 data, which has a

dominating number of normal profiles, the classification of the SQL injection turns

out to be normal with only 5 instances identified as malicious. The deep learning

implementation adds more weight to the statement that balanced datasets are better

for training the ML-based IDS.

Table 2.2: Predictions on unseen malicious data using DL.

Datasets Malicious Profiles DL
UNSW-NB15 Worms (44) 26 Malicious

18 Normal
Bot-IoT Theft (65) 65 Malicious
CSE-CIC-IDS2018 SQL Injection (53) 5 Malicious

48 Normal

The confusion matrices for the results shown in Table 2.2 are presented in Figures

2-9 - 2-11.

16

Figure 2-10: Confusion matrix for DL classifier on 65 malicious records of
Bot-IoT.

Figure 2-11: Confusion matrix for DL classifier on 53 malicious records of
CSE-CIC-IDS2018.

17

2.4.3 Analysis of performance using XGBoost

It can be seen in Table 2.3 that the classes with a higher number of instances in

imbalanced datasets make the model biased and affect the prediction of malicious at-

tacks. XGBoost predicts the untrained malicious profiles from UNSW-NB15 and Bo-

tIoT datasets accurately. However, in the case of CSE-CICIDS2018, it has predicted

none of the profiles as an attack. Although the training data was under-sampled, the

model when trained with the CSE-CIC-IDS2018 dataset is biased towards the normal

profile (majority class in the dataset) and hence, has made biased predictions.

Table 2.3: Predictions on unseen malicious data using XGBoost.

Datasets Malicious Profiles XGBoost
UNSW-NB15 Worms (44) 42 Malicious

2 Normal
Bot-IoT Theft (65) 65 Malicious
CSE-CIC-IDS2018 SQL Injection (53) 0 Malicious

53 Normal

Figures 2-12 - 2-14 are the confusion matrices for the results shown in Table 2.3.

2.4.4 Analysis of false predictions

Figure 2-3 shows a summary of the false predictions (false positives and false

negatives) made by the model when trained with each of the datasets (The XGBoost

classifier is represented as XGB in the figure). Results show that the balance ratio

of the datasets can influence the number of false predictions made by a model. The

18

Figure 2-12: Confusion matrix for XGBoost classifier on 44 malicious records
of UNSW-NB15.

Figure 2-13: Confusion matrix for XGBoost classifier on 65 malicious records
of Bot-IoT.

Figure 2-14: Confusion matrix for XGBoost classifier on 53 malicious records
of CSE-CIC-IDS2018.

19

Figure 2-15: Summary of false predictions.

model rendered relatively fewer and more balanced false predictions when trained

with a well-balanced (or relatively more balanced) dataset, i.e., UNSW-NB15, unlike

when it is trained with more imbalanced datasets.

2.5 Conclusion and Future Work

In this experiment, the performance of three contemporary IDS datasets is com-

pared by training a model with each of them using a set of algorithms that are

well-known for their efficiency and robustness. Many existing ML-based IDS models

are trained with old benchmark datasets and there is a need to study the recent

ones and analyze their characteristics so that the researchers can switch to the latest

datasets by choosing one which satisfies their requirements, and this stands as the

motive behind this work. The evaluation results suggest that the imbalance in the

datasets can influence the number of false predictions made by a model.

20

A thorough analysis of the research datasets is essential as the performance of

research models and their applicability to real-world scenarios hugely depend on

the quality of data they learn or work with. Data generated in a typical simulated

environment is, in multiple ways, different from the network traffic observed in a real

network. However, the gap between the two can be reduced by carefully incorporating

the properties that make data more realistic. ML techniques can also be used to

understand the detection patterns of the network traffic and bypass the IDS by

manipulating the values in the dataset. Hence, as future work, more research needs

to be done in two directions - toward improving the datasets in a way that they can

not only enhance the quality of research but also be used in real-life networks, and

in developing mechanisms to handle the IDS evasion techniques.

21

Chapter 3

Impact of Adversarial Machine

Learning Attacks on

Contemporary Intrusion Detection

Datasets

Adversarial Machine Learning (AML) is the concept of deceiving an ML model by

perturbing an input to make the model render an incorrect prediction. The perturbed

input is crafted in a way that it is imperceptible to humans but makes a considerable

difference to a neural network. Neural networks are vulnerable to adversarial attacks

during training as well as testing/validation phases. Attack techniques can vary

based on factors like the time of occurrence (training, testing, etc.), the knowledge

of the target model that the attacker has, the target of the attack, the influence

of the attacker, etc. The attacks carried out in the training phase are known as

22

Poisoning attacks and those launched during the testing phase are called Evasion

attacks. As highlighted in [24], three major properties of an attack are the influence,

the focus of violation (confidentiality, integrity, availability), and the specificity of

the target. For example, based on some of the factors stated above, an evasion attack

can be classified as either a white-box attack, for which an attacker needs to have

complete knowledge of the model (including details like training dataset, parameters,

etcetera), or a black-box attack, where the attacker has almost no knowledge of the

model, or a gray-box attack, for which the attacker should have partial knowledge of

the target. The attacks used for this experiment are all white-box evasion attacks.

3.1 Adversarial Attack Algorithms

3.1.1 Jacobian-based Saliency Map Attack

The JSMA, introduced in [10], is one of the attack techniques evaluated in this

study. It is an evasion attack that works by modifying the inputs based on the

gradients of the target model with respect to the perturbed features. It iteratively

generates a saliency map using which a feature is chosen that will have a maximum

prediction error when a perturbation is added [25]. The attack aims to perturb

the least possible number of features to cause misclassification by setting a limited

perturbation budget. For each feature selected, the perturbation is adjusted and

the iterations are continued until misclassification in the target class is achieved or

the limit for a maximum number of perturbed features is met [10]. If it fails to

achieve this, the algorithm selects the next feature and repeats the process with

23

it [11]. Although the success rates achieved by JSMA and FGSM are almost similar,

the number of features modified is relatively lesser and the computational costs are

higher with JSMA, than with FGSM [25]. Algorithm 1 outlines a generic flow of

steps involved in JSMA attack.

Algorithm 1: JSMA attack

Require: Target model M , input x, target label t, maximum perturbation budget
k, saliency threshold γ, perturbation multiplier θ

Ensure: Adversarial example xadv
Set xadv ← x
Set i← 0 . i is the counter for iteration
while the predicted label of xadv is not equal to t and i < k do

Compute the Jacobian matrix J of M at xadv
Compute the saliency map S of xadv using J and the current predicted label

of xadv
Sort the features of xadv in descending order of their saliency values
for each feature f in xadv do

if the saliency value of f is less than γ then
Skip to the next feature

end if
Compute the gradient of M with respect to f at xadv
if the gradient points in the direction of decreasing f then

Perturb f by −θ
else

Perturb f by θ
end if
Clip the perturbed value of f to the range [0, 1]
Update xadv with the perturbed value of f

end for
Increment i by 1

end while
return xadv

24

3.1.2 Fast Gradient Sign Method

The FGSM attack was proposed by [8] for adversarial data generation. The

algorithm uses a loss function and aims to minimize it [14]. Unlike the JSMA attack,

the FGSM attack does not aim at generating minimal adversarial perturbations.

However, it tries to speed up the adversarial data generation process [8], and this is

why it takes less time for adversarial data generation than the JSMA. Algorithm 2

provides a generic pseudocode for FGSM attack.

Algorithm 2: FGSM attack

Require: Input x, target label t, step size ε, gradient function G, perturbation η
Ensure:

Perturbed input x′

Calculate the gradient g ← G(x, t)
Compute the perturbation η ← ε · sign(g)
Generate the perturbed input x′ ← clip(x+ η, 0, 1) . Perturbed input is clipped
to the range [0,1]
return x′

3.1.3 Carlini Wagner

The CW attack, proposed by [7], is considered to be one of the most powerful

attacks in defeating neural network models. It is often used as a benchmark algo-

rithm to evaluate the vulnerability of a model, and also to assess the strength of an

adversarial data generation technique. The evaluations conducted by the authors

show that the CW attack fails the popular defensive distillation mechanism, which

is another potential reason for its robustness. The L2 attack, implemented in this

25

work, is available in the Cleverhans library [26]. Algorithm 3 presents the flow of

steps involved in the L2 attack.

3.2 Contemporary Datasets

The datasets used for this experiment are the same as the ones discussed in

Chapter 2, which are the UNSW-NB15, Bot-IoT, and CSE-CIC-IDS2018. However,

for this experiment, around 20% of the CSE-CIS-IDS2018 was used, which is more

than the size of data that was used for the experiment in Chapter 1.

3.3 Classification Algorithms

The study summarized in this chapter works with multiclass classification as all

the datasets used in the experiment have multiple classes. To sync well with the na-

ture of the datasets, four efficient classification algorithms have been chosen, namely,

multi-layer perceptron (MLP), decision tree (DT), random forest (RF), and support

vector machine (SVM). Tables 3.1 - 3.4 summarize the hyperparameters used for the

classifiers [27]. The criterion parameter signifies how the algorithm chooses to split

the decision tree. In other words, it helps the algorithm choose the best feature to

split the data at each node of the tree. The max depth parameter represents the

maximum number of levels in the tree. The n estimators hyperparameter represents

the number of decision trees used in the random forest algorithm. The value of pa-

rameter C indicates the width of the margin used to separate the classes and controls

the trade-off between obtaining low training and testing errors. The random state

26

parameter is used to control the random number generation. When set to an integer

value, it usually represents the seed for the random number generator. The loss pa-

rameter represents the type of loss function used to penalize misclassifications made

by the SVM algorithm. To perform multi-class classification, the OneVsRestClassifer

function is used to fit one classifier per class.

Table 3.1: Hyperparameters for multi-layer perceptron algorithm.

Parameter Value
dropout 0.4
dense layer 1 256
dense layer 2 128
activation relu
loss categorical crossentropy
optimizer adam
output layer activation softmax

Table 3.2: Hyperparameters for decision tree algorithm.

Parameter Value
criterion gini
max depth 12

Table 3.3: Hyperparameters for random forest algorithm.

Parameter Value
n estimators 200
random state 4
min samples split 10

27

Table 3.4: Hyperparameters for support vector machine algorithm.

Parameter Value
C 1
random state 42
loss hinge

3.3.1 OnevsRest Classification

This is a method that enables multi-class classification by using binary classifi-

cation algorithms. The process involves splitting a multi-class dataset into multiple

binary classification subsets/problems. Each binary classifier is then trained with

each of the binary classification subsets. Meaning, the model gets trained with each

class, to learn all the classes present in a dataset.

3.4 Experimental Setup and Evaluation

3.4.1 Software Specifications

The programming setup is based on Python 3.6.5, Scikit-learn v0.19.1 library [28],

Tensorflow v1.13.2 [29], and Keras v2.1.5 [30]. For the implementation of the attack

algorithms, Cleverhans v3.0.1 library [26] has been used.

3.4.2 Data Pre-Processing

There are two steps of pre-processing implemented in this work - the OneHot

Encoding, and the Min-Max Normalization.

28

3.4.2.1 One-Hot Encoding

This step was performed to convert the entire data to a numerical format. There

are some features in each dataset that have non-numerical values, for example, cat-

egorical data. The One-Hot encoding method helps address this scenario.

3.4.2.2 Min-Max Normalization

This technique was applied to all the datasets to scale the values in each of them

between 0 and 1. Since different features in a dataset might have values distributed

on different scales, this technique helps convert all the values to a common scale

and eliminate outliers, if any. Additionally, the attack methods require that all the

features are within a common range, to be effective [25].

3.4.3 Experiment

There are two stages implemented in the experiment: 1) training a learning

algorithm with original data; 2) generating adversarial samples from the original

data. In the first stage, training and testing phases are carried out, as shown in

Figure 3-1 [31]. In both phases, the original data is pre-processed. MLP is used

as the baseline learning algorithm. Therefore, baseline results are obtained when

MLP is tested with the data (original or adversarial), and for evaluation purposes,

each of the other algorithms (DT, RF, and SVM) are implemented over the baseline

algorithm.

