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The push for renewable energy has certainly driven the world towards 

sustainability. However, the incorporation of clean energy into the electric power grid does 

not come without challenges. When synchronous generators are replaced by inverter based 

Photovoltaic (PV) generators, the voltage profile of the grid gets considerably degraded. 

The effect in voltage profile, added with the unpredictable generation capacity, and lack of 

good reactive power control eases opportunities for sneaky False Data Injection (FDI) 

attacks that could go undetected. The challenge is to differentiate these two phenomena.  

In this thesis work, an attack is exposed in a grid environment with high PV 

penetration, and challenges associated with designing a detector that accounts for 

inefficiencies that comes with it is discussed. The detector is a popular Kalman Filter based 

anomaly detection engine that tracks deviation from the predicted behavior of the system. 

Chi-squared fitness test is used to check if the current states are within the normal bounds 

of operation. The work concludes by exposing a vulnerability in using static and dynamic 

threshold detectors which are directly affected by day-ahead demand prediction algorithms 

that have not been fully evolved yet. Finally, some of the widely used machine learning 



iv 

based anomaly detection algorithms is used to overcome the drawbacks of model-based 

algorithm. 
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Chapter 1  

Introduction 

 
1.1 Background and Motivation 

Electric power is one of the crucial infrastructures that drives the daily human 

operation. Ever since its invention, humans have found new and improved ways to use it 

to make life more convenient and make more technological advancements possible. In 

order to make electricity more easily accessible and scalable, the electric power 

infrastructure is organized in three components: generation, transmission and distribution. 

The generation portion of the electric grid infrastructure is associated with generating 

electric power. Some of the generation techniques include hydro generation, coal fired 

generation, nuclear power plants, and more recently wind and solar plants. Traditionally, 

the power generation plants would generate large amounts of power enough for a big city 

placed scarcely across the country. However, the demand for more clean power like solar 

and wind have resulted in the concept of Distributed Energy Resources (DER), which are 

plants that produce less power usually in a few megawatts are renewable [1]. The 

transmission section transmits large amounts of power across long distances using 
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transmission lines and terminates at either industry that requires large amounts of power or 

at a distribution station that distributes power to the end customers.  

The modern electric grid has a complex network of transmission and distribution 

systems, mostly for redundancy and fault tolerance. Hence, it needs to be managed very 

efficiently. SCADA systems allows centralized control and monitoring of electric 

equipment in the grid. The system gathers information from various Phasor Measurement 

Units (PMU) which helps in calculating electrical parameters to make the entire system 

observable. Along with that, the control system helps run automatic voltage regulation, 

frequency regulation and generation controls, which is crucial to keeping the system 

running in the desired state [2]. The ability to remotely gather information and control the 

electrical infrastructure helps in efficient management of the grid. However, it also makes 

the grid vulnerable to attacks. The critical nature of the infrastructure demands more 

security and resiliency. Everything from traffic lights to medical equipment on hospitals 

work on electric power, and it is very important for the grid to be 100% available.  

The electric power grid has seen a lot of changes in recent years. Traditionally, 

power system comprised of synchronous generators with high power generation capability 

and a predictable voltage profile that fluctuated slightly throughout the day. These 

synchronous generators almost exclusively provided the bulk system voltage regulation. 

However, that is quickly changing, and with the synchronous fossil fuel and nuclear-

powered generators being retired slowly but steadily, it has led to the need for renewable 

generation to contribute more significantly to the power system voltage and reactive 

regulation [12]. 
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The synchronous generators reliably produce reactive power by controlling the 

excitation current through the rotors. Although there is a limit to the magnitude of field 

current that can be given to rotor windings of a generator to produce reactive power, its 

production has little effect on the terminal voltage of the generator. That helps the 

synchronous generators achieve a good voltage profile. On the other hand, due to the 

limited converter current capacity of PV, its reactive power capacity is usually smaller 

compared with that of a synchronous generator, especially when PV’s real power output is 

close to the rated value. Inverters used for solar PV and wind plants can provide reactive 

capability at partial output, but any inverter-based reactive capability operating at full 

power implies that we need a larger converter to handle full active and reactive current [6]. 

This means one of two things: the PV generators would have to operate significantly lower 

than their maximum rated output, or they could operate at maximum rated output with a 

trade-off in the voltage.  

The grid is changing substantially with the introduction of Distributed Energy 

Resources (DER) and the wide adoption of renewables. And, with these ongoing changes 

in the grid, the traditional definition of grid stability isn’t always applicable. Most of 

today’s infrastructure is internet accessible, and false data injection attacks could give an 

indication that the voltage levels on buses with PV generators are very low, when in reality 

the generator could be operating normally. Normally, this wouldn't be a problem, because 

false data injection attacks are easily detectable in power systems with low PV penetration, 

because these systems have predictable voltage and current levels. Since the injections 

would have voltage/current levels that vary significantly from the voltage levels at which 

synchronous generators operate, a Chi-squared detector would easily pick up these 
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anomalies [3]. The same detector would also detect the injection attacks at systems with 

high PV penetration, however the system parameters during normal operation at high PV 

penetration when PV generators are close to maximum power generation limits, and during 

attacks at low PV penetration would be indistinguishable to the detector. Hence, it is 

necessary to develop a model which can efficiently detect attacks during high PV 

penetration. 

This research work aims at showing an attack scenario that takes advantage of poor 

voltage profile during peak loads at a grid with high PV penetration. A comparison between 

traditionally used model-based algorithms against the machine learning based algorithms 

is done under same condition. For model-based algorithm, Kalman Filter based detector is 

used, which is widely researched in state estimation as well as detection of attacks. 

