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In urban areas, transportation sources are a significant contributor to air pollution 

emissions including gaseous pollutants and particulate matter (PM). These transportation 

sources (also called mobile sources) include the vehicles that are normally operated on 

highways including cars, motorcycles, buses, and trucks. The emissions from mobile 

sources vary based on the type of combustion, fuel category, the grade of fuel, and the age 

of moving vehicles. Long-term exposure to mobile source emissions has been associated 

with adverse health effects such as premature deaths, nonfatal heart attacks, irregular 

heartbeat, asthma, reduced lung function, and respiratory issues. While for PM the severity 

of the health effects varies based on the PM size. The level of exposure could be estimated 

from the ground level concentration of contaminants released from mobile sources. Thus, 

the role of mobile source air quality modeling is vital in the formulation of air pollution 

control and management strategies for urban areas. 
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Many models have appeared in the literature to estimate the nearfield ground level 

concentrations from mobile sources moving on a highway. However, current models do 

not account explicitly for the effect of wind shear (magnitude) on the gaseous pollutants 

near the ground while computing the ground level concentrations near highways from 

mobile sources. For PM, the available mobile source models do  not consider explicitly 

different ranges of particle size present in the exhaust. It is necessary to predict the 

downwind concentrations near highways from mobile sources for different particle size 

ranges to identify the severity of the emissions on public health. 

The improvement in the performance of mobile source models over the last 50 years 

is achieved by improving the theoretical basis of the dispersion equations and developing 

dispersion coefficients based on either theory or field experiments. This study presents a 

new Three-Phase Turbulence (TPT) model to calculate the vertical spread of mobile source 

plume by combining the current concepts of atmospheric turbulence and plume spread 

observations based on field data. The dispersion coefficients for stable and unstable 

atmospheric conditions are based on the nearfield parameterization. The initial vertical 

dispersion coefficient due to the wake effect of mobile sources is incorporated in the 

dispersion equations.  

Three new analytical models based on the solution of the convective–diffusion 

equation are presented. The first analytical model (SLINE 1.1) is developed by considering 

highway mobile sources as a line source and incorporates the wind shear near the ground  

for gaseous pollutants. The second analytical model (SAREA 1.1) is developed by 

considering highway mobile sources as area sources and incorporates the wind shear near 

the ground. The third analytical model (SLINE PM 1.1) is based on the analytical solution 
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and incorporates different particle size ranges for particulate matter released from mobile 

sources. The SLINE 1.1, SAREA 1.1, and SLINE PM 1.1 follows the proposed TPT model 

to account for plume/atmosphere interaction. The major inputs of the proposed models 

include emission rate, wind speed, and turbulence parameters.  

The proposed gaseous models (SLINE 1.1 and SAREA 1.1) are evaluated using 

four different field data sets: CALTRANS, Raleigh, Idaho Falls, and Hyderabad. The 

SLINE PM 1.1 is evaluated using the Raleigh and Hyderabad datasets for different particle 

size ranges. The performance of each model is evaluated using several statistical 

parameters such as Model Bias (µg/m3), Fractional Bias, Normalized Mean Square Error, 

Correlation Coefficient, Geometric Mean Bias, Geometric Mean-Variance, and Fa2 (these 

indicators are used to evaluate air quality models).  

The sensitivity of the SLINE 1.1, SAREA 1.1, and SLINE PM 1.1 models is 

evaluated using the Sensitivity Index (SI) Method. Intercomparison between the proposed 

models and the popular models is performed to identify the best-performing model for each 

category using the statistical indicators mentioned above and using BOOT Software 

(Version 2.0) to identify the significantly different models.  

The results from the BOOT software indicate that SLINE 1.1, SAREA 1.1, ADMS, 

and SLSM are significantly different with 95% confidence limits. SLINE 1.1 is the best 

performing gaseous model than SAREA 1.1 and is considered an available model. Results 

indicate the model predictions of SLINE 1.1, SAREA 1.1, and SLINE PM 1.1 correlate up 

to 83%, 82%, and 89% respectively with the observed data.  Both the gaseous models are 

highly sensitive to the emission rate, moderately sensitive to wind velocity, and sensitive 

to the vertical spread of the mobile plume. But the magnitude of sensitivity of SLINE 1.1 
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model is higher than the SAREA 1.1. The SLINE PM 1.1 is highly sensitive to emission 

rate, moderately sensitive to wind velocity, and coefficient a, and slightly sensitive to 

vertical plume spread. 
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Chapter 1  

Introduction 
 

1.1 Background 

Highway mobile sources are one of the major contributors to air pollution in the US. The 

contribution of mobile sources to pollution emissions continue to grow along with the number of 

vehicles and the total miles traveled. The situation will improve with the use of electric vehicles 

in the coming years. The mobile source emissions include greenhouse gases (GHGs) that 

contribute to climate change [1]. They also contain volatile organic compounds (VOCs), nitrogen 

oxides (NOx), carbon monoxide (CO), carcinogenic compounds, and fine particulate matter (PM). 

VOCs and NOx combine to form ground-level ozone, which causes human health effects like lung 

infections, asthma, and other respiratory diseases. Ozone also affects plant life that has an impact 

on agriculture and forestry. CO causes an increased risk of heart disease over a long period of 

exposure. Carcinogenic compounds (benzene, 1,3butadiene, and aldehydes) cause serious health 

effects like cancers. PM exposure leads to cardiovascular and raspatory diseases [2]. 

Air pollution dispersion Modeling allows us to create a simulation of how atmospheric 

processes disperse pollutants in the ambient atmosphere using mathematical formulations to 

estimate ground-level concentrations at any downwind distance. The dispersion modeling is based 
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on the physics and chemistry involved in the process of advection/dispersion of contaminants and 

could predict and estimate the concentrations of contaminants by considering source origin, 

composition, emissions, and meteorology. Analytical/numerical techniques are used to simulate 

ground-level concentration in air quality models. Inputs of air quality modeling include source 

information, meteorological data, and the surrounding terrain [3], [4]. An important meteorological 

parameter is an atmospheric stability. The tendency to enhance and resist atmospheric motions is 

called atmospheric stability. Over the last 50 years, several methods have been proposed to classify 

atmospheric stability. Some of these methods are based on the variation in temperature with height, 

wind speed, insolation (daytime), and cloud cover (nighttime). The concentration of pollutants is 

affected by convective and mechanical turbulence. For unstable atmospheric conditions, more 

dilution is expected due to convective activities when compared with stable atmospheric 

conditions [5], [6]. Air pollution dispersion modeling is typically an inexpensive approach when 

compared to field studies. Most dispersion models use computer programs to simulate the 

movement of air pollutants in the atmosphere and to estimate the pollutant concentrations in a 

geographic location. There are different types of models based on the nature of sources (such as 

point, line, area, and volume sources) [7]. “Line-source models” are generally used to calculate 

and predict the concentration of pollutants that are continuously emitted from transportation 

(mobile) sources on the highways. The effect of pollution from line sources is high in an urban 

environment due to their major contribution to local air quality. Vehicular density, vehicle speed, 

and emission rate are the major variables to be considered for the prediction analysis of air quality 

involving mobile sources [8]–[10]. 

1.2 Literature 
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The literature review indicated that many line-source air quality models have been 

developed over the last 50 years. The mathematical formulation of these models can be analytical, 

statistical, or numerical. The solution of the convective–diffusion equation for a line source was 

available in the 1950s [10]. During the 1960s and 1970s, many Gaussian-based dispersion models 

were introduced. These formulations were a function of meteorology, receptor locations, and 

highway geometry. The differences in formulations were due to the assumptions made during the 

solution of the convective–diffusion equation or the specification of plume spread rates. However, 

these models did not perform very well when the predicted results were compared with the 

observed values. The primary reason was the difficulty in accounting for atmospheric dispersion 

and turbulence [11]. Subsequently, many experimental field studies have been conducted to 

improve the models.  

HIWAY1 was developed in the early 1970s to predict mobile source emissions near 

roadways [12]. In 1978, Chock formulated General Motors’ (GM) line-source model by 

incorporating wind speed correction and modified values for vertical dispersion coefficients to 

address wake turbulence from the vehicles [13]. In 1980, Rao and Keenan evaluated the existing 

models and suggested new dispersion curves for pollution dispersion near highways [14], [15]. 

Model development continued from the 1980s onwards to address vehicle-induced turbulence, 

surface roughness, averaging time, new provisions for plume spread, and other turbulence mixing 

parameters [16]. 

The USEPA (the United States Environmental Protection Agency) Office of Research and 

Development introduced a CALINE (California Line Source) dispersion model in 1972 based on 

the Gaussian plume model using Pasquill–Gifford (P–G) atmospheric stability classes. CALINE 

was developed by focusing on the prediction of CO concentration near roadways [17]. In 1975, 
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formulations for depressed roadways were added to develop CALINE2 [18]. In 1979, the vertical 

and horizontal dispersion curves were revised along with updating vehicle-induced turbulence, 

averaging time, and introducing a finite line source to develop CALINE3 to reduce over  

predictions. In 1984, CALINE4 was introduced with the addition of chemical reactions for CO2 

and PM, intersections, and updating lateral plume spread and vehicle-induced turbulence. 

CALINE, CALINE2, and CALINE3 are open-source models and are available freely to the public, 

unlike CALINE4 [19]. In 1989, Luhar and Patil developed a General Finite Line Source Model 

(GFLSM) based on the Gaussian diffusion equation and evaluated it based on data collected at 

intersections in Mumbai and New York [20]. Around the early 1990s, the CAL3QHC screening 

model was developed to auto estimate the queue lengths of vehicles at the intersections. The 

enhanced version of CAL3QHC is CAL3QHR, a more flexible model than CAL3QHC with a two-

tiered approach [21]. In the same decade, the ISCST2 (Industrial Source Complex Short Term 2) 

model was introduced by incorporating mixing height algorithms. It could estimate the 

concentration of pollutants with varying emission rates from point sources. According to Eerens, 

the CAR model was developed in 1993 and evaluated with the data collected in urban areas of the 

Netherlands [22]. ISCST3 was developed in 1995 by incorporating the new area source option and 

algorithms of dry deposition [23]. Later, the GFLSM was improved by Sharma based on 

experiments conducted at intersections in Delhi, India [24]. A road network dispersion model 

named CARFMI was developed similarly to a CAR model to predict concentrations of pollutants 

from automobiles near industrial areas [25]. The ROADWAY model was developed while 

studying vehicle wakes and the dispersion phenomena in pollutants from the vehicles [26]. 

COPERT and CEM are also major models used to calculate the concentration of pollutants from 

vehicular emissions [27]. During this period, the ADMS model was developed by CERC, UK [28]. 
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The progress of these model developments has helped regulatory agencies to estimate the impacts 

of emissions.  

A commonly used line-source model, CALINE4, uses a range of traffic and fleet 

characteristics and a diffusion equation to assess the impacts of a road at a small scale. It is 

specifically designed for assessing air quality impacts at roadways or intersections and used to 

predict impacts of changing traffic volumes, signal phasing, or adding additional lanes to a 

roadway [29]. In New Zealand, a similar model named VEPM was developed, which uses real and 

lab-based emissions data to predict emissions up to the year 2040 from a roadway [30].  

The research has continued to develop, assess, and evaluate the preexisting models and to 

increase the scope of accuracy for future models. In 2005, the USEPA replaced the ISC model 

with AERMOD which contains an updated atmospheric stability scheme and the ability to 

characterize the planetary boundary layer through both surface and mixed layers [31]. In 2007, 

Gokhale developed a simple semiempirical box model based on the traffic flow rate at the busiest 

traffic road intersections in Delhi. He estimated hourly average carbon monoxide (CO) 

concentrations and optimized specific vehicle emission rates based on vehicle category. Through 

this study, he was able to show that the nature of vehicle flows influences the rate and nature of 

the dispersion of pollutants which affect pollutant concentrations in the road vicinity [32]. In 2011, 

Xie conducted a study on both the daily and hourly concentration levels of CO, PM10, CO2, and 

O3 during the Beijing Olympic Games, conforming to the Grade II China National Ambient Air 

Quality Standards. A notable reduction in concentration levels was observed in different regions 

of Beijing, with the traffic-related air pollution in the downwind northern and western areas. 

According to Xie, the “Traffic Restriction Scheme (TRS) policy was effective in alleviating traffic-

related air pollution and improving short-term air quality during the Beijing Olympic Games” [33]. 
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In 2018, Milando conducted a study near high-traffic roads in Detroit. He evaluated the 

RLINE/AERMOD by comparing predicted concentrations of NOx, CO, and PM2.5. The model 

performance for CO and NOx was found to be best at sites close to major roads, during downwind 

conditions, during weekdays, and in certain seasons [34]. In 2018, Bowatte investigated the longer-

term effects of traffic-related air pollution exposure for individuals with or without existing 

asthma, and with or without lower lung function. Population groups who fall under the middle age 

category and live less than 200 m from a major road, could be susceptible to both the development 

and persistence of asthma. These findings have public health implications for asthma prevention 

strategies in primary and secondary settings [35]. In 2018, Liang conducted a dorm room 

inhalation study due to vehicle emissions using a near-road monitor as a surrogate for true exposure 

and observed acute health effects. This study was conducted near a road, measuring several single 

traffic indicators at six indoor and outdoor sites [36]. In 2020, Amoatey conducted a comparative 

study between COPERT and CMEM models. The correlation coefficient for these two models was 

found to be statistically significant from 0 in the case of combined model comparison across all 

the traffic locations for both CO and NOx. He concluded that due to the terrain features of certain 

roads, weak performance was observed, and the influence of terrain needs to be considered in 

future studies [37]. 

Along with the general models for all types of pollutants many models are also available 

in the literature specifically to predict the concentrations of PM at downwind distances from 

different sources. Most of these models are aerosol dynamics models considering the particle size 

method. Each model has its criteria for the particle size that it is used. UHMA (University of 

Helsinki Multi-component Aerosol Model) is a dispersion model developed at the University of 

Helsinki with a focus on the growth and development of new particles. The model is evaluated in 
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the studies conducted by Pirjola et al [38] and Korhonen et al [39]. MONO32 is a model containing 

4 size modes and follows a monodisperse approach, especially for the particle size between 7- 450 

nm. This model was examined and evaluated by Pohjola et al within 25 seconds after the emission 

[40]. AERO is a dispersion model developed for particle sizes between 0.01-10μm with 8-size 

distribution sections and composition was assumed to be uniform [41]. GATOR (Gas Aerosol 

Transport Radiation Model) is an Eulerian dispersion model used for the moving size or stationary 

size particles in urban and mesoscale environments [42]. MADRID (Model of Aerosol Dynamics, 

Reaction, ionization, and Dissolution) is developed for multiple-size particles [43]. AERO-FOR2 

is a sectional box model considering 200 evenly distributed sections for the particle size method 

and externally or internally mixed varying within each size group distributed logarithmically. 

URM is an Eulerian dispersion model containing four groups under 10μm size. RPM model is 

considered for the particle sizes between 0.01-0.07 μm. The CIT model developed by the 

California Institute of Technology is for particle sizes between 0.5 -10 μm. All the discussed 

models consider the effect of condensation/evaporation. The phenomenon of coagulation is 

considered by all the above-mentioned models except URM and CIT in simulating predictions. 

The effect of dry deposition is incorporated in all the discussed models. However, the effect of wet 

deposition is considered only by AEROFOR, URM, and RPM [44].  

Researchers in the past performed the model evaluation and comparative studies to 

evaluate the existing popular models. In 2001, Hanna et al evaluated ADMS, AERMOD, and ISC3 

dispersion models concerning non-buoyant tracer releases for point, area, and volume sources with 

five different field data sets. The results showed that ADMS underpredicts by about 20% and 

AERMOD underpredicts by about 40%, and both have a scatter factor of about two. The ADMS 

performance is slightly better than the AERMOD performance and both perform better than ISC3, 
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an earlier model from the USEPA [3]. In 2005, CALINE4 and CAR-FMI dispersion models were 

evaluated by Levitin et al. against the near road measurements using the data collected at Elimäki 

in southern Finland from 15 th September to 30th October 1995. The results indicated that the 

performance of both models was better at 34 m when compared with that at 17 m. However, in 

most cases, the performance of both the models deteriorated as the wind speed reduced (decreased) 

and as the wind direction approached a direction parallel to the road [45]. In 2007, the ability of 

CALINE4 to predict the spatial variation of hydrocarbon concentrations downwind of a motorway 

was assessed along with the accuracy of COPERT III emission functions. The results indicate that 

the range of the observed concentrations is higher than that of those modeled. This implies that 

short-term modeling will tend to underestimate higher percentile concentrations. This affects the 

model predictions when multiple pollutants are considered [46]. In 2009, Righi et al compared 

ADMS urban model with an urban air quality monitoring network in Ravenna, Italy by performing 

a statistical and diagnostic evaluation. The results indicate that the performance of the ADMS 

urban model is satisfactory. However, the model tends to under-predict the concentration of air 

pollutants [47]. In 2013, Heist et al. performed a model intercomparison by estimating the near-

road pollutant dispersion. AERMOD, CALINE3, CALINE4, ADMS, and RLINE models were 

used to simulate the predicted concentrations for the Idaho Falls and Caltrans Highway 99 tracer 

studies. The models performed best for near-neutral conditions in both tracer studies but had mixed 

results under convective and stable conditions. It was also observed from the results that RLINE, 

ADMS, and AERMOD had produced similar results and CALINE4 produced significant scatter 

in the model predictions [17]. In 2017, Agharkar used CALINE4 and GAM (Generalized Additive 

Models) to perform a model validation and comparative performance evaluation to predict the 

near-road black carbon. When evaluated based on graphical screening techniques and compared 
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using descriptive statistics, CALINE4 and GAM exhibited R2 values of 0.6928 and 0.9415, the 

slope of linear regression of 0.7341 and 94 respectively. The overall results in this study indicated 

that both the models showed a good agreement with the measured data [48]. 

Many dispersion models have been reported in the literature that has applications for 

highway mobile sources. Some of these are HIWAY4, GM, CALINE series, CAL3QHR, VEMP, 

GFLSM, CAR-FMI, ROADWAY, AERMOD, CORPET, and CEM. A summary of models used 

for mobile sources is given in Table 1. Overall HIWAY model was developed for mobile source 

emissions near roadways. GM model was introduced for line sources incorporating wind speed 

correction with updated vertical dispersion coefficients. CALINE series was developed by USEPA 

based on P-G atmospheric stability classes focusing on near roadway pollutants. CAL3QHR is a 

screening model with a two-tiered approach to auto-estimate the queue lengths of vehicles at the 

intersections. VEPM is a line dispersion model for the mobile sources to predict future pollutant 

concentrations from the roadways. GFLSM is based on the Gaussian diffusion equation for the 

finite line sources, which is evaluated at intersections using data from the conducted field studies. 

CAR-FMI is a dispersion model developed to predict concentrations of pollutants from 

automobiles near industrial areas. ROADWAY model was developed while studying the vehicle 

wakes and the dispersion phenomena in pollutants from the vehicles. COPERT and CEM are also 

other major mobile source dispersion models used to calculate the concentration of pollutants from 

vehicular emissions [8]. 

Currently, USEPA extended the AERMOD for mobile source modeling. AERMOD can be 

used to perform spot analysis for the PM2.5, PM10, and CO. It is also extending its options toward 

including highway and intersection projects. The current AERMOD uses an elongated area 

source/set of volume sources for the roadway air quality modeling [19]. The R-LINE is a Research 
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LINE source model, developed by EPA’s Office of Research and Development. R-LINE uses 

Gaussian dispersion algorithms, like AERMOD [20], which has roadway applications under low 

wind conditions. AERMOD does not contain algorithms to account for dispersion around solid 

noise barriers near roadways and roadways within a depression. However, R-LINE has a beta 

implementation of solid barrier and depressed roadway algorithms for modeling complex 

configurations of roadways.  

Table 1-1: Key features of various air quality models used for mobile source dispersion. 

