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With the increasing trend of outsourcing the fabrication process of Integrated 

Circuits (ICs) to foreign foundries, hardware security threats have significantly increased. 

Of particular concern is the infiltration of the IC supply chain with compromised and 

counterfeit chips by untrusted and dubious foundries. In recent years, the use of 

programmable devices such as Field Programmable Gate Arrays (FPGAs) has rapidly 

increased. The increased deployment of these devices in mission-critical computing 

systems such as communication networks, smart grids, defense equipment, and internet of 

things; has led hackers to continually devise new techniques to breach the security of these 

devices. Of serious concern is the implantation of a spurious circuitry, known as a Trojan, 

to steal or degrade the function of the chip. These tampered chips can subsequently act as 

‘spy chips’ for collecting confidential data by adversaries and hackers. To counter such 

attacks, a chip designer can embed additional security layers in these devices using 

Physical Unclonable Functions (PUFs). Although PUFs are supposed to be unclonable and 

unbreakable, researchers have found that they are vulnerable to Machine Learning (ML) 
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attacks. From a subset of challenge-response pairs (CRPs), the remaining CRPs can be 

effectively predicted using different machine learning algorithms. 

This research presents a comprehensive vulnerability analysis of different FPGA 

based PUFs to various Swarm Intelligence (SI) based ANN Algorithms (SI) attacks; 

namely, Dragonfly Algorithm (DA), Gravitational Search Algorithm (GSA), Cuckoo 

Search Algorithm (CS), Particle Swarm Optimization (PSO), and the Grey Wolf Optimizer 

(GWO) algorithms. These algorithms are used to build Artificial Neural Network models 

to analyze the vulnerability of the different PUFs for modeling attacks. The training 

algorithms adjust the weights and biases of the ANN to obtain the highest response 

prediction accuracy by finding their optimum set. To the best of our knowledge, swarm 

intelligence-based algorithms have not been used in studying the vulnerability of PUFs to 

ANN-based attacks. The results show that the swarm intelligence algorithms produce better 

response prediction accuracies results (71.1% - 99.3%) when compared to other well-

known ML algorithms. Amongst the various SI and ML algorithms, the GWO algorithm 

performs the best in predicting the CRPs.  

This research further focuses on using different machine learning classifiers 

attacks, namely: Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-

Nearest Neighbor (KNN), kernel Support Vector (Kernel SVM), Naive Bayes Classifier 

(NB).  Different Artificial Neural Networks (ANN) based models to study the vulnerability 

of PUFs are used by modeling the challenge-response pairs. The ANN models are 

implemented using four different optimization techniques; namely: Root Mean Square 

Propagation (RMSprop), Adaptive delta (Adadelta) learning rate method for gradient 

descent, Adaptive Moment Estimation (Adam), and Nesterov-accelerated Adaptive 
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Moment Estimation (Nadam). The challenge-response data obtained from different PUFs 

are trained using various modeling algorithms. The results show that the ANN-based 

algorithms produce better response prediction accuracies results (68.0% - 94.1%) when 

compared with other ML algorithms.  

Two different novel XOR-ROPUFs capable of thwarting various machine learning 

modeling attacks, and enhancing the security of the PUFs, are also designed. The proposed 

designs are implemented on Xilinx Artix-7 FPGAs. These PUFs generate an ‘n’ bit 

response for an ‘n’ bit challenge (n x n); the new response is an ‘n’ bit vector so that the 

prediction accuracy is calculated based on predicting the number of bit strings (n x n) for 

different challenges. The new PUF structures drastically reduces the prediction accuracy 

of CRPs to 24.1%.  

For the remaining part of this research work, an authentication scheme is proposed 

for the security of IoT systems using a lightweight XOR-ROPUF. The proposed 

management scheme carries out the authentication between the verification authority, the 

authentication server, and the IoT devices to ensure data congeniality and integrity. The 

proposed XOR-ROPUF based scheme implements a low-cost device authentication 

solution for identifying the trusted hardware, securing communication among the devices 

using a lightweight system, and reducing the risk of authentication vulnerability. 

 

 



vi 

Dedicated to my loving and caring parents, my devoted wife, my lovely children and my 

entire family for their everlasting love, undying faith, trust, support, patience, and 

encouragement. 

  



vii 

Acknowledgements  

I would like to express my deep gratitude and appreciation to my advisor, Dr. 

Mohammed Niamat, for his supportive recommendations, guidance, and encouragement 

that conducted this research to a successful conclusion and accomplished. I would also 

like to thank my respected committee members for their critical comments, suggestions 

and for helping develop this dissertation. My sincere thanks to my wife, children, parents, 

and family for their ultimate love and continuous support, understanding, and sacrifices 

throughout this Ph.D. journey. Finally, I wish to acknowledge and give thanks to all my 

friends and lab mates for their friendship, encouragement, and support, which make my 

Ph.D. journey a wonderful experience.  

Thank you All 

  



viii 

Table of Contents 

Acknowledgements ........................................................................................................... vii 

List of Tables ................................................................................................................... xiii 

List of Figures ................................................................................................................... xv 

List of Abbreviations ..................................................................................................... xviii 

1. Introduction ..................................................................................................................... 1 

1.1 Motivation ............................................................................................................ 6 

1.2 Research Objectives ............................................................................................. 7 

1.3 Dissertation Outline.............................................................................................. 8 

2. Research Background ................................................................................................... 10 

2.1 Manufacturing Process Variations ..................................................................... 10 

2.2 Physical Unclonable Functions (PUFs).............................................................. 11 

2.2.1 Optical PUF ................................................................................................ 13 

2.2.2 Coating PUF................................................................................................ 14 

2.2.3 Ring Oscillator PUF .................................................................................... 15 

2.2.4 Arbiter PUF ................................................................................................. 16 

2.2.5 Butterfly PUF .............................................................................................. 17 

2.3 Challenge and Response Mechanism on PUFs .................................................. 18 

2.4 Modeling Attacks and Security .......................................................................... 19 

2.4.1 Invasive Hardware Attacks ......................................................................... 20 



ix 

2.4.2 Non-Invasive Hardware Attacks ................................................................. 21 

2.4.3 Machine Learning Attacks .......................................................................... 22 

2.5 Data Collection and Preprocessing .................................................................... 23 

2.6 Feature Selection Algorithms ............................................................................. 23 

2.6.1 Principal Component Analysis (PCA) ........................................................ 24 

2.6.2 Linear Discriminant Analysis (LDA) ......................................................... 24 

2.6.3 Kernel PCA ................................................................................................. 25 

3.  Analysis of Swarm Intelligence based ANN Algorithms for Attacking PUFs ............ 26 

3.1 Introduction ........................................................................................................ 26 

3.2 Dragonfly Optimization Algorithm .................................................................... 27 

3.2.1 DA Algorithm ............................................................................................. 28 

3.3 Gravitational Search Algorithm ......................................................................... 30 

3.3.1 GSA Algorithm ........................................................................................... 31 

3.4 Cuckoo Search Algorithm .................................................................................. 32 

3.4.1 CS Algorithm .............................................................................................. 33 

3.5 Particle Swarm Optimization ............................................................................. 34 

3.5.1 PSO Algorithm............................................................................................ 35 



x 

3.6 Grey Wolf Optimization..................................................................................... 37 

3.6.1 GWO Algorithm ......................................................................................... 38 

3.7 Proposed Method................................................................................................ 41 

3.8 Computational Complexity Analysis ................................................................. 43 

3.9 Experimental results analysis of swarm intelligence based model attacks ........ 45 

3.10 Chapter Summary ............................................................................................... 52 

4. Machine Learning and Artificial Neural Network Model Attacks on PUFs ................ 53 

4.1 Introduction ........................................................................................................ 53 

4.2 Logistic Regression ............................................................................................ 54 

4.3 Decision Tree ..................................................................................................... 55 

4.4 Random Forest Classifier ................................................................................... 55 

4.5 K Nearest Neighbor ............................................................................................ 55 

4.6 Support Vector Machine .................................................................................... 56 

4.7 Naive Bayes Classifier ....................................................................................... 56 

4.8 Experimental results of ML classifier modeling attacks .................................... 57 

4.9 Artificial Neural Network Models ..................................................................... 60 

4.10 Experimental results of ANN based modeling attacks....................................... 62 

4.11 Comparative Analysis Among Different Algorithms ........................................ 67 

4.12 Statistical analysis of the results......................................................................... 69 

4.13 Chapter Summary ............................................................................................... 72 



xi 

5. Design and Implementation of XOR-ROPUF for Thwarting Different Machine 

Learning Attacks ............................................................................................................... 73 

5.1 Introduction ........................................................................................................ 73 

5.2 Implementation of XOR-ROPUF....................................................................... 74 

5.3 Experimental results of different modeling attacks............................................ 80 

5.3.1 Machine Learning Classifier Modeling Attacks ......................................... 81 

5.3.2 Artificial Neural Network based Modeling Attacks ................................... 82 

5.3.3 Swarm Intelligence based Modeling Attacks ............................................. 83 

5.4 Comparison Among Different PUF Designs ..................................................... 84 

5.5 Chapter Summary ............................................................................................... 88 

6. Design and Implementation of a Hybrid Delay Based FPGA PUF Resistant to Machine 

Learning Attacks ............................................................................................................... 89 

6.1 Introduction ........................................................................................................ 89 

6.2 Implementation of proposed design ................................................................... 91 

6.2.1 Implementation of Arbiter PUF .................................................................. 91 

6.2.2 Implementation of XOR- ROPUF .............................................................. 94 

6.3 Experimental results of different modeling attacks............................................ 98 

6.3.1 Machine Learning Classifier Modeling Attacks ......................................... 99 

6.3.2 Artificial Neural Network based modeling attacks ..................................... 99 



xii 

6.3.3 Swarm Intelligence based modeling attacks ............................................. 101 

6.4 Comparison Among Different PUF designs .................................................... 102 

6.5 Chapter Summary ............................................................................................. 106 

7. XOR-ROPUF Application: Hardware-Oriented Security Based Authentication for 

Internet of Things Devices .............................................................................................. 107 

7.1 Introduction ...................................................................................................... 107 

7.2 Physical Unclonable Functions on the Internet of Things ............................... 109 

7.3 PUF-Based Threats on IoT Devices ................................................................. 111 

7.3.1 Machine Learning (ML) attacks ............................................................... 111 

7.3.2 Man in the Middle Attack ......................................................................... 112 

7.3.3 Side-channel hardware-based attacks ....................................................... 112 

7.4 Device Authentication in IoT using Delay-based PUF .................................... 112 

7.4.1 Implementation of XOR-ROPUF Design ................................................. 113 

7.4.2 Proposed PUF-Based Authentication Scheme .......................................... 114 

7.5 Chapter Summary ............................................................................................. 119 

8. Conclusion .................................................................................................................. 120 

8.1 Summary and Conclusions ............................................................................... 120 

References ....................................................................................................................... 124 



xiii 

 

 

List of Tables  

Table 2.1: Process variation parameters. .......................................................................... 11 

Table 3.1: Parameters values used. ................................................................................... 46 

Table 3.2: Initial parameters set in Swarm Algorithms. ................................................... 47 

Table 3.3: Swarm Intelligence-based Prediction Accuracy for Different PUFs. .............. 48 

Table 4.1: ML Classifiers  Prediction Accuracy for Different PUFs. .............................. 58 

Table 4.2: Initial parameters set in ANN optimizers ........................................................ 63 

Table 4.3: ANN-based Prediction Accuracy for Different PUFs. .................................... 64 

Table 4.4: Prediction accuracy comparison for different optimizers. ............................... 68 

Table 4.5: Average rankings of the algorithms by Friedman test. .................................... 70 

Table 4.6: Results of the Friedman Tests. ......................................................................... 70 

Table 4.7: Adjusted p-values. GWO is the Control Algorithm ........................................ 71 

Table 5.1: ML classifiers prediction accuracy for XOR-ROPUF design. ........................ 81 

Table 5.2: ANN based prediction accuracy for XOR-ROPUF design. ............................ 82 

Table 5.3: Swarm Intelligence based prediction accuracy for XOR-ROPUF design. ...... 83 

Table 5.4: Classifier ML Prediction Accuracy for PUFs. ................................................. 84 

Table 5.5: ANN-Based Prediction Accuracy for PUFs. ................................................... 86 

Table 5.6: Swarm based Prediction Accuracy for PUFs ................................................... 87 

Table 6.1: ML classifiers prediction accuracy for hybrid PUF ........................................ 99 

Table 6.2: ANN based prediction accuracy for the hybrid PUF ..................................... 100 



xiv 

Table 6.3: Swarm Intelligence based prediction accuracy for hybrid PUF .................... 101 

Table 6.4: Classifier ML Prediction Accuracy for PUFs. ............................................... 103 

Table 6.5: ANN-Based Prediction Accuracy for PUFs. ................................................. 104 

Table 6.6: Swarm based Prediction Accuracy for PUFs ................................................. 105 

Table 7.1: Challenge- Response Pairs of Different FPGAs ............................................ 118 

Table 7.2: ROPUF Parameters (Performance Metrics for Different PUFs) ................... 119 

 

  



xv 

List of Figures  

Figure 2-1: PUF Classification ......................................................................................... 12 

Figure 2-2: Optical Physical Unclonable Function [46] ................................................... 13 

Figure 2-3: Coating Physical Unclonable Function [53] .................................................. 14 

Figure 2-4: Ring Oscillator PUF Circuit. .......................................................................... 15 

Figure 2-5: An Arbiter PUF Delay Design. ...................................................................... 17 

Figure 2-6: Butterfly Physical Unclonable Function (BPUF). ......................................... 18 

Figure 2-7: Challenge-Response Pairs of a PUF design. .................................................. 19 

Figure 2-8: Attacks on PUF .............................................................................................. 22 

Figure 3-1: (a) Dynamic swarming, (b) Static swarming. ................................................ 28 

Figure 3-2: Update Particle position and velocity in the search space. ............................ 35 

Figure 3-3: Grey Wolf Social Hierarchy. ......................................................................... 38 

Figure 3-4: Wolves Position surrounding the prey. .......................................................... 40 

Figure 3-5: Swarm-based prediction accuracy vs Iteration numbers for ROPUF. ........... 49 

Figure 3-6: Swarm -based prediction accuracy vs Iteration for Configurable ROPUF. ... 50 

Figure 3-7: Swarm -based prediction accuracy vs Iteration numbers for Arbiter PUF. ... 50 

Figure 3-8: Swarm -based prediction accuracy vs Iteration for Inverter ROPUF. ........... 51 

Figure 4-1: Machine Learning algorithms used for predicting PUF CRPs. ..................... 57 

Figure 4-2: Comparison of prediction accuracies for different classifier algorithms. ...... 59 

Figure 4-3: Artificial Neural Network Structure. ............................................................. 60 

Figure 4-4: ANN-Based Algorithms used for Predicting PUF CRPs ............................... 62 



xvi 

Figure 4-5: ANN-based prediction accuracy vs Iteration numbers for ROPUF. .............. 65 

Figure 4-6: ANN-based prediction accuracy vs Iteration for Configurable ROPUF. ...... 65 

Figure 4-7: ANN-based prediction accuracy vs Iteration numbers for Inverter ROPUF. 66 

Figure 4-8: ANN-based prediction accuracy vs Iteration numbers for Arbiter PUF. ....... 66 

Figure 4-9: Training Loss for Different ANN Optimizers................................................ 67 

Figure 4-10: Prediction accuracies for PUFs using various optimization models. ........... 68 

Figure 5-1: Design of XOR-ROPUF to generate n-bit response for an n bit challenge. .. 75 

Figure 5-2: XOR-ROPUF Schematic. .............................................................................. 76 

Figure 5-3: XOR-ROPUF design...................................................................................... 77 

Figure 5-4: Oscillator Network. ........................................................................................ 78 

Figure 5-5: Timing Controllers. ........................................................................................ 79 

Figure 5-6: Placement of Fixed Routing Ring Oscillators................................................ 80 

Figure 5-7: Prediction accuracy vs Iteration numbers for different ANN algorithms. ..... 82 

Figure 5-8: Prediction accuracy vs Iteration numbers for different swarms Algorithms. 83 

Figure 5-9: Comparison of classifier ML prediction accuracies for PUFs. ...................... 85 

Figure 5-10: Comparison of ANN based prediction accuracies for PUFs. ....................... 86 

Figure 5-11: Comparison of swarm based prediction accuracies for PUFs. ..................... 87 

Figure 6-1: RTL level of APUF multiplexer switch ......................................................... 91 

Figure 6-2: Connected Multiplexers in Arbiter PUF ........................................................ 92 

Figure 6-3: APUF Output Response Generator ................................................................ 92 

Figure 6-4: Obfuscator Network ....................................................................................... 93 

Figure 6-5: Manual Routing of Arbiter PUF .................................................................... 94 

Figure 6-6: XOR-Inverter based Ring Oscillator.............................................................. 95 



xvii 

Figure 6-7: Demultiplexer................................................................................................. 95 

Figure 6-8: Multiplexer ..................................................................................................... 96 

Figure 6-9: Output Response Generator ........................................................................... 97 

Figure 6-10: Architecture of Hybrid PUF ......................................................................... 98 

Figure 6-11: Prediction accuracy vs Iteration numbers for different ANN algorithms. . 100 

Figure 6-12: Prediction accuracy vs Iteration for different swarms Algorithms. ........... 102 

Figure 6-13: Comparison of classifier ML prediction accuracies for PUFs. .................. 103 

Figure 6-14: Comparison of ANN based prediction accuracies for PUFs. ..................... 104 

Figure 6-15: Comparison of swarm-based prediction accuracies for PUFs. .................. 105 

Figure 7-1: The overall picture of Internet of Things devices. ....................................... 109 

Figure 7-2: The life-cycle of PUF-based IoT and smart electronic device ..................... 110 

Figure 7-3: XOR-ROPUF Design. .................................................................................. 114 

Figure 7-4: The PUF-based IoT Device Authentication scheme. ................................... 115 

Figure 7-5: Enrollment phase of PUF in authentication scheme. ................................... 116 

Figure 7-6: PUF based device verification phase. .......................................................... 117 

 

  



xviii 

List of Abbreviations  

AI  .............................. Artificial Intelligence 

APUFs  ....................... Arbiter Physical Unclonable Functions 

ASICs  ........................ Application Specific Integrated Circuits 

 

CLB  ........................... Configurable Logic Blocks 

CMOS  ....................... Complementary Metal Oxide Semiconductor 

CRP  ........................... Challenge-Response Pair 

CS ............................... Cuckoo Search Algorithm 

 

FPGA  ........................Field Programmable Gate Array 

 

GA ..............................Genetic algorithms 

GSA............................Gravitational Search Algorithm 

GWO  .........................Grey Wolf Optimizer  

 

ICs  .............................Integrated Circuits 

IP  ...............................Intellectual Property 

 

LFSR  .........................Linear Feedback Shift Register 

LUT  ...........................Look-Up Table 

LR ..............................Logistic Regression 

 

NIST  ..........................National Institute of Standards and Technology 

NB ..............................Naive Bayes  

 

ROPUFs  ....................Ring Oscillator Physical Unclonable Functions 

RF ...............................Random Forest 

RTL  ...........................Register Transfer Level 

SA ..............................Swarm Algorithms 

SVM ...........................Support Vector Machine  

 

VHDL  .......................VHSIC Hardware Description Language 

VLSI  ..........................Very Large Scale Integration 

 



1 

Chapter 1  

1. Introduction 
 

 

 In recent years, the use of programmable devices such as Field Programmable Gate 

Arrays (FPGAs) and custom designed Application Specific Integrated Circuits (ASICs) 

have increased rapidly. The increased deployment of these devices in mission critical 

computing systems include, but are not limited to, communication networks, smart grids, 

defense equipment, and internet of things, has led hackers to continually devise new 

techniques to breach the security of these devices. Examples of such attacks include 

disabling or degrading the function of these chips in systems like radars and missiles.  Other 

attempts include implanting malicious electronic circuitry in the chips, known as Trojans, 

to steal vital information for cyber-attacks. These tampered chips can subsequently act as 

‘spy chips’ by collecting confidential data for adversaries and hackers. To counter such 

attacks, chip designers have embedded additional layers of security in these devices [1,2]. 