Figure 3-2 [31] outlines the second stage of the experiment. There are training

and testing phases in the second stage as well. The main difference here is that,

29

Figure 3-1: Stage 1 of the experiment.

in the testing phase, after the test data is pre-processed, it is fed to the MLP, and

each of the attack algorithms is implemented to add adversarial perturbations to the

test data. The obtained adversarial test set is forwarded to the classifier for final

predictions. The attacks are performed by targeting the malign classes in the chosen

datasets, under white-box settings. Tables 3.5 - 3.7 specify the parameters set for

each of the attacks. The parameter theta is the perturbation added for modification of

data. Gamma denotes the maximum percentage of perturbed features. The clip min

parameter minimum value for clipping the modified data, and the clip max parameter

is the maximum value for clipping. The eps (epsilon) parameter indicates the attack

step size, in other words, it is a factor for scaling perturbations. For the CW attack,

the binary search steps parameter indicates the number of times binary search is

performed to find an optimal tradeoff-constant between the norm of a perturbation

and the confidence score of the classification. Max iterations parameter represents

the maximum number of iterations; a larger value usually produces lower distortion

30

Figure 3-2: Stage 2 of the experiment.

results. The learning rate parameter is the learning rate for the attack. Batch size

indicates the number of attacks to be run simultaneously. The initial const value is

the initial tradeoff-constant between the size of a perturbation and the confidence

score of the classification.

Table 3.5: Hyperparameters for JSMA attack.

Parameter Value
theta 1
gamma 0.1
clip min 0
clip max 1

3.4.4 Evaluation Metrics

As the last step in the evaluation, each classifier is tested with the original test

set and then with the adversarial samples. The same process is followed for every

31

Table 3.6: Hyperparameters for FGSM attack.

Parameter Value
eps 0.3

Table 3.7: Hyperparameters for CW attack.

Parameter Value
binary search steps 2
max iterations 100
learning rate 0.2
batch size 1
initial const 10

dataset. The metrics used for evaluation are Accuracy, Area Under the Curve (AUC),

F1 score, and Recall.

3.4.5 Analysis of Evaluation Results

Tables 3.8 - 3.11 present the performance results for the evaluation metrics chosen

for this experiment when the model is trained with the UNSW-NB15 dataset. Tables

3.12 - 3.15 present the results when the model is trained with the Bot-IoT dataset.

The results of the model when trained with the CSE-CIC-IDS2018 dataset are shown

in Tables 3.16 - 3.19 [31]. The remaining paragraphs in this section analyze the results

from the following perspectives - dataset, adversarial algorithm, and classification

model.

The scores of the model, when trained with UNSW-NB15 dataset, went down

32

Table 3.8: Summary of accuracy scores in normal (baseline) and adversarial
settings for UNSW-NB15 dataset.

Classifier Baseline Accuracy JSMA FGSM CW
MLP 0.72 0.39 0.38 0.21
SVM 0.59 0.22 0.26 0.23
DT 0.64 0.57 0.19 0.15
RF 0.64 0.64 0.25 0.28

Table 3.9: Summary of F1-scores in normal (baseline) and adversarial set-
tings for UNSW-NB15 dataset.

Classifier Baseline F1-score JSMA FGSM CW
MLP 0.73 0.45 0.35 0.33
SVM 0.68 0.30 0.29 0.31
DT 0.69 0.62 0.32 0.24
RF 0.73 0.68 0.38 0.43

with respect to all the performance metrics. The JSMA algorithm modified 11%

of the features in this dataset to implement the attack and took 8 minutes on av-

erage for adversarial data generation. The FGSM algorithm modified 78% of the

features in this dataset for the attack but took only about 5 seconds to generate

adversarial data. The main goal of FGSM is to quickly generate adversarial samples

without worrying much about the number of features perturbed, unlike JSMA which

attempts to perturb the least possible number of features to cause desired misclas-

sification. The results obtained justify the respective behaviors of these algorithms.

On the other hand, the CW attack, which is computationally heavier than the other

two algorithms, modified around 65% of the features and took about 50 minutes to

33

Table 3.10: Summary of recall scores in normal (baseline) and adversarial
settings for UNSW-NB15 dataset.

Classifier Baseline Recall JSMA FGSM CW
MLP 0.72 0.42 0.40 0.25
SVM 0.60 0.23 0.31 0.26
DT 0.66 0.62 0.38 0.22
RF 0.65 0.56 0.24 0.28

Table 3.11: Summary of AUC scores in normal (baseline) and adversarial
settings for UNSW-NB15 dataset.

Classifier Baseline AUC JSMA FGSM CW
MLP 0.90 0.58 0.62 0.55
SVM 0.89 0.31 0.63 0.61
DT 0.84 0.80 0.53 0.51
RF 0.92 0.92 0.83 0.78

generate adversarial samples. From the standpoint of the classification algorithms

under each of the attacks, the SVM model was the most affected one under the

JSMA attack whereas the RF classifier was the most robust one among the three.

DT model was the most affected one under the settings of both FGSM and CW

attacks whereas the RF model was the most robust in both cases. To summarize,

the RF classifier was more resistant to all three attack settings than the other two

classifiers and was followed by MLP, SVM, and DT. The highest baseline (normal)

accuracy was obtained using the MLP classifier while SVM gave the least baseline

accuracy. CW attack had the highest overall impact on the model whereas JSMA

had the least impact of all.

34

Table 3.12: Summary of accuracy scores in normal (baseline) and adversarial
settings for Bot-IoT dataset.

Classifier Baseline Accuracy JSMA FGSM CW
MLP 0.91 0.39 0.36 0.34
SVM 0.94 0.48 0.40 0.48
DT 0.99 0.45 0.48 0.65
RF 0.99 0.86 0.47 0.60

Table 3.13: Summary of F1-scores in normal (baseline) and adversarial set-
tings for Bot-IoT dataset.

Classifier Baseline F1-score JSMA FGSM CW
MLP 0.99 0.76 0.40 0.55
SVM 1.0 0.77 0.33 0.58
DT 0.99 0.61 0.46 0.67
RF 0.99 0.96 0.42 0.57

Tables 3.12 - 3.15 show the decline in the performance scores of the model when

trained with the Bot-IoT dataset. JSMA algorithm modified 43% of the features in

this dataset to implement the attack and took 14 minutes on average for adversarial

data generation. The FGSM algorithm modified 52% of the features in this dataset

for the attack and took about 20 seconds to generate adversarial data. The CW

attack also modified around 52% of the features and took about 2 hours to gener-

ate adversarial samples. As Bot-IoT dataset is larger than UNSW-NB15, all three

adversarial algorithms took longer times to generate adversarial data from Bot-IoT.

From the standpoint of the classification algorithms under each of the attacks, the

DT model was the most affected one under the JSMA attack while the RF classifier

35

Table 3.14: Summary of recall scores in normal (baseline) and adversarial
settings for Bot-IoT dataset.

Classifier Baseline Recall JSMA FGSM CW
MLP 0.99 0.93 0.39 0.57
SVM 1.0 0.93 0.41 0.59
DT 1.0 0.45 0.40 0.60
RF 0.99 0.95 0.41 0.57

Table 3.15: Summary of AUC scores in normal (baseline) and adversarial
settings for Bot-IoT dataset.

Classifier Baseline AUC JSMA FGSM CW
MLP 0.98 0.48 0.97 0.96
SVM 0.99 0.50 0.98 0.95
DT 0.99 1.0 0.97 0.97
RF 0.99 0.50 0.98 0.95

was the least affected one. SVM model was the most affected one under the settings

of both FGSM and CW attacks. Both DT and RF classifiers were almost equally

resistant, and the least affected under FGSM attack, while DT was the least affected

under CW attack. To summarize, the SVM classifier was overall the most affected

model under the attack settings and the RF classifier was the least affected one. The

highest baseline accuracy scores were obtained using RF and DT classifiers and MLP

gave the least scores. FGSM attack had the highest impact on this dataset overall

while JSMA had the least impact of all.

Tables 3.16 - 3.19 show the decline in the performance scores of the model when

trained with the CSE-CIC-IDS2018 dataset. This dataset is the largest of all three,

36

Table 3.16: Summary of accuracy scores in normal (baseline) and adversarial
settings for CSE-CIC-IDS2018 dataset.

Classifier Baseline Accuracy JSMA FGSM CW
MLP 0.62 0.39 0.38 0.35
SVM 0.61 0.58 0.61 0.20
DT 0.88 0.47 0.85 0.38
RF 0.92 0.84 0.91 0.81

Table 3.17: Summary of F1-scores in normal (baseline) and adversarial set-
tings for CSE-CIC-IDS2018 dataset.

Classifier Baseline F1-score JSMA FGSM CW
MLP 0.89 0.43 0.85 0.51
SVM 0.66 0.39 0.64 0.47
DT 0.91 0.11 0.89 0.69
RF 0.94 0.59 0.92 0.83

therefore, took the adversarial algorithms very long to generate adversarial data.

JSMA algorithm modified 42% of the features in this dataset to implement the

attack and took around 10 hours on average for adversarial data generation. The

FGSM algorithm modified 85% of the features in this dataset for the attack and took

around 6 hours to generate adversarial data. The CW attack modified 86% of the

features and took about 14 hours to generate adversarial samples. The DT model

was the most affected one under the JSMA attack while the SVM classifier was the

least affected one. RF model was the least affected one under the settings of both

FGSM and CW attacks. SVM was the most affected model under FGSM, and DT

was the most affected under the CW attack. To summarize, the DT classifier was

37

Table 3.18: Summary of recall scores in normal (baseline) and adversarial
settings for CSE-CIC-IDS2018 dataset.

Classifier Baseline Recall JSMA FGSM CW
MLP 0.90 0.58 0.85 0.81
SVM 0.97 0.64 0.92 0.95
DT 0.94 0.12 0.93 0.82
RF 0.91 0.57 0.91 0.81

Table 3.19: Summary of AUC scores in normal (baseline) and adversarial
settings for CSE-CIC-IDS2018 dataset.

Classifier Baseline AUC JSMA FGSM CW
MLP 1.0 0.42 0.97 0.99
SVM 1.0 0.44 0.91 0.99
DT 1.0 0.44 1.0 0.99
RF 1.0 0.44 1.0 0.99

overall the most affected model under the attack settings and the RF classifier was

the least affected one. The highest baseline accuracy scores were obtained using RF

classifiers and MLP gave the least scores. CW attack had the highest impact on this

dataset overall while FGSM had the least impact of all.

Although all three attack algorithms influenced the performances of the IDS

models, the variations in their impacts can help investigate the characteristics of the

datasets used. Based on the results, the overall impact on the CSE-CIC-IDS2018

dataset is relatively lesser, which is followed by the UNSW-NB15 dataset, and then

the Bot-IoT. One possible reason behind this pattern is the number of features in

the datasets. With a lesser number of features, the vulnerabilities may increase.

38

Looking at the overall results from the classifiers’ end, the RF classifier stood almost

steadily robust against all three attacks, with all three datasets. Further, the RF

classifier produced the highest baseline accuracy scores for two out of three datasets.

Another significant behavior is that the impact patterns are not uniform among

different evaluation metrics. It means an adversary should target a performance

metric and design the attack accordingly to bring down the performance as desired.

Showing a severe impact on a metric need not produce the same level of impact on

a different metric. The influence of the CW attack, which is considered one of the

most sophisticated and powerful algorithms to deceive image classification models,

does not seem much stronger than that of the other two attack techniques for IDS

data, as all of them had nearly the same level of impact.

3.5 Conclusion and Future Work

There is a need to study the properties of the available modern IDS datasets and

switch from old and outdated datasets to contemporary ones. As important as it

is to analyze how useful modern datasets are in machine learning-based research,

it is essential to know how useful they are under adversarial settings. This work

studies three recently published IDS datasets, namely, UNSW-NB15, BotIoT, and

CIC-IDS2018 under the light of three adversarial attack algorithms, namely, JSMA,

FGSM, and CW. The performance is evaluated using multiple classifiers - SVM, DT,

and RF - while using MLP as the baseline classifier. The experimental results have

shown that RF is relatively more robust in adversarial environments, and in terms of

the datasets, CIC-IDS2018 has offered more resilience to the classifiers. The impacts

39

of the attacks have been varying with the datasets and classifiers.