Dispersion 
Model 

Atmospheric  
Stability Scheme 

Significant features related to mobile source dispersion 

HIWAY4 Pasquill-Gifford New dispersion curves in conjunction with an aerodynamic drag factor are 

used to account for the change in the wind field due to the moving vehicles 
[14].  

CALINE4 Pasquill-Gifford This model has an option for modeling roadway intersections. There are 

new provisions for lateral plume spread and vehicle-induced thermal 
turbulence [19], [49]. 

GFLSM Pasquill-Gifford This is a simple finite-line source model and could be used for any 
orientation of wind direction with the roadway and is more suitable for 

long-term predictions [20], [50]. 

CAR-FMI Monin-Obukhov 
length 

A road network dispersion model that estimates the contribution from 
mobile sources in predicting the emission, dispersion, and chemical 
transformation [45].  

COPERT Pasquill-Gifford This model uses emission factors for vehicle fleet composition determined 

by using a chassis dynamometer test during which a vehicle engine is run 
over test cycles [51]. 

ISC3 Pasquill-Gifford This model has a revised area source algorithm and has the option to specify 

an initial vertical dimension used to model mechanically generated 
emission sources from mobile sources [52], [53].  

AERMOD Monin-Obukhov 
length 

ISC3 model revised to develop AERMOD. AERMOD has updated options 
for the mobile source modeling. It has regulatory applications like 

transportation conformity hot-spot analyses for particulate matter and 
carbon monoxide. It has the R-Line feature which offers an additional 
pathway for the future modeling of mobile sources. Advanced features for 

mobile sources are still being incorporated into the AERMOD [31], [54].   

ADMS 5 Monin-Obukhov 
length 

The mobile source modeling options on roads include traffic-induced 
turbulence considering the extra turbulence induced by traffic on busy 

roads and the effect on the model turbulence. It also has the street canyon 
module which has a separate treatment of traffic-produced turbulence [55], 
[56].   

AERMOD is currently capable of modeling a roadway source as an area/volume source  

[57], [58]. The R-LINE model has been compared to the concentrations from the Idaho Falls line 

source tracer experiment [59], the CALTRANS Highway real-world tracer study [19], and 2006 
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near road study in Raleigh, North Carolina [60]. The R-LINE model showed good performance in 

a variety of atmospheric conditions, including stable, neutral, and convective conditions; in a 

variety of wind conditions, including low winds, high winds, and winds parallel to the road; and 

in a variety of configurations including upwind, downwind, and close to the source [60], [61]. 

Overall, the literature review of gaseous dispersion models indicates that available line -

source dispersion models do not explicitly account for wind shear near the ground under different 

atmospheric conditions. Therefore, this study focused on developing mobile source dispersion 

models considering wind shear near the ground for gaseous pollutants. The change in wind velocity 

with height near the ground is defined as wind shear for this development. The literature review 

of PM dispersion models shows that the reported models for the estimation of concentrations are 

not designed for different particle size ranges for infinite and finite-length sources. Mobile source 

dispersion models could be improved by improving turbulence parametrization of plume  or 

atmospheric interaction based on recent developments. 

1.3 Objectives and Significance 

The purpose of this study is to develop and evaluate two new mobile (line and area) source 

models for gaseous pollutants by incorporating wind shear near the ground. For PM emissions 

from the mobile sources, to develop and evaluate an analytical line-source model to account for 

different particle size ranges for PM. The objectives of the dissertation are as follows: 

 

1. Development of a Three-Phase Turbulence (TPT) model for mobile plume interaction with 

atmosphere as plume disperses downwind.  

In the TPT model, the mobile plume interaction with the atmosphere as the plume 

disperses downwind is categorized into multiple phases based on the findings in different 
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studies on mobile sources and the conceptual framework suggested by Kumar for 

dispersion from point sources. The effect of vehicular, thermal, and atmospheric turbulence 

on the mixing and growth of the mobile source plume is considered during the model 

development. The magnitude of additional spread due to the vehicles is incorporated in 

providing the updated turbulence parametrization. The updated turbulence parametrization 

can be implemented in any analytical mobile source dispersion model. 

Hypothesis: An enhanced turbulence model that can be used for mobile source plume dispersion 

will be developed considering the effect of various critical parameters (e.g. Atmospheric 

turbulence). 

 

2. Development and Evaluation of a line-source model for gaseous pollutants (SLINE 1.1). 

3. Development and Evaluation of an area source model for gaseous pollutants (SAREA 1.1). 

      For gaseous pollutants, SLINE 1.1 and SAREA 1.1 models were developed by the 

incorporation of wind shear during the dispersion from mobile (line) and mobile (area) 

sources using the convective–diffusion equation respectively. The concept of wind shear 

involving variation of the wind velocity magnitude near the ground for the dispersion of 

pollutants released from the tailpipe of mobile sources is incorporated through the power-

law profile. The updated turbulence parametrization is implemented in both (SLINE 1.1 

and SAREA 1.1) models.   

Hypothesis: Mobile (line and area) source dispersion models will be developed for gaseous 

pollutants from the exhaust of the highway mobile sources considering the improved physics of 

the atmospheric processes. The models will incorporate wind shear and TPT parametrization to 
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predict downwind ground level concentrations. The model performance will be assessed using the 

statistical indicators based on simulations for the model predictions. 

 

4. Development and Evaluation of a line-source model for particulate matter of different sizes 

(SLINE PM 1.1).  

For PM pollutants, SLINE PM 1.1 model is developed based on the analytical 

solution of the convective–diffusion equation representing the dispersion of particulate 

pollutants considering the size profile. The particle size concept is incorporated into the 

equations through the Gravitational settling velocity. The particle diameter is considered 

while computing the Gravitational settling velocity of the particle. The Gravitational 

settling velocity is considered in SLINE PM 1.1 while computing the ground level 

concentrations of the particulate matter. The updated turbulence parametrization is 

implemented in SLINE PM 1.1 model. 

Hypothesis: A mobile source (line) dispersion model will be developed for particulate pollutants 

from the exhaust of the highway mobile sources considering the improved physics of the 

atmospheric processes. The model will consider different particle size ranges and TPT 

parametrization to predict downwind ground level concentrations. The model performance will be 

assessed using the statistical indicators based on simulations for the model predictions. 

 

5. Identification of the best performing model for mobile source gaseous dispersion model by 

intercomparing the proposed models with the current models.  

There is a necessity to examine the performance of developed models with respect 

to the existing popular models. A comparative analysis is performed using developed 
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models (SLINE 1.1, SAREA 1.1 for gaseous pollutants, SLINE PM 1.1 for PM) with the 

available models (CALINE4, ADMS, ISC3, SLSM for gaseous pollutants, and SLSM for 

PM) using statical indicators and graphical visualization to identify the best performing 

model. The statistical indicators include Model Bias (MB), Fractional Bias (FB), 

Normalized Root Mean Square Error (NMSE), Correlation Coefficient (r), Geometric 

Mean Bias (MG), Geometric Variance (VG), and the Factor of two (Fa2) are considered. 

The graphical visualization is generated by using the Scatter plots, Cp/Co plots, and Q-Q 

plots. The identification of the significantly different models is performed using Boot 

software (Version 2.0). This step will highlight the new development in the field. 

Hypothesis: The developed models will perform better than the available models to predict the 

downwind ground level concentrations of air pollutants from the highway mobile sources. The 

developed models are significantly different from the available models. 

1.4 Methodology 

The conceptual flow chart of the research methodology is represented in Figure 1-1. The 

initial step in the research focuses on a new Three-Phase turbulence model for the interaction of 

mobile plumes with the atmosphere. Then the development of three analytical models based on 

the solution of the convective–diffusion equation by incorporating the wind shear near the ground 

for gaseous and particulate pollutants.  

The first analytical model is developed by considering highway mobile sources as line 

sources and named SLINE 1.1. The second analytical model is developed by considering highway 

mobile sources as area sources and named SAREA 1.1. Then the third model is an analytical model 

for the PM account for different particle size ranges for particulate matter released from mobile 

sources and named SLINE PM 1.1. The coordinate system followed by the equations is represented 
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in Figures 1-2. SLINE 1.1, SAREA 1.1 and SLINE PM 1.1 models incorporate the variation of 

wind velocity with height.  

These models use the proposed Three-Phase turbulence approach through turbulence 

parametrization. The next step is model evaluation using field data from four different sources. 

The performance of each model in the model evaluation process is assessed using several statistical 

indicators including Model Bias (MB), Fractional Bias (FB), Normalized Root Mean Square Error 

(NMSE), Correlation Coefficient (r), Geometric Mean Bias (MG), Geometric Variance (VG), and 

the Factor of two (Fa2). The SLINE 1.1 and SAREA 1.1 models are evaluated using the 

CALTRANS, Raleigh, Idaho Falls, and Hyderabad field data sets. The SLINE PM 1.1 is evaluated 

using the Hyderabad and Raleigh data. 

A comparative analysis is performed between developed models (SLINE 1.1, SAREA 1.1  

for gaseous pollutants, SLINE PM 1.1 for PM) and the available models (CALINE4, ADMS, ISC3, 

SLSM for gaseous pollutants and SLSM for PM). The models used for comparison are widely 

used today. CALINE4 (the California Line Source Model version 4) is used throughout the world 

to model near-road pollutant concentrations [62]. ADMS is currently used in UK to identify Low 

Emission Zones within which only vehicles that have achieved a particular low-emission standard 

are allowed [63]. ISC3 (The Industrial Source Complex - Short Term regulatory air dispersion 

model) is one of the popular US EPA models and widely used to assess pollution concentration 

and/or deposition flux on receptors, from a wide variety of sources [64]. SLSM, a simple line 

source model from the Textbook by Wark et al [3] was considered in this study along with the 

available models. More details about the models are provided in Section 7.1. 
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Figure 1-1: Conceptual Flow Chart of Research Methodology  
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Figure 1-2: Co-ordinate system used for the dispersion calculations. 

The sensitivity of the model in predicting ground level concentrations to input 

variables/parameters is also presented to identify how sensitive each model is towards the 

independent input variables/parameters. The sensitivity of the SLINE 1.1, SAREA 1.1 , and SLINE 

PM 1.1 models is tested using the Sensitivity Index (SI) Method (See Section 4.3).  

The last step is on the intercomparison of the proposed models and the popular models to 

identify the significantly different model using Boot software (Version 2.0). SLINE 1.1, SAREA 

1.1, CALINE4, ADMS, ISC3, and SLSM models were compared against each other. For SLINE 

PM 1.1 model, the intercomparison needs to be performed with SLSM.  
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Chapter 2 

Development of a Three-Phase Turbulence model 
 

 

2.1 Model Development 

2.1.1 Flow Regime of the mobile source plume 

A highway with mobile source vehicles is considered. wind orientation is at an angle  

(Assumed, = 90) to the length of the road. The conceptual turbulence model proposed as mobile 

plume interaction with the atmosphere as the plume disperses downwind (See Figure 2-1). The 

proposal is based on the findings in different studies on mobile sources  and the conceptual 

framework suggested by Kumar [65] for dispersion from point sources. The turbulence model 

includes three flow regimes. They are 

1. Initial Phase: The first flow regime (Initial Phase) is near the mobile sources and the 

highway. The mixing and growth of the plume are due to the turbulence generated from 

the mobile source [65]. The plume dispersion is dominated by vehicular turbulence 

(created by the motion of the vehicle) and thermal turbulence (created by the heating 

of ground due to solar radiation) in this phase. The Initial Phase is observed up to a 

downwind distance of 6.5 m from the mobile source. As this region is very close to the 

mobile source, very little plume diffusion can be observed. 
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2. Transition Phase: The second flow regime (Transition Phase) is in the wake area 

created by wind flow. The Transition Phase includes the effect of thermal turbulence, 

vehicular turbulence, and atmospheric turbulence. This phase starts at a distance where 

the internal turbulence levels of the plume were significantly dropped and the 

atmospheric eddies in the inertial subrange determine the plume growth  [65]. This 

phase is assumed from the downwind distances of 6.5 m to 50 m. The value of 50 m 

will depend on the type of vehicles on the highway and could be as high as 150 m for 

large trucks, as pointed out by Yu et al. [66].  

3. Dispersion Phase: The third flow regime (Dispersion Phase) is away from the vehicular 

wake area. and the plume dispersion is dominated by atmospheric turbulence (created 

by irregular air motions characterized by winds). In this phase, the plume’s turbulence 

has dropped to a level that the growth of the plume is determined by the energy-

containing eddies of atmospheric turbulence [65]. This phase is assumed from the 

downwind distances greater than 50 m away from the mobile source.  

2.1.2 Turbulence Parametrization 

σz is one of the critical components that affect estimations of the concentration of pollutants 

from the vehicular exhaust. It is important to incorporate the turbulence parameters related to the 

wake area created by mobile sources as well as the near field while developing a line source 

dispersion model near the roadway. Various studies indicate that the initial vertical plume spread 

(σz0), depends on the vehicular turbulence, wind velocity, width of the road, residence time, the 

height and width of the mobile sources within the turbulent mixing zone, and other factors [3], 

[67], [68] Table 2-1 shows that each of the methods proposed by different studies gives different 

values of σz0 for different atmospheric conditions. Atmospheric stability influences the value of 
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σz0. Benson uses P–G stability classes [69] and the Wake area model by Yu et al. [66], AERMOD 

[70] uses the surface roughness length and the Monin–Obukhov length (L), and Chock [71] uses 

the Richardson Number to define stability class. Further details of the atmospheric stability are 

discussed in Section 3.1. 

 

Figure 2-1: Flow regimes of a line source plume. 

The width of the mixing zone (i.e., the Initial Phase) in the downwind direction was 

estimated by Benson as the width of the roadway and an additional 3 m [69]. For this study, it is 
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assumed that σz0 is constant up to 6.5 m, which is based on the summation of the width of the road 

3.5 m and 3 m from the edge of the road. The spread due to the wake turbulence is considered in 

the calculation of the σz in the TPT model by introducing the term σz0 to the σz equation. 

The procedure for calculating σz0 from four different sources is given by Equations (2.1) 

to (2.4). Equation (2.1) was given by Chock et al. [71] to calculate the vertical dispersion 

coefficient using the residence time (2.75 s) [71], Equation (2.2) is given in the paper by Benson 

[69] by fitting the equation to the experimental data, Equation (2.3) is used in the AERMOD model 

by USEPA [70], and Equation (2.4) is given by Yu et al. [72]. 

σz0 = 1.5 +
(1.5+

0.5W

Uesin
)

10
  (2.1) 

where, 

W is the width of the road (m),  

Ue is the effective wind velocity (m/s),  

 is the wind angle concerning the road (°).  

σz = a1x
b1         (2.2) 

where, a1and b1are the atmospheric diffusion coefficients  

σz0 =
1.7H

2.15
         (2.3) 

where H is the height of the car. 

σz0 = Effective wake area × Vehicle density   (2.4) 
where the effective wake area is taken as the average vehicle height multiplied by the effective 

wake length.  

The values of σz0 obtained from the above four procedures for a test case are shown in 

Table 2-1 using the width of the road as 3.5 m. The wind velocity considered was 1.4 m/s, the 

wind angle concerning the road was taken as 90°, and the average height of the vehicle was H = 
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1.65 m. The effective wake length was considered as 9.3 m, and the vehicle density on the roadway 

was 0.125 vehicles/m [69], [71], [72].  

Table 2-1: Comparison of σz0 from different studies. 

Study 𝛔𝐳𝟎 Comment 

Chock [71] 1.78 

Thermal turbulence generated by hot vehicle exhaust that contributed to dispersion in 

near-roadway environments is considered within the mixing zone. Richardson Number 
(Ri) > 0.07, which is a stable atmospheric condition. 

Benson [69] 
1.98 

Measured values of σz at various distances downwind from the roadway centerline under 
crosswind conditions were used to fit the curve. The intercept on the y-axis is the 

approximate value of σz0. The atmospheric stability conditions are: P-G classes A to E. 
P–G class E is considered for this value. 

2.78 P–G class F is considered for this value. 

AERMOD [70] 1.32 

Although RLINE is not a recommended regulatory model, EPA’s PM hotspot guidance 

recommends setting σz0  to the average vehicle height * 1.7/2.15 for all atmospheric 
conditions (no specific stability conditions are mentioned in the guide for this equation). 
AERMOD uses the surface roughness length and L to categorize the atmospheric 
stability. 

Wake area model 
by Yu et al. [66], 
[72] 

1.92 

σz was parameterized based on vehicle wake, vehicular density, and vehicle types. 
Assuming that each vehicle provides an independent vehicle wake indicates there is no 
interaction between vehicles, and the mixing of the pollutant is uniform throughout the 

vehicle fleet. Atmospheric stability classes were neutral or stable. 

 
The formulation for the vertical plume spread for the different flow regimes in the TPT 

model is provided in Table 2-2. The vertical dispersion near the mobile source in the Initial Phase 

is σz0. The TPT model adopted the formulation for σz0 given by Chock, i.e., Equation (2.1). Based 

on the study conducted by Yu et al [66] the value of σz0 is considered to be constant until 6.5 m 

from the mobile source. The formulation for the vertical spread of the plume for stable and unstable 

conditions from 6.5 m to 50 m downwind distance (Transition Phase) and beyond 50 m downwind 

distance (Dispersion Phase) for low-level sources is based on theoretical considerations and 

experimental data and is given by Snyder et al. [61] is presented in Table 2-2. The vehicles in 

motion on highways create turbulence which can increase the mixing of air pollutants and ambient 

air in the wake area behind the vehicles. There is a necessity to consider the additional spread due 

to the vehicles (mt) on highways to maintain the accuracy of the model-predicted emissions [66]. 

The vertical spread in the TPT model incorporates the additional spread mt due to the turbulence 
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created by moving vehicles in the transition phase. The magnitude of additional spread due to the 

vehicles is considered to be equivalent to the initial vertical spread in the wake area in the TPT 

model. The formulation for mt is presented in Equation (2.10).  

Table 2-2: Vertical plume spread formulation for different flow regimes in the TPT model 

Flow Regime Vertical Plume Spread (𝛔𝐳 ) 
Formulation 

Equation 
No. 

Downwind 
Distance 

(x) 

Atmospheric Stability 

Initial Phase σz0                       (2.5)   6.5 m Stable and Unstable Atmosphere 
Condition 

Transition 

Phase 

a u∗x

Ue(1+bs 
u∗
Ue

(
x

L
)

2
3)

 + mt  
(2.6) 6.5 m ;&  

 50 m 

Stable Atmosphere Condition 

a
x u∗

Ue
(1 + bu  

u∗

Ue

x

L
)  + mt  

(2.7) 6.5 m ;&  

 50 m 

Unstable Atmosphere Condition 

Dispersion 
Phase 

a u∗x

Ue(1+bs 
u∗
Ue

(
x
L
)

2
3)

  (2.8) 50 m  Stable Atmosphere Condition 

a
x u∗

Ue
(1 + bu  

u∗

Ue

x

L
)  (2.9) 50 m   Unstable Atmosphere Condition 

where 

Uz̅ is the wind velocity at the reference height z̅,  

zs is the height from the ground surface to the tailpipe of the mobile source, and  

 w∗ is the convective velocity scale. 

mt = 1.5 +
(1.5+

0.5W

Uesin
)

10
            (2.10) 

The formulation for Uz̅  ,Ue and z̅ are provided in Equations (4.2), (2.11), and (2.13), 

respectively. Equations (2.11), (2.12), and (2.13) are considered by Snyder et al. [43]. The standard 

deviation of the lateral wind component (σv) is calculated using Equation (2.12). The best fit values 

for the empirical constants (a, bs, and bu) for TPT model are selected from a trial-and-error process 

(See Table 2-3). 

