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Herein we developed two mathematical models of microbial enzyme-driven, plant litter 

decomposition: (1) a two-substrate cellulose (C2) and lignin (C3) model including 

cellulolytic (E2) and ligninolytic enzymes (E3) and (2) a three-substrate organic nitrogen 

(C1), cellulose (C2), and lignin (C3) model including nitrogen-acquiring (E1), cellulolytic 

(E2), and ligninolytic (E3) enzymes. For the lignocellulose model, we set observed first-

order decay rates equal to reverse Michaelis-Menten (RMM) equations to estimate 

relative enzyme activities associated with observed patterns of hollocellulose (C2) and 

lignin (C3) decay. Results were consistent with empirical studies, showing a negative 

relationship of E2/(E2+E3) to litter lignin content, C3/(C2+C3), above a minimum 

threshold of 40% lignin, at which lignin begins to decay. For the three-pool model, we 

solved for the allocation of each enzyme pool as functions of litter lignocellulose index 

(LCI), microbial and litter C:N stoichiometry, and constraints on total enzyme 

production, again setting observed decay rates equal to RMM equations. To our 

knowledge, the lignocellulose model is the first mechanistic explanation of microbial 

allocation of cellulolytic and ligninolytic enzymes as a function of the lignin 
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concentration of the lignocellulose complex. It was consistent with observations but 

raised questions about factors controlling the threshold for lignin decay. The three-pool 

model provides the first practical solution for analytically allocating microbial C- and N-

acquiring enzymes as functions of both litter C-quality and C:N stoichiometry but 

insufficient data exist to reconcile these underlying controls with observed patterns of 

enzyme allocation and C and N dynamics during long-term litter decay. 
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Chapter 1  

Estimating Relative Cellulolytic and Ligninolytic Enzyme 

Activities as Functions of Lignin and Cellulose Content in 

Decomposing Plant Litter 

Margida, M. G., Lashermes, G., & Moorhead, D. L., 2020. Estimating relative 
cellulolytic and ligninolytic enzyme activities as functions of lignin and cellulose content 
in decomposing plant litter. Soil Biology and Biochemistry, 141, 107689. 

Abstract 

Extracellular enzymes catalyze plant litter decomposition, including enzymes that 

degrade holocellulose (E2) and lignin (E3). To estimate relative enzyme activities 

associated with observed patterns of hollocellulose (C2) and lignin (C3) decay, we set 

observed decay rates equal to reverse Michaelis-Menten equations. Results were 

consistent with empirical studies, showing a negative relationship of E2/(E2+E3) to litter 

lignin content, C3/(C2+C3), above a minimum threshold at which lignin begins to decay. 

This threshold was previously reported to be 40% lignin content, but our results 

demonstrated substantial variability with litter type and environment. To our knowledge, 

this is the first mechanistic explanation of microbial allocation of cellulolytic and 

ligninolytic enzymes as a function of the lignin concentration of the lignocellulose 

complex but raises further questions about factors controlling the threshold for lignin 

decay, such as nitrogen availability. 
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1.1 Introduction 

Various aspects of plant litter quality affect decomposition rates (Berg and Staaf 

1980, Melillo et al. 1989, Bengtsson et al. 2018). An important one is the carbon quality 

of litter determined by the relative proportions of different chemical compounds, such as 

cellulose, hemicellulose and lignin. These are the main constituents of the plant cell wall 

and the most abundant forms of organic matter in terrestrial ecosystems (Klemm et al. 

2005). However, cellulose and hemicellulose are energy rich polysaccharides whereas 

lignin is a polyphenolic compound and likely energy sink for catalysis (Kirk and Farrell 

1987). For these reasons, the microbial carbon use efficiency (CUE; herein assumed to be 

the fraction of decomposed substrate carbon fixed into microbial biomass) of 

holocellulose is generally considered to be positive, whereas the CUE for lignin may be 

negative if the energetic cost of lignin decay is greater than the yield despite the possible 

assimilation of some lignin carbon into microbial biomass. The two compounds usually 

decompose at different rates and many decomposition models have long separated them 

into different pools (Paul and Juma 1981). In brief, microbes preferentially attack the 

high-energy holocellulose litter fractions during decomposition, yielding 

monosaccharides like glucose and xylose that are readily metabolized by microorganisms 

and thereby increasing the lignin concentration of remaining litter (Melillo et al. 1989). 

However, biochemical linkages between polysaccharides and lignin may also necessitate 

the breakdown of lignin to increase access to holocellulose (Sinsabaugh and Follstad 

Shah 2011, Talbot and Treseder 2012, Campbell et al. 2016).  

Hydrolytic enzymes such as beta-glucosidases (BG) depolymerize cellulose, 

which has a linear chemical structure offering sequential binding sites for enzymes. In 
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contrast, oxidative enzymes (OX) such as phenol oxidases and peroxidases depolymerize 

lignin, which has an irregular structure composed of several types of linkages and 

subunits that limits effective binding sites for enzymes. Lignin present in plant litter 

affects decomposition rates by reducing holocellulose accessibility to enzymatic 

hydrolysis both physically (Boerjan et al. 2003) and chemically by non-specific enzyme 

binding (Hammel 1997). Consequently, the lignocellulose index (LCI = lignin/[lignin + 

hollocellulose]) of plant litter has long been a strong predictor of decomposition rate 

(Meentemeyer 1978, Whittinghill et al. 2012) and likely influences the microbial 

allocation of extracellular enzymes that catalyze the degradation of lignocellulose. 

To our knowledge, the effects of LCI on the relative activities of cellulolytic and 

ligninolytic enzymes have not been explicitly examined. In contrast, Moorhead et al. 

(2013) described the control of LCI on empirical, first order decay rate coefficients (ki) 

for hollocellulose (C2 = cellulose + hemicellulose) and lignin (C3) between LCI values 

ranging from 0 (plant litter contains no lignin) to 0.7 (the empirical maximum amount of 

lignin, defined by Melillo et al. 1982), by assuming an energetic cost-benefit relationship 

between C2 and C3 decomposition. Carbon use efficiency for C2 was considered to be 

positive, whereas CUE for C3 was negative; as LCI increased, realized CUE for 

lignocellulose decay decreased. Although a negative CUE seems counterintuitive, it 

simply represents the net cost rather than gain in energy from the degradation of lignin 

(Moorhead et al. 2013), a cost that is met by the net yield of energy from the degradation 

of holocellulose. In this model, the decay rate coefficient for holocellulose, k2, is a 

piecewise, declining linear function of LCI, changing slope at an LCI value (LCITHR), at 

which lignin begins to decay and above which the decay rate coefficient for lignin, k3, is 
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an increasing linear function of LCI. Because hydrolytic enzyme activity catalyzes 

holocellulose decomposition, and oxidative enzyme activity drives lignin decomposition, 

LCI should relate to the proportion of hydrolytic and oxidative enzyme activity 

(Sinsabaugh 2010) needed to estimate the decay rate coefficients (ki) for holocellulose 

and lignin, respectively. 

To our knowledge, previous decomposition models have not included LCI as a 

control on enzyme expression. However, several recent models of plant litter 

decomposition incorporated enzyme pools using either the reverse Michaelis-Menten 

(RMM) or standard Michaelis-Menten (MM) equations (Tang 2015). The simplest have 

one substrate pool that is degraded by one enzyme (e.g., Schimel and Weintraub 2003), 

while the most complex include multiple enzyme pools that degrade multiple substrate 

pools (Allison 2005, Moorhead et al. 2012, Abramoff et al. 2017). In contrast, a suite of 

recent soil carbon partitioning studies (Cotrufo et al. 2015, Soong et al. 2015, Campbell 

et al. 2016) examined the relationship between LCI and soil organic carbon formation, 

but without explicitly incorporating extracellular enzyme activities. An intermediate 

example is the Millennial model (Abramoff et al. 2018), which used microbial biomass as 

a proxy for enzymes in MM formulations. 

In summary, the mechanisms of plant litter decomposition are complicated by the 

physical and chemical links between holocellulose and lignin that require different 

enzymes to cleave. However, existing enzyme-based models have not addressed 

interactions between these substrate pools. Our goal was to develop a model to calculate 

the allocation of hydrolytic and oxidative enzymes to match observed decay rates of 

holocellulose and lignin, respectively, given litter LCI (Moorhead et al. 2013). 
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1.2 Modeling methods 

1.2.1 Rationale 

Our model balances holocellulose (C2) hydrolysis by cellulolytic enzymes (E2) 

with lignin (C3) degradation by oxidative enzymes (E3). A key assumption of this model 

is that enzyme-catalyzed reactions tend to occur at roughly half the theoretical maximum 

rate (kMAX) (Sinsabaugh et al. 2014); thus VMAX ≅ 2 · kMAX · C for use in the RMM 

equation. The justification for this assumption is that enzymes rarely face selection 

pressures that would require them to operate at maximum efficiency and so moderately 

efficient enzymes actually optimize resource gain from multiple reactions (Bar-Even et 

al. 2011, Kari et al. 2019). Moreover, the half-saturation coefficients in these equations 

(KM) that approximate substrate concentrations optimize the responsiveness of reaction 

rates (Klipp and Heinrich 1994). Thus, the relationship between VMAX and KM should be 

tightly constrained, as verified in a recent meta-analysis by Sinsabaugh et al. (2014). 

Given the above assumption, the decay of C2 and C3 can be estimated with the RMM 

equation as dCi/dt = (2 · (kMAXi · Ci) · Ei) / (KEi + Ei), where KEi is the half saturation 

constant for enzyme concentration (Ei) and kMAXi is the maximum decay rate coefficient 

for first-order estimates of decomposition rates of substrates (Moorhead et al. 2013). In 

the present study, realized ki varies with LCI so that the allocation of enzymes should also 

change with LCI. All model parameters are listed in Table 1.1: 
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Table 1.1: Parameters used in modelling cellulolytic and ligninolytic enzyme allocations. 

Parameter Value  Units 

CUE2 0.50 Microbial carbon use efficiency 

of cellulose 

unitless 

CUE3 -0.21 Microbial carbon use efficiency 

of lignin 

unitless 

KE2 0.30 Enzyme half saturation constant 

for cellulose 

mg C g-1 

KE3 0.30 Enzyme half saturation constant 

for lignin 

mg C g-1 

kMAX2 0.10 Maximum substrate decay rate 

coefficient for cellulose 

 d-1 

kMAX3 0.01 Maximum substrate decay rate 

coefficient for lignin 

d-1 

LCIMAX 0.70 Maximum LCI unitless 

LCITHR 0.40 Threshold at which lignin decay 

begins 

unitless 

m2 -0.17 Slope of substrate decay rate 

coefficient for cellulose 

d-1 

m3 0.03 Slope of substrate decay rate 

coefficient for lignin 

d-1 
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The allocation of enzyme pools was determined by setting RMM functions equal 

to decay rates estimated by first-order equations for both holocellulose and lignin. The 

linear functions of ki at given LCI described by Moorhead et al. (2013) were used in 

place of the decay rate coefficients in these equations. When LCI ≥ LCITHR:  

(2 · (kMAX2 · C2) · E2) / (KE2 + E2) = (m3 · CUE2/CUE3 · (LCI - LCIMAX) + kMAX3) · C2

 (1.1) 

(2 · (kMAX3 · C3) · E3) / (KE3 + E3) = (m3 · LCI + kMAX3) · C3 (1.2) 

and when LCI < LCITHR: 

(2 · (kMAX2 · C2) · E2) / (KE2 + E2) = (m2 · LCI + kMAX2) · C2 (1.3) 

dC3/dt = 0 (1.4) 

where mi are the slopes of ki versus LCI (Moorhead et al. 2013). These equations were 

then solved for E2 and E3 in terms of kMAXi, KEi, LCI, LCIMAX, and CUEi, when LCI ≥ 

LCITHR:  

E2 = - KE2· (CUE2 · LCI · m3 - CUE2 · LCIMAX · m3 + CUE3 · kMAX3) / (CUE2 · LCI · m3 - 

CUE2 · LCIMAX · m3 – 2 · CUE3 · kMAX2 + CUE3 · kMAX3) (1.5) 

E3 = - KE3· (LCI · m3 + kMAX3) / (LCI · m3 – kMAX3) (1.6) 

and when LCI < LCITHR: 

E2 = - KE2· (LCI · m2 + kMAX2) / (LCI · m2 - kMAX2) (1.7) 
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E3 = 0 (1.8) 

Using the parameter estimates of Schimel and Weintraub (2003) and Moorhead et al. 

