
A Master Thesis

entitled

Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using

UNSW-NB15 Dataset

by

Zeinab Zoghi

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Master of Science Degree in

Engineering: Computer Science

Dr. Gursel Serpen, Committee Chair

Dr. Ahmad Y. Javaid, Committee Member

Dr. Mohammed Niamat, Committee Member

Dr. Richard G. Molyet, Committee Member

Dr. Amanda Bryant-Friedrich, Dean

 College of Graduate Studies

The University of Toledo

August 2020

Copyright 2020, Zeinab Zoghi

This document is copyrighted material. Under copyright law, no parts of this document

may be reproduced without the expressed permission of the author.

iii

An Abstract of

Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using

UNSW-NB15 Dataset

by

Zeinab Zoghi

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Master of Science Degree in Engineering: Computer Science

The University of Toledo

August 2020

Abstract

In this study, an Intrusion Detection system (IDS) is designed based on Machine Learning

classifiers and its performance is evaluated for the set of attacks entailed in the UNSW-

NB15 dataset. This dataset is comprised of 2,540,226 realistic network data instances as

well as 49 features. Most studies reported in the literature employ a representative subset

of this dataset with predefined training and testing subsets, and containing a total of

257,673 records which this study also used. In light of relatively lower than expected

performance of Machine Learning or Statistical classification algorithms tested on this

dataset and as reported by others in the literature, this dataset was subjected to visual data

analysis to explore potential reasons or issues which likely challenge Machine Learning

classifiers. The consequent observations demonstrated the presence of class representation

imbalance with respect to pattern counts and class overlap in feature space, which makes

preprocessing strategies indispensable before this dataset can be meaningfully employed

for data-driven model development for intrusion detection.

 iv

For preprocessing, we implemented min-max scaling in the normalization phase

followed by the application of Elastic Net and Sequential Feature Selection (SFS)

algorithms. We employed ensemble methods using three base classifiers, namely Balanced

Bagging, XGBoost, and RF-HDDT, augmented to address the imbalance issue. Parameters

of Balanced Bagging and XGBoost are tuned for the imbalanced data, and Random Forest

is supplemented by the Hellinger distance metric to address the limitations of default

distance metric. Two new algorithms are proposed to address the class overlap issue in the

dataset and applied during training. These two algorithms are leveraged to help improve

the performance on the testing dataset by affecting the final classification decision made

by three base classifiers as part of the ensemble classifier which employsa majority vote

combiner.

Performance evaluation of the proposed design for binary and multi-category

classification was conducted with respect to standard set of metrics including those derived

from the confusion matrix and compared to the performances of other studies reported on

the same dataset in the literature. Results demonstrate that the proposed design

outperforms those reported in the literature by a significant margin for both binary and

multi-category classification case

v

Acknowledgements

I would like to offer my heartfelt thanks to almighty GOD, the compassionate the merciful,

whose presence in my life enables me to battle on despite discouragement occurred in the

absence of my parents.

My special appreciation goes to my parents for all their love and support. The words “I

Love You” seem too few to demonstrate how I really love them.

Also, I would like to give my deep gratitude to my dear friend, Hossein Abedsoltanm, who

has been inspiring and helping me a lot in every aspect of my life.

I would like to extend my sincere gratitude towards my research advisor Dr. Gursel Serpen

for imparting his considerable knowledge and experience in this study.

I also want to express my warmest thanks to my committee members, Dr. Ahmad Y.Javaid,

Dr. Mohammed Niamat, and Dr. Richard G.Molyet, for accepting my invitation to serve

on my thesis committee and enhance the credibility of my work with their valuable

comments.

vi

Table of Contents

Abstract .. iii

Acknowledgements ..v

Table of Contents ... vi

List of Tables ...x

List of Figures ... xii

Chapter 1 ..1

1 Introduction .. 1

1.1 Cyber-attacks against computing infrastructure ...1

1.2 Cost and consequences of attacks ...6

1.3 Evolution of cyber-attacks ..10

1.3.1 Efforts to Prevent Attacks ... 15

1.3.2 Efforts to Detect and Identify Attacks .. 16

1.4 Types of Intrusion Detection ..17

1.4.1 Statistical anomaly intrusion detection system ... 19

1.4.2 Machine learning intrusion detection system ... 20

vii

1.5 List of Datasets for IDS development ..21

1.5.1 DARPA98 ... 21

1.5.2 KDDCUP 99 ... 22

1.5.3 NSL-KDD ... 22

1.5.4.. 23

ADFA ... 23

1.5.5 UNSW-NB15 .. 23

Chapter 2 ..24

2 Background .. 24

2.1 Dataset ..24

2.2. Feature Selection Algorithms ..26

2.2.1. Wrapper Methods... 27

2.2.2. Embedded Methods ... 27

2.3. Normalization Methods ...28

2.3.1. Min-Max Scaler ... 28

2.4. Evaluation Metrics ...29

2.5. Classification Algorithms ..32

2.5.1 Random Forest (RF) ... 32

2.5.2 Balanced Bagging (BB) .. 33

2.5.3. Extreme Gradient Boosting (XGBoost) ... 34

viii

2.6. Splitting Criterion ..35

2.6.1. Hellinger Distance ... 35

Chapter 3 ..37

3 Analysis of UNSW-NB15 Dataset ... 37

3.1 Visualization of dataset ..37

Chapter 4 ..45

4 Data Preprocessing ... 45

4.1 Data Cleaning ...45

4.2 Data Transformation ...46

4.3 Feature Selection ..54

Chapter 5 ..58

5 Proposed Methodology .. 58

5.1 Classifier development methodology ...58

5.2 Training methodology ..64

5.3 Testing methodology ..73

Chapter 6 ..77

6 Simulation Results.. 77

6.1 Binary Classification ..77

6.2 Multiclass Classification...80

ix

Chapter 7 ..86

7 Conclusions & Future Work .. 86

7.1 Conclusion ..86

7.2 Future work...90

References ...91

Appendix A : Python Code for Attribute Processing ...113

Appendix B : Miscellaneous Content and Tables ...116

x

List of Tables

Table 2.1 Number of records in training and testing subsets for each class 26

Table 4.1 The Mahalanobis distances between the Analysis centroid and the rest 51

Table 4.2 The Mahalanobis distances between the Backdoor centroid and the rest 51

Table 4.3 The Mahalanobis distances between the DoS centroid and the rest 52

Table 4.4 The Mahalanobis distances between the Exploits centroid and the rest 52

Table 4.5 The Mahalanobis distances between the Fuzzers centroid and the rest 52

Table 4.6 The Mahalanobis distances between the Generic centroid and the rest 52

Table 4.7 The Mahalanobis distances between the Normal centroid and the rest 52

Table 4.8 The Mahalanobis distances between the Reconnaissance centroid and the rest

... 53

Table 4.9 The Mahalanobis distances between the Shellcode centroid and the rest 53

Table 4.10 The Mahalanobis distance between the Worms centroid and the rest 53

Table 4.11 Accuracy comparison among the performances of six different scalers 54

Table 4.12 List of features selected by Elastic Net and SFS.. 56

Table 5.1 Missed alarm rate values for the set of 11 classifiers 59

Table 5.2 Entropy and Hellinger distance score measurements 61

 xi

Table 5.3 First seven rows of a probability score matrix generated by Balanced Bagging

classifier .. 65

Table 5.4 (a) Confusion matrix and (b) First two rows of probability scores matrix. 70

Table 5.5 (a) The confusion matrix, (b) Mean and standard deviation arrays through

Algorithm #1 and (c) Mean and standard deviation arrays through Algorithm

#2... 71

Table 6.1 Confusion Matrix on test data subset for binary classification 77

Table 6.2 Performance evaluation of the proposed model for binary classification 78

Table 6.3 Comparison of the proposed classifier design with four others cited (NR

indicates Not Reported) .. 78

Table 6.4 Confusion matrix showing the performance of the ensemble method 82

Table 6.5 Confusion matrix showing the performance of the proposed design 82

Table 6.6 Performance of the proposed design for multi-class case 82

Table 6.7 The accuracy of proposed model vs. the accuracy of different models (NR: Not

Reported) .. 84

Table 6.8 The sensitivity of proposed model vs. the sensitivity of different models (NR:

Not Reported) ... 85

Table B.1 The values that the parameters of estimators are set by 116

Table B.2 Feature subset selected by the different literature ... 117

Table B.3 Different strategies that were utilized in seven literature in comparison with the

proposed model .. 118

 xii

List of Figures

Figure 2-1 Confusion matrix and associated performance metric definitions 29

Figure 3-1 Distribution of records across classes .. 38

Figure 3-2 The visualization of the Shellcode instances using PCA 39

Figure 3-3 The visualization of the Worms instances using PCA 39

Figure 3-4 The visualization of the dataset using T-SNE .. 40

Figure 3-5 Visualizing the overlapping problem inherent in the dataset using the PCA . 41

Figure 3-6 The visualization of the Normal along with the (a) Exploits, (b) Fuzzers, and

(c) Analysis data points ... 42

Figure 3-7 Mapping the dataset by 10 clusters using k-mean clustering algorithm 43

Figure 4-1 The Euclidean distance of the class centroids when the dataset is not normalized

... 47

Figure 4-2 The Euclidean distance of the centroids after normalizing the data (upper-left),

scaling the dataset with min-max, maxabs (upper-right), robust (left-center),

standard (right-center), quantile transformation (lower-left), and power

transformation (lower-right) ... 48

 xiii

Figure 4-3 The Mahalanobis distance of the centroids when the dataset in not normalized

 ... 49

Figure 4-4 The Mahalanobis distance of the centroids after normalizing the data (upper-

left), scaling the dataset with min-max, maxabs (upper-right), robust (left-

center), standard (right-center), quantile transformation (lower-left), and

power transformation (lower-right) ... 50

Figure 4-5 (a) The F1-score of Balanced Bagging classifier across the number of input

features. ... 56

Figure 5-1 An example to illustrate Hellinger distance metric utility 60

Figure 5-2 Classifier development schematic diagram .. 63

Figure 5-3 Illustration of partial output by Algorithm #1 .. 68

Figure 5-4 An example to show how Algorithm 1 calculates the prediction error range 73

Figure 6-1 F-measure comparison ... 85

 1

Chapter 1

1 Introduction

1.1 Cyber-attacks against computing infrastructure

Long before the term ‘technology’ came to prominence, humans invented different

methods for long distance communication. In that era, messengers and birds carried the

messages to the destination. Since the 17th century, when the semblance of modern

technology first appeared, the world has seen the phenomenal growth in communication

techniques, modalities and options. Network packets replaced messengers and birds, and

cyber technologies contributed to our new way of communication. It is undeniable that we

are becoming increasingly dependent on Internet every passing day due to human creativity

and innovation. At the same time, the world of cybercrime has been populated with the

criminals looking for a perfect crime such as stealing confidential information, data, funds

or causing harm to target computing infrastructure. They explore possible avenues through

the cyberspace and formulate different strategies called cyberattacks, to gain unauthorized

2

 access to the computing systems. These strategies (aka attacks) may be highlighted as

follows:

 Distributed Denial-of-Service (DDoS): A denial-of-service attack restricts the

availability of resources by heavily overloading them with tasks often of no value or

utility. It leads the victim computer to shut or slow down. In this attack, memory and

disk space, connection limits, network resources and critical node capacity [1] are

allocated by malicious software designed by the cyber criminals so that no user or client

is able to request any services. TCP SYN flood attack and Smurf attack are two

common DoS attack types [2-4].

 Man-In-The-Middle (MITM): The man-in the-middle attack happens when a third

party monitors the network traffic between two authorized parties in order to access

the utilized services or modify the session contents [5-7]. When the connection is

initialized between two parties, a digital certificate is also issued. The certificate

comprises both the address of the packet sender and a connection key. Since the

certificate is unlocked, the attacker can get access to and modify it. When the

recipient receives the certificate with the attacker’s address, it will identify the

attacker as a secure party. This leads the attacker to behave as either the original

sender or intended recipient [8].

 Password-Based Attacks: Password-based attacks are executed when an attacker

acquires the username and password of an authorized user. Based on password

cracking techniques, this attack type is categorized into the following popular

subtypes [9]:

 3

o Brute Force: In this type of attack, every single possible password patterns

are used randomly in order to gain access to the confidential information.

These patterns are most probably associated with the user’s name, birthday,

part of or full address, job title or other similar items.

o Dictionary: In this attack type, password patterns are formed by the words

that are commonly used in daily conversation. The name of historical

monument can be a good example of such words.

o Shoulder Surfing: This attack happens when an authenticated user enters

their password and the attacker traces their fingers movement or listen to

the keyboard taps to find or guess the password.

 Phishing: This attack takes place when a victim enters their personal or financial

information on a fake website which presents itself as authentic. This attack can

also be an email containing a malicious link that redirects a user to the fake website

or installs malware or ransomware on the user’s computer system [3, 4, 10].

 Malware: The term Malware is short for Malicious Software [4]. Malware denotes

any type of software threats against the integrity, confidentiality and availability of

data on the victim’s computer system. This type of attack is comprised of the

following common types:

o Virus: This type of malware is installed and transmitted from one computer

to another through the contaminated emails, websites, CDs or USB drives.

Viruses are able to replicate themselves by attaching to a host program and

become a part of it. They can be activated and damage or steal the data when

 4

the host program is executed on the victim’s computer system [11]. Viruses

are categorized into the main classes of encrypted, polymorphic and

metamorphic [12].

o Trojan: This kind of malware masquerades as a genuine program while

indeed it spies on the user’s activities and produces damaging effects on the

victim’s device [13]. General Trojan and Remote-Access Trojan are the

well-known subcategories of Trojans [12].

o Worm: This malware is a peace of code which unlike viruses is able to

independently clone itself across the network without explicitly infecting

host files. It may cause the DDoS attack by continuously reproducing itself

and overloading the servers [13, 14].

o Rootkit: It is an accumulation (a “kit”) of tools used by attackers in order to

obtain administrative (“root”) access to victim’s device [14]. These tools

cover up the malicious activities and make it difficult to identify the attack

[11, 12].

o Ransomware: The objective of this subcategory is to encrypt a piece of data

on victim’s device or lock the victim out, make the data inaccessible through

encryption, and demand a ransom payment in exchange for the decryption

key [15, 16].

o Spyware: The aim of this malware is to monitor the victim’s activities,

collect the sensitive or personal information about the user and their device,

transfer the findings to the attacker, and help the attacker to control the

 5

target device remotely without the user’s consent [17]. This malware is able

to install and execute itself without the user’s permission [12].

o Botnet: This attack results in a large number of infected devices that can be

remotely managed by the attackers [18]. This malware mostly targets the

personal computers, regenerate itself on them, and causes further attacks or

collects personal information. It transfers the observations to the bot-master

to help them conduct their malicious activities using the user’s device

without them knowing it [19].

o Key Logger: The key logger is a software installed and executed in the

background of the user’s computer system stealthily in order to record each

keyboard’s tap and steal the user’s confidential information. This software

could be either installed intentionally by the attacker or by the users with no

knowledge of its harmful effect [20].

o Adware: This malware interrupts the current activities on user’s device by

displaying unwanted advertisements [21].

 SQL Injection: This type of attack exploits database-driven websites, injects

malicious code to the SQL query in order to bypass the web application

authentication and gain access to database and the database server [22].

 Cross-Site Scripting (XSS): This attack is a malicious Java script payload injecting

to vulnerable websites. This code is transferred to the browser of the websites’

visitors intending to get access to their confidential information such as credit card

number [23].

 6

 Eavesdropping: This attack is launched when the attacker intercepts the

confidential communication between two legitimate users without their permission.

The aim of this attack is to snoop on internet for conversations where the system

resources have not been modified [24].

 Social Engineering: Social engineering attacks are carried out by the ones

possessing remarkable social skills rather than technical skills. They take

advantage of their good interpersonal skills to earn others’ trust and get sensitive

information to accomplish their malicious purposes [25]. This type of attack is

subcategorized to social, technical, socio-technical and physical [26].

The attackers leverage the attacks to get access to system resources and either destroy

them or collect valuable information. Based on the objective of carrying out the attacks,

they can be categorized into active and passive attacks [27, 28]. The threats by which the

attackers inject incorrect information or alter the source of data belong to active attacks.

On the contrary, in passive attacks no system resources are modified: the sole aim of

attackers in this type of attack is to make use of data without implementing any changes.

Cyberattacks in general, involve an unauthorized access to the confidential

information on the victim’s device or the device resources. It leads to damaging

consequences on either or both of the target users and servers. The negative impacts of

cyberattacks are discussed in the next session.

1.2 Cost and consequences of attacks

The attackers target both the large [29] and small [30] businesses, organizations as

well as private citizens to carry out the cyberattacks for theft, capture of confidential

 7

information, corporate espionage, system sabotage, money laundering, reputation

enhancement, and curiosity [31, 32]. Although a large business or organization is equipped

with the sophisticated cybersecurity tools, it still can be a perfect target due to the presence

of ample and valuable information for the attackers to benefit from. On the contrary, a

small firm or private citizen usually suffers from the lack of cyber security tools. Although,

there is not enough information for intruders, the security breaches smooth their path for

the further attacks on wider cyberspaces.

To reduce cyber threats or recover from damages caused by cyberattacks, the

organizations assess the cyber risks. Any uncertainties related to the data resources and

computer devices that threatens the confidentiality, availability and integrity of the

information or information systems are identified as cyber risks [33]. Confidentiality

represents the system resources protected from unauthorized access. While integrity

preserves any piece of information from unauthorized changes, availability guarantees that

the authorized users can always gain access to the required data resources [34].

Cybercriminals pose risks on technology assets through violating these three main aspects

of information security and cause harmful impacts that are mainly categorized into four

types [35-37]:

 Economic: Economic cyber harm represents negative financial consequences

affected individuals or the organizations. Customer and revenue reduction,

regulatory fine, forensic investigation and remediation costs, and litigation

expenditures [38-41] have followed in the wake of cyberattacks and lead the

individuals and organizations into the economic harms. This kind of cyber impact

is common in terms of evaluation and investigation, however it is not

 8

straightforward to measure the economic impacts particularly the indirect forms of

financial loss such as remediation costs. It is estimated that cybercrime carries a

global cost of $6 trillion annually by 2021 [42, 43].

 Physical: It reflects any physical damages that harm either or both the technology

assets and individuals. This cyber harm is a costly kind. Not only have been the

wirelessly connected infrastructures picked for implementing cyberattacks causing

physical damages, but also the broken devices lead to deadly consequences for

individuals. Wireless electronic medical devices and eldercare robots [44] are good

examples of technology assets that can be subjected to cyberattacks. Any disruption

in their regular performance will be fatal due to their proximity to humans and their

main role in serving them. Adulterated food and water supplies, and air, road and

rail accidents [45, 46] represent deadly cyber incidents as well.

 Psychological: This type of cyber harm focuses on individuals and their mental

capacity. Feeling of anger, anxiety, shame, depression, confusion and annoyance

of being cheated, loss of self-confidence [47, 48], and severe consequences on the

attitudes of victimized population [49] are the psychological impacts that may be

triggered by implementing cyberattacks.

 Reputational: It indicates the harm that causes loss of trust among the stakeholders

of organizations or followers of prominent personalities. The consequences of this

sort of cyber impact are generally accompanied with economic threats [50].

 Governmental: It harms the political system or politicians in terms of loss of public

trust which is highly associated with reputational cyber harm.

 9

 Cultural: This cyber harm reduces the social reliability and threatens cultural safety

[51].

In general, each type of cyber harm is comprised of direct and indirect costs. Direct

cost denotes losses or damages that are tangible for victims, while the victims are not able

to perceive losses and damages in the context of indirect harm. Money withdrawn from

users’ bank account and loss of trust in online banking are examples for direct and indirect

costs, respectively [52].

According to the study made by the Current Population Survey (CPS) and the

American Community Survey (ACS) in 1998, 43 percent of households in the United

States had personal computer, while 27 percent of them utilized the internet [53]. There

were only 39 reported cyberattacks which were commonly associated with website

deformation [54] and the total number of open cases in the United States regarding

computer intrusions was 547 [55]. In the broader context, the population of global internet

users stood at about 188 million and the total number of websites were 2,410,067 at the

time [56]. Only 72 websites were reported for being distorted [55] and the overall cost

carried by cybercrime commitments was about $250 million [57].

Unlike 1998 that the most common cyberattack was defacing the websites, today the

most commonly reported cyberattack is Ransomware that affected business communities

every 14 minutes and cost the world $11.5 billion in 2019 in the internet world with the

users population of 4.39 billion [58] and almost 1.5 billion websites [59]. From $11.5

billion general losses, more than $3.5 billion [60] is recorded and issued by FBI’s Internet

Crime Complaint Center (IC3) from the complaints they received by individual and

 10

business victims in the United States. It is predicted that a Ransomware attack may affect

a business every 11 minutes and the concomitant damage reach $20 billion. The total loss

caused by cybercrimes are also projected to rise by $6 trillion by 2021 [42, 61].

Since the global internet user population grows rapidly, the number of cyberattacks

and the methods that the attackers use to target the victims constantly change for the worse.

