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This research establishes the viability of using a swarm of robots to physically

collect harmful algae from a bloom. This was accomplished by performing several

sets of algae-collection simulations, measuring swarm performance by quantifying

the algae collection rate. The two primary swarm control laws investigated were an

approach that assigns each robot to its own region of responsibility, and a random

walk biased in the direction of highest algae concentration. Then, an analytical

basis was developed to establish how swarm performance changes due to robot-to-

robot interference for different robot quantities and sizes. This basis also includes a

formulation for robot and swarm cost, which allows performance-cost curves to be

generated. Lastly, experiments were conducted where physical robots were used to

collect real algae. Two companion technologies were also highlighted. The first such

technology is a filter with bioinspired, anti-clogging features. The second technology

is an unmanned aerial vehicle with a multi-spectral instrument for observing and

quantifying algae concentrations.

Based on these simulations and experiments, it is recommended that robots in

the swarm perform an unbiased random walk, which requires minimal robot sensing

capabilities, minimal robot-to-robot communication, and therefore, minimal cost. A

robot swarm does appear to be a viable solution for collecting harmful algae, but

additional work is required to mature this technology.
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Chapter 1

Introduction

This work investigates the feasibility of employing a swarm of robots to physi-

cally collect and monitor harmful algae in open surface-water. Harmful algal blooms

(HABs), which are massive populations of toxin-containing algae, present a serious

threat to regional and worldwide water supplies. The root cause of HABs are excess

nutrients that drain into rivers, lakes, and oceans. Stopping the flow of these nu-

trients is an enormous technical, legislative, and logistical challenge, which will take

many years to accomplish. The robot swarm investigated herein should be viewed

as a complementary measure that could more immediately reduce some of the neg-

ative impacts of HABs. A very brief introduction to this idea is given below, with

subsequent sections providing further details.

Methods for mitigating algae blooms can be classified as physical, chemical, or

biological. Physical methods are attractive because, when implemented correctly,

they can have a smaller ecological impact. The alga (alga-singular, algae-plural)

which have been most problematic in Lake Erie in recent years is taxonomically not

a true algae, but a cyanobacteria, or blue-green algae, called Microcystis aeruginosa,

which may contain a toxin called microcystin. Note that Lake Erie will be frequently

cited as an example of a HAB-plagued body of water, which is done because of the

wealth of both current and historical literature on HABs in Lake Erie, but this should

1



not be viewed as a limitation and this work is extendable to other bodies of water.

Microcystis has some control over their vertical position in the water column and

tend to aggregate near the surface during calm water conditions. Thus, they can be

physically removed by skimming them from the surface, or by straining them from

below the surface. Both of these processes have been implemented at a limited scale.

The challenge is to (i) advance the technology for these two processes, and (ii) find

a means of scaling these processes to the scale needed to combat massive blooms.

In terms of sheer scalability, swarm robotics is an intriguing option. Swarm

robotics is an extension of the field of swarm intelligence, which studies how local

interactions between agents following simple rules can lead to an emergent, system-

level behavior. Swarm intelligence is largely inspired by observations of biological

systems such as ant colonies. This type of system is so scalable because each agent is

only following simple rules and not being directed by some central controller, which

necessarily has limited computational and communication capabilities. Thus, when

compared to a traditional, centralized system, a decentralized or distributed swarm

is (i) massively scalable, (ii) robust to the loss of any individual agent, and (iii) com-

posed of relatively unsophisticated agents following only simple rules. Note that using

the term swarm implies a relatively large group of agents and that they communicate

in a non-centralized manner.

The high-level goal of this research, which will be repeatedly referenced, is to

establish the feasibility of constructing a robotic swarm capable of collecting harmful

algae. It is envisioned that such a swarm could operate in the area around water

treatment intakes, which would facilitate the subsequent conventional water treatment

process. The swarm could also be used in other scenarios, e.g. cleaning recreational

waters, but it is natural to concentrate on the scenario with very direct human-health

consequences. It is helpful to understand this high-level goal in the context of what is

state of the art in the field of swarm robotics. At this time, to the author’s knowledge,

2



Figure 1-1: (Left) Toledo Water Intake; this 100 foot diameter concrete struc-
ture stands 55 feet above the water and draws in water 16 feet
below the water’s surface (Right) True satellite image of the 2011
bloom, one of the worst blooms on record, from ESA’s MERIS
satellite

no robotic swarm is operating outside of a controlled environment, utilized in a real-

world application.

To facilitate the swarm design, and answer questions about swarm feasibility, sev-

eral simulation sets were performed to establish a theoretical algae collection rate for

different (i) algae diffusion rates, where diffusion is caused by turbulence in the water,

(ii) robot quantity and robot size combinations, where the combined collection width

of all the robots was held constant, and (iii) robot quantities, where the quantity

was varied by several orders of magnitude. Following these simulations, an analytical

basis was constructed that allows a swarm designer to predict how frequently robots

in a swarm would collide. Finally, physical experiments were performed using up to

three robots to collect real algae.

The major contributions of this work, explained in detail in the following sections,

include (i) insight into the novel problem of collecting a diffusive substance, (ii)

serious consideration of robot size in a swarm as a design input and its impact of

swarm performance and cost, (iii) performance scalability across order of magnitude

3



changes in robot quantities, (iv) an analytical basis for predicting collision frequency,

derived from physical phenomena, (v) swarm performance-cost curves, as a new tool

for weighing design trade-offs, and (vi) demonstration of real-algae collection using a

simple robot platform.

Parallel to these main contributions, several other research threads explored critical-

path technologies that would be needed for such a swarm. The first major technology

explored open-water filtration, as compared to filtering particles from a closed system,

e.g. a pipe. It was recognized early that clogging would be a concern for any such

filter. As such, filters were developed inspired by how ram-filter-feeding fish efficiently

remove particles from the water. This filtering technique is referred to as ’vortical

cross-step, filtration’. Filter development was performed using a water tunnel, and

both dye and fluorescent, algae-sized particles were used for flow visualization and

observations of particle collection patterns.

The second major technology explored was an unmanned aerial vehicle (UAV)

with algae remote-sensing capability. A commercially-available hexacopter (six mo-

tors) was built up, and modified to house a multi-spectral camera system. Data was

collected from several flights over Lake Erie, which were launched from a research

vessel. Test flights were also conducted over a smaller pond, which contained algae.

More detail on these two technologies (vortical cross-step filtration and UAV-based

HAB remote sensing) is included, but the swarm robot research is the focus of this

dissertation.

Starting from this brief, high-level introduction, the following sections provide

more-detailed relevant background information and a thorough literature review (Sec-

tion II), mathematically define the algae collection system, describing and discussing

the accompanying algae-collection simulations (Section III), develop an analytical ba-

sis for collision frequency and swarm cost (Section IV), describe the algae-collection

experiments with physical robots, and recap the open-water filtration and remote

4



sensing work (Section V), and conclude with an evaluation of the feasibility of an

algae-collecting swarm (Section VI), drawing on the work from the previous sections.

5



Chapter 2

Background and Literature Review

This section gives more-detailed background information and a thorough literature

review on (i) swarm robotics and (ii) harmful algal blooms. In contrast to the very

concise introduction given in Section I, this serves an extended introduction. Within

swarm robotics, the literature of interest is broken down into:

(a) Taxonomy of Swarm Robotics

(b) Algal Collection - Relevant Examples

(c) Swarm Design

(d) Unmanned surface vehicles (USVs) - Emphasis on Environmental Sensing

Within HABs, the literature of interest is broken down into:

(a) Blue-Green Algae Morphology, Other Major Algae Groups, and Microplastics

(b) Existing Treatments and Collection Processes

(c) HAB Biomass, Biovolume, and Areal Extent

(d) In-situ and Remote Sensing

(e) Other Great Lakes Data Streams

(f) Cost of Treatment

6



2.1 Swarm Robotics

Observations of social insects have grown into the budding research fields of swarm

intelligence and swarm robotics. Swarm intelligence studies how local interactions

between many agents can lead to a global, emergent behavior [29, 10] and swarm

robotics extends this concept to physical robots [12, 30].

As previously introduced, robot swarms are touted for their (i) massive scalability,

(ii) robustness to the loss of any individual agent, and (iii) composition of relatively

unsophisticated agents following only simple rules. These attributes have redefined

our perception of what robot systems are capable of and robot swarms have been

proposed for planetary exploration, in-situ resource utilization, land-mine demining,

oil-spill cleanup, disaster relief, surveillance, invasive-species mitigation [81], field

cultivation [60], and precision pharmaceutical delivery.

Given this plethora of intriguing applications, it is initially disappointing to dis-

cover that no swarm is operating outside of a controlled environment, utilized in one of

these real-world applications. This assertion is echoed by four preeminent researchers

in the field of swarm robotics, Brambilla, Ferrante, Birattari, and Dorigo, in their

highly-cited, recent, and comprehensive review of swarm robotics [12]. This absence

can be attributed to the field of swarm robotics still being in its infancy, to the co-

dependence on companion technologies, e.g. drug-delivering nanobots, to slow-moving

regulatory processes, e.g. FAA restrictions on the use of quadcopters, and established

non-swarm solutions, among other reasons. However, the largest factor holding back

the implementation of robot swarms may be economic.

It is difficult to build a strong business case for developing or using robot swarms

for many of the previously-listed example applications. For some, it is difficult or

nearly impossible to predict where and when they could be deployed (oil-spill cleanup,

disaster relief). For other applications, especially applications in the space domain,

7



there are no direct economic benefits (planetary exploration, in-situ resource utiliza-

tion). While it may be possible to devise a stronger business case for some of these

applications, an application that makes intuitive economic sense could more quickly

catalyze the adoption of robot swarms to engineering problems.

HABs appear in the same location (Lake Erie and other eutrophic lakes), during a

predictable time of year (June-October), and there are some direct economic costs and

losses due to HABs (additional water treatment, recreation-related losses, business

losses from water supply interruptions, decreased property values). The economic

viability of using a robot swarm to mitigate HABs will be more rigorously established,

but this introduction serves to provide the rationale for why literature on the swarm

design process is sparse. In other words, many of the open research questions in

swarm robotics are open because no one has been sufficiently financially motivated

to create a physical swarm.

2.1.1 Taxonomy of Swarm Robotics

This snapshot of the state of swarm robotics can be supplemented by present-

ing two taxonomies for classifying swarm robotics work to this point, provided by

Brambilla et al [12], which is done to establish the context of this new work. Their

first taxonomy uses design and analysis methods, and their second taxonomy uses the

required collective behavior. For clarity, other literature will be referred to using the

common vocabulary of these taxonomies, even when the original authors may have

used different terms.

2.1.1.1 Taxonomy 1: Design and Analysis Methods

Swarm design methods can be classified as behavior-based design or automatic

design. In behavior-based design, the individual control of each agent is iteratively

implemented, tested, and modified until the behavior of the collective swarm is ac-
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ceptable. Examples of behavior-based design include using probabilistic finite state

machines, which control the probability of a robot switching from one state to an-

other, or virtual physics, such as artificial potential fields, where robots move based

on a summation of attractive and repulsive forces. Automatic design methods auto-

matically generate agent behaviors without the designer explicitly intervening. In this

way, automatic design may result in a highly effective swarm, but without knowledge

of what phenomena are leading to this desired outcome. Reinforcement learning and

evolutionary robotics are examples of automatic design methods.

Swarm analysis methods may be viewed using models at the microscopic level, i.e.

agent-level, or at the macroscopic level, i.e. collective-level. Microscopic level work

may use increasingly complex levels of abstraction where robots are viewed as simple

point masses, or as operating in 2D worlds subject to platform-specific kinematics, or

as operating in 3D worlds with dynamic physics and detailed actuator and sensor pro-

files. These microscopic models are typically evaluated and analyzed using simulators.

There are many options for robot simulation platforms, e.g. Webots, Gazebo, Stage,

but Pincirolli et al developed one of the few that is specific to swarm robotics called

ARGoS [77]. Macroscopic models view the system as a whole. These approaches have

typically been to model the swarm using either rate and differential equations, includ-

ing Langevin and Fokker-Planck equations, that can describe stochastic particles and

systems, respectively, or classical control and stability theory.

Real, physical robots may also be used to validate behavior, such as the pioneering

Kilobot [85].

Since Brambilla et al’s review, an alternative analysis method has been proposed

which estimates swarm performance by taking the integral of birth-death processes

[54]. Another alternative approach developed after this review was to use ‘property-

driven design’ [11]. This approach has four steps which start at the most abstract, and

progressively become more realistic, which are well-illustrated using an aggregation
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example. In the first step, the desired properties of the swarm are described (most

abstract), e.g. robots must aggregate in one of several locations after a set time with

a set probability. In the second step, these properties are used to form a model

(becoming less abstract), e.g. robots may be inside or outside of the desired location

for aggregation and they transition between these states with a certain probability.

In the third step, the model is implemented and simulated (becoming more realistic),

e.g. these aggregating robots perform a random walk until they are at a desired

aggregation location and leave the location with a pre-set probability, depending on

the number of other robots at that location. In the fourth step, physical robots are

used (most realistic).

Within this taxonomy, the design method chosen for this work uses behavior-based

design and a microscopic-level analysis.

2.1.1.2 Taxomony 2: Collective Behaviors

The second taxonomy classifies work based on basic behaviors, e.g. aggregation,

where multiple behaviors are combined to tackle more complex applications, e.g.

foraging. These basic behaviors include spatially organizing behaviors, navigation

behaviors, and collective-decision making. Spatially organizing behaviors are those

that seek to organize and distribute robots and objects in space. These include

aggregation, pattern formation, chain formation, self-assembly, and object cluster-

ing and assembling. Navigation behaviors seek to organize and coordinate move-

ments. These include collective exploration, which could encompass area coverage

and swarm-guided navigation, coordinated motion, also known as flocking, and col-

lective transport. Collective decision making seeks to let a group of robots agree on

a decision or allocate themselves among several simultaneous tasks. These include

consensus achievement and task allocation. Other collective behaviors that do not

fall into these categories include collective fault detection, group-size regulation, and
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human-swarm interaction .

This second taxonomy is similar to a classification used in a more recent review

of swarm robotic tasks by Bayindir [7]. This related taxonomy lists higher level

behaviors like foraging alongside more basic behaviors like aggregation and flocking.

It also adds some new behaviors such as odor source localization.

At this point, it is useful to analyze where this algae-collecting swarms fits in this

taxonomy. First consider foraging, area coverage, and source localization. Foraging

is typically used to mean the search for a discrete resource, e.g. an ant may forage

for an individual seed. Often these resource fields are static, but they could also be

dynamic. Algae, however, is different from a seed in that it is so populous, that is

usually measured as a continuous concentration which varies spatially. Area coverage

is typically used to mean physically moving through an area of interest and either

modifying or simply observing the environment. This is the case when the agents’

resources are not sufficient to modify or observe the entire domain simultaneously.

The algae-collecting swarm could fall within this general definition of area coverage.

The term area coverage may also be used to mean a static coverage, as in a network,

that, once deployed, can observe an entire area of interest. Source localization is

usually used to mean searching for a discrete source from which a gradient can be

detected. This could be an odor, sound, or chemical plume. Algae is distributed

continuously without any discrete sources, but some of the strategies used for following

a gradient in a turbulent medium could be applicable.

After considering these existing terms, this application may be best framed using

a new term, swarm collection, which will be generically defined as the physical collec-

tion of discrete or continuously-distributed materials. From this viewpoint, foraging

is a sub-classification of collection, i.e. discrete collection, and continuous collection

is a blending of foraging and area coverage. Indeed, the collection of continuously

distributed materials, like algae, is an interesting and novel problem. One novel as-
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pect of this problem is that continuously-distributed materials are often dynamically

distributed because they are subject to physical phenomena such as diffusion or ad-

vection. This realization means that one artificial complex system (the swarm) is

interacting with another natural complex system (the environment).

2.1.2 Algal Collection - Relevant Examples

Turning the focus now to select literature which have some aspects relevant to

algal collection, Aznar et al proposed using a swarm of aerial robots to identify and

track oil slicks [6]. The oil slick was modeled using environmental software, called

GNOME, to predict the slick’s location and size based on ocean currents, turbulent

diffusion (simplified as eddy diffusion), and evaporation. When no slick was detected,

their control scheme used a finite state machine with a wander behavior. When a slick

was detected, they switched to a resource behavior, and when a slick was detected

with greater than 80% oil content, they switched to an inresource state. One of the

control parameters allowed them to either stay at the perimeter of the slick or move

to completely cover the slick and they tested scenarios with a single slick or multiple

slicks. They simulated both a microscopic model and a macroscopic model that used

the Fokker-Plank equation. In another work, it was proposed to use a swarm equipped

with fuzzy controllers to better track the edge of oil slicks, while the edge may not

always be so clearly defined [74].