Although researchers have long tried to secure hardware-based systems with both software 

and hardware-based approaches, this research explicitly focuses on techniques based on 

hardware-oriented security and trust [3,4]. These approaches mainly involve generation of 

unique hardware-based cryptographic keys in the form of Challenge-Response Pairs 

(CRPs).  In order to generate hardware-based unique keys, different structures of physical 
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unclonable functions (PUFs) have been proposed in the past [5,6]. Essentially, a PUF 

utilizes manufacturing process variation, which is an inherent property of silicon chips, to 

generate unique and unclonable CRPs. Amongst the different types of PUFs available, the 

delay-based PUFs are widely studied in CMOS-based silicon devices. The most 

investigated PUFs on silicon-based devices are the Ring Oscillator PUF (ROPUF) and the 

Arbiter PUF (APUF). Most of the delay-based PUFs are strong candidates for not only 

ASICs but also for FPGAs [7,8]. The significant advantage of using PUFs as security 

measures is that it does not require on-chip memory to generate and store keys; thus, it 

eliminates the use of on-chip memory for the security of the hardware-based system. 

Another very significant feature of the PUF is that the keys generated by the PUF are device 

specific. Further, the keys change with the specific location and placement of the PUF 

inside the chip, since they depend on the random manufacturing process variations [9,10]. 

It should be noted that the behavior of PUFs rely on the random manufacturing process 

variations related to several components that are used to construct it. These components 

are sometimes linearly interrelated to the number of CRPs. Because of these limitations 

and linearity, an attacker may try all challenges and know the corresponding responses 

within an extended period of time [6]. This kind of brute force approach, however, 

generally fails because of the time required and because of the fact that the exact location 

of the PUF is unknown. It is further complicated in FPGAs, since the location of a PUF 

mapped onto an FPGA, unlike an ASIC, can be frequently changed by the designer by 

changing the bit-stream file. 

PUF produces a device-specific unique response for a given challenge. This 

property of the PUF makes it suitable for different applications including, authentication, 
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IP protection, random key generation, remote attestation, and secured supply chain, etc. 

Once the CRPs can be predicted by an attacker; as a consequence, the whole concept of 

cryptographic primitive for hardware security applications, including PUF as an 

authenticator, is in jeopardy. Though PUFs are considered unclonable, researchers have 

shown that they are vulnerable to machine learning-based modeling attacks. An attacker 

can perform different types of attacks, including side-channel attacks, cloning, reverse 

engineering, Probably Approximately Correct (PAC) based attacks, and eavesdropping for 

predicting the CRPs [11-15]. Side-channel based attacks can be performed by monitoring 

the voltage, current, and power values during runtime. If an attacker wants to authenticate 

using PUF CRPs without getting any access to the PUF, the attacker would be able to do 

so if the attacker has the responses available for the challenges, which can be done by 

eavesdropping on some of the CRPs. Hackers can eavesdrop by using MITM attacks by 

recording the network data packets and extracting the information of the CRPs when the 

system is in operation. Thus, after acquiring a set of CRPs, a PUF can be modeled using 

machine learning. Side-channel based attacks can be performed by monitoring the voltage, 

current, and power during runtime. PUFs have been successfully attacked using machine 

learning algorithms such as Logistic Regression, Probably Approximately Correct 

learning, Evolutionary Strategy, Quick Sorting, etc. [13-15]. In Rührmair et al.’s research 

[13], the authors used quick sorting for modeling RO PUFs. In J. Delvaux’s work [14], the 

authors performed modeling attacks on APUF, PolyPUF, OB-PUF, RPUF, LHS-PUF, and 

PUF FSM protocols. The Probably Approximately Correct (PAC) learning algorithm has 

been used for predicting ROPUF CRPs in [15]. In their work, the number of CRPs required 

to learn the models is on a scale of ten thousand which is high for an attacker to obtain 
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from the CRP set.  Fault injection-based modeling attacks on APUFs are performed in [16]. 

In this attack model, an attacker must have physical access to the PUF. Logical 

Approximation and Global Approximation attacks are performed on different structures of 

Arbiter PUFs using ANN methods of RMSProp and Gradient Descent Optimizer [17]. In 

this technique, the number of CRPs required is also high. Different side channel-based 

modeling attacks have been performed in [18,19], which also requires physical access to 

the PUF device. Authors in [20] performed deep learning attacks on a Double Arbiter PUF. 

In their work, the authors performed Logistic Regression-based deep learning attacks. The 

number of CRPs required to perform such an attack is very high and requires more than a 

million pairs of CRPs that are difficult for an adversary to obtain in order to attack the PUF.  

Genetic Algorithms have also been used to predict CRPs for the ROPUF [21,22]. 

In the Genetic Algorithm-based modeling, CRPs are generated by crossover, mutation, and 

then the attacks are performed, which is not consistent for different models of ROPUFs. 

Mathematical modeling of different PUFs including the Arbiter PUF and the Ring 

Oscillator PUF has been performed in [23]. In this work, the authors describe a 

mathematical model for the ROPUF and perform Logistic Regression-based modeling 

attacks on the Arbiter PUF and the DCMUX PUF. In this approach, the drawback is that 

the CRPs depend on the different structures of the ROPUF. ML-based modeling attacks on 

a small set of CRPs using different optimizations including RMSprop, Adam, Nadam, etc., 

have been performed in [24]. However, the prediction accuracy needs improvement.  

Different metaheuristics algorithms exist in the literature to solve optimization 

problems. Metaheuristics algorithms can be classified into different categories including, 

Evolutionary, Physics-based, and Swarm Intelligence-based Algorithms. The Genetic 
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Algorithm (GA) is the most popular Evolutionary based algorithm proposed by [25], which 

works on an initial random solution and optimizes the solution based on generations and 

mutations. Other popular Evolutionary based algorithms are Genetic Programming (GP) 

[26], Evolutionary Strategies (ES) [27], Differential Evolution (DE) [28] etc. The popular 

physics-based algorithms is the Gravitational Search Algorithm (GSA) [29] which works 

based on the law of gravity, and the best solution is reached after the iteration can produce 

specific agents that achieve certain fitness. Ultimately, the heavier; the mass is, the closer 

the optimum points will be. Other physics-based algorithms include Big-Bang Big-Crunch 

(BBBC) [30], Central Force Optimization (CFO) [31], Galaxy-based Search Algorithm 

(GbSA) [32], Gravitational Local Search (GLSA) [33], Charged System Search (CSS) [34] 

etc. Swarm Intelligence (SI) based algorithms are a subset of the bio-inspired algorithms. 

SI is a nature-inspired algorithm produced by a group of animals or birds acting together, 

and the algorithm is based on how these animals act or behave to adapt to the different 

scenarios occurring in their surroundings [35]. In Particle Swarm Optimization (PSO) the 

particles chase the position of the best particle and reach their own best position so that the 

overall best solution of the swarm is obtained [36]. Other popular swarm intelligence-based 

algorithm includes Ant Colony Optimization (ACO) [37], Cuckoo Search (CS) [38], Grey 

Wolf Optimizer (GWO) [39], etc., which are inspired by hunting and searching behavior. 

In 2014, Mirjalili et al. introduced the Grey Wolf Optimizer (GWO), which is a 

metaheuristic algorithm that simulates the hierarchical superiority-based hunting 

mechanism of grey wolves for hunting down prey. This arrangement benefits them to 

preserve stability and support each other throughout hunting. Wolves have a strict social 

hierarchy consisting of the alpha (α), beta (β), delta (δ), and omega (ω) wolves [39]. The 
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GWO algorithm takes these features of Grey Wolf to search optimized solution of a 

problem utilizing exploitation and exploration; therefore, in the searching process, the best 

solution position can be comprehensively estimated by three solutions. Thus, the algorithm 

can significantly decrease the probability of falling into the local optimum. The properties 

of metaheuristics algorithms have motivated their use to solve different engineering 

problems such as embedded systems, electric power system [40], scheduling Energy 

Storage Unit problems [41], communication network and Distributed Compressed Sensing 

(DCS) problem [42]. Hence, the research on the swarm intelligence optimization 

algorithms has an academic advantage and practical importance.  

 

1.1 Motivation 

The design of delay-based Physical Unclonable Function (PUF) on Field 

Programmable Gate Arrays (FPGAs) has developed rapidly because of their accelerated 

reconfigurability, parallelism, and low cost which overcome the limitations of traditional 

cryptography. Therefore, hackers continually devise different types of specialized attacks 

to breach and counterfeit these devices' security and piracy. The attackers implementing 

various types of machine learning attacks in order to emulate PUF’s behavior will lead to 

expanded research in hardware-oriented security and trust to secure the system from such 

growing threats by deploying additional security mechanisms for FPGA-based systems 

using Physical Unclonable Function.  
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1.2 Research Objectives 

• A novel implementation of Artificial Neural Network-based modeling attacks on 

various PUFs using different Swarm Intelligence algorithms namely, Dragonfly 

Algorithm (DA), Gravitational Search Algorithm (GSA), Cuckoo Search 

Algorithm (CS), Particle Swarm Optimization (PSO), and the Grey Wolf Optimizer 

(GWO) algorithms. To the best of our knowledge, these algorithms have not been 

used in studying the vulnerability of PUFs to ANN-based attacks. 

• Machine Learning Vulnerability analysis of different delay-based PUF using 

different ML classifiers: Logistic Regression (LR), Decision Tree (DT), Random 

Forest (RF), K-Nearest Neighbor (KNN), kernel Support Vector (Kernel SVM), 

Naive Bayes Classifier (NB) classifiers.  

• Use of Artificial Neural Network based modeling attacks on various PUFs using 

different optimizers, namely, Root Mean Square Propagation (RMSprop), Adaptive 

delta (Adadelta) learning rate method for gradient descent, Adaptive Moment 

Estimation (Adam), and Nesterov-accelerated Adaptive Moment Estimation 

(Nadam) to study their vulnerability to theses machine learning attacks. 

• Design a novel XOR-ROPUF capable of thwarting machine learning attacks. This 

design is more secure from hackers who can use both invasive and non-invasive 

techniques to steal the CRP data. 

• Design of a unique delay-based PUF structure that combines an Arbiter PUF with 

a XOR- ROPUF for thwarting machine learning attacks. 
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• Development of an authentication scheme for the security of IoT systems using a 

lightweight XOR-ROPUF. The proposed management scheme carries out the 

authentication between the verification authority, the authentication server, and the 

IoT devices to ensure data congeniality and integrity. 

 

1.3 Dissertation Outline 

This dissertation is organized as follows:  

• Chapter 2: This chapter provides a brief overview and background information 

about our research, including the manufacturing process variations, different types 

of physical unclonable functions, and further modeling attacks and security. 

• Chapter 3: The chapter presents a novel implementation of Artificial Neural 

Network-based modeling attacks on various PUFs using different Swarm 

Intelligence algorithms to study their vulnerability against these attacks. 

• Chapter 4: The chapter presents different Machine Learning classifiers (ML) and 

Artificial Neural Networks (ANNs) based modeling attacks are used against 

different silicon-based PUFs to test and analyze their vulnerability to these attacks. 

• Chapter 5: This chapter introduces the design and implementation of a novel 

XOR-ROPUF capable of thwarting machine learning attacks.  

• Chapter 6: The chapter presents a unique design of a hybrid delay-based FPGA 

PUF resistant to machine learning attacks. The technique combines challenge-

response pairs from an Arbiter PUF with an XOR-based Ring Oscillator to generate 

responses that are less vulnerable to machine learning modeling attacks.  
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• Chapter 7: This chapter introduces an authentication scheme for the security of 

Internet of Things Devices using a lightweight XOR-ROPUF. The proposed 

management scheme carries out the authentication between the verification 

authority, the authentication server, and the IoT devices to ensure data congeniality 

and integrity. 

• Chapter 8: presents conclusions and potential future work. 
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Chapter 2  

2. Research Background 
 

 

2.1 Manufacturing Process Variations 

During the various manufacturing steps of integrated circuits, random variations take 

place due to the variety of oxide thickness, mask variation, process temperature, and 

pressure, which is termed as manufacturing process variation [43]. Process variation is an 

inherent property of an IC, and it varies from chip to chip. Process variation differs across 

individual devices even if the IC class is the same, and they are manufactured from the 

same wafer. This results in propagation delay in integrated circuits. Process variation 

increases with the shrinking of device size. By using the process variation property of 

integrated circuits, the physical unclonable function is designed to produce unique 

challenge-response pairs [43]. The important parameters which control the process 

manufacturing variations in an IC are listed in Table 2.1 [44]. 
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Table 2.1: Process variation parameters. 

Environment Gate Manufacturing MOS 

Voltage Delay (D) Nd= Doping Threshold (Vt) 

Temperature Current (Isub) tox= thickness Capacitance (Cg ) 

Ageing  C=chemical length (Leff ) 

 

2.2 Physical Unclonable Functions (PUFs) 

Physical unclonable functions (PUF) is a circuit constructed on a semiconductor device 

that produces a unique signature using manufacturing process variation to generate unique 

and unclonable challenge-response pairs. PUFs are unpredictable and unclonable to 

implement hardware-based security schemes in devices which security primitives for 

hardware-oriented security applications due to their instance-specificity based on physical 

properties [45]. PUFs are used to extract unique signatures from silicon-based chips, which 

can be used for chip authentication and producing unclonable cryptographic keys. This 

property of the PUF makes it suitable for different applications, including authentication, 

IP protection, random key generation, remote attestation, secured supply chain, etc. Based 

on the design principles, randomness and construction properties, PUFs can be classified 

into different basic categories mainly classified into either Intrinsic PUFs [46] or Non-

Intrinsic PUFs [47].  

PUFs for which the randomness elements are explicitly introduced are termed non-

intrinsic PUFs. The randomness of non-intrinsic PUFs is internally evaluated using specific 
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equipment. Optical PUFs and Coating PUFs are instances of non-intrinsic PUF types.  On 

the contrary, in intrinsic PUFs, the evaluations are performed internally and mainly use the 

intrinsic manufacturing process variations of ICs to extract unique and random signatures 

to authenticate silicon chips. Therefore, its random state properties are introduced during 

the manufacturing processes. The intrinsic introduced PUFs, including Delay based PUFs, 

Arbiter PUFs (APUFs) [48,49] Butterfly PUFs [50], and Ring Oscillator PUF [5]. From 

the different types of PUFs, delay-based PUFs are widely studied in CMOS-based silicon 

devices. Delay-based PUFs response depends on the difference in the signal's propagation 

delay between two delay paths. These propagation delays occur due to the process 

variations during the manufacturing process. The most notable of these delay-based is the 

Ring Oscillator PUF (ROPUF) and arbiter PUF (APUF) [5]. Figure 2-1 demonstrates 

PUF's overall classification. 

 

Figure 2-1: PUF Classification 
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2.2.1 Optical PUF 

Optical PUFs are non-electronic technologies presented in [51,52].  Optical PUFs 

are established on transparent media as one-way physical functions and random optical 

reflection patterns. These PUFs are based on the random fiber structure of a sheet of paper 

or the random reflection of the optical properties of the characteristic medium. The PUF 

uses a unique pattern that mounts when spreading laser against a transparent object to 

generate a random PUF signature. The design mainly relies on optical microstructure 

produced by combining refractive glass spheres in a small transparent epoxy plate. Figure 

2-2 represents the implementation and essential operation of Optical PUF [46]. Due to the 

extensive design and system complexity, it is clear that Optical PUFs are infrequent and 

have limited use. 

 

 

Figure 2-2: Optical Physical Unclonable Function [46] 
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2.2.2 Coating PUF  

Coating PUFs is a non-intrinsic PUF proposed by Tuyls et al. and shown in Figure 

2-3 [53]. Coating PUF works on the internal randomness of the capacitance measurement 

using sensors located on the top  IC metal layer. The randomness is explicitly introduced 

using a passive dielectric coating sprayed on top of the sensors. 

 

 

 

Figure 2-3: Coating Physical Unclonable Function [53] 
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2.2.3 Ring Oscillator PUF  

Ring Oscillator Physical Unclonable Functions (ROPUFs) are silicon-based PUFs 

that produce a random response [5]. Ring Oscillator PUF (RO-PUF) design relies on delay 

loops, which can be produced using an odd number of ring oscillators; moreover, due to 

existing manufacturing variations for each ring oscillator, a unique set of frequencies will 

be provided. Therefore, the output bit will be generated by the random selection of a ring 

oscillator pair using multiplexers and compared. As shown in Figure 2-4, it is challenging 

to predict or clone the extracting unique signatures produced by a challenge-response 

mechanism for ROPUF design.  

 

Figure 2-4: Ring Oscillator PUF Circuit. 
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In order to obtain and produce “0” or “1” output for the ROPUF circuit, a pair of ROs that 

are mapped at different locations of the chip produces different frequencies (𝑓𝑎 𝑎𝑛𝑑 𝑓𝑏); 

these two frequencies (𝑓𝑎 𝑎𝑛𝑑 𝑓𝑏) must be compared and the higher frequency the will 

determined the out bit. The measured process variations should be unique for each ROPUF. 