We will explore the evolution of cyberattacks from 1980s to 2020 in the next section.

1.3 Evolution of cyber-attacks

In 1977, Apple released its first fully assembled personal computer with the

introduction of color display which led this young industry for a pending technology

revolution [62]. Although the boom in personal computers provoked the hackers’ curiosity,

it was not the starting point of cybercrimes in its broadest sense. In fact, the hackers’

interest had been awaken long ago, when the human society first embraced the technology.

In the mid-1960s, John Thomas Draper tricked the call receiver using a whistle played at

2600 Hz and successfully entered the operator mode to place free long-distance call. He

obtained the information about the phone technology from Bell telephone employee

through the method that is now called social engineering attack [25, 63]. This attack type

was also used by Kevin Mitnick in 1976 in order to convince a bus driver to give him the

address of the bus company where he claimed that he could purchase a ticket punch for his

school project. Soon after, he leveraged the unused slips found in the dumpsters next to the

bus company building and got free rides for any bus in the Los Angeles area [64, 65].

Although, committing these cybercrimes facilitated accessing the services without paying

a penny, the main aim behind them was basically curiosity about the state-of-the-art

technologies.

 11

In 1980s, the growing number of households had easily one personal computer. Falling

prices of computer hardware such as floppy disks led to the computer viruses becoming

pandemic and turned the phone and bus into computer hackers. In 1981, Rich Skrenta

developed Elk Cloner, the first virus targeted the early Apple operating systems [66, 67].

This virus became active every 50th time that a computer booted up with a floppy disk

infected with Elk Cloner which caused a short poem to pop up on the monitor [68]. A year

later, Fred Cohen coined the term ‘Computer Virus’ while he was demonstrating a short

code stored in a floppy disk and was able to replicate itself by modifying other programs

throughout a computer system and spread to other computers [69, 70]. Simultaneously,

there was a group of youngsters ranging in age from 16 to 22 years, namely the 414s, who

directly connected to the victims’ device by means of telnet utility. This group carried out

password-based attacks to establish a connection [71]. In 1986, the first IBM PC virus was

developed by the Farooq Alvi brothers. The main cause of the virus infection was floppy

disks [72, 73]. Two years later, Robert Tappan Morris crated the first known worm which

used Distributed Denial of Service (DDoS) techniques [74], and released it from a

computer placed in MIT in order to determine the scope or reach of Internet. He made use

of known vulnerabilities in UNIX system resources at the time which was the passwords

that can be easily guessed [75, 76].

The advent of World Wide Web in early 1990s and the development of the first website

[77] in 1991 unleashed an Internet revolution and new historical period had begun in

cyberattacks evolution. Money has become a very important matter in cybercrime lifecycle

along with curiosity and quenching the thirst in exploring new technologies. Online

channels smoothed the way the data traveled from one computer to another and led to an

 12

explosion in the number of cyberattacks. In 1990, the first polymorphic virus was

developed by Mark Washburn. This virus could mutate its code as well as its signature

once it was duplicated [78, 79]. In 1992, Michelangelo virus was created and released to

damage hard drive boot record which activated on the 6th of March every year. It was the

first cyberattack that triggered digital mass panic [75]. In 1994, the first bank network

attack occurred by Vladimir Levin. He took advantage of the drawbacks of bank

networking programs to break into Citibank’s network, utilized the username and password

belonging to their customers, and transferred $10 million USD to a number of personal

international bank accounts [71, 80]. A year later, the first macro virus, called Concept,

was made. Macro viruses are the ones that are written in the same macro language that is

employed in the applications such as Microsoft Word. This virus affected a computer

device and its applications when the infected Word file was open [81]. Chernobyl virus

first appeared in 1998. This virus overwritten the systems BIOS and made them unusable

[82]. In 1999, Melissa, the fastest replicating virus for its time was released. This virus

used the e-mail MAPI address book to transmit itself to the first 50 email addresses in the

contact lists. It attached an MS-Word file that carried the virus to a short message [83],

infected the computer device once the file was opened, and led to the rise in corporate e-

mail traffic [84, 85].

In the first decade of the 3rd millennium, the idea of cloud computing [83, 86] was

realized and the pre-cloud era attacks have loomed out of the clouds having gone through

mutations. Incorporating internet services in mobile phones removed the time and place

limitation upon the internet access and has made it ubiquitous. There is a large portion of

data held on cyberspace, inspiring the criminals to capture or damage it. Although

 13

Distributed Denial of Service (DDoS) attacks found their way since the genesis of the

internet, they came to prominence on February 8, 2000, when Yahoo, Amazon, Buy, E-

bay, and CNN announced that their websites were overloaded with the flood of internet

traffic [87]. A couple of months later, a self-spreading worm called I LOVEYOU crawled

through the Internet and infected the computing devices using the social engineering

strategy. Unlike Melissa which was reliant upon MS Outlook, it was a stand-alone Visual

Basic script worm which is capable of self-replication [85, 88]. In 2002, one of the more

destructive DDoS attacks happened, targeting 13 Domain Name Service (DNS) root

servers and terminating the activities of some of them [89-91]. The fastest ever worm was

developed in 2003 infecting 90 percent of vulnerable Microsoft SQL Servers that did not

employ Service Pack 3. The worm produced damaging DoS effects slowing down the

internet traffic [92]. In 2004, the first mobile phone worm, namely Cabir, was discovered.

This virus utilized Bluetooth technology in order to find the first Bluetooth device nearby

to propagate itself; otherwise it drained the battery of infected mobile phone away since

the scanning process to find a new Bluetooth device continued until the next such device

in proximity or the depletion of battery power [93, 94]. A banking Trojan called Zeus was

first identified in 2007. At the time, a large percentage of government networks got infected

with Zeus [95]. It is a Botnet using form grabbing and key logging method for its

propagation [96] and resulted in the theft of tens of millions of dollars from bank accounts

during its lifetime [97]. In 2008, the largest identity theft case ever in the United State was

reported by the U.S. Department of Justice. More than 40 million credit cards had been

stolen from nine major U.S. retailers [98].

 14

Throughout the present decade, the cyber threats have not only targeted the individuals

but also increasingly breached to businesses and governments. From the earliest known

incident of network intrusions taking place back in 1988 to the present, the cyber threats

have been evolved from a single hacking event committing by amateur hackers and

youngsters to more sophisticated cyber-attacks carried out by professional hackers and

cyber pirates. In 2010, the first digital weapon known as Stuxnet affected numerous

centrifuges at the Natanz uranium enrichment facility in Iran. Stuxnet utilized two stolen

digital certificates to seem legitimate software to Microsoft Windows [99, 100]. A year

later, DigiNotar’s system was deceived into issuing hundreds of fraudulent digital

certificates for highly trafficked websites such as Google. This led the users to trust the

apparently secure web pages to enter their usernames and passwords in [101] and let the

intruders leverage their account information. In 2012, thousands of windows-based

workstations in Saudi Aramco were affected by a self-replicating virus named Shamoon.

Once a computer in a network is infected, this virus replicates itself in the corresponding

network, overwrites master boot record and makes it unusable, and eventually sends the

report to the attacker confirming that the disk in completely wiped up [102]. In 2013, South

Korea reported a cyber-attack known as Dark Seoul, affected 48,000 computers belonging

to the number of South Korean banks and media companies. This virus erased several hard

drives and caused denial of service [103]. One of the popular France TV channel, namely

TV5 Monde, was hacked in 2015. This attack caused 18 hours interruption in signal

transmission [104]. In 2017, Notpetya, the most destructive cyberweapon ever in history,

occurred targeting Ukraine. This malware was made up of two cyber threats, namely

EternalBlue and Mimikatz. Using the methodology adopted by EternalBlue and Mimikatz,

 15

NotPetya was able to achieve a fully remote control over any unpatched computer systems

and then infect other patched machines by extracting the passwords from their memory

holding the password [105]. The recently developed cyber-attacks are mostly intending to

be used for cyber warfare in comparison with the earliest ones. In fact, improving

cybersecurity can be an effective remedy to prevent these attacks. In the next section, we

will discuss a variety of cybersecurity strategies designed and employed since the history

of cyber threats started.

1.3.1 Efforts to Prevent Attacks

Considering the threat landscape has rapidly evolved, cybersecurity has become

loomed large to modern societies. The most basic strategies for securing computer systems

merged since the earliest days of computing, when the internet had not become public yet.

User authentication has been the first required strategy for providing secured access. It was

first provided on time-sharing UNIX systems back in the early 1960s [106]. The first

known antivirus, namely Reaper, was designed in the early 1970s to remove Creeper [107]

which was made by Bob Thomas. In the 1990s, with the sharp growth of the World Wide

Web and subsequently, a rise in cybercrimes, firewalls, and anti-viruses became a priority

for every organization and rapidly found its way into many personal computers. The first

commercial firewall found its place in the market in the early 1990s. The first generation

of firewalls were the routers that filtered the internet packets [108] based on some

information that they carried. They only controlled access from outside of the organizations

or companies. After a while, firewall-to-firewall encryption, user authentication, and virus

scanning were also incorporated into the old firewalls. The ubiquity of connectivity to the

Internet aroused the new concerns over protecting the integrity and privacy of information,

 16

paving the way for Internet Virtual Private Network (VPN) formation. In this decade, the

significant majority of malwares placed their focus on Windows operating systems. This

made Microsoft offer several patches to fix security vulnerabilities. Today, the significant

growth in the number of cyberattacks fuel demands for cybersecurity tools while they have

only protect the machines against known threats. Intrusion Detection Systems (IDSs) are

the tools designed to address this issue arise from the regular anti-malwares.

1.3.2 Efforts to Detect and Identify Attacks

Intrusion Detection System (IDS) monitors a system or network traffics in real-time,

analyzes them, detects security issues and policy violations, and keeps security

administrators informed. IDS is passive which means that it alerts the security

administrator when something unusual is detected while it is unable to prevent damages

and further attacks. There are three main types of IDS based on the role it plays and the

spatial dimension it has, including Network-based, Host-based, and Hybrid IDSs.

A network-based intrusion detection system monitors network traffic and analyzes the

network and application protocol activity to identify suspicious activity. In the mid-1990s,

two of the most popular IDS were developed. Wheelgroup designed Netranger [109], the

initial version of a security product made by the U.S. Air Force. It traced the network traffic

for vicious activities, recorded the details about the attacks that may cause any damages to

a network, and triggered the real-time alarm to inform the network administrator of

suspicious activities that can potentially be a damaging attack. In 1996, Internet Security

Systems (ISS) released RealSecure to improve network security with real-time attack

detection [110].

 17

Network IDS lost its popularity since the networks had become larger and faster and

host-based IDSs taken the place of network-based IDSs progressively. Host-based

intrusion detection systems track network traffics on a single personal computer or a server,

log and detect malicious activities, and provide real-time processing. Eindhoven University

of Technology was subjected to a vicious attack by a hacker who gained root-level access

to multiple computer systems at this university. In response to these attacks, TCP Wrappers

was developed to keep control of host access, and log unusual activities. TCP wrappers

makes use of the strategies that a client and a server communicate across a network. It

places itself between the client and server to play the role of a server until the client has

thoroughly authenticated to the host [111].

Hybrid intrusion detection systems is comprised of both network and host based

intrusion detection, a module that traces the network packets and a module that traces the

localhost. Snort is identified as a hybrid ID system [112], utilizing both host-based and

network-based IDSs. However, when first released in 1998 for UNIX systems, its

capacities were limited. While shortly in 1999, it was able to provide real-time logging and

packet analysis, and report abnormal activities to SANS GIAC mobile device security

analyst.

1.4 Types of Intrusion Detection

Intrusion indicates any unauthorized activities causing harm to computer systems, and

threatening the information confidentiality, integrity or availability. Intrusion Detection

Systems (IDS) are any physical or intellectual components that detect unusual activities on

computer systems in order to keep them secure. The main goal of using an IDS is to identify

malicious network traffic where the traditional security tools are not able to identify them.

 18

IDSs can be classified into two main types: Misuse Intrusion Detection System and

Anomaly Intrusion Detection System.

Misuse intrusion detection systems can identify the intrusion with known signatures.

In other words, if there are any similarities between an intrusion signature and the signature

of a previous intrusions that already recorded in the signature database or logs, the intrusion

is detectable. Signatures can be updated manually and automatically. Misuse ID systems

are inherently unable to detect unseen attacks.

Anomaly intrusion detection systems can compensate for the weakness of misuse IDSs

concerning the capacity to detect new or unknown attacks. In these systems, a model is

designed regarding the normal behavior of old observations. Any noticeable difference

between the behavior of new observations and the characterizing model can be interpreted

as an intrusion and approach trigger an alert. The characterizing model designed by the

normal behavior on the network, is created using machine learning and statistics. The

designing is comprised of training and testing. The model is trained with normal traffic in

the training phase and it is eventually evaluated using unknown instances. Over the past

decade, the necessity for analysis of large and complex datasets has arisen. Several

strategies have been adopted and now increasingly being used to fulfill this requirement

and various models have been designed regarding the type of processing. Two common

types of anomaly intrusion detection systems are Statistical and Machine Learning anomaly

IDSs.

 19

1.4.1 Statistical anomaly intrusion detection system

The Statistical anomaly intrusion detection system leverages statistical data analysis

methods such as mean to form a normal profile. The statistical IDS is employed to find if

the new observations deviate from the normal profile. A statistical ID system assigns a

score to an instance whose profile mismatches the normal. If the score reaches the threshold

value that has been already set on the basis of the number of events that take place over a

period of time. There are two types of behavior in statistical anomaly based intrusion

detection system, abnormal and normal. These two behaviors are distinguishable by

applying statistical properties such as mean and variance of normal activities and statistical

test. A scoring mechanism is applied to score an abnormal activity when the calculated

score passes a determined threshold value, which will eventuate in an alarm generation. In

statistical anomaly based intrusion detection system, the process to detect any type of

anomaly starts by creating profiles for current activities and normal activities. Then, any

deviation from the normal behavior is determined by comparing these profiles. The two

main benefits of applying statistical anomaly based intrusion detection system as a

detection system are no requirement for previous knowledge of security problems and the

ability to detect new attacks. So, this system is useful to find malicious actions, which are

happening in long time periods because it can specify the opportunities for denial of-service

attacks. Generally, in statistical approaches, such as applying statistical anomaly based

intrusion detection system, accurate statistical distributions are used to model the behaviors

while for many of the application domains it is pretty hard to represent the problem

formation by applying statistical approaches. They need assumptions on the basis of the

parameters of a process, which cannot be proper for accurate anomaly detection systems.

 20

Statistical anomaly based intrusion detection system is categorized into operational models

and Markov process models.

1.4.2 Machine learning intrusion detection system

Machine learning is a data analysis approach that can teach the system and can gather

knowledge from the tasks conducted by the system. This means that machine learning

provides the capability to a system to develop its conducting mechanism. The systems,

which are trained by machine learning approaches, are applicable for numerous

applications although they are usually costly to implement. They can be implemented in

different field of education working with big data such as Chemical engineering, Bio

Engineering, and Mechanical Engineering [113-122]. The machine learning techniques

encompasses the methods that are analogous to the statistical and data mining techniques.

Machine learning techniques can be categorized into neural networks, fuzzy logic, and

support vector machines. Neural Networks can apply a series of commands by the user to

predict for the subsequent command. The neural network models can be applied to develop

user-behavior model because it does not need the direct information of the model. A typical

well-trained neural network model with back propagation and feed forward mechanism

performs sufficiently as signature matching system. Fuzzy logic can create satisfying

reasoning of data and facilitates to manage the uncertainty in the dataset- making it

appropriate for many applications. Fuzzy logic have been implemented by applying

different techniques since 1990’s. One of its significant applications has been in the

anomaly based intrusion detection systems. The fuzzy logic system can manage big input

data, which may also have undetermined parameters. The systems that apply fuzzy logic

are able to decrease the size of input data by applying data mining techniques and extracting

 21

features from the input parameters. Numerous fuzzy intrusion recognition engines are

accessible, which applies fuzzy sets and fuzzy rules. Also, many characteristics of fuzzy

logic technique are available to make the technique compatible to be related to an intrusion

detection system with a correlation.

1.5 List of Datasets for IDS development

The datasets are utilized to evaluate the effectiveness of the methods employing to

develop different types of intrusion detection systems. Due to the policies of database

sharing and privacy constraints, there are few available datasets in public. DARPA98,

KDDCUP 99, NSL-KDD, ADFA, and UNSW-NB15 are the publicly-available and

commonly used datasets in cybersecurity.

1.5.1 DARPA98

DARPA98 [123] was the first generation of cybersecurity datasets collected by the

Lincoln Laboratory of Massachusetts Institute of Technology (MIT) in 1998. The dataset

was comprised of the normal and abnormal network traffic captured from the simulated

military network made by Defense Advanced Research Project Agency (DARPA). Nine

weeks of raw TCP dump data were collected for simulating Lincoln Air Force Lab. They

performed the simulated LAN to scatter it over more attack instances.

The collected network packets contains four gigabytes of compacted TCP dump file

gathered from seven weeks of network transaction, containing 2 million connection records

in the testing set and 5 million connection records in the training subset.

Although this dataset was broadly used to compare the performance of different

approaches adopted to design intrusion detection systems, it was criticized for the low

 22

detection rate and accuracy achieved by models when they were evaluated by the real-life

network activities. It also required more memory size and the network transactions had to

be converted from TCP dump file into intellectual structure.

1.5.2 KDDCUP 99

This dataset was derived from DARPA98 to compensate for its drawbacks in 1999. It

contains 41 features and 4 attack types such as Denial of Service (DoS), User to Root

(U2R), Remote to Local (R2L), and Probing attacks.

This dataset has been widely used in different studies yet condemned by many authors

for lacking in the recent malware attacks, imbalanced number of normal and abnormal

records, and the existence of redundant instances. However, the place of KDDCUP 99

[124] is still secure as one of the benchmark cybersecurity dataset involved in several IDS

researches [125].

1.5.3 NSL-KDD

Tavallaee et al. [126] proposed NSL-KDD dataset in 2009 to address the issues arouse

from its early version, KDDCUP 99. This dataset contains training and testing subsets

consists of 125,973 and 22,544 instances, respectively. The number of instances in the

NSL-KDD suffice to train machine learning models without the need for embracing

randomness in data collection . This dataset is comprised of 4 attack classes as well as

normal class, and the similar number of features as of that in KDDCUP 99. Although it

was broadly used as a benchmark for intrusion detection research, it is claimed that it

contains outdated and unrealistic network transactions.

 23

1.5.4 ADFA

ADFA was proposed by G. Creech and J. Hu at [127] the Australian Defense Force

Academy in 2013, providing the contemporary and realistic system calls. It contains the

instances from both Linux (ADFA-LD) and Windows (ADFA-WD) operating systems

designing for anomaly-based host intrusion detection systems.

To design ADFA-LD, the researchers, selected Ubuntu Linux version 11.04 which

was the modern and commonly used version of this operating system at the time. It is

comprised of Normal training data, Normal validation data, and Attack data, gathered from

the host through its ordinary operation, with transactions ranging from web browsing to

LATEX document preparation. On the other hand, ADFA-WD was developed to provide

an effective Windows benchmark for IDSs [128-130].

1.5.5 UNSW-NB15

The UNSW-NB15 [131] was generated by the IXIA PerfectStorm tool in the Cyber

Range Lab of the Australian Centre for Cyber Security (ACCS) and released in 2015. This

dataset contains 2,540,044 records, providing realistic and modern normal and abnormal

network activities, and 49 features including packet-based and flow-based features. The

complexity of UNSW-NB15 arise from its structure makes it more comprehensive in the

existing network intrusion detection systems evaluation.

24

Chapter 2

2 Background

2.1 Dataset

The UNSW-NB15 computer security dataset had been released in 2015 [131, 132].

This dataset is comprised of 2,540,044 records. The dataset in available in the UNSW

webpage [133] and contains realistic and up to date normal and abnormal network

activities. The structure of this dataset is more complex in comparison with the other

benchmark datasets such as KDDCUP 99 [134, 135]. This makes the UNSW-NB15 more

comprehensive for evaluating the existing network intrusion detection systems in a more

reliable way [135].

The records for UNSW-NB15 were gathered by the IXIA traffic generator [136] with

three virtual servers. Two servers were configured to distribute the normal traffic packets

and the third one was configured to spread the abnormal traffic packets. A total of 49

features including packet-based and flow-based features were extracted from the records

by Argus [137] and Bro-IDS tools [138]. Packet-based features are extracted from a packet

25

 header and its payload (also called packet data). In contrast, flow-based features are

produced from the sequence of packets, from a source to a destination, traveling in the

network. The direction, inter-packet length and inter-arrival times are of paramount

importance during packet examination. Record total duration (dur) and destination-to-

source-time-to-live (dttl) are two examples of flow-based features. The features are

categorized into Basic (numbered from 6 to 18), Content (numbered from 19 to 26) and

Time (numbered from 27 to 35). Features numbered from 36 to 40 and 41 to 47 are labeled

as general-purpose features and connection features, respectively. General purpose features

category includes those features which are intended to explain the purpose of an individual

record while connection features depict the characteristic of the connection between a

hundred sequentially ordered records. The last two features include attack categories and

labels.