However, unlike other research, this model is based on day-ahead demand predictions, 

which defines the normal operation of the system and ultimately thresholds for the states 

at any given time of the day. The process model in Kalman filter for power system state 

estimation realistically should not only have Gaussian error. The states are highly 

dependent on the demand, especially in grids with high PV penetration, and the model 

takes that into account to get a better prediction. However, the crucial part of this work is 

showing how model-based algorithms perform poorly in high PV scenarios with high false 

positives. For machine learning based detection, four of the widely used anomaly detection 

algorithms is used. 

1.2 Thesis Objectives 

The objective of this research work is summarized below: 

1. Review the literature related to model-based and data-driven FDIA detectors 
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2. Develop a Kalman filter model for state estimation of grid state 

3. Develop a Chi-squared detector that uses measurement co-variance matrix and 

reside from Kalman filter model 

4. Gather simulation data for load flow analysis under low and high PV 

penetration 

5. Test the performance of Kalman filter and Machine Learning based detectors 

under attacks in different levels of PV penetration. 

1.3 Organization of the Thesis 

Chapter 1 – Introduction 

The first chapter gives a brief introduction to the electric grid infrastructure, 

highlighting the importance of security. It explains how the advancement in grid is making 

it vulnerable to attacks, and various detection techniques that have been developed to 

prevent it. 

Chapter 2 – Literature Review 

This chapter discusses various approaches to detecting False Data Injection 

Attacks. Both traditional model-based and the new data-driven approach has been 

discussed. 

Chapter 3 – Kalman Filter Estimator 

Kalman filter-based state estimator has been presented in this chapter. Along with 

presenting the theoretical basis of a Kalman filter model, the chapter discusses how this 

model is used to estimate grid state like voltage. The chapter also shows the use of Chi-

squared detector in conjunction with the Kalman filter model to detect FDIA. A crucial 
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portion in the chapter is how the state residual and measurement covariance are propagated 

to Chi-squared detector to get a real time detection. 

Chapter 4 – Attack Model 

The chapter gives an insight into the attack model used in the research work as well 

as explain the attack scenario in during low and high PV penetration. The ability of the 

attack to obfuscate as a diminishing performance during high PV penetration is also 

discussed. 

Chapter 5 – Machine Learning Based Anomaly Detector 

The implementation of four of the most widely used Machine Learning algorithms 

in anomaly detection is presented in the chapter. A detailed explanation of training and 

testing models has also been explained. 

Chapter 6 – Results 

The result of the data-driven model is compared with the model-based detection in 

both low PV and high PV penetration. Accuracy and false positives two of the main focus 

of the results section. 

Chapter 7 – Conclusion and Future Work 

Finally, this chapter makes some concluding remarks on the research work, as well 

as suggests some modifications which could give new direction for continuing this research 

work. 
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Chapter 2 

Literature Survey 

 
Power systems employ state estimation techniques for synchronizing its generation, 

transmission and distribution operation [2]. The technique models the states of the system 

using process covariance, which represents the change in states with respect to time using 

statistical covariance, and measurement co-variance which depicts the change in 

measurement. It is crucial that the state and measurement covariances are correctly 

modelled, because an incorrect value will give a false representation of the system. State 

estimation allows 100% observability of the system using direct measurements and pseudo 

measurements. Pseudo measurements are measurements which are calculated using 

mathematical relations if enough parameters about bus and line are known [4].  

A wide variety of state estimation techniques have been developed throughout the years. 

The most notable is Weighted Least Square method, which uses weights to show belief in 

a particular state. Although WLS method is widely used, it has a drawback of being 

iterative in nature [2]. This makes it very slow, and researchers are looking for fast and 

non-iterative way of state estimation in recent times where the grid has not only gotten 

more complicated, but also very unpredictable with the introduction of more renewable 

energy sources.    
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Kalman filter has recently got more attention in state estimation because of its 

success in modelling systems with large amounts of errors. It is however not without its 

drawbacks. Although it is fast and non-iterative, it has strict requirements on the nature of 

the states it tries to model. More specifically, the states should follow a normal distribution 

in order to be correctly modelled using a Kalman filter [5]. A lot of the research in Kalman 

filter based state estimation has been done without explaining the intricacies of the scope 

of normal distribution and boundary conditions where the estimation is relevant.  

The detection algorithms use state estimation to get the required information and 

draw a conclusion regarding the validity and integrity of the data. The main challenge 

associated with these algorithms is deciding on a threshold which ideally differentiates legit 

states with falsely injected states. If the threshold is too high, the detector will likely not 

detect all attacks resulting in too many false negatives, and if it is too low, the detector will 

have a high false positive. Getting the right amount of balance is the key. 

 On the detection side, Kalman filter is usually paired with a Chi-squared detector, 

or a Euclidean detector to detect FDIA. This set up works perfectly on traditional grid 

which is very predictable, and the behavior of the grid is very stable. However, modern 

grid increasingly uses renewable energy like solar and wind, the output of which is very 

unpredictable. More recently, BTM PV supply resources residing in customer end has 

added more uncertainty on energy generation and demand [6]. Hence, it has become very 

difficult to model the behavior of the grid to account for new changes. Hence, Machine 

Learning algorithms have been widely explored in both state estimation and FDIA 

detection.  
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 The scope of the research work is very specific. The work shows drawbacks 

associated with model-based algorithms in a very high PV penetration environment where, 

at peak demands, the grid shows behavior which mimics an attack. The grid supposedly 

needs to know the context to a wide number of variables to predict accurately in such 

scenario. 

2.1 State Estimation 

State estimation in power system was first recognized by Fred Schweppe [13, 14, 

15]. Since its introduction, state estimation has widened the capabilities of the SCADA 

systems. State estimation has 5 main functions [2], which is explained below:  

1. Topology processor: The topology processor helps gather information about the 

interconnection between components of grid infrastructure. The grid changes 

its topology every so often due to faults, or economic constraints and topology 

processor receives current status of switches and circuit breakers to build the 

one-line diagram of the system. 

