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Wearable electronic equipment is continuously evolving and is increasing the

human-machine integration. While industrialists (read Elon Musk) want to inte-

grate a microchip in the human brain to leverage the faster processing capabilities

of machines, others have been trying to build human-like machines. Available in

various forms, these sensors can detect and measure the physiological changes in the

human body; and may use those signals to control other devices. One such sensor, an

electromyographic sensor (EMG), captures electromyographic data using myoelectric

(electric signals in muscles) signals and translates them to be used as input signals

through pre-defined gestures. Use of such a sensor in a multimodal environment will

not only increase the possible types of work that can be accomplished with the help of

such a device, but it will also help in improving the accuracy of the tasks performed.

This research addresses the fusion of input modalities such as speech and myoelectric

signals captured through a microphone and EMG sensor, respectively, to accurately

control a robotic arm. The research was completed in three phases.

During phase 1, an extensive survey on technologies based on the multimodal en-

vironment was conducted. The goal was to find the pros and cons of each application

and its utility. The classification was broadly divided into unimodal and multimodal

systems. The multimodal system was further classified based on the fusion of input
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modalities. Phase 1 results reaffirmed our expectation that the EMG data along with

speech has not been used in many multimodal systems and if used, hasn’t resulted in

a high accuracy fusion that is useful for real-world application.

Phase 2 involved performing the experimental research using the EMG data (col-

lected using the EMG sensor) with speech (collected using a speech recognition API).

The findings show that there is a scope of improvement in accuracy for both the

modalities when the EMG and Speech data was collected in laboratory conditions.

The error percentage for the modalities varies from 8.9-34.1%. A decision-based fusion

was performed which lead to a conclusion that multimodality improves the accuracy

of operating the robotic arm, and the error rate reduced to 3.5-7.5%.

The last phase dealt with improving the results achieved during phase 2 using

machine learning techniques and analyzes the most suitable strategy for controlling a

robotic arm. Six machine learning algorithms were tested. After the training data was

provided with sixty error conditions and tested again on the newly developed cases,

the highest accuracy achieved through the K-nearest neighbor (KNN) algorithm was

approximately 92%. Building upon phase 2, phase 3 concluded that use of machine

learning algorithm helps in cases where input is misinterpreted and the error reduces

drastically.
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Chapter 1

Introduction

Human-machine interaction (HMI) seeks to enable machine adaptation to the ap-

plication needs and involves the study of interfaces that facilitate the synergy between

people and a machine. Also known as human-computer interaction (HCI), HMI pri-

marily classifies interactions as unimodal and multimodal based on the number of

modalities used in communication for interaction. Unimodal interface examples in-

clude a touch, speech, or gesture-based user interface [1]. Multimodal HMI combines

natural input methods such as speech, touch, gestures, pen, or body movements in

a synchronized manner and then transforming it to a multimedia system output.

These systems make use of novel technologies for drawing I/O and allow the users

to perform tasks with higher accuracy and precision despite any physical constraints

or limitations [2]. The application of the multimodal systems is widely popular in

robotics, fixed or mobile, and serves as one of the primary motivations for research

in this field with the goal of developing a user-friendly, highly precise system. So far,

the fixed robots used in industry are either used through a control stick or keyboard

while mobile robotics mostly are autonomous. Many warehouses, such as Amazon

and Walmart, have already employed mobile robots to manage the storage and re-

trieval of items for faster and efficient deliveries of packages and delivery services.

Though these robots are not all-powerful and still need humans to work with them,
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having a multi-modal interactive capability may enhance the operational efficiency of

these and similar industrial applications. While individual modalities may be used in

case a user prefers one way of interaction than the other, traditionally, data fusion is

employed to create a multimodal system through the fusion of several modalities by

allowing the system to decide the accuracy of modality and combined them for inter-

action. Multimodal data fusion (MMDF) integrates the input of different modalities

to enhance the strengths and reduce the deficiencies of the individual inputs. MMDF

engines are used to perform these integrations and are used to interpret the various

data streams which have different applications in different scenarios depending on the

user, time, context, and task [3]. MMDF can be performed at the sensor, feature,

decision or matching-score level. Sensor fusion is the combination of input streams

coming directly from sensors such as webcams or microphones to form a composite in-

put. In feature-level fusion, the features of individual modalities are combined before

the decision is made while decision-level fusion involves combination after the indi-

vidual decision of each modality is available, and score-level fusion generates a mean

score of all modalities based on the individual scores of each input before making a

decision. In the twenty-first century, multimodality is gaining a lot of attention owing

to its advantages over unimodality, such as making use of more senses that connects

machines more naturally to the humans, allowing new ways of robust interaction that

are fast and efficient and allow respective disambiguation of identification errors [4].

The primary motive is to enable systems to work either standalone or fused with other

modalities depending upon user accessibility. Multimodal interaction is part of every-

day human life; we talk, use gestures, move around, and shift our gaze for an effective

flow of communication. A good example is the use of Google Maps application while

driving where the user cannot type the address but can input using speech. More-

over, the application is robust enough to accept input through both modalities [5].

The research done in these areas requires very robust and precise system architecture
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and hardware, which should remain relevant for several years. Although multimodal

systems are supposed to be user-friendly, newly developed systems might require user

training to allow the users to become proficient. The interaction with any system

requires a significant cognitive load to understand the system, and there is a risk of

making errors that can break the system at any point. The system's robustness could

be increased by employing several mechanisms, including but not limited to training,

fault tolerance, data storage scalability, sophisticated UI, logging, and learner mode

for new users.

This work is a comparative study along with experimental setup its primary motive

is to analyze the state-of-the-art progress in the field and note its accomplishments

& gaps to extend and implement it in broader domains. Moreover, the survey also

attempts to explore multimodal applications categorized by a combination of modal-

ities used. The research concludes with the analysis of multimodal systems and their

pros and cons in terms of reliability, usage, and performance, along with an experi-

ment to fuse input modalities for a robotic arm. In the experimental setup, we have

created a prototype robotic arm capable of handling input from different modalities

and perform actions as per user’s requirement.

1.1 Problem Statement

One might ask: what is HCI, and how does it work? Human interaction involves

the use of technology to form an interaction with humans and a technological device.

Humans can interact with computing devices in many ways while working on a dis-

sertation, as a user is interacting with a computer while using the keyboard. The

keyboard is one of many devices that are being used worldwide to interact with any

computer. One of the most wonderful and least appreciated things about technology

is the diversity of devices. However, in the last few years, technology has evolved
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and added modalities such as touch, gestures, or even voice interactions. Having

multiple devices that create this interaction has changed our world and they ways

we use and interact with all this modern technology. Both humans and computers

play a beneficial role for each other by creating this interaction; multiple tasks can

be carried out. Although it all sounds perfect at the moment, HCI devices have both

pros and cons. The Human-Computer Interaction requires constant improvement to

function properly according to the users needs. So essentially, the improvement of

usability and how the usability should be understood as per the user’s requirement,

how it relates to other social and cultural values, and considering the fact when it

is required, and when it may not be a desired feature of interfaces, all these factors

should be discussed in detail before designing any product. The research goal is to

improve the ways robots used in industry so that a person can stand far away from

an actual site and give commands using gestures and speech. It will not only make

life safer for a person operating a robot but also provide him or her the flexibility to

use various input methods.

1.2 Motivation

In our everyday lives, we interact not only with people but also with devices such

as phones, computers, tablets, and even cars. As technology advances, it become an

inevitable part of our lives. HCI is an interaction between a user and a computer/de-

vice in which they work together to accomplish certain goals. These interactions are

used not only for business purposes but for also downtime, social networking, commu-

nicating, and much more. Humans are constantly interacting with gadgets, especially

cell phones. Today's technology is advancing at such a fast pace that we are not only

influencing it, but it is also influencing us. We see everyone on the phone, using a

computer, or interacting with some tool that involves technology. This is especially
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true when it comes to the different sensors that are used when interacting with them,

such as touch, voice, motion, and hearing. These sensory products are made for us-

ability and functionality to create a better HCI. These input plays an important role

while developing a new product. Factors such as the purpose and Graphical User In-

terface is hugely important when developing a product. The motive behind creating

new products is to make interaction easier as well as more enjoyable, effective, and

useful. The influence that technology has on us is very impactful and meaningful that

it contributes to the way we act and feel. These modern advancements of HCI are

the reason we are going to build a product using the technology that is out today and

will show how we can improve to make human life better. The research is in line with

the motto of the University of Toledo, which states, ”Every Rocket has A Mission, to

Improve the Human Condition.”

1.3 Objectives and Contributions

The objective of this research is to evaluate the strengths and weaknesses of the

approach taken for various unimodal and multimodal devices available in the market.

Further, we explore how we can control the robotic arm by fusing the input from

several modalities. The contribution of our work is manifold, as summarized below.

• Conduct a literature survey of multimodal and unimodal systems by analyzing

the pros and cons of their design and usage.

• Describe the features a multimodal system should possess to achieve a goal.

• Elaborate the experimental details and results achieved by combining speech

and gesture input to a robotic arm.

• The possible application areas where our research could be put into use are also

discussed.
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• Publications as shown in Table 1.1

Table 1.1: Contribution

Type Contribution

Grant Submitted-NSF ’Mentor Fueled Computational Thinking’ with an Es-

timated budget of $299,052

Journal Paper Applications of Multi-Modal Data Fusion in Enhanc-

ing Human-Machine Interaction: A Survey.(Under

review)

Journal Paper Decision-based Multimodal Data Fusion for control-

ling Robotic Arm using EMG and Speech. (Under

review)

Journal Paper Incorporate Computational thinking in High School

Curriculum. (Under preparation)

Conference Paper Multi-modal data fusion of Voice and EMG data for

Robotic Control [6]

Conference Paper A Real-World Implementation of SQL Injection At-

tack Using Open Source Tools for Enhanced Cyber-

security Learning [7]

Conference Paper Remote Desktop Backdoor Implementation with Re-

verse TCP Payload using Open Source Tools for In-

structional Use [8]

Conference Paper Simulation and Analysis of DDoS Attack on Con-

nected Autonomous Vehicular Network using OM-

NET++
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1.4 Dissertation Outline

The thesis unfolds as follows:

Chapter 1 introduces the dissertation topic, the problem statement, and the mo-

tivation behind it. It also discusses HCI briefly and how it is relevant for our research

work and, finally, describes the research objective and the major contributions of this

work.

Chapter 2 discusses unimodal & multimodal systems with and without fusion

in detail and surveys the state-of-the-art applications implementing combination of

modalities, including pros and cons

Chapter 3 discusses the experimental details of controlling the robotic arm using

fusion of speech and gesture.

Chapter 4 presents machine learning implementation of training the robotic arm

using speech and EMG data.

Chapter 5 concludes the dissertation by summarizing major results and findings

obtained in this research and gives recommendations for future work. It discusses

possible extensions of our developed application.

Finally, the thesis ends with Appendix A, containing the C# source code written

to design and develop the interaction with the robotic arm..
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Chapter 2

Literature Survey - Unimodal &

Multimodal Systems

2.1 Unimodal Systems

Unimodal systems are designed with single-channel input and are thus confined

to a single mode of HMI [9]. Three popular broad categories of unimodal systems

are based on haptic, gesture, and speech. Common examples of interfaces used in

such systems are textual, graphical/video and touch. Unimodal systems implemented

in the 1990s were widely used in the automation and health care industries. The

unimodal systems used in surgery during the early 1990s [10] and are capable enough

to understand pre-recorded voice commands and accept only single modality, i.e.,

speech. They possess many similar limitations; among them a prominent one is

accepting pre-defined 'canned' inputs and severely lack in accepting dynamic human

speech. Some example robots included MAIA [10], RHINO, and AESOP.

In most cases, the human has to initiate the dialog; the systems do not support the

flexibly mixed initiative. The robot is incapable of locating the robot physically and

unable to respond with their location coordinates; in a few cases, the robots support

a canned feature. Robots are unable to handle effective speech; that is emotions are
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neither perceived nor produced. These robots are only capable of handling speech

with only a few pre-defined commands. Their non-verbal communication abilities do

not exist; for instance, gestures, gait, facial expressions, and head nods are neither

perceived nor created. The robots do not support machine learning; they do not learn

from the data provided or generated by them. [10].

Unimodal systems are broadly classified into four general categories, which are

haptic, gesture, visual and speech. In our analysis, we investigate each of them.

The conceivable strategies utilized for visual are face location, gaze, facial expression,

lip-reading, face-based identity, and other client attributes, for example, age, sex,

race, and so forth, while voice is actualized through speech input. The other input

strategies, for example, haptic and gesture are accomplished through pressure, touch,

and nonverbal communication.

2.1.1 Haptic Feedback

Haptic feedback is a field of research exploring human perception and interactions

facilitated via the sense of touch, comprising hardware and software able to deliver

touch feedback. Haptic communication refers to the use of artificially formed hap-

tic prompts as a medium for communication between two or more individuals [11].

Multi-touch devices have established acceptability in public spaces, with huge dis-

plays appearing in markets, educational institutes, commercial residences, and other

areas of high traffic concentration. These systems are designed to adopt changes over

time on their interface, allowing users to interact with minimal input from the user

[12].

This sense of touch via haptic feedback finds application in a variety of consumer

handheld devices which are in turn used by a variety of people. The use of haptic

feedback and its effectiveness with one particular group, older adults, was explored

in 2015 by ECOMODE in Trento, Italy [13]. The study explored how elderly people
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interact with portable devices along with how they utilize various applications based

on mid-air input interaction. The fourth generation of hand-held devices, which

comprises cell phones, tablets, and PDAs, heavily relies on touch input. Various

input methods are used by these devices which includes pinching, swiping and double

click which is not familiar with older adults. In the initial survey performed by

ECOMODE team [13] on elderly people in order to get their feedback in learning new

technologies and challenges faced by them while using mobile devices, the researchers

found that the subjects were not always disinterested in the technology, but they

were very interested in using the technology to interact with relatives or to get useful

information. The challenges faced by the researchers when dealing with the elderly

subjects included unfamiliarity with charging ports and fragile ON/OFF buttons.

There were also dexterity issues while attempting to use touch gestures with small

icons, and users with low vision also made the hand-held devices less user-friendly.

An experiment was performed using ECOMODE on six elderly people in which

they were asked to click on ten photographs using a Samsung Galaxy S5, an iPad

mini (eight-inch tablet), and a Samsung Galaxy Tab S 10.5 (ten-inch tablet) [13].

The feedback received indicated that most users preferred the larger screens of the

tablet over the smartphone. The other issues raised by the experimental subjects as

follows:

1. Lack of clear feedback after clicking the photograph

2. Presence of ambiguous items on the desktop

3. Presence of extra cover/stand on the device

4. Difficulties due to reflections on the screen

There is no empirical data provided by the authors; rather, it is simply a proposal

that explores how to make handheld devices more usable for elderly people.
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In an autonomous vehicle, for better control inside a car, haptic features Figure 2-1

are being added to enhance the feedback a person gets in a vehicle. Bosch showcased

gesture control to help control different functions in the car. Ultrasound waves that

hit the hand, making it feel as though there is a knob there, but there is no physical

knob [14].

Figure 2-1: Haptic feedback

2.1.2 Gesture Input

Gestures are expressive and meaningful body motions involving physical move-

ments of the fingers, hands, arms, head, face, or body with the intent of transferring

significant information while communicating with the system [15]. Research has been

carried out to improve the accuracy of the gesture input. The researchers have used, a

Baxter Research Robot (Yogi) and a PR2 (Kodiak) [16]. The research deals with im-

proving grasping capability of a robot. In this experiment, they have used Microsoft

Kinect on top of Baxter robot angled downwards at roughly 75 degrees toward a

table in front of it, which enables the robot to detect things and pick them up from
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one point to drop them at another. The empirical data shows the results are 84

and 89 percent accurate with Baxter and PR2, respectively. Gestures were used in

another implementation called ModDrop, which is based on adaptive gesture recogni-

tion. The term ”multi-modal” over here refers to various gestures captured through

the left and right arm both arms are treated as different modalities. The research

focuses on gesture-based detection on multi-scale and multimodal deep learning [17].

The researchers have captured spatial information on users to initialize the modal-

ities carefully and to fuse them for cross-modality connections while preserving the

uniqueness of every modality.

Ferron et al., (2015) while working with older adults using ECOMODE, finds

cell phones can also use mid-air gestures for interaction, interestingly it is much

appreciated by them expressing positive comments the possibility of using mid-air

gesture [13]. MYO armband were provided to two elderly ladies, and both of them

found this interaction modality interesting. They can control a music application

using a MYO armband. Other experiments have been performed that also leveraged

gesture input. In one such experiment, the developers attempted to build a healthy

relationship between a robot and a human being. Like most of the researchers within

the human-robot interaction field, they also utilized the Microsoft Kinect. The initial

application for the project is in the homes of seniors where humans arent easily

available to help the resident. Robots would be deployed to improve the services

provided to them.

The result of the research project was a service robot called Donaxi. The robot

has an omnidirectional navigation system [18] with four wheels (each one containing

a DC motor and encoder) and a laser system on the front and back for mapping and

navigation. The robot is equipped for understanding both voice and motion utilizing

the Microsoft Kinect, yet they have utilized motions for the implementation. The de-

velopment team has participated in the Mexican Robotics Tournament (TMR2015)
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[18]. The Donaxi robot is trained with many videos from different people in different

places, which enables the system to work with a variety of users and environments.

After providing gesture input to the Microsoft Kinect, the system was trained com-

pletely. The above mentioned 2.1 explains that it requires enormous effort to train

the system, that is attention is needed for 417 iterations to get trained properly, which

is a substantial effort for a single user command. The experimental results show that

once the system is functioning, it would able to recognize Attention, Stop and Right

for any user as shown in Figure 2-2. The work mentioned is not complete, and more

features are planned, including the understanding of the additional gestures.

Table 2.1: Total Number of Gestures in the Dataset

Gesture Stop Come Left Right Attention Indication Turn

Number 194 177 395 407 417 363 207

Figure 2-2: Three Gestures Used at TMR2015 for Donaxi

2.1.2.1 Leap Motion

Leap Motion is a motion control device that connects to a computer and enables

users to manipulate objects with their hand motions. The programs are designed
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to recognize and interpret gesture-based computing to create designs, play games,

or carry out some other type of task. Leap Motion is a real-time interaction that

can manipulate digital objects. You can run Leap Motion on devices like MAC and

Windows. This virtual reality is a great tool of the future, but it is not nearly where

gesture control needs to be for the HCI to be smooth. A new update called Orion has

provided some recent updates to the fourth-generation core software to improve the

finger tracking and motions, faster and more consistent hand initialization, and more

accurate shape and scale for the hands just to name a few. The hardware is made

with two cameras and three infrared LEDs, which track light with a wavelength of 850

nanometers. The interaction areas are eight feet apart while the motion controllers

are 2.6 feet apart after the Orion update. Having gestures like these makes it difficult

to interpret or transcribe items like bulbs, daylight, and halogens, which would light

up the scene [19]. The Figure 2-3 shows how the sensory object orientation of the

VR works.