Attacks are categorized as Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic,

Reconnaissance, Shellcode and Worms. Normal class is represented using 2,218,761

records while Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,

Shellcode and Worms signatures include 24246, 2677, 2329, 16535, 44525, 215481,

13987, 1511, and 174 records, respectively. Consequently, there is considerable lack of

balance for the dataset as 87% of the dataset comprises Normal records whereas only

0.007% of the dataset consists of Worms records. Developers of the dataset also

subsampled and split the dataset into training and testing subsets as presented in Table 2.1,

which has been employed by other researchers [135, 139, 140].

 26

This dataset requires important and essential preprocessing before it can be

meaningfully employed for a data-driven model development for intrusion detection.

Therefore, it is necessary to provide a visual analysis of the dataset to offer a deep insight

into the intricacies of the dataset to help the researchers devise and apply appropriate

preprocessing techniques.

Table 2.1 Number of records in training and testing subsets for each class

Classes Training Subset Testing Subset

Normal 56,000 37,000

Analysis 2,000 677

Backdoor 1,746 583

DoS 12,264 4,089

Exploits 33,393 11,132

Fuzzers 18,184 6,062

Generic 40,000 18,871

Reconnaissance 10,491 3,496

Shellcode 1,133 378

Worms 130 44

Total Number of Records 175,341 82,332

2.2. Feature Selection Algorithms

Feature selection refers to identifying a subset of original features that will represent

a problem domain accurately. The goals of feature selection algorithms are to choose the

smallest subset of features which contains the most predictive power both to simplify the

subsequent analysis and improve the performance of machine learning algorithms. These

two can be done by reducing the dimensionality through reduction in feature count and

eliminating the inherent bias.

In this section, two different feature selection algorithms that belong to wrapper methods

and embedded methods for application on the UNSW-NB15 dataset are discussed.

 27

2.2.1. Wrapper Methods

Wrapper feature selection algorithms carry out an assessment on the usefulness of a

subset of features by involving a machine learning algorithm. This computational burden

makes these methods more expensive in comparison with filter methods. However, they

can usually produce the best subsets of features for a specific learning algorithm and

consequently lead to improved performance when compared to filter methods [141].

Sequential Feature Selection (SFS) is a naive wrapper feature selection algorithm that

starts with a null set and then adds one feature as the first step which depicts the highest

value for the objective function [142, 143]. For the second step onwards, the remaining

features are added one at a time to the current subset and thus the new subset is evaluated.

This process is repeated until the required number of features are added as explained next.

SFS is an iterative method in which it starts with the entire d dimensional feature set

(d is the number of features) as input 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑑}. In each iteration, it keeps adding

the feature to Yk until the criterion function including accuracy, F1-measure, FPR etc., is

maximized and/or the number of features reaches the value of k, which represents the

number of selected features, so it is less than d. The value of k needs to be determined prior

to SFS algorithm runs.

Yk = {yj| j = 1,2, … , k; yj ∈ Y} , k = 0, 1, 2, … & k < d

2.2.2. Embedded Methods

Embedded Methods inherit the qualities of both filter methods and wrapper methods

such as low computational cost and better performance. Elastic net [144] feature selection

 28

is proposed to select one feature among the highly correlated features in each iteration. It

performs bridge regularization [145] with 0 < γ ≤ 1 and λ ≥ 1.

p(w) = ∑ |wi|
γ

n

i=1

+ (∑ wi
2

n

i=1

)

λ

 (2.1)

where wi is a linear classifier, p(w) is a regularization term and n is the number of

predictors. Elastic Net is a combination of LASSO [143] and Ridge Regression [146].

β̂ en(λ) =
argmin

β
(

‖Y − Xβ‖2
2

n
+ λ2‖β‖2 + λ1‖β‖1) (2.2)

where ‖Y − Xβ‖2
2 = ∑ (Yi − (Xβ)i)

2n
i=0 , ‖β‖1 = ∑ |βj|

k
j=1 , Yi = β0 + xi1β1 + ⋯ +

xikβk, i = 1, … , n, n is the number of samples, β0, … , βk are the regression coefficients,

and k is the number of predictors. λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters.

2.3. Normalization Methods

2.3.1. Min-Max Scaler

This algorithm is one of the most popular scaling algorithms. The idea is to subtract

the minimum of all data (data in one column of the dataset) from each value and divide it

by the difference between the minimum value and the maximum one. The idea is to subtract

the minimum of all data (data in one column of the dataset) from each value and divide it

by the difference between the minimum value and the maximum one. The following

equation shows the computation:

Xsc =
Xall − Xmin

Xmax − Xmin
 (2.3)

 29

where Xsc represents the shrinkage of the original feature values to the interval 0 to 1

when the values are positive or to the interval -1 to 1 for negative data; Xall is the entire set

of values in a column; Xmin is the minimum value in a column, and Xmax is the maximum

value in a column.

2.4. Evaluation Metrics

The confusion matrix is used to help derive a set of performance metrics to evaluate the

performance of the classifiers. All of the traditional metrics are calculated based on the

confusion matrix, namely True Positive (TP), True Negative (TN), False Positive (FP), and

False Negative (FN). TP, TN, FP and FN identify the records that are correctly detected as

positives, correctly detected as negatives, incorrectly detected as positives, and incorrectly

detected as negative data points, respectively. In the case of cyber security, True Negative

(TN) is the number of records that are correctly predicted as Normal class and True Positive

(TP) is the number of instances that are correctly predicted as attacks. These terms are

depicted in Figure 2.1 where Ck represents different classes, k and n indicate the specific

class number and total number of classes, respectively.

Figure 2-1 Confusion matrix and associated performance metric definitions

C
n
 …

 C
k+

1

C
k

 C
k-

1
 …

C

0

 C0 … Ck-1 Ck Ck+1 … Cn

TP FN FN

FP

FP
TN

TN TN

TN

 30

The most common metrics are sensitivity, specificity, false positive rate, false negative

rate, precision and accuracy. However, for imbalanced datasets, the imbalance needs to be

considered during the evaluation measurements. Thus, the accuracy is not an appropriate

metric for the case of class imbalance [147]. Instead, F-measure is offered by [148] for

imbalanced datasets. In this study, we measure the accuracy in order to perform a

comparative evaluation with the same metric employed in studies reported in the literature.

Nex, we explain the metrics which are used in this study in the following paragraphs in

detail.

Accuracy is identified as the ratio of the correct classifications to the total number of

samples and defined by the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
 (2.4)

Sensitivity or Detection Rate (DR) corresponds to the proportion of true positives with

respect to all positives. It measures the probability of a sample being actually positive from

all positive data points. Specificity indicates the proportion of false positives to all

negatives. It measures the probability of a sample being actually positive from all data

points that are predicted to be positive. They are used when only positives or negatives

matter.

Sensitivity =
TP

TP + FN
 (2.5)

Specificity =
TN

TN + FP
 (2.6)

 31

False Positive Rate (FPR) or False Alarm Rate (FAR) represents the ratio of incorrect

positive predictions to the overall number of negatives. While the Precision measures the

probability of samples classified as positives for actually being positive. These two metrics

are defined as follows:

FPR =
FP

FP + TN
 (2.7)

and

Precision =
TP

TP + FP
 (2.8)

False Negative Rate (FNR) or Missed Alarm Rate indicates the ratio of incorrect

negative predictions to the total number of positives:

FNR =
FN

FN + TP
 (2.9)

F-measure is the harmonic mean of Sensitivity and Precision and is given by

F − measure =
2 × sensitivity × precision

sensitivity + precision
 (2.10)

This metric is the weighted harmonic mean of precision and sensitivity [149]. It takes

into account uneven level of importance of FN and FP.

Fβ = (1 + β2)
ps

β2p + s

=
(1 + β2)TP

(1 + β2)TP + β2FN + FP

(2.11)

where p represents the precision and s represents the sensitivity; and β is a weight attached

to precision and sensitivity.

 32

2.5. Classification Algorithms

2.5.1 Random Forest (RF)

Random Forest is an ensemble method comprising the collection of base estimators,

typically decision trees. An individual decision tree has been formed by a different

bootstrap sample of the original data and a set of randomly selected features (input

variables) given the best split in the creation of sub nodes. Bootstrap sampling is a statistical

data resampling method taking random number of samples with replacement from the

training subset in order to train each estimator. Randomly chosen sub-samples and features

has reduced the correlation between the estimators which leads to the accurate model. Also,

the aggregation of several base estimators has made a robust model minimizing the

generalization error in comparison with a single estimator.

Each decision tree has been trained with a sub-sample of original training data which

is randomly chosen. Accordingly, some samples may be used to train the decision trees

and some other may never be utilized. Random forest designate a randomized subset of

features to construct each estimator and choose a best split from the designated features

letting a decision tree grow. In this study, Hellinger distance has been utilized as a split

criterion. Assuming the binary-class classification where XA and XB represent the

distribution of class A and class B, respectively.

dH(XA, XB) = √(√
XA

left

XA
parent − √

XB
left

XB
parent)

2

+ (√
XA

right

XA
parent − √

XB
right

XB
parent)

2

 (2.12)

 33

XA
left and XB

left represent the number of samples of class A and B in the left child node,

XA
right

 and XB
right

 denote the number of class A and B samples in the right child node, and

XA
parent

 and XB
parent

 indicate the total number of class A and B samples in the corresponding

parent node, respectively.

Hellinger distance is in the range of [0, √2]. If class A and class B have been mutually

exclusive, dH(XA, XB) = 0 (maximal affinity) otherwise, dH(XA, XB) = √2 (minimal

affinity) [150-152]. Hellinger distance is used to trace the tendency of the selected features

to generate the base estimators showing the minimal affinity between class A and class B.

This criterion has addressed the skew sensitivity affecting the performance of decision

trees.

After the decision trees being made, they have predicted the new data that they had

not been trained by. The predictions have been eventually aggregated using bagging

method to count the majority votes associated with each estimator. This method battles the

overfitting problem and makes powerful learners.

2.5.2 Balanced Bagging (BB)

Balanced Bagging is the combination of standard bagging and resampling strategies.

Bagging is an ensemble method implementing with the aim of improving the performance

of a single weak estimator. Several base estimators have been aggregated in this strategy

to form a strong learner. Each estimator has been trained with bootstrap data. The

predictions have been eventually collected to make a final decision through a majority vote.

Resampling is a technique which is used to modify the distribution of data in order to deal

with the imbalanced class issue. It consists of oversampling and undersampling methods.

 34

The simplest oversampling, namely random oversampling, represents the randomly

selected samples from the minority class with replacement [153]. Random undersampling

indicates the samples that have been selected randomly from the majority class either with

or without replacement.

In this study, the hybrid of bagging and undersampling is utilized which is also called

UnderBagging. This method is first proposed by Barandela et al. [154] in 2002. The authors

concluded that the final learner presented the same results with and without data

replacement.

2.5.3. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting is comprised of sequence of decision trees utilizing

gradient descent algorithm in order to minimize the errors of weak estimators in which the

objective function consists of training loss and regularization term,

ℒ(ϕ) = ∑ l(yii
, ŷi) + ∑ Ω(fk)

ki

 (2.13)

where ∑ l(i yii
, ŷi) indicates the loss function and ∑ Ω(k fk) represents the

regularization term which is equal to γT +
1

2
λ‖w‖2. Extreme Gradient Boosting utilize the

same regularization strategy as Regularized Greedy Forest [155] has used. The final

weights gained by training the model have become smooth using this additional

regularization.

In this algorithm, all the trees are trained once at a time improving the performance of

the algorithm in terms of its run time. Every loss function at step t can be optimized by

 35

taking the first and the second order gradient statistics, giand hi, . Accordingly, the

objective function for the new tree in the general setting can be shown as follows,

ℒ (t)(q) =
1

2
∑

(∑ gi)iϵIj

2

∑ hi + λiϵIj

+ γT

T

j=1i

 (2.14)

where gi = ∂
ŷi

(t−1)l(yii
, ŷi

(t−1)
) and hi = ∂

ŷi
(t−1)

2 l(yii
, ŷi

(t−1)
) and T is the number of

leaves. To identify all the possible tree structures (q), basic exact greedy algorithm,

approximate algorithm [156, 157], weighted quantile sketch using the idea of quantile

sketch [158], and sparsity-aware split finding are utilized and proposed. The split

candidates are eventually evaluated by the following gain function after the split,

Gain =
1

2
[

(∑ gi)iϵIL

2

∑ hi + λiϵIL

+
(∑ gi)iϵIR

2

∑ hi + λiϵIR

−
(∑ gi)iϵI

2

∑ hi + λiϵI
] − γ (2.14)

where IL is the instance set of left nodes and IR is the instance set of right nodes. In fact, it

acts like the pruning strategies in tree-based models optimizing one level of the tree in

order to avoid overfitting. Also, shrinkage technique [159] and feature subsampling [159]

are the two additional strategies used in this algorithm to defend against overfitting.

2.6. Splitting Criterion

2.6.1. Hellinger Distance

Hellinger distance is a split metric which was first utilized along with decision tree

[150]. It is derived from the Bhattacharyya coefficient measuring the similarity between

two probability distribution [160]. If the conditional probabilities of class A and class B

given X, which is drawn from discrete or continuous set of attribute values V, are

 36

P(YA|X) and P(YB|X), the separability of class A and class B of data conditioned over the

full set of attribute values are measured as follows,

dH(P(YA), P(YB))

= √∑ (√P(YA|Xi) − √P(YB|Xi))
2

iϵV

(2.15)

In other words, if there is a continuous attribute, i is comprised of left and right where

left represents the values of an attribute that are less than or equal to the threshold and right

indicates the values of an attribute that are above the threshold. Accordingly, the equation

can be restated as follows,

dH(P(YA), P(YB))

= √{√
NA

left

NA
parent − √

NB
left

NB
parent}

2

+ {√
NA

right

NA
parent − √

NB
right

NB
parent}

2

(2.16)

where NA
left represents the number of the samples in class A in the left child of the tree,

NA
right

 represents the number of the samples in class A in the right child of the tree, and

NA
parent

 represents the number of the total samples in class A in the parent node of the tree.

The result of dH(P(YA), P(YB)) is confined between 0 and √2 where 0 indicates the worst

and √2 indicates the best split.

37

Chapter 3

3 Analysis of UNSW-NB15 Dataset

3.1 Visualization of dataset

In this section, we analyze the UNSW-NB15 dataset to identify and discuss significant

issues of the dataset [131, 134, 135]. Consequently, two prominent issues are identified for

analysis, namely class imbalance and class overlap. Class imbalance is composed of

between-class and within-class imbalance. Between-class imbalance corresponds to the

case where one class or multiple classes in a dataset are underrepresented in comparison

with other classes. In other words, a dataset shows significantly unequal distribution among

its classes. To illustrate this problem, we plot the distribution of entire attack classes for

the UNSW-NB15 dataset in Figure 3.1. As seen in this figure, normal records constitute

87% of all records while the combined record count for all 9 attack classes is only 13%.

Additionally, 13% of records in the overall dataset are not equally distributed among the 9

attack classes as 65% of all attack records belong to the Generic attack class while only

0.0008% of all attack records belong to the Worms attack class.

38

Figure 3-1 Distribution of records across classes

Within-class imbalance, on the other hand, represents the case where one class is

comprised of several different subclasses with different distributions. To discover whether

the classes are made up of imbalanced sub-clusters, we use two visualization techniques,

namely PCA and T-SNE. Figures 3.2 and 3.3 show the within-class imbalance in the

UNSW-NB15 dataset. As Figure 3.2 shows, the Exploits attack class is composed of

several different size clusters where clusters are compact. The clustering is different for

the Worms attack class for which there are two but different size cluster groupings as

shown in Figure 3.3. The larger cluster grouping is composed of multiple subgroupings

with gaps in between. Figure 3.4 illustrates all the concepts using a 2-dimensional scatter

plot by considering all the data points in the dataset. All classes have multiple clusters of

different sizes and spread across the two-dimensional analysis space. Many classes are

composed of a few relatively large clusters and many small clusters. Additionally, the

boundaries separating classes are not clear cut: there is noticeable overlap between or

among multiple clusters belonging to different classes.

0

500000

1000000

1500000

2000000

2500000
87%

0.90% 0.10% 0.09% 0.60% 1.80%

8.50%

0.60% 0.06% 0.01%

 39

Figure 3-2 The visualization of the Shellcode instances using PCA

Figure 3-3 The visualization of the Worms instances using PCA

Majority Class Subconcept

General Majority Class Concept

Minority Class Subconcept

General Minority Class Concept

 40

Figure 3-4 The visualization of the dataset using T-SNE

This dataset also suffers from the so-called “overlap problem.” In particular, many

attack class records mimic the behavior of the Normal records. While the emphasis of

intrusion detection systems is detecting and/or identifying the malicious network traffic, if

it is trained by this dataset without addressing the overlap problem, a satisfactory outcome

will not be achieved. In order to expose the degree or scale of this problem, we first sketch

the data points in a 3-dimensional scatter plot as shown in Figure 3.5. The same figure

shows that many attack classes overlap as indicated with the content of the dotted circles.

Shellcode (Minority Class) Normal (Majority Class)

 41

Figure 3-5 Visualizing the overlapping problem inherent in the dataset using the PCA

We further investigate for those attack class records which reside in the subspace

where primarily Normal records are present. Figure 3.6 details the overlap cases among a

subset of attack classes and the Normal class. As Figure 3.6 (a) illustrates, Exploits attack

class have the overlapping problem with the Normal class. In Figure 3.6, there is noticeable

overlap between the sets of data points belonging to Exploits (in red) and those belonging

to Normal class (in navy blue). In Figure 3.6 (b), it is easy to observe that records belonging

to Fuzzers and Normal classes are clustered together for the cluster in the lower left. Figure

3.6 (c), exposes the overlapping problem between Analysis and Normal classes.

 42

(a)

(b)

(c)

Figure 3-6 The visualization of the Normal along with the (a) Exploits, (b) Fuzzers, and

(c) Analysis data points

Subclass With High

Overlapping Probability

Subclass With

Low

Overlapping

Probability

 43

Figure 3.7 shows overlaps for the entire dataset. We used the K-means clustering

method to compute the clusters. Inter-cluster distances are also utilized to sketch the map.

As the figure shows, the degree or amount of overlap among classes 8, 4 and 1 as well as

between 0 and 6, and between 9 and 2 are substantial.

Figure 3-7 Mapping the dataset by 10 clusters using k-mean clustering algorithm

The UNSW—NB15 dataset is a good option for empirical studies on intrusion

detection system development using data-driven approaches. However, the two major

issues, namely class imbalance and class overlap, need to be addressed prior to being

employed for model development. Class imbalance and overlap, if not addressed, are likely

to hinder the attack detection and identification performance of an intrusion detection

system developed using this dataset. We have used a variety of visualization techniques to

expose and illustrate the degree of prominence of these two problems within this dataset.

Given the degree of severity as presented through the visualization, it is imperative that

 44

effective approaches need to be implemented to mitigate the adverse effects of these two

problems on classification performance of any data-driven statistical or machine learning

model.

45

Chapter 4

4 Data Preprocessing

Data preprocessing employs variety of methods such as data cleaning, data

transformation and feature selection to convert the raw data into an appropriate framework

or format prior to processing with a learning algorithm. These methods have significant

impact on machine learning performance. In this section we discuss these methods in detail

and show how they help optimize the performance of the proposed model.

4.1 Data Cleaning

Data cleaning eliminates the redundant observations from the dataset, which consists

of duplicate or irrelevant records or features. There are no duplicate features or records in

the UNSW-NB15. Yet, the entire 49 features are not required to be necessarily used. In

this dataset, four features are specific to the computing infrastructure such as source IP

address, source port number, destination IP address, and destination port number. Another

two features, namely record_start_time and record_last_time, may not be very useful either

46

 [134]. Keeping these features may lead the machine learning model to incur performance

penalty as it may not generalize reliably due to potential for overfitting.

For the 43 remaining features, two of them are target features, attack_cat and label. The

attack_cat feature is of type nominal and contains the names of attack categories. For the

purpose of multi-class classification, this feature is needed. The feature label is binary

valued for which a 0 value indicates normal and a 1 value shows attack records, which is

relevant for binary classification cases. Accordingly, we use this feature for binary

classification.

4.2 Data Transformation

Among the 41 non-target features, three of them are nominal. We convert the nominal

features to numerical as most of the machine learning models and scalers can readily work

with the numerical values. To convert the nominal to numerical features, we use label

encoder implemented as in scikit-learn in Python. This transformation method is used to

convert the nominal values to the numerical values using the following formula: numerical

representation is computed as a value between 0 to the count of nominal values minus one.