2. Observability analysis: The system or portion of it is observable if all the 

parameters of it are known directly or can be calculated using mathematical 

relations. Observability analysis determines if all bus voltages and line currents 

of the grid can be calculated using the given PMU measurements. It also checks 

if the system has any unobservable branches.  

3. State estimation solution: The solution provides optimal estimate for the system 

state based on the given measurements and the estimation model. The solution 

includes l2ine flows, loads, transformer taps and power injections.  
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4. Bad data processing: The parameters measured on the grid can be altered by a 

faulty device, or its integrity can be violated in transit. Such data can heavily 

impact the performance of state estimation. Hence, it is necessary to eliminate 

such data and correct it using redundant measurements. 

5. Parameter and structural error processing: Estimations are done on various 

parameters like transmission line model parameters, and shunt capacitor or 

reactor parameters. The main function is to detect errors in network 

configuration provided enough redundancy exists in the system. 

 

2.1.1  Weighted Least Square Estimation 

2.1.1.1 Maximum Likelihood Estimation 

The main objective of state estimation is to calculate the most likely state of the 

system among all the possible states by using the measured parameters. One of the most 

popular technique to determine the likelihood of a given state is the maximum likelihood 

estimation (MLE) [7]. The measurement errors on various measured parameters on the grid 

are very predictable, and hence a joint probability density function can be drawn in terms 

of unknown parameters. This is called the likelihood function which has a peak value when 

the unknown parameters are close to the actual values. The MLE method can be used to 

solve an optimization problem which can be used to provide the maximum likelihood 

estimates of the unknown parameters. 

The measurement errors on the measurement units or PMUs are supposed to follow 

a normal distribution. This is also commonly known as a bell curve, which is shaped like 

a bell. Two of the important parameters of the distribution are mean μ and standard 
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deviation σ, which defines the shape of the curve. Any random variable has a high 

probability of being close to the mean, and the probability of a random variable tapers away 

as it goes further away from the mean [2]. For a random variable z, the normal probability 

density function (pdf) is defined as:  

f(z) = 
1

√2πσ
e

-1/2{
z-μ

σ
}
2

 (2.1) 

where, 

 μ = expected value of z = E(z) 

 σ = standard deviation of z 

After standardization, the function becomes, 

ϕ(u) =
1

√2π
eu2/2 (2.2) 

 where,  

  u= 
z-μ

σ
 

The plot of ϕ(u) is shown in fig 2-1. 

The next step in the process is calculating the likelihood function. The probability 

of measuring m independent variables or measurements is represented by a joint 

distribution function, which is the product of probability distribution function of each 

individual measurements. It is given by: 

f
m

(z) = f(z1)f(z2)…f(zm) (2.3) 

 where, zi = ith measurement  

This function is the likelihood function for random variable z. The aim of the MLE is to 

maximize this function by varying its mean μ and standard deviation σ. The calculations 
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can by simplified by replacing the function in terms of its logarithm. The resulting function 

is called the Log-likelihood function given by:  

ℒ = logf
m

(z) = ∑ logf(zi)

m

i=1

 

= -
1

2
∑ (

zi- μi

σi
)

2
m
i=1 -

m

2
 log2π- ∑ logm

i=1 σi (2.4) 

 

 

Fig 2-1: Probability density function of a normal distribution 

The solution to maximizing the likelihood can be obtained in two ways: 

1. maximize logfm(z) 

2. minimize ∑ (
𝑧𝑖− 𝜇𝑖

𝜎𝑖
)

2𝑚

𝑖=1
 

The residual ri of the measurement i is defined as: 

ri = zi- μi
 = zi- E(zi) (2.5) 
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A new function called hi(x) is introduced which is non-linear in nature and relates 

the states of the system to the measurements. The standard deviation of the measurement 

variables not only shows how the variables are distributed, but also helps achieve a set 

level of confidence in predicting its likely value. Hence, the WLS problem is introduced 

by placing a weight Wii = σi
-2. This expression puts more weight on measurements that can 

be trusted, or in other words, measurements which have less standard deviation. Finally, 

the minimization problem becomes, 

Minimize: 

∑ 𝑊𝑖𝑖𝑟𝑖
2𝑚

𝑖=1  (2.6) 

Given: 

zi=hi(x)+ri , i = 1, 2 . . , m 

The Weighted Least Square (WLS) estimator for x is the solution to the optimization 

problem above. 

2.1.1.2 Weighted Least Square Estimation Algorithm 

The precursor to WLS estimation has been explained in the previous section. The WLS 

estimation is not just a single step but a series of steps which has to be followed 

precariously to obtain effective results. The algorithm for WLS estimation is given in 

following steps [2]. 

1. Set the iteration index k = 0 

2. Do a flat start initialization of the state vector xk 

3. Compute gain matrix G(xk) 

4. Calculate R.H.S of tk = H(xk)TR-1(z – h(xk)) 

5. Decompose G(xk) and solve xk 
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6. Test if the solution converges, max | xk |   ? 

7. If the solution converges, stop. If not, update xk+1 = xk + xk, k = k + 1 

2.2 Detection Algorithms 

Detection methods for False Data Injection Attacks have been researched for a few 

decades. These algorithms are broadly categorized as model-based detection algorithms 

and data-driven detection algorithms [11]. Weighted Least Squares (WLS) were realized 

in [16, 17, 18, 19]. These first detectors were static and iterative in nature, which did not 

use the last state to update the new state. That made them slow and processor intensive. 