(2013), and assuming that KE2 = KE3 (Table 1.1), the only variable in equations 1.1-1.8 is 

LCI, assuming that CUE2 and CUE3 are constant. Although the values of KE are unlikely 

to be identical, we found that modest variations did not substantially alter the patterns of 

model behavior. Thus, the relative allocations of E2 and E3 may be estimated by LCI of 

litter residue to meet empirical patterns of lignocellulose decomposition. 

1.2.2 Validation 

Relatively few decomposition studies report both LCI and extracellular enzyme 

activity (EEA) over sufficient time to show substantial changes in LCI and make it 

possible to define LCITHR value. For example, Lashermes et al. (2016) conducted a 126-

day laboratory study of lignocellulose decay in maize (Zea mays L.) leaves, steams, and 

roots inoculated with a basidiomycete (Phanerochaete chrysosporium). They reported a 

final mean LCI value of about 0.22 and a mean BG/(BG+OX) value of 0.99; thus, LCI 

was too low to initiate much oxidative enzyme activity. In contrast, Snajdr et al. (2011) 

measured mass loss, holocellulose and lignin content, and extracellular enzyme activity 

during oak (Quercus petraea) litter decomposition in a forest over two years near Prague, 

Czech Republic. Litter lignin content was relatively high at 38% of initial mass, and LCI 

values increased to approximately 0.69 by the end of the study. Although LCI was not 

reported on all dates of enzyme measurements, LCI was linearly related to remaining 

litter mass (LCI = 0.0021·Mass+0.5690, N = 5, R2 = 0.8733) and we used this 

relationship to estimate LCI for observed values of mass loss concurrent with all 
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observations of enzyme activities. We selected the activity of BG as an index to 

holocellulose decay and the combined activities of peroxidase and phenol oxidase (OX) 

as an index to lignin decay. The observed relationships between BG/(BG+OX) and LCI 

in decaying litter were compared to our model results.  

We also constructed a second validation exercise by combining the datasets from 

studies by Magill and Aber (1998) and Carreiro et al. (2000). Magill and Aber (1998) 

conducted field decomposition studies of oak (Quercus velutina) and maple (Acer 

rubrum) litter over 2 years at Harvard Forest, Mass., in which they measured mass loss, 

lignin, and cellulose content. Although Magill and Aber (1998) did not measure EEA, 

final LCI values ranged 0.55-0.65. In comparison, Carreiro et al. (2000) measured mass 

loss and EEA during long term decomposition of oak (Quercus rubra) and maple (Acer 

rubrum) litter near New York, NY, but did not continuously measure lignin or cellulose 

content. We combined the datasets from these field studies to extrapolate relationships 

between EEA and LCI given mass loss patterns of similar litter types under similar field 

conditions. In the study by Magill and Aber (1998), LCI was linearly related to percent 

mass loss in decomposing oak litter (LCI = 0.0018 · Mass + 0.4554, N = 13, R2 = 0.7503) 

and maple litter (LCI = 0.0010 · Mass + 0.5368, N = 12, R2 = 0.5226). These 

relationships were used to estimate LCI at observed values of mass loss for both oak and 

maple litter, concurrent with observations of enzyme activities (Carreiro et al. 2000). 

Again, we selected the activity of BG as an index to holocellulose decay and the 

combined activities of peroxidase and phenol oxidase (OX) as an index to lignin decay 

and compared relationships between observed BG/(BG+OX) and LCI in decaying litter 

to our model estimates as a second validation exercise.  
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1.3 Results 

Our model allocated holocellulose and lignin degrading enzymes in response to 

residue LCI as functions of carbon use efficiency similar to the pattern of first-order 

decay rate coefficients (Fig. 1-1). The cellulose decay rate coefficient (k2) decreased 

linearly by 70% as LCI increased from 0 to 0.4 (LCITHR), and by another 67% as LCI 

increased from 0.4 to 0.7, whereas the lignin decay rate coefficient (k3) increased linearly 

from 0 to 0.01 d-1 as LCI increased from 0.4 to 0.7 (Fig. 1-1a). The simulated patterns of 

activities for cellulolytic (E2) and ligninolytic (E3) enzymes approximated these patterns 

for decay rate coefficients; the allocation of E2 decreased by 76% as LCI increased from 

0 to 0.4, and by another 74% as LCI increased from 0.4 to 0.7 (Fig. 1-1b). In contrast, E3 

increased from 0 to 0.3 mg C g-1 soil as LCI increased from 0.4 to 0.7 (Fig. 1-2). Despite 

differences in the relative magnitudes of changes in ki’s and Ei’s with changing LCI, 

simulated enzyme activities during decay generally followed the patterns of change in 

empirical decay rate coefficients. 
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Fig. 1-1: a. Decay rate coefficients (d-1) for holocellulose (solid line) and lignin (dashed 
line) and b. amounts (mg C g-1 soil) of apparent cellulolytic (solid line) and 
ligninolytic (dashed line) enzyme activities vs. litter LCI. 

The relationships between EEA and LCI (Fig. 1-2) support the notion that 

tradeoffs in realized CUE balance lignin and holocellulose decay (Moorhead et al. 2013). 

In brief, as LCI increases during decomposition, the increased density of biochemical 

linkages between holocellulose and lignin necessitate the increased degradation of lignin 

to access holocellulose. The degradation of lignin is an energy-expensive process, 

defined herein as having a negative CUE (a net energy cost, as per Moorhead et al. 2013), 

resulting in a realized CUE for lignocellulose decomposition that declines as LCI 
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increases. In all cases, the relationship between BG/(BG+OX) and LCI was negative 

above a threshold value of LCI (LCITHR), consistent with observations by Herman et al. 

(2008), although the LCI threshold for oxidative enzyme activity in experimental studies 

differed from the expected value of LCITHR = 0.4. In the northeast USA, studies by 

Magill and Aber (1998) and Carreiro et al. (2000) suggested a LCI threshold for 

oxidative activity of about 0.45 for oak (Fig. 1-2b) and 0.55 for maple litters (Fig. 2c). In 

contrast, the Snajdr et al. (2011) data suggest a LCI value of about 0.60 for oak litter 

decomposing in the Czech Republic (Fig. 1-2a). 
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Fig. 1-2: Relationships between the allocation of apparent enzyme activities (BG/[BG + 
OX]) and litter LCI during decomposition. Simulations with an LCI threshold = 
0.4 are in solid lines and alternative model thresholds suggested by observations 
are shown by dashed lines: a. estimated oak litter LCI from Snajdr et al. (2011) 
including an alternative model LCI threshold = 0.6, b. oak litter LCI estimated 
from Magill and Aber (1998) including an alternative model LCI threshold = 
0.45; c. maple litter LCI estimated from Magill and Aber (1998) including an 
alternative model LCI threshold = 0.55. Enzyme data used in b and c are from 
Carreiro et al. (2000).		
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1.4 Discussion 

Overall, model results were consistent with observed patterns of decline in 

proportional allocation of cellulolytic versus ligninolytic enzyme activity with increasing 

LCI in decaying litter despite differences between studies in the threshold value of LCI at 

which this proportion began to decline. To our knowledge, this represents the first 

attempt to calculate the allocations of enzymes associated with the degradation of the 

primary polysaccharide and polyphenol components of plant cell walls, which together 

account for the largest fraction of dead organic matter in most terrestrial ecosystems. 

Unfortunately, too few experimental data exist to provide additional insights to the 

controls on these patterns. 

Variations in the apparent LCI threshold among studies may result from 

differences in lignin and polysaccharide assays, the oxidative enzymes measured, and 

characteristics of study sites. For example, Snajdr et al. (2011) measured Klason lignin 

and Magill and Aber (1998) used near infrared reflectance spectroscopy (NIRS) to 

estimate lignin content. These measuring techniques yield different values that are not 

necessarily comparable, e.g., Van Soest measurements are usually lower than Klason 

measurements (Van Soest et al. 2018). Similarly, polysaccharide assay methodology 

varied across these studies. Snajdr et al. (2011) measured cellulose using gas 

chromatography after acid hydrolysis, whereas Magill and Aber (1998) used near infrared 

spectroscopy (NIRS). In addition, the NIRS technique is predictive, with reflectance 

spectra calibrated using either Van Soest or Klason lignin and cellulose measurements, 

adding further variation to estimates of LCI (Brinkmann et al. 2002). For both studies, we 

calculated LCI based on the combined cellulose and hemicellulose content of remaining 



15 

litter, but differences measuring these polysaccharides add uncertainty to estimates of 

LCI. 

Another source of variability when comparing studies is that differences in 

oxidative enzyme methods affect assay sensitivity (Bach et al. 2013). Moreover, soil 

microbes produce oxidative enzymes for many reasons, including ontogeny and defense 

as well as carbon and nitrogen acquisition (Burns et al. 2013). Thus, oxidative enzyme 

activity is not a direct proxy for lignin degradation. Lastly, oxidative enzyme activities 

are measured only in a relatively small proportion of decomposition studies (Chen et al. 

2018), providing a limited suite of data for generalization. For all of these reasons, it is 

remarkable that our simulations showed similarities to these uncertain observations. 

Finally, lignin decay is sensitive to a variety of factors. Site and litter type, as well 

as litter nitrogen content, have significant effects on lignin decomposition (Carreiro et al. 

2000, Herman et al. 2008). Two of the decomposition studies used to validate this model 

(Magill and Aber 1998, Carreiro et al. 2000) took place in the northeastern USA, while 

the other (Snadjr et al. 2011) took place in the Czech Republic. Site differences are likely 

a result of variability in soil microbial communities, soil pH, atmospheric nitrogen 

deposition, and interactions between these controls. At global scales, the effects of 

nitrogen amendment on oxidative enzyme activity depend on microbial community 

composition and soil type (Allison et al. 2009, Burns et al. 2013). For example, Frey et al. 

(2014) found that nitrogen amendment of basidiomycete-dominated temperate and boreal 

forest soils decreased oxidative enzyme activity, while Iyyemperumal and Shi (2008) 

found that grassland soils dominated by glomeromycota and ascomycota showed little 

response. Because the LCI threshold at which oxidative enzymes become active (and 
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lignin decays) is responsive to multiple factors, many more data are needed to elucidate 

these controls than were available for this study.  