Ue =  √2σv 2 + U(z)̅̅ ̅̅
2  (2.11) 

σv = √(0.6w∗)
2+ (1.9u∗)

2 (2.12) 
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z̅ = σz√
2

π
exp[−

1

2
(
zs

σz

)2]+ zserf (
zs

√2σz

) (2.13) 

For the current model for stable atmospheric conditions, σv = 1.9u∗ because the w∗ value 

for stable conditions is approximately 0 (note that the heat flux is either very small or zero). For 

convective conditions, the value of w∗ is given by Equation (2.14) by Akula et al.[73]: 

w∗ =  1.12× 10−3 zi (2.14) 

The existing models use P-G curves to calculate the dispersion coefficients [19]. The 

dispersion coefficient (σz) are typically a function of downwind distance, atmospheric stability, 

release height, surface roughness, averaging time, and other atmospheric variables [72], [74], [75]. 

σz is revised as follows instead of using a P-G curve for the TPT model. A summary of the values 

of empirical coefficients for stable and unstable atmospheric conditions for the TPT model are 

given in Table 2-3. The empirical coefficients (a, bs and bu) in the dispersion coefficient 

expressions were adjusted based on the trial-and-error method to achieve the maximum accuracy 

at respective atmospheric stability using the curves reported by Benson [69] and Chock [71] for 

mobile sources. This process involves the computation of σz0 (Initial Phase) using Equation (2.1) 

in the first step. Then the computation of σz is performed considering the respective equations for 

Transition Phase (Equation 2.6 and 2.7) and Dispersion Phases (Equation 2.8 and 2.9) until 300 m 

downwind distance from the mobile source. Numerous iterations were performed by varying the 

values of a, bs, and bu to generate σz curves with incremental downwind distance (up to 300 m). 

The base values (i.e., a=0.57 (both stable and unstable atmospheric conditions), bs=3, bu=1.5) to 

initiate the iteration was considered from the Snyder et al. [34], [61]. The numerical values are 

varied (increased or decreased) to observe the trends (increase or decrease) of σz curves. The 

σz  curves of TPT model are compared with the reported curves by Benson [69] and Chock [71] 
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for the mobile sources. During simultaneous iteration and comparison, the values of coefficients 

are selected from the best-fit curves that achieved the maximum accuracy at respective (stable and 

unstable) atmospheric stability conditions. These values are the best fit empirical coefficients for 

the TPT model (See Table 2-3). Since the considered datasets in this study have the observed 

concentrations of pollutants at downwind distances of less than 300 m, the numerical values 

considered for the empirical coefficients (presented in Table 2-3) are consistent. Note: The 

empirical coefficients for the larger downwind distances (> 300 m) can be generated by following 

the same approach while considering the TPT model to predict ground-level concentrations of 

pollutants from the mobile sources.  

Table 2-3: Empirical coefficients used TPT model for different atmospheric stability conditions. 

Atmospheric Stability Empirical Coefficient Value 

Stable conditions 
a  0.55 

bs 2.50 

Unstable conditions 
a 0.50 

bu 1.90 
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Chapter 3 

Field Data 
 

 

3.1 Atmospheric stability 

Atmospheric stability influences the value of the plume spread in the horizontal as well as 

vertical direction. P-G stability is the most common method used to categorize atmospheric 

turbulence in the earlier literature. It is based on wind speed, incoming solar radiation (daytime), 

and cloud cover (nighttime) [3].  

Other methods have been used to define stability class (See Table 3-1) including Monin-

Obukhov Length (L), Richardson Number (Ri), temperature gradient (dT/σz), and standard 

deviation of vertical wind direction (σ∅) [3], [76].  

The ranges of atmospheric stability indicators are given in Table 3-1. The atmospheric 

stability of the field data is categorized based on Table 3-1 depending upon the available 

information from the field study. The model predictions are simulated using the generic 

expressions discussed in Section 7.1 for stable and unstable atmospheric conditions and compared 

with the observed concentration values of the gaseous and particulate pollutants in the field. 
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Table 3-1: Typical values of five stability indicators under different atmospheric conditions. 

Atmospheric 
Stability 

Pasquill 
Class [3] 

Monin 

Obukhov 
Length (m) 
[76] 

Richardson 

Number 
(Ri) [76] 

Temperature 

Gradient 
(Degree  
Centigrade/100m) [3] 

Standard Deviation 
of 
Vertical Wind  

Direction 

(𝛔∅) (Degree) [3] 

Extremely 
unstable 

conditions 

A −2 to −3 −0.86 −1.9 12 

Moderately 
unstable 
conditions 

B −4 to −5 ≥−0.86 to <−0.37 −1.9 to −1.7 10 to <12 

Slightly 

unstable 
conditions 

C −12 to −15 −0.37 to <−0.10 −1.7 to −1.5 7.8 to <10 

Neutral 

conditions 
D Infinite −0.10 to <0.053 −1.5 to −0.5 5 to <7.8 

Slightly stable 
conditions 

E 35 to 75 0.053  to <0.134 −0.5 to −1.5 2.4 to <5 

Moderately 
stable 

conditions 

F 8 to 35 0.134 1.5 to 4.0 <2.4 

Extremely 
Stable 

G - - >4.0 - 

3.2 Field Data  

The data considered in this study are from the experiments reported in the literature. A total 

of four of the data sets collected were used in the evaluation of considered dispersion models. 

CALTRANS99 (Data 1), Idaho Falls Tracer Experiment (Data 2), Raleigh NO experiment (Data 

3), Hyderabad field study (Data 4). Data 1, 2, and 3 were the field studies conducted to evaluate 

the RLINE model being incorporated in the AERMOD regulatory model by USEPA [17], [61]. 

The Q-Q plots which represent the distribution of data are represented in Figures 3-1 to Figure 3-

22. These are cumulative frequency distributions that provide a graphical characterization of the 

distribution of observed data. They provide a visual characterization of how the observations are 

spread for the central value. In these plots, the sample quantiles indicate the concentration values 

(µg/m3) and theoretical quantiles represent the data distribution with a central value of 0. 
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3.2.1 CALTRANS Data 

The CALTRANS highway 99 Tracer experiment was conducted in the 1980s in California 

near Highway 99 in two directions for the northbound (NB) and southbound (SB) lanes to measure 

SF6. The emission factors for SF6 are slightly different for the NB and SB. The line sources in NB 

and SB lanes were specified with a unit emission rate. Nearly 35,000 vehicles were observed in 

traffic daily. Since the line sources were long and the emissions were uniform along the lines, only 

one median receptor was modeled. The terrain is fairly flat. The samplers were placed 1 m above 

the ground level. The concentrations of SF6 were measured at 0 m, 32.14 m, 64.28 m, and 128.56 

m downwind distances in both North and South directions. The wind speed ranges are observed to 

be 0.2 m/s–6 m/s. The atmospheric stability provided was based on P-G stability categories [17].  

  

Figure 3-1: Q-Q plot of the CALTRANS data 
(SF6) for stable atmospheric conditions  

Figure 3-2: Q-Q plot of the CALTRANS data 
(SF6) for unstable atmospheric conditions 

3.2.2 Idaho Falls Data 

The Idaho Falls Tracer experiment was conducted to measure SF6 in 2008 at Idaho Falls, 

a city in Idaho. As part of this study, two simultaneous experiments were conducted, one had a 

barrier downwind of the line source to represent a roadside sound wall, and the other had no barrier. 

In this analysis, we only use the data from the no-barrier experiment to test the model 
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concentrations for a flat roadway case. The line source in the experiment was 54 m long, the field 

results have been processed to represent what would have been measured had the source been 

infinitely long. Therefore, the input source is very long (1 km) and only one receptor is only 

modeled at each perpendicular downwind distance. The source is modeled with a unit emission 

rate because the measured emission rates are slightly different for each day. The emission rates for 

day 1, 2, 3, and 5 are 0.05 g/s, 0.04 g/s, 0.03 g/s, and 0.03 g/s respectively. The surface meteorology 

file contains only the 15 min periods where the wind direction was within 25 degrees of 

perpendicular to the line source. Additionally, day 4 is omitted completely because the winds were  

rather erratic, and the receptor grid was not always downwind of the line source. The SF6 is 

measured in this field experiment for 18 m, 36 m, 48 m, 66 m, 90 m, 120 m, and 180 m downwind 

distances [17].  

  
Figure 3-3: Q-Q plot of the Idaho Falls data 
(SF6) for stable atmospheric conditions  

Figure 3-4: Q-Q plot of the Idaho Falls data 
(SF6) for unstable atmospheric conditions 

3.2.3 Raleigh Data 

The Raleigh 2006 experiment was conducted to measure NO in Raleigh, North Carolina. 

The line sources were run with unit emission rates so they can be multiplied by the traffic and 
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emission factor to determine the modeled concentration. The line source was 1 km long, and 8 

lanes were used (4 lanes on each side of the median).  

The emission factor used was 0.5 g/vehicle/km from Venkatram 2007. The data are 

available for every 10 min of air [59]. In the same experiments the concentrations of PM0.1, PM2.5, 

and PM10 were measured at 5m, 20m, 50m, 100m, and 300m downwind distances from the road. 

The average time of sampling frequency was 24 hours [77]. 

  
Figure 3-5: Q-Q plot of the Raleigh data (NO) 
for stable atmospheric conditions  

Figure 3-6: Q-Q plot of the Raleigh data (NO) 
for unstable atmospheric conditions 

 
Figure 3-7: Q-Q plot of the Raleigh data (PM 

between 10 and 2.5 µm) for stable atmospheric 
conditions 

 
Figure 3-8: Q-Q plot of the Raleigh data (PM 

between 2.5 and 0.1 µm) for stable 
atmospheric conditions 
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Figure 3-9: Q-Q plot of the Raleigh data (PM 

< 0.1 µm) for stable atmospheric conditions 

 
Figure 3-10: Q-Q plot of the Raleigh data (PM 

between 10 and 2.5 µm) for unstable 
atmospheric conditions 

 
Figure 3-11: Q-Q plot of the Raleigh data (PM 

between 2.5 and 0.1 µm) for unstable 
atmospheric conditions 

 
Figure 3-12: Q-Q plot of the Raleigh data (PM 

< 0.1 µm) for unstable atmospheric conditions 

3.2.4 Hyderabad Data 

The data used in this study were collected by Madiraju (under the direction of PVS Gopi 

Raghunadh and K Ravi Kumar) in Hyderabad, India in 2016 [78]. The concentrations of PM2.5 and 

PM10 were collected from January to April. The concentrations of PM2.5 and PM10 were measured 

at 3.5 m, 7 m, 10.5 m, and 14 m downwind distances from the traffic intersections using a dust 

sampler. The data were collected at five major traffic intersections in the city at Balanagar, 

Jeedimetla, Zoo Park, MGBS, and JNTU. The sampling readings were analyzed in the VNR VJIET 
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environmental laboratory. The atmospheric conditions varied from extremely unstable to 

moderately unstable during the daytime of measurement. The readings were collected at around 

noon every day for 90 days (January 2nd to April 1st, 2016) continuously. Gaseous pollutants were 

also measured during these experiments and are published by Madiraju et al [78] in 2020.  

   

  
Figure 3-13: Q-Q plot of the Hyderabad data 
(CO2) for stable atmospheric conditions  

Figure 3-14: Q-Q plot of the Hyderabad data 
(CO2) for unstable atmospheric conditions 

  
Figure 3-15: Q-Q plot of the Hyderabad data 
(NO2) for stable atmospheric conditions  

Figure 3-16: Q-Q plot of the Hyderabad data 
(NO2) for unstable atmospheric conditions 
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Figure 3-17: Q-Q plot of the Hyderabad data 

(PM >10 µm) for stable atmospheric 
conditions 

 
Figure 3-18: Q-Q plot of the Hyderabad data 
(PM between 10 and 2.5 µm) for stable 
atmospheric conditions 

 
Figure 3-19: Q-Q plot of the Hyderabad data 
(PM <2.5 µm) for stable atmospheric 
conditions 

 
Figure 3-20: Q-Q plot of the Hyderabad data 
(PM >10 µm) for unstable atmospheric 
conditions 

 
Figure 3-21: Q-Q plot of the Hyderabad data 
(PM between 10 and 2.5 µm) for unstable 
atmospheric conditions 

 
Figure 3-22: Q-Q plot of the Hyderabad data 
(PM <2.5 µm) for unstable atmospheric 
conditions 
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Chapter 4 

Development and Evaluation of a Line Source Analytical 

Dispersion Model (SLINE 1.1) 
 

 

4.1 Methodology  

4.1.1 Development of SLINE 1.1 model 

The basic approach to developing the SLINE 1.1 model was the incorporation of wind shear 

during the dispersion from a line source using the convective–diffusion equation. It is important 

to consider the variation of the wind velocity magnitude near the ground for the dispersion of 

pollutants released from the tailpipe of mobile sources. This physical phenomenon was 

incorporated in the derivation of the dispersion and transport equation for the SLINE 1.1   model. 

The model was based on the analytical solution of the convective diffusion equation of a line 

source given in the book by Sutton, O.G. [10].  

The assumptions used in deriving the equation were:  

(i) The wind direction is always perpendicular to the highway.  

(ii) The dispersion is of a non-fumigation type.  

(iii) The velocity profile with height above ground level is assumed to be the same for all 

downwind distances.  
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(iv) A power law profile is assumed for the velocity, i.e., the magnitude of the wind velocity 

near the ground level changes rapidly and follows a power law. 

(v) The eddy diffusivity profile is a conjugate of velocity profile as given in equation (4.3) 

below; and  

(vi) The emission rate is constant.  

The convective–diffusion equation representing the dispersion from mobile sources [10] is 

given as: 

u(z)
∂C

∂x
=  

∂

∂x
 (K(z)

∂C

∂x
)                                                                                                                 (4.1) 

where,  

C is the concentration of pollutants at a point (x, z),  

x is the downwind distance,  

z is the vertical height of the receptor above the ground, and 

u and K are the wind velocity and eddy diffusivity at the vertical height z, respectively. The 

profiles of wind velocity and eddy diffusivity are given by Equations (4.2) and (4.3): 

u = u1(
z

z1
)
m

                                                                                                                               (4.2) 

K = K1(
z

z1
)
n
                                                                                                                                (4.3) 

where u1  and K1 are the wind velocity and eddy diffusivity at a reference height z1, 

respectively. m is the exponent of the power law velocity profile, and n is the exponent  for the 

eddy diffusivity profile. Note that n = 1 − m to satisfy assumption (v) given above, and the value 

of m lies between 0 and 1. 

 The stability parameter (s) is calculated based on m and n using Equation (4.4): 

s =
(m+1)

(m−n+2)
                                                                                                                                     (4.4) ((5) 
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The analytical solution of Equation (4.1) to calculate the concentration of pollutants at any 

downwind distance when the wind and eddy diffusivity profiles are given by Equations (4.2) and 

(4.3) [10] is given by Equation (4.5): 

C(x,z) = 
q

u1γ(s)
[

u1

(m−n+2)2K1x
]s exp [−u1

zm−n+2

((m−n+2)2K1x)
]                                                              (4.5) 

where q is the emission rate of the mobile source per unit length, and γ(s) is the lower 

incomplete gamma function of s.  

The value of u1 is based on the field measurement, and K1 is computed using Equation 

(4.6) used by Rao et al. [15], [26] and Nimmatoori and Kumar [79]: 

K = (
σz

2 u 

2x
)                                                                                                                                    (4.6) 

where, σz is the standard deviation of concentration in the z-direction.  

Equations (4.5) and (4.6) are as follows if the wind is not perpendicular to the highway: 

C(x,z) = 
q

u1Sin γ(s)
[

u1

(m−n+2)2K1x
]s  exp [−u1

zm−n+2

((m−n+2)2K1x)
]                                                     (4.7) 

 K = (
σz

2 u sin

2x
)                                                                                                                          (4.8) 

Where  is the angle between the wind direction and the line source. 

Equations (4.8) and (4.3) indicate that K as well as K1 are a function of downwind distance 

x. However, the derivation of Equation (4.1) assumes that the K profile is constant as the plume 

moves downwind. It is assumed during the application of Equation (4.7) that the concentration is 

predicted in the SLINE 1.1 model at a downwind distance by updating the value of K1 in the model 

for that downwind distance. It is expected that this approach will improve the model performance. 

The vertical spread of the plume for stable and unstable conditions beyond 50 m downwind 

distance (Dispersion Phase) for low-level sources is based on theoretical considerations and 

experimental data and is given by Snyder et al. [61] as Equations (2.8) and (2.9).  
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Expression of K1 (See Equations 4.9 and 4.10) can be obtained as follows by substituting 

Equation (2.8) for the stable condition and Equation (2.9) for the unstable condition in Equation 

(4.6) with the help of Equation (4.2):  

K1 =
σz

2 u1Sin

2x
= [

a u∗ x

(Ue+bsu∗ (
x

L
)

2
3)

 + mt  ]

2

u1Sin

2x
  (4.9) 

K1 =
σz

2 u1Sin

2x
= [

a u∗ x

Ue
(1 + bu  

u∗

Ue

x

L
) +  mt ]

2 u1Sin

2x
  (4.10) 

The expression for concentration for stable conditions is: 

C(x,z) = 
q

u1Sin γ(s)
[

2

[
a u∗ x

Ue+bsu∗(
x
L
)

2
3

+ mt ]

2

 (m−n+2)2 

]s exp

[
 
 
 
 
 

−
2 zm−n+2

[
a u∗ x

Ue+bsu∗(
x
L
)

2
3

+ mt ]

2

  (m−n+2)2 

]
 
 
 
 
 

   
 

(4.11) 

The expression for unstable conditions is: 

C(x,z) = 
q

u1Sin γ(s)
[

2

[
a u∗ x (1+bu 

u∗
Ue

x
L
)

Ue
+ mt ]

2

  (m−n+2)2 

]s exp

[
 
 
 

−
2 zm−n+2

[
a u∗ x (1+bu 

u∗
Ue

x
L
)

Ue
+ mt ]

2

 (m−n+2)2 
]
 
 
 

 (4.12) 

Equations (4.19) and (4.20) represent the final developed concentration equations for the 

SLINE 1.1-line source dispersion model for the calculation of downwind concentrations under 

stable and unstable atmospheric conditions, respectively. Note that the mt = 0 in the dispersion 

phase because the additional effect due vehicle after the wake area is negligible.   

4.2 Statistical Model Evaluation 

The quantitative performance of the model could be studied by computing the statistical 

indicators suggested in the literature over the last five decades. The performance measures of the 

SLINE 1.0 model used include MB (µg/m3), FB, NMSE, r, MG, VG, and Fa2. These statistical 
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performance measures are based on the suggestions given in the literature [44], [47], [48], [80]–

[85]. If Cp - Model Predicted Concentration, Co - Observed Concentration then the model 

formulation is as follows: 

(a) Fractional Bias: The FB is a ratio between the difference of the average values and the 

summation of the average values of the observed and predicted concentration of pollutants, 

multiplied by two. It is a dimensionless number. In the ideal case, the value of FB is equal to 

zero. However, if its value is between −2.0 and +2.0, then the model can be referred to as 

better performing. If the FB value is less than −0.67, then the model is underpredicting, and 

if the value is less than −2.0, then the model is extremely underpredicting. If the value is 

higher than +0.6, then the model is overpredicting, and if the value is higher than +2.0, then 

the model is extremely overpredicting. The value of FB is influenced by infrequently 

occurring high concentration values [86], [87].  

FB = 2 ( 
Co̅̅̅̅ − Cp̅̅ ̅̅

Co̅̅̅̅ + Cp̅̅ ̅̅
 )                       (4.13) 

(b) Normalized Root Mean Square Error: The scatter in the data collected is then normalized by 

the product of the average values of observed and predicted concentrations of pollutants. In 

the ideal case, the value of NMSE is zero. A smaller NMSE value denotes that the model is 

better performing. NMSE values cannot be used for accessing the model predicted 

concentrations that are over- or underpredicted [86], [88].  