Kalman filters and some of its variations were used in [20, 21]. In [22, 23] specifically, 

Extended Kalman Filters were used which was able to address non-linearity in the system 

and yielded more precise estimate. Unlike WLS, these detectors are dynamic in nature and 

use the last state to update the current state. 

Some detection algorithms are however estimation-free. Cooperative Vulnerability 

Factor (CVF) employs secondary output of voltage controllers that converges to zero if the 

system is under the FDI attack (FDIA) [24]. This technique was used in microgrids 

environment. Another technique called Matrix Separation (MS) exploits the sparse nature 

of FDIA by separating nominal states of power grid and anomaly matrices [25, 26]. Some 

similar techniques are presented in [27, 28]. Data-driven detection algorithms are popular 

class of algorithms broadly classified as Machine Learning, Data Mining and other 

miscellaneous algorithms. Supervised learning technique use datasets that have labelled 

data to separate attacks from the normal flow. They have high accuracy but cannot detect 

new variation of attacks. Unsupervised learning does not need labelled data but is 

extremely difficult to model. Support Vector Machine (SVM), which is a type of 
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supervised learning is the most utilized in FDIA. These have been presented in [29, 30, 

31]. In the unsupervised category, K-means clustering is very popular and have been 

researched in [32, 33]. 

A wide variety of Kalman Filter has been used in the detection of False Data 

Injection Attacks. One of the challenges faced in the research is modelling non-linear 

relationship of power and voltages in the grid. In [34], the authors presented dynamic state 

estimation that does not require calculation of Jacobian matrix, which decreases the 

processing time. Similarly, Qi et.al [35] introduced Cubature Kalman Filter (CKF) that has 

a non-linear observer. These were then tested on a 68-bus system under various 

uncertainties in a realistic scenario. The authors showed that the model was comparatively 

more robust to uncertainties in the systems including cyber-attacks.  

A risk mitigation strategy was presented in [36] that addresses dynamics in the 

system for higher order depictions by utilizing a dynamic state estimator. The estimator is 

followed by a detection algorithm that checks for unknown inputs. [37] proposed a unique 

approach to dynamic state estimation. The algorithm employs a fully distributed approach 

where the estimation has an innovation design element for attack detection which reduces 

the overhead in communication. [38] designed an Adaptive Kalman Filter with Inflatable 

Noise Variances (AKF with InNoVa) algorithm that uses a 2-stage system that estimates 

static states like voltage magnitudes as well as dynamic states like generator rotor angles. 

The first stage of the system filters out the impact of incorrect system modelling and bad 

PMU measurements using AKF with InNoVa. The result in the first stage is served as a 

measurement to the second stage which has an Extended Kalman Filter (EKF). Kebina et. 

al. [39] used Chi-squared detector to detect anomalies in the system. The residuals from 
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Kalman filter were fed to a Euclidean detector which has the parameters for normal level 

of the system and detects if there is any deviation from the normal operation. 
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Chapter 3  

Kalman Filter Based Detector 

 
3.1 Kalman Filter Estimator 

The Kalman Filter has been extensively used in various applications in 

mathematics, engineering and economics. The filter is robust and provides good estimation 

of systems. At its core, Kalman filter balances the prediction of states and measurements 

of the states. Based on which of the two has higher beliefs, process or measurements, the 

filter calculates its estimation [5]. It assumes that the measurement error variance and 

process covariance is already known.  

The prediction equation is given below. 

x̅ = Fx + Bu (3.1) 

P̅ = FPFT  + Q (3.2) 

where, 

x and P are the state mean and covariance 

F is the state transition function 

Q is the process co-variance 

B and u are the control inputs which is 0 here 
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The first equation calculates the current state based on the last state and the state 

transition matrix. The states in the equation are vectors of real and imaginary currents and 

voltages given by equation (3) [8]. 

[
Re(z)

Im(z)
] = [

Re(H) - Im(H)

Im(H) Re(H)
] [

Re(x)

Im(x)
] + [

Re(v)

Im(v)
] (3.3) 

Unlike most of the research, where state transition matrix is taken as identity matrix 

because it is assumed that the next state is the mean of the stable state and some process 

error, this research uses pre-computed factors obtained from the demand forecast computer. 

The prediction step always lessens the belief that the estimator has towards the system. In 

other words, instead of having high probability in a small range of states, the estimates get 

dispersed to a slightly wider range of values with lesser probabilities. That is corrected by 

the update state. The measurement equation is given below. 

y = z - Hx () 

K = PHT(HPHT + R)
-1

 () 

x = x̅ + Ky () 

P = (I - KH)P () 

where, 

y is the residual 

H is the measurement function/matrix 

z and R are the measurement mean and noise covariance 

P and K are the state covariance and Kalman gain 

 

The residual y is the difference between measured values and predicted 

measurements which have been derived from the predicted states using H. The variables K 
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and P converges to some stable values. The measurement matrix converts the states from 

the state space to its corresponding measurements in the measurements space. The 

calculation of H matrix has been explained in [40]. The conversion of states to the 

measurement space however also changes the covariance. Hence, it needs to be 

recalculated in each iteration which is given by the relation in equation (7). It should also 

be noted that although the Kalman gain remains fairly stable after getting converged, the 

value should also be calculated in each state for a more accurate prediction and to avoid 

propagation of error.  

 

 

Fig 3-1: Block diagram of Kalman filter based detector 
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3.1.1  Calculation of State Matrix 

The states in Kalman filter are the parameters whose estimations are done by 

balancing the value between its measured and predicted versions. The states in this work 

are all the real and imaginary voltages in a 14-bus setup. The following expression shows 

the states of the setup. 

x= [Re(V1)    Re(V2)  . . .  Im(V1)    Im(V2) . . .  Im(V14)]T 

There are n states in the system. Hence, the size of x is nx1. When the simulation 

starts, the states have to be initially set to a certain stating condition. Usually, the rule of 

thumb is to start the states with a flat start condition. The states are initialized by setting all 

the real voltages to 1 and all the imaginary voltages to 0. However, the states of the grid 

are tentatively known and hence, the grid configuration is pre-simulated to get the stable 

values of the states, which results in faster convergence. 