In conclusion, our model predicted the proportional allocation of cellulolytic and 

ligninolytic enzymes during decomposition consistent with the notion that energetic 

tradeoffs between holocellulose and lignin decay control overall lignocellulose 

decomposition. This hypothesis is but one of many either proposed or previously 

observed to drive patterns of lignocellulose decay. Direct observation of specific enzyme 

activities associated with polysaccharide and polyphenol decay provides a less 

ambiguous explanation for these patterns than measures of changing litter chemistry and 

mass loss alone. Moreover, patterns of enzyme allocation with respect to LCI were 

consistent with a simple, underlying energy balance rationale for lignocellulose 

decomposition. Thus, this model integrates lignocellulose controls and extracellular 

enzymatic activities into a single, testable process model. However, our results also 

indicate that defining more precise relationships between LCI and EEA requires long-

term experimental studies that couple measurements of litter chemical quality and 

specific enzyme assays over sufficient time to observe substantial changes in LCI. 
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Chapter 2  

Simulating Leaf Litter Decay with Eco-enzymatic 

Activities Given Carbon Quality and Carbon-Nitrogen 

Stoichiometry 

 

Abstract 

We developed a model of plant litter decomposition including three substrate 

pools of organic nitrogen compounds (C1), cellulose (C2), and lignin (C3), which were 

catalyzed by specific enzyme pools (E1, E2 and E3, respectively). We then solved for the 

allocation of each enzyme pool as functions of litter quality, C:N stoichiometry, and 

constraints on total enzyme production. We first determined the proportional allocation 

alpha2 = E2 / (E2 + E3) by setting observed decay rates at given lignocellulose index (LCI) 

values equal to reverse Michaelis-Menten (RMM) equations and solving for Ei. We then 

determined alpha1 = E1 / (E1 + E2+3), again using RMM equations, in three ways: (1) to 

exactly balance microbial stoichiometric needs for C and N, (2) to maximize potential C 

assimilation by optimizing C released from C1 and C2+3 pools, and (3) using empirical 

observations of enzyme activity patterns. Values of alpha1 and alpha2 then were used to 

drive RMM equations estimating decomposition of all three substrates. We found that 

stoichiometric estimates of alpha1 declined with increasing litter lignocellulose index 

(LCI), the C-maximizing approach increased alpha1 to exclusively use C1 at moderate 
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LCI, whereas the empirically observed alpha1 gradually increased with LCI. Simulated 

patterns of litter decay and net carbon use efficiency (CUE) from these three models were 

similarly variable, raising questions about the stoichiometric relationships between 

enzyme activity, litter quality, and microbial resource demands. For example, the 

simulated CUE of the lignocellulose pool decreased as LCI increased although we 

assumed that CUE of the organic nitrogen pool remained constant. Thus, C1 becomes an 

increasingly efficient source of C in recalcitrant litters, driving the rapid shift in enzyme 

allocation in the C-maximizing model and possibly explaining the more graduate shift in 

observed enzyme activities. This pattern suggests that microbes allocate an increasing 

amount of enzyme toward C1 decay as decomposition progresses in order to maximize 

growth. Unfortunately, approximating observed patterns of alpha1 with the C-maximizing 

model required simultaneously adjusting multiple parameters controlling relative C and N 

fluxes, for which we could find no set of data sufficient to inform or test this model. 

Finally, observed patterns of alpha1 generated patterns of N-mineralization and excess C-

mineralization (overflow respiration) above and below a threshold element ratio (TER) 

for litter C:N concentration, consistent with commonly reported patterns for litter 

decomposition. We conclude that this three-pool model provides a practical solution for 

allocating microbial C- and N-acquiring enzymes as functions of litter C-quality and C:N 

stoichiometry but that insufficient data exist to reconcile underlying controls with 

emergent patterns of C and N dynamics. 
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2.1 Introduction 

Litter decomposition is an important biogeochemical process with global 

implications for nutrient cycling, C fluxes, and climate change (Neumann et al. 2018). 

Terrestrial ecosystems are often N-limited, so plants often meet their stoichiometric needs 

through N mineralized during leaf decay, making the process a key control on nutrient 

cycling and driver for primary production (Suseela 2019). Carbon emissions from soil 

organic carbon (SOC) decomposition mostly originate from the decay of the relatively 

labile fraction and are equal to about seven times the annual release of fossil carbon, 

which makes litter decomposition a significant C source to the atmosphere (Bernstein et 

al. 2007). However, the dynamics of litter decay and soil organic matter differ along the 

litter-to-soil continuum. For example, microbial carbon use efficiency (CUE) is highest in 

fresh, high-quality litter and lowest in highly degraded SOC (Sinsabaugh et al. 2016). 

Additionally, the biomass-to-substrate ratio increased from 0.1% early in decay to 15.2% 

in a meta-analysis that spanned multiple terrestrial systems (Su et al. 2007). Furthermore, 

as litter is degraded, it becomes more recalcitrant, so that the decay rate coefficient 

decreases along the litter-to-soil continuum. 

Advances in the theory of microbial decomposition have provided a foundation 

for changes in the structure of fine-scale leaf decay and SOC models used in global C 

models. For example, Schimel and Weintraub (2003) developed a microbially-mediated 

enzyme-based decomposition model describing the degradation of insoluble polymers 

comprising the bulk of plant litter. Recently, earth system models explicitly incorporated 

microbial processes to increase accuracy and realism (Wieder et al. 2015), as have 
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global-scale SOC models (Sulman et al. 2014), smaller-scale ecosystem models (Wang et 

al. 2020), and those at the level of a single enzyme-substrate reaction (Tang 2015). Along 

with the explicit incorporation of microbial processes comes the need to balance multiple 

resource demands as resource qualities vary during decay. 

2.1.1 Carbon-nitrogen stoichiometry 

The ecological stoichiometry theory (EST) describes the balance of multiple 

elements needed to meet the demands of living organisms, including decomposer 

microorganisms (Sterner and Elser 2002) that are globally constrained at a molar C:N:P 

ratio in biomass at 60:7:1 (Cleveland and Liptzin 2007). Because decomposer 

microorganisms obtain both energy and nutrients from decaying organic matter, the 

threshold element ratio (TER) of soil organic matter is defined as the breakpoint between 

energy (C) and nutrient limitations, such as nitrogen (N) (Frost et al. 2006), e.g., TERC:N = 

AN · (BC:N / CUE), where AN is the assimilation efficiency of N, BC:N is the C:N ratio of 

biomass, and carbon use efficiency is CUE = µ / (µ + R), in which µ is microbial growth 

and R is respiration. Nitrogen limitation occurs when the availability of N, relative to C, is 

less than TER; C limitation occurs when the reverse is true (Sinsabaugh et al. 2013). 

Microbial growth slows when stoichiometric needs are not met, thus slowing 

decomposition. 

Ecoenzymatic stoichiometric theory (EEST) is based on the assumption that 

microbes balance their C:N requirements through the production of C- and N-acquiring 

enzymes (Sinsabaugh and Follstad Shah 2012). Because microorganisms degrade plant 

litter by depolymerizing insoluble compounds with extracellular enzymes, those enzymes 
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are proximal agents of plant litter decomposition (Sinsabaugh et al. 1991, 1993, 2008). For 

this reason, both microbial and resource stoichiometry influence extracellular enzyme 

activity (Sinsabaugh and Follstad Shah 2012). Most hydrolytic enzymes are substrate-

specific and a relative few can be used as indicators for the acquisition of energy and 

nutrients from primary sources (Sinsabaugh et al. 1991, Sinsabaugh 1994). For example, 

beta-glucosidase (BG) is a C-acquiring enzyme that catalyzes the hydrolysis of glycosidic 

bonds to release glucose whereas N-acetyl glucosaminidase (NAG) and leucine 

aminopeptidase (LAP) are N-acquiring enzymes, attacking chitin and protein, respectively. 

LAP catalyzes the hydrolysis of amino acids from the N-terminus of polypeptide chains, 

while NAG catalyzes the hydrolysis of terminal non-reducing amide residues from 

oligosaccharides. The relative activities of BG, NAG and LAP can be used to indicate the 

relative catalysis of cellulose, chitin, and protein, respectively. Because enzymes are 

energetically and nutritionally expensive to produce, microbes control the relative 

expression of different enzymes to optimally meet energy and nutrient needs (Sinsabaugh 

et al. 2008, Sinsabaugh and Follstad Shah 2012). For example, the balance of relative C- 

and N-acquiring extracellular enzyme activities EEAC:N ≈ BC:N / LC:N ≈ TERC:N / BC:N = AN 

/ CUE, where EEAC:N = BG / (LAP + NAG), and LC:N is the C:N ratio of labile organic 

material. 

Although many decomposition models variously incorporate stoichiometry and 

nutrient dynamics (see review by Manzoni and Porporato 2009), fewer incorporate enzyme 

activities linking substrate and biomass stoichiometry during decay (e.g., Allison 2010, 

Wang and Allison 2019, Fatichi et al. 2019). In general, as litter decomposes, its C:N ratio 

decreases because microbes release C through respiration, while N persists due to 
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immobilization and possibly condensation reactions (Melillo et al. 1982, Preston et al. 

2009). As resources become N-limited, CUE also decreases (Vicca et al. 2012), altering 

resource demands (Sinsabaugh et al. 2013). Thus, stoichiometric constraints are 

interactively and dynamically changing during decomposition and likely influencing 

enzyme expression. 

2.1.2 Carbon quality 

The bulk C:N ratio of litter provides little information about relative C and N 

accessibility (LC:N; above) without also considering carbon quality. For example, the rate 

of degradation of lignocellulose depends on lignin content or lignocellulose index of the 

litter, i.e., LCI = C3 / (C3 + C2), which affects CUE (Meentemeyer 1978, Whittinghill et al. 

2012, Moorhead et al. 2013), and N accessibility when bound in polyphenolic polymers 

that are difficult to degrade (Rillig et al. 2007). Because both LCI and CUE are related to 

C and N accessibility, all four factors: LCI, CUE, and both C and N availability are related, 

and together influence microbial C and N acquisition. For example, the LCI model 

developed by Moorhead et al. (2013) estimates the relative decay rates of hollocellulose 

and lignin with LCI, suggesting that the relative allocation of enzymes that catalyze their 

breakdown follows a similar pattern. The recent model by Margida et al. (2020; Chapter 

1), confirmed these relationships between litter quality (LCI) and patterns of cellulolytic 

(E2) and ligninolytic (E3) enzymes. However, neither of these models considered the effects 

of substrate LCI on the stoichiometric controls to decomposition. 

Carbon quality (e.g., LCI) thus is likely an important control on enzyme allocation 

to meet stoichiometric demands (Sinsabaugh 2010, Sinsabaugh and Follstad Shah 2011, 
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2012). The threshold element ratio (TERC:N) depends on microbial carbon use efficiency 

(CUE), which is also a function of LCI. Additionally, the C:N ratio of labile organic 

material (LC:N) likely reflects the recalcitrance of substrate (i.e., LCI). Moreover, the 

relative availability of substrate C and N (SC:N = [1 / EEAC:N] · [BC:N / LC:N]) depends on a 

half-saturation constant (KC:N) reflecting the stoichiometry of C:N availability (Sinsabaugh 

and Follstad Shah 2012). Thus, the relative recalcitrance of substrate alters emergent 

stoichiometric relationships (Sinsabaugh 2010, Sinsabaugh and Follstad Shah 2011). To 

our knowledge, these relationships have not been explicitly incorporated into an enzyme-

based decomposition model. This is a potentially valuable integration of controls because 

the relationships between LCI, TERC:N, CUE, LC:N, SC:N, and KC:N make it clear that the 

concept of nutrient limitation must include an interactive measure of substrate 

recalcitrance. 

2.1.3 Empirical evidence 

Few data are available to inform such an enzyme-based decomposition model 

because few experimental studies have simultaneously examined the dynamics of changing 

litter recalcitrance and nutrient stoichiometry as well as the stoichiometry of extracellular 

enzymes during long-term litter decay. However, combined studies of oak and maple litter 

(Carreiro et al. 2000) and oak litter (Snajdr et al. 2011) decomposition revealed that 

lignocellulose-degrading enzymes (E2+3) accounted for ~60% of total enzyme activity as 

LCI approached 0.7, considered to be the endpoint of LCI during decay (Melillo et al. 1982, 

Herman et al. 2008). The N-acquiring enzyme activities (E1) accounted for the other 40%. 

In addition, long-term studies of changes in chemistry of similar litter types provided 
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estimates of lignin, cellulose and organic N fractions during decomposition (Aber et al. 