The Leap Motion controller is a small USB device that plugs into your computer.

Using LED lights and camera sensors, the Leap Motion controller scans an area of

eight-cubic feet above the device. It tracks both hands and all ten fingers as they move

through the open space between you and your computer the special software senses

your hands and fingers and translates the data into information for your computer.

Leap Motion was developed in 2008; the Leap Motion controller is a small USB

peripheral device designed to be placed on a physical desktop, facing upward. It can

also be straddling onto a virtual reality headset. Using two shaded IR cameras and

three infrared LEDs, the device observes an unevenly curved area, to a distance of one

meter. This is then sent through a USB cable to the host computer, where the Leap

Motion software analyzes it. Leap Motion initially distributed thousands of units

to developers who are interested in creating applications for the device. The Leap

Motion controller was first shipped in July 2013. In February 2016, Leap Motion
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released a major beta update to its core software. Dubbed Orion, the software is

designed for hand tracking in virtual reality [20].

Figure 2-3: Leap Motion

2.1.2.2 CaptoGlove

This glove is a haptic interface system that is Windows compatible and also works

with iOS and Android apps. Haptic technology is any which can create a sense of

touch by applying force, vibrations, or motions to the user. This Capto Glove Figure

2-4 is a motion controller that works using Bluetooth technology. The CaptoGlove

claims to be compatible with most VR headset that is already on the market. It is

rechargeable, and the battery lasts ten hours. The glove has movement sensors in

each finger and a pressure sensor on the thumb. It can be used to play VR, PC, and

Phone games or as a controller for many devices and many platforms. You can use

just one glove to control and interact, or you can buy both gloves, they cost $250.00.

It claims to be able to control any past, present, or future game created. Most haptic
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devices are made to interact with virtual reality environments and have sensors that

allow you to control and give lifelike feedback. For example, you could probably use

the glove to control a car in a racing game, and if you hit a wall or something, it will

probably vibrate or shake.

Figure 2-4: Capto Glove

2.1.2.3 MYO Armband

The MYO armband is a wearable gesture and motion control device that lets you

take control of your phones, computers, and other devices touch-free. Electromyogra-

phy (EMG) is a technique for evaluating and recording the electrical activity produced
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by skeletal muscles. The MYO armband lets you use the electrical activity in your

muscles to wirelessly control your computer, phone, and other favorite digital tech-

nologies. A simple wave of your hand will transform how you interact with your

digital world [21].

Figure 2-5: MYO Arm band

2.1.3 Speech Input

The last two decades have seen the development of increasing possibilities where

computers and handheld devices smart devices can be used [22]. Among them, the

feature which was introduced off lately is speech recognition apart from trivial use

of keyboard and mouse. Speech recognition is an analysis of the human voice for

performing a certain task on a device. Pursuing a similar concept, a team from MIT

is working on enabling human-robot interaction. In this research, a team from MIT

and Germany worked together and developed a system capable of understanding and

adapting human speech by a robot implemented in a wheelchair [23]. The system

is efficient as it starts the process again whenever it finds any of the following input

issues
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1. User utterance is inconsistent with current discourse (unification with discourse

info fails).

2. User utterance can only partly be parsed.

3. User utterance is inconsistent with the robots expectations (unexpected info).

4. User asks for the same info several times.

5. No speech can be found in the user utterance.

The system consists of a speech recognizer, a natural language parser, and a

dialogue manager. The drawback of this system is that it only accepts speech as an

input, while they have claimed it as multimodal [23].

A newer feature, created a little less than ten years ago, that has greatly changed

our interaction with computers is the voice assistant. Depending on the device or

OS, assistants like Siri, Cortana, and Alexa have made interaction with our devices a

little easier. They recognize your voice and can be summoned with a simple phrase.

The voice recognition software can understand numerous commands and can help you

carry them out hands-free. It can start many apps, schedule appointments, return

calls or texts, search the internet for the user, and can also give you directions and

much more through voice commands. Alexa is set up in your house, and she can play

songs for you on demand. She can also place an order through Amazon Prime for

you. If you have lights or appliances set up on smart switches, you can ask her to

turn them on or off for you. Speech recognition can also help you drive safer because

you wont have to text and drive; you can prompt Google or Siri to compose and send

a text to one of your contacts [24].
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2.1.3.1 Siri

Siri is a technology that uses voice commands. In everyday life, Siri is used across

the world on Apple products. An iPhone user can use Siri for just about anything,

as long as your phone is set up to recognize when you say ”Hey Siri”. When the

command is said, the voice recognition program responds with, ”What can I help

with” as shown in Figure Figure 2-6 The program can also be given the command

as soon as you say, Siri, simple commands like play a song, call this person, put

this meeting on my schedule, and can even be asked sophisticated questions that will

direct you to a site that can help you. Siri is one of the most used virtual assistants

out there today, with different languages you can set it too and different accents as

well [25].

Figure 2-6: Voice recognition using Siri
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2.1.3.2 Cortana

Cortana is Microsoft’s virtual assistant. Cortana is activated by voice commands

and is capable of performing several tasks on your hand-held device. Cortana’s biggest

market competitor is Apple’s Siri. Most users find Cortana very useful for gaming

consoles and recommend that everyone take advantage of this helpful tool. Cortana

can access the internet and do a lot of things that you tell it to. In the past, the

users can easily command Cortana to record the gameplay and it is quite easier to

tell Cortana to record that instead of going to the settings and clicking options, then

record, and so on. One cool thing about Cortana is that you do not need a Kinect to

make it work, and the player can use a microphone connected to the Xbox controller

to make it work 2-7. Computers also use Cortana, and it is very handy when looking

for something on your desktop or even search the web. Cortana is a huge advantage

for people that have problems with typing or maybe even some sort of disability. It

is still used a lot; though less common in cell phones than video game consoles. The

review suggest, more people discusses Siri and use it instead of Cortana. Still, Cortana

is used today in several devices, and the research suggest it is doing well because of

substantial user base for Microsoft Windows and youngsters who play games using

Microsoft Kinect or XBox. Cortana is also free with an Xbox live membership, but

prices vary. One year is $60, one month is $10, and three months cost $25 [26].

2.1.3.3 Amazon Echo

Another popular tool that individuals have been using since 2014 is Amazon Echo.

Amazon Echo is a device that is capable of being your personal assistant. It pro-

vides information data from the world wide web in real time. It is a conversation

voice-control tool that could be used to ask questions, play music, and control other

technology devices such as lamps and speakers. Amazon Echo could be integrated

into your smart home devices to control the temperature, lock the doors, and also
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Figure 2-7: Cortana

dim the lights. Much like the iPhone tool, called Siri, it can carry on conversations

with a person and is constantly ready for someone to talk. To activate it, one must

say ”Hey Echo” or ”Hey Alexa,” which will enable the assistant to give voice com-

mands to perform a specific task. The device will start to listen to the area nearby

for some type of response to carry out the task. This voice assistant control is known

as AVS (Amazon Voice Service), which is an intelligent voice-recognition device that

can understand humans. Some recent Echo devices such as the Amazon Look have a

built-in camera to take pictures and videos. For example, the sensor is made to learn

one’s taste by taking photos of different clothes one wears and to have them a better

shopping experience using machine learning techniques [26]. The Figure 2-8 shows

the layout, and sensory location of the Amazon Echo Look.
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Figure 2-8: Amazon Echo

2.1.4 Eye Gaze Input

The Eyegaze Edge, created by LC Technologies, is a device that gives users who

are not able to use their hands a way to communicate with computer just with the

movement of their eyes. The way the technology works is by calibrating the irises

with the screen. A small calibration point moves around the screen as the user follows

it with his or her eyes and then the eye is entered into the system; this is a quick and

easy process. There is a low light, an infrared camera that focuses on the eye and

takes you through motions to get a good reading of your eye movement. The Eyegaze

Edge Figure 2-9 is built so that the user can calibrate with one eye and navigate with

one eye as well. Different means of communication can be used on the system as

well including picture icon boards, prestored phrases or store new phrases, computer

keyboards for emailing texting or simply taking notes, and even connects to your

computer or phone. All this is possible through the image processing software that
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can determine throgh analysis, where the user’s eyes are going to move next [27].

Figure 2-9: Eye Gaze Input

2.1.4.1 Tobii EyeTracker 4C

Eye-tracking technology is a rapidly growing area for both gaming and research,

and Tobii is a company that produces many popular devices in this area of technology

for both fun and research. Eye tracking Figure 2-10 is the process of measuring the

point of gaze or the motion of the eye, relative to the head. Eye-tracking in HCI

investigates the scan path for usability purposes or as a method of input in gaze-
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based interfaces. Although eye-tracking devices can be used for gaming, it seems

that the majority of eye-tracking devices are for mainly used for research purposes.

There are many types of research being performed with this technology that seem

fascinating. The data from eye tracking devices are being used in psychology and

medical research; the data gathered is also being used in marketing research. This

particular product is a camera that is $150.00, and it can perform several tasks,

but it also depends on what software you purchase, and they compatible with your

device. This camera streams and shows your viewers exactly what you are looking at

in real time with ghost software. It is compatible with games available through the

same company; it supports more than 150 games. It also has a training tool that is

supposed to improve your game-playing skills. It uses a USB connection. It is also

a way to securely login to Windows 10. It has some high ratings and good reviews.

The main complaints were that it was hard to set up and had hiccups in the games

[28].

Figure 2-10: Tobii 4C Eye Tracker
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2.1.5 Touch Input

One of the most common modalities we use daily to interact with computers is

the touch screen. The majority of people of all ages know how to use the touch

screen. After the introduction of the smartphone, along came tablets. Once they

became common in most households, then the touch screens became one of the most

popular ways to interact with computers. When you use self-checkout at the store,

get money from the ATM, place an order at McDonalds, or rent a Red Box movie,

you need to know how to use a touchscreen to complete these tasks. Whether a

user likes it or not, CRT and LCD screens are everywhere and have changed the way

we interact with computers. Touch screens have given us the ability to use various

applications; they are not only used in public information systems such as kiosks

at one of the local restaurants or ticketing machines when the user visits the Motor

Vehicle Division (MVD) office or any other offices; it is also on devices such as iPhones,

tablets, touchscreen TVs, or even touch screen refrigerators, dryer, and washer. As

we can observe, the devices are pretty much all around wherever we go, whether it

be to wash our cars, to get a parking ticket and find any restaurant; the screen of our

PC or even the screen on our vehicles that used for GPS, calling and entertainment

purposes or so forth. It is scary to think that our touchscreens are replacing our

conventional buttons because of the way they operate. Think about when we had our

flip phones and all the buttons that were on them, and after decades, all those buttons

have become rare because they are being replaced with the marvelous invention called

touchscreens.

There are different types of touch screens; they differ in hardware and software.

The ones we encounter when use kiosks at the stores and ATMs use resistive tech-

nology Figure 2-11. These screens have two thin layers, one that is resistive and

one that is conductive. The screens have a gap in between them with a constant
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electrical current running through that gap. When you touch the screen, the two

screens touch, changing the electrical current, the software read the current change

and carries out the instruction related to those coordinates. There are also capacitive

touch screens Figure 2-13, which are made of materials that hold an electric charge

in wires thinner than a hair, arranged in a grid. There are two types of capacitive

touch screens; surface capacitive and projected capacitive. They both work similarly;

the main difference is that a projective screen has a separate chip for sensing. They

work by transferring an electrical charge to your finger, when you touch the screen a

circuit is completed, and a voltage drop occurs at that location on the screen. The

software then carries out whatever task is related to the location of the voltage drop.

Touch screens have revolutionized the way we interact with computers, making it

so those of all ages can interact with a computer and changed the way we complete

daily tasks and errands. There are several devices with finger touch ID (capacitive

fingerprint scanner), like computers and phones [29]. Though a user would think

that finger touch ID would use light technology, in reality, the capacitors use electric

currents from the spacing the in ridges of your fingers as shown in Figure 2-11. The

electricity sends a pulse and gets your print. When the correct fingerprint is read, it

will unlock the device, making it much harder for someone to hack you or break into

your computer [30].

2.1.5.1 Samsung Foldable Phone

The Samsung foldable phone is a recent invention that is not yet in the market.

It is a touch screen-based devices which accepts input on both sides. The phone

was introduced early in 2019 as the first real functioning foldable phone. This dual-

battery phone is the first of its kind that brings back the foldable slick aspect of

older-generation phones. The phone is one of the most expensive phones in recent

times, costing $1,980 to $2,600. The Galaxy Fold is made with two foldable screens.
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Figure 2-11: Touch Input

The display is made with an ultrathin polymer that uses a new adhesive made by

Samsung which enables it to fold many times called an Infinity Flex Display [31]. The

figure shows the entire device with the two screens capable of folding Figure 2-14.

2.1.6 Game Controller Input

Video games play an integral role in youngsters, lives these days. They spend a

daily couple of hours each day on a network-based gaming environment with their

classmates and friends, playing games from a remote location.

2.1.6.1 DualShock 4

DualShock 4 Figure 2-15 is a new hardware that supports a PlayStation 4 con-

troller. It helps the user to navigate through the system and interact with the game

and even online with other users. This control has many different features like a
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Figure 2-12: Resistive Touch

touchpad that makes it easy to navigate on the internet like a computer touchpad

Figure 2-15 . It has vibrations that help players in a game know they are in danger;

there is a light bar in the front indicating that the controller is on. This controller is

also wireless and rechargeable, just like a cellphone.

2.1.6.2 Nintendo Switch

Nintendo Switch as shown in Figure 2-16 is a gaming console that was released

in 2017, although Nintendo is the oldest market player for gaming consoles. The

Nintendo Switch is a very successful console because of the classic games that the

old-school Nintendo came with. You can use the switch as a remote control for your

tv to turn it off and on and to switch the input on your tv. Some older TVs might not

be compatible. You can find a lost controller by using another controller. The missing

controller will vibrate until found. The Nintendo Switch comes with four controllers,
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Figure 2-13: Capacitative Touch

and these controllers use different things to control them. They have buttons and

triggers, but they can also be controlled by shaking them, twisting them, blowing

into a sensor that detects, air and many different kinds of motions. For example, you

could be playing a driving game, and you have to hold the controller like a steering

wheel and make it turn, just like driving a car. The Nintendo Switch can also be a

hand-held device by plugging two of the controllers into the sides of a small handheld

monitor. This is the only console that you can really take on the go and also use on a

big TV easily. Prices vary anywhere from $299 to about $500 for a Nintendo Switch.

Gaming consoles from Nintendo are worth it because you can have a good time and

the cool features. They are really cool user friendly interfaces that you can move the
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Figure 2-14: Samsung Foldable Phone

controllers around and perform several inputs like you would in real life [32].

2.1.7 Digital Pen

Digital pens can transmit your writing to the computer using wireless technology.

The pen is thick and packed with digital circuits; just like a mouse, it uses a photocell

light detector and a LED light emitter as shown in Figure 2-17. The difference between

the two is that they are stacked vertically instead of horizontally. Also, the pen keeps

track of your movements and patterns. Digital pens can upload your writing onto

computers though connecting a cord, connecting to a charging dock, o,r best of all,

through Bluetooth or infrared [33].
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Figure 2-15: Meadow Dualshock 4 Controller Layout

2.1.8 Facial Recognition

Facial recognition is a booming technology for authentication of users from un-

locking your computer to finding a criminal or even for finding a friend on Facebook,

a Snapchat filter, and so on. Facial recognition takes data and stores it in its sys-

tem, and when data matches or is very similar, it will recognize the face and bring

up the stored face. The police and government agencies use facial recognition when

searching for a person. The catch is that the person has to already have a picture

in the system, or the system will have nothing to match it to; it would just compare

to everyone is in the system to find the best match. Snapchat uses facial recognition

to apply filters to faces and can even face swap with other individuals. The same

technology is applicable for unlocking computer 2-18 and even the new cell phones.

31



Figure 2-16: Nintendo

2.1.9 Drones

With the recent growth of sensors and distance with network protocols, drones

have become a very useful tool to use. Drones are unmanned aircraft that easily be

flown remotely or fly autonomously through software-controlled flight plans working

along with sensors to avoid obstacles. Drones are used for many tasks, such as search

and rescue, wars, surveillance, and fun. Drones are equipped with sensors, cameras,

and a software to process the data. These sensors are meant to calculate the distance,

time of the flights, chemicals, stabilization, and orientation. Drones are increasingly

being used in many different fields. For example, you could use a drone for journalism,

disaster response, wildlife monitoring, and agricultural purposes as shown in Figure

2-19. Drones also have their downfalls as well, especially when it comes to safety and

the ethics that are involved with them. drones require special permission to operate,
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Figure 2-17: Digital Pen

and should not hamper any airspace for airlines and private jets. Recently drones

have been on television and criticized for people flying their drones around airports,

or also they have been seen in the Olympics. [34].

2.1.10 EPOC Emotiv headset

The EMOTIV EPOC+ is a portable, high-resolution, fourteen-channel, EEG sys-

tem. It was designed to be quick and easy to fit and take measurements in practical

research applications. It is compatible with all EMOTIV software products. EPOC
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Figure 2-18: Facial Recognition

emotiv is a brain interfacing devices which accepts input through the USB. It senses

the portion of the brain that is active while thinking about specific problems. [35].

2.2 Multimodal Systems

Multimodal interaction provides a user with multiple classes or modalities of in-

teraction [36]. A simple example is defined by Bolts ”Put That There” [37] which

combines speech with a gesture. Multimodal systems allow the use of multiple human

sensory modalities and combine many simultaneous inputs and present the data uti-

lizing a synergistic portrayal of a wide range of output modalities [38]. Multimodality

is only truly implemented when there are at least two of the following inputs in any

combination: speech, text, or gesture. The usage of multimodalities such as speech,
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Figure 2-19: Drones

gestures, and haptic feedback can provide a productive, and interface for a media

community for various user groups (customary clients, blind users, visually disabled

users, and physically impaired users). The investigation recommends the framework

does not acknowledge multimodality. The input modalities can be as simple as two

pointing devices, or they may include advanced perception techniques like speech

recognition and machine vision. The simple cases do not require more processing

power than the current graphical user interfaces, but they still provide the user with

more degrees of freedom with two continuous input feeds. The multimodal inputs,

in this case, are two pointing devices providing input simultaneously to a system.