Song and Mohseni investigated how to maintain swarm cohesion when placed in

an aquatic environment with a meandering jet, which is often used as an idealized

model of ocean currents because it includes both major circulation patterns, that is,

currents and vortices [94]. The members of their swarm are dubbed active Lagrangian

particles because they drift like simple Lagrangian particles but have some limited

self-propulsion. They were able to maintain swarm connectivity and avoid collisions

by only actively controlling a small portion of the agents.
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Some control schemes of interest may depend on the ability of an agent to sense

a local gradient, so it useful to examine literature that explain the limitations of

gradient sensing techniques. Shaukat and Chitre elucidate how a gradient following

approach, used by them to localize a source, can either use multiple sensors for each

agent (instantaneous gradient detection) or only a single sensor (temporal gradient

detection) [92]. They remark that using multiple sensors per agent to instantaneously

detect the gradient is subject to the smoothness of the scalar field, the intensity vari-

ations over the body of an agent, and the noisiness of the sensor and the environment.

This leaves temporal gradient detection, like that performed in bacterial chemotaxis,

where the current intensity value is compared with past values.

Other swarm source detection work highlights the difficulties in measuring a gradi-

ent introduced due to advection and turbulent diffusion, both of which will be present

in the algal environment [65, 43]. These phenomena make the instantaneous gradient

time-varying and noisy.

Examples of aquatic swarms, which have not yet been proposed to be used in a

swarm collection application, are included in the USV subsection.

2.1.3 Swarm Design

One of the most basic design decisions that a swarm designer needs to make is to

choose a swarm size. There appears to be several strong results that show that as

more agents are added to a swarm, the individual efficiency of each agent decreases.

Adding more agents generally improves the performance of a swarm, but in some

cases a point may be reached where adding further agents actually decreases the

performance. Hamann perceives this as the result of the combination of cooperation

and interference, where each are a function of agent density. Adding more agents si-

multaneously increases cooperation, while also increasing interference. Interference is

mostly due to the increased need for collision avoidance behavior. This realization has
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enabled a generic mathematical model to be fit to the curves for group performance

and individual efficiency versus agent density across several different applications [44].

The most relevant example studies that examine group and individual performance

as more robots are added are foraging and area coverage, with this interference effect

demonstrated by Lerman and Galstyan [59] and Gaudiano et al [40], respectively.

From Lerman and Galstyan (macroscopic mathematical model/simulations, 3m ra-

dius arena, 300 mm s−1 speed, 1-10 robots), one scenario did not require robots to

deposit foraged objects to a nest, while their second scenario did require the depo-

sition of those objects. The difference was that in the first scenario, adding more

robots continued to increase group performance (up to their maximum number of

robots tested), whereas in the second scenario group performance peaked when only

four robots where used. From Gaudiano et al (physical experiments/simulations,

2000x2000/6000x6000, max velocity 5U/s, 1000s, 1-10/10-110 robots), group cover-

age performance only increased as more robots where added.

Hecker and Moses (physical experiments/simulations, 10m x10m/10.5m x10.5m,

1-6/1-768 robots) also performed work studying swarm size for foraging [47]. Unlike

Lerman and Galstyan, they did not consider interference in their simulations, but like

Lerman and Galstyan, they still saw a sub-linear decrease in individual efficiency as

more robots are added. Hamann’s work was published before this study, but using

his philosophy, this sub-linear decrease in agent efficiency could be explained using

only the ‘cooperation’ function, in the absence of interference.

From this limited literature, it is clear this fundamental relationship, swarm size

versus group and individual performance, is not thoroughly understood. This poses

a challenge for the swarm designer and is one of the knowledge gaps that will be

addressed in this work. A second question that is not addressed in literature is the

relationship between agent size/capability and group and individual efficiency. An

agent’s size/capability may take different forms, depending on the application. This

14



could include sensing range, payload, max velocity, or if removing algae, the cross-

sectional area being processed. A third basic question that arises is more specific

to the novel problem of collecting a continuously-distributed, advecting, diffusing

substance (algae). In Fickian diffusion, i.e. diffusion that is proportional to flux,

substances are classified by their diffusivity. The third question is what the limit of

collecting a diffusive substance is, as the diffusivity increases. These questions will

be explored in the following chapters.

2.1.4 Unmanned Surface Vehicles (USVs)

Unmanned surface vehicles have not received as much attention as the land-based

and air-based autonomous craft, but there are a good number of documented USVs

in literature and industry. However, there is much sparser work on using USVs in

a swarm. What has been done in this area comes largely from the BioMachines lab

at the University of Lisbon. Duarte et al evolved controls leading to the canonical

swarm behaviors of homing, dispersion, clustering, and monitoring using a real swarm

with up to ten USVs [32], shown in Fig. 2-1. This was performed using a low-cost

monohull USV developed within their lab [23]. Duarte et al also investigated how

swarm robotics could be applied to aquatic environmental monitoring missions such

as water temperature monitoring, where they validated their devised control laws

using a small swarm [33]. Christensen et al showed how a swarm of these could use

heterogeneous communication capabilities for an intruder detection task [20].

A group in Singapore has developed a swarm of omnidirectional, mobile buoys,

dubbed ‘Bunch of Buoys’ [16, 111], shown in Fig. 2-2. They have tested groups of

fifty buoys by performing aggregation and leader-follower exercises. Finally, a group

at MIT proposed to build a ‘Seaswarm’ to collect oil after a spill, but they only

constructed a single robot, shown in Fig. 2-3 [1].

Outside of this group, USV work with a swarm focus, or at least a multi-agent
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Figure 2-1: Aquatic swarm created by Biomachines Lab at the University of
Lisbon, Portugal [32].

focus, has also been performed by Valada et al, who designed and built a 40-70 cm long

monohull, fan-powered USV [101]. They tested USVs by performing environmental

monitoring tasks, e.g. monitoring temperature or conductivity, using a (i) random

monitoring pattern, (ii) max uncertainty pattern, and (iii) a ‘lawnmower’ movement

pattern. Multiple-USV tests used a maximum of 3 USVs. Chamanbaz tested a

swarm of mobile buoys, or omnidirectional USVs, which had been designed to perform

environmental monitoring [16]. These were part of the ‘Bunch of Buoys’ project, are

limited to moving at about 1 m s−1, and have been tested in groups of more than

50 units. In another work, the relative drag force of USVs moving in a V-shaped

formation has been considered, where the USV had an omnidirectional profile [63].

There have been many other USVs created outside of the context of a swarm. A

16 foot, solar-powered catamaran was created to autonomously model water quality

[34]. It was used alongside stationary water sensing nodes to monitor Lake Wivenhoe

in Australia [35]. A different catamaran-style ASV, dubbed Lizhbet [49], was used in

conjunction with a YSI fluoroprobe that could be raised and lowered to autonomously
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Figure 2-2: Aquatic swarm of mobile buoys created by Singapore group [16].

monitor Planktothrix (a cyanobacterium) abundance on Lake Zurich [48]. A 1.1m

long, remote-operated catamaran was created as part of the Brooklyn Atlantis project

that uses a YSI sonde and can uniquely capture 360◦ panoramic images alongside

collecting water quality data [56]. Unique in that it is powered using sails, a 3.72m

long ASV roboat was created and used to acoustically monitor marine life [96].

USVs are also commonly combined with underwater platforms or aerial platforms,

which could be aerostats, quadcopters, or fixed-wing aircraft. NOAA funded the de-

velopment of an open-ocean, long-duration, solar-powered USV, called OASIS, which

is 18 ft long and designed to be self-righting in heavy seas. A group of these OA-
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Figure 2-3: Single unit of MIT’s proposed Seaswarm to clean up oil spills [1].

SIS USVs were proposed to monitor HABs as part of a Telesupervised Adaptive

Ocean Sensor Fleet (TAOSF), which includes using an unmanned, tethered aerostat

[78]. They simulated a HAB using a diffusing, advecting patch of rhodamine dye,

and used the fleet to map the dye’s spatial distribution. TAOSF used a pre-existing

system for coordinating multiple, heterogeneous USVs called the Multilevel Auton-

omy Robot Telesupervision Architecture (MARTA) [62]. A second multi-mode robot

system focused on coastal measurements, including monitoring algae blooms, and

collects data using quadcopters, USVs, and underwater vehicles [102]. Note that one

challenge of monitoring algal blooms using underwater vehicles is that they disrupt

the water around them as they move, which impacts the sampling. Another example

of a multi-mode, heterogeneous robot system pairs a fixed-wing aircraft, a catamaran

surface vehicle, and underwater vehicle [93]. They used this system to collaboratively

inspect the health of a coral reef.

On the opposite end of the size scale from these larger examples, a 200mm long
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row-bot was created that uses a microbial fuel cell to convert organic biomass (could

be from algae) to electrical energy [76]. The structure of the row-bot is inspired by

the water-boatman beetle.

These examples of USVs by definition exclude ‘drifters’ and autonomous vehicles

operating below the water, except when paired with a surface vehicle. Drifters are

unmanned surface nodes, which are often used for aquatic monitoring [24] and simply

passively move with the current.

2.2 Harmful Algal Blooms (HABs)

This second section introduces different aspects of harmful algal bloom literature

which are relevant to the application of swarm collection.

2.2.1 Blue-Green Algae Morphology, Other Major Algae Groups,

and Microplastics

Cyanobacteria, or blue-green algae, capable of forming blooms exist in three dis-

tinct morphological groups and the following overview of these groups is compiled

from Paerl [73]. The first group comprises coccoid cells (spherical), which may exist

as solitary cells or in aggregated colonies. Microcystis is a member of this first group.

The second group comprises filaments of mostly undifferentiated cells. Planktothrix is

an example genus of this second group. The third and final group consists of filaments

of highly differentiated cells. Bloom-forming genera in this group include Anabaena,

Aphanizomenon, and Cylindrospermopsis. Genera from all morphological groups are

capable of producing secondary metabolites (toxins). Please see Fig. 2-4 for examples

of these morphological groups.

For reference, Microcystis is the most problematic, dominant cyanobacteria in

Lake Erie, but Planktothrix blooms frequently occur in Lake Erie’s Sandusky Bay
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Figure 2-4: Overview of blue-green algae morphological groups from Paerl
[73] including coccoidal (a,b), filamentous undifferentiated cells
(c,d) and filamentous highly-differentiated cells (e,f). (a) Mi-
crocystis, (b) Synechoccus, (c) Oscillatoria, (d) Lyngbya, (e)
Anabaena, (f) Cylindrospermopsis.
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and in the Maumee River, Lake Erie’s main tributary. Aphanizomenon caused the

very severe bloom in 2010 in Grand Lake St. Mary’s, although Planktothrix is nor-

mally dominant there. These regional examples are a microcosm of blooms that have

occurred globally, as show in Fig. 2-5. This figure, also borrowed from Paerl [73],

gives a fine overview of the spatial and visual variation between different blooms.

These cyanobacteria all have some means of controlling their vertical position

in the water column. They use gas-filled volumes, called vacuoles, which can be

divided into smaller volumes, called vesicles, to control their buoyancy. Outside of

cyanobacteria, several groups of non-toxic phytoplanktons, i.e. floating and suspended

algae, are also present in the environment. These include green algae, diatoms, and

cyptophytes. Unlike cyanobacteria, these other groups of phytoplankton are not able

to regulate their vertical position in the water column.

The focus of this work is on collecting harmful algae, but it is useful to briefly

draw out the similarities with collecting microplastics, which is a potential extension

of this work. Microplastic accumulation is an area of active research [21], including

within the Great Lakes [38, 31]. Microplastics are comprised of microparticles and

microfibers, which are comparable to the coccoidal and filamentous morphologies of

cyanobacteria, as shown in Fig. 2-4. Unlike cyanobacteria, these particles cannot

actively control their buoyancy, but like algae, their movement and accumulation is

driven by hydrodynamic phenomena.

2.2.2 Existing Treatments and Collection Processes

Methods for mitigating algae blooms can be characterized as physical, chemical,

or biological and the following overview of these treatments is largely compiled from

the International Guidance Manual for the Management of Toxic Cyanobacteria [71]

unless otherwise cited. Biological methods seek to either increase cyanobacterial

competition or increase grazing pressure on cyanobacteria, but are very difficult to
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Figure 2-5: Overview of bloom diversity in color, patterns, location, and scale
compiled by Paerl [73]. Microcystis-dominated or mixed Micro-
cystis blooms are shown in (a) Liberty Lake, Washington USA,
(c) Lake Erie USA, (d) Meiliang Bay, Lake Taihu China, (f)
Zaca Lake, California USA, (g) Cape Fear River, North Car-
olina USA, (h) Neuse River, North Carolina, (k) Indian River
Lagoon, Florida USA
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implement because of the risk of severely (while perhaps unintentionally) altering the

ecosystem. For this reason, they will not be considered for this application.

Physical methods include (i) mixing the water, which prevents water column strat-

ification and subsequent release of nutrients from the sediment, (ii) drawing down a

reservoir such that surface algal mats are deposited on the reservoir’s sides, (iii) skim-

ming algae from the surface, akin to an oil skimmer, (iv) straining algae using a filter,

and (v) ultrasonically disrupting the gas vesicles used by the cyanobacteria to control

buoyancy. The literature for skimming surface scum is quite limited, but Atkins et al

did show how oil skimming equipment was used to remove surface scum from the Swan

River near Perth Australia [5]. Literature for straining is likewise quite limited, but

Chow did successfully demonstrate micro- and ultra-filtration of cyanobacterial cells

[17]. It was also noted that micro- and ultra-filtration did not cause any significant

release of intracellular toxin. Ultrasonic treatment can successfully cause gas vesicle

collapse [109], but may have a deleterious impact on other nearby organisms and,

at higher powers, may cause cyanobacterial cell lysis, which releases the intracellular

toxin.

Chemical methods include (i) hypolimnetic oxygenation, which injects oxygen to

reduce stratification in the water column, (ii) phosphorous precipitation and capping,

which precipitates phosphorous from the water to the sediment where it’s capped, (iii)

coagulation to facilitate precipitation of cyanobacterial cells to the water body floor,

and (iv) algaecide application which kills cyanobacterial cells. Many algaecides are

copper-based which has a devastating ecological impact and must be removed in a

subsequent process if used for drinking water. Potassium permanganate, chlorine,

and hydrogen peroxide are examples of non-copper-based algaecides. Aside from

any other effects the algaecide may have on the environment, algaecides also cause

cyanobacterial cell lysis, which releases intracellular toxins into the water.

One method not yet described is a mixture of a chemical and physical processes
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Figure 2-6: Dissolved air flotation system mounted on a mobile platform,
taken from Mr. Bryan’s submission video for the 2016 Barley
Prize

called dissolved air flotation (DAF). Bubbles of air are introduced below the surface

which attach to cyanobacterial cells and cause them to rise. Then, they can be

skimmed from the surface. For the best results, a coagulant should be used upstream

of this process [36, 52]. A patent has been filed by Mr. Kent Bryan for a DAF system

mounted on a boat, shown in Fig. 2-6, and he is currently testing the design in Grand

Lake St. Mary’s [14].

In general, a chemical method would be difficult to scale up to the massive size

of blooms because of the gross amount of chemical that would be needed and the

side impacts it may have on the ecosystem. Some of the physical methods such as

skimming and straining could be scaled up in the form of a swarm, are feasible to

use on a mobile platform, and do not have the major drawbacks associated with

other physical, chemical, and biological methods. Thus, a deeper investigation into

skimming and straining is warranted.

Skimming is effective at collecting algae at the surface of the water which could
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take the form of either a thicker surface scum, or a more aqueous form when the

suspended algae is more concentrated near the surface. Skimming is likely most

effective at removing the more solid surface scums which form on the leeward shores of

lakes [104], and at the end of the season when the temperature begins to drop and the

bloom begins to die off. Products are commercially available to skim nuisance surface

plants, like duckweed, leaves, pollen, and other trash and debris. These may take the

form of (i) an on-lake floating collection unit from which water is pumped to an on-

shore filtration unit (see Fig. 2-7-left and middle), (ii) a manual skimmer that a user

casts from a dock and then reels in (see Fig. 2-7-right), or (iii) a gas-powered on-lake

surface vehicle with a large conveyor (see Fig. 2-8-left). Although these commercial

products are likely to be as effective for cyanobacterial surface scums as for any other

surface debris, none of these are marketed specifically for blue-green algae. One reason

for this may be the liability incurred by users skimming toxic surface scum. A more

analogous example of algae skimming is a remote-operated robot boat constructed in

2013 by students at the University of Waterloo specifically for collecting algae (see

Fig. 2-8-right). Using its conveyor, they stated that it collected approximately 300 lbs

of algae in 20 minutes.

Figure 2-7: (left) propondandlakes.com’s Proskim system’s in-water floating
collection unit; (center) Proskim system’s onshore filtration unit;
(right) weedersdigest.com’s hand-cast parachute skimmer

Straining can be used to remove algae either at the surface, or below the surface.

Algae is often strained by researchers using planktonic nets made from nylon meshes
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Figure 2-8: (left) weedersdigest.com’s manned Ecoharvester skimmer; (right)
remote-operated skimming platform developed at the University
of Waterloo

(see Fig. 2-9-left). This type of woven nylon mesh is manufactured by Sefar, shown

in Fig. 2-9-right, with mesh openings ranging from 15 µm to 5000 µm. Individual

Microcystis cells are only 5 µm, but these cells aggregate into colonies with an average

size ranging from 20µm to 700 µm during the year, per a recent study in Lake Taihu

[110]. Colonies in Lake Erie are typically greater than 50 µm [103], and it was reported

that approximately the same amount of algae was collected with a 64µm plankton

net as a 112 µm net [13].