1984, Magill and Aber 1998). Together, these studies provide a synthetic set of data 

combining measures of litter recalcitrance, nutrient stoichiometry, and extracellular 

enzyme activities during long-term litter decay. 

This composite data set also raises questions. For example, the proportional 

contribution of N-acquiring enzymes to total enzymes (alpha1 = E1 / [E1 + E2 + E3]) 

increased as LCI increased, although earlier work suggested an inverse relationship as 

realized CUE declined with increasing LCI (Moorhead et al. 2012). Also, observed ratios 

of C- and N-acquiring enzyme activities suggest that CUE of lignocellulose is positive at 

LCI = 0.7, despite earlier assumptions that it approached zero (Moorhead et al. 2013), or 

that microbes are mining N from recalcitrant organic matter given an external C source 

(e.g., priming effect; Kuzyakov 2010), or that microbes are mining C from organic N 

substrates (Mori 2020) to maximize microbial C-acquisition (Averill 2014). Regardless, 

these patterns indicated that enzyme activities are controlled differently than previously 

thought. 

2.1.4 Objectives 

Our goals are to develop a mechanistic model of enzyme-mediated litter 

decomposition integrating ecological stoichiometric theory and litter recalcitrance, 

challenge that model against empirically observed data and thereby evaluate these 

interacting controls on microbial allocation of C- and N-acquiring enzymes during 

extended litter decay. Our modeling approach is to calculate the allocations of N-acquiring, 

cellulolytic, and ligninolytic enzyme activities in response to changing litter LCI and C:N 
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contents during decomposition using reverse Michaelis-Menten equations (Schimel and 

Weintraub 2003) that balance the decomposition rates of these substrates with microbial 

demands. We then test this model with litter chemistry and enzyme data derived from 

combining detailed studies of long-term changes in leaf litter chemistry during 

decomposition with parallel patterns of enzyme activities. Our working hypothesis is that 

the relative C yield (CUE2+3) for the lignocellulose complex will decline as LCI increases 

during progressive decomposition, driving a decline in the relative allocation of cellulolytic 

enzymes (alpha2 = E2 / [E2 + E3]). A decline in alpha2 reduces the relative demand for N to 

meet microbial stoichiometric needs, thus reducing relative enzyme allocation to N-

acquisition (alpha1). Alternatively, alpha1 may increase as the relative C yield of 

lignocellulose falls below the C yield of N containing compounds (CUE1) as 

microorganism seek to maximize growth.	

2.2 Modeling methods 

Our modeling rationale is based on two earlier models of plant litter decomposition 

that utilized reverse Michaelis-Menten (RMM) formulations to simulate the controls of 

either litter recalcitrance (Margida et al. 2020) or stoichiometry (Moorhead et al. 2012), 

separately. First, Margida et al. (2020) balances cellulolytic and ligninolytic enzyme 

activities as functions of LCI by setting observed, first-order decay rates equivalent to 

reverse Michaelis-Menten (RMM) functions and solving for the allocation of cellulolytic 

and ligninolytic enzymes necessary to meet empirical decay rates. This provides both the 

allocation of cellulolytic enzymes necessary for lignocellulose decay (alpha2) and the 

relative yield of C from the lignocellulose pool (CUE2+3). Second, Moorhead et al. (2012) 
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similarly determines the allocation of C- and N-acquiring enzyme activities needed to 

balance microbial stoichiometric requirements given the C:N content of an organic N 

substrate and C quality of a C-only substrate. Herein we combine these models, using the 

lignocellulose model to calculate the effects of LCI on the quality of the C-only substrate 

and the stoichiometric model to balance C-acquisition from lignocellulose with C and N 

from the organic N substrate. The lignocellulose model also calculates the allocation of 

lignocellulolytic enzymes (alpha2) whereas the stoichiometric model calculates the 

allocation of N- and C-acquiring enzymes (alpha1).	

2.2.1 Empirical data and observations 

We informed our model with empirical data from several experimental studies. 

First, we estimated patterns of substrate pool sizes C2 and C3 as linear functions of LCI 

based on extensive field studies by Aber et al. (1984), which did not include enzyme 

activities but serves as one of the most detailed examinations of changes in plant litter 

chemistry during long term decomposition. In this study, LCI was linearly related to mass 

loss at later stages of decay (e.g., when LCI > 0.4) in maple, aspen, and oak leaf 

decomposition on Blackhawk Island, Wisconsin, USA. Next, we estimated an organic N 

substrate pool (C1) by multiplying the total litter N by an assumed constant for the C:N 

ratio of the C1 pool (CN1 = 7), which was also linearly related to reported LCI (Table 2.1). 

We then defined CT as the sum of the three litter pools (CT = C1 + C2 + C3), subtracted C1 

to estimate the lignocellulose pool (C2+3 = CT - C1), calculated lignin as a fraction of 

lignocellulose (C3 = LCI · C2+3), and cellulose as the difference between lignocellulose and 

lignin (C2 = C2+3 - C3) (Table 2.1). We also estimated the size of a labile fraction of the 
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litter (L) that did not contain N and we assumed was not degraded by extracellular enzymes 

but influences decomposition processes and microbial carbon use efficiency (below). This 

pool was estimated as the difference between total reported litter mass and the sum of C1 

+ C2 + C3 pools. 

 

Table 2.1: Linear equations used to estimate model drivers. 
 
 Equation N R2 Source 

C1 20.077 · LCI + 3.015  72 0.6507 Aber et al. 1984; Magill & Aber 

1998 

L -72.193 · LCI + 

52.314 

48 0.6383 Aber et al. 1984 

LCI 0.002 · Mass + 0.455 13 0.7503 Magill & Aber 1998 (oak litter) 

LCI 0.001 · Mass + 0.537 12 0.5226 Magill & Aber 1998 (maple 

litter) 

LCI 0.002 · Mass + 0.569 5 0.8733 Snajdr et al. 2011 (oak litter) 

alpha1 1.700 · LCI - 0.793  35 0.7691 Magill & Aber 1998, Carreiro et 

al. 2000, Snajdr et al. 2011 

 

We then combined a dataset reporting LCI (Magill and Aber 1998) with one that 

reported EEA (Carreiro et al. 2000) to couple LCI and EEA measurements for the 

decomposition of oak and maple litters under similar environmental conditions in similar 

forest types, for consistency with a previous modeling study (Margida et al. 2020). LCI 

was linearly related to mass loss in both decomposing oak and maple litter (Table 1.1) in 
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the study by Magill and Aber (1998) and used to estimate LCI at observed values of mass 

loss for both litter types in studies by Carreiro et al. (2000), concurrent with observed 

enzyme activities. In the study by Snajdr et al. (2011), LCI was not reported on all dates of 

enzyme measurements but also was linearly related to remaining litter mass in 

decomposing oak litter and this relationship was used to estimate LCI for observed values 

of mass loss concurrent with observations of enzyme activities (Table 2.1). We then 

estimated the proportional allocation of N-acquiring enzymes (alpha1 = E1 / [E1 + E2 + E3]) 

as a linear function of LCI for the combined data (Magill and Aber 1998, Carreiro et al. 

2000, Snajdr et al. 2011).  

The resulting estimates of relative litter pool sizes and associated enzyme activities 

were used to interpret C and N fluxes during decomposition. Data from the Aber et al. 

(1984) study were used to define general relationships between LCI and C1, C2, C3 and L 

over long-term decomposition (above). Combined, the Magill and Aber (1998), Carreiro 

et al. (2000), and Snajdr et al. (2011) studies provided enzyme data coupled with LCI 

values during the decomposition of similar species in comparable deciduous forests. 

Overall, the combined data sets aligned EEA, LCI, Ci and N (in C1) used to address the 

objectives of this study.  

2.2.2 Modeling rationale 

Balancing microbial C:N stoichiometric requirements for growth (Eq. 2.1, below) 

by balancing the activities of the enzyme pools depends on three factors. First, LCI controls 

the expected decay rates of C2 and C3 and thus C2+3 (Herman et al. 2008, Moorhead et al. 

2013). Second, the C yield from C1 and from the lignocellulose complex (C2+3) to support 
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microbial growth should balance the N yield from C1 (Eq. 2.1). Third, total enzyme 

production (ET = E1 + E2 + E3) constrains the amount of enzyme allocated to degrade C1 

and C2+3. Our model assumes the decomposition of the organic N pool (C1) by N-acquiring 

enzymes (E1), cellulose (C2) hydrolysis by cellulolytic enzymes (E2), and lignin (C3) 

degradation by oxidative enzymes (E3). This model allocates enzymes among the three 

pools according to three main drivers: substrate lignin concentration (LCI), litter N content 

(CN1), and the total microbial enzyme pool (ET). Variations in total microbial enzyme pool 

size alter both relative decay rates and enzyme allocation because rates of decay are 

nonlinear functions of enzyme concentrations (below). We herein present a practical 

approach to determine the allocation of E1, E2, and E3 as hierarchically nested functions of 

LCI, CN1, and ET. All model parameters are listed in Table 2.2. 
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Table 2.2: Parameters used in modeling nitrogen-acquiring, cellulolytic, and ligninolytic 
enzyme allocations. 

Parameter Value  Units 

B:S 0.02 Biomass-to-substrate ratio (carbon) unitless 

CN1 7.00 C:N ratio of organic N mg C/mg N 

CNM 7.16 C:N ratio of microbial biomass mg C/mg N 

CUE1 0.40 Microbial carbon use efficiency of organic N unitless 

CUE2 0.60 Microbial carbon use efficiency of cellulose unitless 

CUE3 -0.3 Microbial carbon use efficiency of lignin unitless 

E:B 0.02 Enzyme-to-biomass ratio (carbon) unitless 

KE1 0.30 Enzyme half saturation constant for organic N mg C/g 

KE2 0.30 Enzyme half saturation constant for cellulose mg C/g 

KE3 0.30 Enzyme half saturation constant for lignin mg C/g 

kMAX1 0.20 Maximum substrate decay rate coefficient for organic N d-1 

kMAX2 0.10 Maximum substrate decay rate coefficient for cellulose d-1 

kMAX3 0.01 Maximum substrate decay rate coefficient for lignin d-1 

LCIMAX 0.70 Maximum lignocellulose index unitless 

LCIMID 0.40 Threshold at which lignin decay begins unitless 

m2 -0.2 Slope of substrate decay rate coefficient for cellulose d-1 

m3 0.03 Slope of substrate decay rate coefficient for lignin d-1 
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2.2.3 Carbon- and nitrogen- acquiring enzyme allocation 

We first assume that microbes produce C- and N-acquiring enzymes to decompose 

two different types of organic matter pools, one that contains nitrogen (C1) and a 

lignocellulose pool that contains only carbon (C2+3), to meet their stoichiometric 

requirements (Sinsabaugh and Follstad Shah 2012). Note that cellulose and lignin are 

combined into a single composite pool at this step: 

 
CNB = CN1 · (CUE1 · dC1/dt + CUE2+3 · dC2+3/dt) / (dC1/dt) (2.1) 

 
where CNB = microbial C:N ratio, dCi/dt = decomposition rate for substrate (i), CN1 = C:N 

ratio for pool C1, CUEi = carbon use efficiency for substrate (i), and assuming potential N 

use efficiency is 100%. Both first-order decay rates and Reverse Michaelis-Menten (RMM) 

equations are used to describe substrate decomposition rates (dCi/dt): 

 
ki · Ci = 2 · kMAXi · Ci · Ei / (KEi + Ei) (2.2) 

 
where the maximum velocity of the reaction (VMAXi) is equivalent to the product, 2 · kMAXi 

· Ci (Margida et al. 2020), ki is the empirically observed rate coefficient, the maximum 

potential decay rate coefficient is kMAXi, and KEi is the half-saturation coefficient of 

enzymes Ei on substrate Ci (Moorhead and Weintraub 2018). Hence, ki is an empirically 

derived coefficient based on observations that LCI determines the rate of lignocellulose 

decay (Moorhead et al. 2013). Equation 2.2 was reordered to estimate the amount of 

enzyme needed to meet the expected decay rate: 

 
Ei = -ki · KEi / (ki – 2 · kMAXi) (2.3) 
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The resulting estimates of E1 and E2+3 were summed to estimate the total enzyme pool (ET), 

and alpha1 = E1 / ET was defined as the proportional allocation of N-acquiring to total 

enzymes (see appendix A for equation). 