A response bit (𝑟𝑎𝑏) is produced by the significant comparison of these two frequencies 

(𝑓𝑎 𝑎𝑛𝑑 𝑓𝑏) using a simple comparison method as follows in equation 2.1: 

 

𝑟𝑎𝑏 = {
1,     𝑖𝑓 𝑓𝑎   >    𝑓𝑏 ,     
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                                                               (2.1) 

 

2.2.4 Arbiter PUF  

In [49], Lee et al. introduced the basic structure of the Arbiter PUF, which is 

producing a sort of race among two delay paths with an arbiter at the end. An Arbiter PUF 

generates binary keys using the manufacturing process variation of integrated circuits. In 

APUF, a rising edge signal travels through two paths simultaneously. Due to process 

variation, one path travels quicker than the other and generates binary keys as shown in 

Figure 2-5. The Challenge bits consist of K external bits (C1= b1.b2…..bk) for K number 

of stages. For challenge bits C1, C2, Cn we get a response of R1, R2… Rn. A D-latch flip-

flop is used as an arbiter to determine which response signal reaches the arbiter first. The 

arbiter is constructed at the end of the design with one input connected to the clock and the 

other connected to the input. The arbiter is used to select the faster signal that is the one 

that reaches the arbiter first. From the design of the Arbiter PUF, researchers have 

developed different models. 
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Figure 2-5: An Arbiter PUF Delay Design. 

 

 

2.2.5 Butterfly PUF  

The first structure of the BPUF was introduced in [50]. The butterfly structure 

displays utilize logically stable and unstable states of a flip flop (latches). A BPUF consists 

of a pair of cross-coupled latches, flipflop memory cells, as shown in Figure 2-6. These 

latches can have unpredictable startup values, and the functioning of Butterfly PUF does 

not require power up the device. The BPUF exploits and operates the random assignment 

of a stable state with the use of clear/preset functionality of latches. The circuit settles to 

one of the stable states, which is done by holding one latch in preset while holding the other 

in clear mode by an excitation signal. The final state is determined by the physical 

mismatch between the latches and the cross-coupling interconnect, deciding which stable 

state the PUF will settle on. 
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Figure 2-6: Butterfly Physical Unclonable Function (BPUF). 

 

2.3 Challenge and Response Mechanism on PUFs 

Physical Unclonable Functions (PUFs) are physical structures embodied on silicon 

chips that take advantage of delay characteristics of manufacturing process variations to 

extract chip-unique secret keys for cryptographic applications. As shown in Figure 2-7, a 

PUF acts as a function which applies an n-bit challenge and produces an k-bit response. 
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Figure 2-7: Challenge-Response Pairs of a PUF design. 

 

Even though the same PUF design is replicated on n-chips, because of 

manufacturing variations, PUFs generate unique and random responses that vary from chip 

to chip. Hence, challenge-response mapping is unique to each chip and can be uniquely 

authenticated. Randomly selected challenge and response pairs (CRPs) are generated for 

each chip and stored by trusted parties in a secure database system. These CRPs are 

regenerated later and compared to the stored one in order to authenticate the identity of 

these chips. Device authentications are done by applying some of the stored challenges 

against chips under tests to generate CRPs.  The generated CRPs are compared with the 

stored CRPs in the database. Chips can only be considered as authentic if the generated 

CRPs are identical to the stored CRPs. 

2.4 Modeling Attacks and Security 

The general use of programable platforms in different application levels, aerospace, 

image processing, communication, etc., has raised the issue of their security. The attackers 

may launch any attacks and steal the original data in various methods. Most of the 

fabrication places are outside the country where the design has been mapped to reduce the 
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manufacturing process cost. With the help of hardware Trojans, the attacker can steal the 

data, threatening personal and national security. The hardware attacks are extensive and 

can be categorized into different Levels such as invasive, non-invasive attacks, and 

Machine Learning attacks [47,54,55]; the attackers may try to launch any of these attacks. 

2.4.1 Invasive Hardware Attacks 

Invasive hardware attacks on a silicon chip are expensive because of equipment 

cost, knowledgeable attackers, and time. These attacks cause tamper proof of the attack to 

obtain unauthorized access to an electronic system. There are many types of Invasive 

hardware attacks such as Overbuilding, Cloning, Physical Tampering Attacks, and Reverse 

Engineering. 

2.4.1.1 Reverse Engineering 

Reverse engineering is one example of invasive attacks known as reverse or back 

engineering attacks to obtain the initial design from the design results. An attacker typically 

tampers silicon chips to extract information and understand their functionality to perform 

reverse engineering. Third parties can obtain the results of the existing logic design by 

cycling all the possible inputs and analyzing results through an exhaustive test bench which 

can be difficult and time-consuming. 

2.4.1.2 Overbuilding  

Overbuilding is a design theft that is a severe issue because it is a risky invasive 

attack. The contractor can do overbuilding manufacturing chips and builds more than the 
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required number, which is a breach of contract. Overbuilt chips' performance is the same 

as the original chips because they are precisely similar in functionality and build, making 

it difficult to follow in the market. 

2.4.1.3 Cloning  

Cloning is the process of replicating the original design function and making a 

model of it. The design cloning may lack the essential characteristics of the original design 

due to a shortage of understanding of the functionality. The replicated design saves the 

third party all the associated costs because there is no development expense involved in the 

cloning, and therefore they can make a significant profit. These counterfeit cloned chips 

are a substantial threat that can produce competing products to develop effective 

countermeasures. 

2.4.1.4 Physical Tampering Attacks 

Physical Tampering Attacks attempt to gain unauthorized access to an electronic 

system by an offender. The attacker tries to access stored cryptographic keys to perform 

potential physical tampering with malicious goals. Tampering Attacks might be performed 

through different techniques, such as reverse engineering and Spoofing. However, an 

adversary can tamper with a silicon chip and store its secret keys to extract the operation 

details of the design. 

2.4.2 Non-Invasive Hardware Attacks 

Non-invasive attacks like side-channel attacks refer to the information provided by 
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implementing cryptographic hardware. Power consumption and time delays are examples 

of side-channel analysis. The leakage of information provides hints that are useful to an 

attacker. Whenever a hardware fault exists, it will lead to a constructive processing error, 

and a diversity of attacks exist. 

2.4.3 Machine Learning Attacks 

Machine learning attacks are the most common attacks recently used to emulate the 

PUF’s behavior. A software-based design can imitate the challenge-response pair's 

relationship of a hardware-based PUF design against many evolving hardware security 

primitives. The assumption is that an adversary can illegally obtain some of the CRPs to 

get additional details regarding the remaining CRPs to clone the behavior of a specific PUF 

structure using different algorithms, including support vector machine, genetic algorithm, 

logistic regression, and PAC. Figure 2-8 

 

 
 

Figure 2-8: Attacks on PUF  
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2.5 Data Collection and Preprocessing 

Data collection and preprocessing involve different techniques to convert the raw 

data into an application framework or structure before processing with a learning 

algorithm. These techniques generally have an impact on machine learning 

implementation. Data collection is essential and involves everything from data assembling 

to cleaning and preprocessing. Data cleaning eliminates the duplicative observations from 

the dataset, consisting of replication records or features. The performance of machine 

learning involves different steps in identifying the problem evaluation. Taking care of 

missing data and cleaning the data is an important step, and imputation replaces missing 

data with substituted values. Typically, it is undesirable to have any missing data in our 

data set for the simple reason that it can cause some errors when training the machinery 

model, and therefore it must be handled. If the dataset is not ready or unavailable for ML 

implementation, the data collection needs to be accomplished first. 

2.6 Feature Selection Algorithms  

Feature selection is an essential attribute for datasets collection, and a subset of 

original features can accurately represent a problem. Feature selection can identify this 

subset and the most appropriate features for the problem. This implementation applies prior 

learning of the dependent and independent parameters of the problem to choose the 

smallest subset of features that contain the most predictive capability to facilitate the 

analysis and enhance the performance of the algorithms. For some machinery models, 

avoid some features being dominated by others so that the model does not even consider 
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the dominated features. The usage of feature scaling will allow putting all our features on 

the same scale to optimize the accuracy of your model predictions. The machinery models 

can readily work with the numerical values; therefore, any nominal features should convert 

to numerical features. Moreover, all the features transform to the same range of values 

using scalers to help most machinery models consider the entire features. Different feature 

selection algorithms were used on the dataset to extract the informative and expected 

features: 

2.6.1 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a technique that analyzes a dataset for 

reducing its dimensionality, which means decreasing the complexity of the model. The 

technique forms new uncorrelated variables that maximize variance and simplify the model 

while keeping relevance and performance [56]. Sometimes the datasets have hundreds of 

features; therefore, extracting fewer independent variables explains the variance and 

simplifies the model interpretability. PCA extracts the important information from the 

dataset represents it as a set of new principal components, and the analysis involves 

extracting linear composites of variables. PCA maximizes the total variance to examine 

different patterns [57]. 

2.6.2 Linear Discriminant Analysis (LDA) 

The linear discriminant analysis (LDA) is a primary data analysis technique 

proposed initially by R. Fisher [58]. Fisher’s linear discriminant analysis is a conception to 

find a linear combination of features that divides classes of objects or possibilities. LDA is 
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often used in object recognition for feature extraction; it lowers the dimensional space by 

maximizing the distance between the projected means of the classes and finds an optimal 

linear transformation that can be used for classification and dimensionality reduction of the 

provided features [59]. Linear Discriminant Analysis (LDA) defines a subspace of lower 

dimensions where data points of the actual problem are separable; therefore, variance in 

any separate data set guarantees maximal separability, which allows for fast and massive 

processing of data samples [60]. LDA is not an interdependence technique; the 

measurements are made on independent variables for each observation. The comparable 

method is discriminant correspondence computation when handling categorical 

independent variables [61]. 

2.6.3 Kernel PCA 

Kernel principal component analysis (kernel PCA) is a nonlinear extension of PCA 

that extracts features efficiently in the dataset using the nonlinear feature extraction method 

[62]. Kernel PCA is associated with kernel function in the feature space to explain the 

dataset into a more increased dimensional space [63]. kernel PCA feature extractor can be 

developed in the feature space by computing all the kernel functions in advance and then 

implementing feature extraction using these kernel functions [64]. 
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Chapter 3  

3.  Analysis of Swarm Intelligence based ANN Algorithms 

for Attacking PUFs 
 

 

In this chapter, Artificial Neural Networks (ANNs) using swarm intelligence-based 

modeling attacks are used against different silicon-based PUFs to test their resiliency to 

these attacks. Amongst the swarm intelligence algorithms, the Dragonfly Algorithm (DA), 

Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Particle Swarm 

Optimizer (PSO), and the Grey Wolf Optimizer (GWO) are used. The attacks are 

extensively performed on different types of PUFs. Also, this chapter presents a brief review 

and explains the basic concept of swarm intelligence techniques that mimic the behavior 

of the natural collective system. 

 

3.1 Introduction 

Swarm Intelligence (SI) is a cooperative system based on a group of agents that 

achieve a common goal by cooperating according to their behavior and system 

organization. The fundamental concept behind swarm intelligence techniques is the 

replication of the behavior of the natural collective system [65]. Amongst the many 

available swarm intelligence algorithms, Dragonfly Algorithm (DA), Gravitational Search 
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Algorithm (GSA), Cuckoo Search Algorithm (CS), Particle Swarm Optimization (PSO), 

and the Grey Wolf Optimizer (GWO) algorithms are frequently used. These algorithms, in 

general, are simple and computationally efficient. Specifically, these algorithms have 

higher viability, robustness, stability, and search efficiency, and have a fast convergence 

rate [66]. Moreover, these algorithms are able to optimize a vast search space with a fixed 

size population to solve different complex design optimization problems. DA, GSA, CS, 

PSO, and GWO algorithms are discussed next.  

 

3.2 Dragonfly Optimization Algorithm 

The Dragonfly Algorithm (DA) is an Intelligent Swarm Optimization Algorithm 

[67]. The algorithm is modeled on the behavior of dragonflies for hunting and emigration. 

Hunting swarm behavior is a structure of a small group of dragonflies moving nearby and 

abruptly changing the steps, which is considered as static swarm behavior. The dragonfly’s 

lifecycle includes two main milestones: nymph and adult. Migratory swarm behavior is a 

massive number of dragonflies flying in one direction over long distances. It is also known 

as dynamic swarming, as showing in Figure 3-1 [68]. Dynamic swarms and Static swarms 

represent the exploitation and exploration capabilities of the Dragonfly Algorithm. The 

behavior of dragonflies follows the principles of separation, alignment, cohesion, 

distraction from the enemies, and attraction towards the food. Similarly, the swarm 

movement of the dragonfly is determined by five different operators: separation, alignment, 

cohesion, attraction towards food sources, and distraction towards enemy sources [68]. 
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Figure 3-1: (a) Dynamic swarming, (b) Static swarming. 

 

 

 

3.2.1 DA Algorithm 

The mathematical implementation of DA for updating the position and velocity of 

dragonfly separation, alignment, and cohesion coefficients are calculated using equations 

(3.1-3.3) [68] 

𝑆𝑖 = − ∑𝑋 −  𝑋𝑗

𝑁

𝑗=1

                                                                                                     (3.1) 

𝐴𝑖 =
∑ 𝑉𝑗𝑁

𝑗=1

𝑁
                                                                                                                  (3.2) 

𝐶𝑖 =
∑ 𝑋𝑗𝑁

𝑗=1

𝑁
− 𝑋                                                                                                           (3.3) 
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where, 𝑋𝑗  and 𝑉𝑗 correspond to the position and velocity of each individual. 𝑋 corresponds 

to the position of the current individual, and 𝑁 denotes the number of neighborhoods 

individuals. Attraction towards food source 𝐹𝑖 and distraction from enemies 𝐸𝑖 are 

calculated using equations (3.4) and (3.5) 

𝐹𝑖 = 𝑋+ − 𝑋                                                                                                                    (3.4) 

𝐸𝑖 = 𝑋− + 𝑋                                                                                                                    (3.5) 

where 𝑋 is the position of the current individual and 𝑋+ denotes the food source and 

𝑋−denotes the enemy source. The step vector shows the direction of the movement of the 

dragonflies and is defined with the following equations (3.6) and (3.7)  

𝛥𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖)  +  𝑤𝛥𝑋𝑡                                            (3.6) 

where the coefficient weights are separation (s), alignment (a), cohesion (c), food (f), 

enemy (e), inertia weight (w) and  (𝑆𝑖, 𝐴𝑖,𝐶𝑖, 𝐹𝑖  , 𝐸𝑖) represent the i-th individual coefficient 

weights. 

𝑋𝑡+1 = 𝑋𝑡 + 𝛥𝑋𝑡+1                                                                                                        (3.7) 

If there is no dragonfly in the neighborhood radius, the position of the dragonfly is updated 

using Levy Flight equation [69] as given in equation (3.8). This improves the randomness, 

chaotic behavior, and global search capability of dragonflies. 

𝑋𝑡+1 = 𝑋𝑡 + 𝐿𝑒𝑣𝑦 (𝑑)𝑋𝑡                                                                                              (3.8) 

The fitness function is then evaluated based on the updated position and velocities. The 

position updating process is continued until the stop condition is met. 

The algorithm shown below represents the Dragonfly optimization (DA) pseudo code [68]: 
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 Algorithm 1: Dragonfly Optimization Algorithm   

 

1. Initialize the population of the Dragonflies Xi. 

2. Initialize the step vectors ΔXi. 

3. while t < Max of Iterations do 

4.            Calculate the fitness values of dragonflies. 

5.            Update 𝐅𝐢 and 𝐄𝐢 

6.            Update w, s, a, c, f, and e 

7.            Calculate S, A, C, F, and E 

8.            Update neighboring radius. 

9.            if a dragonfly has at least one neighboring dragonfly 

10.                     Update velocity 

11.                     Update position 

12.            else 

13.                     Update position 

14.           end if 

15.          Check and correct the new positions based on the 

16.          boundaries of variables 

17.   t=t+1 

18. end while 

 

 

3.3 Gravitational Search Algorithm 

Gravitational Search Algorithm (GSA) is a swarm optimization technique proposed 

by Rashedi et al. based on gravity concepts and different masses' interaction [29]. In this 

algorithm, the solutions of different agents' populations interact with one another via the 
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theory of Newtonian gravity force and the laws of motion. The solution's performance is 

measured by different masses. Due to the force of gravity, the masses are dragged towards 

each other, which creates a global movement of all objects approaching the objects with 

heavier masses. The exploration step is when the mass moves towards a heavier mass, and 

the exploitation is when heavier masses move slowly. Accordingly, each mass can convey 

information with different masses and see their situation through the gravitational force. 

3.3.1 GSA Algorithm 

The mass's position compares itself to a problem's solution; then, the best solution 

is achieved with the heavier agent. The initial population is generated randomly, and the 

position of the agents are defined as:  

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑛)        for 𝑖= 1, 2, …, N                                                 (3.9) 

where 𝑥𝑖
𝑑 presents the position of 𝑖𝑡ℎ agent in the 𝑑𝑡ℎ dimension. The gravitational search 

algorithm sets the initial value of the constant 𝐺:  

𝐺(𝑡) = 𝐺0𝑒
−∝𝑡/𝑇                                                                                                         (3.10)                                                                                                                     

where 𝐺0 and ∝ is initialized at the beginning of the iteration and T is the total number of 

iterations. The agents update the velocity and the position according to these equations: 

 𝑣𝑖(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖(𝑡) + 𝑎𝑖(𝑡)                                                                       (3.11)                                      

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                                                                               (3.12)                                                                                              

where 𝑟𝑎𝑛𝑑𝑖  is a uniform random variable in the interval [0, 1].  