I would like to extend this study in multiple directions. One of them is to develop

defense mechanisms to tackle black-box attacks. Another direction is to analyze how

successful adversarial attacks can be on IDS research datasets, in general. This

direction is a relatively long-term research plan I have. The real success of an ad-

versarial attack lies in generating valid deceptive samples that can bypass detection

and launch the attacks they are meant for. I would like to investigate whether the

adversarial data samples generated using the attacks are retaining the original attack

properties of the genuinely malign data. As highlighted in [32], some factors might

help validate the adversarial samples to a certain extent. Further experimentation

is needed to investigate more into this avenue.

40

Algorithm 3: CW L2 attack

Require: Input: Model M , clean input image x, target class t, confidence parame-
ter c, L2 weight parameter κ, binary search iterations nbinary, maximum iterations
nmax, learning rate α, and initial perturbation δ0

Ensure:
Output: Adversarial image x′

lmin ← 0, lmax ←∞ . lmin and lmax are initial lower and upper bounds for binary
search threshold.
x′ ← x+ δ0
for i← 1 to nbinary do

mid← (lmin + lmax)/2
δ ← clamp(projectx, κ(x′ − x)) . The clamp function is to make sure the

perturbation values are within the allowed range.
x adv← clip(x+ δ, 0, 1)
for j ← 1 to nmax do

g ← ∇xL(M(xadv), t)−∇xL(M(xadv), t̂) . L() refers to the loss function.
ĝ ← g

‖g‖2+ε
δ ← δ + α · sign(ĝ)
δ ← clamp(projectx, κ(x′ − x))
x adv← clip(x+ δ, 0, 1)
if M(xadv) = t then

lmax ← mid
x′ ← xadv

else
lmin ← mid

end if
end for

end for
return x′

41

Chapter 4

An Approach to Improve the

Robustness of Machine Learning

based Intrusion Detection System

Models Against the

Carlini-Wagner Attack

This work proposes and evaluates a defense mechanism that can improve the

resistance of IDSs against adversarial white-box evasion attacks. The experiment

is evaluated with the CSE-CIC-IDS2018 dataset against the Carlini-Wagner (CW)

attack. The defense framework is based on a generative adversarial network (GAN).

The following sections describe this work in detail.

42

4.1 A Brief Background

4.1.1 Dataset Overview

Some essential parameters that determine the quality of an IDS dataset are -

the framework used for generating the traffic scenarios; diversity of attack scenarios

captured; anonymity; the variety of protocols included; capturing complete network

interactions; configurations in the network; feature set; labeled data samples; het-

erogeneity; and metadata [33]. We have chosen the CSE-CIC-IDS2018 dataset for

this effort, considering all these characteristics.

4.1.2 The Carlini Wagner Attack

In addition to the explanation provided for this attack in Chapter 3, this section

briefly describes the attack algorithm, in simpler terms. CW is a targeted evasion at-

tack, proposed by [7] to counter defensive distillation, a popular defense mechanism.

This white-box attack has turned out to be more potent than many other white-box

attack algorithms in the research community, rendering most defensive methodolo-

gies ineffective. Formulating an optimization problem to produce misclassification is

the foundation of an adversarial attack algorithm. In the CW attack, the problem

of creating adversarial examples is represented as follows:

minimize d(x, x+ η)

such that Y (x+ η) = T (this is constraint 1)

where x+ η ε [0, 1]n (this is constraint 2)

(4.1)

43

In equation 4.1 [32], x is an input data point, η is the perturbation, d is the metric

of the distance between a real input and its corresponding adversarial form, Y is the

classification function, T is the target class chosen by the adversary, and n is the

number of dimensions in the feature space. Constraint-1 ensures the misclassification

of the data point, while constraint-2 ensures the adversarial sample generated is

within the normalized boundaries of the dataset [34] [35]. The authors define the

objective function in seven different ways and choose the optimal one, based on which

is the closest to the target-class misclassification. The distance metrics are specified

using Lp norms (i.e., L0, L2, L∞) [32] [35].

4.1.3 Generative Adversarial Network

A GAN is a deep learning (DL)-based generative model that was first described

by Ian Goodfellow et al. [36]. Its purpose is to build adversarial samples, very similar

to original data, from an input dataset. A GAN is implemented using two neural

networks that challenge each other, as in a two-player game. It attempts to mimic a

data distribution and allows a model to learn more from available data.

A random number (random noise) is given as input to the Generator, which

generates the samples that are comparable to those in the dataset and forwards

them to the Discriminator, which examines the samples and predicts whether they

are original data or generated ones [37]. The Discriminator learns the original data

characteristics and, based on this knowledge, makes decisions on the data passed to

it by the Generator. In simple terms, the Generator keeps improving its adversarial

samples to make it difficult for the Discriminator to identify them. The Discriminator

44

tries to learn more and correctly identify the adversarial samples introduced by the

Generator. There are some limitations to GAN’s capacities. Its Vanishing Gradient

Problem is one of them, where the Generator reaches a saturation point and can no

longer produce new samples to trick the Discriminator. Meaning, the Discriminator

identifies the samples created by Generator with high confidence values leaving no

gradient for the Generator [38]. This issue can be averted by carefully balancing the

race/training between the Generator and Discriminator networks and making sure

the Discriminator is not over-trained. Ensuring that the Discriminator is trained to

an optimal level for every iteration of Generator training is critical in avoiding such

issues. Various approaches for GAN training stabilization are discussed and analyzed

in [39].

Using GAN within its capable boundaries, two conventional loss metrics are con-

sidered - Generator loss and Discriminator loss. The following sections extend the

discussion on how GAN and its characteristics are used in this experiment.

4.1.4 Classification Algorithms

The classification algorithms used in this work are decision tree (DT), random

forest (RF), and support vector machine (SVM).

45

Figure 4-1: Training phase of the experiment.

Figure 4-2: Testing phase of the experiment.

4.2 Architecture and Workflow of the Proposed

Approach

This experiment consists of a series of independent evaluations. At first, the per-

formance of the baseline model is evaluated in non-adversarial settings, i.e., with the

original dataset, using each of the chosen classification algorithms. Next, the model

is evaluated by implementing the CW attack. Then, the defense technique is incor-

porated into the model, after which its performance is evaluated. Figures 4-1 and

4-2 [32] outline the training and testing phases, respectively. The remainder of this

section discusses classification behaviors and technical specifications involved in the

experiment, and briefly describes the components that constitute the architecture.

46

4.2.1 Classification Goal

The following are the classification goals of the experimental setup: a) the dis-

criminator is to classify adversarial and nonadversarial data, therefore, this is binary

classification, b) the final IDS is to classify whether the data instances it receives are

benign or malign, which is a binary classification, too.

4.2.2 Resources Used for the Experiment

The computer that was used for the experiment had the following specifications:

Intel Xeon Processor E5-2697 @ 2.6 GHz, 128 GB RAM, and Microsoft Windows 64-

bit. The software specifications include Python 3.6.5, Scikit-learn 0.24.2, Tensorflow

1.13.2, and Keras 2.1.5. The CW attack was implemented using the Cleverhans 3.0.1

library.

4.2.3 Configuration of the Internal Components

4.2.3.1 Generator Configuration

The Generator is made up of a five-layer NN with a random noise input layer

of size 78 and three internal layers with 128, 128, and 256 nodes respectively, and

uses the ReLU activation function for learning the real data distribution. It has an

output layer that generates a data sample of size 78, which is comparable to the

original data. A generator loss function is computed based on the prediction results

provided by the Discriminator and is fed back to the Generator for it to improve in

a way to minimize the loss value.

47

4.2.3.2 Discriminator Configuration

The Discriminator network has an input layer that accepts inputs from the Gen-

erator and training dataset during the learning phase, and four hidden layers with

128, 128, 64, and 64 nodes respectively, with ReLU activation function and one out-

put layer with sigmoid function to result in an output value between 0 and 1. The

output value represents how confident the Discriminator is about the sample being

fake or real. Based on this score, the records with a value of less than 0.5 are clas-

sified as fake and are separated from the test data, while the ones classified as real

are forwarded to the IDS to get classified further as benign or malign. If the Dis-

criminator correctly classifies a fake sample, the loss function assists the Generator

in adjusting its weights to craft more deceptive samples for the Discriminator. If the

Discriminator fails to detect a fake sample, the loss function assists the Discriminator

in adjusting its weights to improve the detection of fake samples.

4.2.3.3 The Core IDS

This classifier is trained on the training data and is the IDS model that receives

the data that is forwarded by the Discriminator, and decides whether each input is

benign or malign.

48

4.3 Implementation and Evaluation

4.3.1 Preprocessing

The preprocessing stage involves the removal of records with NaN and Infinity

values, and the deletion of the Timestamp column from the dataset. The next step

in this stage is to use OneHot encoding to convert nominal values to numerical

data. The CSE-CIC-IDS2018 dataset has a total of 79 features, and after One-Hot

encoding, the number of total features becomes 94. Then, min-max normalization

is applied to all features to scale the data between 0 and 1. This step is essential

because the dataset has numeric features whose values might have been derived from

various distributions, have varied scales, and are occasionally affected by outliers,

which can make some classifiers render incorrect results. After normalization, 70%

of the dataset is separated for training and the remaining 30% for testing. The

training set is used to train the ML model. In the testing phase, prediction results

are obtained by providing the test-set instances as inputs to the model. To let the

model learn from data that has multiple classes the OneVsRest classification is used.

4.3.2 Evaluation of Baseline Model in Adversarial Settings

The generated adversarial data, along with the original test data is presented

to the model for evaluation in adversarial settings. Tables 4.1 - 4.4 summarize the

results obtained in normal and adversarial settings.

Tables 4.1 - 4.4 show that all the classifiers exhibit a drop in performance scores

in the presence of adversarial inputs. The accuracy drop in the case of SVM classifier

49

Table 4.1: Accuracy scores in normal and adversarial settings.

Classifier Baseline Accuracy Adversarial
DT 0.72 0.49
RF 0.91 0.81
SVM 0.61 0.25

Table 4.2: F1 scores in normal and adversarial settings.

Classifier Baseline F1-Score Adversarial
DT 0.86 0.71
RF 0.94 0.83
SVM 0.66 0.51

is the highest of all three, with a decline of around 59%, while the drop for DT and

RF are 32% and 11% respectively. The highest baseline accuracy is obtained from

the RF classifier and the least accuracy is from the SVM model. Further, the drop

in performance when trained using RF algorithm is the least among the three. The

results suggest that RF algorithm has the potential to render promising performance

while also showing in-built resistance to adversarial inputs. This gives a good motive

to use RF for future experiments toward enhancing the resistance of IDS models to

adversarial environments.

The F1 scores, as shown in Table 4.2, also drop in a similar fashion to that of the

accuracy scores with respect to the classifiers’ standpoint. The SVM classifier has the

highest drop of 23%, followed by DT with 17% and RF with 12%. The RF classifier

has the highest baseline F1 score and the least performance drop of all. Another

50

Table 4.3: Recall scores in normal and adversarial settings.

Classifier Baseline Recall Adversarial
DT 0.94 0.80
RF 0.91 0.81
SVM 0.97 0.88

Table 4.4: AUC in normal and adversarial settings.

Classifier Baseline AUC Adversarial
DT 1 0.99
RF 1 0.99
SVM 1 0.99

observation here is that the impact of the CW attack on F1 scores is relatively lower

than the impact on the accuracy scores based on the overall percentages of drop

between the two scenarios.

The performance scores in terms of recall show different behavior. SVM classifier

gives the highest baseline recall value and is followed by DT with RF being the model

with the least recall. The percentage drop is the least - 9% - when trained using

SVM. After SVM, RF has the least drop of 11% in the score while the DT model’s

score dropped by 15%. The percentages of drop are further lower for recall scores

than those for F1 scores. This implies that the impact of the attack varies with

metrics.

The baseline AUC and the percentage drop are almost the same for all three

classifiers, as shown in Table 4.4.