But because all the states are not directly measured,  

 

3.1.2  Calculation of State Transition Matrix (F) 

The state transition matrix defines the transition of states from current state to next 

state [5]. The grid is a very dynamic infrastructure, and hence it is extremely difficult to 

accurately predict the next state of the system based on the current state. However, in this 

case, because the states are voltages, the Automatic Voltage Regulation (AVR) system 

always tries to stabilize the voltage between 5% of the nominal voltage of 1 P.U, and 

hence, it is easier to compute the state transition matrix. 

This research work uses a different approach in calculating F based on the real-

world scenario. Unlike other research where states are modelled to vary randomly between 

certain ranges, the work takes into account that the grid has a dynamic active and reactive 

power demand that varies throughout the day, and it affects the states of the system based 

on whether majority of its power comes from synchronous generators or PV generators. 

The day-ahead demands throughout the day is download from California Independent 

System Operator (CAISO) [9], simulated on an IEEE 14 bus configuration and the matrix 

F is calculated for each time step. However, the research work would be of no use if F was 

made to be 100% accurate. Instead of using hour-ahead demands for F, day-ahead demands 
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are used. And because day-ahead demands are slightly inaccurate than hour-ahead 

demands, there is a need for accurately predicting the next state by using measurements. 

For instance, the next state from the current state is calculated as follows: 

x= [
x1

x2
] 

x̅= [
A

0

    0

    B
] [

x1

x2
] 

State transition matrix is a nxn matrix. Here, the second equation predicts the next 

state using F. The state x1 changes by a factor of A and x2 changes by a factor of B. It is 

assumed that the states transition only depend the state itself and not on other states, the 

off-diagonal elements of F are 0. However, in a grid, the states do depend on the values of 

other states which has to be taken into account. That is done by incorporating state co-

variance P and process covariance Q. 

 

3.1.3  Calculation of Q and R 

 As discussed earlier, the state transition matrix takes time-dependent state 

transitions into account which is part of the process. Kalman filter also has B and u that 

considers any known external forces or variables, which is ignored in this work. However, 

the possibility of any unknown variables changing the predictions is huge. The filter should 

be designed in a way that expects some unaccounted variables and models uncertainty 

using it as a variable in the equation. The process covariance Q helps the filter account for 

those uncertainties.  

 The modelling of Q matrix is very crucial and one of the most difficult tasks of a 

Kalman filter and it is important to model Q accurately. If Q is too low, the filter will have 

more confidence in the prediction model and ignore noises in the system. If it is too high, 

the filter becomes inaccurate because its prediction will be largely influenced by the noise 

[5]. While there are various approaches to calculating Q, the appropriate Q matrix was 

obtained in this work by simulating the IEEE bus under various load conditions and 

evaluating the errors obtained in the simulation. When following this method, the 

simulation should be iterated numerous times to account for various load conditions and 

uncertainties in the grid. 
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 The measurement covariance R represents the predicted observation errors. This is 

sometimes referred as sensor noise and can be estimated easily by comparing the expected 

results with the sensor measurements [5]. 

 

3.1.4  Calculation of P 

 The state covariance matrix P shows the relation between all the system states. 

Mathematically, it is a measure of joint probability of two random variables. The 

covariance is defined as: 

cov(X, Y)=E[(X-E[X])(Y-E[Y])] (3.8) 

 where, E[X] is the expected value of random variable X. 

 A positive value of covariance between two variables, or state in this case shows a 

direct relation between those state and a negative value indicates inverse relationship. The 

matrix P is initialized in a similar way to the states. It doesn’t have a strict requirement like 

Q because P is optimized in each time step of Kalman filter equations, and ultimately 

converges to a stable value [5]. The state covariance matrix P is a symmetric matrix of size 

nxn where the element Pij shows the relationship between states i and j. The following 

graph shows how the covariance converges in less than 200 iterations. 

 

Fig 3-2: State covariance convergence 
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3.1.5  Calculation of measurement function H 

 The Kalman filter equations have n states and m measurements. The measurements 

done on the system can be different from the states. Therefore, in order to get a residual 

value between the predicted states and measurement, all the states have to be converted to 

the measurement space to make mathematics compatible to the same operands. The 

following figure illustrates this concept where the data points on the state space are 

converted to datapoints in measurement space using the measurement function H [5]. 

 

Fig 3-3: Conversion from state space to measurement space 

y = z - Hx  

y = [
V1

V5

V8

]  - H [
V1

V2

V3

]  

In order to convert states x to its measurement counterparts z, the mxn matrix H should be 

chosen such that the resulting operation H.x gets converted to measurements with elements 

V1, V5 and V8. Hence, it is necessary to first come up with a relationship between different 

voltages. Consider for example, the network is configured such that the following 

relationship holds true: 

V5=V2 + V3 

V8=V1 -  V2 

Then, the H matrix is chosen such that Hx results in [V1 V5 V8]T. The final H matrix for 

this example is given below: 



24 

H= [
1 0 0

0 1 1

1 -1 0

]  

 

3.1.6  Calculation of K 

 The Kalman gain is the most crucial parameter of any Kalman filter. The Kalman 

gain decides whether the estimation should lean towards predicted values or measured 

values based on which value the filter has higher confidence in [5]. In matrix form, the 

Kalman gain is a nxm matrix which sums each product between Kalman gains and 

measurements for a particular state. Like state covariance, Kalman gain also converges to 

a stable value after a few iterations. One of the Kalman gains used in this work has been 

graphed in the figure below. 