New perception technologies that are based on speech, vision, electrical impulses,

or gestures usually require much more processing power than the current user inter-

faces. The review discusses recently performed research in Multimodal Systems and

classifies them based on Fusion.
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Figure 2-20: EPOC Emotiv

2.2.1 Multimodal Fusion

Multimodal fusion is the implementation of several modalities in an application

that complements the partial input and derives meaningful results. The increasing

number of multiple datasets of information, which are obtained by using different

acquisition methods through peripheral devices, raised an opportunity to analyze

datasets separately and fuse them to derive a common goal. However, until this

decade, the data fusion technique is confined within boundaries of psychometrics

and chemometrics, the communities in which they evolve. There are several surveys

performed by researchers. The first that we explored was published in 2010 [39]. The

analysis classified the various types of fusion: feature level, decision level, and hybrid

level. Methods of multimodal fusion are also discussed, including the rule-based,

classification-based, and estimation-based methods. Another study was performed

in 2015 that emphasized data fusion, including various methods, challenges, and

future prospects [40]. In this study, the researchers focused on multimodality in the

context of multisensory systems, biomedical systems, and environmental studies. In

36



this study, the goal is to classify the work done after 2015 differently from previous

surveys, which is based on classification on the basis of the number of input methods

used.

Recent advancements in technology, including a growing number of domains, leads

to an increased interest in exploiting multimodal fusion efficiently [40]. Three level

of fusion have been discussed, namely feature-level fusion comprising visual features,

text features, audio features, motion features, and metadata. The other two lev-

els of fusion are Decision level multimodal fusion & Hybrid multimodal fusion [39].

Decision-level fusion is based on assigning priority to each modality based on its pre-

vious experience. Hybrid multimodal fusion is a combination of both feature and

decision-level strategies. The methods of multimodal fusion are classified as rule-

based, classification-based, and estimation-based. The rule-based multimodal fusion

is further classified into three categories:

• Linear

• Majority voting

• Custom defined rules

Linear weighted-based fusion technique is easiest, based on a first-come-and-first

serve basis and linearly combining them. Classification-based multimodal fusion

works on assigning linear weight to each modality, for example sum and product,

MAX, MIN, AND, OR, majority voting. The classification-based multimodal fusion

used the Damster-Schafer and Bayesian algorithm. For the third technique, custom-

defined rules, in which the input is either customized per the input needed by the

system or as per the need, there is no exact algorithm defined to accept the input.

Research published in 2002 claims to implement an algorithm that fuses data of a
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complex system, represented as

xi(t) = Aixi(t) +Biui(t) + wi(t)

yi(t) = Cixi(t) + vi(t), (i = 1, 2., n)

where: n = number of subsystems

xi(t) = state of the ith subsystem

ui(t) = control signal on the ith subsystem

yi (t) = output of the ith subsystem

wi(t) = ith subsystem noise

vi (t) = measured noise of the ith subsystem

This algorithm deals with the fusion of data received from two different input

sensors [41]. The experimental results shows among the three performed experiments,

only one would function while the other two would malfunctions.

The multimodal gesture recognition algorithm presents a new multimodal frame-

work based on a multiple hypotheses fusion scheme. In this context, the multimodal

input is provided by multiple users at a time. An increased number of multimodal

inputs brings more challenges to this field. The challenges mentioned in this research

are the detection of meaningful information in audio and visual signals, extraction of

appropriate features, the building of effective classifiers, and the multimodal combina-

tion of multiple information sources. The fusion of multiple inputs can be performed

at early, late, or intermediate data/feature levels. The fusion is also possible at the

stage of the decision after applying independent unimodal models. This research, just

like others we have reviewed before, used Microsoft Kinect, which uses color, depth

and audio signals captured by the sensor. The most common approach observed in

several research papers published from 2014-2016 is that they have used the Microsft

Kinect for recognizing voice and gesture. We believe this is due to the technology’s
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accuracy and precise sensors. The framework talks about accepting multiple gestures

as shown in Figure 2-21 from different users and then choosing the best multi-stream

hypotheses (input) as shown in Figure ?? . It involves multimodal scoring and re-

sorting of hypotheses algorithm to manipulate the best gesture; once the algorithm

provides the output, the gestures are performed on the system [42].

vi =
∑

mεSwmvm,i
s

i = 1 to L where: weights = w(m) are determined experimentally

v(m,i)ŝ = standardized version of modality scores based on Viterbi decoding.

Inputs with the highest score are selected for the next phase of the algorithm,

which is called Parallel Segmental fusion. The segmental parallel fusion algorithm

exploits the modality-specific time boundaries, and it observes the pattern of the

sequence of input as occurred in the previous iteration. It was observed during the

experiment that there is no one-to-one correspondence between segments, and they

are first aligned using dynamic programming. The experimental results presented in

this experiment are 93 percent accurate using Microsoft Kinect. The social signal

interpretation (SSI) framework for multimodal signal processing and recognition in

real-time was implemented in 2013 at the Lab for Human Centered Multimedia at

Augsburg University, Germany. SSI deals with the idea of intuition in next-generation

interfaces in real-time. The research seeks to enhance SSIs C++ API and provide

front-end users with the ability to use text editors backed with an XML interface.

Computer interfaces are based on explicit commands, but the wave of one’s hand or

the tone of one’s voice can sometimes convey more than hundreds of such commands

[43]. These natural inputs are much more capable of informing the system about

the users intuition. To collect and capture human intuition requires a system that is

capable of storing a collection of representative samples. Afterward, the collected data
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is analyzed by a skilled person who works to classify user interaction. To assemble the

components mentioned above, the authors proposed a SSI toolbox. The framework

proposed was part of the EU-funded Motebo project, and it dealt specifically with

physiological data analysis of diabetes patients in an automotive environment using

fusion. The concept is not implemented yet; hence no empirical data was provided.

A survey was performed on Multimodal Interaction at the University of Califor-

nia, Santa Barbara, which discusses the challenges faced while integrating various

modalities into a final output and exploring the feasibility of stage, namely, whether

it should be done in early versus late integration. Richard Bolt’s Put That There

is one of the most significant demonstrations of multimodal systems. The MIT Ar-

chitecture Lab (later to become MIT Media Lab) integrated voice and gesture to

present geospatial data to a user sitting in a chair. Phrases that the geospatial sys-

tem understands include the following: ”create a blue square there”, ”move that

to the right of the green square” by implementing Multimodal System, ”make that

smaller”, and the canonical ”put that there”. Early multimodal systems were thus

focused on geospatial applications.

In 1989, another system named CUBRICON [44] was developed, which enables

users to interact using spoken words, gestures, and natural language, and it displayed

output in the context of map-based tactical mission planning. Later, in 1993, Koons

et al. developed a system that understood speech, gesture, and gaze for a map-

based application. In 1997, another system named QuickSet [44] was designed by

Cohen et al., featuring pen and voice-based navigation intended for a US Marine

Corps training simulator. In the post-WIMP (”windows, icons, menus, and pointer”)

period, the multimodal experience was further enhanced to include sketch and 3-

D, which was implemented in the Butler Interface: interacting with the interface is

like interacting with a human who has the ability to speak, gesture, and use facial

expressions, among other forms of human communication [44], as shown in Figure
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2-38. After 2000, more methods were proposed for interaction that included both

verbal and non-verbal communication. Later, the concept of the Perceptual User

Interface (PUI) was introduced at a workshop, which eventually grew to be one

of the branches of the ACM conference. Input and output modalities, which are

relevant in multimodal interaction and fusion, are further classified into modes and

channels, as shown in Table 8. Their respective contexts and discrete requirements

have distinguished multisensory and multimodal devices.

Figure 2-21: Overview of the Proposed Multimodal Fusion Scheme for Ges-
ture Recognition Based

2.2.2 Multimodal Systems with Fusion

Speech is a rich channel for human-to-human communication and possibilities

to be a rich channel for human-to-machine or computer correspondence. Gestures

supplement our speech in various ways, adding redundancy, emphasis, humor, and

description, and depiction. Multimodal interfaces made from speech and gesture
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Figure 2-22: Bolts Put That There System (Bolt, 1980).

have more prominent expressive power, adaptability, and convenience [45]. With the

aim to improve user interfaces of interactive robots with multimodality using speech

and gestures, various experiments have been performed. The European Union funds

one of the most prominent among them. The research was done by the Comm-Rob

project (http://www.commrob.eu) and partially funded by the European Union. This

research deals with the fusion of modalities and involves ordering a robot to perform

tasks [46]. A Java-based FreeTTS API is used to convert speech into text. The robot

used in the experiment is CommRob. The experimental results shown in the article

depicts the robot as having very high accuracy. In one of the scenarios, it performed

100 percent accurately when the user called out to the robot robot while gesturing

with both hands. They briefly mentioned that their fusion strategy uses a multimodal

grammar that defines which terminal symbols (parts) of a particular command can

be provided by which modality. In the following, the researchers present the fusion
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process with the example of the utterance ”Go there [location].” The example chosen

is a common phrase used in daily life for a complementary usage of speech (Go

there) and gesture ([location] indicated by pointing) to produce meaning. They use

grammar defined by the following production rules. The generated grammar then

produces results by calling a robot function request (goThere(x,y)) [46].

phrase = verb− preposition− location

verb = ”go” : ε : request(goThere(e1))

preposition = ”there” : Gpointing : ε

location = ε : G(pointing) < x, y >: e1 =< x; y >

where,

verb, phrase, and location are non-terminals go, there, e1 (x,y) and epsilon are

terminal

The command goThere(x,y) explained in above grammar is defined by verb, prepo-

sition, and location concatenated together. The resulting meaning is inferred as a

command for instance (goThere(x,y)). The verb is used as ”go” with the preposition

”there” and location ”Gpointing (x,y)” mentioning co-ordinates in the X-Y plane.

The research performed using Comm-Rob uses a fusion model available in another

research [47] published in Vienna, Austria. In this experiment [47], the authors dis-

cussed how to fuse various modalities, but they did not mention explicitly how they

achieved fusion. The speech and gesture input are implemented using natural human

conversation, and gestures are considered as good interaction tools. Kendon has de-

fined gestures as voluntary and expressive actions of the human body used together

with speech and perceived by the participant as a meaningful part of the speech [48].

A device extensively used for HMI for voice and gesture input is Microsoft Kinect.
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The Kinect sensors comprise four different components, which are depth camera,

color camera, microphone array, and tilting mechanism. In the research performed

in 2013 in Switzerland, researchers fused gesture and voice using Microsoft Kinect.

The architecture they utilized includes the Microsoft Kinect API, as shown in Fig-

ure 2-23, and captures the input from the user in the form of gesture and speech,

which is fused later to draw meaningful operations from it. The results mentioned

in the research show the multimodal selection performed better than its unimodal

counterpart for total error versus user, namely, a number of errors performed during

the experiment [49]. The multimodal system has better error handling capacity. The

statistical parameter related to the mean average time of the multimodal selection

calculated is 7.5 while the mean average time of the unimodal selection is 16.7, eval-

uated from Table 2.2. The results demonstrate that the Multimodal input is better

than unimodal regarding the total error.

Figure 2-23: Implementing of Architecture for Integrating Speech and Ges-
ture

Apart from Microsoft Kinect, to improve accuracy, cell phones can be used for au-

tomatic speech recognition and gestures for older adults by using mid-air gesture and
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voice commands to control the mobile device. For example, Apple’s Siri, Microsoft’s

Cortana, and Google Assistant on Android devices can be fused with mid-air gestures.

Though these voice assistants are quite accurate, some advancements should make

them reachable to all segments of the society in terms of phonetics, especially Chi-

nese, the Indian sub-continent, and Southeast Asian population, which pronounces

various alphabets differently. The speech recognition database does not recognize

elderly or shaky voice properly. Consequently, the performance of ASR (automatic

speech recognition) reduces 9-13 percent when used by the elderly [13]. Some possible

causes for such a deviation are alterations in the vocal chords, the vocal cavities, and

the lungs, along with declining cognitive and perceptual abilities.

Table 2.2: Comparison of Unimodal and Multimodal Selection: Total Error
per User

Type 1 2 3 4 5 6 7 8 9 10

Multimodal 10 3 13 4 5 8 4 7 3 18
Unimodal 2 3 22 19 4 51 7 5 20 31

ECOMODE is a new generation of low-power multimodal inetrface for cell phones,

where the collaboration depends on vocal directions and mid-air gestures. ECO-

MODE’s solution depends on two principle advancements namely mid-air gesture

control set and a vision-assisted speech recognition framework. The solution to these

issues, proposed by both these modalities are asynchronous in nature. The ECO-

MODE technology [13] combines the dynamics of the chin and the motion of the

lips to achieve more robustness in the system. The state-of-the-art technology pro-

posed will be designed to work reliably in uncontrolled conditions, particularly under

excessive or low lighting and noisy environments.

Multimodal natural user interaction is performed for multiple applications to find

the work progress concerning multi-application, multimodal interaction utilizing the

Kinect gadget as a two-modular source. The research was carried out in the year
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2012. The basic implementation deals with writing an application that understands

gesture from Microsoft Kinect, along with consuming input through speech. The

system architecture consists of three major components:

1. Receiving data from different modalities.

2. Compiling commands

3. Determining and selecting active apps that accept and perform commands [50]

The application is capable enough of fusing the data and deriving meaning from it.

For example, if the system receives a gesture of Swing Right from the hand along with

a vocal command, then it tries to move the Microsoft PowerPoint presentation to the

next slide. Architecture is shown in Figure 2-24 . The advantage of this architecture is

that it is not confined to a specific application. It could be used with any application

running on a computer. A shortcoming of this research is that empirical data is

not provided to support the claim, and there is no mention of accuracy or failure

rate while using the specific application. The author concluded by referring to the

future design of architecture in such a way that it will support the addition of new

modalities, such as tension, pressure, facial expressions, and so forth.

The multimodal systems developed so far have a huge scope of improvement re-

garding grasping the speech from users of different ethnic groups. Ferreira et al.,

(2015) proposed a concept of socially-inspired rewards for improving the precision

of a system. They are used to quantify reinforcement rewards, which are assigned

to users according to how they have interacted with the robots based on vocal in-

teraction. In this method, a potential-based reward-forming strategy instrument is

joined with a sample proficient reinforcement learning algorithm to offer a princi-

pled structure to adapt to these conceivably chaotic conditions. The experimental

setup comprises two live scenarios in which one is responsible for assisting a tourist
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in a given area called TownInfo, and the other is called the MaRDi dialogue system.

MaRDi is responsible for performing a Pick-Place-Carry task in a human-robot in-

teraction context, for instance, move the blue mug from the living room table to the

kitchen table [51]. The MaRDi experiment involved a tightly coupled 3-D simulation

software known as MORSE, while TownInfo worked as a virtual tour guide. Gesture

and voice input were provided and fused to obtain semantics and match with a static

knowledge base.

The recent article published on multilevel sensor fusion with deep learning deals

with the fusion of information coming from different sensors. The design was im-

plemented to achieve a trade-off between early and late fusion. At each level of

abstraction, the different levels of deep networks are fed to a central neural network,

which combines them into common embedding [52]. The fusion of audio and visual

for evaluating the emotion of a human was performed by Shamim et al (2019), the

results achieved are quite exemplary. The experiment receives accuracy of 96.8 per-

cent, and it is fairly good in comparison with other experiments. CK+ database is

used, the results achieved through FaceNet2ExpNet is good in comparison with deep

sparse autoencoders and DNN using the same database [53].

The data fusion using various sensors and audio devices implemented in a hospital

room to analyze the environment around the patient and His or her various needs.

This experiment is used for academic purposes and provides detail insights for the

College of Nursing students. The various devices used are localization sensors, mi-

crophone array, patient simulator, lapel microphones, and physiological wristbands.

The experiment is quite a niche in its area, and its been implemented quite well for

teamwork and its collaboration for a patient [54].

The application of data fusion techniques applies to all industries. The same idea

is exploited to analyze the learning outcome of a session especially when students are

supposed to take classes online. Their activity is observed throughout the class using
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click-stream data, eye-tracking, electroencephalography (EEG), video, and wristband

data. The accuracy achieved was 94 percent using normalized root mean squared error

implemented using prediction random forest technique [55].

The fusion of multimodal data used for rating prediction framework of consumer

products by combining EEG signals and sentiment analysis of product review. The

experiment uses Emotiv EPOC+ for EEG signal and reviews provided others cus-

tomer in the form of text. The accuracy achieved is 71 percent. This experiment deals

with the crude input provided by Emotiv EPOC and does not get into the minute

details of the wavelet [56].

Chanoh et al. (2018) implemented a fusion technique called the dense map-centric

SLAM method. It is based on combining multiple frames of a handheld LiDAR and

compensate the remaining information to complete the image using Fusion. The

Trajectory error in meters achieved using this technique is 0.076m from a length

of 360 meter input, and the time frame required is 9.1 minutes. The experiment

effectively reduces LiDAR noise by Surfel fusion [57]. In a bigger context, if the

experiment is performed outside, global optimization may not be achieved.

In another experiment, the fusion of images captured by a camera and GPR/en-

coder data that are spatially evenly-spaced are captured and fused for subsurface

transportation and infrastructure inspection. The proposed algorithms need to im-

prove further for accuracy and speed, but in the ideal condition, the accuracy achieved

is 98 percent. The experiment was performed on the bridge deck at the Ernest Lang-

ford architecture center at Texas A&M University to test the system [58].

Supervised learning is used as training data for a map application while capturing

the images from the camera and annotated images. An experiment was performed to

create inexpensive technology for marking road segmentations. It will help to create

rules for maps used in autonomous vehicles. The accuracy achieved in the experiment

is 75.04 percent. Moreover, the experiment does not include semantic classification
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of the road markings to retrieve the rules of the road [59].

For sensing human reliance on texture recognition, an experiment is performed

using GelSight tactile sensor for capturing tactile images, which are further fused with

vision using deep neural networks. In this experiment, the accuracy achieved is 90

percent by implementing a fusion method named Deep Maximum Covariance Analysis

(DMCA). Using the algorithm based on DMCA, it is easy to calculate the perception

performance of either vision or tactile sensing. The limitation of the experiment is

temporal information is not included during the experiments [60].