51

4.3.3 Evaluation of the Defense

The architecture for the proposed defense mechanism uses GAN to identify and

separate the adversarial samples and pass the non-adversarial data to the core IDS

classifier, which determines if the data is benign or malign. The data is separated

into training and testing sets during the preprocessing phase. In the training phase,

random noise is provided to the Generator to produce fake samples. The Discrim-

inator is trained with the training set and hones its ability to detect adversarial

samples by learning the fake data produced by the Generator. The core classifier is

also trained with the training set. The GAN, as a whole, becomes more competent

as the number of learning/training iterations increase, to not only generate complex

fake data but also to identify it correctly. In the testing phase, the Discriminator is

tested with test data. The test data comprises the data from the test set and the

adversarial samples that are generated by running the CW attack on the test set.

The instances that the Discriminator predicts as real are carried forward to the core

IDS classifier, separating the instances that are classified as fake.

4.4 Evaluation Results and Performance Compar-

ison

Tables 4.5 - 4.8 outline the performance of the model when tested with a combina-

tion of original and adversarial test data before and after the defense is incorporated.

The results presented in Section 4.3.2 show a clear drop in the performance of the

baseline classifier when it is tested with adversarial samples. The results in this sec-

52

tion summarize how the performance changes when the defense mechanism is added

to the IDS model.

Table 4.5: Accuracy scores in adversarial settings without and with defense.

Classifier Adversarial
without Defense

Adversarial with
Defense

DT 0.49 0.60
RF 0.81 0.82
SVM 0.25 0.36

Table 4.6: F1 scores in adversarial settings without and with defense.

Classifier Adversarial
without Defense

Adversarial with
Defense

DT 0.71 0.67
RF 0.83 0.84
SVM 0.51 0.43

Table 4.5 shows the improvement in the accuracy scores in the presence of the

defense. There is approximately 22% performance gain for DT model, only around

1% gain for RF model, and around 44% for SVM model, the highest gain of all. The

GAN-based defense has enhanced the accuracy scores with all three classifiers but the

improvement is very little for the RF classifier. The changes in the performance with

respect to the remaining metrics are not as favorable as the accuracy scores. The

F1 scores for DT and SVM classifiers, as shown in Table 4.6, have declined further

in the presence of defense. The same behavior can be noticed for recall and AUC

scores as shown in Tables 4.7 and 4.8. However, when trained using RF algorithm,

53

Table 4.7: Recall scores in adversarial settings without and with defense.

Classifier Adversarial
without Defense

Adversarial with
Defense

DT 0.80 0.65
RF 0.81 0.83
SVM 0.88 0.74

Table 4.8: AUC in adversarial settings without and with defense.

Classifier Adversarial
without Defense

Adversarial with
Defense

DT 0.99 0.90
RF 0.99 0.90
SVM 0.99 0.90

the accuracy, F1, and recall scores have improved in the presence of defense. This

behavior is to be investigated to figure out why the scores have dropped further

and more importantly, whether the network configuration of the GAN can influence

this behavior. Additionally, based on the fake data filtered out by the discriminator

during evaluation, on average, 75% of the adversarial data is correctly identified

as fake. As part of future work, the work further improves the detection abilities.

Figure 4-3 [32] summarizes the improvements in the accuracy scores.

54

Figure 4-3: An overall comparison of accuracy scores.

4.4.1 Comparison with Related Work

Rui Shu et al. [40] propose a technique called Omni, an ensemble of unexpected

models to tackle adversarial environments. Their ideology behind employing unex-

pected models is to keep the distance between their core prediction mechanism and

the adversary’s target model’s mechanism as large as possible. The authors present

the experimentation results conducted using five different adversarial white-box eva-

sion attacks on five different cybersecurity datasets. The CW is one of the attacks,

and the CSE-CIC-IDS2018 dataset is one of the datasets they have evaluated their

approach with. The results from this approach were superficially compared with

those presented in [40]. From the results presented by Rui et al., the baseline accu-

racy, i.e., under normal settings is 94.48%, and the final accuracy after implementing

the Omni defense on the model is 75.23%. The highest baseline accuracy in this

approach is 91% and is from the RF classifier, and the corresponding final accuracy

(with the proposed defense in place) is 82%. However, since Omni is designed to be

agnostic about the type of adversarial evasion attack used, it creates an avenue in

55

this approach to extend its applicability to all kinds of adversarial evasion attacks.

4.5 Conclusion

This part of the work proposes a defense mechanism to improve the resistance

of ML-based IDSs against the CW attack by using a GAN-based architecture. The

dataset used for the work is CSE-CIC-IDS2018, as it reflects a good number of

modern network characteristics. The experimentation results show that there is an

improvement in the performance of the IDS model with the proposed mechanism.

Evaluation results of two scenarios when subjected to adversarial inputs are pre-

sented - the baseline model alone, and the baseline model with GAN. The results

indicate that this approach of defense improves the accuracy scores in the adversar-

ial environment created by a powerful white-box attack such as the CW. One of the

ideas for future work is to improve the detection rate of the proposed GAN-based net-

work in identifying the adversarial data while also investigating how an imbalanced

dataset like CSE-CIC-IDS2018 can impact the performance in adversarial environ-

ments. The architecture will be extended by introducing feature squeezing methods

and the performance will be thoroughly evaluated.

56

Chapter 5

Towards the Defense of Machine

Learning based Intrusion

Detection Systems Against

Adversarial Black-box Attacks

Cyberattacks are ever-evolving and given the rapid advancements in science and

technology, the levels of difficulty in tackling the attacks keep going up. Bad actors

are developing more sophisticated techniques to implement their malicious activities

such as disrupting the operations of organizations, stealing sensitive information,

getting hold of resources by unauthorized means, etcetera. Therefore, any research

progress in the domain of cybersecurity should be achieved by consciously considering

the bad actors and their strategies.

Most of the machine learning (ML)-based intrusion detection systems (IDSs)

57

proposed in the literature have been designed for performance and relatively very

little consideration has been given to their robustness and security. This becomes

the greatest advantage to the bad actors. With the concept of adversarial machine

learning (AML), which is one of the well-known vulnerabilities of ML techniques,

it has become relatively easier for adversaries to deceive and break the ML-based

systems without having much knowledge of the target models [41]. Such a scenario

can be accomplished through adversarial black-box attacks. AML and its black-box

variant of attacks are a serious concern in cybersecurity considering how crucial the

network defenders are, and their increasing dependency on ML mechanisms. The

AML algorithms are capable of affecting the functionalities of ML-powered IDSs de-

ployed in real-time environments. Therefore, with the motivation to develop mech-

anisms that can mitigate the impact of adversarial black-box attacks, this research

moves forward in the direction of analyzing the impact of such attacks on ML-

based IDSs, and towards proposing defense techniques to make IDSs more robust

to black-box attacks. This chapter discusses the experiments performed using the

CSE-CIC-IDS2018 dataset and the evaluation of the defense using the Evolutionary

black-box attack algorithm. The generative adversarial network (GAN)-based de-

fense framework proposed in Chapter 4 is used for countering the black-box attack

in this portion of the work. The remainder of this chapter is organized as follows.

Section 5.1 covers the relevant background of the elements involved in the experimen-

tation. Section 5.2 discusses the architecture of the proposed defense in the current

context. Section 5.3 presents the experimentation setup and methodology. Section

5.4 discusses and analyzes the evaluation results. Section 5.5 concludes the chapter

58

and discusses ideas for future work.

5.1 Background

5.1.1 Adversarial Black-box Attacks

Unlike a white-box attack, an adversarial black-box attack does not need any

information about its target model to implement the attack. A black-box attack

algorithm can proceed in two ways, broadly classified, either on a transferability

basis [42], or on a query basis [43]. For this work, a query-based black-box attack is

chosen.

5.1.2 Query-Based Black-Box Attack: Genetic Algorithm

A query-based black-box attack is based solely on the model’s input-output be-

havior, without relying on the gradient calculation or the confidence scores of the

target model. In this type of attack, an attacker feeds inputs to the model and ob-

serves its outputs, then uses this information to craft adversarial examples that can

fool the model into producing incorrect outputs. In a practical setting, an adversary

typically has a limited number of queries they can make to the model, meaning they

can only make a certain number of input-output observations. This makes the attack

more challenging because the adversary has to carefully choose which inputs to use

for each query in order to maximize the chances of crafting a successful adversarial

example.

The attack chosen for this experiment is an evolutionary algorithm (EA) called

59

the genetic algorithm (GA). In this approach, the algorithm starts by selecting a

set of initial inputs (or population) that are fed into the target model to observe

its output. The attacker then applies genetic operators such as mutation, crossover,

and selection to these inputs to generate a new set of candidate adversarial examples.

The candidate examples are then evaluated by feeding them to the target model to

see if they are successful in fooling it. The best-performing candidate examples are

then selected and used to create the next generation of inputs, and the process is

repeated until a possibly optimal adversarial example is generated. Evolutionary

algorithms, in general, can generate adversarial examples that are highly tailored to

the specific model and data being used. However, they can also be computationally

expensive and time-consuming.

The following are the generalized steps involved in an evolutionary algorithm:

• Generate initial population: Create a population of N individuals with ran-

domly assigned values for the decision variables.

• Evaluate each individual: A fitness value of each individual is determined by

querying the target model with the individual and observing the output pro-

vided by the model. It can be the classification accuracy of the model on each

individual.

• Select high-performing individuals: Select individuals with high fitness values.

• Recombination: Combine the decision variables of the selected individuals to

create new individuals.

• Mutation: Randomly perturb the decision variables of some individuals.

60

• Evaluation of new individuals: Evaluate the fitness of the new individuals.

• Replacement: Replace the least fit individuals in the population with the new

individuals.

The steps of evaluation, recombination, mutation, and replacement are repeated

until a pre-determined stopping criterion is met. The stopping criterion can be

based on various factors such as reaching a certain number of generations, achieving

a satisfactory fitness level, or exceeding a set computation time.

5.1.3 Classification Algorithms

Random Forest (RF) is the classification algorithm used for attack data genera-

tion and evaluation. RF, Decision Tree (DT) and Support Vector Machine (SVM)

are used for training and evaluating the IDS model. The reason behind choosing

the RF classifier for attack generation is its efficiency and robustness observed in the

evaluation results from the previous experiments of this work, as presented in the

previous chapters.

5.1.4 Dataset

As highlighted in Chapter 4, considering various characteristics of the data [33],

CSE-CIC-IDS2018 is used throughout the experiment, i.e., for training the IDS model

and for adversarial data generation.

61

5.2 Architecture of the Proposed Defense

The defense framework used for this experiment uses a generative adversarial net-

work (GAN) along with adversarial training as a reinforcement. Figure 5-1 outlines

the higher-level idea of this work.

Figure 5-1: An outline of the architecture.

The defense layer consists of a generator neural network (NN) and a discrimina-

tor NN, which compete with each other resembling a two-player game. Figure 5-2

and Figure 5-3 show the internal mechanism of the GAN-based defense layer, in two

phases - training and testing. During the training, there is an additional step of

adversarial training involved, for which, some portion of the adversarial data gener-

ated using the genetic algorithm is separated and provided to the discriminator for

training. The idea behind this additional training is to make the discriminator more

aware of the fake samples and to evaluate whether such additional knowledge would

make the target model more robust to a wide range of black-box attacks.

62

Figure 5-2: Inside the GAN-based defense layer: Training phase

Figure 5-3: Inside the GAN-based defense layer: Testing phase

During the training phase, the generator, discriminator, and IDS model are all

trained well. A random noise vector is provided to the generator network to gener-

ate fake samples that fit within the data distribution of the original dataset. The

discriminator is trained with the original train set and the fake samples created by

the generator. To summarize, during the training, the generator trains towards effi-

ciency in creating complex fake samples, the discriminator trains towards efficiency

in classifying the real and fake samples, and the IDS model trains towards efficiency

in classifying the benign and malicious samples.

63

5.2.1 Ideology for the Detection of Adversarial Inputs

The fundamental concept around which a query-based attack is built is that it

takes several queries for such an attack to create a successful adversarial sample.

The key is that each of the several queries is designed in a way that the sample is

very close to the original input in a data distribution. An adversarial sample can

only be designed if all or most of the iterative queries are answered by the target

model. If a model can identify and not respond to the queries that are part of an

attack, the adversary will not be able to craft an adversarial input, at least not in a

feasible amount of time. This is the thought process driving the development of this

defense.