 

Fig 3-4: Kalman gain convergence 

 

3.1.7  Chi-squared Detector 

Kalman filter is very efficient is filtering out errors and providing true estimate of 

the system. However, it cannot be used to give an indication of deviation of states from 

normal operation. In order to do that, the Kalman filter is used in conjunction with a Chi-

squared detector in this research. The mathematical expression for chi-squared test is given 

below [11]. 
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 χ
c
2 = ∑

(Oi-Ei)
2

Ei
 (3.9) 

The Chi-squared detector is widely used for goodness of fit tests. That makes it 

practical for use in detecting false data injections where the normal states of the system can 

be plugged in, and with the knowledge of co-variance in the states, the Chi-squared values 

can be obtained. The expression above is not suitable for working with matrices and large 

number of states and measurements. Hence, as shown in [41], the following expression can 

be used for computing chi-squared value using the residual y and measurement co-variance 

R. 

g(t) = y-1Ry () 

The measurement covariance matrix R is crucial in the above equation. If the 

residual deviates from expected values, the Chi-squared value goes higher, indicating an 

inconsistency between the expected and real value. Chi-squared detector is a hypothesis 

test that uses a table based on degrees of freedom and level of confidence to build a 

threshold. This research work uses 95% confidence level, which translates to  = 0.05. The 

measurement covariance R gives an indication of normal operation, and if the residual, 

which is the difference between measured and predicted value, is high, then the chi-squared 

value increases past the threshold indicating a deviation from normal operation has 

occurred. The two suspected causes of this inconsistency are false data injection attacks, 

and a switch from synchronous generators to PV generators, which has a poor voltage 

profile. The challenge, and the main focus of research is to differentiate the two. 
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Chapter 4 

Machine Learning based Detectors 

 
 The electric is composed of complex network of electric infrastructure that spans 

from generation stations to transmission and distribution stations. While model-based 

algorithms can perform efficiently under ideal conditions when all the measurements are 

received timely and topological information about the network is known. However, the 

grid is unpredictable in nature because of occasional faults and equipment failures. It has 

become even more complicated in recent years with the introduction of Distributed Energy 

Resources (DER). The load flow analysis and state estimation become quickly 

overwhelmed if there are too many variables, and its performance is impacted when the 

entire system is not observable.  

On traditional electric grid, the parameters like voltages, currents and power 

injection would be relatively stable because synchronous generators are efficiently in 

handling reactive power demand. However, with the introduction of DERs in the grid, the 

PV based generators and inverters have limited reactive generation capability [6]. Due to 

this, the voltage gets fluctuated, and the grid states become unpredictable. Moreover, the 

renewable generation is unpredictable in nature with generations fluctuating throughout 

the day as well as the Behind the Meter (BTM) generation equipment adds more 
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uncertainly on whether the customers would be adding power to the grid or drawing from 

it. It has also been recently shown in [6] that the high PV penetration negatively impacts 

the grid if the generators reach close to their reactive generation limit. Due to these various 

reasons, the number of variables affecting the state of the grid like voltage, currents and 

power injections have increased significantly. Modelling all those variables like power 

demands and BTM generation mathematically is extremely difficult. Hence, detecting 

anomalies from the normal operation of the grid accurately using model-based algorithms 

is very difficult, and if all the variables are not accounted for, it will produce large errors. 

Machine learning algorithms have been explored extensively in the detection of 

false data injection attacks [12]. The idea is to first train the model with normal operation 

of the system under varying conditions of PV penetration and load demand. This training 

approach helps the ML model to help define normal operation under varying load 

conditions and different percentages of PV penetration. An attack scenario is generated by 

modifying the measurements during lower PV penetration and normal demand by replacing 

the measurements with measurements generated during high PV penetration and high 

demand. The block diagram for the training and test dataset is shown below.  

 

Fig 4-1: Process of creation of training and test datasets 
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The works uses 4 ML algorithms for anomaly detection which includes  

1. Isolation forest 

2. Local Outlier Factor 

3. One-class Support Vector Machine (OCSVM) 

4. Mahalanobis Distance  
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Chapter 5  

Simulation and Attack Setup 

 
5.1 Simulation setup 

The research work consists of IEEE 14 bus with the standard load profile. A 24-

hour demand curve is extracted from CAISO’s website as shown in Fig. 3 that drives the 

real and reactive power demands on each bus. The load flow is solved for each demand, 

and the corresponding states are obtained.  

In this setup, an IEEE 14 bus is simulated using Power World Simulator. The 

simulator runs 24-hour load demands and calculates the corresponding states and 

measurements. The load demand is obtained from CAISO every 5 minutes totaling 289 

demand points. These data points are interpolated to obtain 5,000 data points which is 

imported into MATLAB where Kalman filter predicts and estimates the real and imaginary 

voltages on each bus. The per-unit real voltage on bus 6 during a 24-hour period is shown 

in Fig. 4. 

The load flow is solved using the MATPOWER package. The Newton’s method is 

used to solve non-linear load flow equations. The Kalman filter estimator gets 

measurement data from the load flow solution and makes estimates using the day-ahead 

predictions and measurements. 

The reactive power generation in any power system is restricted by the reactive 

capability curve. The general idea behind reactive capability curve is that, for any given 

amount of active power generation, there is a limit on the amount of reactive power that 

can be generated. The limit is determined by the capability curve. Fig. 5 shows the 
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operating area of the PV inverters which are highly restricted by the power factor 

requirements and internal limits. The reactive power generation is limited in PV inverters, 

and although they can have D-shaped curve, this is not an industrial standard [12]. 

There is a special STATCOM mode which allows the PV inverters to generate 

reactive power without producing any active power and use that for voltage regulation. 