We also transform all the features to the same range of values using scalers. This helps

most learning algorithms weigh in the entire features equally. We measure nearest

shrunken centroid [161] for each attack class. Let xij indicate the i − th input variable

(feature) where i = 1,2, … , p and j − th sample (record), where j = 1,2, … , n; p is the

number of predictors (features), and n is the number of samples. If we have k = 1,2, … , K

and Ck is n samples in class k then the mean expression value in class k for input variable

i is x̅ik = ∑ xij/nkj∈Ck
 and the mean expression value for overall class is x̅i = ∑ xij/n.n

j=1

 47

To measure the distance between the attack class centroids, the Euclidean distance and

Mahalanobis distance [162] are used. Figures 4.2 and 4.4 depict the Euclidean distance and

Mahalanobis distance of class centroids against each other where six different scalers are

implemented, respectively. Figures 4.1 and 4.3 represent the same distances when no

scalers are applied on the dataset. Figure 4.1 shows that the distance between the centroids

of Generic and Worms are much larger while Exploits and Fuzzers are close to most of the

class centroids. In Figure 4.2, Normalization shows no impact on the distance values.

Instead, the Min-Max scaler increases the distance between the centroids of the attack

classes against the Normal class. Also, it seems that the distance of the Worms cluster is

increased by robust scaling. No considerable impact can be ascertained for the distance

values when standard scaler, quantile transformer, and power transformer are implemented.

Figure 4-1 The Euclidean distance of the class centroids when the dataset is not

normalized

 48

Figure 4-2 The Euclidean distance of the centroids after normalizing the data (upper-left),

scaling the dataset with min-max, maxabs (upper-right), robust (left-center), standard

(right-center), quantile transformation (lower-left), and power transformation (lower-

right)

Although, the Euclidean distance is the most commonly used metric to measure the

straight-line distance, it treats each feature equally while it is assumed that there is a

correlation between the features. If the input variables are correlated to one another,

 49

Euclidean distance provides misleading information regarding how similar two clusters

are. Moreover, each scaler measures the distance values using different ranges when

Euclidean distance is used. For instance, in Figure 4.2 for the robust scaler, the largest

distance is 32,000 while for the standard scaler the largest distance is 7.5. Accordingly, it

is hard to interpret the heat maps to compare the performances of the scalers qualitatively.

Mahalanobis distance measures the correlation between the features as well as addressing

the issue about comparing the heat maps by giving the distance values using the same scale.

Figure 4.4 demonstrates the link between the type of data normalization and the

distance between the centroid of each class type where Mahalanobis distance is utilized as

the distance measurement criterion. Comparing the heat maps, we can see that min-max

scaler, and power transformation deliver almost the same results. They are both comprised

of further number of green cells. Also, it seems that min-max scaler, robust scaler, and

power transformation increased the distance between the Normal class centroid and the

attack classes’ centroids.

Figure 4-3 The Mahalanobis distance of the centroids when the dataset in not normalized

 50

Figure 4-4 The Mahalanobis distance of the centroids after normalizing the data (upper-

left), scaling the dataset with min-max, maxabs (upper-right), robust (left-center), standard

(right-center), quantile transformation (lower-left), and power transformation (lower-

right)

Next, we present the values in tables to facilitate comparison of the distance values

quantitatively. This helps for the analysis of the heat maps quantitatively by tabulating the

values representing the distances associated with each class centroid. They are presented

 51

in Tables 4.1 through 4.10. These tables indicate that Min-Max scaler, Robust scaler and

Quantile transformer increase the centroid distances for more cases. The main point of

interest is in an algorithm that increases the distances among class centroids particularly

Normal class against the attack classes in intrusion detection systems to decrease the false

negative rate. Min-Max scaler is the one that increases the centroid distance between the

Normal class and the rest. This is likely to help the intrusion detection systems identify the

normal records against attack data points which will lead to a decrease for the missed alarm

rate value. Analysis of data in Tables 4.2, 4.3, 4.6 and 4.8 show that distance values

between any one of Backdoor, DoS, Generic and Reconnaissance classes and the Normal

class for the Min-Max scaler are the largest compared to those for the other scalers.

Distance values between any one of Fuzzers, Shellcode and Worms classes and the Normal

class for the Min-Max scaler compared to distance values by the other scaler algorithms

are also competitive.

Table 4.1 The Mahalanobis distances between the Analysis centroid and the rest

 Backdoor Dos Exploits Fuzzers Generic Normal Recon Shellcode Worms

Original 0.67 0.45 1.64 2.23 1.41 2.57 1.31 1.47 3.15

Normal 1.42 0.89 1.34 1.61 1.32 3.06 0.97 1.06 3.31

Min-Max 0.80 0.58 1.28 1.94 3.19 2.71 1.19 1.22 2.85

Robust 0.13 1.82 2.98 0.76 0.26 3.13 0.16 0.20 3.25

Standard 0.97 1.11 1.14 1.64 3.05 2.70 0.62 0.72 2.64

Quantile 1.23 1.03 1.19 2.27 2.04 2.84 1.43 2.07 2.53

Power 1.10 0.98 1.17 1.15 2.38 3.29 1.01 1.42 2.47

Table 4.2 The Mahalanobis distances between the Backdoor centroid and the rest

 Analysis Dos Exploits Fuzzers Generic Normal Recon Shellcode Worms

Original 0.67 0.50 2.24 2.77 0.99 3.02 1.89 1.98 3.19

Normal 1.42 0.53 2.49 2.79 1.40 2.68 2.29 2.42 3.40

Min-Max 0.80 0.23 1.98 2.29 3.44 3.78 1.43 1.43 3.32

Robust 0.13 1.74 2.89 0.75 0.22 3.22 0.11 0.16 3.25

Standard 0.97 0.56 1.96 2.55 3.41 2.82 1.47 1.49 3.50

Quantile 1.23 0.25 1.79 2.33 2.68 3.01 1.12 1.34 3.50

Power 1.10 0.15 1.89 2.08 3.05 3.47 1.08 1.04 3.39

 52

Table 4.3 The Mahalanobis distances between the DoS centroid and the rest

 Analysis Backdoor Exploits Fuzzers Generic Normal Recon Shellcode Worms

Original 0.45 0.50 2.07 2.34 1.37 3.01 1.73 1.55 3.35

Normal 0.89 0.53 2.05 2.35 1.13 2.79 1.79 1.92 3.34

Min-Max 0.58 0.23 1.79 2.21 3.39 3.43 1.36 1.37 3.21

Robust 1.82 1.74 1.17 1.23 1.90 3.39 1.84 1.88 3.24

Standard 1.11 0.56 1.81 2.74 3.34 2.29 1.67 1.75 3.31

Quantile 1.03 0.25 1.64 2.36 2.64 3.04 1.02 1.37 3.27

Power 0.98 0.15 1.74 1.94 3.01 3.36 0.97 0.96 3.26

Table 4.4 The Mahalanobis distances between the Exploits centroid and the rest

 Analysis Backdoor Dos Fuzzers Generic Normal Recon Shellcode Worms

Original 1.64 2.24 2.07 2.28 2.53 1.19 0.39 1.98 3.39

Normal 1.34 2.49 2.05 0.33 2.64 2.83 0.54 0.74 3.37

Min-Max 1.28 1.98 1.79 1.26 3.32 2.39 1.11 1.15 1.79

Robust 2.98 2.89 1.17 2.32 3.06 3.94 2.99 3.03 3.97

Standard 1.14 1.96 1.81 1.55 3.22 2.17 1.11 1.27 1.54

Quantile 1.19 1.79 1.64 1.61 2.87 2.14 1.16 1.78 2.01

Power 1.17 1.89 1.74 0.46 3.08 2.79 1.06 1.45 1.70

Table 4.5 The Mahalanobis distances between the Fuzzers centroid and the rest

 Analysis Backdoor Dos Exploit Generic Normal Recon Shellcode Worms

Original 2.23 2.77 2.34 2.28 3.63 3.42 2.30 0.80 3.74

Normal 1.61 2.79 2.35 0.33 2.87 3.07 0.68 0.78 3.40

Min-Max 1.94 2.29 2.21 1.26 3.19 3.64 0.88 0.92 1.07

Robust 0.76 0.75 1.23 2.32 0.96 2.76 0.85 0.91 3.26

Standard 1.64 2.55 2.74 1.55 3.45 3.72 1.11 1.11 2.16

Quantile 2.27 2.33 2.36 1.61 3.10 0.71 2.05 2.19 3.39

Power 1.15 2.08 1.94 0.46 2.86 3.09 1.31 1.79 1.40

Table 4.6 The Mahalanobis distances between the Generic centroid and the rest

 Analysis Backdoor Dos Exploit Fuzzers Normal Recon Shellcode Worms

Original 1.41 0.99 1.37 2.53 3.63 2.99 2.16 2.86 3.69

Normal 1.32 1.40 1.13 2.64 2.87 3.93 2.19 2.19 3.58

Min-Max 3.19 3.44 3.39 3.32 3.19 4.09 3.27 3.35 3.70

Robust 0.26 0.22 1.90 3.06 0.96 3.38 0.11 0.07 3.22

Standard 3.05 3.41 3.34 3.22 3.45 3.96 3.34 3.45 3.71

Quantile 2.04 2.68 2.64 2.87 3.10 3.37 3.33 3.82 3.89

Power 2.38 3.05 3.01 3.08 2.86 4.03 3.38 3.72 3.77

Table 4.7 The Mahalanobis distances between the Normal centroid and the rest

 Analysis Backdoor Dos Exploit Fuzzers Generic Recon Shellcode Worms

Original 2.57 3.02 3.01 1.19 3.42 2.99 1.39 3.15 3.67

Normal 3.06 2.68 2.79 2.83 3.07 3.93 3.16 3.40 4.08

Min-Max 2.71 3.78 3.43 2.39 3.64 4.09 3.31 3.32 3.81

Robust 3.13 3.22 3.39 3.94 2.76 3.38 3.29 3.33 4.20

Standard 2.70 2.82 2.29 2.17 3.72 3.96 3.05 3.19 2.72

Quantile 2.84 3.01 3.04 2.14 0.71 3.37 2.74 2.88 3.68

Power 3.29 3.47 3.36 2.79 3.09 4.03 3.29 3.20 4.01

 53

Table 4.8 The Mahalanobis distances between the Reconnaissance centroid and the rest

 Analysis Backdoor Dos Exploit Fuzzers Generic Normal Shellcode Worms

Original 1.31 1.89 1.73 0.39 2.30 2.16 1.39 1.88 3.41

Normal 0.97 2.29 1.79 0.54 0.68 2.19 3.16 0.26 3.29

Min-Max 1.19 1.43 1.36 1.11 0.88 3.27 3.31 0.08 1.91

Robust 0.16 0.11 1.84 2.99 0.85 0.11 3.29 0.05 3.26

Standard 0.62 1.47 1.67 1.11 1.11 3.34 3.05 0.16 2.46

Quantile 1.43 1.12 1.02 1.16 2.05 3.33 2.74 0.74 2.80

Power 1.01 1.08 0.97 1.06 1.31 3.38 3.29 0.55 2.47

Table 4.9 The Mahalanobis distances between the Shellcode centroid and the rest

 Analysis Backdoor Dos Exploit Fuzzers Generic Normal Recon Worms

Original 1.47 1.98 1.55 1.98 0.80 2.86 3.15 1.88 3.36

Normal 1.06 2.42 1.92 0.74 0.78 2.19 3.40 0.26 3.23

Min-Max 1.22 1.43 1.37 1.15 0.92 3.35 3.32 0.08 1.93

Robust 0.20 0.16 1.88 3.03 0.91 0.07 3.33 0.05 3.27

Standard 0.72 1.49 1.75 1.27 1.11 3.45 3.19 0.16 2.58

Quantile 2.07 1.34 1.37 1.78 2.19 3.82 2.88 0.74 3.47

Power 1.42 1.04 0.96 1.45 1.79 3.72 3.20 0.55 2.94

Table 4.10 The Mahalanobis distance between the Worms centroid and the rest

 Analysis Backdoor Dos Exploit Fuzzers Generic Normal Recon Shellcode

Original 3.15 3.19 3.35 3.39 3.74 3.69 3.67 3.41 3.36

Normal 3.31 3.40 3.34 3.37 3.40 3.58 4.08 3.29 3.23

Min-Max 2.85 3.32 3.21 1.79 1.07 3.70 3.81 1.91 1.93

Robust 3.25 3.25 3.24 3.97 3.26 3.22 4.20 3.26 3.27

Standard 2.64 3.50 3.31 1.54 2.16 3.71 2.72 2.46 2.58

Quantile 2.53 3.50 3.27 2.01 3.39 3.89 3.68 2.80 3.47

Power 2.47 3.39 3.26 1.70 1.40 3.77 4.01 2.47 2.94

To address the overlapping problem, we will identify and use that transformation

algorithm which maximizes the intra-cluster distances. According to Table 4.7, the min-

max scaler increases the distance of the centroids of four attack classes (Backdoor, DoS,

Generic, and Reconnaissance) away from the Normal class centroid more than

Normalization, Robust Scaler, Standardization, Quantile and Power transformation

methods. Consequently, min-max scalar will be employed in our study.

To further support our findings that were derived based on observations using Tables

4.1 through 4.10, we also implement normalization, min-max, robust, standard, quantile

 54

and power scalers in conjunction with Balanced Bagging, XGBoost and Random Forest

classifiers. We assess the performance of the classifiers in terms of accuracy in Table 4.11.

Table 4.11 Accuracy comparison among the performances of six different scalers

 Balanced Bagging (%) XGBoost (%) Random Forest (%)

Original Dataset 87.56 94.11 92.81

Normalizer 81.45 85.02 85.78

Min-Max Scaler 88.91 96.40 93.33

Robust Scaler 87.61 94.55 93.12

Standard Scaler 86.64 92.73 91.99

Quantile Transformer 87.32 93.95 93.12

Power Transformer 86.11 92.00 91.27

Increasing the distance of the attack centroids against the Normal class centroid is

realized by comparing the performance of the classifiers with and without applying six

different scalers. The first row of Table 4.11 demonstrates the accuracies of three

estimators where no normalization strategy is used. Comparing the results in this row with

the results of the Min-max scaler shows that the accuracies increased from 1 to 2 percent

for each estimator when the min-max scaler applied on the dataset. In this table, the worst

accuracies belong to the normalizer and the best ones are achieved by Min-Max scaler.

Accordingly, the choice of the Min-Max scaler is appropriate, which will be employed

prior to implementing the feature selection algorithm and classifier training phase.

4.3 Feature Selection

Fourteen different feature selection algorithms were implemented on the dataset to

extract the informative as well as representative features. Chi-squared [163], Information

gain (tree-based feature selection [164]), CFS (Appendix A), ReliefF [165], and mRMR

[166], are employed among filter-based feature selectors; genetic algorithm (Appendix A),

Recursive Feature Elimination (RFE) [167], and Sequential Feature Selection (forward

 55

selection and backward elimination, Appendix A) are picked as wrapper methods; and

Lasso and Elastic Net are chosen among embedded feature selectors. The effect of feature

selection algorithms on the classifier performance was assessed and evaluated using

ensemble algorithms including Random Forest [168], Bagging [169], Balanced Bagging

(BB) [170], AdaBoost [171], XGBoost [172], Gradient Tree [172], Extremely Randomized

Trees (ERT) [173], Easy Ensemble (EE) [174] and many other algorithms such as naïve

Bayes [175], SVM and MLP Neural Network [176] using Back Propagation (BP)

optimization algorithm. The code is deployed and implemented in Spyder v3.3.2 [177],

written in Python v3.6.8 64-bit [178]. Pandas v1.0.1 [179], Numpy v1.17.0 [180], math

v3.8 [181], matplotlib v3.2.1 [182], scipy v1.2.3 [183], seaborn v0.10.1 [184], Scikit-learn

v0.22.2 [185], imblearn v0.6.2 [186] are the rest of the Python modules, packages and

libraries employed for this study. Performance evaluation of classifiers on the dataset

which was preprocessed with the set of feature selection algorithms indicated that the two

best feature selection algorithms are Elastic Net and Sequential Forward Selection (SFS)

running in conjunction with Random Forest, Bagging and XGBoost classifiers. The

combination of Elastic Net feature selection algorithm with the Balanced Bagging machine

learning classifier, and the SFS feature selector with the Random Forest classifier and

XGboost performed the best among all possible combinations tested when considering the

F1-score as the metric. Elastic Net feature selector in conjunction with the Balanced

Bagging classifier performed the best for 24 features that were listed in Table 4.12 as shown

in Figure 4.5 (a). The SFS feature selection algorithm in conjunction with the Random

Forest classifer performed the best for 8 features which form a proper subset of 24 features

as shown in Figure 4.5 (b).

 56

4.5 (a)

4.5 (b)

Figure 4-5 (a) The F1-score of Balanced Bagging classifier across the number of input

features.(b) The F1-score of Random Forest classifier across the number of input features

In the case of intrusion detection, decreasing the number of attack records that are

incorrectly identified as normal (FN) matters a lot in comparison with reducing the number

of normal records that are incorrectly identified as attack (FP). The concept of weighted

harmonic mean of precision and sensitivity leveraged by the F1-score explains that an

effective models considers a false negative β2 times more costly than a false positive. In

this context, F1-score is an effective alternative for accuracy. Also, it takes both false

negative (FN) and false positive (FP) into consideration where the class distribution is

imbalanced. As an example, less number of false positives and false negatives will generate

a smaller F1 score, while a naïve classifier that is biased with the majority observation

could yield a high accuracy score. Accordingly, F1-score is an appropriate metric to

evaluate the models that are implemented on this dataset.

Table 4.12 List of features selected by Elastic Net and SFS

Feature No Feature Name Elastic Net SFS Description

1 dur X Record total duration

2 proto X X Transaction protocol

3 service X X Contains the network services

4 state X Contains the state and its dependent protocol

5 spkts X Source to destination packet count

 57

Feature No Feature Name Elastic Net SFS Description

6 dpkts X Destination to source packet count

7 sbytes X X Source to destination transaction bytes

8 dbytes X Destination to source transaction bytes

9 rate X X Ethernet data rates transmitted and received

10 sttl X Source to destination time to live value

11 dttl X Destination to source time to live value

12 sload X Source bits per second

13 dload X X Destination bits per second

14 sloss X Source packets retransmitted or dropped

15 dloss X Destination packets retransmitted or dropped

16 sinpkt X Source interpacket arrival time (mSec)

17 dinpkt X Destination interpacket arrival time (mSec)

18 sjit X X Source jitter (mSec)

19 djit X X Destination jitter (mSec)

20 swin X Source TCP window advertisement value

21 stcpb X Destination TCP window advertisement value

22 dtcpb X Destination TCP base sequence number

23 dwin X Destination TCP window advertisement value

24 tcprtt X X TCP connection setup round-trip time

58

Chapter 5

5 Proposed Methodology

5.1 Classifier development methodology

In this research the training and testing subsamples existing on the UNSW website are

used. There are 175,341 records in training and 82,332 records in testing data subsets each

of which contains the records belonging to 9 different attack classes consisting of Analysis,

Backdoor, DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, Worms as well as

the Normal class. Exploits, Generic and Normal instances make up a large portion of

subsamples at 16%, 22% and 38% of the overall records in the training subset, respectively.

As an extreme case, Worms attack instances form a mere 0.06% of both training and test

sets. Since the number of records of majority classes significantly outnumber the records

of minority classes, there exists a severe class imbalance problem, as discussed early and

shown in Figure 3.1. Also, in this dataset we discovered the presence of the overlapping

problem between the Normal class and some attack classes, and among attack classes,

59

shown in Figures 3.2 through 3.7. In this section, we develop a design to address these

problems.

We implemented numerous machine learning classifiers such as SVM, naïve Bayes (NB),

multi-layer perceptron (MLP) neural network (NN), Bagging, Random Forest (RF),

Extremely Randomized Trees (ERT), AdaBoost, Gradient Tree (GT), Balanced Bagging

(BB), XGBoost, and Easy Ensemble (EE) on the dataset for the case where the classifier

algorithms employed all of the original features without implementing data normalization

methods. The results are shown in Table 14 in terms of missed alarm rate (MAR) which is

one of the, if not, most critical performance metrics for intrusion detection context. Table

5.1 shows that Balanced Bagging, XGBoost and Random Forest lead in their performances

for this dataset with respect to the MAR metric. Consequently, these three classifiers will

be employed in the design of an ensemble classifier.