An alternative rationale to exactly matching the stoichiometric demands of 

microorganisms for C and N was to maximize microbial growth (µ), i.e., C assimilation by 

altering equation 2.1: 

 
µ = CUE1 · dC1/dt + CUE2+3 · dC2+3/dt (2.4) 

 
The decay rates in equation 2.4 were replaced with their respective RMM equations (Eq. 

2.2) and respective enzyme pool sizes defined as E1 = alpha1 · ET and E2 = (1 – alpha1) · 

ET. Conditions generating maximum µ were determined by setting the derivative dµ/d 

(alpha1) to zero and solving for alpha1 (appendix A). Thus, we calculated two estimates of 

alpha1 based on anticipated enzyme activities, one that exactly balanced the stoichiometric 

demands of microorganisms (Eq. 2.1) and another that maximized microbial growth (Eq. 

2.4). 

2.2.4 LCI controls 

The first-order decay rate coefficients for cellulose (k2) and for lignin (k3) (eqs. 2, 

3) are described as linear functions of LCI (Moorhead et al. 2013), and thus the ratio of 

k3:k2 is constant at any LCI regardless of the actual rate of lignocellulose decomposition. 

Equation 2.3 was used to calculate E2 and E3 for the expected values of k2 and k3, given 

pool sizes C2 and C3 (Eq. 2.2). We then assumed that the relationship between the 

decomposition rate of the combined lignocellulose (C2+3 = C2 + C3) pool and total 
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lignocellulolytic enzyme pool (E2+3 = E2 + E3) at any LCI could be approximated as a 

composite RMM2+3 equation: 

 
dC2+3/dt = VMAX2+3 · E2+3 / (KE2+3 + E2+3) (2.5) 

where the maximum velocity of the reaction (VMAX2+3) is equivalent to the product, 2 · 

kMAX2 · C2  +  2 · kMAX3 · C3 (Margida et al. 2020). The left side of equation 2.5 was 

estimated as the sum of first-order decay rates for C2 and C3 (left side of Eq. 2.2), such that 

dC2+3/dt = k2 · C2 + k3 · C3, given LCI. The first-order rates for dC2/dt and dC3/dt were 

individually set equivalent to their respective RMMi equations to estimate enzyme 

concentrations (Ei) needed to meet these rates (Eq. 2.3). The resulting estimates of E2 and 

E3 were summed to estimate the total lignocellulolytic enzyme pool (E2+3), and alpha2 was 

defined as the proportional allocation of cellulolytic to total lignocelluloytic enzymes (E2+3 

= E2 / (E2 + E3)). The value of KE2+3 was then estimated by reorganizing equation 2.5. 

If decay rates are less than maximum, the ratio of ligninolytic (E3) to cellulolytic 

enzymes (E2) can vary at a given LCI because the RMM equations are saturating functions 

of E and likely have different kinetic coefficients for lignin and cellulose (Eq. 2.2). For this 

reason, restrictions on enzyme pool size (ET) must be included in balancing Ei’s. 

2.2.5 ET controls 

The effects of variations in total enzyme pool size (ET) on the allocation of 

cellulolytic and ligninolytic enzymes were evaluated by calculating alternative potential 

decay rates for C2+3 and their associated enzyme concentrations at a given LCI (section 

2.2.2) and then deriving VMAX2+3 and KE2+3 following the Lineweaver-Burk method. For 

example, the maximum expected rate of decomposition was based on the expected values 
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of the decay rate coefficients (Eq. 2.2) at a given LCI and pool sizes for C2 and C3, and 

then used to calculate associated values of E2 and E3 (Eq. 2.5). An alternative rate was 

calculated by reducing these decay rate coefficients to a fraction (s) of their expected 

values, i.e., k2S = s · k2. The resulting estimates of maximum and reduced reaction rates 

and enzyme concentrations (Eq. 2.5) were inverted and the linear relationship between the 

inverses of decay rates and the inverses of enzyme concentrations produced slope = KE2+3 

/ VMAX2+3 and intercept = 1 / VMAX2+3 values (Lineweaver and Burk 1934). In this manner, 

the kinetic coefficients of equation 2.5 were approximated at any given LCI, and the 

impacts of enzyme pool size (ET) on decomposition and enzyme allocation were quantified. 
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2.2.6 Balancing C and N fluxes 

Empirical observations of relative substrate pool sizes and enzyme activity patterns 

(section 2.1.1) were used to drive RMM equations estimating decomposition. We assumed 

that ET was approximately 0.004 · CT, i.e., that microbial biomass was approximately 2% 

of total system C and that enzyme allocation was approximately 2% of microbial biomass 

(Schimel and Weintraub 2003, Sinsabaugh et al. 2016). We also assumed that the half-

saturation coefficients for carbon pools scaled with their relative concentrations, i.e., KE(i) 

= Maximum KE(i) · [Ci / (CT)]1/3, using the cube-root to roughly account for enzyme 

diffusion through three dimensions. We then calculated carbon flux (RO) needed to balance 

C and N flows from litter to microbes given values of C1, C2, C3 and alpha1 by adding a C-

flux term (RO) to the basic C and N balance equation (appendix A) when alpha1 is given. 

This was calculated by modifying equation 2.1 to include RO: 

CNB = (CUE1 · dC1/dt + CUE2+3 · dC2+3/dt + RO) / ((dC1/dt) / CN1) (2.6) 

A positive value of RO indicates a surplus of C released by enzyme activities with respect 

to N, needed to balance microbial C:N demands (Eq. 2.1). This surplus is sometimes 

termed “overflow respiration” (Schimel and Weintraub 2003). A negative value indicates 

a C deficit with respect to N released from decomposition.  

Similarly, we calculated nitrogen flux (NM) needed to balance C flows from litter 

decomposition estimated according to enzyme activities and substrate quality by adding 

NM to the basic C and N balance equation (appendix A) when alpha1 is given. This was 

calculated by modifying equation 2.1 to include NM: 
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CNB = (CUE1 · dC1/dt + CUE2+3 · dC2+3/dt) / ((dC1/dt) / CN1 + NM) (2.7) 

A positive value of NM indicates a deficit of N released by enzyme activities with respect 

to C, needed to balance microbial C:N demands (Eq. 2.1). This is an estimate of potential 

N immobilization. A negative value indicates a N surplus with respect to C released from 

decomposition, or potential N mineralization. 

The point at which a C surplus switches to a deficit is commonly known as the 

threshold element ratio (TER) and corresponds to the point at which a N deficit switches 

to a surplus (Frost et al. 2006). Although this value is traditionally expressed as the 

microbial biomass C:N ratio divided by carbon use efficiency (above), this approach 

assumes constant substrate and microbial biomass stoichiometry and constant product 

assimilation efficiencies (both N and C) throughout decomposition. Neither assumption is 

true. Substrate stoichiometry clearly changes during decay and CUE varies both with 

substrate stoichiometry (Moorhead et al. 2012) and LCI (Moorhead et al. 2013). Herein we 

approximated TER as the intersection of RO and NM, which occurs only when both values 

are zero. 

We estimated cumulative C loss from litter decay and both positive and negative 

values of RO, based on decay rates at given values of LCI and the relationship between 

litter mass and LCI (section 2.1.1) to translate decay rates into C loss. We followed the 

same procedure with simulated N immobilization and mineralization (NM). We also 

calculated the total amount of C potentially fixed into biomass at each LCI: 

CF = (CUE1 · dC1/dt + CUE2+3 · dC2+3/dt) (2.8) 
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We then integrated all estimates of CF across all values of LCI (and mass loss) to generate 

an overall estimate of microbial C uptake for the entire range of decomposition.	

2.2.7 Carbon use efficiency 

We estimated a composite CUE in two ways. First, we calculated it within the 

model as a function of dC1/dt and dC2+3/dt: 

 
CUET = (CUE1 · dC1/dt + CUE2+3 · dC2+3/dt) / (dC1/dt + dC2+3)  (2.9) 

 
We also estimated CUE stoichiometrically as a function of labile resource availability 

(Sinsabaugh et al. 2016): 

 
CUEC:N = CUEMAX · (SC:N / (SC:N + KC:N)) (2.10) 

 

where CUEMAX is the empirical maximum carbon use efficiency (Sinsabaugh and Follstad 

Shah 2012), SC:N is the relative availability of substrate C and N (SC:N = [1 / EEAC:N] · [BC:N 

/ LC:N]), and KC:N is a half-saturation constant (0.5) reflecting the stoichiometry of C:N 

availability (Sinsabaugh and Follstad Shah 2012). This CUEC:N estimate relied upon the 

C:N ratio of the entire labile fraction of  the litter (LC:N) as a function of L, C1, and CN1: 

 
LC:N = (L + C1) / (C1 / CN1) (2.11) 

 
We then compared CUET and CUEC:N between models. 
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2.2.8 Sensitivity analysis 

We conducted a sensitivity analysis to gauge model behavior given the observed 

enzyme activity patterns in response to variation in key parameters: the C:N ratio of organic 

nitrogen (CN1), the microbial carbon use efficiency of the cellulose pool (CUE2), the LCI 

threshold for lignin decay (LCIMID), and the exponent for the half-saturation coefficient for 

enzymes operating on substrate (EXP). We chose these parameters because they are 

indicators of C:N stoichiometry (CN1), carbon quality (CUE2 and LCIMID), and enzyme 

activity (EXP), respectively. We examined model outputs driven by the observed values of 

alpha1, including threshold element ratio (TER), cumulative overflow respiration (RO), 

cumulative nitrogen mineralization (NM), and total amount of litter decay (dCT/dt) over the 

observed range of litter LCI.  

We simultaneously varied all four selected model parameters 1000 times with 

uniform random distributions within a 20% range of baseline values. We varied CN1 

between 6.3 and 7.7 (Sterner and Elser 2002, Miller 2000, Trofymow et al. 1983), CUE2 

between 0.48 and 0.60 (given a theoretical 0.6 maximum; Sinsabaugh et al. 2014), LCIMID 

between 0.36 and 0.44 (0.4 ± 20%; Hermann et al. 2008), and EXP between 0.30 and 0.37. 

Of the 1000 random values generated for each parameter, a total of 1000 random sets of 

the four parameter estimates were selected (Latin hypercube method) for statistical 

analysis. A general linear model compared variations in output variables (TER, ∑RO, ∑NM, 

and ∑dCT/dt) to variations in the parameters (CN1, CUE2, LCIMID, and EXP). The type 3 

partial sums of squares attributed to each parameter were compared to the total 

contributions of variations in all parameters to variations in model output variables to 

estimate the proportional contributions of each parameter to each output variable.  



39 

2.3 Results 

2.3.1 Litter and enzyme pools 

Overall, both the relative amounts of organic nitrogen (C1) and lignin (C3) substrate 

pools in decomposing litter increased with LCI and the relative cellulose (C2) content 

decreased, as would be expected during progressive decay (Fig. 2-1a). As LCI increased 

from 0.47 to 0.67, C1 increased by 46.6%, from 11.6 to 17.0% of remaining litter mass, C2 

decreased by 41.5%, from 46.8 to 27.4%, and C3 increased by 34%, from 41.5 to 55.6%. 

The proportional allocation of N-acquiring enzymes (alpha1) also increased with LCI (Fig. 