Figure 2-9: (left) Typical plankton net designed to be towed behind a boat
[credit Peter Verhoog]; (right) Sefar Nitex woven nylon mesh
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The vertical distribution of colonies in the water column, which is important to

understand for development of a straining system, is an area of active research (see

for a recent example [84]). Although a cohesive understanding has not been achieved,

several observations may be given. First, larger colonies have more gas vesicles, and

can therefore exhibit stronger buoyancy and faster ascent rates than smaller colonies

[70, 69]. Second, strong light exposure can make Microcystis colonies less buoyant

[69]. Third, wind pressure, and subsequent mixing in the water column may overcome

colonies’ buoyancy, which is discussed in more detail in the context of remote sensing

[107].

Anecdotally, Microcystis was believed to rise to the surface at midday to absorb

sunlight, and sink deeper in the water column at night to take in nutrients. This

simple understanding is called into question by data collected by Dr. Bridgeman’s

group from the University of Toledo at the Toledo water intake. They performed

two, 24-hour-long tests in 2016 where blue-green, diatom, green, and cryptophyta

concentrations were measured at 0.1 m depth intervals in the water-column. At least

for these two observation windows, where many of the other factors may have been

at play, blue-green’s concentration did not significantly increase at the surface during

the day nor increase below the surface at night.

From a straining system design standpoint, several approaches may be considered.

It would be easiest to design a system that always collects from the water’s surface

to some point at a fixed depth below the surface, e.g. 1 m. A more sophisticated

system could sense where the highest concentration of algae was located and adjust

the location of the filtering window, e.g. between 1 m and 2 m. One must also consider

the other organisms in the environment which are in the size range to be strained

by the filter. In the type of waters where this swarm is designed to operate, blue-

green algae dominate such that collection of non-blue-green algae is hypothesized to

represent only a small fraction of total biomass collected.
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2.2.3 HAB Biomass, Biovolume, and Areal Extent

A study by Bridgeman et al [13] does give a good data source for estimating how

much biovolume would be collected if all of the algae within a square meter (from

surface to bottom) could be removed, the relative biovolume during the entire season,

and variation in biovolume from year to year. These biovolume estimates are based on

dropping a 112µm planktonic net to the bottom and drawing it to the surface so that

the biomass contained within the entire water column is collected. The authors aver-

aged these numbers over four sites in the western basin of Lake Erie over the bloom

season from 2002-2011. Fig. 2-10(left) shows how these biovolumes varied through-

out the season and Fig. 2-10(right) integrates the curves from Fig. 2-10(left), giving

a pseudo-cumulative biovolume (my term) for the entire season, which is a useful

indicator of the severity of the bloom from year to year. The term pseudo-cumulative

biovolume is used because it is found by taking the area under the biovolume curve,

which is not a true measure of biovolume. However, these pseudo-cumulative bio-

volumes, determined using only four sampling locations, visually correlate well with

more recent data that give a general bloom severity for the years 2002-2017 for the

entire lake, shown in Fig. 2-10(right-inset).

Analyzing these data, with pertinent values given in Table 2.1, helps to provide

context for the intra- and inter-year variability within which a swarm would be op-

erating. The pseudo-cumulative biovolumes varied from 36 000 mL m−2 year−1 in one

of the worst bloom years, 2011, to 15 000 mL m−2 year−1 in a moderate bloom year,

2009, to 3000 mL m−2 year−1 in a non-bloom year, 2007. Thus, the difference between

one of the worst years and best years is about an order of magnitude. For each of

these years, the maximum biovolume at one sampling date was 1125, 360, and 75

mL m−2, respectively. This wet biovolume can be converted to both wet and dry

biomass. Wet biomass and biovolume are more relevant to this collection applica-
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Figure 2-10: (left) Microcystis arial biovolume averaged over four sites in the
western basin of Lake Erie [13]; (right) Area under the curves
from left-hand image which can be interpreted as a pseudo-
cumulative biovolume, allowing bloom severity to be compared
from year to year; (right-inset) Heidelberg’s year by year bloom
severity where 2011 was set to be the maximum severity (10.0),
but was later extended for the 2015 bloom.

tion. The wet biomass values can also be extrapolated to mass per square kilometer,

which is a more suitable system level measure. Please see the table notes for how wet

biovolume and biomass are determined.

Table 2.1 also includes an entry for the maximum concentration at any one site

for the entire span of years in the study. Noting that all of the values in the table are

yearly or overall maximum values, this helps establish an upper bound for designing

a swarm.

Excellent data is also available to estimate the areal extent of HABs in Lake

Erie using remote sensing. Recent work uses the long-duration Landsat program

satellites (Landsat 5 1984-2001), in addition to the more recent MODIS (2002-2011)

and MERIS (2012-present) satellites, to give an estimate of HAB areal extent [50].

This remote sensing data correlates well with Bridgeman et al’s in-situ data, and is

also included in Table 2.1. Note that in the severe bloom year of 2011, the areal

extent of the bloom is 1800 km2.
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Table 2.1: Overview of bloom severity, biovolume, biomass, and areal extent

Bloom
Year

(Severity)

Pseudo
Cumulative
Biovolume1

Areal
Biovolume1

Areal
Wet

Biomass2

Areal
Dry

Biomass3

Areal
Wet

Biomass

Areal
Extent4

[mL m−2 year−1] [mL m−2] [g m−2] [g m−2] [kg km−2] [km2]

2011
(Severe)

36000 1125 1125 11.963 1125000 1800

2009
(Moderate)

15000 360 360 3.778 360000 1125

2007
(Low)

3000 75 75 0.728 75000 370

Outlier N/A 2000 2000 21.326 2000000 N/A

1 Data taken from Bridgeman et al [13]
2 Assumes a specific gravity of 1.0 [64]
3 Using relation developed by Bridgeman et al [13]. Note that other literature measures

individual cell’s diameter to estimate wet biovolume [64, 22], which includes only intracellular
water, whereas Bridgeman et al measures the volume of an entire mass of floating cells and
colonies, which includes intracellular and some extracellular water. For this reason, the 10:1
wet to dry biomass relation sometimes used in literature [80] cannot be used for Bridgeman
et al’s data.

4 Data taken from Ho [50]

2.2.4 In-situ and Remote Sensing

Sensing cyanobacteria is a critical capability so that a swarm can concentrate its

efforts where algae are most abundant. This could either take the form of in-situ mea-

surements, performed by collecting agents, or remote sensing performed by dedicated

aerial sensing agents. Cyanobacteria is typically detected and quantified by observ-

ing reflectance spectra (from solar irradiance) or induced-fluorescence (when excited

by a light source). Two intracellular pigments, chlorophyll-a and phycocyanin, drive

these unique spectral responses, shown individually in Fig. 2-11(left). The spectral

signature of Microcystis, which is clearly influenced by these two pigments, is shown

in Fig. 2-11(right). Chlorophyll-a is responsible for the reflectance valley (absorption

peak) near 680 nm and phycocyanin is responsible for the reflectance valley (absorp-

tion peak) near 625 nm. When measured in-situ, a fluoroprobe or fluorometer, e.g.
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the YSI EXO2, excites the sample and the fluorescence intensity is monitored and

correlated to cell abundance. When detected remotely, solar irradiation is incident

on the algae-containing water and the corresponding radiation can be observed with

a multi- or hyper-spectral imaging device.

Of course, algal abundance may be directly, but more laboriously, established by

counting the number of cells. Generally, algal abundance, whether directly enumer-

ated or correlated to a spectral response, is given in mg m−3, µg L−1, or ppb, which

are all equivalent.

Figure 2-11: (left) Absorption spectra for pigments of interest which help
to differentiate blue-green algae from other substances (organic
and non-organic) in the water[79]. Fresh-water blue-green al-
gae contain chlorophyll-a and phycocyanin.; (right) Reflectance
spectra for Microcystis, with illustration of MERIS bands [97].

Several algorithms have been proposed for estimating algal cell abundance from

remote-sensed data. One of the algorithms that has been widely adopted is the

cyanobacterial index (CI), introduced by Wynne et al [108]. Using the CI for the

aerial sensing agents in a swarm is an attractive proposition because the CI (i) requires

only three bands, which necessitates a multi-spectral imager, but not a much more

sophisticated hyper-spectral imager, (ii) can be correlated to approximate blue-green

biomass, and (iii) is already widely used in the remote sensing community. This

31



algorithm is called a shape algorithm because it calculates how quickly the spectral

response is changing its shape at a target wavelength; in this case near the 680 nm

chlorophyll-a reflectance peak. The CI value can be correlated to cell count mL−1[107]

or biomass µg L−1[2], and then integrated spatially to find biomass. The CI was

initially devised for data from the European Space Agency’s MERIS satellite with

bands centered at 665, 681, and 709 nm. In 2012, contact with MERIS was lost and

Wynne et al [106] devised a revised CI for NASA’s MODIS satellite, which had been

previously used to monitor cyanobacteria [8]. The MODIS bands centered at 667, 678,

and 754 nm were used, and they also calculated a correction factor so that data could

be compared between both platforms. Fig. 2-12 shows an example MODIS CI image

of blooms in the western basin of Lake Erie from September 2013 and September

2014.

Remote sensing is performed not only from satellite platforms, but also from aerial

platforms. NASA Glenn Research Center has been providing weekly or biweekly

aerial coverage over points of interest in Lake Erie, e.g. the Toledo water intake and

Maumee Bay State Park. These aircraft fly hyperspectral imagers (HSI) [58] and can

provide a much better spatial resolution than satellites (1 m x 1 m pixel versus 1 km

x 1 km pixel). The HSI data is compiled from which the CI is supplied as a standard

Quicklook product, which water managers can use to make management decisions

[57]. An example CI data field from an August 10 2015 flight over the Toledo water

intake is shown in Fig. 2-12.

One complicating factor when monitoring algae remotely is that all algae may

not be present near the surface. This could especially be the case when high winds

are present to mix the algae into the water column. When studying this possibility,

Wynne et al hypothesized that for a wind stress of <0.05Pa, most of the algae is

near the surface and the remote sensing CI estimate should be accurate. For wind

stress >0.1 Pa, the algae would be more homogeneously distributed throughout the
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Figure 2-12: (left) Cyanobacteria Index (CI) for the western basin of Lake
Erie in September of 2013 and 2014, derived from NOAA
MODIS data; (right) CI for a transect over the Toledo water in-
take in August 2015 derived from NASA Glenn Research Center
hyperspectral flyover data. The intake is visible in the upper
right and an old boat path is also visible.

water column [107]. Whether due to wind, or due to Microcystis controlling their

buoyancy, the surface concentration has been shown to vary significantly from hour

to hour, which was shown using a geostationary satellite over Lake Taihu in China

[51].

CI data was compiled for the years 2002-2014 and used by Wynne et al to assess

the threat level to drinking water intakes located in the western basin of Lake Erie,

shown in Fig. 2-13 [105]. They concluded that Toledo had the highest frequency of

bloom occurrence. Monroe has significantly less bloom activity for most years relative

to Toledo, and Carroll and Ottawa County have early blooms while Put-in Bay has a

short peak of high frequency blooms in late August. This supports the assertion that
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concentrating efforts around Toledo’s water intake is appropriate, and that although

these other intakes are at a smaller risk, they too could benefit from swarm collection.

Figure 2-13: Pictorial overview of drinking water intakes of interest in
the western basin of Lake Erie [105] (M=Monroe, T=Toledo,
C=Carroll Township, O=Ottawa County, P=Put-In-Bay,
MH=Marblehead, U=Union County

Remote sensing data is also valuable to help predict future HAB conditions.

NOAA GLERL uses a general hydrodynamical model, coupled with the remote sens-

ing data, to predict how blooms will migrate. Their end data product, called the

HAB tracker, gives a five day forecast, which gives water treatment managers ad-

vance warning to prepare additional water treatment processes.

Note that cyanobacterial abundance can also be approximated by measuring other

water quality properties such as turbidity or dissolved phosphorous concentration.

However, these measures are indirect, and for this reason, the focus remains on fluo-

rescence and reflectance-based methods.
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2.2.5 Other Great Lakes Data Streams

It is worthwhile to mention several more of the existing HAB-related data streams

that exist in the Great Lakes, with an emphasis on Lake Erie. The National Data

Buoy Center (www.ndbc.noaa.gov) compiles buoy data from the National Weather

Service (NWS), National Ocean Service (NOS), National Oceanic and Atmospheric

Association (NOAA), and private companies (e.g. Limnotech), among others (see

Fig. 2-14). Note that Limnotech 45165 is placed near the Toledo water intake and

has an onboard YSI fluorometer mounted at a depth of 2 ft. Additional NOAA

GLERL buoys have been also been placed in the western basin of Lake Erie (see

Fig. 2-15). These buoys have varying measurement capabilities, but may be used

to measure wind speed and direction, current speed and direction, solar irradiance,

water temperature, etc. All of these buoys have data available in real-time.

Much current Lake Erie environmental data, as well as historical data, is avail-

able using the interactive map data portal, Great Lakes Observing System (GLOS -

https://www.glos.us/). NOAA GLERL has also deployed an Environmental Sample

Processor (ESP) near the Toledo water intake which can detect microcystin toxins in

near-real time. This ESP collects and concentrates particulate from water samples

and can run onboard molecular diagnostics.

The data streams presented thus far have focused on measuring algae, but there

are also many data sources that measure phosphorus levels and river flow in Lake Erie

tributaries, e.g. Heidelberg University’s Tributary Loading program and the USGS

river gauges. There is also an interactive map data portal called the Western Lake

Erie Nutrient Source Inventory (NSI) that includes information on sources of nutrients

in the western basin’s watershed.
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Figure 2-14: National Data Buoy Center (NDBC) buoys in the western basin
of Lake Erie and throughout Great Lakes (inset). The Lim-
notech 45165 buoy is located near the Toledo Water Intake.

2.2.6 Cost of Treatment

A 2015 US EPA report compiled all available published information on the ex-

ternal costs of nutrient pollution impacts [37]. These costs can be classified as either

economic losses in the form of tourism and recreation, commercial fishing, and prop-

erty values, or increased costs stemming from human health, drinking water treatment

costs, mitigation costs in lakes, and restoration. Note that comprehensive estimates

for these costs cannot be calculated because they are not being documented, so anal-

ysis is necessarily limited to the studies that have been performed. The following

studies that are presented are limited to fresh-water bodies within the United States.

A pair of studies centered on the economic impact of recent bloom in Grand Lake

St. Mary’s [25, 26] found that local businesses have lost $37-47 million in revenues,

several local marinas and boat dealers have gone out of business, a nearby state
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Figure 2-15: NOAA Great Lakes Environmental Research Lab (GLERL)
continuous monitoring stations and weekly test sites in the west-
ern basin of Lake Erie

park has lost $260,000 in revenues, a canceled regatta resulted in a $632,000 loss,

and there were 23 reported cases of human illness/dog deaths. The Celina water

treatment plant, which draws water from this lake, has conservatively spent $13.1

million additional dollars, of which $3.6 million was total operations and maintenance

costs for the installation of treatment controls and the setup of toxin testing.

A study of property values along 18 Ohio beaches [4] found that property values

decreased by 1.93% for every 1m change in water clarity at homes located the aver-

age distance from a beach (13km). As distance to the beach increased, the impact of

clarity on value disappeared. Around the headwaters of the Mississippi river in Min-
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nesota, a study of lakefront property sales around 37 lakes found a one meter change

in water clarity resulted in a price change between $1,678 and $84,749 depending

on the location/market [55]. A study of two Wisconsin lakes prone to algal blooms

compared the value of homes located on these lakes to non-bloom lakes [53]. They

found there was a $128-$402 decrease in value per shoreline foot from the non-bloom

to bloom-prone lakes.

The EPA report included many estimates for algae mitigation efforts in lakes,

including applying alum, applying copper sulfate, adding aeration, distributing bar-

ley straw around the shore, dredging, herbicide application, biomanipulation, and

hypolimnetic withdrawal. As it is difficult to assess if these are only feasibility esti-

mates, rather than costs of actual interventions, these numbers are not listed. Exact

numbers are known for alum applications to Grand Lake St. Mary’s, which includes

$3.5 million to treat 4,900 surface acres (40% of the lake) in 2011 and an additional

$5 million in 2012.

With this EPA report, and some of these specific studies as a starting point,

additional information was gathered on three regional water treatment (WT) facilities

which are all impacted by HABs. The Toledo, Bowling Green, and Celina WT plants

were chosen and their unique water sources, daily capacities, and treatment options

mean that each must be considered individually.

The first WT facility is Toledo’s Collins Park WT plant (80 million gallons per

day (MGPD)) which pulls water from an offshore water intake in Lake Erie. From

there, water runs to a low-pressure pumping station, which pumps the water to the

WT plant. The plant’s main interventions for high algae levels are potassium per-

manganate, which is introduced already at the water intake, and powder activated

carbon (PAC), which is introduced at the low pumping station. Because of the rela-

tively long distance between the intake, low pressure pumping station, and WT plant,

these chemicals have several hours of contact time to begin pre-treating the water.
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This environment would place the most technical demands on a robot swarm, because

of regularly rough wave conditions and the need to avoid other manned vessels.