The application of multimodal fusion was performed in surgery, while the surgeon

is using MYO armband for gestures, and EPOC Emotiv for capturing the EEG signals

and Microsoft Kinect for speech and capturing the body movements. The accuracy

achieved by the experiment is 88 percent. Moreover, the device is too complex; it

would not be easy to perform surgery while having two devices on the body. The

experiment talks about excluding or minimizing the workforce required in the oper-

ation theatre. The idea is to read the surgeon’s mind and provide the surgical tools

required during the surgery. In a typical scenario, there are around ten professionals

required in the operation theatre. If this experiment is implemented in a commercial

environment, we will able to reduce the manpower required at the hospital [61].

The application of a robotic arm is used in calculating the depth estimation of

metallic pieces. The robotic arm developed consists of Microsoft Kinect, lasers and

mono-camera, and the system is designed to find featureless objects such as metallic

plates, metallic connectors, and monochromatic objects. After the experiments per-

formed, 95 percent achieved and 100 percent with the help of a human operator. The

system is further improved by adding utilities and making it viable to be accepted by

the industry [62].

Similarly, the application of multimodality is widely exploited in the health care

industry. In an experiment, video and kinematics data used to perform surgical
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operations. The experiment claims to achieve the accuracy improvement of 15.2

percent using unsupervised trajectory segmentation based on a TCS-K approach. A

SCAE network is used visual feature extraction from the input video [63].

The application of multimodal data fusion can be used in capturing cultural at-

tributes, using a sensor simulator and a signal generator. The experiment claims to

fuse attributes with heterogeneous information. It can learn new user attributes from

distributed data streams such as human behaviors in different situations. The vari-

ous attributes are talkativeness, extroversion, uncertainty, individualism, and personal

distance. The limitation of this experiment is that, it is unable to find information

on the user’s current state (e.g., mood and satisfaction level, etc) [64].

Figure 2-24: Two Applications Multimodal (Gesture-Voice) Example

2.2.2.1 Oculus Rift 3D

The next HCI device that we have explored is Oculus Rift 3-D goggles. The

Oculus Rift goggles as shown in Figure 2-25 are a virtual reality headset developed

and manufactured in 2016. The user pulls a helmet over his head, and suddenly, he

is inside a virtual world that seems completely lifelike. The user can run around,

fight, race, fly, and create ways that gamers (or anyone else, for that matter) have
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never done before. This is a great form to interact with your devices. It absorbs

you into another world, and it makes users interact with the device in ways never

thought of. The VR devices are becoming more and more popular as technology is

advancing so much. Picture a set of ski goggles, but instead of miles of fresh powder,

you are transported into space or underwater. The Rift accomplishes this using a

pair of screens that display two images side by side, one for each eye. A set of lenses

is placed on top of the panels, focusing and reshaping the picture for each eye and

creating a stereoscopic 3-D image. The goggles have embedded sensors that monitor

the wearer’s head motions and adjust the image accordingly. The latest version of the

Oculus Rift is bolstered by an external positional-tracking sensor, which helps track

head movements more accurately. The result is the sensation that you are looking

around a 3D world. Although it is nice to be able to leave reality for a moment, these

goggles are very expensive. However, they are a good way to interact with a device

in a virtual transportation to the unknown. This device is capable of having input

from several modalities, including gesture and speech, simultaneously [65].

Figure 2-25: Oculus Rift 3D
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2.2.3 Multimodal Systems without Fusion

Multimodal systems without fusion are defined as an application with multiples,

but they are not complementing each in the completion of vague of partial inputs. A

robot named Motherese is used to develop multimodal emotional intelligence. In this

study, the authors were attempting to develop the concept of Multimodal Emotional

Intelligence (MEI) [66]. As humans perceive the effect of voice, movement, music, and

point light displays, the MEI robot accepts input in the form of voice and maps it to

other modalities. The MEI robot uses various parameters to understand and express

multimodal emotions that are defined by SIRE (Speed, Intensity, irRegularity, and

Extent). The inputs used in implementing the MEI model were .wav audio files, a

Microsoft Kinect for capturing gestures, and Flute for the music, as shown in Figure

2-26. The generation of emotional expression using MEI is implemented through the

intensity and speed of speech. A voice capture with parameters in the ranges could

be judged as displaying happiness or sadness accordingly.

Figure 2-26: SIRE Paradigm for Experiments across Voice, Gesture and Mu-
sic

The experimental results show the system is not robust enough to comprehend

and analyze all the gestures properly; it sometimes gets confused between anger and

happiness mentioned in Table 2.3; for instance, it has identified Happiness with 62

percent accuracy, whereas it identified sadness, anger, and fear by 0 percent, 19
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percent, and 19 percent accuracy respectively. The researchers claimed that the

system’s accuracy is 63 percent in the first iteration and can be calculated by taking

the mean of the diagonal values of Table 2.3. In the later stages, they reached accuracy

of 72 percent [66] which we believe could be improved by training the system in a

more diversified environment, such as, a twenty-dimensional confusion matrix.

Table 2.3: Confusion Matrix

Detected Happiness Sadness Anger Fear p-value

Happiness 62 0 19 19 ¡0.0001
Sadness 2 90 0 6 ¡0.0001
Anger 55 0 43 2 ¡0.0001
Fear 21 12 12 55 ¡0.0001

Following a similar concept, a multimodal manipulator control interface was de-

signed which uses speech and multi-mouch mesture recognition. The research deals

with managing a robotic arm with touch and gestures [67]. The degree of freedom for

a robotic arm is seven, which is controlled using rotate, open and close commands for

the gripper. Per the claim, the robotic arm could be used by novice users, and they

could operate the robotic arm easily. The interface recognizes five types of touch ges-

tures: slide, open, close, clockwise, and counter-clockwise. In control mode, open and

close are used specifically for the gripper. While the left and right gestures are used to

move gripper left and right respectively, the prototype has been developed using the

seven degrees-of-freedom robotic arm, using a manipulator, which includes a laptop

with a touchscreen [67]. The robotic arm used to have six joints and a gripper. Figure

2-27 illustrates the system, comprises of a laptop with a touchScreen, a CAN-to-USB

adaptor, a USB headset, and the robot with six joints and a gripper. The touch ges-

tures mentioned in Figure 2-27 explain how fingers should be used while performing

slide, open, close, clockwise and counterclockwise operations to control the iARM. T.

Oka et al. (2005) have [67] implemented the multi-touch gesture recognizer, which

detects and understands the gestures on the touchscreen. The system was designed
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for recognizing a aprticular grammar, which includes three rules and thirty-five words.

The interface recognizes multimodal commands using spoken language and only one

contact point over the panel. When the system receives a multimodal command, the

system sends velocity and position commands to the manipulator, moving it to the

defined location using three arms. The pilot study reveals that new users can con-

trol the manipulator [67]. They can easily pick up, rotate, and replace objects using

gesture and multimodal commands. The limitation of the results shows that the user

would not be able to operate effectively in a rotational mode.

Figure 2-27: Hardware Configuration

Krum et al. (2002) implemented a multimodal navigation interface [45] using

speech and gesture for a whole 3-D visualization environment. Virtual Geographic

Information System (VGIS) is used as a multimodal interface, which provides a set of

3-D navigation of the globe. Speech and gesture multimodal control is implemented

in Earth 3D Visualization Environment; research was done in 2002, which aims at

reducing the error rate in multimodality in comparison to unimodal component in-

terfaces. In noisy environments, users can rely on pen and gesture input, while the

differently-abled users can use speech. Those users who do not have a clear accent

or shaky voice will prefer to use gesture and pen. One of the important aspects of

multimodality is that the user may not have peripheral devices, like a mouse or key-

board, to provide the input, and he or she may mostly be occupied using his or her

hands for moving around the display most of the time. It is important to understand

the limitations of multimodal speech and gesture interfaces rather than comparing
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performance with other interfaces. The VGIS systems allow the user to travel from

the orbital perspective of the entire globe, which displays 3-D building models and

sub-meter resolution images of the earths surface. Navigating an extended 3-D space

in VGIS brings more challenges to the applications:

1. Including scale, seven degrees of freedom must be managed.

2. In a virtual environment, good stereo imagery must be maintained.

3. Navigation methods must work at all spatial scales.

Krum et al. (2002) were able to address 1 and 3. The implementation part of

multimodal interfaces used a variety of hardware in a desktop PC, a laptop, and

a Fakespace Virtual Workbench powered by an SGI Onyx2. Voice recognition was

performed by IBM ViaVoice in which speech utterances are converted into text and

sent as commands over the network; sample commands are shown in Table 2.4. A

gesture pendant is worn on the human chest which has an LED, and it captures the

hand movement. The camera has an infrared filter which is having the best feature;

it avoids other light sources from interfering the image. The speech commands, men-

tioned in Table 2.4, are then translated to multimodal interface commands, based on

the mapping, which enables the model to render the requested image, building, etc.

Navigation commands, as shown in Table 2.5, are available to navigate in x and y

directions. The system works in three modes.

These modes are the orbital mode, walk mode, and fly mode. In walk mode users

can constrained to the ground, orbital mode presents a third-person point of view,

which always looks from down to above, and the fly mode presents helicopter-like

flight. The performance of the system is evaluated on the metrics mentioned below.

1. Gesture recognizability and responsiveness: how accurately and quickly the

system recognizes gestures and responds
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Table 2.4: Sample of Recognized Speech Commands

Type Commands

Modes of Navigation Orbit, Fly, walk
Continuous Movement Move In, Out, Forwards, Backwards height

Move Left, Right, Up, Down height
Move Higher, Lower

Discrete Movements Jump Forwards, Backwards height
Jump Left, Right, Up, Down height

Jump Higher, Lower
Direction Turn Left, Right height

Pitch Up, Down
Speed Slower, Faster, Stop

2. Speed: efficient task completion

3. Accuracy: proximity to the desired target

4. Ease of learning: the ability of a novice user to use the technique

5. Ease of use: the cognitive load of the technique from the users point of view

6. User comfort: physical discomfort, simulator sickness

Figure 2-28: Touch Gestures

Table 2.6 summarizes both commands. A novice user must go through the training

of fifteen to twenty minutes to understand the system and learn commands. Recog-

nizability and responsiveness of voice recognition lags were factors in the performance

of the users. Also, users would sometimes have to repeat commands, but overall the
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Table 2.5: Recognized Gestures

Vertical Finger Moving Left: Pan Left
Vertical Finger Moving Right: Pan Right

Left Finger Moving Up: Zoom Out
Left Finger Moving Up: Zoom In
Right Finger Moving Up: Pan Up

Right Finger Moving Down: Pan Down
Open Palm: Stop

system is capable enough to understand most of the times. With regard to speed and

accuracy it took a total of 10.1 minutes to complete one task, which is too long, and

the user had to utter 50 to 100 spoken commands, whereas the mouse interface just

took 3.5 minutes [45]. The accuracy of the system is pretty good with a very few

chances of error, and that too while adjusting more detailed movements. If we talk

about ease of learning, ease of use, and comfort, the system is capable of addressing

all these aspects. Some users prefer keystrokes rather speech and gesture. There are

certain commands which are not present in the system, or if the user provides a wrong

command, the system will prompt ”Command not found.” The designed system has

an ease of use which allows the users to move higher command with an increased

rate of motion but a decreased rate of motion in case of lower motion command,

which could be confusing at times because we are addressing both speeds, up and

down, with a single gesture, just by altering the speech input. The system is not that

comfortable as it fatigues the hands while using the system.

Speech and arm motion were explored in a multimodal context by Bozkurt et al.

(2016) which was discovered in Istanbul, Turkey, in 2016. The goal of the research was

to implement machine learning in multimodality. In virtual environment designs, ges-

ticulation is an important concept introduced in the paper. Gesticulation deals with

adopting and emphasizing the human-centered aspect, which is missing in virtual en-

vironments. The study explored a programmed combination of motion in synchrony
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with speech and joined with nonverbal correspondence segments into virtual char-

acter segments. The study deals with the feature extraction of unimodal clustering

using both semi-supervised and unsupervised forms of clustering. For semi-supervised

learning, a pool of gesture input is provided using the Hidden Markov Model, while

in unsupervised learning, a large-scale multimodal dataset is used [68].

For the unsupervised learning experiment, the researchers made a twenty-minute

recording of five different native users (data are shown in Table 2.7), all of them

being Turkish in origin. The speakers wore a black suit with fifteen color markers

and a microphone, placed close to their mouths, and synchronized with their speech.

During the experiment, the users were not instructed on how to provide the gesture

input specifically. The number of gestures collected by all the users is shown in Table

2.7. These gestures are analyzed by using the semi-supervised learning technique,

which shows that each user performed seven unique gestures.

Further research regarding gesture and voice interaction with interfaces was car-

ried out at the University of Glasgow in 2012 in the research by Rico et al [69] . The

paper dealt with the issues of social acceptability and user perception as they related

to multimodal mobile interaction techniques. The evaluation of social acceptability

explored performance regarding audible and visible interactions, including how the

user perceived the interaction and how comfortable they were while using the device.

The exact scope and definition of user experience are still debatable, but while design-

ing handheld devices, the designer should take into account the individual thoughts of

users and their feelings and reaction to an interface. To understand the users behav-

ior, an experiment was carried out with sixteen gestures and sixteen voice commands.

Voice and gesture were chosen because of their highly visible and audible nature. The

modalities were examined on an individual basis, rather than grouped together. The

gesture was classified into four subcategories, namely, emblematic, device based, ar-

bitrary, and body based. The most widely accepted gestures are deemed emblematic,
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while device-based are those who are involved in directly manipulating a device. Ar-

bitrary gestures are defined as those set of gestures which were defined previously as

emblematic and device based. Body-based gestures are those in which direct physical

contact with the device is not involved. Body-based gestures work with external sen-

sors and capture the bodys movement. The voice commands used classified into three

categories: speech, command, and non-speech. The command is a type of input in

which user says short words, for example, call or lock and so on, while speech input is

short commonly used phrases and non-speech input including noises which are used

in everyday life (the gesture details are mentioned in Table 2.6). The experiment was

carried out such that half of the users could use gestures while the rest were told

to use voice commands. After the experiment, an interview was conducted in which

a worksheet was provided to collect feedback on what the users felt regarding input

preference, locations where these inputs might be used, tasks where these inputs could

be used, and so on. A total of nineteen participants were involved in this study, with

the majority ranging in age from eighteen to twenty-nine, while two local community

members were between the ages of seventy and ninety-five. The results show that

device-based gestures were preferred over other gestures, body-based gestures ranked

second, arbitrary gestures were least acceptable or preferred, and emblematic gestures

were second least acceptable. In speech input, commands are most widely used and

had high acceptability in comparison with speech and non-speech commands. Other

research, this time focusing not on user interaction with multimodal systems but on

how multimodal systems interact with desktop applications, was performed in 2013

[70].

Continuation of a part of previous work, reported by Niloas et al. (2012), the

research behind the 2013 paper, was performed by a joint group of the Applied In-

formatics and Multimedia Department, Greece, the Electronic and Computer En-

gineering Department of Brunel University, UK & Medialogy Section, Copenhagen,
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Table 2.6: Gestures and Voice Commands, by Category

Gesture Category Voice Category
OK Gesture Emblematic Say ”Close” Command

Money Gesture Emblematic Say ”Open” Command
Peace Sign Emblematic Say ”Call” Command
Shrugging Emblematic Say ”Lock” Command

Device Stroke Device-Based Say ”I’m Fine” Voice
Device Shaking Device-Based Say ”Bad Weather” Voice

Device Flick Device-Based Say ”That’s Nice” Voice
Device Rotation Device-Based Say ”So Busy” Voice

Upright Fist Arbitrary Humming Non-speech
Hook Finger Arbitrary Buzzing Non-speech
Sideways Fist Arbitrary Say ”Chh” Non-speech
Open Palm Arbitrary Doo Doo Doo Non-speech

Shoulder Rotation Body-Based Say ”Psst” Non-speech
Wrist Rotation Body-Based Whistling Non-speech
Foot Tapping Body-Based Clicking Non-speech

Denmark. As in the previous paper, the researchers used Microsoft Kinect with mul-

tiple sensors to scan the face completely and precisely. In this paper, a multimodal

natural user interface system, based on real-time audio, video and depth processing,

was demonstrated. To illustrate the concept, they have four possible scenarios:

1. Login via face detection system, which we have seen recently in Windows 10;

2. Application selection via object detection-recognition;

3. Authorization control according to log in and data, and;

4. Application operations.

The input devices consist of an RGB camera, and depth and audio sensors, with

each device working independently without hampering the rest of the system. The

system architecture implements a multimodal system based on natural user inter-

action as shown in Figure 2-29. The multimodal process involves face detection,

objection detection, speech recognition, and gesture recognition. The face detection
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is completed in two steps. first, the joints of the head are tracked by the Microsoft in-

put received. This cropped image does not provide sufficient data for user recognition

since joints are not always stable which leads to the use of a two-way authentication

process. A face detection algorithm is used to extract recognition data from the

cropped image as shown in the Desktop Login Flow Diagram in 2-30. This combined

method is then used in the future, that is, authenticating the user when they attempt

to login on subsequent occasions [50].

Figure 2-29: Simple User Rights Login

There was no empirical data provided, but in all four phases, experiments were

performed, and the user was able to log in, use an application, and perform operations

using Google Chrome and MS Paint [44]. Another niche concept is explored, where

intention recognition is used, a fairly novel idea, which includes intention recognition

in conjunction with multimodal systems in the year 2015 via research at the Electron-

ics and Telecommunications Research Institute in Daejeon, South Korea, resulted in a
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Figure 2-30: Desktop Login Flow Diagram

paper entitled ”Multimodal Data Fusion and Intention Recognition for Horse Riding

Simulators.” The research developed a system that gives a user the feeling of riding

a horse and attempts to teach the user the skill of horseback riding. As it is not

possible or feasible for everyone to learn horseback riding on an actual horse, this

prototype enables users to learn and ride within a simulated environment. The pro-

posed system consists of multiple data acquisition components, a feature extraction

component, and a data fusion component. The system can increase realism for the

user by enabling riders to perform interactions similar to ones they would perform

while riding a horse.