5.3 Experiment Setup and Methodology

This section provides details of the methodology followed for this experiment in

multiple modules.

5.3.1 Data Preprocessing

The original dataset is preprocessed before providing it to the ML model, either

for training or validation purposes, to improve the reliability of its data interpreta-

tion. The following steps are performed for preprocessing in this work.

• Removal of records with NaN and Infinity values.

• Deletion of the Timestamp column from the dataset.

64

• One-Hot encoding to convert nominal values to numerical data.

• Separation of data into training (70%) and test (30%) sets.

• Separation of features and labels from training and test sets.

• Min-Max normalization to all features in the train and test sets to scale the

data between 0 and 1.

5.3.2 Train the IDS

The IDS classifier is trained well with the original dataset using the three learning

algorithms specified in Section 5.3.1, as shown in Figure 5-4. During this training, the

IDS classifier becomes efficient in classifying benign and malicious data. Tables 5.1 -

5.3 specify the hyperparameter values of the classification algorithms during model

training. As mentioned in Section 3.3 of Chapter 3, the criterion parameter signifies

how the algorithm chooses to split the decision tree. The max depth parameter rep-

resents the maximum number of levels in the tree. The n estimators value represents

the number of decision trees used in the random forest algorithm. The parameter

C determines the width of the margin used to separate the classes and controls the

trade-off between obtaining low training and testing errors. Random state parameter

is used to control the random number generation. When set to an integer value, it

usually represents the seed for the random number generator. The loss parameter

represents the type of loss function used to penalize misclassifications made by the

SVM algorithm.

65

Figure 5-4: Training the IDS classifier with original data.

Table 5.1: Hyperparameters for decision tree algorithm.

Parameter Value
criterion gini
max depth 12

5.3.3 Adversarial Data Generation

Adversarial data generation involves a series of steps. The very first step is to

preprocess the dataset as described in Section 5.3.1. A substitute classification model

is used for the adversarial data generation and its partial evaluation to reduce the

number of queries made to the target model. The substitute model is trained with the

preprocessed training data using the RF classification algorithm. The core process

of the attack starts with the creation of an initial population. A random population

is created based on the data distribution of the dataset used. Each data point,

hereafter referred to as an individual, in the population looks similar to a record in

the dataset. Each individual is evaluated using a fitness function to determine how

well it performs against the target model. This evaluation is achieved by passing each

individual to the substitute RF model as a test input, and retrieving its accuracy,

66

Table 5.2: Hyperparameters for random forest algorithm.

Parameter Value
n estimators 200
criterion gini
max depth 20

Table 5.3: Hyperparameters for support vector machine algorithm.

Parameter Value
C 1
random state 42
loss hinge

F1 score, recall, and AUC values. The higher the values are, the more the fitness

of an individual is, which thereby means more misclassified adversarial examples.

Each batch of individuals, i.e., the population, is passed to the genetic algorithm

wherein the individuals are combined with one another, mutated, and new ones are

generated. The fitness values of new ones are measured and the individuals with

the least fitness values in the previous population are replaced with high-performing

individuals from the new batch. For this experiment, the attack took 20 iterations,

meaning, 20 generations of individuals were created to arrive at one best individual.

Each of such best individuals can be considered an adversarial perturbation to be

added to the original data. Adding the perturbation to the original data provides

adversarial data. The resultant adversarial data is clipped to make sure it is present

within the valid range of the original dataset. In this case, the adversarial data is

clipped to be between 0 and 1.

67

Figure 5-5: Adversarial data is separated into training and test sets.

Figure 5-6: Adversarial data is generated by interacting with the target
black-box model and using the local model.

5.3.4 Querying the Target Model with Adversarial Data

Once a batch of adversarial data is ready, it is divided into training and test sets

for this experiment. The algorithm queries the target model with the adversarial test

set and observes the outputs provided by the model. The target model here represents

only the IDS classifier without a defense layer. Therefore, the GA interacts directly

with the IDS classifier in this module of the experiment, and the performance scores

of the IDS classifier are presented later in this paper. Figure 5-5 and Figure 5-6 show

an overview of the process described in this section.

The hyperparameters of the RF algorithm used for the local substitute model

during the adversarial data generation are provided in Table 5.4.

68

Table 5.4: The hyperparameters for random forest algorithm used during
adversarial data generation.

Parameter Value
n estimators 100
criterion gini
max depth 10
random state 0

5.3.5 Prepare the Defense Layer

This module is for training the components present in the defense layer. As men-

tioned earlier in this paper, the proposed defense framework uses GAN. A GAN has

two neural networks (NN) namely, a generator and a discriminator. The role of a

generator is primarily in the training phase of a GAN. Its purpose is to create fake

data that resembles the given original dataset, in this case, the CSE-CIC-IDS2018,

by taking a random noise vector as input. The purpose of a discriminator is to

distinguish between the fake data created by the generator and the original data.

During the training phase, the generator network is trained to craft more and more

realistic samples to increase the error rates of the discriminator; while the discrimi-

nator is trained to correctly classify the fake samples of the generator and the real

data from the dataset. During this training, the discriminator sends feedback to the

generator about how close its fake samples are to the original data, which is used

by the generator to adjust its parameters and create more realistic data in the next

iteration. Meanwhile, the discriminator also keeps adjusting its parameters in every

iteration to reduce its error rates in detecting fake samples.

An additional step introduced in the proposed defense process is augmented ad-

69

Figure 5-7: Preparation of the defense layer by training the GAN.

versarial training. The discriminator, in addition to being trained with the original

training set and the fake data coming from the generator, is also trained with the

adversarial training set that was separated after adversarial data generation. The

reason behind performing the augmented training is to provide additional knowledge

of adversarial inputs to the discriminator and make it more prepared for the valida-

tion phases. Such additional knowledge coming from the adversarial data generated

by a powerful algorithm can promote the discriminator’s ability to distinguish be-

tween real and fake data. Figure 5-7 outlines the GAN training. Tables 5.5 and

5.6 summarize the network configurations of the generator and discriminator respec-

tively.

Table 5.5: Architecture of GAN’s generator network.

Layer Number of neurons Activation
Dense 1 256 LeakyReLU
Dense 2 512 LeakyReLU
Dense 3 1024 LeakyReLU
Dense 4 2048 LeakyReLU
Output 79 tanh

70

Table 5.6: Architecture of GAN’s discriminator network.

Layer Number of neurons Activation
Dense 1 2048 LeakyReLU
Dense 2 1024 LeakyReLU
Dense 3 512 LeakyReLU
Dense 4 256 LeakyReLU
Output 1 sigmoid

5.3.6 Evaluate the Target Model with Defense

In this module, the defense framework is plugged into the target model and the

performance of the target model is assessed by providing the adversarial test inputs.

In this scenario, the IDS classifier processes only the data that is forwarded to it

by the discriminator of the defense layer. Meaning, the adversarial samples that are

correctly classified by the discriminator are not acted upon, therefore, the adversarial

algorithm does not receive any response from the target model.

5.4 Evaluation Results: Discussion and Analysis

This section presents evaluation results from the modules of the experiment dis-

cussed in Section 5.3.

Tables 5.7 - 5.10 summarize the performance scores of the IDS classifier when

tested with original test data and later with adversarial test data. The scores pre-

sented here are the average values of five rounds of this experiment. Under adversarial

settings, there is a significant drop in the performance scores overall, with values of

almost all the metrics dropping by at least 50%. Tables 5.11 - 5.14 summarize the

71

Table 5.7: Comparison of accuracy scores of IDS classifier in normal and
adversarial settings.

Classifier Normal Accuracy Adversarial
RF 0.95 0.39
DT 0.87 0.26
SVM 0.72 0.23

Table 5.8: Comparison of F1 scores of IDS classifier in normal and adversarial
settings.

Classifier Normal F1-score Adversarial
RF 0.91 0.37
DT 0.91 0.29
SVM 0.77 0.28

evaluation results of the target model under adversarial settings before and after the

incorporation of the defense layer.

Figures 5-8 - 5-11 show the changes observed in various performance metrics of

the IDS classifier under the following three scenarios - when tested with original test

data; when tested with a combination of original and adversarial test data in the

Table 5.9: Comparison of recall scores of IDS classifier in normal and adver-
sarial settings.

Classifier Normal Recall Adversarial
RF 0.91 0.36
DT 0.90 0.25
SVM 0.91 0.30

72

Table 5.10: Comparison of AUC scores of IDS classifier in normal and ad-
versarial settings.

Classifier Normal AUC Adversarial
RF 1 0.5
DT 1 0.47
SVM 1 0.49

Table 5.11: Comparison of accuracy scores of IDS classifier in adversarial
settings without and with defense.

Classifier Accuracy in Ad-
versarial Settings
without Defense

Accuracy in Ad-
versarial Settings
with Defense

RF 0.39 0.84
DT 0.26 0.79
SVM 0.23 0.61

Table 5.12: Comparison of F1 scores of IDS classifier in adversarial settings
without and with defense.

Classifier F1-scores in Ad-
versarial Settings
without Defense

F1-scores in Ad-
versarial Settings
with Defense

RF 0.37 0.82
DT 0.29 0.82
SVM 0.28 0.65

73

Table 5.13: Comparison of recall scores of IDS classifier in adversarial set-
tings without and with defense.

Classifier Recall in Adver-
sarial Settings
without Defense

Recall in Adver-
sarial Settings
with Defense

RF 0.36 0.83
DT 0.29 0.82
SVM 0.30 0.87

Table 5.14: Comparison of AUC scores of IDS classifier in adversarial settings
without and with defense.

Classifier AUC in Adver-
sarial Settings
without Defense

AUC in Adver-
sarial Settings
with Defense

RF 0.5 0.89
DT 0.47 0.90
SVM 0.49 0.92

74

Figure 5-8: Changes in the performance of target model with respect to ac-
curacy scores.

absence of defense; when tested with a combination of original and adversarial test

data in the presence of defense.

The results from defense show a promising improvement in the resistance of the

target system to adversarial data, enabling it to perform almost as efficiently as it

did in the absence of adversarial data. An important note here is that the strange

behavior observed with the defense proposed in Chapter 4 is not repeated in this

experiment. There is a significant performance gain with respect to all the metrics

considered. Although the configurations of generator and discriminator networks

seem to influence the said behavior, it is necessary to further experiment and analyze

how impactful GAN’s configuration can be on the quality of defense, which is one of

the ideas for future work.

The attack results show that the adversarial data has brought down the perfor-

75

Figure 5-9: Changes in the performance of target model with respect to F1
scores.

Figure 5-10: Changes in the performance of target model with respect to
recall scores.

76

Figure 5-11: Changes in the performance of target model with respect to
AUC scores.

mance of the target model by a huge extent, and interestingly, the impact of this

attack was more severe than that of the white-box attack performed in earlier stages

of this research, even at the very first attempt of evaluation. This attack did not need

many optimizations to increase the impact on the performance. The values presented

in the results are the average values from five rounds of optimizations in adversarial

data generation. However, the proposed defense mechanism has produced promising

improvements in the performance of the model when evaluated with all three classi-

fication algorithms. The approach can be further extended as future work to make

it more robust and applicable against a broad class of black-box attack algorithms.

Analyzing the performance from the perspective of classification algorithms, scores

were the highest and the percentage drop in the evaluation metrics overall was the

least when the IDS classifier was trained with the RF algorithm. Based on the eval-

77

uation of the defense layer’s performance, on average, 87% of the adversarial samples

were correctly classified as fake and filtered out. The performance of the defense layer

is promising and may be further improved through our future work in this direction.

The work presented by Muhammad Usama et al. [44] discusses creating a GAN-

based adversarial attack and also proposes a GAN-based defense to thwart their at-

tack. However, the evaluation of their work was performed using KDD99 dataset [45].