Table 5.1 Missed alarm rate values for the set of 11 classifiers

Classes SVM NB Bagging NN RF ERT AdaBoost GT BB XGBoost EE

Analysis 1.00 1.00 0.99 1.00 0.86 1.00 0.87 1.00 0.77 0.87 0.86

Backdoor 1.00 1.00 0.93 0.98 0.76 0.95 0.93 0.95 0.59 0.64 0.60

DoS 0.90 0.99 0.88 0.98 0.87 0.87 0.99 0.93 0.81 0.83 0.99

Exploits 0.90 0.97 0.21 0.82 0.21 0.28 0.70 0.09 0.42 0.04 0.99

Fuzzers 0.94 0.63 0.42 0.89 0.39 0.42 0.93 0.55 0.32 0.29 0.75

Generic 0.51 0.03 0.03 0.03 0.03 0.03 0.42 0.03 0.04 0.02 0.42

Normal 0.04 0.65 0.24 0.24 0.21 0.23 0.86 0.34 0.34 0.39 0.70

Recon 0.65 0.71 0.19 1.00 0.17 0.22 0.17 0.21 0.17 0.18 0.99

Shellcode 0.96 0.98 0.31 1.00 0.30 0.52 0.92 0.60 0.06 0.12 0.81

Worms 1.00 0.95 0.86 1.00 0.04 0.86 1.00 0.56 0.09 0.43 0.88

We also employ the Hellinger distance criterion [151, 187] along with the Random

Forest classifier to improve the quality of split. Decision Trees are easy to code,

interpretable, fast, and nonlinear. However, they suffer from overfitting, axis-parallel

splitting and skewness sensitivity. The overfitting problem is mitigated by tree pruning,

while axis-parallel splitting can be addressed by building a forest of orthogonal [188] and

 60

oblique decision trees [154]. Skewness sensitivity of decision trees arises due to utilizing

some popular splitting criteria including information gain and Gini measure. Hellinger

distance measure can address this problem due to its skew insensitivity property. For

instance, suppose that we have two classes and Random Forest is applied on the training

subset with 175,341 records. Also, in this scenario, we have 1% of the entire data in class

‘A’ and the remaining records are in class ‘B’. In the case that Random Forest splits the

data on the feature ‘rate’ using a test or threshold value of 200,000, one splitting scenario

for such an imbalanced dataset could be as presented in Figure 5.1.

Figure 5-1 An example to illustrate Hellinger distance metric utility

In fact, regardless of balanced or imbalanced property of a dataset, the best split is

made for binary classification when the entire data points in class ‘A’ are placed in the left

node and all data points in class ‘B’ are placed in the right node. If that is the case, the

perfect score for Entropy and Hellinger distance would be 1.0 and √2, respectively. In this

example, which is a reasonably good but not a perfect split, the scores measured by Entropy

and Hellinger are tabulated as follows,

A: 1753 (1%)
B: 173588 (99%)

A: 141 (0.08%)
B: 171,976 (99.92%)

A: 1612 (50%)
B: 1612 (50%)

‘rate’<200000 ‘rate’>200000
(A+B)= 175,341

(A+B)= 3224 (A+B)= 172,117

 61

Table 5.2 Entropy and Hellinger distance score measurements

 Entropy Hellinger

Perfect Score 1.0 √2 ≃ 1.41

Evaluated Score 0.015 1.29

The score obtained by Hellinger distance is calculated using Equation 2.16. According

to this score, Hellinger distance takes this split into account to form the final prediction. In

contrast, given the Entropy formula as

E = − ∑ pi log2 pi

c

i=1

 (5.1)

and the Information Gain formula as

Gain = E(parent) −
wL

wparent
EL −

wR

wparent
ER (5.2)

The split in Figure 5.1 does not appear to be “desirable”. In these equations, pi is the

probability distribution associated with class i, 𝑖 = {1,2, … , 𝑐}, where c is the number of

classes. Information gain is the difference of Entropy in parent node (E(parent)) from the

Entropy of its left (EL) and right (ER) child where wL is the number of data points in the

left node, wR is the number of data points in the right node, and wparent is the number of

data points in the parent node.

For this split, it looks very probable that a record coming into the right node will be

misclassified. This misclassification probability is
3224

175341
 (2% of the entire data), while

98% of the data will be most probably classified correctly if they find their way into the

left node. Accordingly, it can be considered as a good split. However, the information

 62

gained by Entropy measurement indicates that this split is a very bad one since the score is

1.5% of the perfect score shown in Table 5.2. All the while, the Hellinger distance metric

values this split by assigning it 91.49% of the perfect or maximum achievable score.

Hellinger distance metric thus addressed, for the most part, the problem of skewness

sensitivity if utilized by a decision tree classifier and will likely improve the performance

of such an algorithm.

 63

Figure 5-2 Classifier development schematic diagram

 64

5.2 Training methodology

The training set is split into two subsets: one subset, aka training subset, is used to

train the classifier and the second subset, aka validation subset, is used to calculate its error

rate to determine the convergence or stopping point. The training set is split into two

subsets using stratified sampling: 90% of the training set is extracted in order to train the

proposed model and the remaining 10% is kept to calculate the model’s error. Each stratum

is formed by ten different classes following a frequency distribution. In other words, the

samples are picked randomly from each attack class as well as Normal records. Next, the

training subset is processed with the Elastic Net feature selection algorithm. This algorithm

selects 24 features out of 40 before the training subset is used to train the Balanced Bagging

and XGBoost classifiers. Concurrently, the SFS algorithm selects 8 informative features

out of 24 that were already selected among the original 40 by the Elastic Net. The output

of SFS, which are 8 features, is used to train the Random Forest classifier.

Each classifier generates a matrix consisting of probability scores. Entries in this

matrix are computed by dividing the number of votes for each class by the number of

decision trees in each model. For instance, if we had 30 decision trees in Random Forest

and 20 of them vote for normal class on a new sample, the probability of Normal class is

0.67 (20/30). The first seven rows of the matrix produced by the Balanced Bagging is

shown in Table 5.3. It consists of 10 columns, representing 10 (9 attack plus Normal)

classes, and N rows, where N designates the number of data samples in the validation

subset. Since the validation subset has 35,068 records representing 10% of the training set,

each model generates a probability matrix consisting 35,068 rows. Both the probability

matrix and the confusion matrix produced by XGBoost and Balanced Bagging classifiers

 65

are used as the inputs of Algorithm #1. This algorithm is employed to process the XGBoost

and Balanced Bagging outputs to compute the errors caused by class overlap issue

associated with the dataset.

Table 5.3 First seven rows of a probability score matrix generated by Balanced Bagging

classifier

Row

Index
Analysis Backdoor DoS Exploit Fuzzers Generic Normal Recon Shellcode Worms

0 0.0083 0.0103 0.0988 0.1506 0.1718 0.0167 0.0750 0.0212 0.4463 0.0003

1 0.0034 0.0044 0.0632 0.1580 0.4279 0.0240 0.2884 0.0118 0.0144 0.0045

2 0.0057 0.0087 0.0641 0.1094 0.5057 0.0141 0.2659 0.0143 0.0111 0.0011

3 0.0062 0.0101 0.0627 0.1301 0.5491 0.0118 0.1968 0.0154 0.0159 0.0017

4 0.0018 0.0036 0.0339 0.0843 0.6023 0.0113 0.2427 0.0079 0.0109 0.0013

5 0.0044 0.0080 0.0827 0.1667 0.5055 0.0165 0.1213 0.0149 0.0774 0.0027

6 0.0034 0.0051 0.0605 0.1625 0.4867 0.0242 0.2271 0.0105 0.0140 0.0061

The output of Algorithm #1 is a nested list in Figure 5.3 that consists of 10 items

representing all the existing attack classes along with the Normal class which constitute

the Level-1. Each item in Level-1 points to 9 sub-items in Level-2 as well. The

corresponding sub-items in Level-2 for each item will not hold the item itself in Level-1.

For each sub-item in the Level-2 of the nested list, there is a corresponding two-element

list in Level-3. To make it more clear, we can consider this sole nested list as two two-

dimensional arrays with the same dimensionality as the confusion matrix (10 by 10) storing

mean and standard deviation. In other words, one matrix could hold the mean and another

would hold the standard deviation values. Each row and column represents nine different

attack classes along with the Normal class with the same order, similar to the rows and

columns of the confusion matrix. These arrays store zeros along their main diagonal. The

reason for that is that the aim of Algorithm #1 along with Algorithm #2 is to find the

prediction errors or the errors existing in the membership scores. Since the main diagonal

is holding true positives in confusion matrix, there is no error to calculate. That is why in

the nested list, these entries are eliminated automatically.

 66

Investigating the confusion matrix using Algorithm #1, if class A is misclassified x

different times as class B, this algorithm iterates x times to calculate the difference between

the probability score of class B and class A as well as class B and the eight remaining

classes. If the former difference is smaller than the latter, this difference value (between

class B and class A) is stored in a temporary variable (array D) for further calculation.

Otherwise, the value is discarded. In the next step, the mean and standard deviation of the

stored values are calculated and kept in arrays M and SD, respectively. These two values

are placed in the third level of the nested list, which is an output of Algorithm #1, where

the class A is the element of the first level of the list and class B is the element of the second

level of the list.

Algorithm #1 – Compute Means and Standard Deviations

 Mean-Standard-Deviation(CM, PS)

in:

two-dimensional array CM10×10 holding the confusion matrix

two-dimensional array PSn×10 holding the membership scores, n = the number of samples of

validation subset

out:

two-dimensional array OLM10×10 initialized with zero

two-dimensional array OLSD10×10 initialized with zero

local:

empty array DL representing the minimum value of the membership scores difference

empty variable SD representing the computed Standard Deviation value

empty variable μ representing the computed Mean value

empty variable D representing the value obtained by subtracting the membership scores

constant:

array 𝐴𝐿 = {𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠, 𝐵𝑎𝑐𝑘𝑑𝑜𝑜𝑟, 𝐷𝑜𝑆, 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑠, 𝐹𝑢𝑧𝑧𝑒𝑟𝑠, 𝐺𝑒𝑛𝑒𝑟𝑖𝑐, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑅𝑒𝑐𝑜𝑛, 𝑆ℎ𝑒𝑙𝑙𝑐𝑜𝑑𝑒, 𝑊𝑜𝑟𝑚𝑠}

1: for all x ∈ AL do ⊳ AL is an ordered list

2: for all y ∈ (AL − x) do

3: if CMx,y > 0 then

j ← 0

for i ← 1 … CMx,y do

6: D ← PSi,y − PSi,x ⊳ where x is misclassified as y

7: for all z ∈ (AL − (x, y)) do

DT ← PSi,y − PSi,z

if DT < D then

count ← 1

end if

end for

4:

5:

8:

9:

10:
11:

12:

 67

15

16:

17:

18:

Algorithm #1 – Compute Means and Standard Deviations

if count = 0 then

DLj ← D

j ← j + 1

end if

end for

sum ← 0

for h ← 1 … length(DL) do

sum ← sum + DLh

end for

μ ←
sum

N
 ⊳ where N indicates the number of elements in DL

SD ← √
1

N
∑ (DLi − μ)2N

i=1

OLMx,y ← μ

OLSDx,y ← SD

end if

end for

end for

return OLM, OLSD

To clarify how Algorithm #1 works, we trace its application step by step next. The

first row of Table 5.4 (a) represents a confusion matrix for the Analysis attack and Table

5.4 (b) represents the probability scores generated by the Balanced Bagging classifier in a

two-dimensional array or matrix form after it is trained and its performance evaluated on

the validation subset. Values of these matrices are held by CM and PS, two-dimensional

array variables in the Algorithm #1, respectively. Initially, DL, OLM and OLSD are empty

lists and eventually holding values for distances, output for mean values, and output for

standard deviation values, respectively. AL is another list that initially contains the Normal

and all the attack classes.

Now, let’s consider the initialization steps in lines 1 through line 3 for the very first iteration

of the algorithm:

 Attack class Analysis is removed from the attack list held in AL and maintained

in variable x as shown in line 1.

13:

14:

15:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

 68

 In line 2, Backdoor attack class is placed in variable y.

Figure 5-3 Illustration of partial output by Algorithm #1

0.06

0.01

0

0

0

0

Analysis

Backdoor

DoS

Exploits

Fuzzers

Generic

Normal

Recon

Shellcode

Worms

Backdoor

DoS

Exploits

Fuzzers

Generic

Normal

Recon

Shellcode

Worms

Analysis

DoS

Exploits

Fuzzers

Generic

Normal

Recon

Shellcode

Worms

Analysis

Backdoor

DoS

Exploits

Fuzzers

Generic

Normal

Recon

Shellcode

0.08

0.02

0

0

0

0

0

0

0.07

0.01

0

0

Level-1

Level-2

Level-3

Mean

Standard Deviation

 69

 To fill out the elements of both mean and standard deviation arrays, the algorithm,

in line 3, counts the false negatives where Analysis is the target and Backdoor is

the attack class that Analysis is misclassified as. For this example, 124 records of

Analysis are misclassified as Backdoor. Since the false negative count is more than

zero for Backdoor attack class, the difference between its prediction scores and the

Analysis scores are calculated for the corresponding data points. For Analysis and

Backdoor we have 124 rows and 10 columns of probability scores generated by

the Balanced Bagging model. From the entire 35,068 elements existing in the

probability score matrix, 124 element values are extracted where the Analysis

attack records are misclassified as Backdoor attack records.

Execution now reaches the for-loop in line 4 during the first iteration.

 In line 4, the algorithm starts from the first row of the probability score matrix in

which 0.78, 0.81, 0.02, 0.01, 0.24, 0.08, 0.11, 0.19, 0.08, 0.22 are the likelihood

of a new Analysis attack sample being classified as Analysis, Backdoor, DoS,

Exploits, Fuzzers, Generic, Normal, Reconnaissance, Shellcode and Worms,

respectively.

 In line 5, the differences between the Backdoor score and the score of other attack

classes are calculated.

 In line 6, since the score for Analysis (the target class, score: 0.78) which is

deducted from the score for Backdoor (incorrectly predicted class, score: 0.81) is

less than other differences (0.81-0.78=0.03) < (0.81-0.02= 0.79 and so on), 0.03 is

maintained in the distance variable D.

 70

The for-loop in line 4 repeats for 123 more times. In the second iteration, the algorithm

accesses the second row of the probability scores matrix with the values of 0.09, 0.54, 0.01,

0.03, 0.41, 0.04, 0.01, 0.06, 0.12 and 0.14.

 In line 5, it calculates the differences of the scores.

 In line 6, since the difference of the Backdoor score and Analysis score (0.54-0.09=

0.45) is not less than the difference of Backdoor score and Fuzzers score (0.54-

0.41=0.13), the difference will not be maintained in the distance variable D. This

computation repeats for the other 122 data points.

 In lines 10 and 11, the mean and the standard deviation for all those values in

distance variable D are calculated and kept in the mean and standard deviation array

for the Analysis and in the elements belonging to Backdoor. Now, we have the

range of values with which the errors that are caused by data overlap will be

minimized. Figure 5.4 shows this range of values, Mean − SD < x < Mean + SD

where x will be the likelihood of new sample’s membership in a class. This value

is obtained in test phase.

Table 5.4 (a) Confusion matrix and (b) First two rows of probability scores matrix.

A
n

al
y

si
s

B
ac

k
d

o
o

r

D
o

S

E
x

p
lo

it
s

F
u

zz
er

s

G
en

er
ic

N
o

rm
al

R
ec

o
n

S
h

el
lc

o
d

e

W
o

rm
s

Analysis 501 124 0 0 46 0 3 3 0 0

Backdoor 0 302 0 0 0 12 0 0 0 1

DoS 3 0 270 4 0 0 0 0 5 0

Exploits 0 0 0 254 8 0 50 0 0 0

Fuzzers 3 0 0 32 345 0 23 0 0 0

Generic 1 0 0 0 9 138 0 0 0 0

Normal 0 0 0 54 78 0 876 0 0 0

Recon 0 0 0 0 0 0 8 132 0 0

Shellcode 0 0 0 17 0 0 0 1 187 0

Worms 1 0 0 1 0 0 0 0 2 74

(a)

 71

Index Analysis Backdoor DoS Exploits Fuzzers Generic Normal Recon Shellcode Worms

1 0.78 0.81 0.02 0.01 0.24 0.08 0.11 0.19 0.08 0.22

2 0.09 0.54 0.01 0.03 0.41 0.04 0.01 0.06 0.12 0.14

(b)

Table 5.5 (a) The confusion matrix, (b) Mean and standard deviation arrays through

Algorithm #1 and (c) Mean and standard deviation arrays through Algorithm #2

 Analysis Backdoor DoS Exploits Fuzzers Generic Normal Recon Shellcode Worms

Analysis 501 124 0 0 46 0 3 3 0 0
 (a)

Analysis
Mean 0.08 0 0 0.09 0 0.04 1.30 0 0

SD 0.02 0 0 0.02 0 0.03 0.10 0 0
 (b)

Analysis
Mean 0.08 0 0 0 0 0 1.30 0 0

SD 0.02 0 0 0 0 0 0.10 0 0

 (c)

In the next step, we find whether the range of values calculated for each attack class

overlap or not. If they overlap, the range with the largest false negative count will be kept

and the range with the smallest false negative count will be changed to 0. For example, if

the range of values for Backdoor and Analysis, and Backdoor and Worms overlap, and if

Analysis data are misclassified as Backdoor for 124 data points and Worms data are

misclassified as Backdoor for 2 data points, the Mean and SD calculated for Backdoor and

Analysis will be kept in the list, while the Mean and SD will be changed to zero where

Worms attack records are misclassified as Backdoor.

In other words, assume x refers to a range of values between [Mean − SD , Mean +

SD] where the records in class A are misclassified as class B, and y indicates a range of

values between Mean − SD and Mean + SD where the records in class C are incorrectly

identified as class B;

IF Mean for y is between the (Mean − SD) and (Mean + SD) for x;

 72

or

IF (Mean + SD) for y is less than or equal to (Mean + SD) for x and (Mean − SD)

for y is greater than or equal to (Mean − SD) for x;

or

IF (Mean − SD) for y is greater than or equal to (Mean − SD) for x and the (Mean +

SD) for y is less than or equal to (Mean + SD) for x;

THEN

Ranges represented by x and y overlap.

In this case, the values of Mean and SD for y will remain unchanged if and only if the

number of records in class A that are incorrectly classified as class B is greater than the

number of records in class C that are misidentified as class B and the values of Mean and

SD for x will be converted to zero.

Figure 5.4 shows that the Fuzzers, Backdoor, and Normal overlap. In this figure,

Fuzzers represents a range of value between 0.09 -0.02= 0.07 and 0.09 +0.02= 0.11,

Backdoor has a range of values between 0.08 -0.02= 0.06 and 0.08 +0.02= 0.1, and Normal

is associated with a range of values between 0.04 -0.03= 0.01 and 0.04+ 0.03= 0.07 where

Analysis is incorrectly predicted as Fuzzers, Backdoor, and Normal, respectively. These

values are taken from Table 5.5 (b) and after finding the overlaps, Table 5.5 (c) would be

the final Mean and SD values generated for all the classes in preparation for the test phase.

In Table 5.5 (c) the Mean and SD values for Recon remains unchanged since its error range

is from 1.3-0.1= 1.2 to 1.3+0.1=1.4 and does not have any overlap with other ranges. Since

 73

Fuzzers, Backdoor, and Normal ranges overlap as well as the greater number of Analysis

records are misclassified as Backdoor, Mean and SD values calculated for Backdoor

remain unaltered and the Mean and SD values associated with Fuzzers and Normal are

changed to zero.

Figure 5-4 An example to show how Algorithm 1 calculates the prediction error range

The process of finding the range overlaps and addressing them takes place for all of

10 classes. This procedure gives us a list of Means and SDs that is shown in Figure 5.3.

The list is eventually utilized in the test phase to minimize the prediction errors caused by

data overlap.

5.3 Testing methodology

In this phase, Mean and SD values computed by Algorithm #1 and revised after finding

the overlaps are used to reduce the errors made by XGBoost and Balanced Bagging

classifiers in identifying unseen samples. Due to data overlap issue associated with UNSW-

NB15, classifiers may tend to predict class membership for certain new samples

incorrectly. A new sample mimicking the behavior of data points belonging to another

attack class is most likely to be misclassified. The probability scores matrix generated by

the classifiers for a new sample in class ‘A’ contains error if this sample is incorrectly

classified as class ‘B’. In this case, the probability matrix score for class ‘A’ is lower than

that of class ‘B’, while it must be just the opposite. We consider the difference between the

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.08 0.1 0.11 0.12 0.13 0.14 0.15

Fuzzers

Backdoor

Normal

 74

probability scores for classes ‘A’ and ‘B’ as error. To reduce this error, we apply Algorithm

#2 on the probability score matrices generated through XGBoost and Balanced Bagging

classifiers.

Algorithm #2 Membership Score Modification

Membership-Score-Modification(PS, OLM, OLSD)

in:

two-dimensional array PSn×10 holding the membership scores, n = the number of samples of

test subset

two-dimensional array OLM10×10

two-dimensional array OLSD10×10

out:

two-dimensional array PSn×10 holding the (modified) membership scores, n = the number of

samples of test subset

for i ← 1 … n do

max ← 0 ⊳ holding zero in max to find the maximum membership score from line 3 to 8

for j ← 1 … 10 do

if PSi,j > max then

max ← PSi,j

index_max ← j
end if

end for

min ← 1010 ⊳ holding a very big constant value in min to find the minimum values obtaining from line 10 to 15

for j ← 1 … 10 do

if ((max − PSi,j) < min) and (index_max ≠ j) then

min ← max − PSi,j

index_min ← j
end if

end for

if (min ≥ (OLMindex_min,index_max − OLSDindex_min,index_max)) and (min ≤

(OLMindex_min,index_max + OLSDindex_min,index_max)) then

PSi,index_min ← (PSi,index_min + OLMindex_min,index_max)

end if

end for

return PS

Since only the test set is utilized to evaluate the performance of our model, it is

definitely unknown to the model. So, the model does not know the real target variable and

we cannot calculate the errors using ground truth. This algorithm is designed to go through

the membership scores generated by XGBoost and Balanced Bagging classifiers for the

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

 75

test subset in order to calculate the errors regardless of real target variables. The following

steps discuss the functionality of Algorithm #2:

 Lines 3 to 8, the maximum (class) membership score using the probability

scores matrix for each testing sample is found among ten different scores

generated by the estimator such as XGBoost and Balanced Bagging. This

membership score is stored in the temporary variable max and its index is kept

by the temporary variable index_max.