The hardware consists of a multimodal user interface, multiple cameras, micro-

phones, and other sensors to capture the users natural speech and movements. Three

kinds of sensors were used namely contact, auditory, and two visual sensors. One

contact sensor was mounted on the body of the simulator which senses that the user

is riding the horse, while the user wore additional contact sensors. The auditory

sensor was mounted on the helmet of the horse-riding simulator and captured the

voice commands from the user. Two depth-sensing devices were used for capturing

visual information. The contact information captured by the contact sensors included

balanced sitting, drawing or pulling reins, spur, whip, and so forth. Using ”Gesture

and Speech Control for Commanding a Robot Assistant,” the researchers performed
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experiments used a robot called ALBERT [71]. They conducted experiments using

gestures by considering the heuristics of hands by utilizing a webcam available on the

robot. The experimental results show 95 percent correct recognition of hand gestures

displaying yes and no (thumbs up is considered a yes while thumbs down is a no).

Verbal Input ViaVoice, which is a speech recognition software offered by IBM, is used.

This research does not deal with fusion at all; the experiments performed separately.

Table 2.7: Gesture Phrase Distributions Per Recording

Red. Id g1 g2 g3 g4 g5 g6 g7 Total Count Dur (s)
1 52 64 9 22 1 0 19 167 239
2 20 40 1 8 0 17 6 92 167
3 22 49 1 23 10 21 40 166 265
4 53 60 15 20 4 18 20 190 347
5 2 45 1 0 0 0 0 48 155

Total 149 258 27 73 15 56 85 663 1173

In another experiment, intention recognition is the niche concept explored while

using horse-riding simulators. This idea is completely new and has not been discussed

elsewhere in the literature surveyed herein. Intention recognition is implemented by

defining a class that stores every input received and updates the database whenever

it receives a new input. For every action, an intention class is defined. For example,

the balancing intention class captures the actual position of the user, and the exercise

maintenance intention class corresponds to the leg release or bridle release actions.

The main intention class includes strength information expressed through the action

as show in Figure 2-31. Once all the data is collected, it is compared with data from

the intention database. Based on the results, the system recognizes the intention of

the user. The researchers have included multimodal data fusion but have not shared

any empirical data about the accuracy of the system [72].

Building a multimodal human-robot interface, a paper published in 2001, talks

about how to build a system which can accept multimodal inputs. The author talks
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about personal digital assistants as a form of input apart from speech and gesture

[73]. The media center application designed, while considering the requirement of

the differently abled users, and it exploits minimal hardware, namely. PC (Athlon

X2 3800) running the media focus server programming, a cell phone (Nokia N95)

for interfacing with the client and running the customer programming, a remote get

to indicate associate these together, and a superior quality forty-inch advanced TV

showing the UI.

Figure 2-31: Sample Cues of the Multimodal Gesture Challenge 2013 Data
Set

Skubic et al. (2004) designed a system called Spatial Language for Human-Robot

Dialogs which enables the robot to analyze surroundings and managing things around

it. In an example, it has been illustrated that the robot can analyze things around

it and respond verbally where things are located. Spatial language has been used

to define the geographical locations of objects lying in a room. The idea has been

discussed though it has not been implemented and no statistical data is provided in

the paper. An example is illustrated in the dialogue below [74].

1. Human: How many objects do you see?
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2. Robot: I am sensing seven objects.

3. Human: Where is the box?

4. Robot: The box is behind-right of me. The object is close.

Multimodal Media Center Interface based on speech, gestures, and haptic feed-

back was designed in the year 2009 in Finland. The proposed solution consists of a

multimodal media center interface based on speech input and haptic feedback. The

system architecture contains a zoom-enabled, context-focused GUI, tightly coupled

with speech input. The core idea of this research is to make a substitute system for

trivial digital home appliances, such as, remote controls, game controllers, and so on.

The author has argued that many of these interaction devices are not user-friendly. A

classification is made based on the visual ability of the user. For a blind user, speech

and haptic inputs are sufficient for accessing the information, while a zoom-enabled

GUI is proposed for visually impaired (low-vision) users [75]. The application was

developed using C and ran under Windows XP. The application consists of speech

recognition while the mobile device can interpret the gesture, speech, and haptic

feedback through a GUI. The mobile technology was based on a native Symbian ap-

plication while the GUI and main logic used MIDP 2.0. The media center provides an

electronic program guide which enables the user to access complete digital television

content. The system consists of two graphical displays: a television and a mobile

phone display. The first GUI on the television uses a matrix format to display the

interface, explain its usage, and presently available content. One other proposed solu-

tion is to mount a wireless microphone instead of using a mobile phone for physically

challenged users. It is unknown when or if the proposed system will be implemented.

Assistive Robots for Blind Travelers is an ongoing project at the CMU Robotics Lab

in which a robot is attempting to guide visually impaired people through an urban

environment. For individuals with disabilities, transportation remains a major bar-
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rier for living a quality of life. With the advent of robots, it could be argued that

their life would be much easier, especially with the usage of smart buses and shuttles.

The differently abled people can live a healthy life, but they cannot drive, eventually

makes their life tough. The visually-impaired can use the systems based on physical,

verbal and digital input defining the foundation of human-robot interaction. The ob-

jective of this project is to enhance the safety and independence of visually impaired

travelers.

The implementation involves the following three pieces [76]:

1. Rathu Baxter: Rathu Baxter was originally designed to assist human manufac-

turing settings

2. Mobile Robots: Mobile Robots can enhance the navigation experience of blind

and visually impaired travelers in urban environments.

3. NavPal: NavPal is a smartphone app to give navigational assistance to blind

adults as they move around unfamiliar indoor and outdoor environments. As it

is early in the implementation phase, not many details are available.

Human-speech perception is a multimodal process which provides higher knowl-

edge resources such as grammar, semantics, and pragmatics. The information source,

which is used in the presence of noise, is lip-reading or also known as speech-reading.

Automatic speech recognition (ASR) is a very active research area for several decades,

but despite the fact many teams are working on it still would not able to compete

with the performance achieved by human ears: the results achieved by ASR systems

are far lacking from expected results. Most state-of-the-art ASR systems use acoustic

signal only and ignore visual speech cues. Therefore, they are susceptible to acoustic

noise, and all real-world applications are prone to error because of some noise in the

background [77].
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Implementing the concept of multimodal human-robot interaction framework, a

personal robot was designed at Universidad Carlos III de Madrid. The architecture,

used in developing the prototype, is Automatic Deliberative, which incorporates an

emotional control system (ECS). The Automatic Deliberative (AD) architecture is

based on a human psychological model. In the deliberative piece, the robot can do

tasks such as planning and word model management, while the automatic piece per-

tains to reactive and sensory skills. An emotional control system is added to this

Automatic Deliberated Architecture, as shown in Figure 2-32. By using this archi-

tecture, the researchers would be able to train the robot in skills such as greeting,

face recognition, user identification, dialogue, audiovisual interaction, non-verbal vi-

sual expression, and dancing. The system designed has been named Maggie. There

are three modalities that the researchers have proposed for use: visual, voice, and

audio-visual mode.

Visual mode is enabled via the Proxemics and Kinesics expression control; the

voice mode uses the Text to Speech library VTxtAuto [78] (VoiceText 1.0 Type

Library) to generate speech from text. For the audio-visual mode, images and sound

expression input is provided through a tablet PC, and Maggie understands it by

utilizing Pure Data and Graphic Environment for Multimedia (PD-GEM), which

is an open source audiovisual software tool. In this research article, the authors

have not presented any empirical data that quantifies the accuracy of their robot.

As per our understanding, it is just a hypothesis that explores the possibility of

using multimodality in robotics. The proposed framework could perhaps be used to

implement game scenarios and choreography programming.

Multimodal input from a robotic arm is implemented to perform grasping, un-

screwing, and insertion tasks on a Barrett’s robotic arm. The inputs involved are

multimodal sensory signals, and it achieves 80-90 percent while performing the tasks.

The drawback of this system is that it only worked on those trajectories that have
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Figure 2-32: Automatic-Deliberated Architecture

been shown to the robot earlier, which implies it works in a constrained environment

[79].

So far, we have seen various applications of multimodal data fusion, including

automation in health care domain. Another interesting experiment was performed in

Germany in the year 2018. A device is used with sensors to capture multimodal data

for the detection of users motion intention and its assimilation into the exoskeleton

control system while climbing the stairs or walking. The systems claim to achieve the

average accuracy of 92.8 percent using the Hidden Markov Models (HMMs). While

analyzing the system its been observed the placement of IMUs, and force sensors

are used for capturing the data. Moreover, the details of fusion are not explained

explicitly. The algorithm used is unable to predict a deeper analysis of the latencies

for different motion transitions [80].
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The application of multimodal systems varies from assigning tasks in an industrial

environment to help humans in climbing the stairs. Along similar lines, a concept

was introduced called mixed reality, in which Microsoft HoloLens is used to perform

Pick-and-Place tasks on things placed on the ground. The experiment has achieved an

accuracy of 93.92 percent, but it will only perform simple trajectories. The experiment

demonstrated Microsoft HoloLens camera is mapped with the motors of the robotic

arm and perform actions. The idea is not very new, but the implementation needs to

achieve the accuracy for complex trajectories [81].

Table 2.8: Human Sensory Modalities Relevant to Multimodal Fusion

Modality Example
Visual Face Location

Gaze
Facial Expression

Lip Reading
Face-based identity (such as age, sex, race etc.)

Gesture (head/face, hands, body)
Sign Language

Auditory Speech-input
Non-Speech audio

Touch Pressure
Location and selection

Gesture

2.2.3.1 Computer

One device that has continued to be upgraded and improved through the years

since it was first created has been the computer. One can argue when it was first cre-

ated which has led to the discovery of two possible starting points back in 1622 when

William Oughtred created the first blueprints for a very crude-looking computer. One

the other hand, in 1833 and 1871 when Charles Baggage created the first computer

that resembled our modern ones, and it was called the Analytical Engine. With the

computers going as far as the 1600s, it is insane to see how advanced and powerful it
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has become when back then one could only do the simplest of functions or commands

with it. In current times, these have become one our staple points as so many people

use them these days, not just for the latest tech but also for the internet and what

we can do with it. Also, how computers were mainly used for research or creating

new software and not for the personal joy of others till many years later now where

almost an average American family will have some form of a computer as shown in

Figure 2-33 in the household. Then there is the issue of how teachers are using them

to help teach younger students, as since the internet has more to learn whereas it

also has flashy things that can get young ones attention while learning new things.

As to how far we have come with technology, it also comes with new threats in the

digital zone as people can hack into bank account, and steal a whole persons life away

with a single click. The fear of being hacked virus making its way into a computer

or device leads their creators to try to develop the latest software defenses to protect

them. While some can hold hackers and viruses at bay for some time, the other side

is also trying to improve their methods to ruin people’s devices or lives knowing how

addicted modern people are to them [82]. PCs accepts input from various peripheral

devices such as a mouse, keyboard, microphone, touchpad, webcam, and fingerprint

scanner. All of them work independent of each other, which leads to conclude that a

personal computer is a multimodal device without fusion.

2.2.3.2 Cellphone

A very common device in our modern times that has upgraded since the very

simple phones from the 1900s is the cell phone. The very first cell phone was created

for the world in 1983 when the company Motorola launched the DynaTac 800x for

only $4,000 one could get a portable phone with a battery lifespan of 30 minutes,

but back then this was revolutionary as it enabled people to walk and talk without

being limited by a wire or cable. In modern times, the common cell phone has gone
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Figure 2-33: Personal Computer

through so many phases by different companies that it is impossible to list them all,

but nowadays they are mainly known by the best shape to hold in your hand or

pocket, the best camera, the fastest data, and the newest and most trendy phone

in that year. Some people would say that cell phones are in pretty much everyone’s

hands, and the companies do not show any sign of slowing down in their race to

create the best phones and make the most money. The older phone are less fragile,

whereas new phones are prone to corruption or are very fragile. That is one of the

main reasons many Android users do not want to get an iPhone they can break

very easily, and many are just slightly upgraded copies of their past versions. Many

iPhone users love the smooth feeling and fancy covers they can buy for their phones,

but the majority do end of chipping or shattering the screen, which are expensive to

fix [83]. Sadly, many people are easily drawn into the buying circle of these phones

as commercials usually depict some person with the companys latest phone having

a good life or being the center of attention while taking pictures. Too many people,

especially teens, are easily drawn into buying them to follow the trend, and this will

continue until they either run out of money or the company stops producing phones.

Some companies, though, will ask people to take surveys on what they want from
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their phones and try to meet demand so they can profit off them. Surveys indicate

that what people want most from phones: a better look, faster access to internet, a

nicer feel, and more storage. So companies will try to meet demands, and some do a

pretty good job of upgrading their devices: others will keep the same format and make

one minor upgrade and then sell the phones for a higher price. The latest cell phones

in 2019 are capable of accepting a user’s input from touch and speech. The idea of

implementing error-prone device is still far away; on the contrary, most cell phone is

keep track of human activity throughout the day, which is the biggest danger to the

freedom of the user. The google maps application tracks all the location visits, and

even if the user disables them, Google will keep the data for a month before deleting

it. The health app captures the number of steps walked in a day and how many stairs

a person climbs. Moreover, it makes it more susceptible to cyber attacks, not only

in terms of money but also loss of information. Companies advertise their products

based on lifestyle, for example, a user may have an issue with blood pressure; the

person’s cell phone will capture his or her details, and pharmaceutical companies will

start offering insurance and medicines.

2.2.3.3 Apple Smart Watch

The advent of smart watches has brought revolution into our lives; millennials

and teenagers are comfortable using the latest technologies. The Apple smart watch

accepts touch-based input from the user. The new Apple smart watch 2-34 has many

different features. These watches have features such as GPS, a heart sensor, and a

speaker. The smart watch can access applications on your iPhone, such as messages

and the camera. These watches are linked to your iPhone, which makes it convenient

to answer phone calls and messages. Apple watches start at $399. Apple watches

can be put on many different kinds of bands made out of leather, metal, or nylon.

The new Series 4 watches are a little bit larger and a little thinner than the previous
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models. The new Apple watch has up to eighteen hours of battery life and can be

wirelessly charged. These watches are great for notifications and phone calls. The

new version also has Bluetooth built in and can pair with Bluetooth headphones and

play music straight from the watch. Emails, phone calls, and text messages are easy

to respond using this watch. Voice commands are also available, which make sending

messages easy. Alarms can also be set, and the watch rings and vibrates just like a

phone. This watch does it all, but it is a bit pricey for a watch. Siri responds to most

common questions on the watch as well but does take some time to receive info from

the phone. The Series 4 watches can come with either GPS or GPS and cellular data

[84].

Figure 2-34: Apple Smart Watch

2.2.3.4 Microsoft Modern Keyboard with Fingerprint ID

Since we first began using PCs, one of the main ways we could interact with com-

puter and input information through a QWERTY keyboard. We still use QWERTY
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keyboards just as frequently, although there have been some slight changes to them

over time. There are ergonomic keyboards for comfort and prevention of carpal tunnel

for those whose spend a lot of their day typing. Some keyboards connect wirelessly

to your PC, eliminating some of the wire clutter. Backlit keyboards make it easier to

see, especially if you are typing in the evening or where there is low light. One can

get a keyboard that has a trackpad on it, eliminating the need for a mouse. Many of

the keyboards, especially those made by Apple, are very thin. Many keyboards now

have customizable shortcut keys. This Microsoft keyboard as shown i Figure 2-35

stood out more than the others because it has Bluetooth and a USB connection for

recharging the battery. It was designed for comfort; it also has an added feature that

is not often seen. It has biometric security included with a hidden fingerprint scanner

for an extra secure but easy login option if you are running a Windows 10 operating

system on your PC [85].

Figure 2-35: Microsoft Modern Keyboard

2.2.3.5 Autonomous Vehicles

Most of the smart vehicles of this era have capabilities such as communication

with other vehicles, communication with the infrastructure (traffic signals and traffic
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update), GPS, sensor-driven decision making, etc. Connected autonomous vehicles

(also known as smart cars) are driverless, capable of making their own decisions based

on data from various sources (with little or no input from the user) and avoid obstacles

that come in its way without causing any discomfort to the passengers or the other

cars near it. These cars gather data from a myriad of sensors, the internet, roadside

infrastructure, GPS, and so forth, and it is fed to the driving model which makes

crucial driving decisions. Communication plays a significant role here, as most of the

data coming to the smart car are from other smart entities, such as other smart cars

and roadside infrastructure.

The self-driving car has both intrigued and terrified people over the years because

of technical glitches observed and accidents that have happened on the road. If we

move to the history of autonomous vehicles, one the very first autonomous cars was

invented in 1925 when inventor Francis Houdina created a radio-controlled car that

could start, shift gears, and perform most of the functions available that time while

Houdina never touched the wheel. From 1925 to 2019, the progress of self-driving

cars has continued to improve, and many hope they will become a reality without fear

of the AI taking over and running over people. Sadly, in 2014, the first self-driving

car fatality occurred when a Tesla tester died when the car hit an eighteen-wheeler.

This has sparked a huge debate on whether people should continue to fund these

projects or just let them fade away. However, many argue that if given enough time,

the dream of autonomous cars can become a reality and may prove far safer than

regular cars. One argument was how it could help people who were intoxicated and

unable to drive can simply get in, and the vehicle will take them home without fear

of crashing. Many creators and developers of self-driving cars want to keep pushing

people to trust them and help them bring these futuristic vehicles to life. Surprisingly

enough at CES 2018, where they announced the latest cars to be released or teased

for the upcoming years. One company by the of name Nvidia revealed an autonomous
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car named Xavier where they shall incorporate AI into it. Many people who attended

the event were very excited to see the self-driving car quest still going and now looks

very promising with our current technology, many hope for the satisfaction of relaxing

while the car drives them wherever they need to go. The company has also put out

a teaser on how users can program the car either by typing in their destination or

speaking the location to the google maps or any other navigation system. [86]. The

first autonomous vehicle we are going to be discuss is Tesla.

Tesla

Tesla is a self-driving car made by Tesla and Elon Musk. Tesla was originally

founded in 2003 by a group of engineers. Tesla was made not only for revenue purposes

but also to motivate and influence the consumers to use zero-emission cars, which is

a topic of great interest these days. With global warming and rising gas prices, more

people want to transition to electric cars, but Tesla as shown in Figure 2-36 is not only

an electric car but also self-driving. With this type of technology, HCI is inevitable.

Just because the car could drive by itself does not mean a human is not important

during the interaction process. A human is needed to tell the car where needs the

human to pay attention at all times to avoid accidents from happening. Self-driving

cars such as Tesla have multiple sensors place all around the car that help the car

understand the environment so it can steer itself appropriately. The car has a high-

precision, digitally controlled electric braking system, twelve long-range ultrasonic

sensors, a forward-looking camera, and forward radar. The ultrasonic sensors are

placed around the car so they can sense sixteen feet around the car. They sense when

something is too close and also used for lane changes. So far, the interaction is using

the touch screen-based tablet embedded on the dashboard of a smart car. Despite

the evolution of technology, we have not reached a level where a customer can fully

rely on a car; he or she needs to be attentive at all times while using it [87]. The

user has the freedom to operate the car using the traditional way, or it can set on

76



auto-pilot temporarily.