Based on the evaluation results of their GAN-based attack and defense mechanisms,

the approach of this work gives a much better performance considering the following

factors - a) the normal/baseline scores of the target model produced in this work

are much higher than those from their experiment; b) the drop in the scores from

the attack performed in the current work is far greater than that presented in their

results; c) the final scores after incorporating the current defense proposed are, for

almost all the metrics, higher. The work presented by [46] is relevant to this work

and it uses the same dataset for evaluations. The attack used in their paper is ZOO

(zeroth order optimization) algorithm which is also a black-box algorithm but is

different from an evolutionary attack in its approach and characteristics. ZOO is

a type of optimization algorithm that estimates the gradients (or derivatives) using

just the function evaluations instead of using explicit gradient or derivative values

of the objective function. The evolutionary attack used in this work and the ZOO

algorithm are fundamentally different approaches. The comparison of the current

results with those of [46] and other recent related works is one of the ideas for future

work.

78

5.5 Conclusion and Future Work

This chapter discusses the work to mitigate the influence of adversarial black-

box attacks on ML-based IDSs. A powerful evolutionary attack algorithm known as

the genetic algorithm is implemented to analyze the performance of the IDS model

under normal settings where it has no defense mechanism in place to resist the attack.

The defense proposed here follows a GAN-based approach combined with additional

training wherein the discriminator network of GAN is trained with a subset of the

adversarial data generated using the genetic algorithm. The experiment results are

presented summarizing the performance of the model under normal and adversarial

settings, followed by the evaluation results with the proposed defense in place.

For future work, the defense shall be evaluated using other sophisticated black-

box attacks. Another idea is to use an IDS model that is deployed in a real-time

environment, for example, a publicly accessible cloud-based IDS model to compare

its resistance to black-box attacks with the model (equipped with defense) evaluated

in this work. The work also proceeds in the direction of enhancing the detection

capacity of the proposed defense framework and thereby making it more reliable and

harder to penetrate.

79

Chapter 6

Conclusion and Future Work

This Ph.D. dissertation is primarily about identifying the challenges concerning

machine learning (ML) based intrusion detection systems (IDSs) and proposing ap-

proaches towards addressing those challenges. This dissertation is a study and anal-

ysis of the behaviors of ML-based IDSs in various normal and adversarial settings

where a normal setting is defined as the scenario where the IDS model encounters

only original or genuine test data, and an adversarial setting is defined as a scenario

where the IDS model receives adversarial (deceptive) data in addition to original test

data.

The following are the concerns related to ML-based IDSs highlighted in this work:

• Majority of research work is performed and evaluated using decades-old datasets

that lack modern traffic behaviors and characteristics.

• A relatively little focus is given to the security and reliability of ML-based IDSs

as compared to their detection efficiencies.

80

6.1 Contributions

To address the above-listed concerns, here are the contributions made by this

research through various phases.

• While emphasizing the need to generate datasets that reflect modern traf-

fic scenarios and to study the characteristics of such modern/contemporary

datasets available to research community, this work studies three recently pub-

lished benchmark datasets and evaluates the performance of IDS models when

trained with those datasets.

• Based on the evaluations, this work identifies that class imbalance in datasets

can influence the performance of IDS models by making them render biased

predictions and more false predictions. Through this observation, this work

emphasizes the need to focus on the quality of datasets as the performance of

a model hugely depends on the quality of data it is trained upon.

• This work studies the problems - in particular, the concept of adversarial ML

(AML) - caused by the vulnerabilities of ML-based techniques in the domain

of IDSs.

• Two types of adversarial attacks, namely, white-box and black-box algorithms

are studied and their impact on the behaviors of IDSs is analyzed.

• Two defense mechanisms - one addressing adversarial white-box attacks and

the other for adversarial black-box attacks - are proposed.

81

• Experimentation methodologies and evaluation results are presented in detail

for all the phases of research conducted. The results are sufficiently discussed

and analyzed.

6.2 Directions for Future Work

There are multiple directions for future work because of the vastness of the topic

pursued in this research. Listed below are the major directions in which this research

continues.

• Development of a research and educational testbed to conduct various experi-

ments related to this research, as also listed further below.

• Further understand the concerns or limitations related to the existing contem-

porary IDS datasets.

• Using the above-mentioned testbed, create a standard dataset that captures

the modern behaviors of benign and malicious traffic in a way that addresses

the identified limitations in existing IDS datasets.

• Conduct a deeper investigation into the viability of AML algorithms in modi-

fying network traffic data.

• Improve the proposed defense mechanisms to make them more robust and

applicable to a wide range of adversarial attacks.

82

References

[1] R. A. Kemmerer and G. Vigna, “Intrusion detection: a brief history and

overview,” Computer, vol. 35, no. 4, pp. supl27–supl30, 2002.

[2] P. Innella et al., “The evolution of intrusion detection systems,” Tetrad Digital

Integrity, pp. 1–15, 2001.

[3] A. Z. Li and D. Barton, “A brief history of ma-

chine learning in cybersecurity,” Available at https://

www.securityinfowatch.com/cybersecurity/article/21114214/a-brief-history-of-

machine-learning-in-cybersecurity (2019/11/14).

[4] S. M. Othman, F. M. Ba-Alwi, N. T. Alsohybe, and A. Y. Al-Hashida,

“Intrusion detection model using machine learning algorithm on big data

environment,” Journal of Big Data, vol. 5, no. 1, sep 2018. [Online]. Available:

https://doi.org/10.1186/s40537-018-0145-4

[5] N. Dalvi, P. Domingos, S. Sanghai, and D. Verma, “Adversarial classification,”

in Proceedings of the tenth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, 2004, pp. 99–108.

[6] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,

and F. Roli, “Evasion attacks against machine learning at test time,” in

83

Advanced Information Systems Engineering. Springer Berlin Heidelberg, 2013,

pp. 387–402. [Online]. Available: https://doi.org/10.1007/978-3-642-40994-3 25

[7] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE,

may 2017. [Online]. Available: https://doi.org/10.1109/sp.2017.49

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-

sarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[9] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine learn-

ing: from phenomena to black-box attacks using adversarial samples,” arXiv

preprint arXiv:1605.07277, 2016.

[10] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,

“The limitations of deep learning in adversarial settings,” in 2016 IEEE

European Symposium on Security and Privacy (EuroS&P). IEEE, mar 2016.

[Online]. Available: https://doi.org/10.1109/eurosp.2016.36

[11] M. Rigaki, “Adversarial deep learning against intrusion detection classifiers,”

2017.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint

arXiv:1312.6199, 2013.

[13] K. Sadeghi, A. Banerjee, and S. K. S. Gupta, “A system-driven taxonomy of

attacks and defenses in adversarial machine learning,” IEEE Transactions on

84

Emerging Topics in Computational Intelligence, vol. 4, no. 4, pp. 450–467, aug

2020. [Online]. Available: https://doi.org/10.1109/tetci.2020.2968933

[14] Z. Wang, “Deep learning-based intrusion detection with adversaries,”

IEEE Access, vol. 6, pp. 38 367–38 384, 2018. [Online]. Available:

https://doi.org/10.1109/access.2018.2854599

[15] AWS. (2018) A realistic cyber defense dataset (cse-cic-ids2018). [Online].

Available: https://registry.opendata.aws/cse-cic-ids2018/

[16] V. Kanimozhi and T. P. Jacob, “Artificial intelligence based network intrusion

detection with hyper-parameter optimization tuning on the realistic cyber

dataset CSE-CIC-IDS2018 using cloud computing,” in 2019 International

Conference on Communication and Signal Processing (ICCSP). IEEE, apr

2019. [Online]. Available: https://doi.org/10.1109/iccsp.2019.8698029

[17] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating

a new intrusion detection dataset and intrusion traffic characterization,”

in Proceedings of the 4th International Conference on Information Systems

Security and Privacy. SCITEPRESS - Science and Technology Publications,

2018. [Online]. Available: https://doi.org/10.5220/0006639801080116

[18] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set),” in 2015 Military

Communications and Information Systems Conference (MilCIS). IEEE, nov

2015. [Online]. Available: https://doi.org/10.1109/milcis.2015.7348942

85

[19] M. S. et. al., “Network based intrusion detection using the UNSW-NB15

dataset,” International Journal of Computing and Digital Systems, jan 2019.

[20] S. Dwibedi, M. Pujari, and W. Sun, “A comparative study on contemporary

intrusion detection datasets for machine learning research,” in 2020 IEEE In-

ternational Conference on Intelligence and Security Informatics (ISI). IEEE,

2020, pp. 1–6.

[21] C. Mantas, S. Castellano, J.G. andMoral-Garćıa et al., “A comparison of

random forest based algorithms: random credal random forest versus oblique

random forest,” Soft Computing, vol. 23, p. 10739–10754, 2019. [Online].

Available: https://doi.org/10.1007/s00500-018-3628-5

[22] V. Kecman, “Support vector machines–an introduction,” in Support vector ma-

chines: theory and applications. Springer, 2005, pp. 1–47.

[23] N. Ketkar, Introduction to Deep Learning. Berkeley, CA: Apress, 2017, pp.

1–5. [Online]. Available: https://doi.org/10.1007/978-1-4842-2766-4 1

[24] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can machine

learning be secure?” in Proceedings of the 2006 ACM Symposium on Informa-

tion, computer and communications security, 2006, pp. 16–25.

[25] N. Martins, J. M. Cruz, T. Cruz, and P. H. Abreu, “Analyzing the footprint

of classifiers in adversarial denial of service contexts,” in Progress in Artificial

Intelligence. Springer International Publishing, 2019, pp. 256–267. [Online].

Available: https://doi.org/10.1007/978-3-030-30244-3 22

86

[26] N. Papernot, I. Goodfellow, R. Sheatsley, R. Feinman, P. McDaniel et al.,

“cleverhans v2. 0.0: an adversarial machine learning library,” arXiv preprint

arXiv:1610.00768, vol. 10, 2016.

[27] Y. Pacheco and W. Sun, “Adversarial machine learning: A comparative

study on contemporary intrusion detection datasets,” in Proceedings of the

7th International Conference on Information Systems Security and Privacy.

SCITEPRESS - Science and Technology Publications, 2021. [Online]. Available:

https://doi.org/10.5220/0010253501600171

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine

learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–

2830, 2011.

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning

on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[30] F. Chollet et al. (2021) Keras. [Online]. Available: https://github.com/keras-

team/keras

[31] M. Pujari, P. Yulexis et al., “A comparative study on the impact of adver-

sarial machine learning attacks on contemporary intrusion detection datasets,”

Springer Nature Computer Science, vol. 3, 2022.

[32] M. Pujari, B. P. Cherukuri, A. Y. Javaid, and W. Sun, “An approach to improve

87

the robustness of machine learning based intrusion detection system models

against the carlini-wagner attack,” in 2022 IEEE International Conference on

Cyber Security and Resilience). IEEE, 2022.

[33] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards a

reliable intrusion detection benchmark dataset,” Software Networking, vol. 2018,

no. 1, pp. 177–200, 2018.

[34] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses

for deep learning,” IEEE transactions on neural networks and learning systems,

vol. 30, no. 9, pp. 2805–2824, 2019.

[35] B. Poudel, “Explaining the carlini & wagner attack al-

gorithm to generate adversarial examples.” [Online]. Avail-

able: https://medium.com/@iambibek/explanation-of-the-carlini-wagner-c-w-

attack-algorithm-to-generate-adversarial-examples-6c1db8669fa2

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural

information processing systems, vol. 27, 2014.

[37] S. Msika, A. Quintero, and F. Khomh, “Sigma: Strengthening ids with gan and

metaheuristics attacks,” arXiv preprint arXiv:1912.09303, 2019.

[38] S. A. Barnett, “Convergence problems with generative adversarial networks

(gans),” arXiv preprint arXiv:1806.11382, 2018.

88

[39] M. Wiatrak, S. V. Albrecht, and A. Nystrom, “Stabilizing generative adversarial

networks: A survey,” arXiv preprint arXiv:1910.00927, 2019.

[40] R. Shu, T. Xia, L. Williams, and T. Menzies, “Omni: Automated ensemble

with unexpected models against adversarial evasion attack,” arXiv preprint

arXiv:2011.12720, 2020.

[41] D. Shu, N. O. Leslie, C. A. Kamhoua, and C. S. Tucker, “Generative adversarial

attacks against intrusion detection systems using active learning,” in Proceedings

of the 2nd ACM workshop on wireless security and machine learning, 2020, pp.

1–6.

[42] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial

examples and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[43] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,

“Practical black-box attacks against machine learning,” in Proceedings of the

2017 ACM on Asia conference on computer and communications security, 2017,

pp. 506–519.