The second WT facility is Bowling Green’s WT plant (5 MGPD) located on the

Maumee River just upstream of Waterville, OH. This facility pumps water from the

Maumee river into a reservoir. From the reservoir, the water is pumped into the

main treatment facility. This facility has the luxury of a sizable reservoir (25 acres)

with a 45 day raw water supply, into which they can apply an algaecide to kill the

majority of algae before entering the treatment facility. Starting in early May, about

1000 lbs week−1 of this hydrogen peroxide-based algaecide (PAK-7) is applied, costing

$34,000-$40,000 per year (2016-2017). The facility also uses granular activated carbon

(GAC), which costs $216,000 per year (2016-2017). Potassium permanganate is also

used by the facility, but it is not dosed to the algae concentration, and is only used

for mussel control. A robot swarm would be the easiest to implement for this type

of facility, with a dedicated reservoir, but operation would have to cost less than the

current algae-related consumables, and provide an equivalent algae removal rate to

be competitive.

The third and final facility is the Celina WT (1.3 MGPD) plant located on the

NW corner of Grand Lake St. Mary’s. This plant is one of the most advanced in

the state, and it uses this unique series of treatment processes: clarification, ozonate,

lime soften, recarb, ozonate (2nd time), sand filtration, GAC, UV, chlorinate. This

plant also uses potassium permanganate ($140,000 annually), and the cost of GAC

is $300,000 annually. A robot swarm could be implemented at this type of facility,

but care would need to be taken to segregate the swarm from recreational activities

on the lake. Like for the other plants, the cost of the swarm would have to cost less

than the current algae-related consumables to be competitive.
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Chapter 3

Sizing, Scalability, and Control of a

Robot Swarm to Mitigate Harmful

Algal Blooms

This section is taken from a manuscript that is being prepared for submission to

a journal. It is authored by Adam Schroeder, Brian Trease, and Alessandro Arsie.

After the conclusion of this manuscript, a supplemental section has been added with

additional information.

3.1 Abstract

A robot swarm is proposed as a novel solution to the global threat posed by

harmful algal blooms. To inform the design of a swarm to physically collect the

harmful algae, three sets of simulations are performed. The rate of algae collection

is studied relative to: the diffusion of the algae in the water (due to turbulence),

the composition of the swarm as either few large robots or many small robots, and

the quantity of constant-size robots in the swarm. The results are shown as plots of

uncollected biomass vs. time, and as maps of the algae distribution after the robots
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have begun collection. Both a partitioning and non-partitioning controls approach

are taken, which impose different hardware and communication requirements on the

robots. This work is being done in parallel with the development of physical robots

that can strain and skim algae from the water.

3.2 Introduction

Despite having enormous potential, there are few examples of robot swarms being

developed as engineering solutions to real-world applications. This work focuses on

designing an aquatic swarm to mitigate harmful algal blooms (HABs), which are a

recurring global threat to the world’s water supplies. These blooms can be massive,

and they contain toxins which can be harmful to human and non-human health. There

are limited physical, chemical, and biological methods for combating these blooms,

but a robot swarm that could be scaled up to the size of the bloom would unlock new

treatment capabilities.

The development of a robot swarm for this purpose can be divided into control

development, highlighted in this work, and development of the physical robot plat-

form. The physical platform is being developed in parallel, including technologies for

physically removing algae from the water using straining and skimming processes. An

image of both a small prototype for straining algae from water and a larger prototype

for skimming surface scum is given in Fig. 3-1.

To aid in the development of this swarm, several sets of simulations are used to

inform the swarm designer about (i) the ability of the swarm to collect a diffusive

substance, i.e. the algae, (ii) whether many small robots or fewer large robots should

be used, and (iii) what scaling effects are present as more and more robots are added

to the swarm. Collecting a diffusive substance is an interesting problem, although

somewhat specific to this application, but the second and third points are generally
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Figure 3-1: (Left) Small platform for straining algae from below the sur-
face using a plankton net. The green harmful algae is visible on
the surface and residual algae is visible in the net. (Right) Large
platform for skimming algae surface scum using a conveyor. Only
single units have been tested thus far as the collection technolo-
gies are developed.

applicable to any swarm.

The following sections give a background of harmful algae, techniques for collect-

ing it, and examples of aquatic swarms (Section 2), explain how the problem was

formulated and which simulations were performed (Section 3), share the results from

those simulations (Section 4), discuss the implications of the results (Section 5), and

then offer some concluding thoughts and comments on future work (Section 6).

3.3 Background

Lake Erie serves as a good reference point with respect to harmful algal blooms,

as they have been occurring and have been studied for many years. Even in one

of the least severe years (2007), the bloom had an areal footprint of 370 km2. In

one of the most severe years (2011), the areal extent was 1800 km2 [50]. The type

of harmful algae, Microcystis aeruginosa, is actually a cyanobacteria which forms

spherical colonies ranging in size from 20-700 µm[110]. These colonies are suspended

in the water and largely move with any water currents. Their concentration is usually
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measured in biomass or biovolume.

The physical collection of algae is a challenging problem in itself. Field biologists

collect algae using a plankton net [13], similar to the one mounted on the small

platform from Fig. 3-1, but only a fraction of the algae present can be collected.

Some colonies go around the net and others are small enough to move through the

net. A net with a smaller mesh size would collect smaller colonies but also create

a higher drag force. For this work, it is assumed that 90% of the algae within the

conveyor width or plankton net width is collected as the robot moves forward and

that the robot leaves a defined, cleared path behind it. Turbulence in the water causes

algae to slowly diffuse into the previously-cleared area. For simplicity, any additional

mixing or hydrodynamics caused by the motion of the boat is not considered.

There are a few examples of aquatic robot swarms, with the first example coming

from Duarte et al. [32], which has been demonstrated for environmental monitoring

applications. They demonstrated homing, dispersion, clustering, and area coverage

using as many as ten robots. A second notable example of an aquatic swarm comes

from Zoss et al. [111]. Their ‘Bunch of Buoys’ project used a ‘mobile buoy’ capable

of environmental monitoring and other swarm behaviors such as flocking and area

coverage. They performed field experiments with up to 45 buoys. The final example

of an aquatic swarm, called ‘SeaSwarm’, was intended to absorb oil after an oil spill

[1], although it is unclear if more than one robot was constructed. Collecting harmful

algae using a robot swarm builds on these works, but also presents its own unique

challenges.

There are many controls possibilities for this task, with differing communication,

sophistication, and sensing requirements. Two controls approaches are considered in

this work. The first approach is for the robots to perform a biased random walk

in the direction of highest algae concentration. This does not require any explicit

communication, but it does require that the robots have data on their local algae
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concentration. In practice, this could be acquired using a fluorometer, which is an

in-situ sensing instrument, or by using a remote sensing technology. The second

approach is for the robots to partition the domain into individual regions of responsi-

bility. Once partitioned, an individual robot would parse back and forth, exhaustively

covering their assigned region. This approach would only require communication at

the beginning, when partitions are established, or if partitions need to be adjusted or

regenerated. This approach would not require any algae sensing capability. Neither of

these controls approaches in themselves are novel, but they will help give the swarm

designer intuition about this particular application.

A biased Lévy flight was chosen for the first approach, hereafter referred to as

the non-partitioning approach (see supplemental material, Section 3.8.2). This is a

type of random walk that uses frequent short steps and occasional very long steps.

In general, Lévy flight has been an active area of swarm robotics research for search

tasks [28, 98, 72], and area coverage and interception tasks [89, 90]. This biased walk

in the direction of highest algae concentration is a form of chemotaxis, or movement

in response to a chemical. The robots can indirectly communicate about where they

have been, because algae has been cleared from that area.

A Voronoi partitioning scheme was chosen for the second approach, hereafter

referred to as the partitioning approach, following the example of Pavone et al [75] (see

supplemental material, section 3.8.3). They describe how a domain could be equitably

partitioned using Lloyd’s approach [61], used in this work, and other approaches. It

has been demonstrated that this process can be decentralized [15].

Referring back to the research questions from the introduction, there is no litera-

ture studying the collection of a diffusive substance, although some research studies

the localization of a source using a gradient [43, 92]. To the authors’ knowledge,

there is not any literature on comparing the performance of few large robots to that

of many small robots. Finally, there is literature that studies the relative benefit
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gained by adding more robots for many different applications, e.g. foraging [47], area

coverage [40], or the amount of interference between robots [59, 83]. However, this

study is unique in that it varies the robot quantities over several orders of magnitude.

3.4 Problem Formulation and Implementation

Three sets of simulations were performed, with a list of the most important pa-

rameters given in Table 3.1. These simulations address the research questions from

the introduction, and are referred to as: Diffusive Collection, Robot Size vs. Quantity,

and Robot Density. For all simulations, robots move through water at a speed of one

unit per second and collect 90% of the algae that they pass over. Note that algae

actually has some control over its buoyancy, and its depth typically varies as part of

a diurnal cycle [3]. For these simulations, which have been reduced to a 2D problem,

it is assumed that the algae is near enough to the surface to be collected.

Table 3.1: Overview of the main parameters of each simulation set

Study
Domain
Size[m]

Spatial
Step

Time
Step

Diff.
Type

Simul.
Time

Run Time [hrs]
Mean Set

Diffusive
Collection1

Part.
100x100 0.1 m 0.1 s ADI 10 000 s

1.3 5.0
Not-
Part.

1.1 4.3

Size vs.
Quantity2

Part.
100x100 ≤0.1 m 0.1 s FTCS 10 000 s

1.8 8.8
Not-
Part.

0.7 4.0

Robot
Density3

Part.
800x800 0.1 m 0.1 s FTCS 10 000 s

5.2 20.7
Not-
Part.

4.2 16.7

1 ADI scheme is computationally more expensive, but more accurate than FTCS
2 Finer spatial step for many, small robots (0.025 m for 40 robots) takes more time
3 For 10 000 robots, only 1000 seconds simulated time required.

The algae is treated as a diffusive substance, with the turbulence in water caus-

ing the diffusion (see supplemental material, section 3.8.1). Diffusivity values can be
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estimated based on the size of bloom or algae patch by applying a classic rule for esti-

mating diffusivity, called the ‘4/3 power law’ [82]. Unless noted, a diffusivity of 10−4

m2 s−1 was used. Either an explicit forward-time, center space (FTCS) discretization

scheme or a Crank-Nicholson alternating direction implicit (ADI) scheme were used

to numerically simulate diffusion (see supplemental material, Section 3.8.8), and an

NVIDIA K6000 GPU accelerated this portion of the simulation, with total simulation

run times given in Table 3.1 (see supplemental material, section 3.8.7).

The initial algae concentration was set to 50µg m−2, which represents a ‘rela-

tively high’ concentration. Unless noted, a robot collection width of 1 m was used,

robots operated in a 100x100 m domain, 10 000 s of time was simulated, and the algae

concentration in the domain was tracked with 0.1 m resolution.

These simulations are necessarily a gross simplification of an environment that

is hydrodynamically, biologically, ecologically, and meteorologically complex. This

simplification is necessary to make the simulation tractable and to extract higher-

level lessons pertinent to the swarm designer.

Recall that for each simulation set, both a biased Lévy flight and a partitioning

approach were used. Collisions between robots were not tracked, although the collision

rate for an unbiased Lévy flight is being investigated in parallel work that includes the

effects of number and size of robots. For brevity, and because the controls approaches

themselves are not novel, a detailed mathematical development for each is omitted

(see [90, 75] for details). The exact parameters used are given, and for reproducibility,

the MATLAB scripts for these simulations are available1. Details specific to the three

individual studies will now be introduced.

Diffusive Collection: Applying the 4/3 power law, diffusivity values ranging from

10−2 to 10−5 m2 s−1 are possible (see supplemental material, Section 3.8.9). The

1MATLAB script available at https://www.mathworks.com/matlabcentral/
fileexchange/67071-robot-swarm-harmful-algae-collection
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diffusivity was varied by an order of magnitude within this range for this simulation

set. Faster diffusion than this would be caused by very large eddies in the water,

which would be powerful enough to move the robot boats along with the algae. Ten

robots, each with a one-meter-wide collection width, were used for this study.

Robot Size vs. Quantity: A constant swarm capacity of 10 m was assigned, where

capacity refers to the number of robots multiplied by the collection width of each

robot. The capacity could be allocated to as few as 2 large robots (5 m-wide), or as

many as 80 small robots (0.125 m-wide). The algae concentration was tracked with

a resolution of at least 1/10th the width of a robot, e.g. 0.0125 m for the case of 80

robots.

Robot Density: Robot quantities of 10, 100, 1000, and 10 000 were simulated, now

within a larger 800x800 m domain so that a larger range of robot densities could be

simulated.

3.5 Results

Select results for each of the sets of simulations are shown below, each with a plot

of uncollected biomass vs. time. At the outset, the uncollected biomass is the initial

concentration (50µg m−2) times the working domain (either 100x100 or 800x800 m2).

For each plot, dashed lines show the results of the partitioning approach, and solid

lines show the results from the non-partitioning approach.

Diffusive Collection: Figure 3-2 shows how quickly algae can be collected for

diffusion rates that vary by orders of magnitude. Fig. 3-3 shows the final algae

distributions for each of the diffusion rates for the non-partitioned case. Algae is

collected more quickly when the diffusion rate is low which means that robots only
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need to cover an area one time. The partitioning approach clearly outperforms the

non-partitioning approach for any rate of diffusion. The partitioning approach is

guaranteed to exhaustively cover the area, which is especially beneficial when the rate

of diffusion is low. Distinct changes of the line slope in Fig. 3-2 for the partitioning

approach indicate when the robots have finished covering their own partition for the

first time and begin to re-cover their partition.

The larger lesson from this set of simulations is that a diffusive substance can

be collected regardless of diffusion rate, and that even an approach that does not

exhaustively cover the area can still collect algae in a reasonable amount of time.

Figure 3-2: Collection performance over a range of diffusivity values for
a non-partitioning scheme (solid) and a partitioning scheme
(dashed)

Robot Size vs. Quantity: Figure 3-4 shows how quickly algae can be collected by

few large robots or many small robots. Figure 3-5 shows the final algae distributions

for the non-partitioning case for each robot quantity/size combination. The non-

partitioning approach was not very sensitive to the quantity/size combination until

the quantity of robots was very low. For very few robots, if even one of the robots

is not operating in area with a high concentration of algae, the entire system suffers.

48



Figure 3-3: Final algae distributions in the non-partitioned case after 10 000 s
with diffusion rate (D) increasing by orders of magnitude from
left to right. The effect of the faster diffusion rate is evident in
how quickly the robot trails become indistinct. Note that the
scale for each map is different.

The partitioning approach collected algae more quickly for quantity/size combinations

with few robots. Performance decreased for combinations with higher quantities of

robots. Subsequent analysis showed that this is likely due to how partitions were

formed. The partitioning process, which occurs before any collection is performed, was

continued until the difference between the area of the largest and smallest partitions

was below a predefined value. This threshold worked well for fewer robots, but

for higher quantities of robots, it allowed some unequally-sized partitions to form,

which decreased how quickly algae could be collected. It took robots in the largest

partitions more time to complete their first pass, which is when the majority of the

algae is collected, while robots in the smaller partitions were already re-covering their

partition and collecting less algae.

As before, the partitioning approach outperformed the non-partitioning approach.

The larger lesson learned here is that the quantity/size combination did not have a

significant effect on collection rate, as long as the number of robots was not too low

and as long as the size of the partitions was similar.

Robot Density: Figure 3-6 shows how quickly algae can be collected as the num-

ber of robots increases by orders of magnitude. Figure 3-7 shows the final algae
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Figure 3-4: Collection performance over a range of robot quanti-
ties/collection widths for a non-partitioning scheme (solid) and
a partitioning scheme (dashed). A constant system collection
width of 10 m was maintained, where, for example, the 5 robot
case would use a 2 m-wide robot collection width.

distributions for the different robot quantities for the partitioning case. Unlike the

previous study, the size of the robot remains constant as the quantity of robots varies.

It is expected that algae is collected more quickly as more robots are added, but it is

interesting to see if there are diminishing returns as more robots are added. At the

lowest and highest quantities, there is not much difference between the partitioning

and non-partitioning approaches. The partitioning approach does collect algae more

quickly for more reasonable quantities of robots.

It is more valuable to view these results with the time shown on a log scale, as

in Fig. 3-6 (right). This shows how, for the partitioning case, there are diminishing

returns as more robots are added. This is attributed to how the robots behave at

the boundary of their partitions. Each robot completely covers the boundary of

its partition, which results in some overlap into the neighboring partitions. This

redundancy becomes more of an issue as the number of partitions increase, because

the relative ratio between partition perimeter and area increases as the number of
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Figure 3-5: Final algae distributions in the non-partitioned case after 10 000 s
with number of robots increasing and collection width decreasing
from left to right. It is clear that the case of two large robots
missed collecting several larger patches of algae. Note that the
scale for each map is different.

partitions increases, as shown in Table 3.2. Simply put, as the number of robots

increase, and the number of partitions increase, the size of each partition decreases,

and each robot spends more time at its partition’s boundary, which causes more

redundant coverage.