 The algorithm calculates the difference values of max with nine other

membership scores in lines 10 through 15.It computes the differences of

probability score matrix values for other classes residing across the columns of

probability scores matrix with the variable max which represents the maximum

class membership score computed in lines 3 through 8. It picks the smallest

such difference to store in variables min and index_min the difference value

and class membership, respectively. These lines represent the computations to

find the membership score corresponding to a class which is the second

probable class.

 In lines 16 and 17, If min is equal to and greater than the difference of the

corresponding mean with SD, and if min is equal to and less than the

summation of the corresponding mean with SD, then the corresponding

probability score matrix value is modified using the associated mean value.

Variables index_min and index_max represent the indexes for two matrixes

OLM and OLSD generated by Algorithm #1 and refer to the attack classes with

the same order as in AL. For instance, index_min = 1 means Analysis. Line

 76

17 increases the likelihood of a sample becomes a member of the correct class

type by adding the corresponding mean value calculated by Algorithm #1.

Using the revised mean and standard deviation values obtained by implementing

Algorithm #1, Algorithm #2 is able to realize and correct the errors in the probability

matrices where the errors arise from data overlap. Although, errors are not zeroed out using

this algorithm, they may be reduced appreciably.

The modified membership scores were used along with the membership scores obtained

by the augmented Random Forest in the testing phase to make the final prediction using

the majority vote. Using this method, the most voted prediction wins and taken as a final

prediction. In other words, if more than two classifiers cast a vote for a particular class, the

class will gain the final vote.

 77

Chapter 6

6 Simulation Results

In this section, performance of the proposed design is first evaluated for binary and

then multi-class cases on the UNSW-NB15 data set.

6.1 Binary Classification

Table 6.1 shows that 790 attack records are misclassified among the entire 45,332

attack records. It means that less than 2% of the overall attacks are misclassified as non-

attack or Normal which leads to 0.017 missed alarm rate. In other words, the sensitivity for

the attack class is 98.26%. On the other hand, 1022 of 37,000 Normal records are

incorrectly classified as attacks which indicates less than 3% false alarm rate. Several

evaluation metric values are shown in Table 6.2 in order to comprehensively assess the

performance of the proposed classifier design.

Table 6.1 Confusion Matrix on test data subset for binary classification

 Predicted

Actual

Normal Attack

Normal 35978 1022

Attack 790 44542

 78

Table 6.2 Performance evaluation of the proposed model for binary classification

Metrics

Class Type

Sensitivity

(%)

Specificity

(%)
FPR FNR

Precision

(%)

F-measure

(%)

Normal 97.24 98.26 0.017 0.028 97.85 97.75

Attack 98.26 97.24 0.028 0.017 97.76 98.01

The main objective of any intrusion detection system (IDS) is to identify the pattern

of the network traffic that may imply a suspicious activity. Accordingly, the performance

of proposed IDS on UNSW-NB15 data is competitive in comparison with the other studies

reported in the literature as shown in Table 6.3. Two columns are dedicated to present the

performance of the proposed classifier design. The first column indicates the average of

calculated metrics in Table 6.2 for both the attack and Normal records. This column is used

to compare the proposed model with [140]. On the other hand, the second column shows

the values of performance metrics associated with the attack class in Table 6.2, which

suggests that the performance of the proposed classifier design.

Table 6.3 Comparison of the proposed classifier design with four others cited (NR

indicates Not Reported)

Metrics
Proposed

Design

(Average)

Proposed

Design

[137]

(Average)
[138] [139] [140]

Sensitivity

(%)
97.75 98.26 79.12 85.00 NR 98.47

FNR (%) 02.25 01.74 NR 15.00 NR NR

FPR (%) 02.25 02.76 NR 02.00 08.60 02.18

Precision (%) 97.81 97.76 NR 99.00 NR NR

F-measure

(%)
97.88 98.01 77.87 91.00 NR NR

Accuracy (%) 97.80 97.80 NR 89.00 91.31 94.11

Kumar et al. [189] developed the unified intrusion detection system (UIDS) by

generating the new training and test subsets out of UNSW-NB15. They utilized the k-

means clustering algorithm to increase the attack sensitivity as the k-means clustering

 79

algorithm was able to identify the similarities between different attack classes. In each

cluster, the number of records in some type of attack classes was more than the rest. The

authors randomly picked 65% of the records of the dominating class categories to form a

training dataset. The remaining 35% of the instances were used to build the test set. They

also used information gain algorithm for the feature selection phase. 13 features out 47

were selected due to the improvement of accuracy scores by C5, Chi-Squared Automatic

Inference Detection (CHAID), Classification and Regression Tree (CART) is also known

as Decision Tree (DT) and Quick Unbiased Efficient Statistical Tree (QUEST) algorithms.

These algorithms were used to form the proposed UIDS model. Their study reported

77.87% and 79.12% for the average sensitivity and F-measure, respectively. It also offered

3.80% false alarm rate for Normal instances and 86.15% attack sensitivity.

The authors in [190] implemented MLP as an anomaly detection system for binary

classification. They employed RFE along with the Random Forest classifier for the purpose

of dimensionality reduction. This method selected the top four informative features. The

original training and testing subsets proposed by [131], are used for training and evaluating

the model. The MLP-based IDS scored 85% for sensitivity and 89% for accuracy on the

test subset of UNSW-NB15: 15% of the attack traces and 2% of the normal records were

misclassified.

Bayu et al. [191] applied Gradient Boosted Machine (GBM) on three datasets

including UNSW-NB15. No feature selection technique was implemented. All 47 features

were kept for training and testing phases. The results showed that GBM outperformed four

other algorithms, namely RF, Deep Neural Network (DNN), SVM and CART, with the

average accuracy value of 93.64% and missed alarm rate of 0.0206 where GBM

 80

performance was evaluated on NSL-KDD, UNSW-NB15 and GPRS datasets. While

running GBM on UNSW-NB15 alone provided 95.08% accuracy and 2.97% false alarm

rate using 10-fold cross-validation and the accuracy of 91.31% and false alarm rate of

8.60% using the Hold-Out method on the original UNSW-NB15 train and test subsets.

In [192], nominal features were converted to numerical and then the Min-Max

normalization method was utilized to scale down the values to the range of 0 to 1. They

used 5-fold cross-validation without resampling to generate the test and training subsets.

They calculated the average of the sensitivity, false alarm rate and accuracy of 5 folds. The

authors utilized SVM by taking advantage of hyper clique property of hypergraph to

improve the performance of SVM. This optimization technique implemented the feature

selection as well. The SVM algorithm was trained with the entire 47 features and then the

results were compared with the case when SVM was trained with the optimal number of

feature subsets. The optimal feature subset is not reported. However, the number of optimal

features is in the range of 30 to 35. They concluded that the feature selection had significant

influence on the proposed model which delivered 98.47% sensitivity and 2.18% false alarm

rate. However, 94.11% accuracy and 2.18% false alarm rate suggests a relatively large

value for the missed alarm rate, which is not reported.

6.2 Multiclass Classification

In this research, the performance of different estimators were evaluated separately by

implementing them on the refined dataset. The results are shown in Table 5.1. We

combined the first three estimators produced satisfactory performances to form an

ensemble method along with Elastic Net and Sequential Forward Selection while Min-Max

scaler had already implemented on the refined dataset. The results of the model evaluation

 81

is shown in Table 6.4 in terms of confusion matrix. Although the outcome of the ensemble

method has effectively improved the performance of each classifier contributed in the

method, the model still suffered from generating large number of false negatives. In order

to cover this issue, we proposed two algorithms utilizing the basic statistic methods such

as mean and standard deviation. Comparing Table 6.4 with the performance of the

proposed model depicted in detail for the multi-class case in Tables 6.5, represents the

significant improves in most classes, such as Normal class to shrink the number of false

negatives. This improvement verifies the effectiveness of Algorithm #1 and Algorithm #2.

Although we observe the increasing number of false negatives in some elements in

confusion matrix, such as Fuzzers incorrectly classified as Backdoor, when the proposed

algorithms implemented on the final decision, they are mostly seen between two attack

class rather than an attack class and Normal records. On the other words, false negatives in

one attack class may be increase due to the attack class to attack class misclassification.

In Table 6.5, the share of attack records which are incorrectly categorized as Normal

traces is 4.14% for the 28% overall missed alarm rate. The remaining 23.86% missed alarm

rate is associated with misclassification among attack classes which is not equally as

problematic for network transactions. Although, 4.14% missed alarm rate for attack records

alone could be detrimental for an intrusion detection system, our design achieves better

results in comparison with the classifiers in other studies as shown in Table 6.6. Normal

traces are also misclassified as Shellcode, Fuzzers and Analysis which suggests

approximately 3% false alarm rate and 97.24% sensitivity. This is because these attack

types mimic the behavior of Normal records [135, 193, 194]. This is the main reason that

some attacks are also incorrectly predicted as Normal activity. In the associated confusion

 82

matrix, we can see that 19.20% of Analysis, 6.69% of Backdoor, 4.35% of DoS, 3.04% of

Exploits, 0.33% of Generic, 0.88% of Reconnaissance, 2.38% of Shellcode, and 4.55% of

Worms attack records are confused with Normal records.

Table 6.4 Confusion matrix showing the performance of the ensemble method

A
n

al
y

si
s

B
ac

k
d

o
o

r

D
o

S

E
x

p
lo

it
s

F
u

zz
er

s

G
en

er
ic

N
o

rm
al

R
ec

o
n

S
h

el
lc

o
d

e

W
o

rm
s

Analysis 327 193 4 1 18 0 130 0 4 0
Backdoor 298 154 8 8 23 0 76 1 15 0
DoS 1477 737 775 435 221 0 228 45 164 7
Exploits 1322 1583 51 6197 257 0 667 490 420 145
Fuzzers 651 386 8 14 1837 0 2604 7 540 15
Generic 15 30 37 390 99 18145 63 7 72 13
Normal 842 1 3 28 1427 0 34545 0 154 0
Recon 97 210 0 35 14 0 31 2967 128 14
Shellcode 11 0 0 0 7 0 9 3 347 1
Worms 0 0 0 1 0 0 1 0 3 39

Table 6.5 Confusion matrix showing the performance of the proposed design

A
n

al
y

si
s

B
ac

k
d

o
o

r

D
o

S

E
x

p
lo

it
s

F
u

zz
er

s

G
en

er
ic

N
o

rm
al

R
ec

o
n

S
h

el
lc

o
d

e

W
o

rm
s

Analysis 327 193 4 1 18 0 130 0 4 0
Backdoor 126 405 0 0 13 0 39 0 0 0
DoS 1604 625 1110 228 92 0 178 59 164 29
Exploits 779 830 39 8511 57 0 338 221 213 144
Fuzzers 482 491 4 34 4380 0 0 10 646 15
Generic 15 30 37 390 99 18145 63 7 72 13
Normal 200 0 0 0 668 0 35978 0 154 0
Recon 103 207 0 35 14 0 31 2967 126 13
Shellcode 0 0 0 0 7 0 9 3 358 1
Worms 0 0 0 1 0 0 2 0 5 36

Table 6.6 Performance of the proposed design for multi-class case

 Metric

Class

Accuracy Sensitivity Specificity FPR FNR Precision F-measure

Analysis 95.56 48.30 95.95 0.041 0.51 0.15 64.25

Backdoor 96.89 69.47 97.09 0.029 0.31 0.84 80.99

Dos 96.27 27.15 99.89 0.001 0.73 0.42 42.70

Exploits 95.98 76.46 99.03 0.009 0.24 0.84 86.29

Fuzzers 96.78 72.25 98.73 0.012 0.28 0.77 83.44

Generic 99.12 96.15 100.0 0.000 0.28 1.00 98.04

Normal 97.81 97.24 98.26 0.017 0.02 0.97 97.75

Reconnaissance 95.39 84.87 95.86 0.041 0.15 0.61 90.03

Shellcode 99.31 94.71 98.33 0.017 0.05 0.34 96.49

Worms 99.73 81.82 99.74 0.003 0.18 0.24 89.90

 83

Performance comparison of the proposed model with those studies reported in the

literature is presented in Tables 6.7 and 6.8. Many of the relevant performance metrics

including the missed alarm rate, which is one of the most critical ones, are not reported in

these studies by others. Consequently, performance comparison is done only for accuracy

and sensitivity as these are the only metrics commonly reported in the cited studies.

In [195], the authors proposed the ensemble extreme learning machine (ELM) along

with one-vs-all method to generate multi-class classification model. The proposed

algorithm is a combination of a single hidden layer feedforward neural network and a

softmax layer to make a multi-class prediction out of an ensemble of single output which

was 0 or 1. This algorithm scored 95.66% average accuracy. Also, the authors implemented

ExtraTree classifier in order to reduce the dimensionality of feature space. Accordingly, 21

features were selected. In the final stage, weighted extreme learning machine (WELM) was

implemented and the accuracy of each attack type increased as shown in Table 6.7. The

training was done on 80% of the original training set and the remaining 20% was used for

validation to avoid overfitting. The entire UNSW-NB15 test subset was utilized for the test

phase.

D. Papamartzivanos et al. [196] combined the decision tree and genetic algorithm to

generate classification rules and called their model Dendron. Wrapper technique was used

for feature selection, which resulted in 23 being selected as informative features. The

authors reported the sensitivity of 97.39% for Normal records and the average false alarm

rate of 2.61% as presented in Table 6.8. In this study, 10% of the instances for each of the

9 classes were considered for building the training set and the remaining 90% was kept for

the test set. To address the imbalance problem of multi-class classification in UNSW-

 84

NB15, 50% of Worms attack class records were included in the training subset and

remaining 50% was kept to test the model.

The integrated rule-based model in [193] is trained to detect five class types to avoid

overlapping. These rules were generated from four tree-structured classification

algorithms, C5, CHAID, CART and QUEST. Training and test sets were built by

eliminating some instances from the original training and testing subsets using k-means

clustering. These instances belong to Analysis, Backdoor, Fuzzers, Shellcode and Worms

attack types. These attack types suffer from overlapping problem and their presence may

cause poor results. For the feature selection phase, the genetic algorithm was used and 22

features were picked accordingly. They reported good accuracy and sensitivity values for

the Normal records. Also, the reconnaissance is successfully detected with an accuracy of

99.10% as shown in Table 6.6. However, the average accuracy and sensitivity are 93.94%

and 65.21%, respectively.

Table 6.7 The accuracy of proposed model vs. the accuracy of different models (NR: Not

Reported)

Attack Type Accuracy
Accuracy

[143]

Accuracy

[144]

Accuracy

[141]
Difference

Analysis 95.56 99.26 99.30 NR -3.74

Backdoor 96.89 99.11 97.93 NR -2.22

Dos 96.27 94.90 95.71 94.52 +0.56

Exploits 95.98 90.12 93.58 89.72 +2.40

Fuzzers 96.78 91.47 95.04 NR +1.74

Generic 99.12 98.23 98.70 87.70 +0.42

Normal 97.81 93.54 94.59 98.64 -0.30

Reconnaissance 95.39 95.33 96.18 99.10 -3.71

Shellcode 99.31 99.40 98.33 NR -0.09

Worms 99.73 99.92 99.78 NR -0.14

 85

Table 6.8 The sensitivity of proposed model vs. the sensitivity of different models (NR:

Not Reported)

Attack Type Sensitivity
Sensitivity

[144]

Sensitivity

[141]
Difference

Analysis 48.30 20.45 NR +27.85

Backdoor 69.47 67.32 NR +02.15

Dos 27.15 14.29 5.0 +12.86

Exploits 76.46 76.22 54.64 +00.24

Fuzzers 72.25 64.42 NR +07.83

Generic 96.15 81.37 96.72 -00.57

Normal 97.24 97.39 98.00 -00.76

Reconnaissance 84.87 46.04 71.70 +13.17

Shellcode 94.71 36.39 NR +58.32

Worms 81.82 18.37 NR +63.45

Figure 6.1 depicts the performance of our model in comparison with two models,

Integrated and Dendron [193, 196] that are proposed recently in terms of the F-measure.

The proposed model in this study outperforms the other two given the F-measure values.

The main reason is that the imbalance and overlapping problems in our model are

addressed. We have a combination of ensemble methods to handle the imbalance and if-

then-else rules to mitigate the adverse effects of overlapping issue and using Hellinger

distance criterion to choose the best split considering the imbalance problem.

Figure 6-1 F-measure comparison

0

20

40

60

80

100

120

Proposed Model Dendron Integrated Model

 86

Chapter 7

7 Conclusions & Future Work

7.1 Conclusion

This study presents design and performance evaluation of an intrusion detection (and

identification) system using machine learning for the UNSW-NB15 dataset. We evaluated

the performance of classifier design which employs three ensemble classifiers and two

proposed algorithms where the latter is developed for minimizing the errors due to one of

the twoissues inherent to the UNSW-NB15 dataset, namely the class overlap and class

imbalance. To deal with the imbalanced data, we utilized the Balanced Bagging and the

XGBoost ensemble classifiers which offer a set of hyper-parameters that, through judicious

adjustments of the same, help contribute to improved performance in the presence of the

imbalanced data. To address the class overlap issue, we proposed two algorithms and

utilized them to process and modify the classification outputs from the Balanced Bagging

and the XGBoost ensembles. Outputs of three ensemble classifiers, namely Random

Forest, Balanced Bagging and XGBoost, were provided as inputs to a combiner that

 87

implemented majority voting to determine the final class membership of an input data

record under test.

Although the literature reports high level of classification performance for the Random

Forest (RF) algorithm for a variety of problem domains, its performance on the UNSW-

NB15 dataset was somewhat lacking particularly with respect to the missed alarm rate

metric. Therefore, in order to address this problem associated with the RF classifier

performance, we leveraged the Hellinger distance as a split criterion in the construction of

trees rather than the entropy value which is used as the default.

A multistep preprocessing approach was implemented for the UNSW-NB15 dataset.

In the first step, we removed a number of features which potentially did not help with the

prospect of developing a classifier that would be applicable in a general sense: hence source

IP address, source port number, destination IP address, destination port number,

record_start_time, and record_last_time were removed from the dataset. The next step

entailed empirical assessment of performances of more than ten different classifiers on the

dataset with the remaining 42 features. Among those tested, Balanced Bagging, XGBoost,

and Random Forest showed the higher performance. We assessed the performances of

these classifiers by employing six different normalization methods on the modified

UNSW-NB15. The results showed that min-max scaler enhanced the performance of the

classifiers in terms of accuracy. Min-max scaler as a normalization method helped increase

the distances between the data points of two different attack classes reducing the degree of

class overlap.

 88

We evaluated the classifiers with a variety of feature selectors as well. Utilizing Elastic

Net and SFS increased the performance of the estimators independently. The Elastic Net

feature selection algorithm identified 24 features which were then further processed by the

SFS feature selection algorithm to reduce the selection to 8 features. Balanced Bagging

and XGBoost performed better with 24 features selected by the Elastic Net while Random

Forest performed better with only 8 features selected by the SFS.

The classifiers were trained with 90% of the training subset and the remaining 10%

were kept as a validation subset in order to measure the probable classification error using

the class membership scores. Since the dataset suffers from the overlap issue, it is then

expected that the classifiers will commit classification errors. We calculated the mean and

standard deviation of the class membership scores to help reduce the probable

misclassification.

This was done by Algorithm #1. This algorithm records the smallest membership score

errors made by Balanced Bagging and XGBoost through incorrectly estimating the

likelihood of the training samples being the member of a class type. This algorithm

calculates the mean and standard deviation of the errors using the validation subset. The

calculated values were utilized in Algorithm #2 to minimize the membership errors may

occur during the testing phase. In fact, Algorithm #1 estimated the probability of

misclassification for each class and recorded them in a list. This list was then engaged in

testing phase to avoid misclassification using Algorithm #2.

Application of the combination of preprocessing, feature selectors, tree-based

ensemble classifiers, and the proposed algorithms for our design resulted in superior

 89

performance when compared to seven other classifiers, reported in the recent literature,

implemented on the UNSW-NB15 dataset for both multi-class and binary classification

cases. Performance of the proposed model was compared with both the binary classifiers

and multi-class classifiers cited in the literature. In the binary class classification case, our

model could classify more than 98% of the attack classes correctly and therefore less than

2% of the attack classes were misclassified. Our model also performed highly for the

classification of Normal records. More than 97% of the Normal records were classified

correctly with less than 3% false alarm rate. Among all those cited in the literature studies,

only one reported the missed alarm rate, which was rather high at 8%.