This random number is used to give a randomized characteristic to the search. The total 

force acting on agent 𝑖 at iteration 𝑡, was calculated as follows: 
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𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑(𝑡)

𝑗∈𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖

                                                                               (3.13) 

Where 𝐾𝑏𝑒𝑠𝑡 represents the set of 𝑘 agents with best fitness and biggest mass. The pseudo 

code for the GSA is shown below [29]: 

 

 Algorithm 2: Gravitational Search Algorithm   

 

1. Objective function  𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, …𝑥𝑑,)
𝑇 

2. Initialize the population of  𝑛  agents 𝑥𝑖   

3. while t < Max of Iterations do 

4.        Evaluate the fitness for each agent 

5.        for each searching  

6.              Update the 𝐺(𝑡), 𝑏𝑒𝑠𝑡(𝑡),𝑤𝑜𝑟𝑠𝑡(𝑡)and 𝑀𝑖(𝑡) 

7.       end for  

8.       Calculation of the total force in different directions. 

9.       Calculation of acceleration and velocity. 

10.        Updating agents’ position. 

11.        t=t+1 

12. end while 

13. Return the best solution 

 

 

3.4 Cuckoo Search Algorithm 

Cuckoo search algorithm (CS) is a nature-inspired optimization algorithm proposed 

by Yang in 2009 to solve optimization problems based on the cuckoo bird's breeding 

behavior search approach of laying its eggs in the best host nest [38]. The CS algorithm is 
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based on the brood parasitism of cuckoo birds. The species lay their eggs in other host bird 

nests to be brooded by the proxy mother bird and use the host bird assistance to hatch their 

eggs. The hatching probability of similar eggs to the host bird's eggs is high. In some cases, 

the other bird recognizes the different eggs, so they throw the eggs away, destroy them, 

and even leave their nests to build another one in a distinct location. The CS algorithm uses 

better solutions to substitute not-so-good solutions in the nests. As a result, it can enhance 

search capabilities to improve the relationship between exploration and exploitation.  

3.4.1 CS Algorithm 

The CS algorithm is performed through the following three rules: first, each cuckoo 

bird chooses a random nest to lay only one egg; second, the best nests with a good quality 

of eggs will carry over for the next population; third, a host bird can detect a different egg 

with a probability of pa ∈ [0, 1] for a constant number of available host nests. Hence, the 

host bird may either throw the different eggs or leave the nest and build a new one. One of 

the essential CS features is Lévy flights to generate new candidate solutions rather than a 

simple random walk. The following Lévy flight is performed to generate new solutions 

𝑥(𝑡+1) for the 𝑖𝑡ℎ cuckoo: 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+  𝛼 ⊕  Lévy (λ)                                                                              (3.14)                                                                                              

where α > 0 is the step size. The product ⊕ means entry-wise multiplications. The Lévy 

step size probability distribution is represented by: 

Lévy ~ 𝑢 =   𝑡−𝜆,    (1< λ ≤ 3)                                                                                                    (3.15) 

 

which has an infinite variance with an infinite mean. The pseudo-code of CS algorithm 

[38]: 
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 Algorithm 3: Cuckoo Search Algorithm   

 

1. Objective function  𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, …𝑥𝑑,)
𝑇 

2. Initialize the population of 𝑛 host nests 𝑥𝑖   

3. while t < Max of Iterations do 

4.         Get a cuckoo randomly by Lévy flights 

5.         Evaluate its fitness 𝑓𝑖  

6.         Randomly choose 𝑛 nest 𝑓𝑗 

7.         If (𝑓𝑖  > 𝑓𝑗)  

8.               Replace 𝑗 by the new solution 

9.          End if 

10.         Abandon a fraction of  𝑝𝑎 of worse nests and build new ones at new locations 

        via Lévy flights 

11.         Keep the best solutions 

12.         Rank the solutions and find the current best 

13.         t=t+1  

14. end while 

15. Return the best solution 

 

3.5 Particle Swarm Optimization 

In 1995, Eberhart and Kennedy proposed the Particle Swarm Optimization 

(PSO), which mimics social behavior and search techniques of a swarm of animals, or a 

flock of birds, or a school of fish, when they adapt their environment to search for their 

food [36]. The particles communicate and share their information to find the optimum path 

to reach its food sources. The shortest path followed is the particle's best position. Based 
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on the current positions of the local and global positions in the search space, each particle 

identifies and updates its position until the global-optimum position is achieved. Figure 3.2 

shows how the particle changes its position within the search space to obtain food [70]. 

 

 

Figure 3-2: Update Particle position and velocity in the search space. 

 

3.5.1 PSO Algorithm 

Particle movements affect all other individuals within the group. Each one of them 

has its position and velocity defined by equation 3-16, which presents the best position 

achieved with respect to all neighbor’s best position.  

𝑝(𝑡 + 1) = 𝑝(𝑡) + 𝑣(𝑡 + 1)                                                                                     (3.16) 
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Here p(t+1) denotes the updated location of the particle in the swarm, 𝑔𝑏𝑒𝑠𝑡 defines the 

global best, p(t) represents the current location of the particle in the swarm, and v(t+1) is 

the new velocity of the particle in the swarm based on the location of the 𝑔𝑏𝑒𝑠𝑡. Based on 

the current velocity and position of each particle, its own best position pbest and the entire 

population's best position gbest, the particle’s new velocity and position can be determined 

as: 

𝑣(𝑡 + 1) = 𝜔 ∗ 𝑣 (𝑡) + 𝑐1 ∗ 𝑟1 ∗ [𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑝(𝑡)] + 𝑐2 ∗ 𝑟2 ∗ [𝑔𝑏𝑒𝑠𝑡(𝑡)– 𝑝(𝑡)]       (3.17)                                  

where 𝑝𝑏𝑒𝑠𝑡 is the best position of the particle, 𝑔𝑏𝑒𝑠𝑡 is the best position of the swarm, v(t) 

is the current velocity, and r1, r2 are random numbers from uniform distribution. Both c1, 

c2 are acceleration coefficients and ω is the inertia weight. The pseudo-code of the Particle 

Swarm Optimization (PSO) algorithm is shown below [70]: 

 

 Algorithm 4: Particle Swarm Optimization Algorithm 

 

1. Initialization Particle’s Position  

2. Initialization Particle’s velocity  

3. Calculate the fitness values of each particle 

4. while t < Max of Iterations do 

5.       Update the position according to Equation 3.16 

6.      Update the velocity according to Equation 3.17 

7.      Choose the particle having the best fitness value as the g-best 

8.      Compare P-best of each particle with g-best of swarm    

9.   t=t+1 

10.  end while 

11. Return g-best particle 
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3.6 Grey Wolf Optimization 

In 2014 Mirjalili et al. introduced Grey Wolf Optimizer (GWO), which is an 

algorithm that explains Grey Wolf's hierarchical hunting-mechanism based on how wolves 

obey a strict social hierarchy [39]. This pattern maintains the stability and assists other 

wolves during the hunt. The complete wolf pack must follow the orders of the wolf with 

the most durability and fighting ability. Figure 3-3 shows the classification of the social 

hierarchy in a grey wolf pack levels consists of the alpha (α), beta (β), delta (δ) and omega 

(ω) wolves: 

1) Alpha (α): The leader of the pack, at the top of the hierarchy, is mostly responsible for 

making decisions because it considered the most qualified wolf among the pack. 

2) Beta (β): The adviser wolf at the second level in the hierarchy, which helps the alpha in 

decision-making or other pack activities. A beta follows the leader's directions to maintain 

discipline over the pack. 

3) Delta (δ): Stand at the third level in the hierarchy, Delta follows the orders of alpha and 

beta, but dominate and lead the omegas. 

4) Omega (ω): The lowest level in the grey wolf social hierarchy, omega wolves, always 

follow the commands of all the other dominant wolves in the social hierarchy. 
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Figure 3-3: Grey Wolf Social Hierarchy. 

 

3.6.1 GWO Algorithm 

The hunting behavior of the GWO algorithm is guided by the three wolves α, β, 

and δ, while the ω wolves follow them. Figure 3-4 illustrates how the position can be 

updated in the search space for the three wolves. Alpha is the closest location in the search 

space to prey 𝑋α, which is considered as the first best wolf,  𝑋𝛽 is the second-best location 

for beta wolf, and delta is the third best wolf location 𝑋𝛿. The rest of the pack, omega 

wolves, will update their positions according to alpha, beta, and delta positions. The 

locations of wolves are updated as follows: 

�⃗⃗� = |𝐶 .  𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)|                                                                                             (3.18) 

𝑋 (𝑡 + 1) = 𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) − 𝐴  . �⃗⃗�                                                                                           (3.19)                                                                                                         

𝐴 = 2𝑎  . 𝑟 1 − 𝑎                                                                                                              (3.20)                                                                                                                         

𝐶 = 2 .  𝑟 2                                                                                                                      (3.21)                                                                                                                                  
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where 𝑡 represents iteration, 𝐴  and 𝐶  are coefficient vector, 𝑋𝑃
⃗⃗ ⃗⃗    is the prey position vector, 

𝑋  is the wolf positions, 𝑎   is the linear coefficient, 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are random vectors located in 

the scope [0, 1]. The calculation of distances between the position of current individual and 

individual of alpha, beta, and delta are: 

�⃗⃗� 𝛼 = |𝐶 1.  𝑋 𝛼 − 𝑋 |                                                                                                     (3.22)                                                                                                                  

�⃗⃗� 𝛽 = |𝐶 2.  𝑋 𝛽 − 𝑋 |                                                                                                     (3.23)                                                                      

�⃗⃗� 𝛿 = |𝐶 3.  𝑋 𝛿 − 𝑋 |                                                                                                     (2.24)                                                                                                               

where  𝑋 𝛼, 𝑋 𝛽, 𝑋 𝛿 are the position vector, 𝐶 1, 𝐶 2, 𝐶 3 are randomly generated vectors, 𝑋  

represents the position vector of current individual. Therefore, the mathematical models 

for grey wolf hunting are calculated by: 

𝑋 1 = 𝑋 𝛼 − 𝐴 1 . �⃗⃗� 𝛼                                                                                                       (3.25)                                                                                                                  

𝑋 2 = 𝑋 𝛽 − 𝐴 2 . �⃗⃗� 𝛽                                                                                                       (3.26)                                                                                                                  

𝑋 3 = 𝑋 𝛿 − 𝐴 3 . �⃗⃗� 𝛿                                                                                                        (3.27)                                                                                                                  

𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3
                                                                                         (3.28) 

where 𝐴 1, 𝐴 2, 𝐴 3 are randomly generated vectors. 
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Figure 3-4: Wolves Position surrounding the prey. 

The pseudo code for the GWO is shown below [39]. 

 Algorithm 5: Grey Wolf Optimization Algorithm 

1. Initialize the population of the Grey Wolves 

2. Initialize for a, 𝐀, and 𝐂 

3. Calculate the fitness values of each wolf 𝐗𝛂, 𝐗𝛃, and 𝐗𝛅 

4. while t < Max of Iterations do 

5.        for each searching wolf  

6.                   Update position 

7.       end for  

8.      Update a, 𝐀, and 𝐂 

9.      Calculate the fitness values of all wolves 

10.      Update the positions of 𝐗𝛂, 𝐗𝛃, and 𝐗𝛅 

11.      t=t+1 

12. end while 

13. Return 𝐗𝛂 
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3.7 Proposed Method  

During modeling the vulnerability of the PUFs, researchers have used many 

techniques such as Fault injection-based modeling attacks, Genetic Algorithm, Genetic 

Programming, and Evolutionary Strategies to model PUF CRPs. From their results, it has 

been observed that these algorithms require a large number of CRPs to model PUF 

characteristics; moreover, the attacker may need to have physical access to the PUFs. The 

motivation for choosing swarm intelligence algorithms is that SI algorithms have fewer 

parameters than evolutionary methods to adjust which makes them flexible, robust, and 

distributive. SI algorithms are easy to implement, more reliable for finding solutions to 

many complex problems, and converge faster than other algorithms. 

 Also, SI optimizers maintain a large search space of candidate information 

throughout the iterations. Furthermore, the mathematical model's implementation 

mechanism is very well developed to avoid local optimization and improve performance, 

making it easier to combine with practical engineering problems. The Swarm Optimization 

algorithms are used to build ANN models to analyze the vulnerability of the different PUFs 

described earlier for modeling attacks. These training algorithms adjust the weights and 

biases of the ANN until the highest response prediction accuracy can be obtained by 

finding the optimum set of weights and biases. Based on the objective (loss/error) function 

for the SI algorithms, the weights are adjusted in each iteration in order to minimize the 

loss/error function that is used in neural networks to minimize the training error.  
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The Mean Square Error function (MSE), which is the most commonly used parameter for 

the evaluation of the neural network, is defined in equation (3.29). 

 

𝑀𝑒𝑎𝑛_𝑆𝑞𝑢𝑎𝑟𝑒_𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑ (𝑌𝑒𝑥𝑝 − 𝑌𝑜𝑏𝑠𝑖

)
2𝑛

𝑖=1                                                   (3.29)                                                              

 

where the performance of the network is evaluated based on the difference between the 

predicted responses (𝑌𝑜𝑏𝑠𝑖
) and the actual responses (𝑌𝑒𝑥𝑝). The average MSE obtained 

from all training samples is based on the best solutions of the previous iteration. While the 

current weights and biases of the neural network are updated, the MSE gradually decreases; 

therefore, after enough iterations, the algorithms can achieve the best solution. For a 

challenge vector 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚] of size m, Configurable Ring Oscillator, Ring 

Oscillator PUF, Inverter based ring oscillator, and the Arbiter PUF will generate a response 

vector 𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑚]. The CRPs are fed to the ANN network, where each bit of the 

challenge vector represents one neuron, and the response bit is the outcome of the neural 

network. For modeling  of the PUFs, it is assumed that an attacker gets hold of a small set 

of CRPs  (𝐶, 𝑟) = [(𝐶1, 𝑟1), (𝐶2, 𝑟2)… , (𝐶𝑚, 𝑟𝑚)], which can be modeled by the ANN-

based models using swarm optimization DA, GSA, CS, PSO and GWO algorithms to 

predict the remaining set of CRPs. Algorithm 6 outlines the steps of how the model trains 

the Artificial Neural Network based on Swarm Intelligence Algorithms. 
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 Algorithm 6: Training ANN using SI Algorithms 

 

1. Initialize all the parameters of Swarm Algorithm 

2. Constricting of ANN learning structure  

3. Initialize the weights and biases of the Neural Network 

4. while t < Max of Iterations do 

5.      Map the Challenges Vector C=[C1,C2,…,Cm] into the 

        input layer of ANN 

6.      Calculate the predicted response R       

7.      Compare the predicted response R to the actual 

         response R    

8.      Calculate the new global optimum value of weights  

         and biases using swarm algorithm 

9.      Update the weights and biases of the ANN using 

         Swarm Intelligence optimizes 

10.      t=t+1 

11. end while 

12. Return weights, biases, and predicted accuracy 

 

 

3.8 Computational Complexity Analysis 

The computational complexity of the proposed algorithm (Algorithm 6) accounts 

for the execution time of the algorithm based on its structure. For Algorithm 6, the 

computational complexity for each step can be described as follows: 
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• The computational complexity of initialization of the weights and biases is 𝑂(N × 

dim) time, where N represents the population size and dim represents the dimension 

of the problem. 

• In step 5 (mapping the challenge vector) of the proposed algorithm, for each 

iteration, the challenge vector is mapped into the input layer of ANN with constant 

computational complexity of 𝑂(1); the iteration loop technically runs in 𝑂(Iter); 

therefore, the final time complexity for mapping is 𝑂(Iter). 

• The calculation of predicting the response and comparing it with the actual response 

in steps 6 and 7 have a computational complexity of 𝑂(Iter × L), where L is the 

total number of training CRPs. 

• For step 8, in each iteration the computational complexity represents the calculation 

of the new global optimum value of weights and biases 𝑂(Iter × N).  

•  Step 9 represents the updated weights and biases values with computational 

complexity of 𝑂(Iter × N × dim). 

• Since the total number of iterations is not more than IterMax, the total time 

complexity is: 𝑂(IterMax) + 𝑂(IterMax × L) + 𝑂(IterMax × N) +𝑂(IterMax × N × 

dim) + 𝑂(dim × N). 

• As seen from the above analysis, the proposed algorithm's computational 

complexity depends on the size of population (N), dimension (dim), and iterations 

(Iter). 

 



45 

3.9 Experimental results analysis of swarm intelligence based 

model attacks 

To analyze the vulnerability of the various PUFs to ANN based attacks using 

different Swarm Intelligence algorithms, a subset of the randomly chosen CRPs is used as 

the training set. An accuracy score evaluates the attack resistance in terms of the percentage 

of successful response predictions [71]. The Swarm Intelligence algorithms used to train 

the ANN network to predict PUF CRPs are implemented using Python 3.5 (64 Bit) 

frameworks. For training the CRPs, a 2.3 GHz PC with 16 GB RAM and 2GB Graphics 

card is used. The response prediction accuracy is determined by using cross-validation of 

ten blocks K-fold method [72]. One of these ten partitions is used as the test set, while the 

other nine cumulatively serve as the training set. The ANN learning network structure used 

in the experiment is a 3- Multi-Layer Perceptron (MLP) with 33 nodes in the hidden layer. 

It is observed that the ANN method dramatically improves the learning rate for the different 

PUFs. Different parameters and hyperparameters used in ANN for training and prediction 

of the CRPs are listed in Table 3.1. 
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Table 3.1: Parameters values used. 

Parameters Values 

Number of training CRPs 30000 

Number of k folds 10 

Loss Functions MSE 

Number of nodes in hidden layer 33 

Hidden Layer Activation Function ReLU 

Output Layer Activation Function Sigmoid 

Learning rate 0.01 

 

 

In this chapter, we describe how the Swarm Intelligence algorithms are used to train the 

ANN. However, for these algorithms to reach their maximum performance and achieve the 

best results, proper settings of the initial parameters are required. The parameters chosen 

for SI algorithms to simulate the DA, GSA, CS, PSO, and GWO algorithms are selected 

based on references [29], [38], [39], [70], and are given in Table 3.2. ANN-based models 

are trained for 1000 iterations and the algorithms are tested with an initial population of 

individuals in the range of 5-150. However, no improvement in prediction accuracy is 

achieved by increasing the number of individuals to more than 100; therefore, the number 

of individuals is kept at 100. 
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Table 3.2: Initial parameters set in Swarm Algorithms. 

Algorithm Parameter 
Default  

Value 

DA 

Upper DA Value 100 

Lower DA Value -100 

Iterations  1000 

Number of Agents 100 

Dimension  595 

CS 

Detection probability (𝑝𝑎) 0.25 

Step length control  0.01 

Number of iterations 1000 

Number of bird nests 100 

Dimension 595 

 

GSA 

Initial gravitational constant (𝐺0) 100 

Constant values initialization (α) 20 

Number of iterations 1000 

Population Size 100 

Dimension 595 

PSO 

Cognitive influence (C1) 2 

Social influence (C2) 2 

Inertia weight (𝜔) [0.2, 0.9] 

Number of iterations 1000 

Number of particles  100 

Dimension  595 

GWO 

Decreases linearly (𝑎 ) [2, 0] 

Vector contains random values (𝐴 )   [-2𝑎 , 2𝑎 ] 

Vector contains random values (𝐶 )   [0, 2] 

Number of iterations 1000 

Number of wolfs  100 

Dimension 595 
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Table 3.3 lists experimental results for the prediction accuracy of the different PUFs against 

the DA, GSA, CS, PSO, and GWO Swarm Intelligence algorithms attacks using a different 

number of challenge-response pairs 10K and 30K CRPs [71,73]. From the table, it is 

evident that the PUF structures are vulnerable to Swarm Intelligence-based model attacks 

with prediction accuracies ranging from 71.1% - 99.3%. The maximum prediction 

accuracies obtained by Swarm Intelligence-based model attacks is 99.3% for configurable 

PUF using GWO based model. Also, it is found that the prediction accuracies are much 

better for all the PUFs when we increase the number of CRPs for training the different 

models. In the case of 10K CRPs, the maximum prediction accuracy was 88.3%, but when 

we increase the number of the CRPs up to 30K, the maximum prediction accuracy is 

99.3.3% 

Table 3.3: Swarm Intelligence-based Prediction Accuracy for Different PUFs. 