Table 3.2: Partition perimeter to area ratio as robots’ partition area varies

Robots 10 100 1000 10 000

Area / Robot 64000 6400 640 64
Perimeter1 942 298 94 30

Perimeter/Area 0.015 0.047 0.147 0.465

1 Assumes partition is a regular hexagon. Observed partitions are either irregular pen-
tagonal or hexagonal (Fig. 3-7).

3.6 Discussion

The higher-level takeaways from these simulations are that either a partitioning or

a non-partitioning approach can effectively collect a diffusive substance, such as algae.

In almost all cases, the partitioning approach is more effective, but it does require

robots to know their neighbors’ positions to form the initial partitions or to adjust

partitions due to robots entering or dropping out of the swarm. Perhaps even more

difficult, the partitioning approach would require the robots to navigate in straight
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Figure 3-6: Collection performance over a range of robot densities on a linear
(left) and log (right) time scale. The log-scale facilitates com-
parison across orders of magnitude (only the partitioning results
shown). The results are compared to a simplified case (long/short
dashes) where overlapping coverage across partition boundaries
is not considered (see supplemental material, Section 3.8.5).

lines with minimal overlap as they parse back and forth amid wind and waves.

These realizations make the non-partitioning more attractive, but one of the ma-

jor drawbacks to this approach is the need for each robot to continuously detect its

local algae gradient. Shaukat and Chitre elucidated how detecting a gradient [92],

in their case to localize a source, can either use multiple sensors on the same robot

(instantaneous gradient detection), or only a single sensor (temporal gradient detec-

tion). However, due to sensor cost (fluorometer >$2000), a multi-sensor solution is

undesirable. Furthermore, the noisiness of the algae distribution and the disruption

from the robot itself moving through the algae may make detecting any gradient a

challenge. With these considerations, a robot swarm that performs unbiased Lévy

flight (no sensors), instead of the previously-used biased Lévy flight is of interest.

Another simulation set for the diffusive collection was performed, and the new results

(dotted lines) overlaid with the previous results, are shown in Fig. 3-8.

There is not a significant degradation in performance even when the robots cannot

sense their local algae concentration. This type of relatively unsophisticated control
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Figure 3-7: Final algae distributions in the partitioned case after 10 000 s
with number of robots increasing by orders of magnitude from
left to right. For 1000 and 10.000 robots, a magnified portion of
the domain is also shown. The larger partitions have not been
covered completely or as many times as the smaller partitions.

approach is easily implemented with the existing platforms.

These simulations did not consider the possibility of a collision between robots.

Research has shown sublinear performance improvement as the number of robots

increases, due to interference between robots [47, 83]. It is expected that the number

of collisions between robots increases as the number of robots increases, but it would

be interesting to see if the partitioning or non-partitioning approach handles higher

robot densities more gracefully than the other. For the partitioning case, it has

already been observed how the robot spends more time at its partition’s boundaries

as more robots are added. This results not only in redundant coverage and decreased

collection, but it would also result in a higher rate of collisions.

As previously noted, this simulation environment is a very complex system. These

simulations only included the effect of algae diffusion, due to turbulence in the water,

but not advection, due to prevailing currents. This work also started with a homo-

geneous algae distribution. In reality, algae is sometimes distributed homogeneously,

but it is often present in heterogeneous streaks and patches. This is evident even in

Fig. 3-1. The inclusion of collision tracking, algae advection, and the possibility of a

heterogeneous initial algae distribution are three areas targeted for future work.
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Figure 3-8: In addition to the biased non-partitioning (solid) and partitioning
(dashed) results shown over a range of diffusivity values (see
Fig. 3-2), results are also shown for unbiased Lévy collection
(dotted). There is little degradation using the unbiased Lévy
flight, which does not require any algal sensors.

3.7 Conclusion

Simulations were performed to assist a swarm designer in the task of constructing

a robot swarm to mitigate harmful algal blooms by physically collecting the algae.

These simulations were targeted at gaining application-specific understanding of col-

lecting a diffusive substance (algae). They were also targeted at obtaining a more

generally applicable understanding of the impact of the robot quantity/size combi-

nation, and varying the robot quantity while keeping the robot size constant. Two

controls approaches were implemented, partitioning and non-partitioning, which im-

pose different hardware and communication requirements. The easiest-to-implement

approach would be a non-partitioning control scheme where robots simply collect al-

gae while performing a random walk, without the requirement of sensing their local

algae concentration.

The larger lessons learned from the simulations are that (i) algae can be collected

efficiently, regardless of the diffusivity, (ii) an approach that does not exhaustively
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cover the domain can still effectively collect algae, (iii) the robot quantity/size com-

bination did not strongly influence collection, unless the number of robots was very

low, and (iv) in the partitioning approach, robots spend more time at their parti-

tion boundaries as the partitions shrink, which causes more coverage redundancy and

should lead to more collisions.

Overall, using a robot swarm to collect harmful algae merits further study and

development. Future work will concentrate on enhancing these types of simulations

by including collision tracking, advection due to currents in the water, and non-

homogeneous algae distributions. In parallel, physical platforms are already built

and will be tested on Lake Erie over the 2018 HAB season.

3.8 Supplemental Info

Additional information that supplements the content of the manuscript being

prepared is included here.

3.8.1 Mathematical Problem Formulation

The algae in this system may be modeled as a diffusing and advecting population,

as given by (3.1). The first term governs diffusion and the second term governs

advection. Here, a(r, t) is the distribution of agents, and b(r, t) is the distribution of

algae, which varies in space, r ∈ R2, and time, t. D is the diffusion coefficient, but

note that the diffusion of algae is not molecular, but rather driven by turbulence in

the water, which can be simplified to the same form when assuming eddy turbulence

[82]. The prevailing current in the water is given by ~v. Note that in this most general

form, the diffusion coefficient and current are not assumed to be constant over the

entire field.
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∂b(r, t)

∂t
= ∇2Db(r, t)−∇ · (~vb(r, t)) (3.1)

With this as a basis, an additional term needs to be added to account for the

collection of algae by the agents, which is generically defined as function Fcollect,

as given in (3.2). The arguments of this generic function include η, the collection

efficiency, which concedes that only some fraction of the algae encountered may be

collected, awidth, the collection width of an individual agent, and the distribution of

agents and algae, a(r, t) and b(r, t), respectively.

∂b(r, t)

∂t
= ∇2Db(r, t)−∇ · (~vb(r, t))− Fcollect (3.2)

The collection efficiency, η, in the general case, could capture the complex hydro-

dynamics of the collection process, but in a more simplified form is assumed to be

a uniform ratio of algae collected to algae present, within the treatment area. An-

other assumption is made that collection is not performed unless the agent is moving

through the water. With these assumptions, a more specific formulation of the Fcollect

function is given in (3.3). The term â is introduced, which is a binary scalar field set

to one in areas where an agent passed in the last time step, and zero otherwise.

∂b(r, t)

∂t
= ∇2Db(r, t)−∇ · (~vb(r, t))− ηâ(r, t)b(r, t) (3.3)

At this point, it is insightful to perform a dimensional analysis to show how the

units from this added collection term are compatible with the diffusion and advection

terms. The diffusion coefficient and current have units of m
2

s
and m

s
in 2D, respectfully,

the distribution of algae, b(r, t), is a scalar field with units of kg
m2 , and the term â

has units of s−1. The divergence operator, ∇·, converts a vector field to a scalar

field, the gradient operator, ∇, converts a scalar field to a vector field, and the

Laplacian operator, δ, or∇2, which is equivalent to the divergence,∇·, of the gradient,
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∇, returns a scalar field. These operators are progressively applied to show the

dimensional equivalence of these three diffusion, advection, and collection terms. The

appropriate units are directly placed in (3.2), which is shown in (3.4), and all vector

terms are identified with [[·]] for clarity. In the first step, the gradient portion of

Laplacian is applied to the first term and the divergence operator is applied to the

second term. In the second step, the divergence operator is applied to the first term

which reveals the equivalence of all terms.

[
kg

m2s

]
= ∇2

[
m2

s

] [
kg

m2

]
−∇ ·

([[m
s

]] [ kg
m2

])
−
[

1

s

] [
kg

m2

]
= ∇ ·

([[
kg

ms

]])
−
[
kg

m2s

]
−
[
kg

m2s

]
=

[
kg

m2s

]
−
[
kg

m2s

]
−
[
kg

m2s

] (3.4)

One final simplification to (3.3) assumes that the diffusion coefficent and current

are constant across the entire field as given in (3.5).

∂b(r, t)

∂t
= D∇2b(r, t)− ~v · ∇b(r, t)− ηâ(r, t)b(r, t) (3.5)

3.8.2 Non-Partition Approach: Stochastic Gradient-Following

In the first approach, agents use a mixture of algae gradient-following and random

noise to move through the domain. Equation (3.6) gives the nth agent’s velocity, Ṙn,

where αn
‖αn‖ (the normalized contribution from the vector sum of the gradient-following

and noise) is then multiplied by a constant magnitude, ε. Equation (3.7) is a Lévy

flight biased random walk where χ is the sensitivity to the gradient, and σ has a

constant magnitude and a uniformly distributed random direction.

Ṙn = ε
αn
‖αn‖

(3.6)
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αn = χ∇b(r, t)
∣∣∣∣
Rn

+ σ (3.7)

For a Lévy flight biased random walk, each segment of a path is sampled from a

heavy-tailed distribution. To accomplish this, a uniformly distributed random num-

ber, u, from [0,1] is first generated. This type of random number is transformed into

another distribution using the inverse cumulative distribution function. A cumulative

distribution function, Q, is defined for which the path length is s = Q−1(u). For a

power-law distribution, which is heavy-tailed, the cumulative distribution function is

defined in (3.8) where smin is the minimum path length, set to three, and αLévy is a

value from one to three. The inverse cumulative distribution function in (3.9) will

then give the path length.

Q(s) = 1−
(

s

smin

)−αLévy
(3.8)

Q−1(s) = smin(1− u)
−1/αLévy (3.9)

3.8.3 Partition Approach: Modified Voronoi Decomposition

In the second approach, agents start by distributively partitioning the domain into

individual regions of responsibility. This iterative process takes place before any algae

collection is begun and partitions are then fixed. The initial partitions are determined

based on the initial random location of each agent. Each point in the domain that

is closer to that agent than any other agent is added to that agent’s partition, which

is called Voronoi partitioning. This is given in (3.10) where Pn is the nth agent’s

partition, r0 is every candidate point in R, d is a function that defines the Euclidean

distance between each point and that agent, and Rn,0 is the initial location of each

agent.
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Pn = {r0 ∈ R|d (r0, Rn,0) ≤ d (r0, Ri,0)∀i 6= n} (3.10)

After calculating initial partitions, the desire is to modify the partitions so that

they all contain an equal amount of algae, building from the work of Pavone et al.

[75] which is related to the classic Lloyd’s algorithm [61]. Following Pavone et al’s

approach and nomenclature, each agent is equipped with a virtual ‘beacon’ that is

initially located at the agent’s initial location. In subsequent steps, instead of parti-

tioning the area based on the agents’ locations, the partitioning will be done based

on the beacon’s locations, Gn(x, y). The beacons are moved based on the x̂ and ŷ

centroid of each agent’s partition, which is calculated using (3.11) and (3.12), respec-

tively. These expressions are first developed in a continuous form and then converted

to a discretized form. Here, b(x, y) is the initial algae distribution, and λ is a weight-

ing factor, where λ greater than one creates more downstream partitions and λ less

than one creates more upstream partitions. This weighting factor is included because

it is hypothesized that concentrating the agents on the upstream or downstream side

may improve performance when advection is present. Note that weighting was not

applied to (3.12) because drift was constrained to one dimension, but it could be

implemented in the same manner as (3.6) in the more general case.

x̂n =

∫
Pn
xλb(x, y)dx dy∫

Pn
b(x, y)dx dy

=

∑
Pn
xλb(x, y)∆x∆y∑

Pn
b(x, y)∆x∆y

(3.11)

ŷn =

∫
Pn
y b(x, y)dx dy∫

Pn
b(x, y)dx dy

=

∑
Pn
y b(x, y)∆x∆y∑

Pn
b(x, y)∆x∆y

(3.12)

Each agent iteratively moves its beacon, Gn(x, y) by performing a gradient descent

toward the partition centroid, which is calculated at each step, as given by (3.13)

and (3.14), until some end conditions are met. The gradient descent is damped or

accelerated using a gain, K. Then they parse back and forth, left and right, while
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slowly moving from the bottom to the top of their partition. Once it has been

completely covered, they restart the cycle at the bottom of their partition. Note that

setting the gain value is akin to the process of tuning a proportional controller, which

requires some experimentation. A gain of 0.5 was found to perform acceptably.

Gx,n,new = Gx,n −K (Gx,n − x̂) (3.13)

Gy,n,new = Gy,n −K (Gy,n − ŷ) (3.14)

3.8.4 Analytical Approaches

The equation developed to describe the time and spatial evolution of the algae

distribution, (3.5), is quite complex and not able to be solved analytically. Thus,

performing numerical simulations is the preferred methodology. However, some sim-

plifying assumptions can be made and the results later compared to the results from

the numerical simulations.

The first such simplification assumes that agents are always collecting an average

amount of algae, which has a closed-form solution. This relation is given in (3.15),

where b is still the algae concentration, but now just a function of time, A is the

total domain area, and the other parameters have been previously defined. A simple

dimensional analysis is shown in (3.16) to confirm dimensional compatibility. To

simplify presentation, several constants can be combined into a single constant, χ.

This is a separable equation, with the closed-form solution given in (3.17), where b0

is the initial concentration and the total algae in the area of interest, Atot = bA.

db

dt
= −Nεawidthηb

A
= −χb (3.15)
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Figure 3-9: Analytical solution of swarm collection problem that assumes
agents always collect an average amount of algae

[
kg

m2s

]
=

[agent][m
s

][ m
agent

][ kg
m2 ]

[m2]
(3.16)

b = boe
−χt (3.17)

This analytical solution includes the effect of changing the number of agents,

collection width and efficiency, and agent speed but does not include the diffusivity.

A representitive solution is shown in Fig. 3-9.

3.8.5 Semi-Analytical Approach

A second simplification of the system, applicable to the partitioned case, can be

made by solving for only a single partition, using the coarsest spatial and time steps

possible, and then extrapolating the results to the larger system. The area of a single

partition is set to the area of the entire domain divided by the number of agents

and this single partition is assumed to be square. Then a forward time discretization

scheme (FTCS) is used with only two nodes for every path segment, each with a
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width of the treatment length. Thus, a 10 unit x 10 unit partition with an agent

collection width of one unit, would have only 20 nodes (each node 5 units x 1 unit)

and diffusion is assumed to only occur from one row to another row (one dimensional).

Assuming this one dimensional diffusion is equivalent to saying that diffusion in the

same direction as agent movement (along a row) is negligible compared to the agent’s

velocity, and the corresponding collection. The time step is set to the amount of

time needed to move across an entire row, and move down to the next row. Finally,

periodic boundary conditions are assumed for the top and bottom boundaries, which

would make sense when each partition is bounded by other identical partitions.

Assuming the 10 unit x 10 unit partition, the domain after a single pass is given

in Fig. 3-10(left). An agent starts in the upper left and parses through the domain,

row by row. Thus, after a single pass, the upper left has the highest concentration,

because its had the most time since collection, and the highest gradient (due to the

periodic BC), which facilitated the diffusion of algae. This process can be repeated

to account for as many passes as desired. It is assumed that it takes no time for

the agent to move to the starting position, both at the beginning and after each

pass. The differences between this semi-analytical approach and a typical numerical

simulation are elucidated in Table 3.3. Care must be taken so that numerical stability

is maintained, where the condition for one-dimensional stability is given in (3.18). For

the semi-analytical solution given in the table, D could be as large as 0.011 m s−1.

D∆t

∆y2
≤ 0.5 (3.18)

A representative solution is shown in Fig. 3-10(right). Unlike the analytical solu-

tion, this approach does account for changes due to diffusivity.
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Figure 3-10: (left) Semi-analytical algae field after the initial pass using very
coarse forward-time center-space (FTCS) discretization of the
partitioned case; (right) Representative solution using the semi-
analytical approach where the delineation between passes is
clearly evident

3.8.6 Study Limitations

Collision avoidance was not implemented in these studies and will certainly have

an impact on the results, so it is difficult to compare the scaling of these swarms. It

has been helpful to see some of the scaling effects present, e.g. scaling of partition

perimeter to area ratio, which may be masked if collision avoidance is enabled. Colli-

sion avoidance could be implemented, but will decrease the computational efficiency

of these simulations.

This simulations assume a hydrodynamically complex domain can be modeled

with uniform eddy diffusion. A real world domain will be quite different from this,

and furthermore, these simulations assumed that the agents themselves do not cause

any hydrodynamic disturbance, which is certainy not realistic. In defense of the work

done, a simple domain is needed to start gaining some intuition about diffusive col-

lection before introducing this additional complexity. The hydrodynamic disturbance

caused by an agent itself will be highly dependent on unknown details of the agent’s

geometry, for which a dedicated study is needed.
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Table 3.3: Comparison of Semi-Analytical and Full Simulation approaches
for the partitioned case

Methodology
Spatial
Step

Time
Step

Diffusion
Discretization

Total
Nodes

Total Time
Steps

Semi-
Analytical

1m 43.8s FTCS (1D) 64 228

Full
Simulation

0.1m 0.1s
FTCS or ADI

(2D)
1E6 1E5

Note: Assume both methodologies use 10 agents operating in a 100m x 100m domain, with
a velocity of 0.7222 m s−1, for a simulated 10,000s. For the semi-analytical case, this would
result in a 31.6m x 31.6m domain and each row would require 31.6m /0.7222 m s−1 = 43.8s
to traverse.