2-1b, Fig. 2-2), from the lowest observed value of 0.03 at LCI = 0.47 to 0.30 at LCI = 0.67. 

This observed pattern of alpha1 also was used to drive the estimated rates of decay, given 

relative enzyme pool sizes and relative substrate pool sizes, assuming a total enzyme pool 

size (ET) representing the fraction 0.004 of the total litter carbon (Eq. 2.3, Sec. 2.2.3). 

  



40 

 

 

Fig. 2-1: Simulated (lines) and empirical (symbols) relationships between lignocellulose 
index (LCI) and: a. organic nitrogen (C1; solid line and solid circles), cellulose 
(C2, dashed line and open circles) and lignin (C3; dotted line and triangles); b. 
observed proportional allocation of nitrogen-acquiring enzymes to total enzymes, 
alpha1 = E1 / ET. 
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Fig. 2-2: Relationships between estimated alpha1 values and lignocellulose index (LCI) of 
litter needed to balance microbial C:N stoichiometry (solid line), to maximize 
carbon acquisition (dashed and dotted line), driven by empirically-observed 
enzyme activities (dotted line),  and between estimated alpha2 value and LCI 
(dashed line). 
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When alpha1 was estimated to exactly balance microbial C:N requirements (the 

stoichiometric model), the calculated decay rates of organic nitrogen (dC1/dt) and 
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(Eq. 2.2) increased with LCI, while cellulose (dC2/dt) decreased and lignin (dC3/dt) decay 

varied. For example, as LCI increased from 0.47 to 0.67, dC1/dt increased from 0.37 to 

1.29, dC2/dt decreased from 0.59 to 0.00, and dC3/dt decreased from 0.04 to 0.00. We 

could approximate the observed pattern of alpha1 in the maximum growth model only by 

simultaneously varying multiple parameters, including CN1, CUEi, KEi, kmax1, B:C, and 

E:B (not shown), beyond any of the observed data or theoretical relationships cited 

herein. For this reason, we focused the rest of our study on the stoichiometric and 

empirical models. 

In contrast to the stoichiometric model, when observed values of alpha1 drove 

simulations (the empirical model), the calculated decay rates of organic nitrogen (dC1/dt) 

and lignin (dC3/dt) substrate pools based on RMM equations (Eq. 2.2) increased with 

LCI, while cellulose decay (dC2/dt) decreased (Fig. 2-3c). For example, as LCI increased 

from 0.47 to 0.67, dC1/dt increased from 0.008 to 0.511, dC2/dt decreased from 0.809 to 

0.066, and dC3/dt increased from 0.060 to 0.098 (as above, all decay rates are expressed 

in units C per day given 100 units of total substrate C, i.e., as percent of the total litter 

remaining). Total, cumulative substrate decay (dC1/dt+dC2/dt+dC3/dt) between LCI 0.47 

and 0.67 was 46% of the initial substrate C. 
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Fig. 2-3: a. Relationships between overall litter decay rate (dCi/dt) and lignocellulose index 
(LCI) of litter needed to balance microbial C:N stoichiometry (solid line) and 
driven by empirically-observed enzyme activities (dotted line); b. Relationships 
between simulated decay rates for pools of organic nitrogen (dC1/dt; dotted line), 
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cellulose (dC2/dt; solid line), and lignin (dC3/dt; dashed line) substrates and 
lignocellulose index (LCI) of litter needed to balance microbial C:N 
stoichiometry; and c. Relationships between simulated decay rates for pools of 
organic nitrogen (dC1/dt; dotted line), cellulose (dC2/dt; solid line), and lignin 
(dC3/dt; dashed line) substrates and lignocellulose index (LCI) of litter driven by 
empirically-observed enzyme activities. 

 

By definition, C and N fluxes estimated by our stoichiometric balanced model 

exactly met microbial C and N demands such that estimates of both RO and NM remained 

zero at all LCI. In contrast, simulations driven by the observed values of alpha1 generated 

excess C and N fluxes beyond what was necessary to exactly balance microbial C and N 

demand; both decreased with increasing LCI (Fig. 2-4). 

 

 

Fig. 2-4: Simulated relationships between calculated nitrogen (dotted line) and carbon 
(solid line) fluxes needed to balance microbial C:N stoichiometry at given values 
of lignocellulose index (LCI) of litter; the intersection of C and N fluxes estimates 
TER = 0.56 at a baseline CN1 = 7.0 (middle circle), while the other circles show 
estimated TER = 0.55 and 0.57 with CN1 at 6.3 and 7.7 (lowest and highest circles, 
respectively). 
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three circles shown in figure 4 illustrate increasing TER with increasing C:N ratio of the 

C1 pool (CN1). Moreover, balancing C and N fluxes with microbial stoichiometry at LCI < 

TER for baseline parameters generated 3.57 g C of cumulative overflow respiration (C 

mineralization), which would otherwise require 0.50 g of additional nitrogen 

immobilization to assimilate into microbial biomass. For values of LCI > TER, a subsidy 

of 9.95 g C would be required for microorganisms to assimilate 1.39 g of N that was 

mineralized. 

2.3.3 Sensitivity analysis 

Mean cumulative decomposition was 46.07 ± 3.76% of the original litter mass in 

sensitivity analyses. Results indicated that LCIMID and EXP accounted for nearly all the 

explained variation in total substrate decay, with LCIMID , alone, representing over 98% 

(Table 2.3). The mean value of TER was LCI = 0.484 ± 0.002 in sensitivity analyses and 

CN1, CUE2, LCIMID, and EXP together accounted for about 90% of the variation. LCIMID, 

alone, accounted for over 62% of the variation in TER. 
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Table 2.3: Results of ANOVA evaluating sensitivity analysis results (see section 2.3.3); 
proportional allocation of Type 3 partial sums of squares of ANOVA. 

 

  Source TER Decay 
Overflow 

Respiration 

Nitrogen 

Mineralization 

Proportion CN1 0.121 0.000 0.101 0.565 

 
CUE2 0.133 0.000 0.404 0.004 

 
EXP 0.022 0.019 0.019 0.186 

 
LCIMID 0.624 0.987 0.434 0.228 

  Error 0.074 0.000 0.013 0.017 

 

Variations in C and N fluxes (RO and NM) necessarily balance each other because 

they are generated with respect to stoichiometric requirements of microbial biomass. Thus, 

results of sensitivity analyses were identical for C and N fluxes. For this reason, we report 

RO (C mineralization) when LCI < TER and NM (N mineralization) when LCI > TER. The 

mean value of cumulative Ro was 0.394 ± 0.387% of the original litter C mass and CN1, 

CUE2, LCIMID, and EXP together accounted for about 96% of this variation (R2 = 0.998, 

all p < 0.01), whereas the mean value of NM was 0.155 ± 0.347% of the original litter C 

mass and CN1, LCIMID, and EXP explained nearly 99% of this variation (R2 = 0.984, all p 

< 0.01). Both CUE2 and LCIMID each accounted for over 40% of the variation in cumulative 

Ro; whereas CN1 alone accounted for nearly 57% of the variation in cumulative NM. 
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2.3.4 Carbon use efficiency 

Our stoichiometric balanced model generated a realized CUE for the assimilation 

of all substrates combined (CUET) that decreased by 73% from 0.475 at LCI = 0.47 to 

0.127 at LCI = 0.67 (Fig. 2-5). In contrast, CUET from simulations driven by observed 

alpha1 values declined by 36%, from 0.540 at LCI = 0.47 to a minimum of 0.324 at LCI = 

0.67. In both models, the carbon use efficiency for the combined lignocellulose pool 

(CUE23) decreased from 0.45 to 0.07, as LCI increased from 0.47 to 0.67 (Fig. 2-5). Thus, 

the difference between our stoichiometric model and output generated by the observed 

values of alpha1 was least at intermediate LCI values. Essentially, this implies that the 

realized CUET driven by empirical observations is higher than the theoretical value 

balancing microbial stoichiometry at both low and high values of LCI. For comparison, 

estimates of CUE based on the EEST relationships among biomass, enzymes and substrate 

characteristics (CUEC:N; Eq. 2.10) decreased by 57% from 0.21 at LCI = 0.475 to 0.09 at 

LCI = 0.67 based on alpha1 from our stoichiometric model. When observed values of alpha1 

were used in calculations, CUEC:N increased steeply, from 0.005 at LCI = 0.47 to 0.448 at 

LCI = 0.67. 
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Fig. 2-5: Relationships between realized carbon use efficiency of all substrates combined 
(CUET) and lignocellulose index (LCI) needed to balance microbial C:N 
requirements (solid line) and driven by empirically-observed enzyme activities 
(dotted line), and between carbon use efficiency of the lignocellulose pool 
(CUE23) and LCI (dashed line).	

2.4 Discussion 

2.4.1 Patterns of litter decay 

The allocations of C1, C2 and C3 used in our simulations (Aber et al. 1984, Melillo 

et al. 1982, Melillo et al. 1989, Magill and Aber 1998, Herman et al. 2008) followed 

patterns during progressive decomposition consistent with the general conceptual model 

of leaf litter decay, i.e., cellulose decreased relative to lignin whereas organic nitrogen 

compounds increased (Berg and McClaugherty 2008, Soong et al. 2019). Interestingly, 

the rate of decline in relative cellulose concentration was roughly twice the rate of 

increase in relative organic N concentration. However, the observed patterns of enzyme 

activities from empirical studies (Snajdr et al. 2011, Carreiro et al. 2000) differed from 

expectations, based on anticipated decay rates exactly meeting stoichiometric needs of 

microorganisms (Sinsabaugh and Follstad Shaw 2012) or maximizing microbial growth. 
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In particular, our stoichiometric model predicted a decrease in alpha1 with LCI, whereas 

the observed values of alpha1 increased with LCI. Our growth-maximizing model also 

predicted an increase in alpha1 with LCI but to the exclusive catalysis of the organic N 

pool by LCI = 0.51. This extreme sensitivity to factors controlling energy and nutrient 

balance could not be constrained by altering any single parameter, e.g., CN1, CUE2, CNM, 

etc. (cf. Manzoni et al. 2021). Thus, we focused our attention on the contrast between 

stoichiometric and empirical models of alpha1. 

The novel aspect of our model as driven by both stoichiometric estimates and 

empirical patterns of enzyme allocation (alpha1) is in making comparisons of 

stochiometric theory with observations of enzyme activity given the availabilities of the 

substrates they target (Fig. 2-1). There was no guarantee that resulting patterns of 

enzyme-driven decomposition rates (e.g., dC1/dt, dC2/dt, dC3/dt) would be consistent 

with expectations given either allocation scheme. However, the first-order decay rates 

used in this study are within the range of values commonly reported from empirical 

descriptions of litter decay and thus likely to force estimates of lignocellulose decay to 

conform (Parton et al. 1987, Schimel and Weintraub 2003, Moorhead et al. 2014). 

Indeed, relative rates of cellulose decay (dC2/dt) declined and lignin decay (dC3/dt) 

increased as LCI increased (Fig. 2-2) in both simulations, as the relative amount of C2 

declined with respect to C3. However, the empirical model had an overall decay rate 

(dCT/dt) about 16% lower than the stoichiometric model at LCI = 0.47 with a 

concomitant lignocellulose decay rate (dC23/dt) that was over 37% higher. The reason for 

these differences was the rationale for allocating a finite pool of enzymes that was 

assumed to be a constant fraction (0.4%) of total substrate C. The low value of observed 
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alpha1 at low LCI allocated more of the total enzyme activity to lignocellulose decay than 

the stoichiometric model. However, the decay rate for C3 is lower than C1 or C2, reducing 

the rate of total litter decay per unit enzyme. The relative differences between the two 

models were reversed at high LCI. The stoichiometric model had an overall decay rate 

about 60% lower and a lignocellulose decay rate that was about 44% higher than the 

empirical model at LCI = 0.67. At this point, the empirical model allocated less of the 

total enzyme pool to lignocellulose decay, which reduced overall decomposition.  