Number of CRPs  10,000 30,000 

Type of PUF 
DA 

% 

GSA 

% 

CS 

% 

PSO 

% 

GWO 

% 

DA 

% 

GSA 

% 

CS 

% 

PSO 

% 

GWO 

% 

ROPUF 79.6 78.6 79.9 80.1 81.9 91.5 92.6 93.9 94.3 95.9 

Configurable ROPUF 85.7 85.3 85.2 86.5 88.3 94.4 95.9 96.5 97.4 99.3 

Inverter ROPUF 71.9 71.5 72.0 73.5 75.0 89.6 90.2 90.7 92.2 93.7 

Arbiter PUF 73.1 71.1 73.3 74.2 76.1 90.1 91.1 91.8 92.3 94.1 
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Figures 3-5 – 3-8 show plots of the prediction accuracies versus the number of iterations 

for the different PUFs models, respectively. It can be concluded from these plots that the 

prediction accuracy of the GWO algorithm performance is higher than the other algorithms. 

Also, the plots show that the GWO converges fast. Figure 3-9 shows the loss function of 

the different swarm-based algorithms. It is observed from the figure that the GWO 

converges faster than the other algorithms. 

 

 

Figure 3-5: Swarm-based prediction accuracy vs Iteration numbers for ROPUF.                                                              
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Figure 3-6: Swarm -based prediction accuracy vs Iteration for Configurable ROPUF. 

 

 

 

 
 

Figure 3-7: Swarm -based prediction accuracy vs Iteration numbers for Arbiter PUF. 
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Figure 3-8: Swarm -based prediction accuracy vs Iteration numbers for Inverter ROPUF. 

 

 

Figure 3-9: Loss function vs number of Iteration for different swarm algorithms 
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3.10 Chapter Summary 

In this chapter, we have introduced a novel implementation of Artificial Neural 

Network-based modeling attack on various PUFs using different swarm intelligence 

algorithms. The Swarm Optimization algorithms are used to build ANN models to analyze 

the vulnerability of the different PUFs for modeling attacks. These training algorithms 

adjust the weights and biases of the ANN until the highest response prediction accuracy 

can be obtained by finding the optimum set of weights and biases. Based on the objective 

function for the SI algorithms, the weights are adjusted in each iteration in order to 

minimize the loss/error function that is used in neural networks to minimize the training 

error. From the results, it is observed that the swarm intelligence algorithms produce 

response prediction accuracy range from (71.1% - 99.3%). Amongst the SI algorithms, the 

GWO algorithm performs the best in predicting the CRPs. It is observed that the 

Configurable ROPUF is the most vulnerable and its response can be predicted with an 

accuracy of 99.3% when the GWO is used. To the best of our knowledge, swarm-based 

algorithms have not been investigated earlier to test the security of PUFs. 
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Chapter 4  

4. Machine Learning and Artificial Neural Network 

Model Attacks on PUFs 
 

 

In this chapter, different Machine Learning classifiers (ML) and Artificial Neural 

Networks (ANNs) based modeling attacks are used against different silicon-based PUFs to 

test and analyze their vulnerability to these attacks. Amongst the Machine Learning 

classifiers, the Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-

Nearest Neighbor (KNN), kernel Support Vector Machine (Kernel SVM), and Naive Bayes 

Classifier (NB) are used. The attacks are extensively performed on different types of PUFs. 

Also, in this chapter, an ANN-based model is trained with four other optimizers, namely, 

RMSprop, Adadelta, Adam, and Nadam, to study the vulnerability of the different PUFs to 

ML attacks. 

 

4.1 Introduction  

Several machine learning modeling attacks have been recently used to emulate the 

PUF’s behavior so that a software-based design can imitate the challenge-response pair's 

relationship of a hardware-based PUF design [24]. Modeling attacks on PUFs have become 

a massive threat to the PUF based authentication system [74]. It is shown that if an 
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adversary can get hold of a small set of CRPs from thousands of CRPs generated from a 

PUF, it can build the PUF’s model within a brief period [13]. The Probably Approximately 

Correct (PAC) learning attack has been performed successfully on many PUFs, including 

the ROPUF [75]. Researchers have proposed many different solutions in order to prevent 

modeling attacks. One solution is to alter the PUF’s architecture by adding nonlinear 

elements [76]. The disadvantage of this approach is that it may reduce the reliability of the 

PUF. In another solution to model-building attacks, researchers have proposed obfuscation 

of challenge and response bits to hide the relationship between the CRPs [77]. In this 

approach, different subsets of the PUF response are presented to the verifier, which acts as 

a key to authenticate the whole response string. Also, researchers have proposed 

obfuscation of challenges and responses for lightweight authentication for PUF based 

pervasive devices [78]. 

4.2 Logistic Regression 

Logistic Regression is a popular statistical and supervised machine learning 

algorithm usually performed on classification problems, its basic uses a logistic function 

to model a binary dependent variable. For a given challenge 𝑎1, 𝑎2, … 𝑎𝑛 , a single bit 

response 𝑟𝑖 ɛ (0,1) can be predicted using the associated probability 𝑃(𝑎, 𝑟| w) where w is 

the associated weight in each bit of challenge [79]:  

𝑃(𝑎, 𝑟|𝑊) = 𝑟 ∗ 𝑠𝑖𝑔(𝑓) + (1 − 𝑟)(1 − 𝑠𝑖𝑔(𝑓))                                                                 (4.1)  

      

Where,  𝑠𝑖𝑔(𝑓) is the output of the network and w is the associated weight in each bit of 

the challenge. 
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4.3 Decision Tree 

Decision Tree (DT) is a supervised learning algorithm also used for classification. 

The formation of a decision tree is similar to the structure of a tree. During each split, the 

input attributes are decided to predict the output, and after many iterative steps of recursion, 

a decision tree is ready for predicting the output [80]. For a challenge vector 𝑎1, 𝑎2, … 𝑎𝑛, 

a single bit response 𝑟𝑖 ɛ (0,1) can be predicted using the decision tree. 

4.4 Random Forest Classifier 

Random Forest Algorithm (RF) is quite similar to the decision tree algorithm due 

to the fact it consists of a vast number of different decision trees that are working together 

as one model. Every individual tree in this algorithm gives out a class prediction, and the 

most voted tree becomes the final model’s prediction [81]. 

4.5 K Nearest Neighbor 

K-Nearest Neighbor (KNN) is considered as the most frequently used and most 

straightforward classifier algorithm. It can be used for binary classification. Moreover, it 

is a learning model and a regressive method for pattern recognition. KNN is commonly 

used in cases where there is no prior knowledge of the distribution of the dataset; it uses 

the entire dataset during the training phase. The model trains k number of neighbors; more 

neighbors mean a higher chance to find correct predictions [82]. In the case of ROPUF, the 

output is either 0 or 1, which makes the value of k=2. 



56 

4.6 Support Vector Machine 

The main purpose of using a support vector machine is to specify a suitable 

hyperplane separating both the classes and increasing the margin between classes or the 

closest point. The hyperplane should have the most expansive achievable distance between 

the input vectors of both classes with minimal distance to the separating hyperplane [83]. 

The learning of the support vector machines is dependent mainly on the inner mapping 

function known as kernels. In a linear kernel, the classification problem is linearly 

separable, and a linear hyperplane is used for identifying the datasets in two classes using 

the function: 

  𝑓(𝑣, 𝑢) =  𝑧𝑇𝑣 + 𝑏                                                                                                      (4.2)  

where z is the weight associated with the input features and b is the bias. For an input set 

of 𝑎1, 𝑎2, … 𝑎𝑛 , a single bit response 𝑟𝑖 ɛ (0,1) can be predicted using support vector 

machine with linear kernel. The radial basis function is non-linear (Gaussian). It maps the 

case models to higher-dimensional spaces, managing and estimating a non-linear 

relationship between the class labels. 

𝑓(𝑣, 𝑢) = exp
−|𝑣 − 𝑢|2

2𝜎2
                                                                                             (4.3) 

where  ′𝜎2′ is the tuning parameter.  

4.7 Naive Bayes Classifier 

Naive Bayes is a nonlinear learning algorithm. However, the formula in the Naive 

Bayes theorem is only true when 𝑃(𝑑𝑎𝑡𝑎) is different from zero. The prediction boundary 

separates the non-linearly distributed observations [84]. 
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𝑃 (𝑐𝑙𝑎𝑠𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝑐𝑙𝑎𝑠𝑠)∗𝑃(𝑐𝑙𝑎𝑠𝑠)

𝑃(𝑑𝑎𝑡𝑎)
                                                                    (4.4)   

where, 𝑃(𝑐𝑙𝑎𝑠𝑠) is Prior Probability, 𝑃(𝑑𝑎𝑡𝑎) is Prior Probability of Predictor, 

𝑃(𝑑𝑎𝑡𝑎|𝑐𝑙𝑎𝑠𝑠) is Likelihood, 𝑃 (𝑐𝑙𝑎𝑠𝑠|𝑑𝑎𝑡𝑎) is Posterior Probability. 

 

Figure 4-1: Machine Learning algorithms used for predicting PUF CRPs. 

 

 

4.8 Experimental results of ML classifier modeling attacks 

For a challenge vector 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚] of size n, a PUF generates a single bit 

response vector 𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑚]. For modeling the PUFs, the assumption is that an 

attacker gets a hold of CRP pairs (𝐶, 𝑟) = [(𝐶1, 𝑟1), (𝐶2, 𝑟2)… , (𝐶𝑚, 𝑟𝑚)] and tries to model 

the behavior of those CRPs by using machine learning algorithms to know the remaining 

set of CRPs. In this research, Logistic Regression (LR), Decision Tree (DT), Random 

Forest (RF), K-Nearest Neighbor (KNN), kernel Support Vector (Kernel SVM), Naive 

Bayes Classifier (NB) classifiers are used to study the vulnerability of the different PUFs 

to machine learning attacks [85]. Figure 4-1 shows the different ML classifiers that are 

used. Keras framework is used for modeling the PUF’s CRPs with Theano and Tensorflow 
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[86]. For training the CRPs, a 2.3 GHz PC with 16 GB RAM and 2GB Graphics card is 

used. The Prediction accuracy of the ML classifier algorithm varies for different PUFs. The 

results obtained from different ML algorithms for different PUFs models are shown in 

Table 4-1. The prediction accuracy is determined by using cross-validation of ten blocks 

K-fold method, one of these ten partitions is used as the test set, while the other nine 

cumulatively serve as the training set. The attacks are extensively performed on different 

types of PUFs: Configurable Ring Oscillator, Ring Oscillator PUF, Inverter Ring 

Oscillator, Arbiter PUF. From Table 4.1, it can be concluded that KNN performs better 

than all other ML classifiers in predicting the CRPs with a prediction accuracy of 92.3% 

compared to accuracy for the different algorithms. As the model can train more CRPs, the 

prediction accuracy response increases. The maximum prediction accuracy using 10K 

CRPs was 82.5 %, which increases up to 92.3 % by increasing the number of CRPs to 30K. 

Table 4.1: ML Classifiers Prediction Accuracy for Different PUFs. 

Number of 

CRPs  
10,000 30,000 

Type of PUF 
LR 

% 

DT 

% 

RF 

% 

KNN 

% 

SVM 

% 

KSVM 

% 

NB 

% 

LR 

% 

DT 

% 

RF 

% 

KNN 

% 

SVM 

% 

KSVM 

% 

NB 

% 

ROPUF 69.3 71.2 73.5 76.2 74.1 75.3 67.4 80.9 82.8 85.1 87.2 85.6 86.8 79.0 

Configurable 

ROPUF 
78.7 80.1 81.3 82.5 80.9 81.7 75.9 88.9 90.3 91.5 92.3 91.1 91.9 86.1 

Inverter 

ROPUF 
64.3 66.2 67.3 69.6 67.8 68.1 60.3 81.7 83.6 84.7 87.2 85.2 85.5 77.7 

Arbiter PUF 63.3 64.3 65.6 68.2 66.8 67.1 60.5 83.6 84.6 85.9 88.1 87.1 87.4 80.8 
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It can be observed that the performance of the algorithms is quite similar in nature, but 

some perform better than the other algorithms. The best accuracy observed for the 

algorithms LR, DT, RF, KNN, SVM, KSVM, and NB are 88.9%, 90.3%, 91.5%, 92.3%, 

91.1%, 91.9%, and 86.1% respectively. Figure 4-2 represents the performance of different 

machine learning classifier algorithms predicting different PUFs designs' response 

behavior: Configurable Ring Oscillator, Ring Oscillator PUF, Inverter Ring Oscillator, 

Arbiter PUF. The figure shows that the KNN outperforms all the other algorithms with 

maximum prediction accuracy of 92.3% for Configurable Ring Oscillator PUF.  

 

 

Figure 4-2: Comparison of prediction accuracies for different classifier algorithms. 
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4.9 Artificial Neural Network Models 

An Artificial Neural Network (ANN) is a network structure of connected artificial 

neurons that can model complex relationships between inputs and outputs using 

computational and statistical data modeling tools. The neural networks consist of different 

layers termed as the input layer, output layer, and hidden layer. The first layer from where 

the network takes the input is known as an input layer, whereas the last layer of the network 

is termed as an output layer. The layers in between are termed as hidden layers. The number 

of hidden layers varies depending on the design [87]. The structure of the neural network 

is shown in Figure 4-3. 

 

 

Figure 4-3: Artificial Neural Network Structure. 
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The input layer is connected and assigned a weight to the hidden layers. Similarly, the 

hidden layer is connected to the output layers; consequently, the output of any input layer 

act as an input of the next layer. For each node, weights are assigned and adjust based on 

the input-output relationship. The output of a 3-layer feed-forward neural network can be 

given by: 

𝑌𝑗 = 𝑏𝑗 ∑ 𝑊𝑖,𝑗 𝑥𝑖                                                                                           (4.5) 
3

𝑖=1
  

where 𝑌𝑗 is predicate output, 𝑏𝑗  is base weights, 𝑤𝑖,𝑗 is weights and  𝑥𝑖 is input.  

The input of a hidden layer is modified by some nonlinear function, sigmoid, which is the 

activation function: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =
1

1+𝑒−𝑧
                                                                               (4.6)  

The weights are updated and calculated according to the difference obtained from model 

output and the actual output of the training data. This difference is calculated using loss or 

cost function, which will be minimized until the training loss is least or goes very close to 

zero. ANN-based models using four well-known optimization algorithms are used to 

perform attacks on different PUFs. These models are Resilient Backpropagation 

(RMSprop) optimization, Adadelta, Adam, and Nadam optimizations. The difference 

between the outputs is calculated using different cost functions. The model is trained until 

it reaches a point where the error is minimum. Four Multi-Layer Perceptron (MLP) models 

are designed as the ANN models in this research. All the four designed ANN models use 

different hyperparameters for their application on the datasets [88,89]. The first model uses 

resilient backpropagation (RMSprop) optimization as a training algorithm while the other 

models work on the Adadelta, Adam, and Nadam optimization, respectively. Resilient 

backpropagation algorithm works on the process of normalizing the magnitude of recent 



62 

gradients by dividing them with the average of the root mean squared gradients. Adadelta 

has an adaptive learning rate and an improvement for Adagrad optimization, as Adadelta 

reduces the aggressive, monotonically decreasing learning rates of Adagrad, thereby 

making it more efficient and faster. Adam is another method of adaptive learning rate in 

which it computes individual adaptive learning rates from the first and second moments of 

the gradients for updating the parameters [88]. Nadam optimization combines two 

optimizations together, which are Adam and NAG. Nadam is used for gradients with high 

curvature [89].  

 

Figure 4-4: ANN-Based Algorithms used for Predicting PUF CRPs 

 

 

4.10 Experimental results of ANN based modeling attacks 

ANN-based models using four well-known optimization algorithms are used to 

perform attacks on different PUFs. These models are Resilient Backpropagation 

(RMSprop) optimization, Adadelta, Adam, and Nadam optimizations [71]. Figure 4-4 

shows the different algorithms that are used in this work. The ANN learning network 

structure used in the experiment is a 3- Multi-Layer Perceptron (MLP) with 33 nodes in 
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the hidden layer. The ANN structure in terms of the number of hidden layers, nodes, and 

activation functions, the training conditions of the network-based model are given in Table 

4.2.  

Table 4.2: Initial parameters set in ANN optimizers 

Algorithm Parameter Default Value 

 

 

Adam 

 

Alpha (α) 0.001 

Beta1 (β1) 0.9 

Beta2 (β2) 0.999 

Number of iterations 1000 

 

 

RMSprop 

 

Discounting factor (rho) 0.9 

Momentum 0.0 

Centered False 

Number of iterations 1000 

 

 

Nadam 

 

Alpha (α) 0.001 

Epsilon (ε) 1e-08 

amsgrad False 

Number of iterations 1000 

 

Adadelta 

 

Discounting factor (rho) 0.9 

Epsilon (ε) 1e-08 

**kwargs clipvalue 

Number of iterations 1000 
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Table 4.3 represents the results obtained from ANN-based modeling for different 

optimization attacks on different PUFs. As shown in the Table, the accuracy range for 

response prediction is between 68.0% to 94.1%. It is also observed that the best accuracy 

for response prediction is 94.1% for the ANN-based modeling with Nadam on the 

Configurable ROPUF when we are using 30K number of CRPs. 

Table 4.3: ANN-based Prediction Accuracy for Different PUFs. 