Figure 2-36: Tesla

Pal-V

The Pal-V Liberty is another autonomous vehicle, but what makes this one so

special is that it can fly as well. The interaction with the user is the most important

part, which we will discuss apart from other features. The vehicle is unique because

it has two separate engines for flight and another for driving. This vehicle is capable

of going to a maximum speed of 100 mph and takes ten minutes to transform into

the driving mode or flying mode. When the Pal-V Liberty as shown in Figure 2-37

is in flight mode, it could reach speeds of 112 mph with a maximum range of 817

miles. When the cae is in drive mode, it is 4 meters long, 2 meters wide, and 1.7

meters high. In flight mode, the vehicle measures 6.1 meters long, 2 meters wide, and

3.2 meters high. These vehicles cost between $399,000 to $599,000 and will require a

pilot’s license to own or drive. Because someone would need a pilot’s license to fly, it

makes it more complicated not only as a product but also legally. The responsibility

and complexity of not only driving but having to fly a vehicle such as this one requires
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a human to have full focus and attention to operate it, especially when in flight mode.

The Pal-V Liberty is made of hand-laid carbon fiber parts, cockpit leather, lightweight

aviation aluminum, and an electrical system. It also runs on premium e10 gasoline

and gets thity-one miles per gallon in car mode and 6-9 miles per gallon while in

the air. The Pal-V liberty was in the works since 2008, with a successful prototype

completed in 2009 and the second prototype developed in 2010. It was shown at the

Geneva Motor show in March 2018. A basic flying car requires the person at the

controls to be both a qualified driver and aircraft pilot. This is impractical for the

majority of people, and so wider adoption will require computer systems to simplify

piloting. These include aircraft maneuvering, navigation, and emergency procedures,

all in potentially crowded airspace. Fly-by-wire computers can also make up for any

deficiencies in flight dynamics, such as stability. A practical flying car may need to

be a fully autonomous vehicle in which people are present only as passengers [88].

Figure 2-37: Pal-V Liberty

2.3 Discussion

The use of technology is an essential part of our lives. The daily use of devices

brings challenges as technology is evolving. There are many instances when systems

capable of handling speech input sometimes fail when the user needs technology the

most. In such scenarios, the use of highly sophisticated gadgets become a nightmare

for the user. There are two broad categories in which users are classified: first, the
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millennials, for the most part, who are well versed in technology, and second, the

senior citizens who are not well versed in technology. The second category finds

themselves in huge trouble if provided with technology, and they have to rely on it

completely. The use of voice assistants has increased significantly during the last

few years, such as Amazon Alexa, Apple’s Siri, Google Assistant, and Cortana from

Microsoft. The big IT companies are trying their best to overcome the problem

recognizing the voice commands inaccurately. Moreover, other modalities such as

touch and gesture come with their own set of challenges and a cognitive load to

learn the systems. The need of this hour is to design a robus system and capable of

managing the input from various users. Here are a few challenges that need to be

considered while designing the multimodal system.

2.4 Challenges while designing Multimodal Sys-

tems

Designing a multimodal systems is always challenging. The designer should have

a broad picture of what kind of requirement they are going to address and who is the

user base. Oviatts Ten Myths of Multimodal Interaction published in 1999 provide

useful insights for those planning to develop a multimodal system.

1. If you develop a multimodal system, the users will interact multimodally. Well-

designed systems are set up to allow users to choose their preferred modality

for system interaction, which may be unimodal.

2. Multimodal input involves simultaneous signals. Multimodal systems should be

designed to allow for sequential use of modalities rather than simultaneous use.

3. Speech and pointing is the dominant multimodal integration pattern.
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4. Multimodal integration involves redundancy of content between modes. Usage

of varying inputs is preferred over using a single modality again and again.

5. Enhanced efficiency is the main advantage of multimodal systems. However,

multimodality does not necessarily increase efficiency; it may or may not. They

are designed to provide increased flexibility and increased user satisfaction.

6. Multimodal integration involves redundancy of content between modes.

7. Individual error-prone recognition technologies combine multimodalities to pro-

duce even greater unreliability.

8. All users multimodal commands are integrated uniformly.

9. Different input modes can transmit comparable content.

10. Enhanced efficiency is the main advantage of multimodal systems.

2.5 Proposed Multimodal System Design guide-

lines

Reeves et al. (2004) proposed the guidelines for multimodal systems. Here are

the mentioned proposed guidelines [89]:

1. Multimodal systems should be designed while keeping in mind the broadest

environment a person could encounter while using the system, for example, use

in a private office vs. while driving a car.

2. The designer should consider privacy issues while accessing the system. For

example, perhaps a person should be prevented from using speech/voice input

while using the system publicly as doing so could lead to a breach of personal

information.
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3. Maximize human cognitive and physical abilities. The multimodal interface

should be designed in such a manner as to be easily understood by the user.

4. Modalities should be integrated in a manner compatible with user preference.

For example, users have provided input via speech, they should have the option

to receive the output via whatever modality they wish and not just speech. The

system should be able to be customize according to user needs.

5. The multimodal system should adapt to the needs and abilities of the user.

Individual differences such as age, preferences, pronunciation, sensory skills,

and so forth should all be accounted for while designing the system.

6. The output should be consistent and prompt.

7. The system should provide a robust error-handling mechanism.
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Table 2.9: Comparison of Multimodal Technologies

Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Michela ECOMODE Haptic X Samsung Galaxy

S5, iPad mini, and

a Samsung Galaxy

Tab S 10.5

X No Empiri-

cal Data

Touch screen

devices used for

Elderly people

The experi-

ments do not

yield results

in low lighting

conditions.

Ian Baxter

Research

Robot

Gesture X Microsoft Kinect,

Baxter robot, PR2

(Kodiak)

X 84 - 89% X Detect things

which are in

front of the

robot only.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Natalia ModDrop Gesture,

Speech

Y Audio and Video

files

Y 96.77% Multimodal

deep learn-

ing used for

fusing two in-

puts voice and

gesture.

X

Harold Donaxi Gesture X The robot, and Mi-

crosoft Kinect 2

X 2000 it-

eration

required for

training

Omni direc-

tional naviga-

tion system

Extensive

training is

required be-

fore using the

system.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Finale MIT’s

Human-

Robot

Interaction

Speech X Speech Recognizer

(ASR), Natural

language (NL)

parser, and a di-

alogue manager

(DM)

X 76% Human speech

implemented

on a wheelchair

Only accepts

speech

Mathieu CommRob Speech,

Gesture

Y Java-based

FreeTTS API,

CommRob Robot

Late Fu-

sion

100%

(under

restricted

conditions)

Speech and

Gesture are

combined to

derive moving

of robot at

(x,y) coordi-

nates

The experi-

ment did not

mention explic-

itly how they

have achieved

fusion.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Cristian Modeling of

interaction

design

Gesture X UI based Modeling

tool

X A satis-

factory

response

in the 4th

iteration

X X

Haleh Combining

Voice and

Gesture

Speech,

Gesture

Y Microsoft Kinect

API

Y 99.17% Multimodal

Systems proves

to be better

than Unimodal

Systems

Hard to recog-

nize the sound,

not reliable and

the expeiment

can be tiring

while using

both hands and

speech
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Nikolas Natural

user inter-

action

Speech,

Gesture

Y Microsoft Kinect

with RGB, depth

and audio signal.

Y No Empiri-

cal Data

Proposed archi-

tecture could

be used with

any application

running on

a computer.

Used for mov-

ing slides in

PowerPoint

Does not have

the ability to

understand the

usage of gram-

mar to under-

stand the in-

put.86



Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Emanuel MaRDi Di-

alogue sys-

tem

Speech,

Gesture

Y 3-D simulation

software MORSE,

KTD-Q algorithms

Y 93.73% The Pick-

Place-Carry

task in a

Human-Robot

Interaction

Interactions

take place in

a simulated

3-D environ-

ment where the

user appraisal

acquisition is

simplified

Emanuel TownInfo Speech,

Gesture

Y Simulator using

KTD-Q algorithm

Y 95% A virtual tour

guide, better

robustness to

noisy condi-

tions in terms

of semantic

input error rate

87



Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Angelica Motherese Speech,

Gesture,

and input

file

Y Multimodal Emo-

tional Intelligence

(MEI) with SIRE

input (Speed,

Intensity, irRegu-

larity, and Extent).

X 72% The Motherese

robot works

with these

types of in-

put which are

.wav, Vocaloid,

Kinect, NAO,

Keepon, Flute,

Theremin

Accuracy will

be improved

by training

the system

in a more

diversified envi-

ronment, e.g., a

20-dimensional

confusion

matrix.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Tetsushi Manipulator

Control In-

terface

Speech,

Gesture

Y 7-DOF manipula-

tor (iARM), laptop

with a Touch

Screen, a CAN-to-

USB adaptor, a

USB headset

X No Empiri-

cal Data

The robot can

easily pick

up, rotate

and replace

objects using

gesture and

multimodal

commands

A user would

not be able

to operate

effectively in

a rotational

mode

David Navigation

interface

Speech,

Gesture

Y Virtual Geographic

Information Sys-

tem (VGIS) and

3-D visualization

environment

X 10.1 min-

utes for 100

commands

3D navigation

of the globe.

Users who do

not have a clear

accent will pre-

fer to use ges-

ture and pen.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Elif Arm Mo-

tion for

Prosody-

Driven

Synthesis

Speech,

Gesture

Y Hidden Markov

Model

X 67.80% Used subjec-

tive evaluation

methods to

set the system

parameters

and to assess

animation

quality over

two different

datasets.

Doesnt include

semantic anal-

ysis of speech,

synthesis of

head motion

and lip-sync,

which would

help to achieve

more realis-

tic animation

results.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Julie Gesture

and voice

prototyp-

ing

Speech,

Gesture

Y Social acceptability

and User percep-

tion

X No Empiri-

cal Data

Performance

of audible and

visible interac-

tions, including

how the user

perceived the

interaction and

how comfort-

able they were

while using the

device.

Results are

not provided

in Empirical

form. A figure

is shown with

dots showing

the under-

standing of

input from

various users.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Nikolas Multimodal

desktop in-

teraction

Speech,

Gesture

Y Microsoft Kinect,

Microsoft Speech

Recognition SDK.

X No Empiri-

cal Data

1. Login via

face detection

system, which

we have seen

recently in

Windows 10

2) Applica-

tion selection

via object

detection-

recognition 3)

Authorization

control accord-

ing to log in

and data, and

4) Application

operations

The research

idea is good,

but results

are collected

in terms of

successful at-

tempts to open

applications on

a computer.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Rogalla ALBERT Speech,

Gesture

Y ViaVoice X 95% correct

recognition

The experiment

uses heuristics

of hands by uti-

lizing a webcam

available on the

robot

Research does

not deal with

fusion at all,

both the exper-

iments being

performed

separately

SangseungHorse Rid-

ing Simula-

tors

Speech,

Gesture,

Haptic

Y Camera, micro-

phones and other

sensors.

X No Empiri-

cal Data

Replicate the

mechanistic

movements of

realistic riding

motions

Feature extrac-

tion, data fu-

sion, and in-

tention classifi-

cation is not ex-

plained explic-

itly.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Dennis Human-

robot

Interface

Speech,

Gesture

Y PC (Athlon X2

3800), Server pro-

gramming, Nokia

N95 and 40” ad-

vanced TV showing

the UI

X No Empiri-

cal Data

Works for blind

users, visually

disabled users,

and physically

impaired users.

The robot re-

quires specific

input speech

command to

initiate the

conversation.

Moreover, the

robot doesnt

work in noisy

environments.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Marjorie Spatial

Language

for Human-

Robot

Dialogs

Speech,

Gesture

Y Personal Digital

Assistant, wireless

microphone, inter-

acts with a robot

via a touch screen

and speech.

X No Empiri-

cal Data

The robot

will provide

detailed spatial

descriptions.

Does not facili-

tate commands

concerning

objects in the

environment,

e.g., Move for-

ward until the

pillar is behind

you.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Markku Interface

Based on

Speech,

Gestures,

and Haptic

Feedback

Speech,

Gestures,

Haptic

Y PC, the Athlon X2

3800, Nokia N95,

40 high definition

television, and a

wireless connector.

The application

was developed

using # and ran

under Windows

XP.

X Perceived

quality of

the speech

input sur-

passed the

upper limit

of user ex-

pectations

Accepts speech

input and the

response was

good.

The interface

would work

for restricted

input.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Stphane Audio-

Visual

Speech

Modeling

Audio-

Visual,

Speech

Y M2VTS audio-

visual database

X 95.80% The database

used is ex-

tensive with

samples col-

lected from 37

different users

The exper-

iment deals

with only

Speech input.

No other input

from the user is

accepted.

Chieh Encoder-

Camera-

Ground

Penetrat-

ing Radar

Tri-Sensor

Mapping

Images and

GPR/en-

coder data

which are

spatially

evenly-

spaced

Y Camera, a GPR

module which in-

cludes control unit,

wheel encoder, and

GPR antenna.

Y 98% Developed

a encoder-

camera-GPR

tri-sensor

transportation

infrastructure

inspection

sensing suite.

Need to im-

prove further

speed and

accuracy of

the proposed

algorithm.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Tom Road

Marking

Segmen-

tation via

Weakly-

Supervised

Annota-

tions

Camera

captures

Images

with an-

notated

images.

Y Camera captured

images with anno-

tated images in a

weakly-supervised

way. Experiment

performed on Ox-

ford RobotCar

dataset.

Y 75.04% It has inexpen-

sive manual

labelling by

exploiting sen-

sor modalities.

Useful in cre-

ating maps for

autonomous

vehicles.

The exper-

iment does

not include

semantic classi-

fication of the

road markings

to retrieve the

rules of the

road.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Shan Vision and

Tactile

Sensing

for Cloth

Texture

Recogni-

tion

Tactile im-

ages and vi-

sion

Y GelSight sensor

used for capturing

camera images and

tactile data. Deep

Maximum Co-

variance Analysis

(DMCA) algorithm

is implemented

Y 90% Calculated per-

ception perfor-

mance of either

vision or tactile

sensing.

Temporal in-

formation is

not included

during the

experiments.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Tian Prediction

with Spik-

ing Neural

Networks

for Human-

Robot

Collabora-

tion

Gesture,

EEG

Signals,

Speech

Y MYO armband,

Emotiv EPOC,

Microsoft Kinect

Y 88% The experi-

ment exploits

unique imple-

mentation of

Myo armband,

Kinect and

EPOC Emo-

tiv devices in

surgery.

Does not

include contex-

tual informa-

tion to improve

early prediction

capability e.g.,

the current

status of task

progress
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Zhe Manipulation

Graphs

from

Demon-

strations

Using Mul-

timodal

Sensory

Signals

Multimodal

Sensory

Signals

Y Barrett arm and

hand equipped with

two BioTacs

X 80 - 90% Able to per-

form grasping,

unscrewing,

and insertion

tasks on a

Barrett’s arm.

The robotic

arm didnt work

in those trajec-

tories which are

demonstrated

earlier.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Jonas Multi-

Modal

Sensor

Data for

Lower

Limb Ex-

oskeletons

Multi-

modal

sensor data

Y Hidden Markov

Models (HMMs)

X 92.80% Used for classi-

fication of mo-

tion patterns at

each time step

while climbing

stairs.

Unable to con-

duct a deeper

analysis of

the latencies

for different

motion transi-

tions.

102



Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Castro Tracking-

based

Depth Es-

timation

of Metallic

Pieces for

Robotic

Guidance

Image,

Lasers

Y Kinect, Lasers,

mono-camera

Y 95% Performs ob-

ject recognition

and tracking

system in real

time

The model

developed is

not used in

any applica-

tion; it just

a prototype.

To increase

the usability,

new utilities

needs to be

incorporated.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Dennis Multimodal

Head-

ing and

Pointing

Gestures

for Co-

Located

Mixed

Reality

Human-

Robot

Interaction

Speech and

Gesture

Y Mixed reality inter-

face implemented

using Microsoft

HoloLens

X 93.92% The interface is

capable of guid-

ing a robotic

arm to picks

things

Simple op-

eration are

performed,

unable to in-

vestigate if

more complex

pick poses are

requested.
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Zhenzhou Unsupervised

Trajectory

Segmenta-

tion and

Promoting

of Multi-

Modal

Surgical

Demonstra-

tions

Video and

Kinematic

data

Y Unsupervised deep

learning network,

stacking convolu-

tional auto-encoder

is used.

Y TSC-K is

the biggest

beneficiary

with the

improve-

ment of

15.2% on

average

The exper-

iment was

designed to

accomplish

tasks like nee-

dle passing and

suturing during

the surgery.

X
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Author Experiment Modality

Used

Multimodal

Input

Technology Used Fusion Accuracy

Claimed

Features Drawback

Lus Extended

Bayesian

User Model

(BUM) for

Capturing

Cultural

Attributes

Sensor sim-

ulator and

Signal gen-

erator

Y Experiment cap-

ture a unified

representation of

cultural attributes

from heterogeneous

information.

Y The frame-

work has a

significant

impact on

classifier

precision

over time,

with an

overall im-

provement

of 27.88%.

Ability to learn

user attributes

from a dis-

tributed data

stream, with

increasing per-

formance over

time.

Unable to find

information on

the user’s cur-

rent state, such

as their mood,

satisfaction

level, etc.
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Later in the research, the author discussed multimodal integration and whether it

should be performed early or late in the development process. There is no clear-cut

answer given to this issue. It varies from system to system. But the authors also

presented a big picture which explains what the output of multimodal integration

should look like. The system should be able to manage discrete events, loops, and

handlers timely and in ways that better match the human interaction the system is

intended to support.

2.6 Future Idea for Human-Machine Interaction

As the field is evolving day by day, the researchers are working hard to implement a

robust and foolproof solution for daily use. In the era of the Internet of Things (IoT),

most of the devices are connected with the network, including household devices such

as refrigerators, fans, lights, and even our garages. We believe that User Interface

will fundamentally change. The design of an ideal system is not achieved yet, it is

because the cost of building a very high precision device is very high. Moreover even

the expensive components have probability of error percentage in every device.