The most obvious difference between the two models was in the dynamics of the 

organic N pool. The observed values of alpha1 increased throughout decomposition 

whereas the values estimated by the stoichiometric model decreased, driving differences 

in decay rates. The empirical model had a dC1/dt that was less than 2% of the estimate for 

the stoichiometric model at LCI=0.47, but this pattern reversed at LCI=0.67, when the 

rate for the stoichiometric model was less than 7% of the empirical model. Again, 

differences in enzyme allocation patterns between the models were responsible for the 

differences in patterns of substrate turnover. The reasons why these patterns differed are 

not so obvious. It is possible that other sources of N were available to support microbial 

needs at low LCI that did not require enzyme activity, such as mineral N or amino acids 

(Berg and McClaugherty 2008). Regardless, the higher values of dC1/dt for the empirical 

model at higher LCI values suggest that microbes use the C1 fraction as a C source as the 

composite litter becomes increasingly recalcitrant, mineralizing excess N, consistent with 

an energy maximizing strategy (Averill 2014). In brief, when microbes are C-limited, 

they may maximize growth by adjusting enzyme allocation to optimize C gain. Thus, 

enzyme stoichiometry does not necessarily indicate growth-limiting nutrients because 
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microbes can utilize N-acquiring enzymes (e.g., NAG and LAP) to gain C as well as N 

(Hu et al. 2018, Soong et al. 2019, Mori 2020). Of course, it is also possible that an 

external source of C was available to microorganisms, stimulating catalysis of the N-

containing pool to acquire N, i.e., a priming effect (Kuzyakov 2010). Unfortunately, we 

had no information to estimate the availability of external sources of N or C to the 

synthetic data set used in this study. 

2.4.2 Patterns of enzyme activities 

Traditional models of lignocellulose decay (Parton et al. 1987, Berg and 

McClaugherty 2008, Adair et al. 2008), predict the rapid loss of the readily accessible 

cellulose fraction early in decomposition, which triggers the onset of lignin decay and 

slows the overall decay rate. This pattern logically requires a higher allocation of 

cellulolytic versus ligninolytic enzymes at the start of decomposition that declines with 

progressive decay, because the presence of recalcitrant C has a negative effect on the 

decomposition of hydrolysable C (Moorhead et al. 2013, Margida et al. 2020, Manzoni et 

al. 2021). Both of our models simulated this pattern in the same manner, allocating 

cellulolytic and ligninolytic enzymes as functions of LCI according to Margida et al. 

(2020). Differences in rates of overall decomposition (dCT/dt) and lignocellulose decay 

(dC23/dt) between these models resulted from differences in the relative allocation of N-

acquiring vs. C-acquiring enzymes (alpha1) from a restricted pool of total enzymes. 

Although the stoichiometric model provided a precise balance of microbial C and N 

demands, observed allocations did not follow this pattern. Thus, the substrate recalcitrance 

model of Margida et al. (2020) accurately represented the enzyme-mediated decomposition 
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of the lignocellulose pool. However, the stoichiometric model of Moorhead et al. (2012) 

estimated C- and N-acquiring enzyme activities to balance microbial C and N demands 

without considering a potential switch in strategy to maximize C-acquisition, triggered by 

a transition from a N-limited to C-limited state (Averill 2014, Mori 2020). 

This shift in enzyme allocation strategy also reflects shifts in patterns of relative 

resource availability including both the sizes and recalcitrance of substrate pools 

(Sinsabaugh and Follstad Shah 2011, 2012). The amount of enzyme allocated to catalyze 

a particular substrate tends to be minimized because enzymes are expensive to build and 

given the kinetics of these reactions, the return on that investment declines rapidly with 

increasing allocation (Bar-Even 2011). However, that return is also influenced by the 

relative demands for different resources, such as C and N, which are non-substitutable. 

This is the basis of the Ecoenzymatic Stoichiometric Theory (EEST; Sinsabaugh and 

Follstad Shah 2012) and the rationale supporting the stoichiometric model by Moorhead et 

al. (2012). However, the source of C is substitutable, with N-containing organic 

compounds also containing considerable C. For example, recent studies (Mori 2020, 

Norman et al. 2020) showed that microorganisms used aminopeptidase enzymes (e.g., 

LAP) to acquire C to meet energy demands, and that the amino sugar glucosamine was a 

source of both N and C to microorganisms (Hu et al. 2018). Furthermore, LAP activities 

are not always closely related to gross protein depolymerization (Wild et al. 2019); thus, 

enzyme stoichiometry is not overall a precise indicator of growth-limiting nutrients in soils 

(Rosinger et al. 2019). The increasing N concentration in decaying litter used in our 

simulations suggested an increasing pool of organic N compounds (C1) with progressive 

decomposition. We assumed that this pool had a consistent, overall C:N ratio of about 7:1. 
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Thus, the increase in N content implied an increase in related C content that could be 

accessed by LAP+NAG in our models. The observed linear increases in both litter N 

concentration and alpha1 with LCI are consistent with this notion. Even so, the C1 pool in 

these models never represented more than 17% of the total litter mass (at LCI = 0.67), 

limiting the potential yield of carbon and thus relative allocation of enzymes (alpha1). 

Alternative explanations for differences between the enzyme allocation strategies 

for our models include microbial access to resources that don’t require enzyme activity, 

such as forms of mineral N and amino acids. Such N sources could reduce the need for N-

acquiring enzymes and increase allocation of enzymes for C-acquisition, which might 

explain the low initial values of observed alpha1 (above). In comparison, Manzoni et al. 

(2021) posited four alternative resource use modes under N-limiting conditions to fit model 

predictions to observed patterns of litter decomposition: (1) flexible CUE, (2) reduced 

synthesis of C-acquiring enzymes, (3) adjustment of microbial C-N requirements to 

decrease N demand, or (4) assuming microbial N-retention at senescence by increasing N-

use efficiency. They were able to approximate observed patterns of decomposition by 

independently varying each of these controls, generating an equifinality obstacle to 

selecting any single control. In contrast, we could not match observed patterns of alpha1 by 

varying any single model parameter affecting C and/or N fluxes, although varying several 

of them simultaneously could approximate observations (CUE1, CUE2, CN1, CNM, k1max, 

etc., not shown). Although it is likely that many of these parameters are in fact adaptive 

characteristics of a microbial community to changing resource availability, we could find 

no comprehensive study of tradeoffs between characteristics during long-term 

decomposition. Regardless, the relative acquisition of C indicated by such low values of 
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observed alpha1 at low LCI suggests an excess release above the amount that could be 

assimilated into microbial biomass, especially with the relatively generous values of carbon 

use efficiencies (CUE) we assumed for both C1 and C2. Of course, we also assumed a 

nitrogen use efficiency (NUE) of 100%, which exacerbated the excess C balance (see 

Manzoni et al. 2021). This excess C could be lost through overflow metabolism, or slip 

respiration (Schimel and Weintraub 2003, Soong et al. 2019), when C and N acquisition 

from substrates fall below the threshold element ratio (TER), and N mineralization when 

TER is exceeded (below). Thus, the stoichiometry of substrates, enzymes and microbial 

biomass seems to be not as closely linked as our stoichiometric model simulated. This 

difference is consistent with reports from other recent studies (Rosinger et al. 2019, Soong 

et al. 2019, Mori 2020). 

2.4.3 Coupled C and N fluxes 

Although unexpected, the imbalance between C and N fluxes driven by observed 

values of alpha1 generated a pattern of C and N mineralization that is also consistent with 

general models of litter decay (Berg and McClaugherty 2008, Soong et al. 2019). 

Microbes appear to be meeting their stoichiometric needs through the mineralization of 

excess C or N, rather than acquiring resources in exact proportion to stoichiometric 

requirements. The reasons for these imbalances are not entirely clear. The more obvious 

is that net N mineralization occurs when litter is more recalcitrant (higher LCI) 

suggesting that microbes are releasing more N than needed to meet stoichiometric 

demands. This pattern supports Averill’s (2014) finding that microbes adopt an energy 

maximizing strategy at higher LCI values, utilizing N-acquiring enzymes such as NAG 
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and LAP to mine carbon from the C1 pool and mineralizing excess N (Rosinger et al. 

2019, Norman et al. 2020, Mori 2020). This strategy becomes increasingly cost-effective 

as the realized CUE for lignocellulose declines and the pool of C1 increases. 

The rationale for overflow metabolism is less clear than N mineralization. Excess 

C mineralization (RO) is highest early in decay, when litter is more labile and potential 

CUE is high, implying that microbes are acquiring more C than needed for growth and 

maintenance. The purpose of overflow metabolism is thought to overcome stoichiometric 

imbalance (Manzoni et al. 2012, Soong et al. 2019). Its occurrence implies that C and N 

acquisition of microorganisms is unbalanced, as indicated by alpha1, although the 

acquisition of mineral N to supplement microbial nutrition would belie this idea (see 

above). However, simulated overflow respiration from the empirical model (RO) is 

consistent with previous reports of this phenomenon (Zak et al. 1994, Schimel and 

Weintraub 2003, Moorhead and Sinsabaugh 2006, Cleveland and Liptzin 2007, Colman 

and Schimel 2013, Xu et al. 2013), indicating that decomposition may be consistently 

overloaded with C early in decay, and that overflow respiration is an important C flux 

(Manzoni et al 2012).  

2.4.4 Sensitivity analysis 

The threshold element ratio (TER) is traditionally expressed as the microbial 

biomass C:N ratio divided by carbon use efficiency (Frost et al. 2006, Soong et al. 2019). 

However, that calculation assumes constant substrate and microbial biomass 

stoichiometry and constant resource assimilation efficiencies (both N and C) throughout 

decomposition. To the contrary, substrate stoichiometry clearly changes during decay and 
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overall CUE varies both with substrate stoichiometry (Moorhead et al. 2012, Geyer et al. 

2016, Hagerty et al. 2018, Geyer et al. 2019) and LCI (Moorhead et al. 2013, Sinsabaugh 

et al. 2013, Margida et al. 2020). In this model, we approximated TER as the intersection 

of overflow respiration (RO) and (NM), which occurs only when both values are zero. 

This method of estimating TER allows for a dynamic estimate of realized CUET that 

changes as decay progresses, and TER estimates varied as expected during decay. 

Altering CN1, CUE2, EXP, and LCIMID changed the threshold element ratio 

although patterns of overflow respiration (RO) and nitrogen mineralization (NM) remained 

similar among all simulations. Indeed, the impacts of variations in model parameters on 

model behavior were largely predictable. Increasing CN1 or CUE2 simply increased the 

amount of C relative to N per unit of substrate decay, increasing the LCI value at which 

TER occurred as predicted by the simplest estimates of TER (Frost et al. 2006). 

Increasing LCIMID had the same effect as increasing CUE2. Increasing the exponent for 

the half-saturation coefficient (EXP) of enzymes operating on substrate also increased 

TER. This is because increasing EXP increased the overall impact of enzyme activity per 

unit of enzyme. This effect was especially notable for N acquisition due to greater 

proportional allocation to the E2 and E3 pools than to the E1 pool and also because the C1 

pool is much smaller than the C2 and C3 pools.  

Overall, CUE2 and CN1 were the most important controls on RO, while CN1 and 

LCIMID were the most important controls on NM. When CUE2 and CN1 change, the 

amount of C released also changes, driving an adjustment in RO. Similarly, when CN1 

and LCIMID change, the amount of N released also changes, driving an adjustment to rates 

of NM. In summary, variations in parameters that increased C-acquisition relative to N 
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increased realized TER and cumulative RO and decreased cumulative NM. This was the 

result of altering realized CUET for the aggregated decay of C1, C2 and C3, because the 

assimilation efficiency for N was assumed to be a constant 100%. 