These studies all started with an initially-homogeneous algae distribution. Algae

is sometimes homogeneously distributed, but can take many other forms, the diversity

of which is illustrated in Figures 2-5 and 2-12. Acknowledging that there is no ‘typical’

distribution, at a minimum, simulations can be run for a single, non-heterogeneous

distribution generated from real-world data.

Thus far, the simulations have only been performed a single time for each set of

parameters. This restriction has been mostly due to the amount of time required

to run these simulations. If the goal of these simulations were to develop statisti-

cally significant estimates of mean performance, than adding additional runs would

absolutely be necessary. However, it is fair to draw conclusions with a modest level

of certainty from the existing work because (i) the input parameters in some cases

are being changed by orders of magnitude, which naturally have a large impact on

swarm behavior and consequent performance, (ii) qualitatively, observations of the

algae distributions show the impacts of changing parameters, and (iii) the analytical

and semi-analytical approximations validate the numerical data, where the root cause

of any discrepancies can be elucidated.
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3.8.7 Computational Cost

Some steady progress has been made on optimizing the MATLAB code, but even

in the optimized form, running the existing simulations as a set requires about 60

hours. There are some options available for achieving more runs, as they are needed.

Porting the MATLAB code to a faster language, e.g. Fortran, should give a good

improvement in runtime. To this point, the ease-of-implementation of a very high

level language like MATLAB has been prioritized. A single GPU is already being

well-utilized, but there are both CPU and GPU supercomputing resources available

that could enable more runs to be completed.

3.8.8 Numerical Techniques

The numerical techniques used for diffusion (FTCS (explicit) and Crank-Nicholson

ADI (implicit)) have limited accuracy in time and space (O(∆t,∆x2), O(∆t2,∆x2),

respectively), and more accurate techniques are available. Implicit schemes typically

have a higher computational cost, but are chosen for their better stability and option

of using a larger time step, which can mitigate the higher computational cost. In

this case, a larger time step is not an option because agents are interacting with and

making decisions based on the algae distribution. To this point, Crank-Nicholson

ADI was utilized for the ‘Limits of Diffusive Collection’ study for its higher accu-

racy, despite its higher computational cost. A higher accuracy explicit scheme would

probably be most suitable.

3.8.9 Diffusion Coefficients

Note that due to hydrodynamic heterogeneity, it is very difficult to define a true

diffusion coefficient. For practical problems, it is easier to estimate a diffusion co-

efficient proportional to patch size [82], which can be estimated using Richardson’s

65



Table 3.4: Diffusion coefficient calculations based on alpha parameter and
patch size

Alpha Patch Size ε D
[cm2/3] [meter] [cm2 s−1] [m2 s−1]

0.01 1 4.64 4.64E-4
0.002 1 0.928 9.28E-5

0.002154 1 1.00 1.00E-4
0.002154 10 10.0 1.00E-3
0.002154 100 100 1.00E-2

Note: highest alpha estimate is 0.01, lowest alpha estimate is
0.002, and a range of patch sizes are considered (1, 10, and
100m). Unless noted, simulations used D=1.00E-4.

well-established ‘4/3 rule’, which states that D = αL4/3, where L is a characteristic

patch length and α is a constant. Physical experiments have shown that an alpha

value of 0.01 to 0.002 cm2/3s−1 is reasonable [39], which is illustrated in Fig. 3-11.

Thus, for an alpha of 0.002 (the lower bound), and a patch size of 1m, a diffusion

coefficient of 0.0001 m2 s−1 can be estimated, with details shown in Table 3.4.

Figure 3-11: Eddy diffusion coefficient (ε) with respect to patch size(L) [82]
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Chapter 4

Balancing Robot Swarm Cost and

Interference Effects by Varying

Robot Quantity and Size

This section is a reproduction of a manuscript that has been accepted for pub-

lication in the Journal of Swarm Intelligence, authored by Adam Schroeder, Brian

Trease, and Alessandro Arsie [91]. It has been modified to conform to the dissertation

format.

4.1 Abstract

Designing a robot swarm requires a swarm designer to understand the trade-offs

unique to a swarm. The most basic design decisions are how many robots there

should be in the swarm and the individual robot size. These choices in turn impact

swarm cost and robot interference, and therefore swarm performance. The underlying

physical reasons for why the number of robots and the individual robot size affect

interference is explained in this work. A swarm interference function was developed

and used to build an analytical basis for swarm performance. A swarm cost model was
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also developed and used with the analytical basis for swarm performance to generate

performance-cost curves for swarms with different numbers of robots and different

robot sizes. The swarm designer can use this analytical basis, cost model, and these

curves to weigh how the number of robots in the swarm and the individual robot size

can be selected to minimize swarm cost and maximize swarm performance. This work

is motivated by the desire to engineer a swarm to collect harmful algae from water.

In this foraging application, the robots are not required to deposit algae in a central

location. Stepping through the design process for this application has exposed several

of the knowledge gaps addressed herein.

4.2 Introduction

Interference in multi-robot systems has been studied for some time [67], especially

how increasing the number of robots in the swarm affects both the individual efficiency

and the swarm performance [59]. For applications with spatial restrictions, e.g. robots

returning objects to a central location after they have been found, swarm performance

initially improves as robots are added to the swarm. As still more robots are added,

a peak swarm performance is achieved and the interference caused by any additional

robots now causes performance to decrease. If these spatial restrictions do not exist

or are removed, performance continues to improve as additional robots are added,

but the gain from each additional robot declines [83]. Swarm performance trends

for applications with spatial restrictions have been well-fitted by several models [44],

albeit without a comprehensive explanation of the underlying physical phenomena

that drive these trends. A detailed examination of this background literature is given

in Section 4.3.

This work focuses on applications without these spatial restrictions, and develops

an interference function derived from the underlying physical phenomena. This in-
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terference function is used to form an analytical basis for swarm performance, which

could be utilized by a robot swarm designer in the design of a generic swarm.

Unlike interference, swarm cost, to the authors’ knowledge, has not been studied,

which is indicative of the current state of the broader field of swarm design. Within

the field of swarm robotics, there is a dearth of information on the process of designing

a swarm for any specific application. This sentiment is expressed by Brambilla et al

[12] in their comprehensive review of the state of swarm robotics. They use the

term ‘swarm engineering’ to describe the emerging field needed to tackle real-world

applications and they summarize the state of swarm robotics with “Despite their

potential to be robust, scalable and flexible, up to now, swarm robotics systems have

never been used to tackle a real-world application and are still confined to the world

of academic research”.

The swarm designer must have a methodology to follow to make very practical

design decisions. One of the primary decisions that must be made is the individual

robot size and number of robots in the swarm. In deciding this, two major consider-

ations for any application are the cost of an individual robot (a function of robot size

and complexity), and any cooperation or interference effects (a function of robot size

and density). Robot size will influence the cost of a robot for any application, but

will not equally influence cooperation or interference effects for all applications. Col-

lective transport is an example of an application where robot size will have a strong

influence on cooperation. The designer must strike a balance between minimizing

swarm cost while also attempting to minimize interference.

The higher level goal of this work is informing the swarm designer in the design

of a swarm for a real-world application and the major contributions of this work are

aligned with that goal. The first contribution is a generic, analytical basis for swarm

performance, with an emphasis on robot size, robot density, and delays incurred due

to collisions between robots. This analytical basis is for applications without spatial
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restrictions, e.g. foraging when objects do not need to be returned to a central

location. This analytical basis for swarm performance is validated numerically. The

second contribution is a generic formulation for the cost of a swarm. The third

contribution is the application of the swarm performance analytical basis and swarm

cost formulation to a typical swarm design process. Two cases are considered where

either the robot size is pre-defined and the number of robots varies, or where both

the number of robots in the swarm and their size are design parameters that can be

selected to minimize cost and maximize swarm performance.

This work is best understood by introducing the motivating real-world applica-

tion. A swarm of aquatic robots is being designed to remove harmful algae from

water. These robots may use several different mechanisms for collecting algae, e.g.

conveyors for collecting surface scum or plankton nets for collecting sub-surface algae,

with a prototype 1st-generation robot shown in Fig. 4-1. For any of these collection

mechanisms, the robot width determines both how quickly the algae can be collected

and the overall platform cost.

This application can be viewed as a foraging application where the collected al-

gae could be processed aboard each individual robot and would therefore not require

deposition in a central location. The algae to be collected are quantified as a con-

centration, with the added complication that the algae distribution changes due to

turbulent diffusion and advection. Furthermore, initial field tests have shown that

the robot’s collection mechanism, hull, and propulsion system all interact with the

algae-laden water, having an overall mixing effect. In other words, despite constantly

collecting algae, the robot does not have a well-defined algae-free area in its wake.

Due to this mixing effect, it is assumed that robots are collecting the average concen-

tration of algae. Making this assumption allows swarm performance to be estimated

for different numbers of robots and different robot sizes.

This paper is not intended to give a complete description of the algae-collecting

70



Figure 4-1: Top view and side view of the 1st-generation aquatic platform for
collecting algae surface scum with the major components labeled
and the basic dimensions given. The fixed and variable costs were
estimated based on the build of a single prototype platform, and
the components and systems contributing to each type of cost
are listed.

robots themselves, which will be described in separate work. Rather, the aim is to

provide enough information to understand the application and aspects of the appli-

cation that influence swarm performance and cost.

The remaining of the paper is organized as follows. Section 2 introduces the

relevant literature. Section 3 explores swarm cost, interference, individual efficiency,

and swarm performance, both when robot size is held constant and when it is a design

choice. Section 4 applies this knowledge to generate several sets of performance-cost

curves and discusses the results. Finally, Section 5 concludes and offers thoughts on

future work.
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4.3 Relevant Literature

The only mention of cost in literature with respect to swarms is the cost of indi-

vidual swarm platforms as they are developed. For example, the Kilobot requires $14

in parts [85], the Jasmine robot requires $130 in parts [68], and the aquatic platform

developed by Duarte et al [32] requires $370 in parts. The effort to develop these

demonstration platforms is certainly valuable and necessary, but the total swarm

cost is not a focus of the work. For some of these examples, the total cost of the

swarm can be calculated because the number of robots is also known. The Kilobot

swarm (1000 robots) costs $14000 (parts only), and the aquatic swarm (10 robots)

costs $3700 (parts only).

This lack of attention to the total swarm cost may be because swarm robotics

is a relatively young field of study, where making any platform ‘inexpensive enough’

to construct a demonstration swarm is a significant contribution. However, total

swarm cost is a universal swarm design constraint, a better understanding of which

is requisite for advancing the field of swarm robotics.

In contrast to total swarm cost, there is a strong basis in literature focused on

robot interference going back several decades, e.g. Mataric [67]. One of the works that

is often cited is from Lerman and Galstyan [59], who developed a mathematical model

for swarm performance that includes interference effects. They considered a foraging

task where robots either do or do not need to deposit objects at a central location. In

their model, any collision or the need for collision avoidance incurs a delay time, τ .

Validated by simulations, they showed that when objects are deposited at a central

location, swarm performance initially increased as more robots were added to a swarm.

As more robots were added, swarm performance decreased due to interference. When

removing the constraint to deposit objects, performance monotonically increased as

more robots were added. In contrast to swarm performance, they observed that the
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efficiency of an individual robot always decreased as the number of robots increased.

This was true both when robots did or did not deposit objects at a central location.

Rosenfeld et al [83] added to the work done by Lerman and Galstyan. They stud-

ied swarm performance for different numbers of robots in a simulated foraging task

for several different collision avoidance behaviors. When objects were deposited at

a central location, they also showed swarm performance peaking, which they called

point CP1. After the peak, swarm performance eventually plateaued, which they

called CP2. The maximum swarm performance, and the number of robots present

when that maximum was achieved, varied for the different collision avoidance behav-

iors. Consistent with [59], removing the constraint to deposit objects transformed

the performance curve to a monotonically-increasing shape. For this less-restrictive

case, there was little difference between the different collision avoidance strategies,

including one case that allowed robots to simply pass through one another.

Following on this, Hamann [44] formulated a universal swarm performance func-

tion, P (N), as a combination of cooperation and interference functions, C (N) and

I (N), given in Eqn. (4.1). Here N is the number of robots, and fitting-parameters

c < 0, a1, a2, and b > 0, and d ≥ 0.

P (N) = C (N) (I (N)− d) = a1N
ba2exp (cN) (4.1)

This performance function encapsulates positive cooperation effects, N b, and nega-

tive interference effects, exp (cN). Hamann then fit this general function, using the

fitting parameters, to published examples of foraging, collective decision making, ag-

gregation, and swarm motion toward a beacon. Portions of this swarm performance

formulation will be referenced throughout this article, and some of the nomenclature

retained.

As an alternative to a formulation where cooperation and interference effects are
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multiplied, Guerrero et al [41] formulated a swarm’s capacity to perform a task as an

ideal capacity minus interference effects.

Performance which decreases as the swarm size increases cannot be solely at-

tributed to interference effects, at least those caused by physically occupying a space.

This effect is often referred to as ‘diminishing returns’. Even without including col-

lisions, Hecker and Moses [47] observed sub-linear performance increases as more

robots were added in a foraging task simulation. Rosenfeld et al [83] also observed

sub-linear performance increases for one of their simulation sets that simply allowed

robots to pass through one another without colliding.

Thus, the phenomena of interference, is more complex than just competing for

physical space. In a foraging task, any finite, discrete resource collected by a robot

is removed from the shared pool of available resources. For every other robot in the

swarm, the uncollected resources become sparser and the foraging task becomes more

challenging. Hamann’s model can account for sub-linear performance, for b < 1, as

can Guerrero’s model.

Work has been done to help discriminate between different types of interference.

Scharf et al [88] elucidated the difference between exploitive and interference type

competition in biological examples of foraging. Interference competition is compet-

ing for physical space, and exploitive competition is competing for shared resources.

Thus, even when collisions are ignored in simulation, there is still indirect ‘exploitive’

interference as the robots compete for shared resources. Dawson et al [27] concen-

trated on what they call ‘competing’ and ‘passing’ interference. Competing interfer-

ence means that robots have proximal goals and are trying to physically occupy the

area around their goals. Passing interference means that robots are only interacting

in passing and their goals are not close to one another. The following work concen-

trates on developing a model for the direct interference caused by robots trying to

physically occupy the same space. Any indirect interference caused by competing
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for shared resources can be accounted for in the cooperation portion of the swarm

performance formulation.

It is noted that a robot’s physical size has not been considered in this body of

literature. The same explanation for why total swarm cost has not been studied could

be given here. Robot size has likely not been thought of as a design choice because

the swarm designer typically starts at a point when the physical platform has already

been selected. As swarm engineering matures as a discipline, it is reasonable that the

swarm’s physical platform and control strategy will be developed simultaneously.

Another reason why robot size may not have been considered is that its importance

is application-dependent. For example, robot size is highly-relevant for foraging for

non-discrete resources, collective transportation, and forming chains of robots. Robot

size is less relevant for foraging for discrete resources, aggregation, or coordinated

motion. Stepping through the swarm design process for the algae collection platform

identified physical size as one of the first important design decisions that must be

made.

4.4 Model Development

4.4.1 Interference and Swarm Performance

To develop an interference function and analytical basis for swarm performance,

two claims are made and developed. These claims are applicable when objects do not

need to be returned to a central location.

Claim 1 - The swarm collision rate is proportional to the number of potential

collisions, i.e. a mathematical combination, (N2 ), that enumerates the number of

potential collision pairs.
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Claim 2 - The swarm collision rate is also proportional to the robot’s characteristic

length.

Together, these claims are expressed in Eqn. (4.2).

XΣpS = λ

N
2

L = λ
N !

(N − 2)!2!
L = λ

(
N2 −N

)
L (4.2)

Here, XΣpS can be read as the number of swarm collisions, XΣ, per second, i.e. the

swarm collision rate. Throughout this work, a Σ or I subscript is used to refer to the

swarm or the individual, respectively. The collision proportionality coefficient, λ, is

introduced as a scaling parameter, N is the number of robots in a fixed domain, and

L is a robot’s characteristic length. For the motivating application of algae collection,

the characteristic length is defined as the width of the robot’s conveyor.

Note that this relationship will certainly not hold for every possible robot behavior,

but will provide a reference point from which to evaluate collision frequency for any

behavior.

These two claims are validated numerically by performing two simulation sets1.

Robots performed a Lévy flight-type random walk inside a 100×100 m2 domain, and

collisions were tracked while the number of robots ranged from 10 to 2500. Lévy flight

is a type of random walk where robots take frequent short steps and occasional longer

steps, and it was implemented similar to previous work by some of the authors [90].