1. Hardware equipment is easier to develop and manufacture thanks to innovations

like 3-D printers or Arduino.

2. The cost of equipment is dropping significantly on account of the mass adoption

of consumer gadgets like cell phones.

3. Technologies like sensors or WiFi chips turn into a generally accessible and

cheap commodity and are easy to integrate.

4. As the equipment is becoming easier to develop and manufacture, the focus

will move far from innovation and will concentrate more on design or problem

solving, the same way it happened in software thanks to the growth of APIs.

107



5. Software today is built with fifty years of oblivious assumptions of a work tool

as a primary concern. There are innovators, particularly from the design world,

who get through this presumption and make new UIs [90].

The ideal system designed should consist of the following characteristics:

1. Decentralized: The user interfaces like the light switch shifted onto the smart

phone and will now shift away again into smart light switches, speech, or com-

pletely new forms like eye tracking.

2. Specific: Interfaces will move far from a nonexclusive screen towards increas-

ingly explicit interfaces that complete only a few things and that are explicitly

intended for that utilization case. This implies explicit interfaces for designers

that have attention on haptics, interfaces for elderly people that have an em-

phasis on straightforwardness and unambiguity, or interfaces for children will

have an emphasis on playfulness.

3. Human-centered: Graphical UIs have numerous limitations. They are not ac-

cessible to visually impaired or disabled people. They utilize the visual sense

and a reduced version of haptics. There can be straining to affect our hand, neck

or eyes. Future interfaces will be designed with human science and psychology

in mind. It will incorporate more of our human senses.

4. Instant: Putting numerous applications on one device implies that the user will

need to deal with menus. With decentralized, explicit interfaces, this will be

obsolete. Things will be instant again; the question is not whether an action

takes 1, 3, or 5 stages. The question will be if an activity should be possible

in a split second or not. This additionally diminishes our cognitive load, which

enables us to concentrate on the task at hand or the person in front of us.
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5. Simple: Future interfaces will disregard the assumed integration with graphical

UI and will concentrate on making things less difficult than existing arrange-

ments.

6. Augmented and virtual: The digital and physical will mix together. Whether

through augmented reality glasses or not, the user should have the capacity to

peruse setting data about a broken device, not through a cell phone but rather

specifically in the surrounding ”space” of the object.

7. Passive: An action of a device should be fed as an input to the other. Passive

devices are already a major trend in HCI. The classic example of such an ap-

plication would be turning on the AC of your home when the headlights are

approaching the garage [90].

These are few features that a multimodal HCI device must comprise to become

successful in the market and accepted by the masses. In the recent past, there are

several attempts by companies like which failed deliberately. The Google Glass is one

such fine example which became a burden on the user and failed miserably, and the

users would not able to leverage the functionalities despite investing a huge chunk of

money. Another big factor that also plays a vital role in a device being accepted by

a wide range of people is its ”cost”.
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Figure 2-38: Bolts Put That There System (Bolt, 1980).
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Chapter 3

Decision Level Multimodal data

fusion

3.1 Introduction

Interaction with machines and robots has been a result of the industrial revolu-

tion since the last century. The fourth industrial revolution comprises technologies

that fuse the physical, digital, and biological worlds, and it affects all disciplines,

economies, and industries [91]. It emphasizes designing robots capable of performing

tasks while accepting inputs from different modalities such as speech, gestures, and

the utilization of peripheral devices. The mode of interaction is selected according to

the conditions prevailing in the environment. For example, in a noisy environment

of a manufacturing plant, a robot may be operated through gestures and peripheral

devices excluding speech or by using a combination of available modalities. Robots

are an integral part of our daily lives; they have been widely used in the automotive,

health care, manufacturing, and aerospace industries. The manufacturing industry

has been shifting to automate processes, as a way of improving quality, reducing

human intervention which is more error prone, and, perhaps the largest advantage,

relates to the benefits from the lack of fatigue a robot experiences relative to a hu-
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man worker. This research addresses the challenge faced by users required to control

a robot using a set of dedicated controls. In this scenario, we are fusing electromyo-

graphy data captured from human limbs with human speech. A robot is capable of

performing predefined tasks, for example, holding a spare part from a specific location

in a 3D environment and inserting it into a machine at a specific location. Previously,

this task was performed by robots using a single modality, that is, controlled through

a joystick or a programmable board attached to a robot. Now we are trying to make

the system more accurate by utilizing a fusion of modalities. The design will incor-

porate voice commands along with captured muscle movements interpreted via EMG

data from the arm-band. The rest of this chpater is organized as follows: Section 2

discusses related work involving multimodal systems with their applications. Section

3, Methodology, addresses both the hardware and the software used, Section 4 pro-

vides the results of data fusion based on the experiments performed. Finally, Section

5 discusses various new avenues of research, as well as emerging trends in data fusion

using EMG.

3.2 Related Work

New technology often brings with it the idea that machines are not only to be

used for the specific predefined purpose, but they can also require the interaction

with humans [92]. Human-robot communication is possible through two methods:

• Accepting user input from peripheral devices which are independent of each

other, and

• Accepting user input through different modalities and fusing them as a way of

obtaining the semantics associated with the actions of the user.

The second approach is the focus of this paper. In 2005, a system was designed

112



that accepts input in the form of speech, keystrokes, and gestures. This system was

able to resolve ambiguous inputs and prioritize them [44]. Fusion of multiple inputs is

used in several areas of application, and its scope is not only confined to robots, but it

also reaches to applications such as authentication systems where fusion could be uti-

lized by, for instance, combining voice recognition and facial detection. A system was

designed in 1999 that was able to authenticate a user by comparing inputs against a

pre-populated database [93]. The latest version of Microsoft Windows, Windows 10,

is capable of authenticating users through a webcam attached to the computer system

[94], though it is a unimodal system that could be enhanced with more modalities

to improve its accuracy and make it less vulnerable to outside attacks or spoofing.

The use of EMG data in fusion is rarely encountered; one such application was im-

plemented to control electronic musical devices through EMG and relative position

sensing [95]. The idea of multimodal data fusion has been implemented in industrial

robots using the Microsoft Kinect and sensor hardware called Asus Xtion Monitor

by capturing hand movements detected by two Leap Motion sensors and performing

the resulting mapped actions on a robotic arm [96]. Human-robot interaction during

the last five years has largely been performed using the Microsoft Kinect; very few

multimodal system designs have used EMG data to fuse with speech, text, and other

modalities. The Microsft Kinect is capable of capturing both voice and gestures only

on a standalone basis. Moreover, there is no ability to capture EMG data of human

limbs using the Kinect. This limitation led us to another niche technology called

the MYO sensor arm-band. We have decided to use it as one of the modalities and

perform fusion to enhance both its accuracy and performance. The MYO arm-band

being an open source software provides avenues to customize gesture and use them

in devices used in daily life, for example, controlling a wheel-chair, turning a door

knob, and so on [97]. The results achieved with other experiments to evaluate the

accuracy of MYO comes out to 87.8 to 89.38 percent which provides us avenues for
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improvement [98]. The MYO band is used in an experiment both to perform searches

and select operations on a computer, and the average score for evaluation is analyzed.

The researchers conclude that after adapting the limbs temperature the MYO band

constantly performs with a similar number of scores [99]. It is our belief that is this

the first research work undertaken that uses EMG data to capture gestures using

MYO armband sensors for multimodal data fusion.

3.3 Methodology

The robots first introduced to the market were relatively simple most of them

required a teaching phase and programming. More recently, robots have become

dynamic, sophisticated, and capable of much more than before [100]. Along with

this sophistication came increasing demands to perform complex tasks which require

both accuracy and precision. The standalone robot in the experiment introduced in

this research showed ample room for improvement in both robustness and accuracy.

Hence it was decided to improve the accuracy of a robotic arm through the use of

multi-modal data fusion. The experiment emphasizes the conversion of input data

through different channels into a single format, which is understood by the robotic

arm through mediation. The input modalities used are speech and gesture.

3.3.1 Hardware

The system designed for the experiment described in this research is composed

of the following components: an Arduino based robotic arm and a MYO armband.

These devices are illustrated in Figure 3-1 and Figure 3-2 respectively. The robotic

arm used is manufactured by Trossen Robotics. The robot used in the experiment

described here is called RobotGeek Snapper Arduino Robotic Arm, and it contains five

servo motors. The robotic arm is controlled by an electromyography data-based arm-
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band called a MYO. Figure 3-1 depicts the usage of the MYO band from which data

is captured and manipulated to perform actions on various Arduino-based devices.

The armband is capable of capturing five gestures: fist, wave left, wave right, double

tap, and fingers spread, as shown in Figure 3. This arm band provides the ability

to customize an open library and perform actions according to the user’s need. The

robotic arm used comprises Arduino Duemilanove and Diecimila boards for accepting

input through USB. The Arduino board is connected to the robot with pins defined for

each specific motor, as shown in Figure 3-2. A high-precision wireless H800 headset

from Logitech is used for capturing the speech input.

Figure 3-1: MYO Arm Band
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Figure 3-2: Arduino based robotic arm

3.3.2 Software

The software is implemented using C# and C++ programming languages. C++

is used to implement the MYO API while C is used for providing speech input using

Microsofts speech engine. Initially, the robotic arm was operated using gestures only.

The MYO armband was used to support the communication with the robot. It was

concluded from experimental results that the precision of the armband was not very

high. To improve the accuracy of the commands communicated fusion of the input

data was introduced. The speech modality was then combined with the set of gestures

previously defined. The MYO band provides an API to control the Arduino board,

which is connected to the robotic arm, as shown in Figure 3-2. The Arduino board

consists of fourteen pins and provides the capability to connect each servo motor of

the robotic arm.
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3.3.3 Experimental Setup

The experimental system is designed using a client-server paradigm. The MYO

armband consists of eight sensors, which capture the muscle movement. Such sensors

compare and match hand movements to gestures defined in MYO. For example, the

Wave Out gesture listed in Table 3.2 is performed by moving the hand in a vertical

orientation toward the right, as shown in the third gesture of Figure 3-3. The MYO

program is functioning as the server while the Microsoft speech program is designed

as the client. As mentioned above, the accuracy of capturing gestures is not very

high, which tends to result in matching the hand movement to the wrong gesture, for

instance, Wave Out may be captured as Wave In. Moreover, the band sometimes fails

to capture a gesture entirely. Both of these cases are considered errors. The MYO

API allows it to be customized according to the project needs, and the prototype

has thus implemented threads responsible for listening to gestures. If a gesture is

missed by the band, voice commands compensate for the missed input through human

speech. Processing of speech input is implemented in a client component, which sends

commands to the server (MYO API). Priority is given to the MYO band, but in the

case of an error, speech recognition activates and helps in improving the accuracy of

controlling the robot. Fusion is thus performed in the order of priority. Gestures are

given the highest priority. In case of a failure to capture the input, voice commands are

used to compensate and serve as the only input. Priority-based fusion is used in other

domains, including medical systems, and tends to improve its accuracy significantly

[101].

The speech is fused with EMG input received from MYO, which enables the robot

to work precisely according to the user’s input command. When the user performs

gestures using his or her arm, the input message is transmitted from the MYO band

to the Arduino, and as a result, it moves the specific servo motor. The fused input sets
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Figure 3-3: Gestures available with MYO band

the corresponding Arduino pin to high, namely, 1, which then moves the robot. In

the prototype constructed, five different Arduino pins were linked to various gestures,

as shown in Table 3.1. Through the combination of gestures and speech, users should

be able to control the robotic arm precisely and accurately. The results are shown in

the next section.

Table 3.1: Mapping of Gestures with Arduino Boards

Fist Pin 3
Wave In Pin 4

Wave Out Pin 5
Finger Spread Pin 9
Double Tap Pin 10

Table 3.2: Preliminary results for of Muscle sensor MYO band

Gesture Wrong/Missed gesture % Correct %
Wave Out 9.5 90.5
Wave In 9.1 90.9

Fist 13.6 86.4
Double Tap 20.6 79.4

Finger Spread 14.5 85.5
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3.4 Results and Discussion

A performance evaluation was executed to quantify how accurate the modalities

are individually, and thus we tested them separately. The Microsoft Speech API was

tested using the simple speech commands such as, for example, move right, move left

and so on. The complete list of speech commands is illustrated in Table 3.3. The

experimental results show the scope of improvement as the error for the speech API

lies between 8.9 and 34.2 percent. Similarly, the MYO band results were captured to

quantify accuracy and to find the scope of improvement [6].. The preliminary results

have shown the MYO band has a scope of improvement. The error rate lies between

9.1 and 20.6 percent. The data has been collected by experimenting ten times, with

each experiment having one hundered gestures performed and then calculating the

average percentages shown in 3.2. An error for the experiment occurs when a gesture

is either missed or captured wrong. The trials have been performed in laboratory

conditions. The MYO armband is capable of adapting to specific human limbs and

improves its output once it has been trained completely. The arm band sensors

become warm up shortly after being put on, thus adapting to body temperature

and accurately recognizing gestures after one to two minutes. If one’s arm is cold,

the sensors are unable to capture gestures accurately. The Microsoft API results

are evaluated by speaking a command, and if the command is captured incorrectly,

the instance is marked as an error. Incorrect capture is defined as the resulting

string being captured twice or having extraneous words or characters added to it.

Multimodal data fusion of voice and gesture using the MYO band improves the system

performance significantly. The experimental results are shown in Table 3.4. After

implementing fusion in the robotic arm, the error rate is reduced to 5.2 percent

which is an average of all errors. The variance of error percentage is shown in 3-4.

The errors are mostly due to reading the wrong gesture, for example, finger spread is
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sometimes captured as a fist, which leads to an error. Experiments are performed on

all five fusion input tests two hundreds times each, and the percentage is calculated

respectively.

Figure 3-4: Error Percentage deviation of fused Inputs

Table 3.3: Preliminary results for Microsoft Speech used by non-native
speaker.

Command Microsoft Speech API (Wrong output) Correct
Move Right 10 90
Move Left 34.2 65.8
Move Up 8.9 91.1

Move Down 22.5 77.5
Move Gripper 14.1 85.9
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Table 3.4: Fusion results with Error % & Variance

Fusion Operation 50 100 150 200 Error % Variance
Move Gripper & Double Tap 7 2 2 4 7.5 5.58

Move Down & Fist 3 1 2 2 4 0.67
Move Up & Finger spread 3 3 2 2 5 0.33

Move Left & Wave left 0 3 2 2 3.5 1.58
Move Right & Wave out 3 3 4 2 6 0.67
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Chapter 4

Machine Learning based

Multi-modal data fusion

To design a system with multiple modalities, bring its own challenges and com-

plexities. The system design with multiple input methods requires a mechanism to

take a decision. There are several approaches available, which include the imple-

mentation of machine learning and Artificial Intelligence. Machine learning itself

is divided into two broad categories, namely supervised learning and unsupervised

learning. Supervised learning learns and decides which decision the system should

make to work efficiently. It learns based on data provided initially, and then it learns

gradually while the system is in use. The other approach is unsupervised learning

based on the categorical classification of huge data; it helps in sorting the news into

several categories, the classification of email in various labels, and so on. In our case,

we are planning to implement supervised learning. The idea to be implemented in

our case is to make the robotic arm capable of learning from its previous decisions.

Based on the previous history, the system would make a decision and improve the

decision.
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4.1 Machine Learning

Machine Learning has four broad categories: : unsupervised learning for cluster-

ing, unsupervised learning for dimension reduction, supervised learning for classifica-

tion, and supervised learning for regression.

1. Unsupervised learning for clustering of data - this approach is used when the

bulk data provided without any response. It helps in clustering in several scenar-

ios. For classification of data on the based-on hierarchy, an algorithm named as

hierarchical machine learning algorithm is used. DBScan is another algorithm

used, in which we dont have defined levels of hierarchy. The data provided

for unsupervised learning can be classified based on probability; the Gaussian

Mixture Model is used for finding the probability from a data set. Moreover,

K-means and K-modes are used for categorical classification of data [102].

2. Unsupervised learning for dimension reduction - this approach is used when

the intent is to reduce the number of random variables under consideration by

obtaining a set of principal variables. The algorithm called Principal component

analysis is used for reducing the number of random variables, while singular

value decomposition and latent Dirichlet analysis for classifying data based on

probability [102].

3. Supervised learning and classification of data is a classification model that at-

tempts to draw conclusions from observed values. One or more input is provided

to the classification model, and it will try to predict the value with one or more

outcomes. The system is trained first with inputs, and accordingly, later it takes

actions. There are several algorithms available for supervised learning based on

speed, accuracy, and size of data. Kernel SM, Random Forest, gradient boosting

tree are the algorithms available for accuracy, while Nave Bayes is used when
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data is too large. Decision tree and logistic regression are used for processing

data quickly [102].

4. Supervised learning for regression is used for numeric predicting regarding 0 or

1. For accuracy, the algorithms available are Random Forest, Gradient Boosting

tree, and Neural Network. For speed, decision tree and linear regression are used

[102].

These machine learning models which are available & implemented in Python:

1. Logistic Regression

2. Linear Discriminant Analysis

3. K-Neighbors Classifier

4. Decision Tree Classifier

5. Gaussian Nave Bayes

6. Support Vector Machine

Logistic Regression: Logistic regression is a machine learning technique extracted

from the field of statistics. It is the go-to method for binary classification problems

(problems with two class values). Logistic regression named for the function used at

the core of the method, the logistic function as shown in Figure 4-1. The logistic

function, also called the sigmoid function, was developed by statisticians to describe

properties of population growth in ecology, rising quickly and maxing out at the

carrying capacity of the environment. It is a S-shaped curve that can take any real-

valued number and map it into a value between 0 and 1, but never exactly at those

limits [103].

124



Figure 4-1: Data Mining graph of Logistic Regression

Linear Discriminant Analysis: Linear discriminant analysis (LDA) is commonly used

as a dimensionality reduction technique in the pre-processing step for pattern-classification

and machine learning applications. The goal is to project a dataset onto a lower-

dimensional space with good class-separability to avoid overfitting (curse of dimen-

sionality) and reduce computational costs [104].

The K-neighbors classifier has been used widely in pattern recognition. The algo-

rithm is easy to understand conceptually, and the tendency toward error is bounded

twice by the Bayes error. The accuracy of K-neighbor surpasses those of sophisticated

classifiers. The random subspace method relies on a stochastic process that randomly

selects components [105]. K-nearest neighbors algorithm (KNN) is a non-parametric,

lazy learning algorithm. Its motivation is to utilize a database in which the infor-

mation focuses are isolated into a few classes to anticipate the characterization of

another sample point, as shown in Figure 4-2.