However, this mode is not always available due to restrictions. The reactive capability 

curve of the operating range was inserted into the Power World Simulator using a 

piecewise linear model. The PV control model, while being a crucial part of the system, 

has limited scope in this research and its intricacies are almost independent on how the 

attacks are carried out. Hence, it is excluded. 

The simulation setup for machine learning based detector is highly rigorous because 

unlike model-based algorithms where the states would be calculated using an equation, 

machine learning algorithms rely on pre-simulation of all the load flow condition that the 

model may encounter in real-life.   

 

Fig 5-1: Power demand over a 24 hour period  
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Fig 5-2: Voltage levels over a 24-hour period on bus 6 

 

 

Fig 5-3: Reactive capability curve of PV generator 
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5.2 The Attack 

The false data injection attack is carried out by changing the measurements on a 

PMU unit. This research work assumes that the attacker has access to a limited number of 

PMUs in the grid and is able to manipulate bus voltages and line current measurements on 

that PMU. As mentioned in [42], any unsophisticated attack can be easily detected using 

plausibility tests. Some red flags include voltage magnitudes that are negative or 

considerably higher or lower than the operating range of the bus, failed KVL and KCL 

tests and power equations.  

Any sophisticated attack would easily pass those tests. Hence, a difficult-to-detect 

attack is exposed, which makes the detection extremely hard. The attack impersonates a 

drop in voltage due to poor reactive performance that results in a less ideal voltage profile 

of PV generators. This attack is specifically targeted at a system that has higher PV 

penetration. The research in [6] shows how the increase in penetration of PV generators 

results in a poor voltage performance.  

In this attack, the attacker can get the bad voltage profile measurements and inject 

it during the time when the grid is performing normally. The detector will have difficulty 

in differentiating if the anomaly is caused by an attack or the high PV penetration. The 

challenge with this kind of attacks is that there should be no visible transition between a 

normal operation and the attack. A sudden drop in voltage, or a sudden loss in a portion of 

the grid is a major red flag that will draw immediate attention. It is assumed that the attacker 

can access demand forecasts on a generator bus which is being attacked. The access can be 

obtained by compromising a computer which stores demand forecasting information. The 
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attacker can even go a step further and run their own demand forecast algorithm using the 

historical data and the freely available machine learning tool. 

The PV generators’ voltage drops quickly when approaching active and especially 

reactive power generation limit [6]. The data in the demand forecast could be compromised 

and give a false impression that the demand is increasing, as shown in Fig. 6. This helps 

justify the voltage drop across busses. The reason that helps make the attack successful is 

that it blends in with the poor voltage control of PV generators. The timing of the attack 

during peak summer hours could even make it go unnoticeable. 

Fig 5-4: False demand injected by the attacker 
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Chapter 6  

Results 

 
The results of the simulation are categorized based on the algorithms being used. 

The performance is presented in terms of accuracy, false positive and false negative.  

 

6.1 Detection using Kalman Filter based Detector 

The attack model was simulated on Power World Simulator and MATLAB. During 

the period of the attack between 6 PM and 11 PM, a false demand is injected by the attacker 

where the demands are made to go higher than expected. The detector has a static threshold 

level that determines the normal operation. Any voltage levels above or below the normal 

operating ranges will be picked up by the detector and the Chi-squared value goes higher 

as the difference between expected values and measured values goes high. As Fig. 6-1 

shows, the Chi-squared values kept rising and ultimately exceeded the threshold during the 

attack.  

This was an expected behavior. However, running a separate simulation with high 

PV penetration during the interval of the attack, the graph was similar and 

indistinguishable. This gives the realization that under high PV penetration grid 

environment, a Chi-squared detector alone cannot be used as a detector because it will give 
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a large number of false positives. As the system continuously switches from solar to 

synchronous depending on the generation capabilities, more false detection alarms will be 

generated. The results show that the detector is not able to differentiate an attack from the 

poor voltage profile of the PV generator. The top graph is simulated with an attack, and the 

bottom graph is simulated with the generator switched from synchronous to PV. Hence, a 

traditional Chi-squared based detectors will raise a large number of false positives if 

deployed in grids with high PV penetration.  

Fig 6-1: Output of the Chi-squared detector 

A simple solution would be modifying the Kalman filter model to expect voltage 

degradation due to the switch to PV. However, the problem with this approach is that the 

attacker now has more flexibility for attacks even when PV penetration is low and can 

easily carry out attacks without the detector even noticing it. Another solution could be 

changing the Kalman filter model dynamically depending on the % of PV penetration in 
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the system. While this solution can accurately detect attacks, the switch to PV in most of 

the plants is unpredictable, and if the SCADA is compromised, the detector is useless. 

A slightly different approach was taken in [43]. Dynamic threshold is used based 

on the false alarm rate allowed at the current moment instead of the static threshold. This 

allows adjusting the false alarm rate during periods where solar penetration is high. 

However, solar generations and net-demand is difficult to predict accurately. Fig 6-2 shows 

maximum errors in net-demand prediction over 10 days between June 16 and 25, 2022 in 

the data published by CAISO [9].  

 

Fig 6-2: Error in Net-Demand Prediction 

As [43] mentions, the yin-yang effect of Behind the Meter (BTM) PV adversely 

affects the net-demand prediction. Whatever BTM PV supply does not get produced (i.e., 

due to weather), will likely result in an increase in demand/load approximately equal to the 

missing BTM supply. Hence, the load forecasting algorithm continuously misses its day-
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ahead net demand forecast. With the increasing number of customers using BTM solar 

plants, the algorithm needs access to data from these plants in real time to predict 

accurately. This is currently not feasible. As shown in the figure, on 23rd of June, the 

maximum error was close to 30%, which only backs our concern that dynamic threshold-

based detectors cannot be relied on to make estimations, which makes them equally, if not 

more vulnerable than static threshold-based detectors. 