For the multi-class case, 28% of the attack classes were misclassified: 4.14% of the

attack classes were mislabeled as Normal class and 23.86% of the remaining attack classes

were misclassified as other attacks where the latter scenario is not as problematic as the

former scenario. Also, 97.24% of Normal traces are classified correctly and the remaining

2.76% were misclassified as Shellcode, Fuzzers and Analysis. The main reason behind the

Normal class misclassification is the data overlap or mimicry. Almost 100% of Generic

and Reconnaissance data points were classified correctly using our proposed model. Also,

19.20% of Analysis, 6.69% of Backdoor, 4.55% of Worms, 4.35% of DoS, 3.04% of

Exploits, and 2.38% of Shellcode attack records were incorrectly labeled as Normal

records.

In comparison with other studies reported in the current literature on the UNSW-NB15

dataset, our model achieved impressive results. It addresses two major issues that a dataset

may suffer from, overlap and imbalance. We employed Balanced Bagging and XGBoost

offering a range of hyperparameters in order to address the dataset imbalance. Also, we

 90

utilized the Hellinger distance for the Random Forest for the same reason. We further

proposed two new post-processing algorithms for the outputs of training models to

minimize the errors caused by the large number of impure nodes generted during the

training phase due to the data overlap issue. These algorithms are generic and therefore can

be used along with any other machine learners where their base classifiers are decision

trees.

7.2 Future work

We plan to use Hellinger distance as split criterion for both Balanced Bagging and

XGBoost to enhance the performance of our model. We are also aimed at utilizing our

proposed algorithms, known as Algorithm #1 and Algorithm #2, along with Random

Forest. This algorithm can minimize the errors of membership scores generating in the test

phase. So, it also works with Random Forest classifier. Moreover, we intend to combine

binary and multi-class classification with which the Normal and attack classes can be

classified with less error and the attack classes can be classified with different multi-class

classifiers. The attack classes can be categorized in advance in different classes based on

similarity measure. This method can help us find the attacks that mimic their behaviors.

We can then separate these attack classes to train our algorithms separately and avoid any

confusion that may be caused by data overlap. We can also use fuzzy if-rules to find the

similarities between the attack classes and the attack classes and Normal class.

 91

References

[1] V. Zlomislić, K. Fertalj, and V. Sruk, "Denial of service attacks: an overview," in

2014 9th Iberian Conference on Information Systems and Technologies (CISTI),

2014, pp. 1-6.

[2] A. Bendovschi, "Cyber-attacks–trends, patterns and security countermeasures,"

Procedia Economics and Finance, vol. 28, pp. 24-31, 2015.

[3] R. Bhandari, R. Swapnil, T. Vishwa, P. Jaydip, and D. Sagar, "Survey on Cyber

Attacks," International Journal of Computer Applications, vol. 975, p. 8887.

[4] M. Omar, "A World of Cyber Attacks (A Survey)," 2019.

[5] M. Conti, N. Dragoni, and V. Lesyk, "A survey of man in the middle attacks," IEEE

Communications Surveys & Tutorials, vol. 18, pp. 2027-2051, 2016.

[6] A. Mallik, A. Ahsan, M. Shahadat, and J. Tsou, "Man-in-the-middle-attack:

Understanding in simple words," International Journal of Data and Network

Science, vol. 3, pp. 77-92, 2019.

[7] V. Sousa, "A Review on Cyber Attacks and Its Preventive Measures," in

Proceedings of the Digital Privacy and Security Conference, 2019.

 92

[8] K. M. Jain, M. V. Jain, and J. L. Borade, "A Survey on Man in the Middle Attack,"

IJSTE-International J. Sci. Technol. Eng, vol. 2, pp. 277-280, 2016.

[9] M. Raza, M. Iqbal, M. Sharif, and W. Haider, "A survey of password attacks and

comparative analysis on methods for secure authentication," World Applied

Sciences Journal, vol. 19, pp. 439-444, 2012.

[10] M. Baykara and Z. Z. Gürel, "Detection of phishing attacks," in 2018 6th

International Symposium on Digital Forensic and Security (ISDFS), 2018, pp. 1-5.

[11] A. Qamar, A. Karim, and V. Chang, "Mobile malware attacks: Review, taxonomy

& future directions," Future Generation Computer Systems, vol. 97, pp. 887-909,

2019.

[12] E. G. Dada, J. S. Bassi, Y. J. Hurcha, and A. H. Alkali, "Performance Evaluation

of Machine Learning Algorithms for Detection and Prevention of Malware

Attacks," IOSR Journal of Computer Engineering, vol. 21, pp. 18-27, 2019.

[13] A. K. Pandey, A. K. Tripathi, G. Kapil, V. Singh, M. W. Khan, A. Agrawal, et al.,

"Trends in Malware Attacks: Identification and Mitigation Strategies," in Critical

Concepts, Standards, and Techniques in Cyber Forensics, ed: IGI Global, 2020,

pp. 47-60.

[14] R. Sharp, "An Introduction to Malware," 2017.

[15] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, "Paybreak: Defense against

cryptographic ransomware," in Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security, 2017, pp. 599-611.

[16] G. O'Gorman and G. McDonald, Ransomware: A growing menace: Symantec

Corporation, 2012.

 93

[17] M. T. Ahvanooey, Q. Li, M. Rabbani, and A. R. Rajput, "A survey on smartphones

security: software vulnerabilities, malware, and attacks," arXiv preprint

arXiv:2001.09406, 2020.

[18] A. O. Prokofiev, Y. S. Smirnova, and V. A. Surov, "A method to detect Internet of

Things botnets," in 2018 IEEE Conference of Russian Young Researchers in

Electrical and Electronic Engineering (EIConRus), 2018, pp. 105-108.

[19] J. Milosevic, F. Regazzoni, and M. Malek, "Malware threats and solutions for

trustworthy mobile systems design," in Hardware Security and Trust, ed: Springer,

2017, pp. 149-167.

[20] H. S. Brar and G. Kumar, "Cybercrimes: A proposed taxonomy and challenges,"

Journal of Computer Networks and Communications, vol. 2018, 2018.

[21] R. Tahir, "A study on malware and malware detection techniques," International

Journal of Education and Management Engineering, vol. 8, p. 20, 2018.

[22] A. K. zDalai and S. K. Jena, "Neutralizing SQL injection attack using server side

code modification in web applications," Security and Communication Networks,

vol. 2017, 2017.

[23] S. Gupta and B. B. Gupta, "Cross-Site Scripting (XSS) attacks and defense

mechanisms: classification and state-of-the-art," International Journal of System

Assurance Engineering and Management, vol. 8, pp. 512-530, 2017.

[24] R. Lu, X. Lin, T. H. Luan, X. Liang, and X. Shen, "Pseudonym changing at social

spots: An effective strategy for location privacy in vanets," IEEE transactions on

vehicular technology, vol. 61, pp. 86-96, 2011.

 94

[25] J. M. Hatfield, "Social engineering in cybersecurity: The evolution of a concept,"

Computers & Security, vol. 73, pp. 102-113, 2018.

[26] H. Aldawood and G. Skinner, "An Advanced Taxonomy for Social Engineering

Attacks," International Journal of Computer Applications, vol. 975, p. 8887.

[27] J. M. Biju, N. Gopal, and A. J. Prakash, "CYBER ATTACKS AND ITS

DIFFERENT TYPES," 2019.

[28] V. Delgado-Gomes, J. F. Martins, C. Lima, and P. N. Borza, "Smart grid security

issues," in 2015 9th International Conference on Compatibility and Power

Electronics (CPE), 2015, pp. 534-538.

[29] N. Tariq, "Impact of cyberattacks on financial institutions," Journal of Internet

Banking and Commerce, vol. 23, pp. 1-11, 2018.

[30] A. Bouveret, Cyber risk for the financial sector: A framework for quantitative

assessment: International Monetary Fund, 2018.

[31] B. B. Gupta, N. A. Arachchilage, and K. E. Psannis, "Defending against phishing

attacks: taxonomy of methods, current issues and future directions,"

Telecommunication Systems, vol. 67, pp. 247-267, 2018.

[32] T. S. Reed, "CYBERCRIME AND TECHNOLOGY LOSSES: CLAIMS AND

POTENTIAL INSURANCE COVERAGE FOR MODERN CYBER RISKS," Tort

Trial & Insurance Practice Law Journal, vol. 54, pp. 153-209, 2019.

[33] J. L. Cebula and L. R. Young, "A taxonomy of operational cyber security risks,"

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst2010.

[34] E. C. Thompson, Cybersecurity Incident Response: How to Contain, Eradicate,

and Recover from Incidents: Apress, 2018.

 95

[35] I. Agrafiotis, M. Bada, P. Cornish, S. Creese, M. Goldsmith, E. Ignatuschtschenko,

et al., "Cyber harm: concepts, taxonomy and measurement," Saïd Business School

WP, vol. 23, 2016.

[36] L. F. Sikos and K.-K. R. Choo, Data science in cybersecurity and cyberthreat

intelligence: Springer, 2020.

[37] M. Wu and Y. B. Moon, "Taxonomy of cross-domain attacks on

cybermanufacturing system," Procedia Computer Science, vol. 114, pp. 367-374,

2017.

[38] A. E. Elhabashy, L. J. Wells, J. A. Camelio, and W. H. Woodall, "A cyber-physical

attack taxonomy for production systems: a quality control perspective," Journal of

Intelligent Manufacturing, vol. 30, pp. 2489-2504, 2019.

[39] E. Kopp, L. Kaffenberger, and N. Jenkinson, Cyber risk, market failures, and

financial stability: International Monetary Fund, 2017.

[40] M. Meisner, "Financial consequences of cyber attacks leading to data breaches in

healthcare sector," Copernican Journal of Finance & Accounting, vol. 6, pp. 63-

73, 2017.

[41] E. Ozkaya and M. Aslaner, Hands-On Cybersecurity for Finance: Identify

vulnerabilities and secure your financial services from security breaches: Packt

Publishing Ltd, 2019.

[42] S. Morgan, "Official annual cybercrime report," Sausalito: Cybersecurity Ventures,

2019.

 96

[43] C. Ventures. (2020). Global Cybercrime Damages Predicted To Reach $6 Trillion

Annually By 2021. Available: https://cybersecurityventures.com/cybercrime-

damages-6-trillion-by-2021/

[44] S. Sibi Chakkaravarthy, D. Sangeetha, M. Venkata Rathnam, K. Srinithi, and V.

Vaidehi, "Futuristic cyber-attacks," International Journal of Knowledge-based and

Intelligent Engineering Systems, vol. 22, pp. 195-204, 2018.

[45] J. W. Pfeifer, "Preparing for Cyber Incidents with Physical Effects," The Cyber

Defense Review, vol. 3, pp. 27-34, 2018.

[46] A. Thaduri, M. Aljumaili, R. Kour, and R. Karim, "Cybersecurity for eMaintenance

in railway infrastructure: risks and consequences," International Journal of System

Assurance Engineering and Management, vol. 10, pp. 149-159, 2019.

[47] I. Agrafiotis, J. R. Nurse, M. Goldsmith, S. Creese, and D. Upton, "A taxonomy of

cyber-harms: Defining the impacts of cyber-attacks and understanding how they

propagate," Journal of Cybersecurity, vol. 4, p. tyy006, 2018.

[48] M. Bada and J. R. Nurse, "The social and psychological impact of cyberattacks,"

in Emerging Cyber Threats and Cognitive Vulnerabilities, ed: Elsevier, 2020, pp.

73-92.

[49] M. L. Gross, D. Canetti, and D. R. Vashdi, "The psychological effects of cyber

terrorism," Bulletin of the Atomic Scientists, vol. 72, pp. 284-291, 2016.

[50] D. Bianchi and O. K. Tosun, "Cyber attacks and stock market activity," Available

at SSRN 3190454, 2019.

[51] R. Williams, "Cultural safety—what does it mean for our work practice?,"

Australian and New Zealand journal of public health, vol. 23, pp. 213-214, 1999.

https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

 97

[52] R. Anderson, C. Barton, R. Bölme, R. Clayton, C. Ganán, T. Grasso, et al.,

"Measuring the changing cost of cybercrime," 2019.

[53] C. L. Ryan and J. M. Lewis, Computer and internet use in the United States: 2015:

US Department of Commerce, Economics and Statistics Administration, US …,

2017.

[54] K. White, "The rise of cybercrime 1970 through 2010. A tour of the conditions that

gave rise to cybercrime and the crimes themselves," ed, 2013.

[55] J. X. Li, "Cyber crime and legal countermeasures: A historical analysis,"

International Journal of Criminal Justice Sciences, vol. 12, pp. 196-207, 2017.

[56] InternetLiveStats.com. (2011, May 17, 2020). Total number of Websites. Available:

https://www.internetlivestats.com/total-number-of-websites/

[57] B. Wible, "A site where hackers are welcome: Using hack-in contests to shape

preferences and deter computer crime," Yale LJ, vol. 112, p. 1577, 2002.

[58] S. KEMP. (2019, May 17, 2020). DIGITAL 2019: GLOBAL INTERNET USE

ACCELERATES. Available: https://wearesocial.com/blog/2019/01/digital-2019-

global-internet-use-accelerates

[59] Netcraft. (2020, May 29, 2020). May 2020 Web Server Survey. Available:

https://news.netcraft.com/archives/category/web-server-survey/

[60] fbi.gov. (2020, May 29, 2020). 2019 Internet Crime Report Released. Available:

https://www.fbi.gov/news/stories/2019-internet-crime-report-released-021120

[61] J. Armin, B. Thompson, D. Ariu, G. Giacinto, F. Roli, and P. Kijewski, "2020

cybercrime economic costs: No measure no solution," in 2015 10th International

Conference on Availability, Reliability and Security, 2015, pp. 701-710.

https://www.internetlivestats.com/total-number-of-websites/
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
https://news.netcraft.com/archives/category/web-server-survey/
https://www.fbi.gov/news/stories/2019-internet-crime-report-released-021120

 98

[62] A. Brashares, Steve Jobs: thinks different: Twenty-First Century Books, 2001.

[63] M. Gitlin and M. J. Goldstein, Cyber Attack: Twenty First Century Books, 2015.

[64] T. C. Greene, "Chapter one: Kevin Mitnick's story," The Register, 2003.

[65] B. Middleton, A history of cyber security attacks: 1980 to present: CRC Press,

2017.

[66] G. Benford, "Future Tense: Catch me if you can," coMMunications of the acM, vol.

54, pp. 112-ff, 2011.

[67] E. Cloner. (1982, May 29, 2020). Elk Cloner (circa 1982). Available:

http://www.skrenta.com/cloner/

[68] R. Skrenta, "Elk cloner," ed, 2013.

[69] S. Bosworth and M. E. Kabay, Computer security handbook: John Wiley & Sons,

2002.

[70] F. Cohen, "Computer viruses: theory and experiments," Computers & security, vol.

6, pp. 22-35, 1987.

[71] P. Warren and M. Streeter, "Cyber alert: How the world is under attack from a new

form of crime," 2005.

[72] J. Kremling and A. M. S. Parker, Cyberspace, cybersecurity, and cybercrime:

SAGE Publications, 2017.

[73] R. Nagpal, "Evolution of cyber Crimes," Asian School of Cyber laws, vol. 2, 2008.

[74] G. Dayanandam, T. Rao, D. B. Babu, and S. N. Durga, "DDoS Attacks—Analysis

and Prevention," in Innovations in Computer Science and Engineering, ed:

Springer, 2019, pp. 1-10.

http://www.skrenta.com/cloner/

 99

[75] M. D. Cavelty, "Cyber-security," The routledge handbook of new security studies,

pp. 154-162, 2010.

[76] J. Schwarb, "Evaluation and Analysis of Cyber Security Threats and Their Impact

on an Evolving Technological Society," Utica College, 2018.

[77] E. v. Asperen, C. Barker, T. Berners-Lee, R. Cailliau, D. Connolly, P. Dobberstein,

et al. (1991, June 3, 2020). World Wide Web. Available:

http://info.cern.ch/hypertext/WWW/TheProject.html

[78] P. Beaucamps, "Advanced polymorphic techniques," International Journal of

Computer Science, vol. 2, pp. 194-205, 2007.

[79] P. Szor, The Art of Computer Virus Research and Defense: ART COMP VIRUS

RES DEFENSE _p1: Pearson Education, 2005.

[80] N. Goldmann, N. Goldmann, N. R. S. NRS, and N. Undoubtedly, "The Citibank

Affair: A Purely Russian Crime?."

[81] M. Reinikainen, "Computer Viruses," Computer Science, 2019.

[82] K. Cesare, "Prosecuting computer virus authors: The need for an adequate and

immediate international solution," Transnat'l Law., vol. 14, p. 135, 2001.

[83] V. Arutyunov, "Cloud computing: Its history of development, modern state, and

future considerations," Scientific and Technical Information Processing, vol. 39,

pp. 173-178, 2012.

[84] L. Garber, "Melissa virus creates a new type of threat," Computer, pp. 16-19, 1999.

[85] G. Pogrebna and M. Skilton, "Cybersecurity Threats: Past and Present," in

Navigating New Cyber Risks, ed: Springer, 2019, pp. 13-29.

http://info.cern.ch/hypertext/WWW/TheProject.html

 100

[86] L. Qian, Z. Luo, Y. Du, and L. Guo, "Cloud computing: An overview," in IEEE

International Conference on Cloud Computing, 2009, pp. 626-631.

[87] R. S. D. M. Purohit, "Cyber Attacks That Shook the World."

[88] M. S. Asish and R. Aishwarya, "Cyber Security at a Glance," in 2019 Fifth

International Conference on Science Technology Engineering and Mathematics

(ICONSTEM), 2019, pp. 240-245.

[89] T. Chen, "Phillimon Mwape Mumba," Department of Computer Science, Swansea

University, 2012.

[90] S. Specht and R. Lee, "Taxonomies of distributed denial of service networks,

attacks, tools and countermeasures," CEL2003-03, Princeton University,

Princeton, NJ, USA, 2003.

[91] A. Verma, M. Arif, and M. S. Husain, "Analysis of DDoS attack detection and

prevention in cloud environment: A review," International Journal of Advanced

Research in Computer Science, vol. 9, p. 107, 2018.

[92] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, "Inside

the slammer worm," IEEE Security & Privacy, vol. 1, pp. 33-39, 2003.

[93] A. Sharma, "Bluetooth security issues: threats and consequences," in Proceedings

of 2nd National Conference on Challenges & Opportunities in Information

Technology (COIT-2008), 2008, pp. 78-80.

[94] E. Willems, "Thirty Years of Malware: A Short Outline," in Cyberdanger, ed:

Springer, 2019, pp. 1-12.

 101

[95] A. Al-Bataineh and G. White, "Analysis and detection of malicious data exfiltration

in web traffic," in 2012 7th International Conference on Malicious and Unwanted

Software, 2012, pp. 26-31.

[96] A. Hutchings and R. Clayton, "Configuring Zeus: A case study of online crime

target selection and knowledge transmission," in 2017 APWG Symposium on

Electronic Crime Research (eCrime), 2017, pp. 33-40.

[97] F. BOSATELLI, "Zarathustra: detecting banking trojans via automatic, platform

independent WebInjects extraction," 2013.

[98] justice.gov. (2008, June 3, 2020). Retail Hacking Ring Charged for Stealing and

Distributing Credit and Debit Card Numbers from Major U.S. Retailers. Available:

https://www.justice.gov/archive/opa/pr/2008/August/08-ag-689.html

[99] T. M. Chen and S. Abu-Nimeh, "Lessons from stuxnet," Computer, vol. 44, pp. 91-

93, 2011.

[100] P. Shakarian, "Stuxnet: Cyberwar revolution in military affairs," MILITARY

ACADEMY WEST POINT NY2011.

[101] K. Zetter, "DigiNotar files for bankruptcy in wake of devastating hack," Wired

magazine, September, 2011.

[102] C. Bronk and E. Tikk-Ringas, "The cyber attack on Saudi Aramco," Survival, vol.

55, pp. 81-96, 2013.

[103] R. Sherstobitoff and M. Itai Liba, "Dissecting Operation Troy: Cyberespionage in

South Korea," Korea, vol. 2009, p. 10, 2013.

[104] H. YAPAR, "RUSSIA’S HYBRID WARFARE," 2020.

https://www.justice.gov/archive/opa/pr/2008/August/08-ag-689.html

 102

[105] M. McQuade, "The untold story of NotPetya, the most devastating cyberattack in

history," ed: Wired, 2018.

[106] R. Morris and K. Thompson, "Password security: A case history," Communications

of the ACM, vol. 22, pp. 594-597, 1979.

[107] D. Ferbrache, A pathology of computer viruses: Springer Science & Business

Media, 2012.

[108] Z. Trabelsi, S. Zeidan, K. Shuaib, and K. Salah, "Improved session table

architecture for denial of stateful firewall attacks," IEEE Access, vol. 6, pp. 35528-

35543, 2018.

[109] S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz, "A data mining analysis

of RTID alarms," Computer Networks, vol. 34, pp. 571-577, 2000.

[110] B. Kannaiyaraja and A. Senthamaraiselvan, "Routers Sequential Comparing Two

Sample Packets for Dropping Worms‖," IJ Computer Network and Information

Security, vol. 9, pp. 38-46, 2012.