[44] M. Usama, M. Asim, S. Latif, J. Qadir et al., “Generative adversarial networks

for launching and thwarting adversarial attacks on network intrusion detection

systems,” in 2019 15th international wireless communications & mobile comput-

ing conference (IWCMC). IEEE, 2019, pp. 78–83.

[45] M. S. Al-Daweri, K. A. Zainol Ariffin, S. Abdullah, and M. F. E. Md. Senan,

89

“An analysis of the kdd99 and unsw-nb15 datasets for the intrusion detection

system,” Symmetry, vol. 12, no. 10, p. 1666, 2020.

[46] S. Alahmed, Q. Alasad, M. M. Hammood, J.-S. Yuan, and M. Alawad, “Mitiga-

tion of black-box attacks on intrusion detection systems-based ml,” Computers,

vol. 11, no. 7, 2022. [Online]. Available: https://www.mdpi.com/2073-

431X/11/7/115

90

Appendix A

Source Code Snippets for Adversarial

White-box Attacks and Defense

A.1 JSMA

def Adversarial JSMA (X t ra in s ca l ed , X t e s t s c a l ed , y t ra in , y t e s t , c l a s s e s ,

batch , p r ed i c t i on s , s e s s , x , y , model , t a r g e t c l a s s) :

source sample s = X t e s t s c a l e d . shape [0]

Jacobian − based S a l i e n c y Map

r e s u l t s = np . z e r o s ((c l a s s e s , source sample s) , dtype =’ i ’)

Rate o f p e r t u r b e d f e a t u r e s f o r each t e s t s e t example and t a r g e t c l a s s

pe r tu rba t i on s = np . z e r o s ((c l a s s e s , source sample s) , dtype =’ f ’)

wrap = KerasModelWrapper (model)

r e s u l t s = np . z e r o s ((c l a s s e s , source sample s) , dtype=’ i ’)

91

Rate o f p e r t u r b e d f e a t u r e s f o r each t e s t s e t example and t a r g e t c l a s s

pe r tu rba t i on s = np . z e r o s ((c l a s s e s , source sample s) , dtype=’ f ’)

X adv = np . z e r o s ((source sample s , X t e s t s c a l e d . shape [1]))

jsma = SaliencyMapMethod (wrap , s e s s=s e s s)

jsma params = { ’ theta ’ : 1 . , ’gamma ’ : 0 . 1 ,

’ c l i p min ’ : 0 . , ’ c l ip max ’ : 1 . ,

’ y t a r g e t ’ : None}

X adv = np . z e r o s ((source sample s , X t e s t s c a l e d . shape [1]))

for sample ind in range (0 , source sample s) :

We want to f i n d an a d v e r s a r i a l example f o r each p o s s i b l e t a r g e t c l a s s

c u r r e n t c l a s s = int (np . argmax (y t e s t [sample ind]))

sample = X t e s t s c a l e d [sample ind : (sample ind + 1)]

Only t a r g e t the normal c l a s s

for t a r g e t in [t a r g e t c l a s s] :

i f c u r r e n t c l a s s == t a r g e t c l a s s :

break

This c a l l runs the Jacobian−based s a l i e n c y map approach

o n e h o t t a r g e t = np . z e r o s ((1 , c l a s s e s) , dtype=np . f l o a t 3 2)

o n e h o t t a r g e t [0 , t a r g e t] = 1

jsma params [’ y t a r g e t ’] = o n e h o t t a r g e t

x advinputs = jsma . generate np (sample , ∗∗ jsma params)

92

Check i f s u c c e s s was ach ieved

r e s = int (model argmax (se s s , x , p r e d i c t i o n s , x advinputs) == t a r g e t)

Compute number o f modi f ied f e a t u r e s

adv x reshape = x advinputs . reshape (−1)

t e s t i n r e s h a p e = X t e s t s c a l e d [sample ind] . reshape (−1)

nb changed = np . where (adv x reshape != t e s t i n r e s h a p e) [0] . shape [0]

pe r c en t pe r tu rb = f loat (nb changed) / x advinputs . reshape (−1). shape [0]

Update the arrays f o r l a t e r a n a l y s i s

r e s u l t s [ta rget , sample ind] = r e s

pe r tu rba t i on s [target , sample ind] = perc en t pe r tu rb

X adv [sample ind] = x advinputs

Compute the number o f a d v e r s a r i a l examples t h a t were s u c c e s s f u l l y found

n b t a r g e t s t r i e d = ((c l a s s e s − 1) ∗ source sample s)

s u c c r a t e = f loat (np .sum(r e s u l t s)) / n b t a r g e t s t r i e d

Compute the average d i s t o r t i o n in t roduced by the a l gor i thm

percent pe r turbed = np . mean(pe r tu rba t i on s [np . where (pe r tu rba t i on s ! = 0)])

Compute the average d i s t o r t i o n in t roduced f o r s u c c e s s f u l samples on ly

p e r c e n t p e r t u r b s u c c = np . mean(pe r tu rba t i on s [np . where (pe r tu rba t i on s !=0)] ∗

(r e s u l t s [np . where (pe r tu rba t i on s !=0)] == 1))

93

eval params = { ’ b a t c h s i z e ’ : batch }

accuracy adv = model eva l (s e s s , x , y , p r e d i c t i o n s , X adv , y t e s t ,

a rgs = eval params)

return X adv , accuracy adv , succ ra t e , percent per turbed , p e r c e n t p e r t u r b s u c c

A.2 FGSM

def Adversarial FGSM (X t ra in s ca l ed , X t e s t s c a l ed , y t ra in , y t e s t , c l a s s e s ,

batch , p r ed i c t i on s , s e s s , x , y , model , t a r g e t c l a s s) :

source sample s = X t e s t s c a l e d . shape [0]

Rate o f p e r t u r b e d f e a t u r e s f o r each t e s t s e t example and t a r g e t c l a s s

wrap = KerasModelWrapper (model)

adv inputs = X t r a i n s c a l e d [: source sample s]

Rate o f p e r t u r b e d f e a t u r e s f o r each t e s t s e t example and t a r g e t c l a s s

X adv = np . z e r o s ((source sample s , X t e s t s c a l e d . shape [1]))

adv inputs = X t e s t s c a l e d [: source sample s]

o n e h o t t a r g e t = np . z e r o s ((source samples , c l a s s e s) , dtype=np . f l o a t 3 2)

o n e h o t t a r g e t [np . arange (source sample s) , t a r g e t c l a s s] = 1

94

Craf t a d v e r s a r i a l examples us ing FGSM approach

fgsm = FastGradientMethod (wrap , s e s s=s e s s)

fg params = { ’ eps ’ : 0 . 3 , ’ y t a r g e t ’ : o n e h o t t a r g e t }

X adv = fgsm . generate np (adv inputs , ∗∗ fg params)

eval params = { ’ b a t c h s i z e ’ : np . minimum(c l a s s e s , source sample s)}

accuracy adv = model eva l (s e s s , x , y , p r e d i c t i o n s , X adv , y t e s t ,

a rgs = eval params)

return X adv , accuracy adv

A.3 CW

de f Adversarial CW (X t ra in s ca l ed , X t e s t s c a l ed , y t ra in , y t e s t , c l a s s e s ,

batch , p r ed i c t i on s , s e s s , x , y , model , t a r g e t c l a s s) :

source sample s = X t e s t s c a l e d . shape [0]

Rate o f perturbed f e a t u r e s f o r each t e s t s e t example and t a r g e t c l a s s

wrap = KerasModelWrapper (model)

adv inputs = X t e s t s c a l e d [: source sample s]

o n e h o t t a r g e t = np . z e r o s ((source samples , c l a s s e s) , dtype=np . f l o a t 3 2)

o n e h o t t a r g e t [np . arange (source sample s) , t a r g e t c l a s s] = 1

adv ys = None

Craft a d v e r s a r i a l examples us ing C a r l i n i and Wagner ’ s approach

I n s t a n t i a t e a CW attack ob j e c t

cw = CarliniWagnerL2 (wrap , s e s s=s e s s)

cw params batch s i ze = 10

95

cw params = { ’ b i n a r y s e a r c h s t e p s ’ : 2 ,

’ max i t e ra t i ons ’ : 100 ,

’ l e a r n i n g r a t e ’ : 0 . 2 ,

’ ba t ch s i z e ’ : 1 ,

’ i n i t i a l c o n s t ’ : 10 ,

’ y ta rge t ’ : adv ys}

X adv = cw . generate np (adv inputs , ∗∗ cw params)

eval params = { ’ ba t ch s i z e ’ : np . minimum(c l a s s e s , source sample s)}

e r r = model eva l (s e s s , x , y , p r e d i c t i o n s , X adv ,

y t e s t [: source sample s] , a rgs=eval params)

adv accuracy = 1 − e r r

accuracy adv = model eva l (s e s s , x , y , p r e d i c t i o n s , X adv , y t e s t ,

a rgs = eval params)

re turn X adv , accuracy adv

96

Appendix B

Source Code Snippet for GAN-based Defense

#Training PArams

l e a r n i n g r a t e = 0.0002

b a t c h s i z e = 78

epochs = 500

#Network params

data dim = 78

gen hidd dim = 128

gen hidd2 = 128

gen hidd3 = 256

d i s c h idd d im = 128

d i s c h idd2 = 128

d i s c h idd3 = 64

d i s c h idd4 = 64

z no i s e d im = 78

de f x a v i e r i n i t (shape) :

r e turn t f . random normal (shape = shape , stddev= 1 ./ t f . s q r t (shape [0] / 2 . 0))

97

weights = {

” disc H ” : t f . Var iab le (x a v i e r i n i t ([data dim , d i s c h idd d im])) ,

” d isc H2 ” : t f . Var iab le (x a v i e r i n i t ([d i sc h idd dim , d i s c h idd2])) ,

” d isc H3 ” : t f . Var iab le (x a v i e r i n i t ([d i s c h idd2 , d i s c h idd3])) ,

” d isc H4 ” : t f . Var iab le (x a v i e r i n i t ([d i s c h idd3 , d i s c h idd4])) ,

” d i s c f i n a l ” : t f . Var iab le (x a v i e r i n i t ([d i s c h idd4 , 1])) ,

”gen H ” : t f . Var iab le (x a v i e r i n i t ([z no i se d im , gen hidd dim])) ,

”gen H2 ” : t f . Var iab le (x a v i e r i n i t ([gen hidd dim , gen hidd2])) ,

”gen H3 ” : t f . Var iab le (x a v i e r i n i t ([gen hidd2 , gen hidd3])) ,

” g e n f i n a l ” : t f . Var iab le (x a v i e r i n i t ([gen hidd3 , data dim]))

}

b ia s = {

” disc H ” : t f . Var iab le (x a v i e r i n i t ([d i s c h idd d im])) ,

” d isc H2 ” : t f . Var iab le (x a v i e r i n i t ([d i s c h idd2])) ,

” d isc H3 ” : t f . Var iab le (x a v i e r i n i t ([d i s c h idd3])) ,

” d isc H4 ” : t f . Var iab le (x a v i e r i n i t ([d i s c h idd4])) ,

” d i s c f i n a l ” : t f . Var iab le (x a v i e r i n i t ([1])) ,

”gen H ” : t f . Var iab le (x a v i e r i n i t ([gen hidd dim])) ,

”gen H2 ” : t f . Var iab le (x a v i e r i n i t ([gen hidd2])) ,

”gen H3 ” : t f . Var iab le (x a v i e r i n i t ([gen hidd3])) ,

” g e n f i n a l ” : t f . Var iab le (x a v i e r i n i t ([data dim]))

}

#d e f i n i n g the Di sc r iminator

de f D i s c r iminato r (x) :