NMSE = 
(Cp−Co)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Co̅̅̅̅  .Cp̅̅ ̅̅
           (4.14) 

(c) Correlation Coefficient: The correlation coefficient, r, gives an indication of the linear 

relationship between the predicted and observed values. r is insensitive to either an ad ditive 

or a multiplicative factor. A perfect r = 1 is necessary, but not a sufficient condition for a 

perfect model [86], [89]. 
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𝐫 =
𝐧(∑𝐂𝐨𝐂𝐩)−(∑𝐂𝐨)(∑𝐂𝐩)

√[𝐧∑ 𝐂𝐨
𝟐−(∑𝐂𝐨)𝟐][𝐧∑ 𝐂𝐩

𝟐−(∑𝐂𝐩)
𝟐
]

          (4.15) 

where n is the number of data points, Σ is the summation notation, and ‘i’ represents the i th 

value of concentration. 

(d) Geometric Mean Bias: The MG value is reliable when the magnitude of the observed and 

predicted concentrations of the pollutants varies significantly. Extremely low values of 

concentrations also have strong influences on the MG value. In the ideal case, the MG value 

is equal to 1. If the MG value is equal to +0.5, then the model is underpredicting, and if the 

value is equal to +2.0, then the model is overpredicting [86], [90].  

MG = exp(ln Co
̅̅ ̅̅ ̅̅ −  ln Cp

̅̅ ̅̅ ̅̅ )          (4.16) 

(e) Geometric Variance: In ideal cases, VG values are equal to 1. Similar to MG, the VG value 

also shows similar properties of performance measures except in the identification of over- 

and underprediction [86], [91]. 

VG = exp (lnCo − ln Co)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          (4.17) 

(f) The factor of two: Fa2 is defined as the percentage of predictions within a factor of two of the 

observed values. The ideal value for the factor of two is 1 (100%). Fa2 is the most robust 

statistical indicator. The value of Fa2 should be greater than 0.8 for an acceptable air quality 

model [86]. 

It is always recommended to consider multiple performance measures to accurately assess 

models. The distribution of each variable considered determines the significance of the model 

performance measure. Characteristics of the statistical indicators for better performing model are 

presented in Table 4-1.  

For model evaluation, model-predicted concentrations are evaluated against observed 

concentrations for different field studies. Observed concentrations are directly measured by 
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instruments. It is important to recognize that different degrees of uncertainty are associated with 

different types of observed concentrations. Furthermore, it is important to define how the predicted 

concentrations are to be compared with the observed concentrations. 

Table 4-1: Characteristics of the statistical indicators for a better performing model 

Statistical 
Indicator 

MB 
(µg/m3) 

FB NMSE r MG VG Fa2 

Ideal Values 0 0 0 1 1 1 1 

Suggested 
range from 

the literature 

Minimal 

Mean error 
−0.5FB+0.5 

Smaller 

values  

Close 

to unity  

0.75 MG

1.25 

0.75 VG 

1.25 
0.80  Fa2 

Table 4-2: Model evaluation results for the SLINE 1.1 model 

Statistical Indicator 
MB 
(µg/m3) 

FB NMSE r MG VG Fa2 

CALTRANS stable conditions 12.34 0.11 0.05 0.88 0.89 1.20 0.84 

CALTRANS unstable conditions -14.97 −0.16 0.14 0.87 1.28 1.13 0.85 

Idaho Falls stable conditions 6.75 0.15 0.05 0.75 0.88 1.22 0.81 

Idaho Falls unstable conditions -3.64 −0.11 0.02 0.87 1.11 1.11 0.92 

Raleigh stable conditions 15.02 0.14 0.04 0.80 0.86 1.22 0.83 

Raleigh unstable conditions -15.72 −0.12 0.03 0.85 1.13 1.24 0.87 

Hyderabad stable conditions 13.02 0.13 0.32 0.81 1.26 1.32 0.84 

Hyderabad unstable conditions -13.56 -0.19 0.17 0.82 1.21 1.24 0.88 

The evaluation results for SLINE 1.1 using the CALTRANS, Idaho Falls, Raleigh, and 

Hyderabad data as model inputs for the statistical indicators mentioned earlier are given in Table 

4-2. The numerical result gives a quantitative relationship between observed and predicted values. 

The values with ‘’ denote the interpretation of statistical criteria which were satisfied by the 

suggested range from the literature for a better performing model.  

The MB values of the model indicate that there is a minimal error of 3% to 16% is observed 

for SLINE 1.1 for overall predictions. Since the ideal value of 0 is very difficult to achieve, a 

minimal error of less than 10% is acceptable for better performing model. If the values of FB are 

between -0.5 and 0.5 then the model is better performing [86]. Since the values of FB ranging from 

-0.19 to 0.15 are between -0.5 and 0.5 indicates that SLINE 1.1 is a better performing model. Based 
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on FB results it can be said that the model is over-predicting in sable conditions and slightly under-

predicting in unstable conditions. It should be noted that there may be an influence of infrequently 

occurring high concentration values on the FB. The values of NMSE values are close enough to 0 

which indicates that the model is performing better [88]. All the NMSE results are less than unity 

indicating SLINE 1.1 is better performing. According to the ‘r’ values the predicted concentrations 

are 75% to 88% correlated to the observed concentrations, which indicates the accuracy of the 

model. If the MG and VG values are between 0.75 and 1.25 then the model is a better performing 

model [86]. Considering MG, the model is performing better for 6 out of 8 data sets , and 

Considering VG the model is performing better for 7 out of 8 data sets.  Overall, the Fa2 values 

indicate that the model is predicting more than the 81st fraction of data between 0.5 and 2 of the 

observed concentrations for all the data sets. 

4.3 Sensitivity Analysis 

4.3.1 Sensitivity Index (SI) Method 

The sensitivity analysis is the quantification of uncertainty in the model results 

(concentration in this study), based on its inputs and associated parameters. There are many 

techniques to perform sensitivity analysis. In this study, the sensitivity analysis was performed on 

SLINE 1.1 using the SI method. The SI is defined as the fractional change in the pollutant 

concentration rate over the fractional change of the concerned input variable [92]. This method is 

used to assess air quality model performance and reliability and identify the sensitivity of the 

model based on small inaccuracies in input parameters and model formulation [93]. Air quality 

model performance and reliability are sensitive to small inaccuracies in input parameters and 

model formulation. The sensitivity analysis is the quantification of uncertainty in the model 

conclusions based on its input variables. SI method is used in this study to understand the 
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sensitivity of the SLINE 1.1, SAREA 1.1 (See Chapter 5), and SLINE PM 1.1 (See Chapter 6), 

model in predicting downwind concentrations. The SI (See Equation 4 .18) is defined as the 

fractional change in the pollutant concentration rate (Ct) over the fractional change of the 

concerned input variable (Vc) 

SI =
d (C𝑡)

d (V𝑐)
                              (4.18) 

The SI method represents the degree of sensitivity of each input variable used in the model.  

Categorization of the degree of sensitivity based on SI results is indicated in Table 4-3.  

Table 4-3: Categorization of the degree of sensitivity [92]. 

SI Degree of sensitivity 

Large Value Highly Sensitive 

Zero Insensitive 

Small Value Slightly Sensitive 

Negative Value Inversely Proportional 

Positive Value Directly proportional 

 
4.3.2 Test Case 

The important input variables/parameters required for running SLINE 1.1 include the 

emission rate of a line source (q), wind velocity at reference height (u1), the coefficient a, 

coefficient bs 
(only for stable conditions), coefficient bu (only for unstable conditions), and 

surface friction velocity (u∗). These variables represent the emission rate, meteorology, and 

turbulence used in SLINE 1.1. The values in the considered range chosen for each 

variable/parameter were based on a trial-and-error process, which varied up to ±25%. The test case 

input values and standard values considered are presented in Table 4-4 and Table 4-5 respectively. 

One could choose another set of ranges. In general, the values were selected based on the possible 

errors in the specification of each variable. Sensitivity runs were performed on these 

variables/parameters for two different atmospheric stability conditions (stable and unstable) at 

near-field downwind distances of 5 m, 50 m, and 300 m. These three downwind distances were 
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specifically chosen in the sensitivity analysis because, at 5 m, it represents the concentration near 

the Initial Phase (mixing zone near the source); at 50 m, it represents the concentration at the 

boundary of the Transition Phase (after which additional vertical spread due to the turbulence 

created by the vehicles is neglected); and at 300 m, it represents the concentration during the 

Dispersion Phase (where plume dispersion is dominated by atmospheric turbulence) (See Figure 

2-1). The executed simulations for each input to calculate predicted concentrations and calibration 

residuals by adjusting the variables in the considered range were presented in Madiraju et al [94]. 

Table 4-4: Input data and associated parameters for the test case of the SLINE 1.1 model.  

Parameter Stable Unstable 

q (g/m-s) 0.0028 0.0028 

z (m) 0.1 0.1 

u1 (m/s) 1.4 0.7 

n 0.7 0.15 

m 0.3 0.85 

s 0.813 0.685 

γ(s) 1.28 1.32 

Z10 (m) 10 10 

h (m) 50 50 

  15.462 1.798 

n+1 1.7 1.15 

a 0.57 0.57 

u∗ (m/s) 0.05 0.15 

bs  3 - 

bu  - 1.5 

L (m) 134 −30 

zs (m) 0.5 0.5 

σv (m/s) 0.095 0.730 

W∗ (m/s) 0 1.120 

zi (m) 1000 1000 

Table 4-5: Standard input values considered for the sensitivity analysis. 

Atmospheric  
conditions 

q 
(g/m-s) 

𝐮𝟏   
(m/s) 

m 
𝐮∗   
(m/s) 

a 𝐛𝐬  
 𝐛𝐮  

 

Stable 0.0028 1.4 0.3 0.05 0.57 3 - 

Unstable 0.0028 0.7 0.85 0.15 0.57 - 1.5 

 

ℎ𝑛 
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The results of SI method for stable atmospheric conditions are discussed in this section. The 

sensitivity results of SLINE 1.1 model using the test case data (discussed in section 4.1) for the 

sensitivity analysis are computed and tabulated for 5 m, 50 m, and 300 m in Table 4-6. 

i. The emission a line source (q): The SI method results show that the model is highly 

sensitive to the emission rate and is directly proportional to model predicted 

concentrations. The magnitude of SI values increases with an increase in downwind 

distances. Results indicate that as the q value increases the model predicted 

concentrations significant impact along with the downwind distances.  

ii. The exponent of the power-law profile (m): The SI method results show that the model 

is inversely proportional and moderately sensitive to m and the magnitude of SI values 

decreases with an increase in downwind distances. Results indicate that the exponent 

of the power-law profile (m) has a significant impact on the model predicted 

concentrations at higher downwind distances than that of the lower downwind 

distances.  

iii. Wind velocity (u1 ): According to the SI method results, the model is inversely 

proportional and highly sensitive to the u1 . The magnitude of SI values is slightly 

increasing with the increase in downwind distances. Results indicate that the u1 have a 

significant impact on the model predicted concentrations at all the downwind distances.    

iv. The coefficient a: According to the SI method results, the model is inversely 

proportional and highly sensitive to the a. The magnitude of SI values is s lightly 

increasing with the increase in downwind distances. Results indicate that the coefficient 

a has a significant impact on the model predicted concentrations at lower downwind 

distances.     
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v. Coefficient bs: The SI method results indicate that the model is directly proportional 

and very slightly sensitive to the bs. The magnitude of SI values is slightly increasing 

with the increase in downwind distances. Results show that the impact of bs is minimal 

on the model predicted concentrations.  

vi. Surface friction velocity (u∗): The SI method results indicate that the model is inversely 

proportional and moderately sensitive to the u∗. Results indicate that the Surface 

friction velocity (u∗) has less impact on the model predicted concentrations at lower 

downwind distances than larger downwind distances.  

 
Table 4-6: The sensitivity index results of SLINE 1.1 for the stable atmospheric conditions.  

Model Input Variables/ 
Parameters 

Downwind distances 

5 m 50 m 300 m 

q 19.41 20.13 20.52 

m -6.43 -3.69 -2.77 

 

-3.93 -4.57 -11.66 

a -11.76 -14.05 -15.84 
 

0.07 0.24 0.48 

  -3.10 -4.52 -4.71 

The results of SI method for unstable atmospheric conditions are discussed in this section. The 

sensitivity results of SLINE 1.1 model using the test case data (discussed in Table 5-2) for the 

sensitivity analysis are computed and tabulated for 5 m, 50 m, and 300 m in Table 4-7. 

i. The emission rate of a line source (q): According to SI method results the SLINE 1.1 

is highly sensitive and is directly proportional to q at the 5 m, 50 m, and 300 m 

downwind distances. The magnitude of SI values is increasing with the increase in 

downwind distances. Results indicate that the model predicted concentrations are 

impacted by changes in q for all downwind distances.   

ii. The exponent of the power-law profile (m): The SI index method results indicate that 

SLINE 1.1 is moderately sensitive and inversely proportional to the coefficient m at 
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the 5 m, 50 m, and 300 m downwind distances. The magnitude of SI values is increasing 

with the increase in downwind distances. Overall, two methods indicate that the 

exponent of the power-law profile (m) has a significant impact on the model predicted 

concentrations at higher downwind distances than that of the lower downwind 

distances. 

iii. Wind velocity (u1 ): The SI model results show that at all the downwind distances the 

SLINE 1.1 is inversely proportional to u1 . The magnitude of SI values is increasing 

with the increase in downwind distances and has higher values. This shows that the 

wind velocity has a higher impact on predicted concentrations at higher downwind 

distances than the near source downwind distances. However significant impact can be 

observed at all downwind distances.  

iv. The coefficient a: As per the SI method results, the model is highly sensitive to 

coefficient a and the effect is inversely proportional. The SI values are increasing with 

the increase in downwind distances. The results indicate that the coefficient a has a 

significant impact on the model predicted concentrations irrespective of the downwind 

distances. A slightly higher impact can be observed at higher downwind distances.   

v. Coefficient bu: The SI method results indicate that the model is slightly sensitive to the 

coefficient bu and the changes in predicted concentrations are directly proportional to 

bu . Overall, the two methods show that the impact of bu is very minimal on the model 

predicted concentrations due to minimal increment in lower magnitudes.     

vi. Surface friction velocity (u∗): SI method results show that the model is moderately 

sensitive and is inversely proportional to the u∗. The magnitude of SI values is 

increasing with the increase in downwind distances up to 300 m. The results indicate 
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that moderate impact on the model predictions with incremental downwind distances 

up to 300 m. 

Table 4-7: The sensitivity index results of SLINE 1.1 for the unstable atmospheric conditions.  

Model Input Variables/ 
Parameters 

Downwind distances 

5 m 50 m 300 m 

q 22.36 23.23 23.70 

m -8.57 -9.68 -9.95 

 

-22.24 -23.41 -24.10 

a -22.88 -24.05 -24.81 

 

1.65 1.86 1.95 

  -8.60 -9.42 -9.85 

 

4.4 Conclusions 

A new model, SLINE 1.1, has been presented to compute downwind concentrations from 

line sources on a highway. The model was evaluated with four different data sets. The results 

indicate that SLINE 1.1 is an acceptable model based on qualitative analysis an d quantitative 

analysis of model performance. Qualitative analysis showed that there was a strong correlation 

between the observed and predicted values. The statistical indicators representing the model 

performance of SLINE 1.1 were within the acceptable range of a better-performing model and also 

indicate that the model is overpredicting.  

The most sensitive input variables were identified for SLINE 1.1. up to 300 m downwind 

from the source using SI method.  

For stable atmospheric conditions, the model is  

• Highly sensitive to q and an at all the three phases,  

• Moderately sensitive to m at the initial phase,  

• Moderately sensitive to u1 at dispersion phase,  

• Almost insensitive to bu at all the phases, and  
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• Moderately sensitive u∗ at all the phases.  

For unstable atmospheric conditions, the model is  

• Highly sensitive to q and an at all the three phases,  

• Moderately sensitive to m at all the phases,  

• Highly sensitive to u1 at all three phases,  

• Slightly sensitive to bu at all the phases, and  

• All most highly sensitive u∗ at all the phases. 
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Chapter 5  

Development and Evaluation of a Line Source Analytical 

Dispersion Model (SAREA 1.1) 
 

 

5.1 Methodology  

5.1.1 Development of SAREA 1.1 model 

Similar to SLINE 1.1, SAREA 1.1 model incorporates the wind shear near the ground for 

gaseous pollutants but by considering highway mobile sources as area sources.  The basic approach 

to developing the SAREA 1.1 model origin from the convective–diffusion equation as well. The 

SAREA 1.1 model focuses on deriving the analytical solution from the convective-diffusive 

equation with the use of a vertical velocity profile.  

The fundamental assumptions made while deriving the analytical solution are:  

(i) Continuous emission at a constant rate from the source.  

(ii) Constant meteorological conditions and steady-state flow.  

(iii) The direction of the wind is perpendicular to the mobile sources.  

(iv) The dispersion is of the non-fumigation type.  

(v) Conservation of mass in the plume.  

(vi) The velocity profile with height above the ground level is assumed to be the same for 

all downwind distances.  
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(vii) A power-law profile is assumed for the velocity i.e. The magnitude of the wind velocity 

near the ground level changes rapidly and follows a power law, and  

(viii) The eddy diffusivity profile is a conjugate of the velocity profile.  

The SAREA 1.1 is based on the integration of the concentration equation for a point source 

given by Sutton [10] (See Equation (5.1)) :  

C (x,z) = 
Q

u1 (s)
[

u1

(m−n+2)2K1x
]s exp[−u1

zm−n+2

((m−n+2)2K1x)
]                                                                            (5.1) 

where Q is the emission rate of the mobile (area) source per unit length, and (s) is the 

upper incomplete gamma function of s.  

The velocity profile with height above the ground level is assumed to be the same for all 

downwind distances. The magnitude of the wind velocity near the ground level changes  rapidly. 

Therefore, for the ground level discharge of the pollutant, it is very important that the variation of 

the wind velocity magnitude is incorporated in the dispersion and transport equation. This 

incorporation is performed using the power law profile formulation presented through Equation 

(4.2). Input parameters related to meteorological (weather conditions in the ambient environment), 

traffic (road network) , terrain (features that reflects the nature of the terrain), and source (mobile 

source) are collected during the field measurement.  However, the  turbulence input parameters 

are computed using the formulation provided by the TPT model (See Chapter 2) for the SAREA 

1.1 (Similar to SLINE 1.1).  

In the proposed model, the eddy diffusivity K is a function of downwind distance x. 

However, the derivation of the convective–diffusion equation representing the dispersion from 

mobile sources assumes that the K profile is constant as the plume moves downwind. It is assumed 

during the application of Equations (5.2) and (5.3) that the concentration is predicted in the 

SAREA 1.1 model at a downwind distance by updating the value of K in the model for that 
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downwind distance. The K value is updated by incorporating the vertical spread formulation of 

TPT model. The updated formulation of K is presented in the Equation (4.9) (for stable 

atmospheric conditions) and Equation (4.10) (for unstable atmospheric conditions).  It is expected 

that this approach will improve the model performance. 

Equation (5.1) for a highway strip source with width X, and infinite length having the origin 

of x ordinate at the center of the strip is integrated from x-(X/2) to x+(X/2) to estimate the 

concentration from the strip. The integrated equation is given by Bhat and Kumar (2011) [95] as 

Equation (5.2) and Equation (5.3): 

C (x, z) = ∑ Q
zas−1

A
[
A+x1−sBexp(B

xi
)+D

S−1
]
xi−(

X

2
)

xi+(
X

2
)i

1                           for z > 0 

C (x)    =  ∑ [
Q

Γ(s)(m+n−2)2K1
ln(xi)]

xi−(
X

2
)

xi+(
X

2
)i

1                                for z = 0     

 (5.2) 

 

 (5.3) 

a = (m − n + 2)                (5.4) 

A = Γ(s), where Γ is the upper incomplete gamma function.      (5.5) 

B = −u1
za

a2K1
,               (5.6) 

D = γ(s,(
−B

x
)),                (5.7) 

where the total concentration of the pollutant is given by Equations (5.2) and (5.3) after 

considering the ‘i’ number of strips in the area source and the strips are assumed to be adjacent. 

The integration is performed considering the centerline of the strips. The formulation for 

computation of xi  values are provided in Equations (5.9) and (5.10).  