6.2 Detection using Machine Learning based Detectors 

The research work explores four of the widely used anomaly detection algorithms 

based on Machine Learning to learn the behavior of the grid under varying load condition 

and % PV penetration. The training dataset includes 12 load demands from all months of 

the year derived from California Independent System Operator. Each 24-hour demand is 

then divided into 5000 loads, and each load on the grid changes proportional to that load 

demand. The crucial part of this simulation is that the same simulation is done multiple 

times from 0%-100% PV penetration. The load flow data used for simulation are per unit 

voltages and MVAR generation and demand. Hence, the grid not only knows how to 

correlate the grid parameters, but any attempt to inject portions of parameters like voltages 

and power demands is detected by the anomaly detection model. The result of the work is 

compared using 3 performance metrics: detection rate, false positive rate and precision. 

Before explaining those metrics, there are 4 other terms that need to be defined, which are 

true positive (TP), true negative (TN), false positive (FP) and false negative (FN). True 

positive is the number of attacks which are successfully detected by the detector. True 

negative is the number successfully detected to not be an attack. False positive is the 
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number of non-attack instances which are incorrectly labelled attacks. False negative is the 

number of attacks which are incorrectly labelled as normal. 

6.2.1  Accuracy (AR) 

The accuracy is the ratio between the number of correctly detected attacks to the 

total number of attacks. Accuracy might not be the ideal metrics for giving a good picture 

of the detection because it can be misleading if used in a dataset which have more normal 

instances than attacks. Hence, precision should be used. 

AR = 
Total correct predictions

Total predictions
 

AR = 
TP+ TN

TP+FP+TN+FN
 

6.2.2  False Positive Rate (FPR) 

FPR is defined as the ratio between the number of non-attack instances incorrectly 

detected as attack and the total number of instances. 

FPR= 
Normal instances detected as attack

Total number of instances
 

FPR= 
FP

FP+TN
 

6.2.3  Precision (PR) 

The precision is the fraction of instances predicted to be positive, which are truly 

positive. 

PR= 
TP

TP+FP
 

Table I compares the FDIA detection capabilities of machine learning and Kalman 

filter algorithms under 0% PV penetration, while table II compares the algorithms when 
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there is FDI attack, and the grid is operating under 80% PV penetration. A crucial part of 

this work is exploring the behavior of machine learning algorithms when the grid is 

switched to solar. Specifically, the topic of interest is observing if the algorithm can 

differentiate higher PV penetration and false data injection attacks, which the Kalman Filter 

based algorithm failed to do. 

As seen in Table I and II, One-class Support Vector Machine (OCSVM) algorithm 

has the best accuracy among all the machine learning algorithms, but also gives higher 

amounts of false positives. As the Table II shows, the machine learning algorithms have 

substantially lower false positive rate than Kalman Filter which indicates that the poor 

voltage profile during high PV penetration condition is ruled not as attack but to higher 

solar penetration. The machine learning algorithms are however not 100% efficient 

because the difference between the characteristics of states during lower PV penetration 

and mild false data injection attack is very subtle, and the result is expected to improve 

with additional training of the algorithms. 

Table 6.1: FDIA Detection Under 0% PV Penetration 

 

 

Algorithm Precision 
False 

Positive Rate 

Accuracy 

Isolation Forest 
93.39% 1.41% 97.24% 

Local Outlier Factor 
93.16% 1.46% 97.16% 

OCSVM 
96.05% 0.82% 97.88% 

Mahalanobis Distance 
93.27% 1.41% 96.94% 

Kalman Filter  
98.06% 0.41% 98.86% 
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Table 6.2: FDIA Detection Under 40% PV Penetration 

Table 6.3: FDIA Detection Under 80% PV Penetration 

  

Algorithm Precision 
False 

Positive Rate 

Accuracy 

Isolation Forest 
92.73% 1.56% 97.06% 

Local Outlier Factor 
92.61% 1.58% 97%% 

OCSVM 
95.69% 0.90% 97.72% 

Mahalanobis Distance 
92.12% 1.65% 96.54% 

Kalman Filter  
96.58% 0.73% 98.38% 

Algorithm Precision 
False 

Positive Rate 

Accuracy 

Isolation Forest 
90.92% 1.97% 96.62% 

Local Outlier Factor 
90.88% 1.97% 96.54% 

OCSVM 
94.80% 1.09% 97.52% 

Mahalanobis Distance 
90.73% 1.97% 96.24% 

Kalman Filter  
67.22% 10.04% 90.66% 
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Chapter 7   

Conclusion and Future Work  

  
 In this thesis work, a vulnerability associated with model-based detectors is 

exposed, and the performance of machine learning based algorithms in the same scenario 

is exposed. It was concluded that the model-based detector works best only on a grid 

environment with little to no PV penetration. While dynamic thresholds can be used to 

overcome this problem, it has been shown that the grid’s behavior cannot be predicted 

accurately well ahead of time. To attempt to do it accurately, massive amounts of data from 

large number BTM devices would have to be taken, which is not feasible now. Finally, it 

was observed that, if trained substantially, machine learning algorithms have the awareness 

to understand if a degrading voltage profile is due to a false data injection attack or a switch 

to PV generators.  

 The thesis used 5000 data points and 14 bus IEEE setup for simulation. However, 

more accurate data could be obtained if the simulation was done over more load points that 

spanned a few days or even weeks. Similarly, instead of using 14-bus, a larger grid setup 

would have given a more realistic scenario. These tasks could certainly be a done as future 

work for the research. Additionally, new algorithms like Artificial Neural Networks could 

be explored for this research work.  
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