98

h idden l aye r = t f . nn . r e l u (t f . add (t f . matmul (x , weights [” d i sc H ”]) ,

b i a s [” d isc H ”]))

h idden laye r2 = (t f . add (t f . matmul (h idden layer , we ights [” d isc H2 ”]) ,

b i a s [” d isc H2 ”]))

h idden laye r3 = (t f . add (t f . matmul (h idden layer2 , weights [” disc H3 ”]) ,

b i a s [” d isc H3 ”]))

h idden laye r4 = (t f . add (t f . matmul (h idden layer3 , weights [” disc H4 ”]) ,

b i a s [” d isc H4 ”]))

f i n a l l a y e r = (t f . add (t f . matmul (h idden layer4 , weights [” d i s c f i n a l ”]) ,

b i a s [” d i s c f i n a l ”]))

d i s c ou tput = t f . nn . s igmoid (f i n a l l a y e r)

#pr in t (d i s c ou tput)

re turn d i s c ou tput

Def in ing the Generator NW

def Generator (x) :

h idden l aye r = t f . nn . r e l u (t f . add (t f . matmul (x , weights [” gen H ”]) ,

b i a s [” gen H ”]))

h idden laye r2 = (t f . add (t f . matmul (h idden layer , we ights [” gen H2 ”]) ,

b i a s [” gen H2 ”]))

h idden laye r3 = (t f . add (t f . matmul (h idden layer , we ights [” gen H3 ”]) ,

b i a s [” gen H3 ”]))

f i n a l l a y e r = (t f . add (t f . matmul (h idden layer3 , weights [” g e n f i n a l ”]) ,

b i a s [” g e n f i n a l ”]))

gen output = t f . nn . s igmoid (f i n a l l a y e r)

re turn gen output

99

#d e f i n e p l a c e h o l d e r s f o r e x t e r n a l input

z input = t f . p l a c eho ld e r (t f . f l o a t32 , shape = [None , z no i s e d im] , name =

” i n p u t n o i s e ”)

x input = t f . p l a c eho ld e r (t f . f l o a t32 , shape = [None , data dim] , name =

” r e a l n o i s e ”)

#Bui ld ing the Generator NW

with t f . name scope (” Generator ”) as scope :

output Gen = Generator (z input) #G(z)

Bui ld ing the Disc NW

with t f . name scope (” Di sc r iminator ”) as scope :

r e a l o u t p u t d i s c = Disc r iminator (x input) #implements D(x)

f a k e o u t p u t d i s c = Disc r iminato r (output Gen) # implements D(G(x))

with t f . name scope (” Di s c r im inato r Los s ”) as scope :

D i s c r im inato r Los s = −t f . reduce mean (t f . l og (r e a l o u t p u t d i s c+

0.0001)+ t f . l og (1.− f a k e o u t p u t d i s c +0.0001))

with t f . name scope (” Genetator Loss ”) as scope :

Generator Loss = −t f . reduce mean (t f . l og (f a k e o u t p u t d i s c+ 0 . 0001))

D i s c l o s s t o t a l = t f . summary . s c a l a r (” D i s c T o t a l l o s s ” , D i s c r im ina to r Los s)

G e n l o s s t o t a l = t f . summary . s c a l a r (” Gen loss ” , Generator Loss)

#Making a separa te d i c t i o n a r y f o r the cur r ent weights and b i a s e s

Generator var = [weights [” gen H ”] , weights [” g e n f i n a l ”] , b i a s [” gen H ”] ,

b i a s [” g e n f i n a l ”]]

D i s c r im ina to r va r = [weights [” d isc H ”] , weights [” d i s c f i n a l ”] , b i a s [” d isc H ”] ,

100

b ia s [” d i s c f i n a l ”]]

#Def ine the opt imize r

with t f . name scope (” Opt imize r Di sc r iminator ”) as scope :

D i s c r im ina to r op t im i z e = t f . t r a i n . AdamOptimizer (l e a r n i n g r a t e =

l e a r n i n g r a t e) . minimize (Di sc r iminator Loss , v a r l i s t = Di s c r im ina to r va r)

with t f . name scope (” Optimizer Generator ”) as scope :

Generator opt imize = t f . t r a i n . AdamOptimizer (l e a r n i n g r a t e =

l e a r n i n g r a t e) . minimize (Generator Loss , v a r l i s t = Generator var)

101

Appendix C

Source Code Snippets for Adversarial

Black-box Attack and its Defense

C.1 Genetic Algorithm

de f e v o l u t i o n a r y a t t a c k v 2 () :

Load and prep roce s s the CSE−CIC−IDS2018 datase t

X t ra in s ca l ed , X t e s t s c a l ed , y t ra in , y t e s t = pr e p ro c e s s i n g ()

Def ine the machine l e a r n i n g model

model = RandomForestClass i f i e r ()

Def ine the f i t n e s s func t i on

de f f i t n e s s (i nd iv idua l , X t ra in s ca l ed , X t e s t s c a l ed , y t ra in , y t e s t) :

s e l e c t e d f e a t u r e s = [idx f o r idx , gene in enumerate (i n d i v i d u a l) i f gene]

x t e s t i n d i v i d u a l = X t e s t s c a l e d [: , s e l e c t e d f e a t u r e s]

model = RandomForestClass i f i e r (n e s t imato r s =200 , random state =0)

102

model . f i t (X t r a i n s c a l e d [: , s e l e c t e d f e a t u r e s] , y t r a i n)

y pred = model . p r e d i c t (x t e s t i n d i v i d u a l)

accuracy = accu racy s co r e (y t e s t , y pred)

f 1 = f 1 s c o r e (y t e s t , y pred , average =’weighted ’)

r e c a l l = r e c a l l s c o r e (y t e s t , y pred , average =’weighted ’)

roc = r o c a u c s c o r e (y t e s t , y pred , average =’weighted ’ , m u l t i c l a s s =’ovo ’)

r e turn (accuracy , f1 , r e c a l l , roc)

POP SIZE = 50

GEN NUM = 20

CXPB = 0.5

MUTPB = 0.2

Create the g e n e t i c a lgor i thm too lbox

c r e a t o r . c r e a t e (” FitnessMax ” , base . F i tness , weights =(1.0 , 1 . 0 , 1 . 0 , 1 . 0))

c r e a t o r . c r e a t e (” I n d i v i d u a l ” , l i s t , f i t n e s s=c r e a t o r . FitnessMax)

too lbox = base . Toolbox ()

too lbox . r e g i s t e r (” a t t r b o o l ” , random . randint , 0 , 1)

too lbox . r e g i s t e r (” i n d i v i d u a l ” , t o o l s . in i tRepeat , c r e a t o r . Ind iv idua l ,

too lbox . a t t r b o o l , n=X t e s t s c a l e d . shape [1])

too lbox . r e g i s t e r (” populat ion ” , t o o l s . in i tRepeat , l i s t , too lbox . i n d i v i d u a l)

too lbox . r e g i s t e r (” eva luate ” , f i t n e s s , X t r a i n s c a l e d=X tra in s ca l ed ,

X t e s t s c a l e d=X t e s t s c a l ed , y t r a i n=y t ra in , y t e s t=y t e s t)

too lbox . r e g i s t e r (” mate ” , t o o l s . cxTwoPoint)

too lbox . r e g i s t e r (” mutate ” , t o o l s . mutFlipBit , indpb=MUTPB)

103

too lbox . r e g i s t e r (” s e l e c t ” , t o o l s . selTournament , t o u r n s i z e =3)

Create the i n i t i a l populat ion

pop = too lbox . populat ion (n=POP SIZE)

Run the EA

hof = t o o l s . HallOfFame (1)

s t a t s = t o o l s . S t a t i s t i c s (lambda ind : ind . f i t n e s s . va lue s)

s t a t s . r e g i s t e r (” avg ” , np . mean , a x i s =0)

s t a t s . r e g i s t e r (”min” , np . min , a x i s =0)

s t a t s . r e g i s t e r (”max” , np . max , a x i s =0)

pop , l og = a lgor i thms . eaSimple (pop , toolbox , cxpb=CXPB, mutpb=MUTPB,

ngen=GEN NUM, s t a t s=s ta t s , ha l l o f f ame=hof , verbose=True)

Print the best i n d i v i d u a l

b e s t i n d i v i d u a l = hof [0]

Evaluate the best i n d i v i d u a l

f i t n e s s v a l u e s = f i t n e s s (b e s t i n d i v i d u a l , X t ra in s ca l ed , X t e s t s c a l ed ,

y t ra in , y t e s t)

C.2 GAN-based Defense

Def ine the s i z e o f the l a t e n t space f o r the genera to r

l a t ent d im = 100

Def ine the genera to r

104

genera to r = Sequent i a l ()

genera to r . add (Dense (256 , input dim=latent d im))

genera to r . add (LeakyReLU(alpha =0.2))

genera to r . add (Dropout (0 . 2))

genera to r . add (Dense (512))

genera to r . add (LeakyReLU(alpha =0.2))

genera to r . add (Dropout (0 . 2))

genera to r . add (Dense (1024))

genera to r . add (LeakyReLU(alpha =0.2))

genera to r . add (Dropout (0 . 2))

genera to r . add (Dense (2048))

genera to r . add (LeakyReLU(alpha =0.2))

genera to r . add (Dropout (0 . 2))

genera to r . add (Dense (79 , a c t i v a t i o n =’tanh ’))

Def ine the d i s c r i m i n a t o r

d i s c r i m i n a t o r = Sequent i a l ()

d i s c r i m i n a t o r . add (Dense (2048 , input dim =79))

d i s c r i m i n a t o r . add (LeakyReLU(alpha =0.2))

d i s c r i m i n a t o r . add (Dropout (0 . 2))

d i s c r i m i n a t o r . add (Dense (1024))

d i s c r i m i n a t o r . add (LeakyReLU(alpha =0.2))

d i s c r i m i n a t o r . add (Dropout (0 . 2))

d i s c r i m i n a t o r . add (Dense (512))

d i s c r i m i n a t o r . add (LeakyReLU(alpha =0.2))

d i s c r i m i n a t o r . add (Dropout (0 . 2))

d i s c r i m i n a t o r . add (Dense (256))

105

d i s c r i m i n a t o r . add (LeakyReLU(alpha =0.2))

d i s c r i m i n a t o r . add (Dropout (0 . 2))

d i s c r i m i n a t o r . add (Dense (1 , a c t i v a t i o n =’ sigmoid ’))

gan input = Input (shape=(latent d im ,))

gan output = d i s c r i m i n a t o r (genera to r (gan input))

gan = Model (gan input , gan output)

Compile the d i s c r i m i n a t o r

d i s c r i m i n a t o r . compi le (l o s s =’ b ina ry c ro s s ent ropy ’ , opt imize r=Adam(l r =0.0002 ,

beta 1 =0.5))

Compile the GAN

gan . compi le (l o s s =’ b inary c ro s s ent ropy ’ , opt imize r=Adam(l r =0.0002 ,

beta 1 =0.5))

Def ine a func t i on to generate random samples from the l a t e n t space

de f g e n e r a t e l a t e n t p o i n t s (latent d im , n samples) :

x input = np . random . randn (la t ent d im ∗ n samples)

x input = x input . reshape (n samples , l a t ent d im)

re turn x input

Def ine a func t i on to t r a i n the GAN

def t r a i n gan (gan , d i s c r im ina to r , generator , X train adv , epochs =100 ,

b a t c h s i z e =128):

Calcu la te the number o f batches per epoch

106

batch per epoch = i n t (X tra in adv . shape [0] / b a t c h s i z e)

h a l f b a t c h = i n t (b a t c h s i z e / 2)

Loop through each epoch

f o r i in range (epochs) :

Loop through each batch

f o r j in range (batch per epoch) :

Generate random samples from the l a t e n t space

X batch = g e n e r a t e l a t e n t p o i n t s (latent d im , h a l f b a t c h)

Generate samples from the genera to r

X fake = generato r . p r e d i c t (X batch)

Combine r e a l and fake samples

X rea l = X tra in adv [j ∗ h a l f b a t c h : (j + 1) ∗ h a l f b a t c h]

X = np . concatenate ([X real , X fake])

Create l a b e l s f o r r e a l and fake samples

y r e a l = np . ones ((ha l f ba tch , 1))

y f ake = np . z e r o s ((ha l f ba tch , 1))

y = np . concatenate ([y r ea l , y f ake])

Train the d i s c r i m i n a t o r on the r e a l and fake samples

d i s c r i m i n a t o r . t r a i n a b l e = True

d l o s s = d i s c r i m i n a t o r . t r a i n on ba t ch (X, y)

107