The vertical spread in the SAREA 1.1 model incorporates the additional spread mt due to 

the turbulence created by moving vehicles. mt is considered for the downwind distance  50m for 

computing the vertical spread of the plume [66]. The Three-Phase approach suggested by Madiraju 

and Kumar [96] to develop the formulation of atmospheric/plume turbulence is followed in this 
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study. The development of SAREA 1.1 model is expanded for unstable and stable atmospheric 

conditions in the following sections. 

The concentration of the pollutant under stable atmospheric conditions can be computed 

for a highway strip of width X, and infinite length having the origin of x ordinate at the center of 

the strip to obtain the concentration from the strip using the Equation (5.7) for z > 0 and Equation 

(5.8) for z = 0. 

C (x, z) = q
zas−1

A

[
 
 
 
 
 
 
 
 
 
 
 

A+x1−s −2xza

[
 
 
 
 

a u∗x

u1+bsu∗(
x
L
)

2
3

+mt

]
 
 
 
 
2

a2

exp

(

 
 
 
 
 

−2za

[
 
 
 
 

a u∗x

u1+bsu∗(
x
L
)

2
3

+mt

]
 
 
 
 
2

a2

)

 
 
 
 
 

+D

S−1

]
 
 
 
 
 
 
 
 
 
 
 

xi−(
X

2
)

xi+(
X

2
)

  z > 0                     (5.7) 

C (x) = ∑

[
 
 
 
 
 

2xiq

A(m+n−2)2[
a u∗x

u1+bsu∗(
x
L
)

2
3

+mt]

2

 u1

ln (xi)

]
 
 
 
 
 

xi−(
X

2
)

xi+(
X

2
)

i
1         z= 0                      (5.8) 

where, 

    xi = xd + X 2⁄         (if, i=1)                (5.9) 

    xi = xi−1 + X        (if, i>1)                      (5.10) 

and xd  is the downwind distance of the monitoring station from the edge of the field.  

The concentration of the pollutant under unstable atmospheric conditions could be 

computed for a highway strip of width X of infinite length having the origin of x ordinate at the 

center of the strip using Equations (5.7) and (5.8). The concentration from the strip using Equation 
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(5.11) for z > 0 and Equation (5.12) for z = 0. The total concentration of the pollutant is given by 

the following equation after considering the ‘i’ number of strips (lanes on the highway) in the area 

source. 

C (x,z) = ∑ q
zas−1

A

[
 
 
 
 A+x1−s −2xza

a2[a
xu∗
Ue

 [1+bu (
xu∗
UeL

)]+ mt ]
2
 

exp( −2za

a2[a
xu∗
Ue

 [1+bu (
xu∗
UeL

)]+ mt ]
2
 

)+D

S−1

]
 
 
 
 

xi−(X

2
)

xi+(
X

2
)

i
1 z > 0          (5.11) 

C (x) = ∑ [
2xiq

A(m+n−2)2[a
Ux

Ue
 [1+bu (

Ux

UeL
)] + mt ]2 u1

ln (xi)]

xi−(
X

2
)

xi+(
X

2
)

i
1             z = 0                               (5.12) 

The strip on the highway refers to the number of lanes in practical conditions [79], [95]. 

The expression to calculate the ground-level concentrations of the pollutants released from 

highway mobile sources when considered as an area source are represented by Equations (5.7), 

(5.8), (5.11), and (5.12). Also, note that the vertical spread due to wake turbulence induced by 

mobile sources is considered until 50 m downwind distance. It is assumed the wake turbulence is 

negligible after the 50 m downwind distance from the source release [66], [72].  

5.2 Statistical Model Evaluation 

It is unrealistic to achieve the ideal case values in the results of statistical indicators. The 

values with ‘’ denote the interpretation of statistical criteria which were satisfied by the suggested 

range from the literature for a better-performing model. The Model bias values of the model 

indicate that there is a minimal error of 8% to 24% is observed for SAREA 1.1. Even though more 

than 10% mean error is observed, which is a positive error. This positive error indicates the model 

is overpredicting. Also, the FB values are observed to be less than 0.5 which indicates the model 

is performing better since the values are close to 0 (ideal value). Only one negative value is 

observed in Hyderabad data for stable conditions, this can be due to infrequent high concentration 
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values. The values of NMSE are slightly higher than that of SLINE 1.1 but they are close enough 

to 0 (ideal value) which indicates that the model is performing better. According to the ‘r’ values 

the predicted concentrations are 79% to 85% correlated to the observed concentrations. Even 

though the lower range of correlation is higher than that of SLINE 1.1 the upper range of 

correlation is equal to that of SLINE 1.1. Considering MG, the model is performing better for 6 

out of 8 data sets and considering VG the model is performing better for 7 out of 8 data sets. MG 

and VG value rages of SAREA 1.1 are the same as SLINE 1.1.  Similar to SLINE 1.1, the Fa2 

values SAREA 1.1 indicate that the model is predicting more than the 81st fraction of data between 

0.5 and 2 of the observed concentrations for all the data sets. 

Table 5-1: Model evaluation results for the SAREA 1.1 model.  

 

Statistical Indicator 
MB 
(µg/m3) 

FB NMSE r MG VG Fa2 

CALTRANS stable conditions 15.86 0.34 1.61 0.81 1.32 1.20 0.82 

CALTRANS unstable conditions 23.12 0.35 1.73 0.78 1.37 1.26 0.86 

Idaho Falls stable conditions 11.32 0.31 1.25 0.84 1.19 1.11 0.83 

Idaho Falls unstable conditions 23.09 0.46 1.18 0.79 1.20 1.18 0.81 

Raleigh stable conditions 8.01 0.18 0.89 0.83 1.05 1.07 0.86 

Raleigh unstable conditions 16.07 0.20 1.1 0.85 1.10 1.03 0.89 

Hyderabad stable conditions 14.94 -0.07 0.28 0.79 1.12 1.17 0.81 

Hyderabad unstable conditions 13.03 0.10 0.14 0.81 1.23 1.25 0.84 

 

The results for the statistical evaluation of models are mentioned in Table 5-1, But the key 

identifications in the results are discussed as follows.  

5.3 Sensitivity Analysis 

5.3.1 Test Case 

The important input variables/parameters required for running SAREA 1.1 include the 

emission rate of an area source (Q), wind velocity at reference height (u1), the coefficient a, 

coefficient bs 
(only for stable conditions), coefficient b𝑢 

(only for unstable conditions), and 

surface friction velocity u∗.These variables represent the emission rate, meteorology, and 
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turbulence used in SAREA 1.1. The sensitivity of the SAREA 1.1 model is determined using data 

collected from the literature for stable and unstable atmospheric conditions. The results simulated 

from the model are analyzed to conclude the sensitivity to the independent variable parameters. 

Mobile sources emitting exhaust gases from the tailpipe on a highway are considered. The wind is 

assumed to be perpendicular to the motion of the vehicle with a speed of 1.4 m/s at 10 m. The 

approximate count of vehicles is 8000 per hour. Each vehicle travels at an average speed of 40 

miles per hour. The number of vehicles was computed to be 0.125 per meter. The emission rate of 

an air pollutant is estimated to be 0.0028 g/s-m using the appropriate emission factor.  

Table 5-2: Input data and associated parameters for the test case of the SAREA 1.1 model.  
Parameter Stable Unstable 

q (g/m-s) 0.0028 0.0028 

z (m) 0.1 0.1 

u1 (m/s) 1.4 0.7 

n 0.7 0.15 

m 0.3 0.85 

s 0.813 0.685 

γ(s) 1.28 1.32 

Z10 (m) 10 10 

h (m) 50 50 

  15.462 1.798 

n+1 1.7 1.15 

a 0.57 0.57 

u∗ (m/s) 0.05 0.15 

bs  3 - 

bu  - 1.5 

L (m) 134 −30 

zs (m) 0.5 0.5 

σv (m/s) 0.095 0.730 

W∗ (m/s) 0 1.120 

zi (m) 1000 1000 

Table 5-3: Standard input values considered for the sensitivity analysis. 

Atmospheric  

conditions 

Q 

 (g/m-s) 
𝐮𝟏   
(m/s) 

m 
𝐮∗   
(m/s) 

a 𝐛𝐮  
  𝐛𝐬  

  

Stable 0.0226 1.4 0.3 0.05 0.57 3 - 

Unstable 0.0226 0.7 0.85 0.15 0.57 - 1.5 

ℎ𝑛 
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The surface friction velocity used for the analysis is 0.05m/s and the average height from 

the ground surface to the tailpipe of the mobile sources (zs) is 0.5 m. The concentration of the 

pollutant is estimated along the downwind distance (y = 0). The results of the SAREA 1.1 model 

using the sample data for the sensitivity analysis are computed and tabulated for 5 m, 50 m, and 

300 m (See Tables 2-5).  

The results of the SI method for stable atmospheric conditions are as follows: 

 The results of SI method for SAREA 1.1 model using the test case (discussed in Table 5-2) 

for the sensitivity analysis are computed and tabulated for 5 m, 50 m, and 300 m in Table 5-4.  

i. The emission rate of an area source (Q): The SI method results show that the model is 

highly sensitive to the emission rate and is directly proportional to model predicted 

concentrations. The magnitude of SI values increases with an increase in downwind 

distances. As the Q value increases there is a significant impact along with the 

downwind distances on the model predicted concentrations.  

ii. The exponent of the power-law profile (m): The exponent of the power-law profile (m) 

has a significant impact on the model predicted concentrations at lower downwind 

distances than that at higher downwind distances. Because the SI method results show 

that the model is inversely proportional and moderately sensitive to m and the 

magnitude of SI values decreases with an increase in downwind distances.  

iii. Wind velocity (u1 ): According to the SI method results, the model is inversely 

proportional and highly sensitive to the u1 .The magnitude of SI values is drastically 

increasing with the increase in downwind distances. It can be said that impact of the 

exponent of the Wind velocity (u1 ) on the model predicted concentrations at is 

increasing with incremental downwind distances.   
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iv. The coefficient a: According to the SI method results, the model is inversely 

proportional and moderately sensitive to the a. The magnitude of SI values is slightly 

increasing with the increase in downwind distances. The coefficient a has a significant 

impact on the model predicted concentrations at higher downwind distances than that 

of the lower downwind distances.     

v. Coefficient bs: The SI method results indicate that the model is very slightly sensitive 

to the coefficient bs and the changes in predicted concentrations are directly 

proportional to b𝑠. The results show that the impact of b𝑠 is very minimal on the model 

predicted concentrations and also no impact at near source.    

vi. Surface friction velocity (u∗): The SI method results indicate that the model is inversely 

proportional and moderately sensitive to the u∗. Results indicate that the surface friction 

velocity (u∗) has less impact on the model predicted concentrations at lower downwind 

distances than that of larger downwind distances.  

Table 5-4: The sensitivity index results of SAREA 1.1 for stable atmospheric conditions.  
Model Input Variables/ 

Parameters 

Downwind distances 

5 m 50 m 300 m 

Q 12.34 14.86 14.45 

m -5.98 -3.24 -2.32 

u1 -2.91 -3.55 -10.64 

a -10.87 -13.16 -14.95 

bs  0.09 0.26 0.51 

u∗ -2.25 -3.67 -3.86 

 

The results of SI method for unstable atmospheric conditions are discussed as follows:  

The results of both these methods for SAREA 1.1 model using the test case data (discussed 

in Table 5-2) for the sensitivity analysis are computed and tabulated for 5 m, 50 m, and 300 m in 

Table 5-5. 
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i. The emission rate of an area source (Q): According to SI method results the SAREA 

1.1 is highly sensitive and is directly proportional to Q at the 5 m, 50 m, and 300 m 

downwind distances. The magnitude of SI values is increasing with the increase in 

downwind distances. The model predicted concentrations are impacted by changes in 

Q for all downwind distances. The impact of Q on model predicted concentrations at 

stable and unstable atmospheric conditions are the same. However, the magnitude of 

the impact varies. 

vii. The exponent of the power-law profile (m): The SI index method results indicate that 

SAREA 1.1 is moderately sensitive and inversely proportional to the coefficient m at 

the 5 m, 50 m, and 300 m downwind distances. The magnitude of SI values is increasing 

with the increase in downwind distances. The exponent of the power-law profile (m) 

has a significant impact on the model predicted concentrations at higher downwind 

distances than that of the lower downwind distances. 

viii. Wind velocity (u1 ): The SI model results show that SAREA 1.1 is highly sensitive to 

u1 . The magnitude of SI values is increasing with the increase in downwind distances. 

The results indicate the u1  has a higher impact on predicted concentrations at higher 

downwind distances than the near source downwind distances. But overall u1  has a 

significant impact on model predicted concentrations. 

ix. The coefficient a: As per the SI method results, the model is highly sensitive to 

coefficient a and the effect is inversely proportional. The SI values are increasing with 

the increase in downwind distances. The coefficient a has a significant impact on the 

model predicted concentrations irrespective of the downwind distances.    



59 

 

x. Coefficient bu: The SI method results indicate that the model is directly proportional 

and slightly sensitive to the b𝑢. The magnitude of SI values is slightly increasing with 

the increase in downwind distances. The impact of b𝑢 is minimal on the model 

predicted concentrations and the model sensitivity to b𝑢 is slightly increasing with 

downwind distance. 

xi. Surface friction velocity (u∗): SI method results show that the model is moderately 

sensitive and is inversely proportional to the u∗. The magnitude of SI values is 

increasing with the increase in downwind distances up to 300 m.  

Table 5-5. The sensitivity index results of SAREA 1.1 for the unstable atmospheric conditions.  

Model Input Variables/ 

Parameters 

Downwind distances 

5 m 50 m 300 m 

Q 23.04 23.91 24.38 

m -12.56 -17.67 -18.94 

u1 -21.31 -22.48 -23.17 

a -22.45 -23.62 -24.38 

b𝑢 1.67 1.85 1.96 

u∗ -11.32 -13.44 -14.09 
  

5.4 Conclusions  

A new area source model, SAREA 1.1 model developed and evaluated it using multiple 

field data sets and assess its quantitative performance. SAREA 1.1 is a dispersion model for 

gaseous pollutants associated with highway mobile sources. This model is based o n an 

analytical solution of the convective-diffusion equation after incorporating wind shear near the 

ground. The revised turbulence model is used in this study for the SAREA 1.1. The ranges of 

statistical indicators for the SAREA 1.1 are observed to understand its performance. The model 

evaluation results show that the model is overpredicting, and the predicted values are 

significantly correlated with the observed values. 
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The sensitivity analysis is performed on SAREA 1.1 using SI method  to identify the 

sensitive input variables for which model is sensitive.  

For stable atmospheric conditions, the model is  

• Highly sensitive to q at all the three phases,  

• Moderately sensitive to m at the initial phase and slightly sensitive in transition and 

dispersion phase,  

• Slightly sensitive to u1  at initial and transition phase and moderately sensitive to 

u1 at dispersion phase,  

• Almost insensitive to bs at all the phases,  

• Moderately sensitive to the initial phase and significantly sensitive to the dispersion 

phase and  

• Moderately sensitive u∗ at all the phases.  

For unstable atmospheric conditions, the model is 

• Highly sensitive to q, a and u1  at all three phases,  

• Moderately sensitive to m at the initial phase and highly sensitive at transition and 

dispersion phase,  

• Very slightly sensitive to bu at initial and transition phase, and slightly sensitive at 

dispersion phase 

• Slightly moderate sensitive to u∗ at the initial phase and moderately sensitive at 

transition and dispersion phases. 

A sensitivity analysis of comparing of four generic mobile source dispersion models was 

performed by Madiraju et al [97] on SLINE 1.0 and SAREA 1.0. The current results shows that 

the sensitivity improved in the updated model versions. 
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Chapter 6  

Development and Evaluation of a Ground Level Line Source 

Analytical Dispersion Model (SLINE PM 1.1) for Particulate 

Matter 
 

 

6.1 Methodology 

6.1.1 Model development 

The basic approach to developing the SLINE PM 1.1  model is based on the analytical 

solution of the convective–diffusion equation representing the dispersion of particulate pollutants 

from a point source. (See Equation (6.2)). The analytical solution is derived by Ermak [98] from 

study state form of atmospheric convective–diffusion equation (See Equation (6.1)). 

The assumptions used in deriving the equation were: 

(i) The source emits a non-reacting pollutant.  

(ii) The terrain is assumed to be flat. 

(iii) The average wind velocity is constant. The wind speed is assumed to be sufficiently 

large for diffusive transport of pollutant. 

(iv) The atmosphere is unlimited in the vertical direction.  
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(v) A Cartesian coordinate system is used with the x-axis oriented in the direction of the 

constant wind, the y-axis in the horizontal crosswind direction, and z-axis oriented in 

the vertical crosswind. 

(vi) The diffusion coefficients in the y- and z-directions are taken to be functions of only the 

down-wind distance from the source. Since the pollutant particles travel downwind at a 

constant speed.  

The study state form of atmospheric convective–diffusion equation is given as: 

u
∂C

∂x
= (K(y)

∂2C

∂y2
) + (K(z)

∂2C

∂z2
) + (Vg

∂C

∂z
)                                                                                  (6.1) 

The analytical solution of the convective–diffusion equation representing the dispersion of 

particulate pollutants from a point source at emitting at a constant emission rate is given as: 

C(x,y,z) = 
q

2πσyσzu
exp {

−y2

2σy
2
} exp {

−Vg(z−h)

2K
−
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2σz

2

8K2
}[exp {
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K
+

V1
2σz

2

2K2
} erfc {

V1σz

√2K
+

z+h

√2σz
}]                          (6.2) 

where, 

C(x, y, z) = concentration (units/m3) 

q = emission rate (units/s)  

u = wind speed (m/s) 

σy = horizontal dispersion coefficient (m) 

σz = vertical dispersion coefficient (m) 

z = the height measured from the surface of the ground (m) 

h = height of the source. 

V1 = (Vd–Vg)/2 

Vd = dry deposition velocity of the particle (m/s) 
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Vg = gravitational settling velocity of the particle (m/s) 

K = eddy diffusivity (m2/s) 

The Equation (6.2) can be reduced to the Gaussian plume model, when gravitational 

settling is neglected and the vertical diffusion coefficient Kz, is constant. The Equation (6.2) allows 

us to incorporate the variation of the wind velocity magnitude near the ground during the 

dispersion of PM released from mobile sources. The velocity field is represented by a power law 

(See Equation (4.2)). The profiles of wind velocity and eddy diffusivity at a given downwind 

distance are given in Equations (4.2) and (4.3). 

 The concentration Equation (6.1) given by Ermak [98]; and used by Nimmatoori and 

Kumar [79] for a point at (x, y, z) from an elevated source is used for developing SLINE PM 1.1.  

The downwind concentrations from a line source are obtained by integrating Equation (6.2) 

for a point source. There are two choices (finite and infinite) while carrying out the integration 

depending on the chosen length of the line source.  

The finite length (Y) equation given by Nimmatoori and Kumar [79] is adopted for 

calculating downwind concentrations. They obtained Equation (6.3) by integrating Equation (6.2) 

from Y/2 to Y/2. 

C(x,y,z) = 
q
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exp {
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−
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)]                          (6.3)  

An infinite length source equation was derived from Equation (6.2) and is given as 

Equation (6.3) for computing ground-level concentrations. 

C(x,y,z) = 
q

√2πσzu
exp {

−Vg(z−h)

2K
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2σz

2

8K2
} [exp{

−(z−h)2

2σz
2 } + exp {

−(z+h)2

2σz
2 }− √2π

V1σz

K
exp {

V1(z+h)

K
+

V1
2σz

2

2K2
} erfc {

V1σz

√2K
+

z+h

√2σz
}]                                                                                                              (6.4)  
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The expressions for the vertical and horizontal dispersion coefficients for stable conditions 

are given as Equation (2.6) and Equation (6.5), and for unstable conditions are given as Equation 

(2.7) and Equation (6.6) respectively. The vertical spread coefficient equations of SLINE PM 1.1 

are based on TPT model (See Chapter 2). The horizontal spread coefficient equations of SLINE 

PM 1.1 are based on the work of Snyder et al. [61] and include an additional term mt to account 

for the additional vertical spread due to the vehicular turbulence as suggested by Madiraju and 

Kumar [94], [96]. 