Number of CRPs  10,000 30,000 

Type of PUF 
Adadelta 

% 

RMSprop 

% 

Adam 

% 

Nadam 

% 

Adadelta 

% 

RMSprop 

% 

Adam 

% 

Nadam 

% 

ROPUF 75.8 77.1 78.3 79.4 87.7 89.1 90.3 91.4 

Configurable 

ROPUF 
83.8 84.4 85.0 84.1 92.7 93.0 93.5 94.1 

Inverter ROPUF 68.0 69.2 70.3 70.0 87.0 88.7 89.5 90.3 

Arbiter PUF 69.3 70.1 71.9 72.1 88.5 89.9 91.0 91.7 

 

Figures 4-5, 4-6, 4-7, and 4-8 show the prediction accuracy graph. From the modeling of 

the PUFs, it is observed that, the models can train the data, they are able to predict the 

responses with high accuracy for different PUFs.  



65 

 

Figure 4-5: ANN-based prediction accuracy vs Iteration numbers for ROPUF.       

                                                            

 

Figure 4-6: ANN-based prediction accuracy vs Iteration for Configurable ROPUF. 
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Figure 4-7: ANN-based prediction accuracy vs Iteration numbers for Inverter ROPUF. 

 

 

 

Figure 4-8: ANN-based prediction accuracy vs Iteration numbers for Arbiter PUF. 
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From the results, it is observed that, for different models of the PUFs, the prediction 

accuracy increases with the increase in the total iterations number, which is used for 

training. Figure 4-9 represents the loss graph for different optimizations, and it has been 

found that Nadam optimization converges faster than the other optimization algorithms. 

 

Figure 4-9: Training Loss for Different ANN Optimizers. 

 

4.11 Comparative Analysis Among Different Algorithms 

The prediction accuracies are much better for each of the listed PUFs when swarm-

based modeling attacks are used. Table 4.4 summarizes the prediction accuracies for the 

different types of PUFs under study. It is observed from this table that the prediction 

accuracies, when the Swarm Intelligence models (DA, GSA, CS, PSO & GWO) are used, 

are much better than the other algorithms for each of the listed PUFs. For easy comparison, 

the results in Table 4.4 are also shown in the chart of Figure 4-10. It is clear from this figure 
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that the DA, GSA, CS, PSO and GWO optimizations in ANN give better prediction 

accuracy results than Adadelta, RMSprop, Adam, and Nadam optimization algorithms. The 

Swarm Intelligence-based model attacks have prediction accuracies ranging from 71.1% - 

99.3%. In contrast, for the machine learning ANN-based models, the prediction accuracies 

range from 68.0% to 94.1%.  

Table 4.4: Prediction accuracy comparison for different optimizers. 

Type of PUF 
Adadelta 

% 
RMSprop 

% 
Adam 

% 
Nadam 

% 
DA 
% 

GSA 
% 

CS 
% 

PSO 
% 

GWO 
% 

ROPUF 87.7 89.1 90.3 91.4 91.5 92.6 93.9 94.3 95.9 

Configurable 
ROPUF 

92.7 93.0 93.5 94.1 94.4 95.9 96.5 97.4 99.3 

Inverter 
ROPUF 

87.0 88.7 89.5 90.3 89.6 90.2 90.7 92.2 93.7 

Arbiter PUF  88.5 89.9 91.0 91.7 90.1 91.1 91.8 92.3 94.1 

 

 

 

Figure 4-10: Prediction accuracies for different PUFs using various optimization models. 
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4.12 Statistical analysis of the results 

This subsection explains the statistical analysis of the various algorithm results where 

multiple comparison procedures have been employed. In order to apply statistical analysis, 

a null hypothesis is defined, which implies that all the algorithms have the same 

performance without a significant difference; therefore, a denial of this hypothesis suggests 

the existence of differences between these algorithms [71]. If the hypothesis is rejected, a 

significance value α is applied to decide the rejection level. The p-values are used to 

describe the significance of the hypothesis test. If the p-value is more significant than α, 

then there is not enough evidence to reject the null hypothesis. Otherwise, the hypothesis 

is rejected, which indicates that the algorithms have different performances. The 

Nonparametric Friedman test is used to compute p-values to define significant differences 

between the algorithms' prediction accuracy [90]. Then a significance value α=0.05 is 

chosen. In computing the Friedman Value 𝑭𝒇, the test ranks the algorithms according to 

the highest prediction accuracy (Rank 1), the second highest (Rank 2), down to the lowest 

ranking. The Friedman test computes 𝑭𝒇 Value as: 

𝐹𝑓 =
12𝑛

𝑘(𝑘+1)
[∑𝑅2 −

𝑘(𝑘+1)2

4
]                                                                                          (4.7)                                              

where R is the ranks, n is the number of PUF datasets, k is the number of algorithms, and 

the statistic is distributed according to 𝐹𝑓 with k − 1 degrees of freedom [91,92]. Table 4.5 

shows the obtained average rankings of the algorithms by Friedman test based on 

prediction accuracy. GWO has the best performance in prediction accuracy among all 

algorithms; therefore, it has a rank of 1 and will be used as the control algorithm. The result 

obtained from the Friedman test, including its corresponding associated p-value, is shown 
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in Table 4.6. From the table, it is observed that the p-value is lower than the level of 

significance (0.05); therefore, there are significant performance differences between the 

algorithms, which implies that the null hypothesis is rejected. Considering the differences 

between the algorithms, we need a post-hoc procedure to identify these differences and 

then find out the p-value in order to determine the hypothesis rejection degree. Holm's 

procedure has been used to determine whether the control algorithm presents statistical 

differences concerning the remaining algorithms [93]. 

Table 4.5: Average rankings of the algorithms by Friedman test. 

Algorithm Ranking 

GWO 1 

PSO 2 

CS 3.25 

GSA 4.25 

Nadam 4.75 

RMSprop 5.75 

Adadelta 7 

 

Table 4.6: Results of the Friedman Tests. 

Friedman Value p-value 

21.99937 0.00121 

 

Holm’s procedure compares the control algorithm, which is GWO, with the other 

remaining algorithms, which consider a multiple comparison procedure. The test statistic, 
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z value, is used to find the corresponding probability from the table of the normal 

distribution: 

Z =
R𝑖−R𝑗

√
k(𝑘+1)

6𝑁 

                                                                                                                       (4.8)                                           

where, Ri and Rj are the average rankings by the Friedman test of the algorithms compared 

[74]. These unadjusted p values are used to compute p-Holm sequentially and test the 

hypotheses ordered by their significance level of confidence α. Table 4.7 shows that when 

the highest prediction accuracy algorithm (GWO) is used as a control algorithm, it 

performs better than Adadelta, RMSprop, Nadam and GSA with α = 0.05, and GWO 

outperforms all the algorithms with α = 0.10 except PSO. 

Table 4.7: Adjusted p-values. GWO is the Control Algorithm 

Algorithm Z 
Unadjusted 

p-value 
p-Holm 

Adadelta 4.242641 0.000022 0.000132 

RMSprop 3.358757 0.000392 0.001960 

Nadam 2.651650 0.004006 0.016024 

GSA 2.298097 0.010781 0.032343 

CS 1.64521 0.049964 0.099928 

PSO 0.707107 0.239752 0.239752 
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4.13 Chapter Summary 

This chapter presents a comprehensive study and analysis of the vulnerability of 

different delay- based PUF designs to various machine learning modeling attacks. From 

the results, it can be observed that the performance of the algorithms is quite similar in 

nature, however, KNN performs better than the other algorithms in predicting the CRPs. 

The best accuracy observed for the algorithms LR, DT, RF, KNN, SVM, KSVM, and NB 

are 88.9%, 90.3%, 91.5%, 92.3%, 91.1%, 91.9%, and 86.1%, respectively. The results 

show that the ANN-based algorithms produce better response prediction accuracy results 

compared to other machine learning classifiers. For the ANN-based modeling, it is 

observed that the accuracy range for response prediction is between 68.0% to 94.1%, where 

the best accuracy for response prediction is 94.1% for the ANN-based modeling using the 

Nadam optimizer on the Configurable ROPUF.  
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Chapter 5  

5. Design and Implementation of XOR-ROPUF for 

Thwarting Different Machine Learning Attacks 
 

 

In this chapter, we introduce the design of a novel XOR-ROPUF capable of 

thwarting machine learning attacks. This is achieved by feeding back the bit responses from 

the oscillator output to the challenge generator for generating the next challenge vector. 

This feedback technique makes the design more protected from attackers who can use 

invasive and non-invasive methods to steal the CRP data. Different machine learning 

modeling attacks are used to study the vulnerability of the proposed PUF. 

 

5.1 Introduction  

Physical Unclonable Functions (PUFs) are used to provide security and 

authentication in assured and trusted integrated circuits by producing unclonable 

cryptographic keys. However, machine learning algorithm attacks have proven to be 

effective against PUFs [94]. By using machine learning attacks the Challenge-Response 

Pairs (CRPs) can be predicted using a relatively small subset of training samples. During 

the past several years, hardware systems have become the targets of different types of 

specialized attacks [1]. There are documented cases where attackers have embedded secret 



74 

circuits, known as Trojans, in integrated circuits (ICs) to steal information and cause 

malfunction in such devices [2]. Many different approaches, including PUFs, have been 

studied by researchers to secure the hardware system from such expanding attack threats 

[3,4]. Physical Unclonable Functions (PUFs) are considered as a promising solution to 

security threats which help to implement hardware-based security scheme in devices [5]. 

The PUF’s microstructure is unclonable and non-reproducible due to the unpredictable 

physical factors that get introduced at the time of IC manufacturing. A set of unique 

Challenge-Response Pairs (CRPs) can be generated based on these manufacturing process 

variations using PUFs. These unique CRPs can be considered as a signature or an 

authentication scheme for a specific device; therefore, there is no need for storing security 

keys in a nonvolatile memory [10]. 

 

5.2 Implementation of XOR-ROPUF 

The proposed delay-based design generates a unique ‘n’ bit vector response by 

developing an ‘n’ bit response for an ‘n’ bit challenge. The design consists of NAND, 

XOR, and INV gates, and an odd number of inverters are used for a ring oscillator. Both 

XOR and NAND gates can be programmed to be used either as inverters or NAND or XOR 

gates. The vulnerability analysis for this design for a (n ×n) challenge-response ROPUF 

shows a significant reduction in the prediction accuracies, thus making the design less 

vulnerable to ML based attacks. The proposed design is implemented on 10 Xilinx Artix 7 

FPGAs that are installed on the Diligent Nexys 4 board. The challenge-response pairs from 

the FPGA are recorded using the Agilent 16801A logic analyzer. In this design as shown 
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in Figure 5-1, the responses generated from the PUF are fed back to the challenge 

generator. An XOR network takes the challenges from the challenge generator and 

combines the response to generate a new challenge. This process is maintained until the 

response bits match the same size as the challenges [95]. Changing the challenges for every 

response bit will secure the design from the attackers to get the information about the 

challenges provided to the XOR-ROPUF.  

 

 

Figure 5-1: Design of XOR-ROPUF to generate n-bit response for an n bit challenge. 

 

A total of 256 oscillators are implemented in each of the FPGA boards with the 

same fixed routing delay and at the same spatial location. Figure 5-2 represents the 

schematic of the synthesized XOR-ROPUF.   
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Figure 5-2: XOR-ROPUF Schematic. 
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The selection of particular ROs is based on a challenge generator. Then the RO is 

turned on for 0.4 ms to obtain the response from the ring oscillator by using a logic 

analyzer. The challenge generator network varied the input challenge bits with the output 

response bits to generate a random challenge for the design. The PUF design consists of 

demultiplexers, ROPUF network, and multiplexers, as shown in Figure 5-3. The Ring 

Oscillators are selected using the multiplexer and demultiplexer; the selection is mixed for 

two different demultiplexers and multiplexers. The challenge mainly consists of two parts, 

and each part selects the first\second ring oscillator using the first\second demultiplexer 

and multiplexer.  Figure 5-4. shows how the LUTs are mapped according to the XOR 

inverter PUF design. Ring Oscillators frequencies are collected from the frequency 

counters and compared to generate the response. The response generation is controlled by 

the timing controller until the 16-bit response is generated. 

 

Figure 5-3: XOR-ROPUF design. 
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Figure 5-4: Oscillator Network. 
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The Artix 7 FPGA boards have an internal system clock of 100MHz, which is 

brought down to 1 kHz to enable and synchronize the different parts of the design, Ring 

Oscillators, Challenge, Frequency Counter, Frequency Counter Reset, Comparator, and 

ROPUF Output Enable. Figure 5-5 shows the different timing controllers that are used to 

operate the design.  

 

Figure 5-5: Timing Controllers.  

 

A total of 256 oscillators are located in the FPGA using hard XDC macros to 

provide constant routing for different oscillators. The design has been implemented to 

select the oscillators in a pair with the same routing, as shown in Figure 5-6. The placement 

of oscillators is done in such a way so that the difference between the two oscillator 

frequencies meets a specific threshold frequency. If the oscillators do not meet the criterion, 

they are moved to another CLB slice. 
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Figure 5-6: Placement of Fixed Routing Ring Oscillators. 

 

5.3 Experimental results of different modeling attacks 

In this section, different machine learning classifier algorithms: Logistic 

Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), 

kernel Support Vector (Kernel SVM), Naive Bayes Classifier (NB) classifiers, along with 

four Artificial Neural Network (ANN) based algorithms: RMSprop, Adadelta, Adam, 

Nadam, and different swarm intelligence algorithms: Dragonfly Algorithm (DA), 

Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Particle Swarm 

Optimizer (PSO) and the Grey Wolf Optimizer (GWO) are implemented to study the CRPs 

prediction behavior of the proposed PUF [71,95]. In order to perform the attacks on the 

results obtained from the proposed PUF design, we assume that an adversary can eavesdrop 

on a small number of the CRPs and tries to predict the response for different challenges 

and replicate the PUF’s challenge-response behavior. The attacking models are trained 
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using available PUF CRPs to emulate their behavior using the above different algorithms. 

For training the CRPs, a 2.3 GHz PC with 16 GB RAM and 2GB Graphics card is used, 

and the Keras framework is used for modeling the PUF’s CRPs with Theano and 

Tensorflow. The response prediction accuracy is determined by using cross-validation of 

ten blocks using K-fold method. The challenge vector and the response matrix for the 

proposed PUF are defined as: 

𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚]𝑇                                                                                                      (5.1)                                                                                                      

𝑅 = [

𝑟11 𝑟12

𝑟21 𝑟22

… 𝑟1𝑛

… 𝑟2𝑛

⋮ ⋮
𝑟𝑚1 𝑟𝑚2

… ⋮
… 𝑟𝑚𝑛

]                                                                                         (5.2)                                                                                                       

5.3.1 Machine Learning Classifier Modeling Attacks 

Table 5.1 represents the results obtained for attacking XOR-ROPUF. It can be 

observed that the performance of the algorithms varies from one algorithm to another; 

however, the prediction accuracy using different ML models is in the range of 5.6% to 

20.7%. From the table, it can be concluded that KNN performs better in predicting the 

CRPs, compared to accuracy for the other algorithms, with a prediction accuracy of 20.7% 

Table 5.1: ML classifiers prediction accuracy for XOR-ROPUF design. 

Number of 
CRPs  

10,000 30,000 

Type of PUF 
LR 
% 

DT 
% 

RF 
% 

KNN 
% 

SVM 
% 

KSVM 
% 

NB 
% 

LR 
% 

DT 
% 

RF 
% 

KNN 
% 

SVM 
% 

KSVM 
% 

NB 
% 

XOR- 
ROPUF 

7.3 8.1 8.6 9.1 5.6 8.1 6.5 18.3 19.1 19.5 20.7 19.2 19.7 17.1 
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5.3.2 Artificial Neural Network based Modeling Attacks 

For ANN attacks, it is noted that the models are unable to predict the responses 

with higher prediction accuracy, this is shown in Table 5.2 and Figure 5-7. The best 

prediction accuracy of 23.5% is observed for the Nadam optimization when a 30K CRPs 

are used. 

Table 5.2: ANN based prediction accuracy for XOR-ROPUF design.          

Number of 
CRPs  

10,000 30,000 

Type of PUF 
Adadelta 

% 
RMSprop 

% 
Adam 

% 
Nadam 

% 
Adadelta 

% 
RMSprop 

% 
Adam 

% 
Nadam 

% 

XOR- ROPUF 9.1 9.7 10.3 10.7 20.9 21.5 22.7 23.5 

 

 

Figure 5-7: Prediction accuracy vs Iteration numbers for different ANN algorithms. 
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5.3.3 Swarm Intelligence based Modeling Attacks 

From Table 5.3, it is found that the prediction accuracies using the swarm models 

are in the range of 11.1% to 31.7%. Figure 5-8 shows the prediction accuracies versus the 

number of iterations for the DA, GSA, CS, PSO and GWO models. Here, it is also observed 

that the GWO model's performance is better than the other algorithms in terms of prediction 

accuracies 31.7%. 

Table 5.3: Swarm Intelligence based prediction accuracy for XOR-ROPUF design. 

Number of CRPs  10,000 30,000 

Type of PUF 
DA 
% 

GSA 
% 

CS 
% 

PSO 
% 

GWO 
% 

DA 
% 

GSA 
% 

CS 
% 

PSO 
% 

GWO 
% 

XOR- ROPUF 11.1 11.3 11.5 12.4 14.5 23.7 25.1 27.5 28.9 31.7 

 

Figure 5-8: Prediction accuracy vs Iteration numbers for different swarms algorithms. 
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5.4 Comparison Among Different PUF Designs 

For a 16-bit challenge, the assumption is that if an attacker can predict at least 13-

bits correctly, then the attacker can easily decrypt the response using the combinational 

approach or brute force approach. The prediction accuracy for ‘n’ bit response can be 

calculated as: 

Prediction accuracy= ∑ 𝑛𝐶𝑟𝑛
𝑟=0 /number of challenge bits                                                                 (5.3) 

To generate an n bit response for all PUFs designs, which already discussed in previous 

phases, requires n number of n bit challenges. Simultaneously, calculating the prediction 

accuracy for an n bit response has set a tolerance limit of 3-bit error. We assume that if an 

attacker can get 13 out of 16 possible bits right, then the attacker can break into the system 

after several tries. The results obtained for modeling attacks on the design and the other 

PUF designs for n bit response using ML classifiers, ANN-based modeling, and swarm-

based modeling are presented in Tables 5.4, 5.5, and 5.6. 

Table 5.4: Classifier ML Prediction Accuracy for PUFs. 

Type of PUF 
LR 
% 

DT 
% 

RF 
% 

KNN 
% 

SVM 
% 

KSVM 
% 

NB 
% 

XOR-ROPUF 18.3 19.1 19.5 20.7 19.2 19.7 17.1 

ROPUF 74.7 75.1 75.7 79.1 78.1 78.5 69.9 

Configurable ROPUF  80.9 82.3 83.5 84.3 83.1 83.9 78.1 

Inverter ROPUF 73.6 74.6 75.9 78.1 77.1 77.4 70.8 

Arbiter PUF 70.9 72.8 73.1 77.2 75.9 76.8 68.0 
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Regarding classifier-based algorithms, the maximum prediction accuracy for the XOR-

ROPUF design is 20.7%, whereas the maximum accuracy obtained is 84.3% in the design 

of Configurable ROPUF. 