Decision Tree Classifier: Decision trees are a type of supervised machine learning (that

is you explain what the input is and what the corresponding output is in the training

data) where the data is continuously split according to a certain parameter. The tree

can be explained by two entities, namely, decision nodes and leaves. The leaves are

the decisions or the outcomes, and the decision nodes are where the data is split. An
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Figure 4-2: K-NN classifier: Classifying using k-nearest neighbors algorithm

example of a decision tree can be explained using the above binary tree. Let’s say

you want to predict whether a person is fit based on his or her information like age,

eating habits, physical activity, and so on. The decision nodes here are questions

like ’What’s the age?’, ’Does he exercise?’, and ’Does he eat a lot of pizzas’? And

the leaves are outcomes like fit, or unfit. In this case, this was a binary classification

problem (a yes/no type problem) [106].

Gaussian Naive Bayes: Gaussian naive bayes is a classification algorithm for binary

(two-class) and multi-class classification problems. The technique is easiest to un-

derstand when described using binary or categorical input values. The approach is

called naive Bayes or idiot Bayes because the calculation of the probabilities for each

hypothesis is simplified to make their calculation tractable. Rather than attempting

to calculate the values of each attribute value P(d1, d2, d3—h), they are assumed

to be conditionally independent given the target value and calculated as P(d1—h) *

P(d2—H), and so on. This is a very strong assumption that is most unlikely in real

data, that is, that the attributes do not interact. Nevertheless, the approach performs
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surprisingly well on data where this assumption does not hold [107].

Support Vector Machine: Support vector machine (SVM) is a supervised machine

learning algorithm used for both classification or regression challenges. However, this

is mostly used in classification problems. In this algorithm, we plot each data item as

a point in n-dimensional space (where n is the number of features present) with the

value of each feature being the value of a coordinate. Then we perform classification

by finding the hyperplane that differentiates the two classes [108].

Policy-gradient methods are reinforcement learning techniques that rely on opti-

mizing parametrized policies concerning the expected return (long-term cumulative

reward) by gradient descent. Policy gradient algorithms optimize a policy by com-

puting the gradient of the expected reward of the policy and then updating the policy

in the gradient direction. A stochastic policy is preferred as it gives a randomized

probability distribution over actions. The algorithms requires many training exam-

ples designed so that good actions result in high rewards while bad actions result

in negative rewards. The observations can then be used to increase the probability

that the algorithm chooses from the set of good actions. Most of the problems in

the reinforcement learning space involve a single reward signal generated at the end

of an actor-environment simulation episode. It makes it difficult to identify the good

actions from the set of all actions taken during that episode, and this is known as the

credit assignment problem. The problem is more evident in cases where the action

spaces are continuous, and actor-critic methods are used to solve this problem for

continuous action spaces [109].

Actor-critic methods are TD (temporal-difference) methods. In this algorithm,

the policy function is represented independently by the value function. The policy

structure is known as the actor because it is used to select actions, and the estimated

value function is known as the critic because it criticizes the actions made by the

actor. It is an on-policy method because the critic must learn and critique the policy
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that is currently being followed by the actor. The actor produces an action depending

on the current state of the environment, and the critic produces a TD error signal

depending on the state and resultant reward. To train an actor-critic algorithm, the

initial state is observed, and the actor chooses an action from the set of all available

actions and then observes the resultant state. After the critic network has assigned

a value to both the original and the new state based on a reward function, we adjust

the policy. This is achieved by comparing the value function in the new state and

the original state; if the value improves, we encourage that action. If it decreases, we

discourage the action [110]. During initial training, both networks generate a lot of

bad choices. In deep reinforcement learning, neural networks can be used to represent

the actor and critic structures.

Deep deterministic policy gradient (DDPG) Algorithm [111] is a policy gradient

algorithm that uses a stochastic behavior policy to reduce the predictability of the

learned model but estimates a deterministic target policy, which is much easier to

learn. Stochastic behaviors are the situations or models containing a random element.

Hence they are unpredictable and without a stable pattern or order. All-natural

events are considered stochastic phenomena [112].

A stochastic behavior policy performs better for problem domains where ex-

ploratory actions are required for reaching the solution and helps prevent against

convergence to a local minimum. DDPG is an off-policy algorithm and uses a deter-

ministic target policy, which allows for the use of the deterministic policy gradient

theorem as proven by Silver et al. (2014). The ability of DDPG to operate over con-

tinuous action space makes it suitable for use in our work. Twelve DDPG algorithm

Q-learning cannot be applied directly for continuous action space. This is because

finding the greedy policy in continuous spaces requires optimization of action at every

time step; this optimization is not practical because of the large non-trivial action

spaces. DDPG achieves this using the actor-critic approach. The actor-critic function
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helps to represent the policy function independent of the value function. The actor

takes as input the current state of the environment and gives an action as an output.

The critic gives a temporal difference error signal based upon the state and the re-

sultant reward. The output obtained from the critic is used to update both the actor

and critic. The actor and critic structures are modeled as neural networks that try to

choose an action from the continuous action space according to the current state to

try to minimize the TD error signal at each time step. However, when using neural

networks for reinforcement learning, the algorithm assumes that the input samples

are independent and identically distributed. However, this assumption is wrong as

the inputs obtained are sequential. Tackling this DDPG requires a finite-sized buffer

representing historical states called a replay buffer first proposed by Timothy Lillicrap

et al., (2015) [111]. All inputs to the actor are sampled from a minibatch from the

replay buffer. Once the replay buffer is full, the oldest samples are removed. The

input to the actor network is the current state, and the output is a single real value

representing an action chosen from a continuous action space. The critic outputs

the estimated Q-value of the current state and the action chosen by the actor. The

actor is updated using the deterministic policy gradient theorem. The critic is up-

dated from the gradients obtained from the TD error signal. DDPG also makes use

of batch normalization [113] to normalize each dimension across the samples to have

unit mean and variance. This helps to address the issue that different components

of the observation vector may have different physical units such as distance, velocity

or acceleration. Batch normalization helps DDPG to learn across different units in

its observation vector. In order to treat the problem of exploration of the continuous

action space as an independent problem, which can be modeled using a noise process

to assist exploration using the actor policy, the Ornstein-Uhlenbeck [114] process is

used to generate temporally correlated noise and is particularly suited for problems

involving physical control.
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4.2 Feature Level and Decision Level Fusion

Multimodal fusion is the heart of any multimodal sentiment analysis engine. There

are two main fusion techniques: feature-level fusion and decision-level fusion. Feature-

level fusion is implemented by concatenating the feature vectors of all three modalities

to form a single long feature vector. Despite its simplicity, this method produces

accurate results. We concatenated the feature vector of each modality into a single

feature vector stream. This feature vector is used for classifying each video segment

into sentiment classes. To estimate the accuracy, we used tenfold cross-validation.

In decision-level fusion, we obtained feature vectors instead of concatenating the

feature vectors as in feature-level fusion, we used a separate classifier for each modal-

ity. The output of each classifier is treated as a classification score. We obtained a

probability score for each sentiment class, from each classifier. In our case, as there

are three sentiment classes, we obtained three probability scores from each modality.

4.3 Result

A performance evaluation was executed, keeping in mind the end goal to evaluate

how exact the modalities are independently; subsequently, we tried them using ma-

chine learning techniques. The figure 4-4 shows the data density. Based on the data

retrieved in Phase 2, training data is prepared for machine learning algorithms. Both

the modalities will be represented by a number and third column as an output. Input

data of 900 interactions will be fed to the machine learning algorithm, test results

of each modality and its error cases are considered. The error inputs are considered

with a numeric value; for instance, Move Up is could be read as Move Cup or Move

Sup by Microsoft Speech API. If there are 59 error combinations, the test data for

59 error conditions are created, and in case of an error, the other correct modality if

given the priority.
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Similarly for EMG data, if the Myo armband captures the wrong gesture or misses

the input, both the scenarios are considered an error. The conclusion is evaluated

based on the comparison of various Machine learning algorithms on the same training

data. Table 4.1 shows that K-NN has the highest precision and recall with the value of

0.92. The F-1 score for K-NN is 0.92, and the support is 1, which is highest amongst

all the algorithms. The 4-4 shows data density of EMG. Speech and the Output.

The complete details of the the results are outlined in Table 4.2. The test results

demonstrate the best algorithm best work for us is K-Neighbors Classifier with an

accuracy of 92.45 percent.

Figure 4-3: Input Data

4.4 Limitations

Speech and electromyography data were the modalities used in the system con-

structed. The MYO band used for capturing the EMG data is capable of recognizing
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Figure 4-4: Data Density

Table 4.1: Precision, Recall and F1-Score

Machine Learning Algorithm Precision Recall F1-Score Support
SVM 0.82 1.00 0.90 9

Gaussian NB 0.67 0.50 0.57 4
Decision Tree Classifier 0.83 0.83 0.83 6

Linear Discriminant Analysis 1.00 0.75 0.86 8
Logistic Regression 0.78 1.00 0.88 7

KNN 0.92 0.92 0.91 1

five gestures. This limited the number of operations that could be performent on the

robotic arm. The second challenge lay in capturing the speech commands using the

Microsoft Speech API. Non-native speakers of the English language will face difficul-

ties and challenges to approximate their accent to that of a native speakers. This

created difficulty in conveying commands correctly. There are four areas that need

to be worked on and improved regarding human-robot interaction. These include

speech localization, language understanding, dialogue management, and speech syn-

thesis [115]. Also, as the ultimate goal of this research is to improve accuracy, the

approach here described map commands to all possible options that the Microsoft

Speech API recognizes as valid (for example, move right sometimes gets recognized

as override an incorrect response). This provided us with a way to quantify the

accuracy of the system. We prepared a many-to-one mapping of all these possible

combinations to a particular voice command.
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Figure 4-5: Scatter Plot

Table 4.2: Results of Machine learning algorithms implemented on Multi-
modal input

Machine Learning Technique Correct
Logistic Regression 84.90

Linear Discriminant Analysis 84.90
K-Neighbors Classifier 92.45
Decision Tree Classifier 84.90
Gaussian Naive Bayes 86.79

Support-Vector Machine 90.56
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Chapter 5

Conclusion and Future Work

With the classification of multimodal systems, there is an ample amount of space

for improvement regarding precision, quality, and robustness. The implementation of

the multimodal system using supervised learning has high precision and can capture

various modalities. The system, designed recently in 2018 and 2019 has advanced in

exploring different modalities and its applications, including their application from

surgery to find the texture of the cloth and fixing the screw using the robotic arm.

This study enables us to develop a system that can implement multimodal fusion using

voice, gesture and peripheral device as an input. In most of the systems with fusion,

we have analyzed has a huge scope of improvement. In our future work, we plan to

develop a system that captures raw EMG data using human limbs along with voice,

including input from a third modality, which could be a lever or a keyboard input, that

allows to generate input by combination of modalities if the robot misses a gesture or

a speech. The initial phase has been implemented and incorporates two modalities,

speech and gesture [6]. The results show significant improvement in comparison with

individual modality, with the average error rate reduced to 5.2 percent. Age plays an

important factor when using multimodality. Younger people are more comfortable

with MYO arm band and other peripheral devices devices , whereas older adults

prefer devices with key input in comparison to haptic and gestures.
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Moreover, the voice input modality is still preferable, but it brings another chal-

lenge in that it does not accept all the accents of various ethnicities, and the shaky

voices of older adults. An incorrect input of voice commands may lead to disaster

in situations involving driverless cars. A multimodal autonomous car should accept

canned pre-defined input and discard others to function properly and seek minimum

human intervention. Otherwise, if a car analyzes human speech and receives wrong

input, it could be fatal for the users. Likewise, giant robots used in automation or

manufacturing units, if developed with multimodal functionality, must understand

canned inputs and discard others to function properly. The assisted robot for the

blind project is one of the cutting-edge projects in the field of multimodal inputs, but

if the system is not efficient enough to adapt, the environment will fail during the

evacuation of a building when developing systems for differently abled people, effi-

ciency and accuracy would be considered the most important criteria. Otherwise, this

robotic system might prove fatal to humans. There is a need to develop a device of

multimodality with fusion that can be used in myriad industries. During the review,

we did not come across a system that can accept multimodal inputs with fusion and

is efficient enough to perform tasks in an industrial or a health care sector. So far,

the systems designed are either multimodal without fusion, or they accept pre-defined

inputs that work under certain conditions.

Moreover, in an industrial environment, it is necessary to move a robot dynam-

ically in any direction to move heavy objects from one place to another. Usually,

assembly lines can perform predefined static tasks. Along the similar lines, a speech

assistant with an intelligent robotic arm is needed to understand human speech irre-

spective of ethnicity and pronunciation and that can guide a differently abled person

to move in and around a city without the help of other human beings. Google and

Microsoft developed speech APIs, which are paid and too expensive to be used by

everyday people, and they also have the challenge of understanding of human speech
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with high accuracy. An error in understanding speech could lead to disaster and

may endanger human lives. The ECOMODE device discussed earlier brings a lot of

challenges to be used by senior citizens. Emotions and gestures are an easy way to

capture input by avoiding speech.

According to our study, there are still avenues open for research in multimodal

fusion while exploring different combinations of input modalities. If a system is

designed along similar lines, it not only improves the capability of handling industrial

robots but also makes life easier for the differently abled.

The experimental results displayed above prove that through the inclusion of

speech input modality, the accuracy of the MYO band can be improved significantly.

While using the modalities separately, the accuracy was 86.54 percent and 82.06

percent for the MYO band and Microsoft Speech API, respectively. After fusion of

the inputs, accuracy improved to more than 95.92 percent. Our future work will

include the development of a prototype in which the system can perform fusion of

more than two input modalities and perform tasks after interpreting the semantics

of the input provided. Thus far there is no system that takes input from the user

in the form of speech, text, and gesture and executes a task on a robotic arm using

the MYO band dynamically. The next planned implementation will add components

capable of capturing brain signals. The system should be able to fuse the modalities

and select a meaningful operation that is then performed on a device.
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[112] H. H. Hoos and T. Stützle, “Towards a characterisation of the behaviour of

stochastic local search algorithms for sat,” Artificial Intelligence, vol. 112, no. 1-

2, pp. 213–232, 1999.

150



[113] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[114] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,”

Physical review, vol. 36, no. 5, p. 823, 1930.

[115] R. P. Judd and A. B. Knasinski, “A technique to calibrate industrial robots

with experimental verification,” IEEE Transactions on robotics and automation,

vol. 6, no. 1, pp. 20–30, 1990.

151



Appendix A

Application Code Snippets

In this appendix, We are going to present a few of the code fragments that con-

tribute majorly to our application and are important in the development of connecting

the Myo Arm band with a robotic arm.

Listing A.1: Myo Arm Band API

myo : : Hub hub(”com . j akechape sk i e . SerialCommunication ” ) ;

s td : : cout << ”Attempting to f i n d a Myo . . . ” << std : : endl ;

myo : : Myo∗ myo = hub . waitForMyo (10000 ) ;

i f ( ! myo) {

throw std : : run t ime e r ro r (” Unable to f i n d a Myo ! ” ) ;

}

std : : cout << ”Connected to a Myo armband ! ” << std : : endl

<< std : : endl ;

DataCol l ec tor c o l l e c t o r ;

hub . addLis tener (& c o l l e c t o r ) ;
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hub . s e tLock ingPo l i cy (myo : : Hub : : Lock ingPol i cy : :

l o ck ingPo l i cyStandard ) ;

whi l e (1 ) {

hub . run (1000 / 2 0 ) ;

c o l l e c t o r . p r i n t ( ) ;

i f ( strcmp ( recvbuf , ”Move Right ”) == 0)

{

p r i n t f (”We are here %s\n” , recvbuf ) ;

i f ( Ser ia lPortToDevice−>IsOpen ) {

p r i n t f (”We are here %s\n” , recvbuf ) ;

f o r ( i n t i = 0 ; i < 3 ; i ++){

Ser ia lPortToDevice−>WriteLine (”waveOut ” ) ;

S leep ( 3 0 0 ) ;

}

}

ZeroMemory ( recvbuf , r e cvbu f l en ) ;

// S leep ( 1 0 0 0 ) ;

} e l s e i f ( strcmp ( recvbuf , ”Move Le f t ”) == 0)

{

i f ( Ser ia lPortToDevice−>IsOpen ) {

f o r ( i n t i = 0 ; i < 3 ; i ++){

Ser ia lPortToDevice−>WriteLine (” waveIn ” ) ;
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Sleep ( 3 0 0 ) ;

}

}

ZeroMemory ( recvbuf , r e cvbu f l en ) ;

} e l s e i f ( strcmp ( recvbuf , ”Move Up”) == 0)

{

i f ( Ser ia lPortToDevice−>IsOpen ) {

f o r ( i n t i = 0 ; i < 3 ; i ++){

Ser ia lPortToDevice−>WriteLine

(” f i ng e r sSp r ead ” ) ;

S leep ( 3 0 0 ) ;

}

}

ZeroMemory ( recvbuf , r e cvbu f l en ) ;

} e l s e i f ( strcmp ( recvbuf , ”Move Down”) == 0)

{

i f ( Ser ia lPortToDevice−>IsOpen ) {

f o r ( i n t i = 0 ; i < 3 ; i ++){

Ser ia lPortToDevice−>WriteLine (” f i s t ” ) ;

S leep ( 3 0 0 ) ;

}

}

ZeroMemory ( recvbuf , r e cvbu f l en ) ;
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} e l s e i f ( strcmp ( recvbuf , ”Move Gripper ”) == 0)

{

i f ( Ser ia lPortToDevice−>IsOpen ) {

f o r ( i n t i = 0 ; i < 8 ; i++) {

Ser ia lPortToDevice−>WriteLine

(” doubleTap ” ) ;

S leep ( 3 0 0 ) ;

}

}

ZeroMemory ( recvbuf , r e cvbu f l en ) ;

}

e l s e {

std : : s t r i n g poseSt r ing = ( c o l l e c t o r . currentPose .

t oS t r i ng ( ) ) ;

S t r ing ˆ pos eS t ro rageS t r i ng = gcnew St r ing (

poseSt r ing . c s t r ( ) ) ;

p r i n t f (” Only ge s tu r e : %s\n” , po s eS t ro rageS t r i ng ) ;

i f ( Ser ia lPortToDevice−>IsOpen ) {

Ser ia lPortToDevice−>WriteLine

( po s eS t ro rageS t r i ng ) ;

po s eS t ro rageS t r i ng = ”” ;

}

}
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