Unlike the previous work, here the Lévy flight is unbiased. This means that robots

are moving completely randomly. In general, Lévy flight is an active area of research

within swarm robotics for robot search tasks [28, 98, 72] and robot area coverage

and interception tasks [89]. Robots moved at a rate of one unit per second for 1000

seconds. For the first simulation set, robots were assigned a physical size of 1 m, and

1MATLAB script available at https://www.mathworks.com/matlabcentral/fileexchange/65598-
collision-detection or under Zenodo DOI:10.5281/zenodo.1323875
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for the second simulation set, robot sizes of 0.5, 1, and 2 m were tested. A collision was

recorded if the centers of any two robots came within the characteristic length of one

another. During the simulation, registering a collision did not change a robot’s speed

or heading in any way. To minimize boundary condition effects, boundaries were

selected to be periodic. This means that robots can move freely across boundaries,

e.g. passing through the top boundary and re-entering at the bottom boundary. In

Fig. 4-2, the swarm collision rate for these simulations is plotted with Eqn. 4.2. The

proportionality between the analytical basis and numerical results is evident, and the

numerical results were used to determine an appropriate value for the proportionality

coefficient, λ.

Figure 4-2: Comparison showing the proportionality between an analytical
formulation and numerical simulation for swarm collision rate as
(Left) the number of robots are varied, and (Right) the number
of robots and individual robot size are varied. The inset figure
with logarithmic scales shows a closer view of the lower end of
the robot range. For this system, a value for the proportionality
coefficient of λ = 0.0001566 fits the analytical formulation to the
numerical results. Error bars are not included for clarity, but
for reference, the largest 95% confidence interval for these data
points is 1.35 swarm collisions per second.

Relations for swarm performance and individual efficiency, PΣ and ηI , respectively,

77



are developed below. Individual efficiency is defined in Eqn. (4.3), where XTpIpS can

be read as the time spent in collision per individual per second. If XTpIpS = 1, the

individual robot would be spending the entire amount of their time in collision, i.e

0% efficient.

ηI = (1−XTpIpS) (4.3)

Swarm performance is defined in Eqn. (4.4) as having a cooperation portion,

N b, and an interference portion, represented by the individual efficiency. Similar to

Hamann [44], a1 is a constant, and 0 < b < 1 for sub-linear cooperation, b = 1 for

linear cooperation, or b > 1 for super-linear cooperation. The cooperation portion

can be understood as the swarm performance that could be achieved if there were

no interference. Stating that there is no interference is equivalent to saying that

individual efficiency is 100%, i.e. XTpIpS = 0 and ηI = 1. If there are collisions

and individual efficiency is less than 100%, swarm performance will be less than this

idealized case.

PΣ = a1N
bηI (4.4)

The cooperation portion is equivalent to Hamann’s formulation, Eqn. (4.1), wherein

he states that mostly values for b > 1 are of interest. In very recent work, Hamann

[45] explores applications where superlinear scalability, i.e. b > 1, can be realized.

Examples of these applications include when multiple robots are needed to manipu-

late an object, or complete a robot chain, or bridge a gap within the swarm. These

situations are not expected to apply to the motivating example of algae collection,

but this does not exclude the more general application of this analytical basis to

superlinear scenarios. The interference portion will not be equivalent to Hamann’s

formulation, which is exponential.
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Calculating XTpIpS is performed by multiplying τ , the average delay time incurred

per collision, and XpIpS, the number of collisions per individual per second, as given

in Eqn. (4.5):

XTpIpS = τXpIpS (4.5)

The average delay time, τ , accounts for time spent in collision avoidance behavior

instead of performing the desired task. The number of collisions per individual per

second, XpIpS, is the swarm collision rate, XΣpS (τ), divided by the number of robots,

as given in Eqn. (4.6). The swarm collision rate, XΣpS (τ), varies with τ and is equal

to the product of XΣpS (0), and the individual efficiency, as given in Eqn. (4.7). Note

that the swarm collision rate for a delay time of zero, XΣpS (0), has already been

formulated in Eqn. (4.2) as λ (N2 −N)L.

XpIpS =
XΣpS (τ)

N
(4.6)

XΣpS (τ) = XΣpS (0) ηI = λ
(
N2 −N

)
LηI (4.7)

Explained differently, the swarm collision rate (any delay time) is the maximum

swarm collision rate (when no delay is considered), multiplied by the portion of time

that robots are not in collision (same as individual efficiency). This approach also

implies that no useful work is performed during time spent ‘in collision’. In certain

applications, even while engaged in collision avoidance behavior, a robot may still

be performing useful work, e.g. providing area coverage, exploring new areas of the

domain, or communicating with its partner in collision.

At this point, the impact of τ is validated as before by running numerical simula-

tions, but now forcing robots to pause after a collision. The resulting swarm collision

rate is shown in Fig. 4-3 for either no delay or for delay times of 2, 5, and 10s. The

analytical model was used with the previously-found value of λ when no delay was
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incurred.

Figure 4-3: Comparison of analytical and numerical swarm collision rates
for several different delay times. As the number of robots in-
creases, the analytical model begins to predict higher collision
rates than observed in the numerical simulations. This is at-
tributed to the nature of the simulations, which forces robots in
collision to pause. In this simplified implementation, robots in-
volved in separate collisions have no chance of colliding with one
another.

The analytical formulation does a fair job of representing the measured numerical

swarm collision rate, especially for smaller numbers of robots. For higher numbers

of robots, the analytical formulation predicts more collisions than actually occurred

in the numerical simulations. This result is attributed to how the collision delay

was enforced in the simulations, where robots paused for the duration of the delay.

Collisions were implemented in this general way to avoid peculiarities stemming from

any specific collision avoidance strategy. However, this means that any robots involved

in separate collisions have no chance of colliding while paused, which reduces the

number of possible collision pairs. These simulations also did not differentiate a

robot’s physical size from its sensing footprint, if equipped with proximity sensors for
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collision avoidance. Taking detection radius into account means that robots have a

projected or virtual size even larger than their physical size. This concept would add

another level of complexity to the interference function.

Note that a swarm with a shorter delay time actually incurs more collisions than a

swarm with a longer delay time. However, when delay time per collision is considered,

swarms with a shorter delay time spend less time overall in collision, and are thus

more efficient.

In the numerical study, there is some freedom to define how collision delay time is

applied to robots. For the results given, if a robot already ‘in collision’ was struck by

another robot, its delay time counter was reset to the assigned delay time. Another

reasonable implementation would be to simply add additional time to a robot’s re-

maining delay time from the first collision. Collisions involving more than two robots

may need to be considered differently in the analytical model. An enhanced model

could penalize these types of collisions with longer delay times.

With the impact of τ now validated, Eqns. (4.2-4.7) can be used to solve for

the individual efficiency and swarm performance, given in Eqns. (4.8) and (4.9),

respectively.

ηI =
1

1 + λτ (N − 1)L
(4.8)

PΣ =
a1N

b

1 + λτ (N − 1)L
(4.9)

Using Hamann’s terminology [44], the individual efficiency, Eqn. (4.8), is also

an interference function. It is combined in Eqn. (4.9) with Hamann’s cooperation

function to generate an analytical basis for swarm performance.

As noted, the analytical basis for swarm performance will not represent every

possible control scheme or swarm behavior. It is expected that some control schemes

accommodate additional robots or larger robots more gracefully than others. For
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example, a scheme which totally partitions the swarm’s domain and assigns robots to

work in the individual partitions [75] would likely have fewer collisions than a non-

partitioning approach. Another example of a partitioning scheme creates distinct

partitions for robots moving toward a common target and for robots moving away

from a common target [95]. This analytical basis does serve as a reference point for

evaluating observed interference for any control scheme.

4.4.1.1 Application-Specific Model

For the algae collection application, the cooperation portion of the general form

of the swarm performance function, Eqn. (4.9) can be modified. This modification is

based on the approximation that robots are always collecting the average concentra-

tion of algae. Mathematically, the cooperation function, C (N,L), can be expressed

as the algae collection rate [kg s−1] divided by the total algae [kg]. This normalized

collection rate [s−1] expresses the fraction of total algae present being collected at any

point of time. It is derived in Eqn. (4.10), where s is the robot speed, ηprocess is the

process efficiency, i.e. the capture efficiency of each robot’s algae collection hardware,

ρ is the average algae concentration, and A is the area of the domain:

C (N,L) =
NLsηprocessρ

ρA
=

[m]
[

m
s

] [
kg
m2

][
kg
m2

]
[m2]

=

[
kg
s

]
[kg]

=

[
1

s

]
(4.10)

A dimensional analysis of this relation is also provided for clarity. This relation for

normalized collection rate is further simplified in Eqn. (4.11), which shows that it is

constant regardless of the algae concentration, ρ. The application-specific parameter

values for s, ηprocess, and A are also inserted.

C (N,L) =
NLsηprocess

A
=
NL (1ms−1) (0.9)

(100m)2 = 0.00009LN (4.11)

In terms of the parameters of Hamann’s cooperation function, a1 = 0.00009L and
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b = 1, giving linear cooperation. These values are substituted into Eqn. (4.9) to form

Eqn. (4.12):

PΣ =
0.00009LN

1 + λτ (N − 1)L
(4.12)

For this application, swarm performance, PΣ, is a normalized collection rate. For

reference, previous literature has measured swarm performance for a foraging task as

a collection rate without normalization. One study used resources collected per hour

[47], and a second study used resources collected per nine-minute trial [83].

4.4.2 Constant Size and Constant Capacity

To illustrate the implications of the analytical basis for swarm performance, two

specific approaches are introduced which are of particular interest to the swarm de-

signer. The first approach, referred to as ‘constant size’, looks at the performance

trend as more robots are added to the swarm. This approach is comparable to how

results have been presented in several existing studies. The second approach, referred

to as ‘constant capacity’, sets the swarm capacity as the sum of all of the individual

robot capacities. In the case of algae collection, this would be the sum of each robot’s

conveyor width. This constant capacity, Cs, could then be allocated to either few

large robots, or many small robots. Examples of representative performance curves

for these two approaches are given in Fig. 4-4, using a collision delay time of 10 s.

The constant size and constant capacity approach are only a subsample of different

approaches that may be of interest to the swarm designer. The constant size approach,

for example, is suitable for when the physical robot platform has been pre-determined

or is not a design choice. This constant size approach remains useful even after an

initial swarm has been constructed because additional robots could be added to the

existing swarm. The constant capacity approach takes a more system-level view of the
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Figure 4-4: Performance curve for (Left) constant robot size of 1 m as more
robots are added, or (Right) constant swarm capacity of 50 m,
where the capacity can be allocated to either few large robots,
or many small robots. The constant size case shows diminishing
returns when adding additional robots. The constant capacity
case shows a small initial drop in performance as the number
of robots increases (and size decreases), but the performance is
steady as the number of robots continues to increase.

swarm, where the swarm designer may already know what swarm capacity is needed

for a particular application. Additional approaches could also be valuable, e.g. a

‘constant quantity’ approach, where robot quantity remains constant and platform

size varies.

For the algae collection application, the mathematical limit of the performance

function can be calculated as the number of robots approaches infinity. For the

constant size case, the limit of the performance function, Eqn. (4.12), is 0.00009
λτ

. Filling

in values for the λ and τ , a performance limit of 0.05625 is found, which matches

Fig. 4-4 (left). The limit of the same performance function for the constant capacity

case is 0.00009Cs
1+λτCs

. A swarm capacity of 50 m approaches a performance value of 0.00416̄

which matches Fig. 4-4 (right).
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4.4.3 Swarm Cost

A formulation for individual robot cost, JI , is developed below, where total swarm

cost, JΣ, is simply obtained by multiplying the individual robot cost by the number

of robots. An individual robot’s cost comprises fixed costs, F , and several costs that

vary with the robot’s characteristic length, L. These variable costs can be generally

formulated as a scaling coefficient, c1, c2, or c3, multiplied by the characteristic length

raised to a power, as given in Eqn. (4.13):

JΣ = NJI = N
(
F + c1L

1 + c2L
2 + c3L

3
)

(4.13)

Put plainly, platform costs are assumed to scale with a characteristic length, area

(e.g. robot footprint), or volume. This cost model is a simple way to represent how

the cost of a robot’s systems and components scale, and could be refined as needed.

For example, at very small scales, costs would be expected to increase as components

need to be further miniaturized. This cost calculation is applied to the constant size

and constant capacity scenarios. Corresponding performance-cost curves for these

two scenarios are generated and shown in Fig. 4-5.

The swarm capacity, Cs, obtained by multiplying the number of robots by their

characteristic length, can be substituted into Eqn. (4.13) to form Eqn. (4.14):

JΣ = NJI =
Cs
L

(
F + c1L

1 + c2L
2 + c3L

3
)

= Cs

(
F

L
+ c1 + c2L+ c3L

2

) (4.14)

Differentiating Eqn. (4.14) with respect to the characteristic length and setting

the result equal to zero enables an optimal characteristic length to be determined.

dJΣ

dL
= Cs

(
− F
L2

+ c2 + 2c3L

)
= 0 (4.15)
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Figure 4-5: Performance-cost curve for (Left) constant robot size of 1 m, and
(Right) constant swarm capacity of 50 m. Cost is shown on a log
scale in dollars and values for c1, c3, and F from Fig. 4-1 were
used to find cost. Note that order-of-magnitude increases in cost
do not translate to order-of-magnitude increases in performance
for either scenario. Also note that performance variation for the
constant capacity case is much smaller.

Multiplying both sides by L2, and dividing by Cs and 2c3, puts Eqn. (4.15) in the

form of a cubic equation, given as Eqn. (4.16):

L3 +
c2

2c3

L2 − F

2c3

= 0 (4.16)

The roots of this cubic equation can be found using a general method, e.g. Car-

dano’s formula. In general, Eqn. (4.16) could have either one real root and two

complex roots, or three real roots. In either case, applying Descartes’ rule of signs

indicates that there will be only one positive real root. This root is equivalent to

the optimal characteristic length. The second derivative of Eqn. (4.14) will always

be positive, which indicates that L is a minimum, i.e. is the optimal characteristic

length which will minimize JΣ.

The cost model for the algae collection platform has non-zero coefficients for the
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characteristic length (conveyor width, c1 = 700) and volume (c3 = 1500), as detailed

in Fig. 4-1, but not the area (c2 = 0). For these coefficient values, Eqn. (4.14),

and therefore Eqn. (4.16), can be simplified as given in Eqns. (4.17) and (4.18),

respectively:

JΣ = NJI = N
(
F + c1L

1 + c3L
3
)

(4.17)

L3 − F

2c3

= 0 (4.18)

Equation (4.18) may be easily solved without employing a more general method-

ology, yielding an optimal characteristic length, L =
(

F
2c3

)1/3

≈ 0.32m. This length

matches the minimal cost point on the performance-cost curve in Fig. 4-5 (right). It

is also worth noting that the robot size that minimizes cost is independent of the

swarm capacity, Cs.

4.5 Model Application and Discussion

4.5.1 Swarm Designer Perspective

From the perspective of a swarm designer, it is useful to assess how the analytical

basis for swarm performance could be used, what demands it places on the designer,

and what information is still lacking. The constant size and constant capacity sce-

narios were introduced to illustrate the cost and performance implications of varying

the number of robots and the individual robot size. An entire set of performance-cost

curves can be generated for a range of sizes and capacities. In Fig. 4-6, a set of curves

is shown for the algae collection example. Constant size curves were plotted for 0.05,

0.1, 0.25, 0.5, and 1 m robot widths, and constant capacity curves were plotted for

10, 20, 30, 40, and 50 m capacities.

This set of performance-cost curves allows a swarm designer to weigh the design
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Figure 4-6: Several performance-cost curves where black dashed lines are
constant size curves (longer dashes indicate larger robots), and
gray solid lines are constant-capacity curves (thicker lines indi-
cate higher capacities).

trade-offs of varying the number of robots, varying swarm capacity, or setting different

target swarm costs. For example, for these particular curves, a swarm designer will

get the most cost-effective performance with a robot size of approximately 0.25-0.5 m.

Deviating from this size while maintaining the same swarm capacity, perhaps to

accommodate other design constraints, will have a large cost impact but almost no

impact on performance. Note that the constant capacity curves appear to be simply

horizontal at this scale, but their full shape becomes apparent at a magnified scale

(see Fig. 4-4).

Generating these performance-cost curves makes some demands of the designer,

although not dissimilar from any other design process. The designer must settle

on an appropriate cooperation function, here accomplished by observing how real,

prototype robots performed. Without prototype robots, a designer must turn to

published examples of similar applications and extract parameter value estimates. For

a demonstration of the latter approach, swarm performance results were analyzed for
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a foraging application from Hecker and Moses [47]. Values for a1 and b were manually

tuned until the cooperation function fit their results, as shown in Fig. 4-7 (left). In

Fig. 4-7 (right), swarm performance results were also analyzed from Rosenfeld et

al [83], a second foraging application. Similar to the previous example, a1 and b

values were manually tuned until the swarm performance function fit their results.

Unlike the previous example, Rosenfeld et al [83] included interference, so both the

cooperation and interference functions were used. This demonstration of parameter

extraction provides a degree of validation for the interference function developed in

this work. This interference function is intended for applications without extra spatial

restrictions, which was the case for the results from Rosenfeld.