2.4.5 Carbon use efficiency 

Tradeoffs in the overall carbon use efficiency (CUET) and litter quality during 

substrate decay may explain the observed increase in alpha1 with increasingly recalcitrant 

litter. The realized CUET for the combined decomposition of all substrates cannot be a 

constant, as generally assumed in decomposition models (Schimel and Weintraub 2003, 

Moorhead et al. 2012, Abramoff et al. 2017) with exceptions, such as estimating CUE as a 

function of temperature (Allison et al. 2010, Wang et al. 2013, Wieder et al. 2015) or 

estimating CUE from the decay of multiple substrates each with a particular, constant CUE 

(e.g., Parton et al. 1987). As decay progresses, CUE23 decreases, while CUE1 remains the 

same in our simulations, making C1 an increasingly more energy-efficient source of carbon. 

Additionally, since CUET is not fixed, the TER cannot be accurately predicted using the 

Frost et al. (2006) equation. Alternatively, Sinsabaugh et al. (2016) estimated CUE 

stoichiometrically (CUEC:N) as a function of labile resource availability (both C and N; Eq. 

2.10). Surprisingly, estimated CUEC:N declined with LCI for our stoichiometric model and 

increased with LCI for the empirical model. This was due to the relationship between 

alpha1 and LCI (appendix A). Clearly, defining a functional CUE is complex (e.g., Geyer 

et al. 2019). Nonetheless, we found that the stoichiometry of substrate, enzyme activities, 

and microbial biomass were linked through resource use efficiencies as well as the relative 



58 

availabilities of these resources. Those linkages varied more than anticipated due to shifting 

microbial resource acquisition strategies beyond meeting stoichiometric demands (above).  

A key question resulting from these simulations is the value of CUE23 at high LCI. 

Moorhead et al. (2013) assumed this value to be zero at LCI = 0.7, but the observed data 

(Carreiro et al. 2002, Snajdr et al. 2011) suggest that CUE23 is nonzero at this threshold if 

microbial stoichiometric balance is met by C and N-acquisition through enzyme activities, 

because observed lignocellulolytic enzymes (E23) account for about 60% of total enzyme 

activity (alpha1) at that point. We suspect that microbes are mining carbon from the C1 

litter fraction to maximize C acquisition and mineralize excess N (Averill 2014, Soong et 

al. 2019). We also speculate that CUE1 declines with LCI because an increasing fraction 

of total litter N may be bound with the C23 fraction as reported by Aber et al. (1984), i.e., 

in the Van Soest acid insoluble fraction of total litter N (not shown). Generally, the C:N 

ratio of litter decreases with progressive decay due to the release of C through microbial 

respiration, while N persists due to immobilization and possibly condensation reactions 

(Melillo et al. 1982, Preston et al. 2009, Rillig et al. 2007). Changes in the types of organic 

N substrates during progressive decomposition may alter the relative availability of both 

the associated C and N. Alternatively, microbes may be mining N from the C1 litter fraction 

that is bound with the C23 fraction, given an external C supply (priming effect; Kuzyakov 

2010). Unfortunately, we cannot test these notions with the existing data. 
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2.4.6 Limitations and future directions 

Perhaps the most obvious limitation of the current work is the uncertainty 

associated with using a largely synthetic dataset (section 2.1). Ideally, more 

comprehensive studies that include detailed litter quality, stoichiometry, and eco-

enzymatic data would increase the realism, as well as rigor to more conclusively test 

different hypotheses of microbial resource acquisition in our model. Recent meta-

analyses of enzyme activities emphasize soils rather than litter (e.g., Chen 2018, 2020), 

including the foundational work supporting development of the EEST (Sinsabaugh et al., 

2008, 2009, Sinsabaugh and Follstad Shah 2012). Litter studies including enzyme 

activities tend to be short term and/or lack detailed litter chemistry, including Carriero et 

al. (2000) and Sinsabaugh and Carriero (2002) used herein. Although the work by Snajdr 

et al. (2011) provided both, it’s a rare example. In contrast, studies including detailed 

litter chemistry seldom include enzyme activities (Aber et al. 1984, Berg et al. 1991, 

Magill and Aber 1998, Trofymow et al. 2002, Harmon et al. 2009). We combined 

different studies by linking mass loss with lignocellulose index, and in turn LCI with 

detailed litter chemistry and enzyme activities. Although these patterns appeared 

consistent, they must be interpreted with caution.  

There remains much work to link substrate, enzyme and microbial dynamics 

during decomposition. Other studies have also reported apparent disconnects from EEA 

and microbial resource demands (e.g., Rosinger et al. 2019, Mori 2020) but syntheses of 

microbial responses to stoichiometric constraints suggest considerable flexibility in 

patterns of resource use (Mooshammer et al. 2014, Zechmeister-Boltenstern et al. 2015). 

In particular, the maximum growth model (Averill 2014) merits further examination 
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given the recent modeling analysis of Manzoni et al. (2021) demonstrating the 

plausibility of varying resource use to link microbial processes to patterns of 

decomposition. However, rigorously testing such a model requires detailed microbial 

characteristics in addition to the need for concurrent litter chemistry and EEA 

observations. Again, Snajdr et al. (2011) is an exceptional study that includes all these 

measures, although the data consist of only eight observations of EEA and microbial 

characteristics over two years. It represents a demanding study plan, but results are more 

tantalizing than definitive. Thus, more comprehensive models may necessarily remain 

largely theoretical until more detailed data are available. 

2.5 Conclusions 

In conclusion, although evidence, theory, and literature offer potential 

explanations, we could not isolate the specific reasons why we found essentially opposite 

patterns between stoichiometric balance and observed values of EEA. Unfortunately, we 

have no data to definitively support any one explanation. Bradford et al. (2021) states that 

including microbial-based responses into broad patterns of soil carbon dynamics requires 

thoroughly understanding underlying processes, because aggregation methods needed to 

simplify complex processes for inclusion in broad-scale models can obscure important 

fine-scale responses. For example, aggregating the varying stoichiometric, microbial, and 

litter quality characteristics of litter decay likely contributes to the equifinality challenge 

of identifying primary controls given high model complexity and low data availability 

(Marschmann et al. 2019). Manzoni et al. (2021) encourages modelers to more closely 

examine the mechanisms underlying decay in order to avoid this problem, but although 
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we looked at decomposition on a finer scale we were still unable to resolve this 

limitation. Bradford et al. (2021) suggested addressing this problem through improved 

empirical data collection processes, which should occur over the long-term and at 

multiple scales. We heartily concur with this suggestion. 
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Appendix A 

Chapter 2 Equations 
 

Given Reverse Michaelis Menten (RMM) parameters VMAX2+3 and KE2+3 of the combined 

lignocellulose pool, the solution for the proportionality alpha1 = E1 / (E1 + E2+3) can be 

derived from reordering equation 2.1: 

 
alpha1 = ½ · (((CN1 · CUE1 - CNB)2 · (ET + KE2+3)2 · VMAX12 + 2 · CN1 · VMAX2+3 ·(CN1 · 

CUE1 - CNB) · CUE2+3 · (ET2 + (KE1 + KE2+3) · ET - KE1 · KE2+3) · VMAX1 + CN12 · CUE2+32 

· VMAX2+32 · (ET + KE1)2)1/2 + ((CUE1 · ET + CUE1 · KE2+3) · CN1 - CNB · ET - CNB · KE2+3) 

· VMAX1 + (CUE2+3 · ET · VMAX2+3 - CUE2+3 · KE1 · VMAX2+3) · CN1) / ((CN1 · CUE1 - CNB) 

· VMAX1 + CN1 · CUE2+3 · VMAX2+3) / ET 

 
The solution for alpha1 allows allocation of E2+3 = (1 - alpha1) · ET, so that the solution for 

the proportionality alpha2 = E2 / (E2 + E3) can be derived from reordering equation 2.5: 

 
alpha2 = ½ · ((VMAX2 + VMAX3 - dC2+3dt) · E2+3 + (VMAX2 - dC2+3dt) · KE3 + (-VMAX3 + 

dC2+3dt) · KE2 - ((E2+3 + KE3)2 · VMAX22 + ((2 · E2+32 + (2 · KE2 + 2 · KE3) · E2+3 - 2 · KE3 · 

KE2) · VMAX3 – 2 · dC2+3dt · (E2+3 + KE3) · (KE2 + KE3 + E2+3)) · VMAX2 + ((KE2 + E2+3) · 

VMAX3 - dC2+3dt · (KE2 + KE3 + E2+3))2)1/2) / (VMAX2 + VMAX3 - dC2+3dt) / E2+3 
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Alternatively, microbes may seek to maximize growth (µ) by using the C1 substrate pool 

as a primary carbon source and simply mineralizing excess N; conditions generating 

maximum µ were determined by setting the derivative dµ/d(alpha1) to zero and solving for 

alpha1, which can be done by expanding equation 2.4:  

 
alpha1 = CUE1 · KE1 · VMAX1 · ET + CUE1 · KE1 · KE2+3 · VMAX1 + CUE2+3 · KE1 · KE2+3 · 

VMAX2+3 - (CUE1 · CUE2+3 · ET2 · KE1 · KE2+3 · VMAX1 · VMAX2+3 + 2 · CUE1 · CUE2+3 · ET 

· KE12 · KE2+3 · VMAX1 · VMAX2+3 + 2 · CUE1 · CUE2+3 · ET · KE1 · KE2+32 · VMAX1 · VMAX2+3 

+ CUE1 · CUE2+3 · KE13 · KE2+3 · VMAX1 · VMAX2+3 + 2 · CUE1 · CUE2+3 · KE12 · KE2+32 · 

VMAX1 · VMAX2+3 + CUE1 · CUE2+3 · KE1 · KE2+33 · VMAX1 · VMAX2+3)1/2) / (CUE1 · KE1 · 

VMAX1 - CUE2+3 · KE2+3 · VMAX2+3) / ET) 

 
Given empirical alpha1, overflow metabolism (RO) was estimated by expanding eqn. 1: 

 
RO = CN1 · CUE1 · ET · VMAX1 · alpha12 + CN1 · CUE2+3 · ET · VMAX2+3 · alpha12 - CN1 · 

CUE1 · ET · VMAX1 · alpha1 - CN1 · CUE1 · KME2+3 · VMAX1 · alpha1 - CN1 · CUE2+3 · ET 

· VMAX2+3 · alpha1 + CN1 · CUE2+3 · KME1 · VMAX2+3 · alpha1 - CNM · ET · VMAX1 · alpha12 

- CN1 · CUE2+3 · KME1 · VMAX2+3 + CNM · ET · VMAX1 · alpha1 + CNM · KME2+3 · VMAX1 · 

alpha1) / (ET · alpha1 - ET - KME2+3) · ET / (ET · alpha1 + KME1) / CN1  

 
Similarly, nitrogen immobilization (NM) was derived:  
 
NM = ET · (CN1 · CUE1 · ET · VMAX1 · alpha12 + CN1 · CUE2+3 · ET · VMAX2+3 · alpha12 - 

CN1 · CUE1 · ET · VMAX1 · alpha1 - CN1 · CUE1 · KME2+3 · VMAX1 · alpha1 - CN1 · CUE2+3 

· ET · VMAX2+3 · alpha1 + CN1 · CUE2+3 · KME1 · VMAX2+3 · alpha1 - CNM · ET · VMAX1 · 

alpha12 - CN1 · CUE2+3 · KME1 · VMAX2+3 + CNM · ET · VMAX1 · alpha1 + CNM · KME2+3 · 
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VMAX1 · alpha1) / CN1 / CNM / (ET2 · alpha12 - ET2 · alpha1 + ET  ·KME1 · alpha1 - ET · KME2+3 

· alpha1 - ET · KME1 - KME1 · KME2+3) 

 