σy = c
σv

u∗
σz (1 + ds

σz

|L|
)              (6.5) 

σy = c
σv

u∗
σz (1 + du

σz

|L|
)
−

1

2
               (6.6)  

The particle size concept is incorporated into the equations through the gravitational 

settling velocity. The particle diameter is considered while computing the gravitational settling 

velocity of the particle. The gravitational settling velocity is considered in SLINE PM 1.1 while 

computing the ground level concentrations of the particulate matter. Gravitational settling velocity  

is the terminal velocity that the particle settles on the ground under the action of gravity  [99]. Dry 

deposition velocity is also considered in the SLINE PM 1.1 model which describes the speed of 

atmospheric particulate matter deposit to the ground surface [100]. The dry deposition velocity 

(Vd) and gravitational settling velocity (Vg) of the particles are computed using the algorithms used 

in the AERMOD by USEPA [101]. The expressions are given as Equations (6.7) and (6.8). 

Vd= 
1

Ra+Rp+RaRpVg
+ Vg                                    (6.7) 

where,  

Ra = Aerodynamic resistance (s/m) 

Rp = Quasilaminar sublayer resistance 
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Vg= 
(ρ−ρair)gdp

2C2

18µ
SCF                                                                    (6.8) 

where, 

Ρ = particle density (g/cm3),  

ρair = air density (g/cm3),  

dp  = particle diameter (μm),  

g = acceleration due to gravity (m/s2),  

µ = absolute viscosity of air (g/cm/s),  

C2 = air unit’s conversion constant (cm2/μm2), and  

SCF = slip correction factor (dimensionless). 

6.1.2 Application of the model 

The developed model is applied as follows depending on the availability of particle size 

profile for emitted PM.  

1. Emission data with given particle size profile: If the input data available to simulate to 

predict the ground level concentration of the PM includes the details on the distribution of 

the particle sizes, then the formulation provided in the Equations (2) or (3) is first applied 

to each range of particle size distribution. The total particulate concentration (CTP) will be 

the sum of concentrations for each size range. 

2. Emission data with no particle size distribution: If the input data available to simulate to 

predict the ground level concentration of the PM does not include the detailed distribution 

of the particle sizes, then the formulation provided in the Equations (2) or (3) is used. 

6.2 Statistical Model Evaluation 

The statistical evaluation of the model is performed for each location. The statistical 

indicators considered in this study are MB (µg/m3), FB, NMSE, r, MG, VG, and Fa2. The model 
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evaluation results are provided in Table 3. The ideal case values of each indicator are given in the 

2nd column of the table to assess the performance of the model.  

 The values with ‘’ denote the interpretation of statistical criteria which were satisfied by 

the suggested range from the literature for a better-performing model. The Model bias values of 

the model indicate that there is a minimal error of 2% to 24% is observed for SLINE PM 1.1. It 

can be observed from the results that a very minimal error is observed for the particle size ranges 

<0.1 µm. 

 FB values for 11 out of 12 data sets were in the satisfactory range of a better-performing 

model. The values of NMSE are close enough to 0 (ideal value) which indicates that the model is 

performing better [73] except in two data sets where the NMSE values are over the range of better 

performing model. According to the ‘r’ values the predicted concentrations are 72% to 89% 

correlated to the observed concentrations. Considering MG and VG, the model is performing better 

for 9 out of 12 data sets. The Fa2 values SLINE PM 1.1 indicate that the model is prediction 

ranging from 69th to 81st fraction of data between 0.5 and 2 of the observed concentrations for all 

the data sets. 

Table 6-1: The statistical model evaluation results for the five monitoring locations. 

Data Statistical Indicators  

MB 
(µg/m3) 

FB NMSE r MG VG Fa2 

Particle 
size 
ranges  
( µm) 

Hyderabad data stable conditions 21.65 1.16 1.01 0.79 1.47 1.33 0.77 >10 

Hyderabad data unstable conditions 23.14 1.02 0.97 0.74 1.09 0.96 0.71 >10 

Hyderabad data stable conditions -6.22 0.91 0.76 0.85 1.06 1.02 0.82 10-2.5 

Raleigh data stable conditions 5.36 0.99 1.11 0.84 1.01 0.98 0.81 10–2.5 

Hyderabad data unstable conditions 25.98 1.26 3.19 0.74 1.25 1.21 0.69 10–2.5 

Raleigh data unstable conditions 8.33 1.02 1.26 0.79 1.24 1.16 0.70 10–2.5 

Hyderabad data stable conditions 20.37 1.14 1.03 0.77 1.16 1.12 0.73 <2.5 

Raleigh data stable conditions 12.88 1.22 1.29 0.84 1.36 1.29 0.81 0.1-2.5 

Hyderabad data unstable conditions 14.85 1.01 1.27 0.81 1.45 1.31 0.80 <2.5 

Raleigh data unstable conditions 12.39 0.88 4.97 0.72 1.22 1.18 0.68 0.1-2.5 

Raleigh data stable conditions 3.35 0.97 1.12 0.89 1.25 1.19 0.82 <0.1 

Raleigh data unstable conditions 2.39 0.98 1.26 0.85 1.16 1.07 0.80 <0.1 
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6.3 Sensitivity Analysis 

 6.3.1 Test case 

 The data used for the sensitivity analysis was collected by Madiraju (under the direction 

of PVS Gopi Raghunadh and K Ravi Kumar) in Hyderabad, India in 2016 [78]. The concentrations 

of PM were collected from January to April. The atmospheric conditions varied from extremely 

unstable to moderately unstable during the daytime of measurement. The readings were collected 

at around noon every day for 90 days (January 2nd to April 1st, 2016) con tinuously. The details 

of the test case input data from the field studies were provided in Table 6-2.    

 

The data is divided into different particle size ranges. PM0.1 μm: particles with a size less 

than or equal to 0.1 μm also known as ‘ultra-fine’ particles. PM < 2.5 μm: particles with a size less 

than or equal to 2.5 μm also known as ‘fine’ particles. PM between 10-2.5 μm: particles with a size 

less than 10 μm and greater than 2.5 also known as ‘coarse’ particles [93]. The emission rates were 

Table 6-2: Input parameters and data 

Parameters Data or Value 

Emission rate Daily emission data 

Source release height 0.5 m 

Receptor height 1 m 

Study area type Urban 

Atmospheric Stability Extremely unstable conditions/Moderately unstable conditions 

Wind speed (u1) Varied depending on the sampling day and time 

Ambient Temperature Varied depending on the sampling day and time 

Downwind distances (x) 5 m, 50 m, and 300 m 

Surface friction velocity (u∗) 0.18 m/s 

Monin-Obukhov Length (L) -2 to -5 m 

The average height of car (H) 1.6 m 

a 0.4, 0.75 

bu 2, 3.5 

c 1.6 

Vg 0.004 m/s 

Vd 0.07 m/s 

V1 0.033 m/s 
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calculated using the measured traffic data in the field. The diameter of the particle is considered in 

the SLINE PM 1.1 model through the calculation of Vg.  

Table 6-3: Sensitivity analysis results using the SI method for stable atmospheric conditions 

Model Input Variables/ Parameters 
Downwind distances 

5 m 50 m 300 m 

q 14.02 17.77 26.25 

m -2.55 -4.92 -15.68 

u1  -10.03 -16.16 -29.63 

a -9.30 -14.23 -26.63 

bs 1.13 1.57 0.04 

u∗  -6.57 -9.71 -20.64 

 

Table 6-4: Sensitivity analysis results using the SI method for unstable atmospheric conditions 

Model Input Variables/ Parameters 
Downwind distances 

5 m 50 m 300 m 

q 22.53 23.55 24.64 

m -5.57 -13.16 -14.95 

u1  -2.91 -14.86 -14.45 

a -7.78 -17.67 -18.86 

bu 0.94 0.26 0.51 

u∗  -0.14 -3.24 -2.32 

The sensitivity of the SLINE PM 1.1 is analyzed using SI method.  

For stable atmospheric conditions, the model is  

• Highly sensitive to q at all three phases and the sensitivity is increasing with 

incremental downwind distances, 

• Slightly sensitive to m in the initial phase and moderately sensitive in the transition 

phase and highly sensitive in the dispersion phase,  

• Moderately sensitive to u1  at initial and transition phase and highly sensitive to 

u1 at dispersion phase,  

• Slightly sensitive to b𝑠 at the initial phase and transition phase almost insensitive 

to b𝑠 at dispersion phase,  
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• Moderately sensitive to the initial phase and significantly sensitive to the transition 

and dispersion phase,  

• Moderately sensitive u∗ at initial and transition phase and highly sensitive in the 

dispersion phase.  

For unstable atmospheric conditions, the model is 

• Highly sensitive to q at all the three phases,  

• Moderately sensitive to m at the initial phase and highly sensitive at transition and 

dispersion phase,  

• Moderately sensitive to u1  at initial and transition phase and highly sensitive to 

u1 at dispersion phase,  

• Moderately sensitive to the initial phase and highly sensitive to the transition and 

dispersion phase,  

• Almost insensitive to bu In all the three-phase, 

• Very slightly sensitive to u∗ at the initial phase and moderately sensitive in a 

transition phase and the magnitude of significance is reduced at dispersion phases. 

6.4 Conclusions 

The development and evaluation of SLINE PM 1.1, an analytical line source dispersion 

model to predict ground-level concentrations for PM for different particle size ranges are 

presented. Separate dispersion equations are presented for the infinite as well as finite -length 

mobile sources. The application of the SLINE PM 1.1 model for emission data with a given particle 

size profile and emission data with no particle size distribution is presented.  

The sensitivity results indicate that u1 , u∗, m and a are inversely proportional to the model 

predictions. q, bs, and bu are directly proportional to the model predictions. The results also show 



70 

 

that the model is highly sensitive to q because if the emission from the source increases, then the 

model predictions increase. The model is moderately sensitive (relatively to q) to the u1  because 

the dispersion is relatively affected by the wind speed. The model is also moderately sensitive 

(relatively to q) to coefficient a because it is an empirical coefficient contributing to the vertical 

dispersion coefficient. The model is moderately sensitive to the u∗ due to the dependence of 

vertical and horizontal dispersion. The model is moderately sensitive to Coefficient m and almost 

insensitive to Coefficient bs and bu. 

A sensitivity analysis was performed by Madiraju et al [102] on SLINE PM 1.0. The 

current results shows that the sensitivity improved in the updated model version.  
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Chapter 7  

Inter-comparison of Developed and Available models 
 

7.1 Discussion of Available Dispersion Models 

The four generic model formulations of the available models (CALINE4, ADMS, ISC3, 

and SLSM) discussed in this section are used in this study to simulate the predictions based on the 

four available data sets. The data sets used in this study are discussed in Section 3.2. Note that the 

ability of a dispersion model to predict the concentrations of the air pollutants under varying 

conditions could only be evaluated after field measurements are taken under similarly varying 

conditions. All the available dispersion models used in this study are currently being used  widely 

across the globe for compliance, educational and industrial purposes.  

7.1.1 CALINE4 

CALINE4 is a line-source Gaussian plume dispersion model used for regulatory purposes 

for predicting the concentrations of pollutants near roadways. The roadway geometry, worst-case 

meteorological parameters, anticipated traffic volumes, and receptor positions are the initial input 

parameters for the model for regulatory work. The approach followed by CALINE4 assumes (i) a 

homogeneous wind flow field (both vertically and horizontally), (ii) steady-state conditions, and 

(iii) negligible along-wind diffusion. The horizontal and vertical dispersion is adequately described 
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as unimodal. The CALINE4 model contains improved algorithms for vertical and horizontal 

dispersion. However, the focus of this study is on the generic equation (see Equation (7.1)) of 

CALINE4 [103]. 

C(x,y) = 
q

πuσz
 ∫ exp(

−y2

2σy
2

y2−y

y1−y ) dy  
(

(7.1) 

where, σz  and σy are the horizontal and vertical dispersion coefficients (m), and y1 and y2 

are the finite line-source endpoints in y-coordinates (y2 > y1). 

7.1.2 ADMS 

ADMS is a model developed by Cambridge Environmental Research Consultants (CERC). 

As per the description provided by the CERC, the source is decomposed into several source 

elements. The difference in streamwise distance between source elements and each rec eptor is 

constrained not to vary too rapidly, subject to the maximum number of source elements. The 

concentration is then calculated by summing the contributions from each element. In the case of 

an area source, the contribution from each element is approximated by a crosswind line source of 

finite length. Roads are modeled as line sources with no plume rise and with modifications to 

account for traffic-produced turbulence, and street canyons, which is an optional feature. To 

consider the extra vertical turbulence produced by traffic on busy roads, the vertical plume spread 

parameter surges. Similarly, an extra component is included in the lateral plume spread parameter 

to model the effect of lateral turbulence except for the street canyons [55]. The expression for the 

concentration is given in Equation (7.2). 

C =
Q

2√2πσzU
exp(−

(z−zs)

2σz
2 )[erf(

y+Ls/2

√2σy
)-erf(

y−Ls/2

√2σy
)]+reflection term                               (7.2) 

where C from a finite crosswind line source of length Ls is given by equation. The source 

strength Q is in mass/m/s. y is the lateral distance from the plume centerline (m), zs is the height 
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of the plume above the ground (m), U is the wind speed at the plume height (m/s) and the reflection 

term means the surface reflection coefficient [23], [28], [44], [55], [104]. 

7.1.3 ISC3  

The ground-level concentration at a receptor located downwind of the area source is given 

by the following expression. The σz is directly proportional to downwind distance and the plume 

function is also considered to be infinite for a downwind receptor distance of 0 [23]. ISC3 

arbitrarily sets the plume function to 0 when the receptor distance is less than 1 meter [105]. The 

model estimates the concentration or deposition value for each source and receptor combination 

for each hour of input meteorology and calculates user-selected short-term averages [52]. The 

expression for the concentration used for an area source in ISC3 is given in Equation (7.3). 

C =
Qk

2πuc
∫

VD

σzσy

x

0 (∫ exp [−0.5 (
y

σy
)
2

] dy)dx
y

0                                                                     (7.3) 

where, k units scaling coefficient, V is vertical term, D is the decay term as a function of x.  

7.1.4 SLSM 

SLSM is a simple line-source model used to calculate the concentration of the pollutant 

from a mobile source using basic meteorological data and source information. The concentration 

is uniform in the y-direction at any given downwind distance. The wind direction is considered 

normal to the line of emission. If the wind direction is not normal to the line of emission, then 

 (the angle between the wind direction and line source) is considered, and sin appears in the 

equation. The sin is not used in the equation if the angle is less than 45 degrees.  

Equation (7.4) is taken from the textbook by Wark et al. [3]. 

 

C(x,0) = 
2q

(2π)
1
2σzuSin

exp[−
1

2
(

H

σz
)
2

]  (7.4) 
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7.2 Predicted vs Observed Pollutant Concentrations 

Difference measures represent a quantitative estimate of the size of the differences between 

observed and predicted values. Correlation is the quantitative measure of the association between 

observed and predicted values. A model's ability to predict air pollution levels under changing 

conditions can only be tested after field measurements are taken under similarly changing 

conditions. These requirements cause the calibration of models to be a  very expensive and often 

time-consuming study. The usual way to evaluate the predictions from a model is to draw a scatter 

diagram using predicted values and observed values. A variation of this approach is by computing 

the ratio of the predicted to the observed value. Literature in the fields of science and engineering 

is full of such examples. Typically, the ratio (Co/Cp) of a good model, should not exhibit any trend 

with variables such as wind speed and stability class, and should not exhibit large deviations from 

unity (implying a perfect match between the model and observed). The usual way to evaluate 

predictions from a model is to draw a scatter diagram using Cp and Co [85]. Scatter plots and 

Cp/Co plots are simulated for SLINE 1.1, SAREA 1.1, and SLINE PM 1.1 after running with the 

considered datasets. Hereby Cp1- Gaseous model predictions of SLINE 1.1, Cp2- Gaseous model 

predictions of SAREA 1.1, Cp3- Gaseous model predictions of CLINE4, Cp4- Gaseous model 

predictions of ADMS, Cp5- Gaseous model predictions of ISC3, Cp6- Gaseous model predictions 

of SLSM, Cp(SLINE PM 1.1)- PM model predictions of SLINE PM 1.1, and Cp(SLSM)- PM 

model predictions of SLSM. 

7.2.1 Scatter Plots 

The scatter plots using Cp and Co values are presented in this section. The graphical analysis 

gives a qualitative measure of the model performance. The performance of each model can be 

observed visually and identify the best performing model by observing the trendline of each 
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model's predictions. The scatter plots are based on a linear scale. Figures from 7-1 to 7-10 represent 

the scatter plots for the predicted concentrations of gaseous pollutants. Figures from 7 -11 to 7-14 

represent the scatter plots for the predicted concentrations of PM of different particle size ranges. 

 
Figure 7-1: Model predictions vs Field Observations with CALTRANS data (SF6) for stable 
atmospheric conditions 
 

 
Figure 7-2 Model predictions vs Field Observations with CALTRANS data (SF6) for unstable 
atmospheric conditions 
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Figure 7-3: Model predictions vs Field Observations with Idaho Falls data (SF6) for stable 

atmospheric conditions 
 

 
Figure 7-4: Model predictions vs Field Observations with Idaho Falls data (SF6) for unstable 
atmospheric conditions 
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Figure 7-5: Model predictions vs Field Observations with Raleigh data (NO) for stable 
atmospheric conditions 
 

 
Figure 7-6: Model predictions vs Field Observations with Raleigh data (NO) for unstable 

atmospheric conditions 
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Figure 7-7: Model predictions vs Field Observations with Hyderabad data (CO2) for stable 
atmospheric conditions 

 

 
Figure 7-8: Model predictions vs Field Observations with Hyderabad data (CO2) for unstable 

atmospheric conditions 



79 

 

 
Figure 7-9: Model predictions vs Field Observations with Hyderabad data (NO2) for stable 

atmospheric conditions 
 

 
Figure 7-10: Model predictions vs Field Observations with Hyderabad data (NO2) for unstable 

atmospheric conditions 
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a) For particle size >10 µm 

 

 
b) For particle sizes between 10 and 2.5 µm 

 

 
c) For particle size <2.5 µm 

 

Figure 7-11: Model predictions vs Field Observations with Hyderabad data (PM) considering 
different particle size ranges for stable atmospheric conditions 

 



81 

 

 
a) For particle size >10 µm 

 

 
b) For particle sizes between 10 and 2.5 µm 

 

 
c) For particle size <2.5 µm 

 
Figure 7-12: Model predictions vs Field Observations with Hyderabad data (PM) considering 
different particle size ranges for unstable atmospheric conditions 
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a) For particle sizes between 10 and 2.5 µm 

 

 
b) For particle sizes between 2.5 and 0.1 µm 

 

 
c) For particle size <0.1 µm 

 
Figure 7-13: Model predictions vs Field Observations with Raleigh data (PM) considering 
different particle size ranges for unstable atmospheric conditions 



83 

 

 
a) For particle sizes between 10 and 2.5 µm 

 

 
b) For particle sizes between 2.5 and 0.1 µm 

 

 
c) For particle size <0.1 µm 

 
Figure 7-14: Model predictions vs Field Observations with Raleigh data (PM) considering 
different particle size ranges for unstable atmospheric conditions 
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The trend lines were drawn in every plot to identify the prediction trends of each model. 