 

  

Figure 5-9: Comparison of classifier ML prediction accuracies for PUFs. 

 

From the ANN-based modeling attacks on different PUF designs, it is observed that the 

XOR- PUF prediction accuracy is low compared to other PUFs, which is presented in Table 

5.5 and Figure 5-10. 
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Table 5.5: ANN-Based Prediction Accuracy for PUFs. 

Type of PUF 
Adadelta 

% 
RMSprop 

% 
Adam 

% 
Nadam 

% 

XOR-ROPUF 20.9 21.5 22.7 23.5 

ROPUF 79.9 80.1 81.3 81.7 

Configurable ROPUF 85.3 85.7 86.1 86.7 

Inverter ROPUF 79.0 79.5 80.3 81.1 

Arbiter PUF 77.5 78.2 78.3 79.1 

 

 

 

 

 

Figure 5-10: Comparison of ANN based prediction accuracies for PUFs. 

 

Table 5.6 lists experimental results for the accuracy for the PUFs using the DA, GSA, CS, 

PSO and GWO Swarm Intelligence algorithms.  
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Table 5.6: Swarm based Prediction Accuracy for PUFs 

Type of PUF 
DA 
% 

GSA 
% 

CS 
% 

PSO 
% 

GWO 
% 

XOR-ROPUF 23.7 25.1 27.5 28.9 31.7 

ROPUF 81.5 82.1 82.7 83.4 84.7 

Configurable ROPUF 85.9 86.1 86.5 86.9 87.3 

Inverter ROPUF 81.5 81.9 82.1 82.5 83.1 

Arbiter PUF 81.7 82.0 82.5 83.0 84.2 

 

From the table, it is evident that the PUF structures are vulnerable to Swarm Intelligence-

based model attacks with prediction accuracies ranging from 81.5% - 87.3%. while in case 

of the XOR-ROPUF, it is noted that the models are unable to predict the responses with 

higher prediction accuracy. The best prediction accuracy of 31.7% is observed for the 

GWO optimization as shown in Figure 5-11. 

 

Figure 5-11: Comparison of swarm based prediction accuracies for PUFs. 
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5.5 Chapter Summary 

For the enhancement of PUF security, a novel delay-based XOR-ROPUF design is 

proposed, which generates a ‘n’ bit response for a ‘n’ bit challenge. When it comes to 

classifier-based algorithms, the maximum prediction accuracy for the XOR-ROPUF design 

for an ‘n’ bit response is 20.7%. From the analysis of ANN-based modeling attacks on 

different PUF designs, it is observed that the XOR-ROPUF prediction accuracy 

significantly reduces from 86.7% to 23.5%. Also, from the results, it is evident that the 

other PUF structures are vulnerable to swarm intelligence-based modeling attacks with 

prediction accuracies ranging from 81.5% - 87.3%. In case of the XOR-ROPUF, it is noted 

that the models are unable to predict the responses with high prediction accuracy. The best 

prediction accuracy of 31.7% is observed for the GWO optimization. 
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Chapter 6  

6. Design and Implementation of a Hybrid Delay Based 

FPGA PUF Resistant to Machine Learning Attacks 
 

 

In this chapter, we present a unique delay-based PUF structure that combines 

challenge-response pairs (CRPs) from an Arbiter PUF with a XOR based Ring Oscillator 

to generate responses which are found to be less vulnerable to machine learning modeling 

attacks. Different Machine Learning (ML) classifier, Artificial Neural Network (ANN), 

and Swarm Intelligence algorithms (SI) are used to study the vulnerability of the proposed 

hybrid PUF to these attacks. Our results show that the proposed hybrid PUF is much less 

vulnerable than other designs when subject to machine learning attacks.  

 

6.1 Introduction  

Physical unclonable functions (PUFs) are used to extract unique signatures from 

silicon-based chips which can be used for chip authentication and producing unclonable 

cryptographic keys. However, researchers have found that PUFs are vulnerable to various 

machine learning modeling attacks. During the past several years, the use of Field 

Programmable Gate Arrays (FPGAs) has increased rapidly because of their accelerated 

reconfigurability, parallelism, and low cost. FPGAs have been used in different 
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applications such as defense equipment, communication networks, smart grids, and image 

processing [96]. Due to the increased deployment of FPGA devices in computing systems, 

hackers continually devise different types of specialized attacks to breach and counterfeit 

these devices [1]. The increase in different types of attacks has led to expanded research in 

hardware-oriented security and trust to secure the system from such expanding threats by 

deploying additional security mechanisms for FPGA-based systems using Physical 

Unclonable Function (PUF) [7]. PUFs are well-known security primitives for hardware-

oriented security applications due to their instance-specific design, which is based on 

physical properties, making them unpredictable and unclonable to implement hardware-

based security schemes in devices [45]. A PUF is a circuit constructed on a semiconductor 

device that produces a unique signature using the manufacturing process variations to 

generate unique challenge-response pairs, which can be used as an authentication scheme 

for a specific device. From the different types of PUFs, delay-based PUFs are widely 

studied in CMOS-based silicon devices. The most notable amongst the delay-based PUFs 

are the Arbiter PUFs (APUFs) and the Ring Oscillator PUFs (ROPUFs) [5]. In order to test 

the resiliency of these PUFs to adversarial attacks, several machine learning-based 

modeling attacks have been investigated in the past to emulate the behavior of the PUFs 

by predicting the challenge-response pairs [22,24]. In each scenario, it is assumed that an 

adversary can somehow (eavesdrop, side-channel, etc.) access a small number of CRPs 

which can be used as a learning model to replicate the PUF’s behavior and predict the 

remaining CRPs. 
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6.2 Implementation of proposed design 

The proposed design is implemented on Xilinx Artix 7 FPGAs which consists of 2 

slices per Configurable Logic Block (CLB), and each CLB has 4 Look-Up-Tables (LUTs). 

The challenge-response pairs from the FPGA are recorded using the Agilent 16801A logic 

analyzer. In the proposed PUF design, the output of the Arbiter PUF are fed to the input of 

the XOR-Inverter based Ring Oscillator [97]. The proposed design takes a 16-bit challenge 

and generates a 16-bit response that can be used to thwart ML attacks.  

6.2.1 Implementation of Arbiter PUF 

A16 multiplexer switch is implemented for the Arbiter PUF for generating a 16-bit 

challenge and a one-bit response. The same challenge bit triggers the multiplexers to create 

two identical parallel paths on which the input signal propagates with different delays. A 

D-latch flip-flop is used as an arbiter to determine which response signal reaches the arbiter 

first. The multiplexer switch is employed as the building block of APUF, as shown in 

Figure 6-1.  

 
Figure 6-1: RTL level of APUF multiplexer switch  
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Figure 6-2 shows the connected multiplexers implemented in Arbiter PUF. At the 

respective clock, a new challenge is generated and fed to the APUF, and the signal is 

passed, which races across the two paths.  

 
 

Figure 6-2: Connected Multiplexers in Arbiter PUF  
 

The two paths delay should be the same so that the output is independent of the design 

delay but entirely rely on manufacturing process variation. An arbiter at the end of the 

design decides which signal reached first and accordingly determines the output response, 

either 0 or 1, as shown in Figure 6-3. 

 
 

Figure 6-3: APUF Output Response Generator 
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To generate and feed 16-bit challenges to the APUF, a challenge generator is 

implemented, which consists of a 4-bit Linear Feedback Shift Register (LFSR) network. 

These challenge bits are applied at the selection lines of the multiplexers. Also, a clock 

generator is implemented that triggers leading edge pulses at regular time intervals. The 

challenge generator and frequency counter are synchronized. Figure 6-4 shows the 

obfuscator, including of XOR network, where each bit response is obfuscated to generate 

the challenges for the design. Manual routing using FPGA editor has been created to make 

the two paths of APUF identical, as shown in Figure 6-5. 

 

Figure 6-4: Obfuscator Network 
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Figure 6-5: Manual Routing of Arbiter PUF 

 

 

 

6.2.2 Implementation of XOR- ROPUF 

A total of 256 oscillators are implemented in each of the 10 FPGA boards with the 

same fixed routing delay and at the same spatial location. Figure 6-6 represents the 

schematic of the XOR-Inverter based Ring Oscillator. Each RO is activated for 0.4ms using 

timing controller and the corresponding frequency is recorded using logic analyzer. 
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Figure 6-6: XOR-Inverter based Ring Oscillator. 

 

The proper ring oscillators are selected using demultiplexer and multiplexer, which are 

synchronized to choose the same ring oscillators.  

 

 
Figure 6-7: Demultiplexer  



96 

The ring oscillator enabled signal comes from the demultiplexer to ring oscillator input. 

The multiplexer selects the output of the ring oscillator and carries the signal to the 

frequency counter. Figures 6-7 and 6-8 represents designs of the demultiplexer and the 

multiplexer. According to the selection lines, both demultiplexer and multiplexer are 

selected to synchronize the input signal and the ring oscillator's output. 

 

 

Figure 6-8: Multiplexer  

 
 



97 

Figure 6-9 shows the output response generation process of the design. Ring Oscillators 

frequencies are collected from the frequency counters and compared to generate the 

response. The response generation is controlled by the timing controller until the 16-bit 

response is generated. 

 

Figure 6-9: Output Response Generator 

 

Figures 6-10 shows the diagram of our proposed architecture. The Arbiter PUF challenges 

and their respective responses are shuffled and passed through the XOR obfuscation 

network. The n challenges are passed through the XOR gate to form an n-bit challenge 

corresponding to the n-bit response. The generated n bit responses from the APUF are fed 

as challenges to the XOR- Inverter ROPUF in order to select the demultiplexer and 

multiplexer simultaneously. The responses generated from the XOR-Inverter ROPUF are 

fed back to the challenge generator to generate the new challenge vector. The final output 

of the architecture is the 16-bit response corresponding to a 16-bit challenge.  
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Figure 6-10: Architecture of Hybrid PUF 

 

 

 

6.3 Experimental results of different modeling attacks 

Different Machine Learning (ML) classifier, Artificial Neural Network (ANN), and 

Swarm Intelligence algorithms (SI) are used to study the vulnerability of the proposed 

hybrid PUF to these attacks [97]. For training the CRPs, a 2.3 GHz PC with 16 GB RAM 

and 2GB Graphics card is used, and the Keras framework is used for modeling the PUF’s 

CRPs with Theano and Tensorflow. The response prediction accuracy is determined by 

using cross-validation of ten blocks K-fold method. The challenge vector and the response 

matrix for the proposed PUF are defined as: 
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 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚]𝑇                                                                                                    (6.1)                                                                                                                 

𝑅 = [

𝑟11 𝑟12

𝑟21 𝑟22

… 𝑟1𝑛

… 𝑟2𝑛

⋮ ⋮
𝑟𝑚1 𝑟𝑚2

… ⋮
… 𝑟𝑚𝑛

]                                                                                         (6.2)                                                                                                       

6.3.1 Machine Learning Classifier Modeling Attacks 

The results obtained from the classifier ML algorithms for the hybrid PUF are 

presented in Table 6.1. From the table, it is observed that the KNN algorithm has the best 

prediction accuracy of 13.7% when 30,000 CRPs are used. Also, it is noted that the 

prediction accuracy of the ML classifier algorithms increases with the increase in the total 

number of CRPs. 

Table 6.1: ML classifiers prediction accuracy for hybrid PUF 

Number of 
 CRPs  

10,000 30,000 

Type of PUF 
LR 
% 

DT 
% 

RF 
% 

KNN 
% 

SVM 
% 

KSVM 
% 

NB 
% 

LR 
% 

DT 
% 

RF 
% 

KNN 
% 

SVM 
% 

KSVM 
% 

NB 
% 

Hybrid PUF 5.3 6.1 6.7 7.7 4.1 7.1 4.7 11.3 11.1 13.2 13.7 12.1 12.7 10.1 

 

6.3.2 Artificial Neural Network based modeling attacks 

Table 6.2 presents the ANN-based modeling results for different number of CRPs. From 

the data, it is observed that the best prediction accuracy is 15.7% for Nadam optimization. 
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The prediction accuracies for different models are in the range of 7.6 – 15.7%, as presented 

in Figure 6-11. 

Table 6.2: ANN based prediction accuracy for the hybrid PUF  

Number of 
CRPs  

10,000 30,000 

Type of PUF 
Adadelta 

% 
RMSprop 

% 
Adam 

% 
Nadam 

% 
Adadelta 

% 
RMSprop 

% 
Adam 

% 
Nadam 

% 

Hybrid PUF 7.6 7.9 8.3 8.7 13.9 14.5 15.2 15.7 

 

 

 

Figure 6-11: Prediction accuracy vs Iteration numbers for different ANN algorithms. 
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6.3.3 Swarm Intelligence based modeling attacks 

The results obtained for swarm based algorithms are presented in Table 6-3. The 

results show that the algorithms can predict the accuracy of 10.9% for 10,000 CRPs with 

GWO optimization. However, by increasing the number of CRPs up to 30,000, the GWO 

algorithms can predict the accuracy of 24.1%. For PSO, the best accuracy is 21.3% 

whereas, for DA, GSA, and CS, the accuracies obtained are 15.9%, 17.5%, and 19.9%, 

respectively. With the increase of the number of CRPs, the prediction accuracy for the 

model increases faster, presented in Table 6.2. The prediction accuracy for all the ANN 

optimizers is similar, whereas the prediction accuracy can be observed. Figure 6-12 shows 

the prediction accuracies versus the number of iterations for the Hybrid PUF for the DA, 

GSA, CS, PSO and GWO models. From the data, it is observed that the best prediction 

accuracy is 24.1% for GWO optimization. 

Table 6.3: Swarm Intelligence based prediction accuracy for hybrid PUF 

Number of  
CRPs  

10,000 30,000 

Type of PUF 
DA 
% 

GSA 
% 

CS 
% 

PSO 
% 

GWO 
% 

DA 
% 

GSA 
% 

CS 
% 

PSO 
% 

GWO 
% 

Hybrid PUF 7.5 8.8 8.3 9.1 10.9 15.9 17.5 19.9 21.3 24.1 
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Figure 6-12: Prediction accuracy vs Iteration numbers for different swarms Algorithms. 

 

 

6.4 Comparison Among Different PUF designs 

The results obtained for modeling attacks on proposed design and the other delay 

based PUF designs using ML classifiers, ANN-based modeling, and swarm-based 

modeling are presented in Tables 6.4, 6.5, and 6.6. The results are based on 30,000 CRPs. 

When it comes to classifier-based algorithms, the maximum prediction accuracy for the 

hybrid design is 13.7%, whereas the maximum accuracy obtained is 84.3% in the design 

for an n bit response of Configurable ROPUF as presented in Figure 6-13. 
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Table 6.4: Classifier ML Prediction Accuracy for PUFs. 

Type of PUF 
LR 
% 

DT 
% 

RF 
% 

KNN 
% 

SVM 
% 

KSVM 
% 

NB 
% 

Hybrid PUF 11.3 11.1 13.2 13.7 12.1 12.7 10.1 

XOR-ROPUF 18.3 19.1 19.5 20.7 19.2 19.7 17.1 

ROPUF 74.7 75.1 75.7 79.1 78.1 78.5 69.9 

Configurable 
ROPUF 

80.9 82.3 83.5 84.3 83.1 83.9 78.1 

Inverter ROPUF 73.6 74.6 75.9 78.1 77.1 77.4 70.8 

Arbiter PUF 70.9 72.8 73.1 77.2 75.9 76.8 68.0 

 

 

 

Figure 6-13: Comparison of classifier ML prediction accuracies for PUFs. 
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From the ANN-based modeling attacks on different PUF designs, it is observed that the 

XOR- PUF prediction accuracy is low compared to other PUFs, which is presented in Table 

6.5 and Figure 6-14. 

Table 6.5: ANN-Based Prediction Accuracy for PUFs. 

Type of PUF 
Adadelta 

% 
RMSprop 

% 
Adam 

% 
Nadam 

% 

Hybrid PUF 13.9 14.5 15.2 15.7 

XOR-ROPUF 20.9 21.5 22.7 23.5 

ROPUF 79.9 80.1 81.3 81.7 

Configurable ROPUF 85.3 85.7 86.1 86.7 

Inverter ROPUF 79.0 79.5 80.3 81.1 

Arbiter PUF 77.5 78.2 78.3 79.1 

 

 

 

Figure 6-14: Comparison of ANN based prediction accuracies for PUFs. 
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Table 6.6 lists experimental results for the accuracy for the PUFs using the DA, GSA, CS, 

PSO and GWO Swarm Intelligence algorithms.  

Table 6.6: Swarm based Prediction Accuracy for PUFs 

Type of PUF 
DA 
% 

GSA 
% 

CS 
% 

PSO 
% 

GWO 
% 

Hybrid PUF 15.9 17.5 19.9 21.3 24.1 

XOR-ROPUF 23.7 25.1 27.5 28.9 31.7 

ROPUF 81.5 82.1 82.7 83.4 84.7 

Configurable ROPUF 85.9 86.1 86.5 86.9 87.3 

Inverter-ROPUF 81.5 81.9 82.1 82.5 83.1 

Arbiter PUF 81.7 82.0 82.5 83.0 84.2 

 

 

Figure 6-15: Comparison of swarm-based prediction accuracies for PUFs. 
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From the table, it is evident that the proposed PUF design can resist the different modeling 

attacks much better than other available designs. When it comes to swarm based 

algorithms, the proposed design's prediction accuracy ranges from 15.9 % (DA) to 24.1 % 

(GWO). The best prediction accuracy of 24.1% is observed for the GWO optimization as 

shown in Figure 6-15. 

 

6.5 Chapter Summary 

We present a unique delay-based PUF structure that combines challenge-response 

pairs (CRPs) from an Arbiter PUF with a XOR based Ring Oscillator to generate responses 

which are found to be less vulnerable to machine learning modeling attacks. From the 

results, it is found that the prediction accuracy when different machine learning classifier 

algorithms are employed to attack the PUF, is drastically reduced and lies in the range of 

13.9% to 15.7% for ANN based attacks, whereas the swarm based model accuracy obtained 

is in the range of 15.9% to 24.1%. Our study indicates that the new design's vulnerability 

against different machine learning modeling attacks is much less compared to other delay-

based PUF designs. 
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Chapter 7  

7. XOR-ROPUF Application: Hardware-Oriented Security 

Based Authentication for Internet of Things Devices 
 

 

The Internet of Things (IoTs) has become in demand nowadays as many embedded 

devices are connected to the internet to collect a vast amount of data for processing. A 

substantial amount of this data between IoT devices is confidential information; therefore, 

attacks on IoT devices are growing, causing challenges to the security of the IoT devices. 