[111] W. Venema, "TCP WRAPPER," in UNIX Security Symposium III: proceedings:

Baltimore, MD, September 14-16, 1992, 1992, p. 85.

[112] W. Park and S. Ahn, "Performance comparison and detection analysis in snort and

suricata environment," Wireless Personal Communications, vol. 94, pp. 241-252,

2017.

[113] H. Abedsoltan, "Meso-Scale Wetting of Paper Towels," Miami University, 2017.

[114] H. Abedsoltan, G. Wood, and D. S. Keller, "Characterization of Paperboard

Formation using Soft X-radiography and Image Analysis."

 103

[115] A. R. SA, M. Shafiee, H. Abedsoltan, and A. Shafiee, "Gas barrier and mechanical

properties of crosslinked ethylene vinyl acetate nanocomposites," Journal of

composite materials, vol. 47, pp. 2987-2993, 2013.

[116] A. Moosaie, N. Shekouhi, N. Nouri, and M. Manhart, "An algebraic closure model

for the DNS of turbulent drag reduction by Brownian microfiber additives in a

channel flow," Journal of Non-Newtonian Fluid Mechanics, vol. 226, pp. 60-66,

2015.

[117] M. Nemati, J. Ansary, and N. Nemati, "Machine Learning Approaches in COVID-

19 Survival Analysis and Discharge Time Likelihood Prediction using Clinical

Data," Patterns, p. 100074, 2020.

[118] N. Shekouhi, "Towards A Standard Clinically Relevant Testing Protocol For the

Assessment of Growing Rods," Bioengineering Department, The University of

Toledo, 2020.

[119] M. Nemati, "Machine Learning Approaches in Kidney Transplantation Survival

Analysis Using Multiple Feature Representations of Donor and Recipient,"

Electrical Engineering and Computer Science, University of Toledo, 2020.

[120] M. Fathi, M. Nemati, S. M. Mohammadi, and R. Abbasi-Kesbi, "A MACHINE

LEARNING APPROACH BASED ON SVM FOR CLASSIFICATION OF

LIVER DISEASES," Biomedical Engineering: Applications, Basis and

Communications, vol. 32, p. 2050018, 2020.

[121] N. Shekouhi, D. Dick, M. W. Baechle, D. K. Kaeley, V. K. Goel, H. Serhan, et al.,

"Clinically Relevant Finite Element Technique Based Protocol to Evaluate

Growing Rods for Early Onset Scoliosis Correction," JOR Spine, 2020.

 104

[122] V. K. Goel, D. K. Kaeley, M. W. Baechle, N. Shekouhi, D. Dick, and H. Serhan,

"Finite element based test protocol to evaluate growth rods used in pediatric

scoliosis patients," presented at the Biomedical Engineering Society (BMES)

Annual Meeting, 2019.

[123] L. LABORATORY. (1998, June 3, 2020). 1998 DARPA Intrusion Detection

Evaluation Dataset. Available: https://www.ll.mit.edu/r-d/datasets/1998-darpa-

intrusion-detection-evaluation-dataset

[124] I. University of California. (1999, June 3, 2020). KDD Cup 1999 Data. Available:

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[125] J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, "Cost-based modeling

and evaluation for data mining with application to fraud and intrusion detection,"

Results from the JAM Project by Salvatore, pp. 1-15, 2000.

[126] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed analysis of the

KDD CUP 99 data set," in 2009 IEEE symposium on computational intelligence

for security and defense applications, 2009, pp. 1-6.

[127] G. Creech and J. Hu, "Generation of a new IDS test dataset: Time to retire the KDD

collection," in 2013 IEEE Wireless Communications and Networking Conference

(WCNC), 2013, pp. 4487-4492.

[128] E. Aghaei and G. Serpen, "Host-based anomaly detection using Eigentraces feature

extraction and one-class classification on system call trace data," arXiv preprint

arXiv:1911.11284, 2019.

https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

 105

[129] E. Aghaei and G. Serpen, "Ensemble classifier for misuse detection using N-gram

feature vectors through operating system call traces," International Journal of

Hybrid Intelligent Systems, vol. 14, pp. 141-154, 2017.

[130] G. Serpen and E. Aghaei, "Host-based misuse intrusion detection using PCA

feature extraction and kNN classification algorithms," Intelligent Data Analysis,

vol. 22, pp. 1101-1114, 2018.

[131] N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set)," in 2015 military

communications and information systems conference (MilCIS), 2015, pp. 1-6.

[132] N. Moustafa, "Designing an online and reliable statistical anomaly detection

framework for dealing with large high-speed network traffic," University of New

South Wales, Canberra, Australia, 2017.

[133] N. Moustafa. (2018, June 3, 2020). The UNSW-NB15 Dataset Description.

Available: https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA-NB15-Datasets/

[134] T. Janarthanan and S. Zargari, "Feature selection in UNSW-NB15 and

KDDCUP'99 datasets," in 2017 IEEE 26th international symposium on industrial

electronics (ISIE), 2017, pp. 1881-1886.

[135] N. Moustafa and J. Slay, "The evaluation of Network Anomaly Detection Systems:

Statistical analysis of the UNSW-NB15 data set and the comparison with the

KDD99 data set," Information Security Journal: A Global Perspective, vol. 25, pp.

18-31, 2016.

[136] Ixia. (1998). Available: https://www.ixiacom.com/products/perfectstorm

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.ixiacom.com/products/perfectstorm

 106

[137] Argus. (June 3, 2020). Available: https://openargus.org/

[138] Zeek. (June 3, 2020). Available: https://zeek.org/

[139] V. Bolón-Canedo, D. Rego-Fernández, D. Peteiro-Barral, A. Alonso-Betanzos, B.

Guijarro-Berdiñas, and N. Sánchez-Maroño, "On the scalability of feature selection

methods on high-dimensional data," Knowledge and Information Systems, vol. 56,

pp. 395-442, 2018.

[140] H. Liu and R. Setiono, "Chi2: Feature selection and discretization of numeric

attributes," in Proceedings of 7th IEEE International Conference on Tools with

Artificial Intelligence, 1995, pp. 388-391.

[141] R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial

intelligence, vol. 97, pp. 273-324, 1997.

[142] P. Pudil, J. Novovičová, and J. Kittler, "Floating search methods in feature

selection," Pattern recognition letters, vol. 15, pp. 1119-1125, 1994.

[143] R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the

Royal Statistical Society: Series B (Methodological), vol. 58, pp. 267-288, 1996.

[144] T. Y. Young, Handbook of pattern recognition and image processing (vol. 2):

computer vision: Academic Press, Inc., 1994.

[145] A. Hoerl and R. Kennard, "Encyclopedia of Statistical Sciences, 8, chap. Ridge

Regression, 129–136," ed: Wiley, New York, 1988.

[146] L. E. Frank and J. H. Friedman, "A statistical view of some chemometrics

regression tools," Technometrics, vol. 35, pp. 109-135, 1993.

https://openargus.org/
https://zeek.org/

 107

[147] P. Cao, D. Zhao, and O. Zaiane, "An optimized cost-sensitive SVM for imbalanced

data learning," in Pacific-Asia conference on knowledge discovery and data mining,

2013, pp. 280-292.

[148] S. Köknar-Tezel and L. J. Latecki, "Improving SVM classification on imbalanced

data sets in distance spaces," in 2009 ninth IEEE international conference on data

mining, 2009, pp. 259-267.

[149] F. Nelli, "Machine Learning with scikit-learn," in Python Data Analytics, ed:

Springer, 2018, pp. 313-347.

[150] D. A. Cieslak and N. V. Chawla, "Learning decision trees for unbalanced data," in

Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, 2008, pp. 241-256.

[151] D. A. Cieslak, T. R. Hoens, N. V. Chawla, and W. P. Kegelmeyer, "Hellinger

distance decision trees are robust and skew-insensitive," Data Mining and

Knowledge Discovery, vol. 24, pp. 136-158, 2012.

[152] T. R. Hoens, Q. Qian, N. V. Chawla, and Z.-H. Zhou, "Building decision trees for

the multi-class imbalance problem," in Pacific-Asia Conference on Knowledge

Discovery and Data Mining, 2012, pp. 122-134.

[153] Y. Liu, N. V. Chawla, M. P. Harper, E. Shriberg, and A. Stolcke, "A study in

machine learning from imbalanced data for sentence boundary detection in speech,"

Computer Speech & Language, vol. 20, pp. 468-494, 2006.

[154] R. Barandela, R. M. Valdovinos, and J. S. Sánchez, "New applications of ensembles

of classifiers," Pattern Analysis & Applications, vol. 6, pp. 245-256, 2003.

 108

[155] R. Johnson and T. Zhang, "Learning nonlinear functions using regularized greedy

forest," IEEE transactions on pattern analysis and machine intelligence, vol. 36,

pp. 942-954, 2013.

[156] M. Greenwald and S. Khanna, "Space-efficient online computation of quantile

summaries," ACM SIGMOD Record, vol. 30, pp. 58-66, 2001.

[157] P. Li, Q. Wu, and C. J. Burges, "Mcrank: Learning to rank using multiple

classification and gradient boosting," in Advances in neural information processing

systems, 2008, pp. 897-904.

[158] J. H. Friedman, "Stochastic gradient boosting," Computational statistics & data

analysis, vol. 38, pp. 367-378, 2002.

[159] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001.

[160] A. Bhattacharyya, "On a measure of divergence between two statistical populations

defined by their probability distributions," Bull. Calcutta Math. Soc., vol. 35, pp.

99-109, 1943.

[161] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, "Diagnosis of multiple cancer

types by shrunken centroids of gene expression," Proceedings of the National

Academy of Sciences, vol. 99, pp. 6567-6572, 2002.

[162] P. C. Mahalanobis, "On the generalized distance in statistics," 1936.

[163] T. S. community. (2008). scipy.stats.chisquare. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html

[164] s.-l. developers. (2007). Feature selection. Available: https://scikit-

learn.org/stable/modules/feature_selection.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html

 109

[165] P. S. Foundation. ReliefF feature selection algorithms. Available:

https://pypi.org/project/ReliefF/

[166] P. S. Foundation. Python3 binding to mRMR Feature Selection algorithm.

Available: https://pypi.org/project/pymrmr/

[167] s.-l. developers. sklearn.feature_selection.RFE. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

[168] s.-l. developers. 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier. Available:

https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.htm

l

[169] s.-l. developers. sklearn.ensemble.BaggingClassifier. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

[170] G. Lemaitre, F. Nogueira, D. Oliveira, and C. Aridas.

imblearn.ensemble.BalancedBaggingClassifier. Available: https://imbalanced-

learn.readthedocs.io/en/stable/generated/imblearn.ensemble.BalancedBaggingCla

ssifier.html

[171] s.-l. developers. sklearn.ensemble.AdaBoostClassifier. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

[172] s.-l. developers. 3.2.4.3.5. sklearn.ensemble.GradientBoostingClassifier.

Available: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.

html

https://pypi.org/project/ReliefF/
https://pypi.org/project/pymrmr/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.ensemble.BalancedBaggingClassifier.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.ensemble.BalancedBaggingClassifier.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.ensemble.BalancedBaggingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

 110

[173] s.-l. developers. 3.2.4.3.3. sklearn.ensemble.ExtraTreesClassifier. Available:

https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

[174] G. Lemaitre, F. Nogueira, D. Oliveira, and C. Aridas.

imblearn.ensemble.EasyEnsemble. Available: https://imbalanced-

learn.readthedocs.io/en/stable/generated/imblearn.ensemble.EasyEnsemble.html

[175] s.-l. developers. sklearn.naive_bayes.GaussianNB. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

[176] s.-l. developers. sklearn.neural_network.MLPClassifier. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

[177] T. S. W. Contributors. Available: https://www.spyder-ide.org/

[178] P. S. Foundation. Available: https://www.python.org/

[179] pandas. Available: https://pandas.pydata.org/

[180] NumPy. Available: https://numpy.org/

[181] math — Mathematical functions. Available:

https://docs.python.org/3/library/math.html

[182] J. Hunter, D. Dale, E. Firing, M. Droettboom, and t. M. d. team. Matplotlib.

Available: https://matplotlib.org/users/installing.html

[183] S. developers. SciPy. Available: https://www.scipy.org/

[184] M. Waskom. seaborn: statistical data visualization. Available:

https://seaborn.pydata.org/

[185] s.-l. developer. scikit-learn. Available: https://scikit-learn.org/stable/

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.ensemble.EasyEnsemble.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.ensemble.EasyEnsemble.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://www.spyder-ide.org/
https://www.python.org/
https://pandas.pydata.org/
https://numpy.org/
https://docs.python.org/3/library/math.html
https://matplotlib.org/users/installing.html
https://www.scipy.org/
https://seaborn.pydata.org/
https://scikit-learn.org/stable/

 111

[186] G. Lemaitre, F. Nogueira, D. Oliveira, and C. Aridas. Install and contribution.

Available: https://imbalanced-learn.readthedocs.io/en/stable/install.html

[187] C. Aridas. (2019). imbalanced-learn. Available: https://github.com/scikit-learn-

contrib/imbalanced-learn/

[188] T. K. Ho, "Random decision forests," in Proceedings of 3rd international

conference on document analysis and recognition, 1995, pp. 278-282.

[189] V. Kanimozhi and P. Jacob, "UNSW-NB15 Dataset Feature Selection and Network

Intrusion Detection using Deep Learning."

[190] B. A. Tama and K.-H. Rhee, "An in-depth experimental study of anomaly detection

using gradient boosted machine," Neural Computing and Applications, vol. 31, pp.

955-965, 2019.

[191] M. G. Raman, N. Somu, S. Jagarapu, T. Manghnani, T. Selvam, K. Krithivasan, et

al., "An efficient intrusion detection technique based on support vector machine

and improved binary gravitational search algorithm," Artificial Intelligence Review,

pp. 1-32, 2019.

[192] V. Kumar, A. K. Das, and D. Sinha, "UIDS: a unified intrusion detection system

for IoT environment," Evolutionary Intelligence, pp. 1-13, 2019.

[193] V. Kumar, D. Sinha, A. K. Das, S. C. Pandey, and R. T. Goswami, "An integrated

rule based intrusion detection system: analysis on UNSW-NB15 data set and the

real time online dataset," Cluster Computing, pp. 1-22, 2019.

[194] Y. Yang, K. Zheng, C. Wu, X. Niu, and Y. Yang, "Building an effective intrusion

detection system using the modified density peak clustering algorithm and deep

belief networks," Applied Sciences, vol. 9, p. 238, 2019.

https://imbalanced-learn.readthedocs.io/en/stable/install.html
https://github.com/scikit-learn-contrib/imbalanced-learn/
https://github.com/scikit-learn-contrib/imbalanced-learn/

 112

[195] J. Sharma, C. Giri, O.-C. Granmo, and M. Goodwin, "Multi-layer intrusion

detection system with ExtraTrees feature selection, extreme learning machine

ensemble, and softmax aggregation," EURASIP Journal on Information Security,

vol. 2019, p. 15, 2019.

[196] D. Papamartzivanos, F. G. Mármol, and G. Kambourakis, "Dendron: Genetic trees

driven rule induction for network intrusion detection systems," Future Generation

Computer Systems, vol. 79, pp. 558-574, 2018.

 113

Appendix A

Python Code for Attribute Processing

#===
Finding Uncorrelated Attributes
#===

def correlation_detection(data):

 correlated_features = set() #creates a set

 correlation_matrix = data.corr() #creates the correlation matrix

 for i in range(len(correlation_matrix .columns)):

 for j in range(i):

 if abs(correlation_matrix.iloc[i, j]) > 0.8: #finds the uncorrelated attributes

 colname = correlation_matrix.columns[i]

 correlated_features.add(colname)

 return correlated_features

#===
Eliminating Uncorrelated Attributes
#===

def keep_related_columns(data, features): #gets correlated_features and the dataset as the inputs

 data_x.drop(labels=features, axis=1, inplace=True) #drops uncorrelated attributes from the dataset

 114

#===
Genetic Algorithm
#===

def genetic_algo(data_x, data_y):

 kappa_scorer = make_scorer(f1_score, average=None) #uses f1-score to evaluate the attributes

 selector = GeneticSelectionCV(DecisionTreeClassifier(), #sets parameters for Genetic Algorithm

 cv=5,

 scoring="accuracy",

 max_features=5,

 n_population=50,

 crossover_proba=0.5,

 mutation_proba=0.2,

 n_generations=40,

 crossover_independent_proba=0.5,

 mutation_independent_proba=0.05,

 tournament_size=3,

 n_gen_no_change=10,

 caching=True,

 n_jobs=-1)

 selector = selector.fit(data_x, data_y) #fits the Genetic algorithm on the dataset

 return data_x.columns[selector.support_] #returns the dataset with the selected attributes

#===
Sequential Feature Selection
#===

def step_forward_wrapper(data_x, data_y):

 kappa_scorer_f1 = make_scorer(f1_score, average=None) #uses f1-score to evaluate the attributes

 feature_selector = SequentialFeatureSelector(DecisionTreeClassifier(), #sets parameters

 k_features=8,

 115

 forward=True,

 floating=False,

 verbose=2,

 scoring= kappa_scorer_f1,

 cv=0)

 features = feature_selector.fit(data_x, data_y) #fits the sequential selector on the dataset

 return data_x.columns[list(features.k_feature_idx_)] #returns the dataset with the selected

attributes

 116

Appendix B

Appendix CMiscellaneous Content and Tables

Three ensemble estimators with different split criterion are utilized in the proposed

algorithm. Each has different parameters needed to set with which the final result has been

improved. All the estimators make use of decision tree as their base estimator. 101 number

of the base estimators are used in parallel with each other. All the three classifiers sample

the training subset uniformly with an equal probability of its instances being randomly

selected. Since sampling method is employed along with replacement, this method of

sampling is called bootstrapping. Due to the imbalanced issue affected our dataset, we

utilized Balanced Bagging resampling all classes except for the majority one. Data

resampling is not designed for XGBoost and Random Forest. The parameters along with

their assigned values for this project are tabulated as Table B.1,

Table B.1 The values that the parameters of estimators are set by

Parameters BB XGBoost RF

Base Estimator Decision Tree Decision Tree Decision Tree

N. of Estimator 101 101 101

Sampling Method Uniform Uniform Uniform

Resampling

Method
Not majority NA NA

 117

Parameters BB XGBoost RF

Replacement True True True

N. of Jobs -1
maximum number of

processors
-1

Random State 0 0 0

Split Criterion gini
percentiles of feature

distribution

Hellinger

Distance

Booster Averaging of trees gbtree
Averaging of

trees

Size of Buffer Size of trees Number of training samples Size of trees

Learning Rate 0.01 0.1 0.01

Table B.2 shows the features selected by five studies cited from the current literature.

The optimal feature subset in [36] is not listed in the table since it is not reported in the

paper. Also, in [35] all the features are considered for both training and testing phase. In

this table, each column represents the features selected by the feature selection algorithms

proposed in the papers compared to the feature selection method that we proposed.

Table 7.2 Feature subset selected by the different literature

Original Attributes Proposed Model [33] [34] [25] [26] [32]

Rate x x

Srcip

Sport

Dstip

Dstport

State x x

Sload x x x

dload x x x

Swin x

Dwin x x x

Stcpb x x

Dtcpb x

Trans_depth x

Res_bdy_len x

Djit x

Stime

Ltime

Sinpkt x x

Tcprtt x

Synack

Ackdat x

Is_sm_ips_sport

Ct_ftw_http_mthd x

Is_ftp_login

Ct_ftp_cmd

 118

Original Attributes Proposed Model [33] [34] [25] [26] [32]

Ct_src_ltm x

Proto x x x x

Dur x x x x

Sbytes x x x x x x

Dbytes x x x x x

Sttl x x x x x x

Dttl x x x x

Sloss x x x

Dloss x x x x

Service x x x x x

Spkts x x x

Dpkts x x x x

Smean x x x x

Dmean x x x x

Sjit x x x x

Dinpkt x x x

Ct_state_ttl x x x

Ct_srv_src x x x x

Ct_srv_dst x x x x

Ct_dst_ltm x x x

Ct_src_dport_ltm x x x x

Ct_dst_sport_ltm x x x x

Ct_dst_src_ltm x x x x x

Table B.3 summarizes the scaling (SC), feature selecting (FS), Train-Test splitting

(TTS), and classification methodologies (CL) employed by all seven papers cited from the

current literature. We compare their methods with ours in this table.

Table 7.3 Different strategies that were utilized in seven literature in comparison with the

proposed model

Proposed

Model
[25] [26] [32] [33] [34] [35] [36]

SC Min-Max NR NR NR NR NR NR Min-Max

TTS Hold-Out Hold-Out Hold-Out Hold-Out Hold-Out Hold-Out CV CV

FS
SFS

Elastic Net
Extra Tree
classifier

Informatio
n gain (IG)

DT

Genetic

Algorithm

IG RFE Not Used SVM

CL

Balanced

Bagging

XGBoost

RF-HDDT

ELM

C5

CHAID

CART

QUEST

Dendron

C5

CART

CHAID

QUEST

Deep

MLP
GBM

HC-
IBGSA

SVM