Results with CALTRANS data, it can be observed that SLINE 1.1 has a trendline higher than the 

other models which means the model is overpredicting other models. SAREA 1.1 predictions are 

lower than the SLINE 1.1. A similar set of plots were plotted with all the other data sets to observe 

the performance of all the models. With Idaho Falls data (SF6)  the SLINE 1.1 has the highest trend 

line for both stability conditions. With Raleigh data for unstable conditions, it can be observed that 

the predictions of SLINE 1.1 and SAREA 1.1 are close enough and the trend lines are almost 

overlapping. Using Hyderabad (CO2) for unstable conditions, it can be observed that the 

predictions of SAREA 1.1 are a little higher than SLINE 1.1. Using Hyderabad data (NO2) for 

stable conditions, it can be observed that the predictions of SLINE 1.1 and SAREA 1.1 are close 

enough and the trend lines are almost overlapping.  

SLINE PM 1.1 is performing better for the Hyderabad PM data set for all the particle size 

ranges and both the stable conditions. SLINE PM 1.1 is performing better for the Hyderabad PM 

data set for all the particle size ranges and both the stable conditions.  

Overall, for gaseous models, it is observed from scatter plots that SLINE 1.1 is mostly over 

predicting in all the data sets than all the other models. The trendline of SLINE 1.1 is higher than 

all the data sets except for Hyderabad data for unstable atmospheric conditions. Overall, for PM 

models, it is observed from scatter plots that SLINE PM 1.1  is over predicting than SLSM with 

Hyderabad data set for all the particle sizes. SLSM is over predicting tha t SLINE PM 1.1 for 

Particle size between 10 and 2.5 µm and  <0.1 µm with Raleigh data set for stable conditions.  It 

can be observed that the predictions of low concentrations of SLINE PM 1.1 and SLSM are close 

to the larger concentrations. 
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7.2.2 Cp/Co Plots 

Generally, the ratio (Cp/Co) of a good model should not exhibit large deviations from the 

unity, which implies a perfect match between the model predictions and observed values [46]. The 

plots in Figures 7-15 to 7-24 (gaseous) and Figures 7-25 to 7-28 (PM) are the plots for the Cp/Co 

ratio at different downwind distances.  

The model predictions for SLINE 1.1, SAREA 1.1, CALINE4, ADMS, ISC3, and SLSM 

are simulated for the considered data sets. The predicted concentrations were computed using the 

generic equations and compared with the observed values measured during these real-time field 

studies. All the computed concentrations were computed at the same height as measured 

concentrations were taken during the field work. The plots indicate the relativity between the 

predicted/observed concentrations at measured downwind distances.  

The ratio (Cp/Co) of a good model should exhibit values close to unity. If the values are 

equal to the unity, which implies a perfect match between the model predictions and observed 

values. Practically it is impossible to achieve for all the data points. If the Cp/Co value is greater 

than 1 then the model is over-predicting and less than 1 then the model is under-predicting.  
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 predictions 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-15: Predicted/observed vs downwind distance plots for CALTRANS data  (SF6) for 
stable atmospheric conditions using 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 prediction 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-16: Predicted/observed vs downwind distance plots for CALTRANS data  (SF6) for 
unstable atmospheric conditions 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 prediction 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-17: Predicted/observed vs downwind distance plots for Idaho Falls data (SF6) for stable 
atmospheric conditions 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 prediction 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-18: Predicted/observed vs downwind distance plots for Idaho Falls data  (SF6) for 
unstable atmospheric conditions 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 prediction 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-19: Predicted/observed vs downwind distance plots for Raleigh data (NO) for stable 
atmospheric conditions 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 prediction 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

  

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-20: Predicted/observed vs downwind distance plots for Raleigh data (NO) for unstable 
atmospheric conditions 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 prediction 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-21: Predicted/observed vs downwind distance plots for Hyderabad data (CO2) for stable 
atmospheric conditions 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 prediction 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-22: Predicted/observed vs downwind distance plots for Hyderabad data (CO2) for 
unstable atmospheric conditions 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 predictions 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-23: Predicted/observed vs downwind distance plots for Hyderabad data (NO2) for 
stable atmospheric conditions 
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a) Using SLINE 1.1 predictions 

 

b) Using SAREA 1.1 predictions 

 

c) Using CALINE 4 predictions 

 

d) Using ADMS predictions 

 

e) Using ISC3 predictions 

 

f) Using SLSM predictions 

Figure 7-24: Predicted/observed vs downwind distance plots for Hyderabad data (NO2) for 
unstable atmospheric conditions 
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a) Particle size >10 µm 

 

b) Particle size >10 µm 

 

c) Particle size between 10 and 2.5 µm 

 

d) Particle size between 10 and 2.5 µm 

 

e) Particle size < 2.5 µm 

 

f) Particle size < 2.5 µm 

Figure 7-25: Predicted/observed vs downwind distance plots for Hyderabad data (PM) 
considering different particle ranges for stable atmospheric conditions 
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a) Particle size >10 µm 

 

b) Particle size >10 µm 

 

c) Particle size between 10 and 2.5 µm 

 

d) Particle size between 10 and 2.5 µm 

 

e) Particle size < 2.5 µm 

 

f) Particle size < 2.5 µm 

Figure 7-26: Predicted/observed vs downwind distance plots for Hyderabad data (PM) 
considering different particle ranges for stable atmospheric conditions 
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a) Particle size between 10 and 2.5 µm 

 

b) Particle size between 10 and 2.5 µm 

 

c) Particle size between 2.5 and 0.1 µm 

 

d) Particle size between 2.5 and 0.1 µm 

 

e) Particle size < 0.1 µm 

 

f) Particle size < 0.1 µm 

Figure 7-27: Predicted/observed vs downwind distance plots for Raleigh data (PM) considering 
different particle ranges for stable atmospheric conditions 
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a) Particle size between 10 and 2.5 µm 

 

b) Particle size between 10 and 2.5 µm 

 

c) Particle size between 2.5 and 0.1 µm 

 

d) Particle size between 2.5 and 0.1 µm 

 

e) Particle size < 0.1 µm 

 

f) Particle size < 0.1 µm 

Figure 7-28: Predicted/observed vs downwind distance plots for Raleigh data (PM) considering 
different particle ranges for unstable atmospheric conditions 
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Predicted/observed vs downwind distance plots indicate that with CALTRANS data (SF6) 

for both atmospheric conditions SLINE 1.1 have both under and over predictions at lower 

downwind distances, but mostly over predictions at higher downwind distance. SAREA 1.1 have 

both under and over predictions at all the downwind distances.  Both SLINE 1.1 and SAREA 1.1 

have more over predictions than the other models. Using Idaho Falls data (SF6) for both 

atmospheric conditions, though other models also have the over predictions, the SLINE 1.1 have 

the highest number of over predictions at all the downwind distances. The trend observed is similar 

to Hyderabad data (CO2 and NO2) for unstable atmospheric conditions. SLINE 1.1 and SAREA 

1.1 have mixed predictions (under and over) even more values closer to the ideal value (1) are 

observed. Overall, from Cp/Co plots of gaseous models, it can be observed that more than 50% of 

the Cp/Co values of all the data sets are >1 except for the Hyderabad dataset. 

From Cp/Co plots of PM models, it can be observed that most of the SLINE PM 1.1 are 

SLINE PM 1.1 is over predicting larger sized particles at lower downwind distances and small 

sized particles at larger downwind distances. This can be due to the lower-sized particle can travel 

larger downwind distances when compared with larger-sized particles.  

7.2.3 Q-Q Plots 

The predicted and observed concentrations are to be further assessed to see whether a 

model can generate a concentration distribution that is like the observed, especially at different 

concentration ranges. The Cp/Co values help to identify if the model is under-predicting or over-

predicting. The statistical indicator indicates the accuracy of the model performance. The Q-Q 

plots represent the similarity between the distribution of observed and predicted values [49]. If the 

highest observed concentrations and model-predicted concentrations have similar magnitude then 

the model overpredicts overall, and maybe correctly predicts the values of the highest few observed 
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concentrations but for the wrong reasons and at wrong downwind distances [49]. Q-Q plots provide 

a visual characterization of the spread of model-predicted concentrations and observed 

concentrations concerning the central value [50].  

Quantile-Quantile (Q-Q) plots were used in this study to visually assess the similarity in 

distribution between the observed concentrations and the concentrations predicted using developed 

and available models. The observed and simulated concentrations using each data set were 

considered when drawing each plot. They were initially sorted in ascending order and plotted 

against the quantiles calculated from the theoretical distribution. The standardized residuals (y-

axis) were the measure of the strength of the difference between the observed and predicted 

simulations, and the theoretical quantiles (x-axis) were the theoretically calculated percentiles [86]. 

The Q-Q plots for the observed data and each model's simulated data were plotted. The plots also 

indicate the relation between the distribution to the observed concentrations and model predicted 

concentrations.  
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-29: Predictions of CALTRANS data (SF6) using available models for stable 
atmospheric conditions 
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-30: Predictions of CALTRANS data (SF6) using available models for unstable 

atmospheric conditions 
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-31: Predictions of Idaho Falls data (SF6) using available models for stable atmospheric 

conditions 
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-32: Predictions of Idaho Falls data (SF6) using available models for unstable 
atmospheric conditions 
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-33: Predictions of Raleigh data (NO) using available models for stable atmospheric 
conditions 
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-34: Predictions of Raleigh data (NO) using available models for unstable atmospheric 
conditions 
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-35: Predictions of Hyderabad data (CO2) using available models for stable atmospheric 
conditions 
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

  
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-36: Predictions of Hyderabad data (CO2) using available models for unstable 
atmospheric conditions 



110 

 

 
a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-37: Predictions of Hyderabad data (NO2) using available models for stable atmospheric 
conditions 
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a) SLINE 1.1 predictions 

 
b) SAREA 1.1 predictions 

 
c) CALINE 4 predictions 

 
d) ADMS predictions 

 
e) ISC3 predictions 

 
f) SLSM predictions 

Figure 7-38: Predictions of Hyderabad data (NO2) using available models for unstable 
atmospheric conditions 



112 

 

 
a) SLINE PM 1.1 predictions for particle 

size >10 µm 

 
b) SLSM predictions for particle size >10 

µm 

 
c) SLINE PM 1.1 predictions for particle 

size between 10 and 2.5 µm 

 
d) SLSM predictions for particle size 

between 10 and 2.5 µm 

 
 

e) SLINE PM 1.1 predictions for particle 
size between <2.5 µm 

 
f) SLSM predictions for particle size 

between <2.5 µm 

Figure 7-39: Predictions of Hyderabad data (PM) with different particle size ranges using SLINE 
PM 1.1 and SLSM for stable atmospheric conditions 
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a) SLINE PM 1.1 predictions for particle 

size >10 µm 

 
b) SLSM predictions for particle size >10 

µm 

 
c) SLINE PM 1.1 predictions for particle 

size between 10 and 2.5 µm 

 
d) SLSM predictions for particle size 

between 10 and 2.5 µm 

 
e) SLINE PM 1.1 predictions for particle 

size between <2.5 µm 

 
f) SLSM predictions for particle size 

between <2.5 µm 
Figure 7-40: Predictions of Hyderabad data (PM) with different particle size ranges using SLINE 

PM 1.1 and SLSM for unstable atmospheric conditions 
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a) Particle size between 10 and 2.5 µm 

 
b) Particle size between 10 and 2.5 µm 

 
c) Particle size between 2.5 and 0.1 µm 

 
d) Particle size between 2.5 and 0.1 µm 

 
e) Particle size between <0.1 µm 

 
f) Particle size between <0.1 µm 

Figure 7-41: Predictions of Raleigh data (PM) with different particle size ranges using SLINE 
PM 1.1 and SLSM for stable atmospheric conditions 
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a) Particle size between 10 and 2.5 µm 

 
b) Particle size between 10 and 2.5 µm 

 
c) Particle size between 2.5 and 0.1 µm 

 
d) Particle size between 2.5 and 0.1 µm 

 
e) Particle size between <0.1 µm 

 
f) Particle size between <0.1 µm 

Figure 7-42: Predictions of Raleigh data (PM) with different particle size ranges using SLINE 
PM 1.1 and SLSM for unstable atmospheric conditions 
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The Q-Q plots help to see whether a model can generate a concentration distribution that is 

like the observed, especially at different concentration ranges.  For Gaseous models, it can be 

observed from the Q-Q plots that the trend followed by model predictions is similar to that of 

observed values however a variation is observed at higher concentrations using CALTRANS data 

(SF6) for stable atmospheric conditions. It can also be observed that SLINE 1.1 has a high Y-axis 

range than the other models and the second-highest range is for SAREA 1.1. Using CALTRANS 

data (SF6) for unstable atmospheric conditions, it can be observed that SLINE 1.1 and SAREA 1.1 

both have a high Y-axis range than the other models. For Idaho Falls data (SF6) for both 

atmospheric conditions, varying trends can be observed from mid-range concentrations to high 

concentrations. Also varying trends in higher concentrations. A significant variation in prediction 

trends can be observed with Hyderabad (CO2) for stable atmospheric conditions. The large 

variation in trends for all the models can be observed for Hyderabad data (NO2) for both 

atmospheric conditions. From Q-Q plots, the upper limit range of model predictions of SLINE 1.1 

are always higher than all the other models. For PM models, from Q-Q plots, it can be observed 

that more deviation in prediction trends can be observed for both Hyderabad and Raleigh data sets. 

The upper limit range of model predictions of SLINE PM 1.1 is always higher or equal to the 

SLSM. 

7.3 Comparison of Models using Statistical Indicators 

The quantitative performance of the models (SLINE 1.1, SAREA 1.1) and comparison with 

the available models (CALINE4, ADMS, ISC3, and SLSM) are studied by computing the 

statistical indicators that include MB, FB, NMSE, r, MG, VG, and Fa2 (See Table 7-1). These 

statistical performance measures are based on the suggestions given in the literature [85].  

 



117 

 

Table 7-1: Comparison of developed models with available models using statistical indicators  

  
Statistical 

Indicator 
MB(µg/m3) FB NMSE r MG VG Fa2 

CALTRANS 

Stable 

Conditions 

SLINE 1.1 12.34 0.11 0.05 0.88 0.89 1.20 0.84 

SAREA 1.1 15.86 0.34 1.61 0.81 1.32 1.20 0.82 

CALINE4 17.11 −0.26 0.37 0.75 1.44 1.35 0.79 

ADMS 11.43 −0.14 0.10 0.86 1.24 1.22 0.83 

ISC3 15.45 0.39 1.57 0.78 1.36 1.23 0.82 

SLSM 15.12 −0.26 0.35 0.73 1.41 1.48 0.76 

CALTRANS 
Unstable 

Conditions 

SLINE 1.1 -14.97 −0.16 0.14 0.87 1.28 1.13 0.85 

SAREA 1.1 23.12 0.35 1.73 0.78 1.37 1.26 0.86 

CALINE4 20.61 −0.31 0.54 0.71 1.48 1.41 0.74 

ADMS 13.90 −0.19 0.21 0.86 1.33 1.24 0.84 

ISC3 19.87 0.32 1.86 0.76 1.42 1.30 0.79 

SLSM 15.96 −0.28 0.47 0.72 1.44 1.49 0.70 

Idaho Falls 
Stable 

Conditions 

SLINE 1.1 6.75 0.15 0.05 0.75 0.88 1.22 0.81 

SAREA 1.1 11.32 0.31 1.25 0.84 1.19 1.11 0.83 

CALINE4 15.05 −0.29 0.12 0.65 1.45 1.49 0.72 

ADMS 14.95 −0.10 0.02 0.76 1.20 1.27 0.79 

ISC3 12.47 0.34 0.99 0.83 1.21 1.16 0.80 

SLSM 18.51 −0.33 0.17 0.58 1.49 1.51 0.63 

Idaho Falls 
Unstable 

Conditions 

SLINE 1.1 -3.64 −0.11 0.02 0.87 1.11 1.11 0.92 

SAREA 1.1 23.09 0.46 1.18 0.79 1.20 1.18 0.81 

CALINE4 11.17 −0.23 0.09 0.68 1.46 1.46 0.71 

ADMS 10.16 −0.14 0.03 0.86 1.25 1.22 0.89 

ISC3 20.11 0.43 2.04 0.76 1.22 1.21 0.74 

SLSM 16.72 −0.25 0.11 0.66 1.49 1.47 0.68 

Raleigh 

2006 Stable 
Conditions 

SLINE 1.1 15.02 0.14 0.04 0.80 0.86 1.22 0.83 

SAREA 1.1 8.01 0.18 0.89 0.83 1.05 1.07 0.86 

CALINE4 18.51 −0.32 0.18 0.73 1.48 1.51 0.75 

ADMS 10.70 −0.22 0.07 0.87 1.24 1.25 0.88 

ISC3 9.95 0.19 0.95 0.82 1.07 1.09 0.87 

SLSM 20.34 −0.26 0.11 0.69 1.48 1.47 0.72 

Raleigh 

2006 

Unstable 

Conditions 

SLINE 1.1 -15.72 −0.12 0.03 0.85 1.13 1.24 0.87 

SAREA 1.1 16.07 0.20 1.10 0.85 1.10 1.03 0.89 

CALINE4 17.30 −0.26 0.11 0.74 1.42 1.48 0.77 

ADMS 10.11 0.17 0.04 0.83 1.29 1.33 0.86 

ISC3 12.71 0.23 1.07 0.83 1.15 1.06 0.86 

SLSM 15.61 −0.26 0.11 0.74 1.41 1.49 0.76 
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Hyderabad 

Stable 

Conditions 

SLINE 1.1 13.02 0.13 0.32 0.81 1.26 1.32 0.84 

SAREA 1.1 14.94 -0.07 0.28 0.79 1.12 1.17 0.81 

CALINE4 15.31 0.02 0.59 0.73 1.53 1.59 0.74 

ADMS 19.78 0.17 0.13 0.78 1.36 1.38 0.80 

ISC3 20.92 -0.18 0.53 0.71 1.40 1.43 0.76 

SLSM 20.77 0.09 0.64 0.72 1.31 1.34 0.73 

Hyderabad 

Unstable 

Conditions 

SLINE 1.1 -13.56 -0.19 0.17 0.82 1.21 1.24 0.88 

SAREA 1.1 13.03 0.10 0.14 0.81 1.23 1.25 0.84 

CALINE4 10.35 -0.22 0.7 0.75 1.35 1.38 0.78 

ADMS 11.98 0.22 0.52 0.81 1.26 1.29 0.81 

ISC3 18.92 0.44 1.56 0.77 1.31 1.35 0.78 

SLSM 11.86 0.12 0.71 0.72 1.48 1.41 0.74 

The statistical evaluation results for the inter-comparison of developed models with 

available models are presented in Table 7-1. The numerical result gives a quantitative relationship 

between observed and predicted values. The values with ‘’ denote the interpretation of statistical 

criteria which were satisfied by the suggested range from the literature for a better performing 

model. The average statistical indicator values of all models for all the datasets are presented in 

Figures 7-43. 

The results from Figures 7-43 indicate that SLINE 1.1 has the least mean error of 11.88 

µg/m3 and SAREA 1.1 (Similar to CALINE4) has the 3 rd least error of 15.68 within considered 

models. SLINE 1.1 has the 1st best FB value of 0.14 and SAREA 1.1 is the 5 th best FB value of 

0.25. The SLINE 1.1 has the 1st best NMSE value of 0.1 and SAREA 1.1 has the 5 th best NMSE 

of 1.02. SLINE 1.1 (Similar to ADMS) has the highest correlation of 0.83 between predicted and 

observed values and SAREA 1.1 has the 2nd highest correlation of 0.81. For MG, SLINE 1.1 has 

the 1st best value of 1.08 and SAREA 1.1 has the 2nd best value of 1.20. For VG, SAREA 1.1 has 

the 1st best value of 1.16 and SLINE 1.1 has the 2nd best value of 1.21. For Fa2, SLINE 1.1 has 

highest value of 0.86 and SAREA 1.1 (Similar to ADMS) has the 2nd best value of 0.84. The 

results indicate that SLINE 1.1 is performing better than other models including SAREA 1.1.  
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a) Comparison of average MB 
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Figure 7-43: Comparison of average statistical indicator values of gaseous models for 4 
datasets 
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Figure 7-44: Comparison of average statistical indicator values of PM models for 2 datasets. 