Physical Unclonable Functions (PUFs) are proposed as a powerful and lightweight solution 

to secure IoT devices. PUFs authenticate and generate secure cryptographic keys using 

manufacturing process variations to protect IoT devices from different attacks; this unique 

identity is based on physical characteristics. Device authentication is an essential task in 

IoT. In this Chapter, a lightweight XOR-ROPUF based authentication scheme for the 

security of IoT systems is presented. The proposed management scheme carries out the 

authentication between the verification authority and the IoT devices to ensure data 

congeniality and integrity, and thus reduces the risk of cyber attacks. 

7.1 Introduction 

The need for communication amongst connected devices has led to an increase in 

demand for the Internet of Things (IoTs). IoT has developed as an expanded network where 
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millions of devices are connected to the internet to transfer helpful information [98]. IoT 

refers to the appearance of the network of physical objects that have internet infrastructure, 

connectivity, and information transfer between these objects and other internet systems to 

achieve tasks without human interaction [99]. From the most straightforward consumer-

based applications such as smartphones and smart homes to complex industry solutions, 

like the smart power grid and medical devices, the Internet of Things (IoTs) is everywhere 

and constantly improving how consumers work, as shown in Figure 7-1. IoT devices are 

becoming widely used in emerging applications such as edge computing, smart and 

connected cities, medical devices, smart power grids, and intelligent autonomous systems. 

IoT technology is presumed to be used in various ways and strongly impacts different 

applications such as personal health monitoring devices, the smart home, and smartphones 

by providing interconnection and information exchange. They also connect an increasing 

number of dynamic global information networks consisting of Internet-connected objects, 

making the IoT a complex growing system [100]. These applications are increasingly 

integrated into insecure physical environments making the necessary authentication 

scheme challenging for security in IoT networks and leading to many challenges, like 

security, privacy, authentications, etc., and need to be protected from the new cyber and 

physical system attacks [101].  Hardware security is one of the significant challenges in 

IoT due to the likelihood of these devices communicating in an unsecured system, thus 

providing an adversary to gain access to the system. Therefore, there is a need to develop 

a hardware security solution to trust IoT networks [102].  
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Figure 7-1: The overall picture of Internet of Things devices. 

 

 

 

7.2 Physical Unclonable Functions on the Internet of Things 

The life process of IoT devices affects different parties and facilities, and thus, 

various security threats impact these devices. The life-cycle of IoT-based electronic 

devices is illustrated in Figure 7-2 [103]. The figure shows design specifications, 

fabrication, test, and deployment of IoT-based consumer electronic devices. As shown in 

the figure, the life cycle involves multiple parties and facilities, and thus, diverse security 

threats affect these devices. Further, the major security threats associated with IoT-based 

and intelligent electronic devices are also shown in Figure 7-2.  
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Figure 7-2: The life-cycle of PUF-based IoT and smart electronic device 

 

IoT-based threats have endangered IoT devices' security, operability, reliability, and 

expansive applications [104]. An adversary can steal design information during 

manufacturing at an untrusted foundry, and these attacks may lead to leaking secret 

information from an IoT-based and intelligent electronic device. Security of the Internet of 

Things (IoTs) is one of the current primary challenges in developing our life and future 

manufacturing systems. They face complex challenges to secure devices against cyber-

attacks. Network authentication is highly required as IoT is growing, and it is essential to 

have an effective device authentication mechanism to identify the trusted device [105]. 

Because of the increasing demand for IoT devices, these devices must be inexpensive and 

challenge the implementation of security functions. Authentication is considered to be the 

first obstacle to securing IoT systems against various types of attacks. Therefore, using 

physically unclonable functions (PUF) could solve many IoT security requirements at an 

acceptable cost [106]. PUFs are low-cost, hardware security primitive for intelligent and 
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energy-constrained IoT devices. Research for IoT authentications and encryption schemes 

has proposed the use of PUFs as a low cost solution [107]. Therefore, IoT and smart devices 

will need to find robust solutions for the IoT devices' security to protect communication 

over the internet and reduce the new security attacks. Physical Unclonable Functions 

(PUFs) have been proposed as a lightweight, cost-efficient solution. Implementing a PUF 

circuit in reconfigurable hardware like a Field Programmable Gate Array (FPGA) ensures 

secure authentication for IoT devices [108]. 

7.3 PUF-Based Threats on IoT Devices 

Attacks on Internet of Things (IoTs) devices are increasing rapidly; therefore, there 

are many potential threats for IoT devices that use PUFs for authentication. Possible 

definitive attacks include reading out private keys from memory, and communication 

attacks [109]. The main new threat on the PUF-based security system is for an attacker to 

obtain the ability to provide the correct response for a given challenge. Modeling attacks 

are an example of the emerging attacks that aim to replicate the behavior of PUF's challenge 

and response for cloning the secret keys generated by a PUF design [110]. Modeling attacks 

against PUF-based schemes for IoT devices authentication are classified into different 

categories: 

7.3.1 Machine Learning (ML) attacks 

Researchers have found that PUFs are vulnerable to various machine learning 

modeling attacks; therefore, ML attacks are considered one of the most successful attacks 

to clone the behavior of PUF design. Several machine learning-based modeling attacks 
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have been analyzed to mimic the behavior of the PUFs [111]. The efficiency of these 

algorithms can be determined by the complexity of the different PUF designs. 

7.3.2 Man in the Middle Attack 

Attackers can eavesdrop by using MITM attacks by recording the network data 

packets and extracting the information of the CRPs when the system is in operation. In this 

type of attack, an adversary can extract and record the data packets on the communication 

network between a server and a device and prevent and store exchanged CRPs [112]. 

Therefore, after obtaining a set of CRPs, a PUF can be modeled using machine learning. 

7.3.3 Side-channel hardware-based attacks  

Side-channel attacks use various parameters such as current leakage, voltage 

variations, and power consumption to establish an attack against semiconductor integrated 

circuits (IC) and Internet of Things (IoTs) devices [113]. Typical side channel hardware 

attacks include power analysis side channel, time consumption side channel, 

electromagnetic side challenge, differential fault analysis side channel and photonic 

emission side channel analysis. These attacks take advantage of the side challenge 

parameters to model a robust PUF design. 

7.4 Device Authentication in IoT using Delay-based PUF 

Device authentication is one of the essential tasks in IoT. The authentication scheme 

in IoT devices guarantees a more secure and efficiently interoperable alternative to IoT 

systems. Nevertheless, the remarkable number of smart devices makes it challenging to 
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secure their authenticated and certified whenever connected to the IoT system. Most 

existing IoT systems are secured through authentication, ensuring connected IoT devices 

can access the resource. Here we focus on the authentication of users and devices in IoT 

using the Physical Unclonable Function (PUF) to enable IoT systems to handle authentic 

and verified devices. 

7.4.1 Implementation of XOR-ROPUF Design 

PUF is a robust security mechanism that recognizes a hardware fingerprint, and it 

provides a unique hardware key depending on the specific device properties. PUFs are 

commonly used for authentication and secure communication, which fits appropriately into 

the resource demands of IoT devices. A probable solution can be provided using PUF to 

generate a unique response for each device due to manufacturing variation. The proposed 

XOR-ROPUF enhances entropy, allowing the design to generate challenge-response pairs 

for secure and trusted IoT applications that require robust and lightweight secret and 

cryptographic key generation. Our lightweight PUF design is a low-cost and efficient 

hardware security design intended to generate low-cost secret keys for IoT security, 

including IoT robust authentication. The design of the PUF has been explained earlier 

in Chapter 5. The design is implemented on Xilinx Artix 7 FPGAs installed on the Diligent 

Nexys 4 board. Figure 7-3 represents the implemented XOR-ROPUF, the responses 

generated from the PUF are fed back to the challenge generator. An XOR network takes 

the challenges from the challenge generator and combines the response to generate a new 

challenge. The PUF design takes a 16-bit challenge and generates a 16-bit response. 
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Figure 7-3: XOR-ROPUF Design. 

 

 

7.4.2 Proposed PUF-Based Authentication Scheme 

The device authentication scheme is proposed for IoT applications using a 

lightweight XOR-ROPUF. The main objective of using the PUF model is to carry out the 

authentication between the verifier (verification authority) and prover (IoT Device). This 

scheme presents a suitable technique for authentication using a model of the PUF that 

provides a compact solution for the authentication of IoT systems. Figure 7-4 shows the 

proposed scheme between the IoT devices and the authentication server to ensure data 

congeniality and integrity. The proposed PUF-based IoT device authentication scheme 

reduces the risk of authentication vulnerability. The proposed technique can be performed 

by storing and updating challenge and response pairs through communication with the IoT 

devices to be authenticated. 



115 

 

Figure 7-4: The PUF-based IoT Device Authentication scheme. 

 

The PUF-based scheme eliminates some drawbacks because it is a low-cost device 

authentication solution to identify the trusted hardware. It secures communication among 

the devices using a lightweight system. IoT device identity can be verified through 

verification authority to establish trust in an IoT device. The PUF-based authentication 

scheme consists of a two-step process: enrollment and verification, which ensures the 

authentication.  

• The first phase of the authentication process is ‘Enrollment’: During 

the enrollment phase, the IoT device embedding the PUF is directly connected to 

the server (verification authority). The authentication server sends challenges, and 

the IoT device embedding the PUF circuit sends back the responses. The 

authentication server stores all challenge and response pairs in a secure database by 
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taking and performing each entity. During the enrollment phase, the IDs of all 

entities are recorded in the database by the verifier. Then the device can be 

deployed. Figure 7-5 shows how the PUF chip is enrolled individually with the 

authentication server. The challenge-response pairs (CRPs) are collected and stored 

during enrollment. The authentication server has a database that stores all 

challenges for each PUF. The server sends one challenge (Ci) to each PUF and 

records the response (Ri) generated from each PUF in the database. 

 

Figure 7-5: Enrollment phase of PUF in authentication scheme. 
 

• The second phase is Verification: During the verification phase, the IoT device 

needs to be authenticated by the verification authority. Each IoT device is being 

identified by its unique ID. The server receives the entity's ID, sends an arbitrary 
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PUF challenge to the IoT device, and checks against the previously registered value 

in its database. The authentication scheme to authenticate the IoT devices is 

explained in Figure 7-6.  

 

Figure 7-6: PUF based device verification phase. 

 

The CRPs obtained from different Artix 7 FPGAs are listed in Table 7.1. The IoT device 

is authenticated if the measured response matches the stored response in the verification 
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authority database. Only if the two values match can the verification authority conclude 

that the IoT device is authentic.  

Table 7.1: Challenge- Response Pairs of Different FPGAs 
 

IoT Device FPGA ID Challenges Responses 

1 D552098 

0111011101110001 

0001100010000000 

1101100111100100 

1000000000110101 

0001110011001101 

1100000100110110 

2 D552320 

0111011101110001 

0001100010000000 

1101100111100100 

1010111000000010 

0010010010001010 

1100001001110101 

3 D552224 

0111011101110001 

0001100010000000 

1101100111100100 

1010011001010001 

1101011001001001 

0011111010001010 

……….. ………… ……………….. ……………………… 

n D552228 

0111011101110001 

0001100010000000 

1101100111100100 

0001001010101110 

0100101011100001 

1110000001011011 

 

Our proposed PUF based device authentication scheme is well suited for IoT devices with 

good reliability. The different parameters (Uniformity, Uniqueness, Bit aliasing, 

Reliability) for the XOR-ROPUF have been measured and are shown in Table 7.2. 

However, ten different Artix-7 FPGAs are used for data acquisition for calculating the 

parameters. For comparing the data with other similar designs, PUF metrics from other 

designs are included in Table 7.2. The performance of the PUF with quantified parameters 

and results show that our proposed device authentication scheme is suited for hardware 

security. 
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Table 7.2: ROPUF Parameters (Performance Metrics for Different PUFs) 

 

Design Uniformity Uniqueness Bit-Aliasing Reliability 

XOR- ROPUF 50.76% 49.40% 48.35% 99.8% 

Inverter ROPUF [114] 47.02% 45.15% 47.20% 98.0% 

ROPUF [115] 50.56% 47.24% 50.56% 99.14% 

APUF [115] 55.69% 7.20% 19.57% 99.76% 

 

The hardware implementation of the XOR-ROPUF leverages the inherent physical 

characteristics of the FPGA to secure, reliable, and trusted IoT applications. The proposed 

secured PUF based scheme eliminates some drawbacks of traditional approaches and 

explains how PUFs can be used to build low-cost authentication schemes. The proposed 

PUF-based security enhancement scheme addresses the need for a high-security IoT 

network. 

7.5 Chapter Summary 

An authentication scheme is proposed for the security of IoT systems using a 

lightweight XOR-ROPUF. The proposed management scheme carries out the 

authentication between the verification authority, the authentication server, and the IoT 

devices to ensure data congeniality and integrity. The proposed XOR-ROPUF based 

scheme is a low-cost device authentication solution to identify the trustworthiness of the 

devices. It secures the communication exchange amongst the devices using a lightweight 

system and reduces the risk of authentication vulnerability. 



120 

Chapter 8  

8. Conclusion 
 

 

8.1 Summary and Conclusions 

Various Machine Learning based attack models have been used recently to breach 

the security of PUFs. In this research, we have introduced a novel implementation of 

Artificial Neural Network-based modeling attack on various PUFs using different swarm 

intelligence algorithms. From the results, it is observed that the swarm intelligence 

algorithms produce better response prediction accuracies (71.1% - 99.3%) when compared 

to other well-known algorithms. Amongst the SI algorithms, the GWO algorithm performs 

the best in predicting the CRPs. It is observed that the Configurable ROPUF is the most 

vulnerable and its response can be predicted with an accuracy of 88.3% when the GWO is 

used. To the best of our knowledge, swarm-based algorithms have not been investigated 

earlier to test the security of PUFs.  

This research also presents a comprehensive study and analysis of the vulnerability 

of different delay- based PUF designs to various machine learning modeling attacks. From 

the results, it can be observed that the performance of the algorithms is quite similar in 

nature, however, KNN performs better than the other algorithms in predicting the CRPs. 
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The best accuracies observed for the algorithms LR, DT, RF, KNN, SVM, KSVM, and NB 

are 88.9%, 90.3%, 91.5%, 92.3%, 91.1%, 91.9%, and 86.1%, respectively. The results 

show that the ANN-based algorithms produce better response prediction accuracy results 

compared to other machine learning classifiers. For the ANN-based modeling, it is 

observed that the accuracy range for response prediction is between 68.0% to 94.1%, with 

the ANN-based modeling using the Nadam optimizer the best accuracy. 

 In order to enhance the security of the PUF, a new delay-based XOR-ROPUF 

design is proposed, which generates an ‘n’ bit response for an ‘n’ bit challenge. When it 

comes to classifier-based algorithms, the maximum prediction accuracy for the new design 

for an ‘n’ bit response is 20.7% whereas the maximum accuracy obtained is 84.3% for an 

‘n’ bit response Configurable ROPUF. From the analysis of ANN-based modeling attacks 

on different PUF designs, it is observed that the XOR-ROPUF prediction accuracy 

significantly reduces from 86.7% to 23.5%. Also, from the results, it is evident that the 

other PUF structures are vulnerable to swarm intelligence-based modeling attacks with 

prediction accuracies ranging from 81.5% - 87.3%. In case of the XOR-ROPUF, it is noted 

that the models are unable to predict the responses with high prediction accuracy. The best 

prediction accuracy of 31.7% is observed for the GWO optimization. In addition, a novel 

Hybrid PUF is being proposed in this research. This unique delay-based Hybrid PUF for 

thwarting ML attacks will be obtained by combining an Arbiter PUF with an XOR-

ROPUF. From the results, it is found that the prediction accuracy when different machine 

learning classifier algorithms are employed to attack the PUF, is drastically reduced and 

lies in the range of 13.9% to 15.7% for ANN based attacks, whereas the swarm based 

model accuracies obtained is in the range of 15.9% to 24.1%. Our study indicates that the 
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new design's vulnerability against different machine learning modeling attacks is much less 

compared to other delay-based PUF designs; furthermore, the designs are scalable and can 

be adapted to new ML and SI attacks. 

Finally, as an industrial application, an authentication scheme is proposed for the 

security of IoT systems using a lightweight XOR-ROPUF. The proposed management 

scheme carries out the authentication between the verification authority, the authentication 

server, and the IoT devices to ensure data congeniality and integrity. The proposed XOR-

ROPUF based scheme implements a low-cost device authentication solution for identifying 

the trusted hardware, securing communication among the devices using a lightweight 

system, and reducing the risk of authentication vulnerability. 

 

8.2 Contributions 

The major contributions of this research are as follows: 

• Implementation of a novel Artificial Neural Network-based attack model for 

studying the vulnerability of PUFs to various swarm intelligence algorithms. To the 

best of our knowledge, these algorithms have not been used before in studying the 

vulnerability of PUFs to ANN-based attacks. 

• Machine Learning Vulnerability analysis of different delay based PUF using 

different ML classifiers to study PUFs vulnerability to these ML attacks 

• Use of Artificial Neural Network based modeling attacks on various PUFs using 

different optimizers to test their resiliency to these attacks. 
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• Design of a novel XOR-ROPUF capable of thwarting machine learning attacks. 

This is achieved by feeding back the bit responses from the oscillator output to the 

Challenge Generator for generating the next challenge vector. This feedback 

technique makes the design more secure from hackers who can use both invasive 

and non-invasive techniques to steal the CRP data. 

• Design of a unique delay-based PUF structure that combines an Arbiter PUF with 

a XOR- ROPUF for thwarting machine learning attacks. 

• Development of an authentication scheme for the security of IoT systems using a 

lightweight XOR-ROPUF. The proposed management scheme carries out the 

authentication between the verification authority, the authentication server, and the 

IoT devices to ensure data congeniality and integrity. 

 

8.3 Future Work 

The research work done in this dissertation can be extended to the following topics: 

 

• Analysis of the weak entropy of existing silicon PUFs and improving techniques to 

thwart modeling attacks 

• Development of a new scheme for strong and robust PUFs on an FPGAs that 

generates a more extensive set of CRPs. 

• Application of Swarm intelligence based ANN algorithms method can be used for 

improving the performance metrics of PUFs and for developing countermeasures 

against modeling attacks. 
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