121 

 

SLINE PM 1.1 has mean error of 13.08 µg/m3, which is better than SLSM. The results 

indicate that almost all the FB and NMSE values at are in the satisfactory range reported in the 

literature. Other parameters shows that the model needs improvement. The SLINE PM 1.1 model 

predictions correlate up to 81% with the field observations and SLSM predictions correlate up to 

70% with the field observations.   

Overall, the statistical indicator results indicate that SLINE 1.1 is performing better in terms 

of all the statistical indicators than the other models including SAREA 1.1 for gaseous pollutants. 

SLINE PM 1.1 is performing better in terms of all statistical indicators except Fa2 for PM.  

The question that has not been answered yet: Is SLINE 1.1 significantly different from other 

models used in this dissertation? This is discussed in the following section. 

7.4 Inter-comparison of Models using BOOT software (Version 2.0) 

BOOT has been primarily used to evaluate the performance of air dispersion models. It 

provides concise information on model performance [106]. The current study uses Version 2.0 of 

the BOOT software. This software is significant in providing the summary of confidence limit 

analyses based on percentile confidence limits. It also provides a summary of performance 

measures for the considered dispersion models, which is necessary to perform inter-comparison 

analysis. SLINE 1.1, SAREA 1.1, CALINE4, ADMS, ISC3, and SLSM models are intercompared 

to identify the significantly different models. The results are presented in Table 7 -2. SLINE PM 

1.1 and SLSM are inter compared using BOOT software to identify if they are significantly 

different. The results are presented in Table 7-3. 

The BOOT results indicate that for gaseous models, SLINE 1.1, SAREA 1.1, ADMS, and 

SLSM are significantly different from each other. However, the relation (significantly different or 
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not) between CALINE4 and ISC3 with the other models could not be determined using the current 

field data. Therefore, the comparison should be continued in the future with more datasets to 

determine if SLINE 1.1, SAREA 1.1, ADMS, and SLSM are significantly different from 

CALINE4 and ISC3. For PM models, the relation between SLINE PM 1.1 and SLSM could not 

be determined using the current field data. Therefore, the comparison should be continued in the 

future with more datasets to determine if SLINE PM 1.1 is significantly different from SLSM.  

Table 7-2: Inter-comparison results of the gaseous models using BOOT software with 95% 
confidence limits 
 

 SLINE 1.1 SAREA 1.1 CALINE4 ADMS ISC3 SLSM 

SLINE 1.1  X  X  X 

SAREA 1.1 X   X  X 

CALINE4       

ADMS X X    X 

ISC3       

SLSM X X  X   

Table 7-3: Inter-comparison results of the PM models using BOOT software with 95% 
confidence limits 
 

 SLINE PM 1.1 SLSM 

SLINE PM 1.1   

SLSM   
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Chapter 8  

Conclusions 
 

8.1 Concluding Remarks 

8.1.1 Gaseous Models 

SLINE 1.1 and SAREA 1.1 are the dispersion model developed for gaseous pollutants 

associated with highway mobile sources. These models incorporate wind shear near the ground 

and use a TPT model based on the physics associated with mobile source dispersion.  SLINE 1.1 

and SAREA 1.1 models are based on an analytical solution of the convective-diffusion equation 

after incorporating wind shear near the ground. The models used in the study incorporate improved 

physics, known at the time of development, related to the dispersion of effluents from mobile 

sources. The simulation schemes are being constantly improved over time. However, the updated 

three-phase atmospheric turbulence parametrization uses the current physics of mobile source 

dispersion and empirical coefficients based on mobile source field studies.  

The sensitivity analysis is performed on SLINE 1.1 and SAREA 1.1 using SI method. 

Overall results indicate that the SLINE 1.1 and SAREA 1.1 models are highly sensitive to the 

emission rate, moderately sensitive to wind velocity, and sensitive to the vertical spread of the 
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mobile plume. But the magnitude of sensitivity is high in SLINE 1.1 model than in the SAREA 

1.1. 

A comparative analysis is performed between developed models (SLINE 1.1, SAREA 1.1) 

and the available models (CALINE4, ADMS, ISC3, SLSM) for gaseous pollutants using 

CALTRANS, Idaho Falls, Raleigh, Hyderabad data sets. The comparison analysis included 

identifying the relationship between the observed and predicted concentrations using Scatter Plots, 

Cp/Co plots, Q-Q plots, and statistical indicators (MB, FB, NMSE, r, MG, VG, and Fa2). The 

scatter plots show that the trendline of model predictions of SLINE 1.1 is higher than all the other 

models except for Hyderabad data (CO2) for unstable atmospheric conditions. From scatter plots, 

SLINE 1.1 is mostly predicted in all the data sets. The trendline of SLINE 1.1 is higher than all 

the data sets except for Hyderabad data for unstable atmospheric conditions.   From Cp/Co plots, 

more than 50% of the Cp/Co values of all the data sets are >1 except for the Hyderabad dataset. 

The Cp/Co plots indicate that SLINE 1.1 is over-predicting than other models including SAREA 

1.1. From Q-Q plots, the upper limit range of model predictions of SLINE 1.1 are always higher 

than all the other models. The results from this evaluation indicate that the SLINE 1.1 is performing 

better than all the other models. Overall plots indicate that SAREA 1.1 and ADMS are performing 

similarly better after SLINE 1.1. Note that the other models in the study are showing mixed results 

(both under and over-predicting). All the statistical indicators of SLINE 1.1 are close to ideal 

values or better than or equal to the compared models except for MG values. These statistical 

indicator results also indicate that SLINE 1.1 is performing better than all the other models 

including SAREA 1.1. The model predictions of SLINE 1.1 and SAREA 1.1 are up to 83% and 

82% correlated respectively with the observed data. Generally, a model that is over-predicting is 

preferred for the regulatory purpose of compliance with the air quality standards.  
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The Inter-comparison analysis is performed using BOOT (Version 2.0) software. The 

BOOT results indicate that SLINE 1.1, SAREA 1.1, ADMS, and SLSM are significantly different 

from each other. However, it is difficult to say whether these four models are significantly different 

or not from CALINE4 and ISC3. Additional field datasets should be used to determine this point.  

Based on the findings of this study, it is encouraged to use the updated turbulence 

parametrization along with the empirical coefficients given in Tables 2-3 with other line-source 

models. 

8.1.2 Particulate model 

This study presents the development of SLINE PM 1.1, an analytical line source dispersion 

model to predict ground-level concentrations for PM for different particle size ranges. Separate 

dispersion equations are presented for the infinite as well as finite -length mobile sources. The 

application of the SLINE PM 1.1 model for emission data with a given particle size profile and 

emission data with no particle size distribution is provided.  

The sensitivity of the model is tested using the SI method. The results indicate that SLINE 

PM 1.1 is highly sensitive to emission rate, moderately sensitive to wind velocity, and coefficient 

a, and slightly sensitive to vertical plume spread. 

The model performance is evaluated using the Hyderabad and Raleigh data sets. The total 

concentrations computed using the developed equations were compared with a simple line source 

model SLSM available in the textbook for a test case. Similar to the gaseous models, the model 

evaluation includes performance estimation using scatter plots, Cp/Co plots , and statistical 

indicators (MB, FB, NMSE, r, MG, VG, and Fa2).  

From scatter plots, SLINE PM 1.1  is over predicting than SLSM with Hyderabad data set 

for all the particle sizes. SLSM is over predicting that SLINE PM 1.1 for Particle size between 10 
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and 2.5 µm and  <0.1 µm with Raleigh data set for stable conditions. From Cp/Co plots, SLINE 

PM 1.1 is over predicting larger-sized particles at lower downwind distances and small-sized 

particles at larger downwind distances. From Q-Q plots, the upper limit range of model predictions 

of SLINE PM 1.1 is always higher or equal to the SLSM. It can be observed that the predictions 

of low concentrations of both models (SLINE PM 1.1 and SLSM) are close to the larger 

concentrations. Overall, the results from the test case indicate that the simple line source model 

(SLSM) under-predicts PM concentrations at different downwind distances relatively with SLINE 

PM 1.1. The results indicate that all the FB and NMSE values are in the satisfactory range reported 

in the literature and show that the SLINE PM 1.1 model is a better-performing model than SLSM. 

The model predictions of SLINE PM 1.1 are correlated from 72 to 89% with the observed data.  

The BOOT results indicate that for PM models, the relation between SLINE PM 1.1 and SLSM 

could not be determined using the current field data. 

Additionally, the performance of the basic line-source SLSM model is improved when the 

proposed TPT model is used for dispersion calculations (See Appendix A for a complete analysis) 

[107]. 

8.2 Recommendations and Future Work 

➢ Future work needs to be done for the evaluation and comparison of area -source 

models with line-source dispersion models for highway mobile sources using more 

data sets to understand their performance.  

➢ It will be important to update the turbulence parametrization based on new findings 

reported in the field in future years. 

➢ The SLINE PM 1.1 should be evaluated with more data sets to improve the 

deposition velocity for different particle size should be indicated. 
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➢ The accuracy of the SLINE PM 1.1 model may be improved by determining the 

best empirical coefficients from field studies at different downwind distances and 

various particle size distributions.  

➢ The use of the concepts of artificial intelligence (AI), including regression trees and 

sensitivity analysis (using analysis of variance) to identify the statistically 

significant input variables. The identified variables can be used as inputs to develop 

multilayer perceptron models for mobile source dispersion as suggested by 

Kadiyala et al. [108]. 
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Appendix A 

Performance of a Simple Mobile Source Dispersion Model Using 

Three-Phase Turbulence Model 

A.1 Introduction 

Dispersion and chemical transformation in the atmosphere using mathematical or 

numerical techniques is called air pollution dispersion modeling. The dispersion modeling is based 

on the physics and chemistry involved in the process of advection/dispersion of contaminants and 

could predict and estimate the concentrations of contaminants by considering the origin of source, 

composition, emissions, traffic data, and meteorology. Analytical/numerical techniques are used 

to simulate ground-level concentration in air quality models. Typical inputs of air quality modeling 

include source information, meteorological data, and the surrounding terrain. 

The small-scale, irregular air motions characterized by winds that vary in speed and 

direction are called turbulence in the atmosphere. Atmospheric turbulence is vital in causing the 

mixture and distribution of atmospheric gasses, water vapor, and other substances and hence it is 

an important parameter in air quality modeling. Along with the atmospheric turbulence, other 

critical parameters in air quality modeling are atmospheric stability, initial vertical plume spread, 

downwind distance, wind velocity, additional spread due to vehicular wake, thermal turbulence, 

road width, residence time, and mixing height of mobile source dispersion.  

Published in: “The 5th International Electronic Conference on Atmospheric Sciences”, session 
“Atmospheric Techniques, Instruments, and Modeling” on 25 July 2022 by MDPI 
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The improvement in the performance of mobile source models over the last 50 years is 

achieved by improving the theoretical basis of the dispersion equations and developing dispersion 

coefficients based on either theory or field experiments. Madiraju and Kumar (2021) proposed a 

new Three-Phase turbulence model to calculate the vertical spread of mobile source plume by 

combining the current concepts of atmospheric turbulence and plume spread observations based 

on field data. The purpose of this study is to simulate the ground level concentrations using a basic 

model without following the three-phase turbulence model (MODEL-A) and compare results with 

the same basic model using dispersion coefficients for point sources (called MODEL-B and with 

following the three-phase turbulence model). Statistical indicators are used to assess the 

performance of the basic model under these two cases. 

A.2 Performance Evaluation  

The performance of the basic model is assessed initially by simulating the ground level 

concentrations of the air pollutants with multiple data sets without and with implementing the TPT 

model. The performance measures (discussed in section 4.3) are then computed by running through 

a model evaluation software (BOOT in this study). BOOT results are compared to identify the 

performance change after implementing the TPT model. 

A.2.1 Evaluation Tool 

BOOT has been primarily used to evaluate the performance of air dispersion models. It 

provides concise information on model performance. The current study uses Version 2.0 of the 

BOOT software. This software is significant in providing the summary of confidence limit 

analyses based on percentile confidence limits. It also provides a summary of performance 

measures for the considered dispersion models. 
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A.2.2 Performance Measures 

It is necessary to consider multiple performance measures, as each measure has advantages 

and disadvantages and there is not a single measure that is universally applicable to all conditions. 

The relative advantages of each performance measure are partly determined by the distribution of 

the variable of interest. Linear measures of FB (Fractional Bias) and NMSE (Normalized Mean 

Square Error) are strongly influenced by infrequently occurring high observed and predicted 

concentrations. The fraction of predictions within a factor of two of observations (FA2), on the 

other hand, is the most robust measure, because it is not overly influenced by high and low outliers. 

Along with FB, NMSE, and FA2; the correlation coefficient (r) is also an important performance 

measure used in this study. The ideal values and suggested ranges of performance measures for 

better performing model are presented in Table 2. FBFN can be considered as the underpredicting 

(false-negative) component of FB. Similarly, FBFP can be considered as the overpredicting (false-

positive) component of FB, i.e., only those (Co- Observed concentration in the field, Cp-Predicted 

concentration using a mathematical model) pairs with Cp > Co are considered in the calculation. 

All these performance measures are simulated using BOOT software.  

A.2.3 Results 

The ground-level concentrations (that are simulated using the basic model) are run through 

the BOOT software. The BOOT software output results generated for the three data sets for stable 

and unstable atmospheric conditions are listed in Table 3. In the BOOT analysis, it was considered 

that MODEL-A is the basic model without following the TPT model and MODEL-B is also the 

same basic model following the TPT model.  
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In the BOOT output file ‘N’ represents the number of data points considered in each data 

set. Each block represents each data set considered to run the BOOT software.  

Since the basic model used in this study is a widely used model by many researchers and 

students, all the performance measures (statistical indicators) computed are in the satisfactory 

range suggested in the literature. In the nominal (median) results, the mean and standard deviation 

values of MODEL-A are significantly close enough when compared with observed values. But the 

MODEL-B results show that the mean and standard deviations values of the basic model have 

improved. The nominal results also indicate that all the other statistical indicators also improved 

slightly.  

The mean values of the model predicted concentrations for Data set 1 (stable), Data set 2 

(stable) of MODEL-A are close to the observed values. Data set 2 is unstable Data set 3 is stable, 

and the unstable of MODEL-B is close to observed values. The sigma values of the model 

predicted concentrations for Data set 1 and data set 3 stables of MODEL-A are close to the 

observed values and MODEL-B sigma values are close to observed values in all the other data 

sets.  

The Bias values of MODEL-A and MODEL-B are higher than the ranges of a better-

performing model. But the values of MODEL-B are slightly improved than MODEL-A. The Bias 

value for a perfect model is 0, which is practically impossible.  

NMSE emphasizes the scatter in the complete dataset. NMSE reflects both systematic and 

unsystematic (random) errors in the concentrations. The ideal value of a perfect model will be 0 

[96]. However, the results indicate that MODEL-A and MODEL-B have better NMSE values. The 

best NMSE value observed for MODEL-A for data set 2 (both stability conditions) and data set 3 
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(unstable condition) is 0.11. The best NMSE value is observed for MODEL-B for data set 2 

(unstable condition) and data set 3 (unstable condition) is 0.11. 

The correlation coefficient gives an indication of the linear relationship between the 

predicted and observed values. A perfect model has a correlation coefficient value of 1. Model-A 

and MODEL-B have correlation coefficients ranging from 0.58 to 0.74 and 0.67-to 0.8 in all three 

data sets. This indicates that MODEL-B predicted concentrations are more significantly correlated 

than MODEL-A. 

The FA2 is defined as the percentage of predictions within a factor of two of the observed 

values. The ideal value for the factor of two is 1 (100%). The fraction of predictions within a factor 

of two of observations. The air quality model with more than 0.8 value of Fa2 is called a better 

performing model. The highest values of Fa2 for MODEL-A and MODEL-B are observed as 0.81 

and 0.88 respectively for data set 1 for unstable atmospheric conditions.  

Table 3. BOOT output results for the simple model for the three considered data sets at stable and 

unstable atmospheric conditions. 

Model MEAN SIGMA BIAS NMSE r Fa2 FB HIGH 
2nd 

HIGH FBfn FBfp MOEfn MOEfp 
MODEL 

A 

  

 
  

 
 

  

    
Data 1a 1.9x10^05 2.5x10^05 12.36 0.35 0.73 0.79 -0.261 2.0x10^06 1.8x10^06 0.195 0.456 0.875 0.614 

Data 1b 
1.8x10^05 1.2x10^04 

14.33 0.47 0.72 0.81 -0.285 2.1x10^06 1.9x10^06 
0.398 0.683 0.762 0.477 

Data 2a 
1.7x10^04 1.1x10^04 

9.52 0.11 0.69 0.73 -0.265 3.5x10^05 3.0x10^05 
0.182 0.447 0.848 0.583 

Data 2b 
1.2x10^04 1.0x10^04 

11.98 0.11 0.74 0.76 -0.266 1.7x10^05 1.5x10^05 
0.489 0.755 0.661 0.395 

Data 3a 
3.0x10^05 2.0x10^04 

10.13 0.17 0.58 0.79 -0.334 1.6x10^06 1.1x10^06 
0.357 0.691 0.713 0.379 

Data 3b 

4.4x10^05 1.4x10^05 

20.11 
0.11 0.66 

0.74 
-0.257 

2.0x10^06 1.5x10^06 

0.417 0.674 0.613 0.356 
MODEL 

B 
  

 
  

 
 

  
    

Data 1a 2.8x10^05 6.3x10^04 7.69 0.26 0.78 0.82 -0.179 2.5x10^06 1.9x10^06 0.197 0.376 0.973 0.794 

Data 1b 
2.5x10^05 4.2x10^04 

6.78 0.34 0.77 0.88 -0.198 2.1x10^06 1.7x10^06 
0.674 0.872 0.496 0.298 

Data 2a 
3.3x10^04 2.4x10^04 

8.22 0.1 0.73 0.78 -0.17 3.3x10^05 3.1x10^05 
0.317 0.487 0.853 0.683 

Data 2b 
2.7x10^04 1.1x10^04 

11.2 0.09 0.8 0.81 -0.172 1.1x10^05 1.1x10^05 
0.337 0.509 0.833 0.661 

Data 3a 
3.1x10^05 1.4x10^05 

5.67 0.13 0.67 0.79 -0.221 1.3x10^06 1.2x10^06 
0.277 0.498 0.763 0.542 

Data 3b 
4.6x10^05 4.5x10^04 

15.35 0.09 0.71 0.76 -0.147 1.5x10^06 1.2x10^06 
0.355 0.502 0.655 0.508 



141 

 

The FB values for both the models are less than 0.5 and close to 0, which means both 

MODEL-A and MODEL-B are better performing. However, it can be observed that all the FB 

values are negative, which means that most of the model predictions are less than the observed 

values (under-predicting). If the point of (FBFN, FBFP) = (2, 0) means that predictions are zero 

everywhere, but all observations are finite. If the point of (FBFN, FBFP) = (0, 2) means that 

observations are zero everywhere, but all predictions are finite. Since both FBFN and FBFP have 

values greater than 0 and less than 2 which means all the observations and predictions are finite. 

If FBFN = FBFP = 0; then a model can be called as a perfect model. 

A.3. Conclusions 

Overall, the TPT model was implemented in a basic mobile source dispersion model, and 

the performance was assessed. Three data sets were used to assess and simulate the model 

predicted concentrations and compare them with the observed data. BOOT software is used to 

generate the comparison results. A comparison of results for the basic model with and without 

following the TPT model is given in Table 3 using the three data sets for stable and unstable 

atmospheric conditions. Various performance measures include meaning, sigma, bias, NMSE, 

correlation coefficient, Fa2, and FB. The results indicate that there is a slight improvement in the 

model performance of the basic model after following the TPT model. Improvement in FB, NMSE, 

Fa2, and r values are visible. The nominal results also show that the mean and standard deviation 

values of the simulations computed using MODEL-B are better than the MODEL-A. Finally, these 

results indicate that following a separate turbulence model for the mobile source could improve 

model predictions.  

 