Figure 4-7: (Left) Fig. 11 from Hecker and Moses [47] converted from in-
dividual efficiency to swarm performance and then fitted using
Hamann’s cooperation function (a1 = 42, b = 0.75). Hecker’s
results are for a foraging application where objects must be de-
posited at a central location, and collisions were ignored. Thus,
an appropriate cooperation function can be extracted from these
results and used in the design process for similar applications.
(Right) Fig. 4 from Rosenfeld et al [83] with swarm perfor-
mance fitted using Hamann’s cooperation function (a1L = 20,
b = 0.9) and the interference function developed in this work
(λτL = 0.26). Rosenfeld’s results are for a foraging application
where objects do not need to be deposited at a central location
and collisions were avoided using several diverse strategies, all
with similar performance.
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The designer must gather information on how the cost of the robot’s different

components are expected to scale with size, or at least know the cost of a single robot

if the robot size has already been established. Finally, the designer must estimate the

expected delay time for robots to navigate or avoid collisions and find a good estimate

for the λ collision proportionality coefficient. A value for this coefficient was found

here using simulations in a simplified environment. It is unsatisfying that the designer

must currently ‘select’ a reasonable estimate for delay time without good guidelines

for that task. Future work will investigate reasonable delay times for specific strategies

and test if those delay times are constant for different robot densities.

Several unanswered questions prevent full use of the design approach described in

this work. The interference function was developed for applications without spatial

restrictions, for which the physical causes of the interference, i.e. potential collision

pairs and robot size, were uncovered. The physical causes of interference for applica-

tions with spatial restrictions are still unknown, although swarm performance curves

for these applications have been well-fitted in previous literature [44]. Furthermore,

the interference function developed herein was validated for a random walk. Other

swarm behaviors and applications are expected to produce markedly different inter-

ference functions, although they may still be a function of potential collision pairs

and robot size. The effect of using collision avoidance proximity sensors, which would

allow other robots to be detected before an actual collision, is not represented in this

model. It is also an open question if the correct λ value could be calculated from

known physical parameters, instead of using simulations to find a reasonable value.

4.5.2 Economy of Scale

One of the unexplored points of this work was the potential effect of economies of

scale on unit cost, or how an individual robot’s cost is expected to decrease as more

and more robots are produced. In economic literature, there is a traditional rule
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of thumb called the ‘0.6 rule’ that helps to predict unit cost for different quantities

produced [100]. The 0.6 value refers to an exponent for the number of items produced,

where any value less than 1 indicates a quantity discount. In the context of swarm

robotics, the total swarm cost per the ‘0.6 rule’, JΣ,EoS, is given in Eqn. (4.19). The

effect of applying this rule to the performance-cost curves from Fig. 4-5 is shown in

Fig. 4-8.

JΣ,EoS = N0.6JI (4.19)

Figure 4-8: Original performance-cost curves from Fig. 4-5, also with a
modified curve that includes the cost savings from considering
economies of scale for (Left) a constant robot size of 1 m, and
(Right) a constant swarm capacity of 50 m. Because of the cost
savings in manufacturing higher quantities of robots, the con-
stant capacity case now minimizes cost at a smaller robot width.

Including the estimated impact of economies of scale shifted the minimal-cost

robot width for the constant capacity case from 0.32 m (155 robots) to 0.16 m (311

robots). More analysis of the applicability of the ‘0.6 rule’ to the robotics industry

would need to be performed, but including the impact of economies of scale should

make swarms with many smaller robots more competitive.
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4.5.3 Analytical Basis Comparison

Having developed and applied a new analytical basis, it is worthwhile to compare

it to Hamann’s example, Eqn. (4.1). His model includes an exponential interference

function, which is well-suited for interference trends observed in applications with

spatial restrictions. The model developed herein, with a weaker interference function,

cannot be fitted to performance trends for those same applications. It can generate a

performance curve that peaks and begins to decay, but only for cooperation functions

weaker than observed in literature, e.g. with b ≤ 0.2. Conversely, the new basis

can be well-fitted to swarm performance trends in applications with those spatial

restrictions removed. The authors have not been able to fit Hamann’s model to these

applications, e.g. to the performance curve from Fig. 4-7 (right).

The inability to use the new model for applications with spatial restrictions limits

its usefulness and general applicability. It is hypothesized that the physical phenom-

ena used in this new model would also apply to an application with spatial restrictions,

but only for fewer numbers of robots, i.e. before the exponential-type term begins to

dominate. A more complete model would be usable for applications with or without

spatial restrictions, and could partially be achieved by combining these two mod-

els. A combined model would still lack a physically-rooted explanation for Hamann’s

exponential term that causes the swarm performance to decay.

Outside the explicit field of swarm robotics, Gunther [42] proposed a model for

the parallel processing capacity of distributed systems, which was analyzed in the

context of swarm robotics in Hamann [45]. Interestingly, one of the models proposed

by Gunther matches the form of the swarm performance function independently de-

veloped here. His capacity model, which here is being interpreted and presented as a

swarm performance function, is given in Eqn. (4.20):
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P (N) =
N

1 + σ (N − 1)
(4.20)

The (N − 1) term was included to represent ‘contention’ over shared resources,

and the rationale for this exact form was so that P (1) = 1. Given the new claims in

this work, it would be useful to re-interpret Gunther’s function in its original context.

Specifically, the concept of potential collision pairs could be interpreted in the context

of parallel processing.

Note that all of these individual studies involving analytical bases for swarm per-

formance (Gunther [42], Hamann [44], and Hamann [45]) are nicely summarized and

contextualized in Hamann [46].

4.5.4 General Discussion

One important open question is how swarm performance varies across different

combinations of number of robots and individual robot size for a range of applications.

Here, observations from field experiments with real robots were used to estimate an

appropriate cooperation function for different combinations. It would be interesting

to explore this same research question for different applications. For example, in a

collective transport task [86], the transport capability of an individual robot would

be expected to increase with its size. Would fewer large robots perform the same as

many smaller robots?

Even without knowing the results of these studies, it is clear that a system with

many smaller robots would be more robust to failure, and truer to the idea of a swarm,

than a system with few large robots. Robustness to failure could be embedded in these

analytical bases by including a failure metric such as mean time to failure (MTTF).

Fault detection and fault tolerance itself is an active sub-area of research within swarm

robotics [9, 99, 18, 19].

The results from these types of studies would also shed light on the potential
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advantages of robots operating in formation. Perhaps choosing a small characteristic

length could optimize swarm cost, and robots navigating in formation could decrease

the interference effect.

One obvious approach for improving swarm performance is to reduce the delay

time incurred by the need to avoid collisions. This could be accomplished by adopt-

ing an improved collision avoidance strategy, which is only used when a collision is

imminent, or by changing to a completely different robot behavior that inherently

results in fewer collisions.

The cost function formulated in this work was simple enough that the optimal

robot size could be easily found, but a more complex cost function may require

more advanced optimization techniques. Another potential outcome of developing

a swarm cost model may be the realization that a swarm is not affordable for any

combination of robot size and number of robots. In this situation, the effort of

generating a platform cost function may help direct efforts in optimizing platform

costs, e.g. concentrating on fixed costs or variable costs.

Recall that the cost formulation for the algae collection platform had examples of

costs that scale with the robot’s width and volume, but not with the robot’s area. A

solar panel is an example of a component whose cost would scale with area.

Absent thus far has been a discussion of other design considerations which may

play a role. There could well be other factors, often conflicting, which restrict the

minimum and maximum robot size. For the algae collection example, a larger surface

platform would be more resilient to rough water conditions, while a smaller platform

would be easier to transport. A designer also does not have a continuum of options for

design components. Key components such as motors, sensors, drive wheels, structural

parts, etc. are available in discrete sizes which may not match the mathematically

optimal size.

Boundary conditions and the behavior of robots at domain boundaries likely affect
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swarm performance. A periodic boundary condition was chosen, which allows robots

to cross the top boundary and restart at the bottom boundary, as if on a torus. This

boundary condition was chosen because it was believed that it would least impact the

larger interference trends and it would be representative of the conditions inside the

center of a swarm, where boundaries should have a smaller effect. For completeness,

the same type of simulation from Fig. 4-2 was repeated with a more realistic boundary.

Robots were not allowed to cross boundaries and were forced to choose a new path if

they did encounter a boundary. This type of boundary condition is typically referred

to as ‘zero-flux’ in the context of mathematics. For the 100×100 m2 domain, there was

no perceivable impact in swarm collision rate when switching to a zero-flux boundary.

However, when shrinking the domain to 10×10 m2, the collision rate for a zero-flux

boundary is less than that of the periodic boundary, as shown in Fig. 4-9.

Figure 4-9: Switching from a periodic boundary condition to a zero-flux
boundary condition did affect the swarm collision rate for a sig-
nificantly smaller 10×10 m2 domain, shown here. It did not affect
the swarm collision rate in the original 100×100 m2 domain.

One final observation is that the swarm design process may be unique in the world

of design in that solutions which span many orders of magnitude (101-104 robots, or

nanometer-scale to meter-scale robots) could be viable. This applicability across
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orders of magnitude enables new, exciting design possibilities, but also introduces

new challenges.

4.5.5 Application-Specific Discussion

It is worth noting that the cost formulation for an algae collection robot, Eqn. (4.18),

predicted an optimal size of 0.32 m to minimize swarm cost. Based on this cost analy-

sis, and on other design considerations, several new, 2nd-generation robots are being

developed and tested at this size, as shown in Fig. 4-10. Using the parameter val-

ues for cost obtained during construction of the initial larger platform (F = $100,

c1 = $700/m, c3 = $1500/m3), the predicted cost at this smaller size was $373/robot.

These smaller robots actually cost about $435/robot. In addition to the size change,

the conveyor was replaced with a 0.3 m-diameter net, which accounted for three quar-

ters of the total cost.

Figure 4-10: Smaller, 2nd-generation algae collection platform whose size was
selected to minimize swarm cost. The algae collection conveyor
has been replaced with a net towed behind the robot. A total
of three robots have been constructed and are currently being
tested.

Using a net instead of a conveyor allows both subsurface and surface algae to
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be collected. The cost formulation, which was based on a conveyor, predicted that

this portion of the platform would cost $224 at this reduced size. However, the net

actually cost $300. This difference is one reason for the discrepancy between the

predicted and actual costs.

The specific results presented for this motivating application included the assump-

tion that the robots are always collecting an average concentration of algae due to

mixing induced by the robot. This assumption comes from observing physical col-

lection experiments, although it may be possible to modify the platform to reduce

this mixing. If mixing could be reduced, it would motivate more sophisticated collec-

tion and foraging behaviors, e.g. a domain partitioning approach or a biased random

walk in the direction of the higher algae concentration. With new behaviors, new

cooperation and interference functions would also be expected.

4.6 Conclusion and Future Work

This work was motivated by the desire to build a functional swarm of robots to

remove harmful algae from the water. Working through the design process exposed

knowledge gaps, starting with making the most basic design decisions on how many

robots are needed, and what size they should be. The underlying physical phenomena

that govern robot interference for this application were suggested and then validated.

Starting with these physical phenomena, and including the fundamental parameters of

number of robots and individual robot size, an analytical basis for swarm performance

was developed. A second knowledge gap in the area of swarm cost was also addressed

by making a simple swarm cost formulation that accounted for fixed costs, and costs

that vary with individual robot size. Now with bases for both swarm performance

and cost, performance-cost curves could be generated for different combinations of

the number of robots in the swarm and their individual size.
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Two particular scenarios were introduced, referred to as constant size and constant

capacity, and performance-cost curves were generated for both. The constant size

scenario supposes a constant robot size, where only the number of robots is varied.

The constant capacity scenario adds individual robot size as a design choice, where a

constant swarm capacity can be allocated to either few large robots, or many small

robots. A family of performance-cost curves was generated in a form that facilitated

a swarm designer making high-level design decisions about the number of robots and

the individual robot size.

This work is an effort toward developing the emerging field of ‘swarm engineering’,

which is necessary for robot swarms to be adopted as an engineering solution for real-

world problems.

One of the most intriguing questions for future work is establishing how swarms

of either few large robots or many small robots perform for the range of swarm appli-

cations (not just the particular foraging application in this work). The consequence

of viewing robot size as a design choice may open up new possibilities for swarm

robotics applications. It would also be worthwhile to expand the investigation of

how economies of scale apply to the field of swarm robotics. Finally, the search for

underlying physical phenomena that govern robot interference should be expanded to

more complex scenarios than the one considered in this work.
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Chapter 5

Algae Collection Experiments and

Supporting Technology

Development

This chapter details the experiments conducted with physical robots to collect real

algae. It also gives an overview of the state of supporting technologies (Bio-inspired

Vortical Cross-Step Filtration and UAV-based HAB remote sensing). These support-

ing technologies both remain active research areas, and this is not a comprehensive

description of this parallel research, but rather a snapshot of the technology in its

current state.

5.1 Algae Collection Experiments

Experiments were conducted at the Scott Park Campus Pond, at the University

of Toledo, using up to three prototype robot platforms. The robot platforms had

been progressively developed, with the as-tested design shown in Fig.5-1. The robot

platforms cost approximately $100 per platform, and the heart of the platform is a

Raspberry Pi Zero W, which has builit-in wireless capabilities. A motor control hat
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(where ’hat’ means a board that sits on top of the raspberry pi) was used to supply

power to and control the left and right motors, and a GPS unit was integrated to

track robot positions. The robots had no additional sensing capabilities.

Figure 5-1: (Left) Small boat platform used to perform algae-collection ex-
periments at Scott Park pond and (Right) detailed view of the
components inside the electronics enclosure.

The boats use a pontoon structure, with a 300 mm diameter net mounted between

the pontoons. The nets (Aquatic Research Instruments) are 1.2 m long, use 100µm

nylon mesh, and terminate in a collection can. The supplied weight for the collection

can was removed and replaced with buoyant foam. The net’s depth in the water

relative to the boat can be manually adjusted, where the shallow Scott Park Pond

necessitated that the nets be set to approximately the same depth as the pontoons.

A laptop base station with a wireless router was used to either manually control

the robots or initiate an autonomous behavior. A graphical user interface (GUI) for

the base station was developed by Tyler Smith, which gives the user the option to

control either a single boat, or the entire group.

Preliminary experiments took place in September 2017, and experiments contin-

ued through May, June, July, and August 2018. The results described below were
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from test days on July 27 2018 and August 8 2018. Fig.5-2 (top) shows an aerial view

of three robots performing a random walk. While the pond typically has the highest

algae concentrations near the leeward shore , these multiple-boat trials generally took

place more towards the center of the pond, where the boats would be less likely to

run aground. As such, algae was not collected as quickly for these multi-boat trials.

Single-boat, manually-controlled trials were used close to shore, where the algae

was the most concentrated, as shown in Fig.5-2 (bottom). In these areas with high

algae concentrations, the net quickly-filled with algae. After the single out and back

trial, the boat and net were removed from the water. The algae/water mixture inside

the net was agitated so that the water could exit through the net’s mesh. This agita-

tion is necessary because the algae collects on the mesh surface, preventing water from

passing through. Eventually, a highly-concentrated algae was left in the collection

can, with these steps shown in Fig.5-3. This concentration process is similar to the

process performed by Dr. Bridgeman’s group (Lake Erie Center at the University of

Toledo) when they collect vertical plankton net tows during sampling trips on Lake

Erie.

These trials demonstrate that algae can be collected, using a net, from a surface

platform. For this specific platform and the test conditions, it didn’t appear that the

robot created a path clear of algae. This could be due to mixing from the robot’s

hull, net, and propellers all interacting with the water. It could also be due to the

relatively shallow water, where algae is present from the surface to the bottom, and

the net is only able to capture a portion of the algae. It could also be attributed to

colony size, where some colonies are small enough that they may pass through the

net. While concentrating algae into a net’s collection can, it was observed that some

algae passed through the sides of the net.

These robots were not equipped with any algae-detection capability, and the mix-

ing caused by the robot moving through the water suggests that any on-board mea-
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Figure 5-2: (top) Aerial view of three boats performing a random walk fur-
ther from shore, where the algae is less concentrated. The plat-
forms themselves are visible, as well as the collection can at the
trailing end of each net. The inset image shows the three boats
side by side. (bottom) Single-boat trial in the much denser algae
near the shore showing the (left) outbound and (right) inbound
legs of the collection run.
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Figure 5-3: Steps in the algae concentration process from immediately after
the run (top right), to pulling the boat and net from the water
(middle right), to concentrating the algae using agitation (left),
until the algae is fully concentrated in the collection can (bottom
right).
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surement of algae concentration or concentration gradient could be quite noisy.

Originally, the nets had been mounted toward the front of the platform, which

was hypothesized to minimize the hydrodynamic disturbance from the boat’s hull.

This never worked well because it caused the front of the boat to sink in the water

as the boat’s speed increased. Moving the nets to the rear of the boat alleviated this

problem.

5.2 Bio-inspired Cross-Step Filtration

Anticipating the negative impact that clogging could have on any algae filtration

process, alternative filtration technologies were explored. Sanderson et al [87] origi-

nally proposed the idea of a filter inspired by how ram filter-feeding fish can efficiently

remove food particles from water. These fish swim for extended periods of time with

their mouths open, and must have mechanisms for avoiding clogging.

Initial efforts to develop these types of filters were performed with Lauren Marshall

[66]. Collaboration with Dr. Sanderson began in April 2018, with some of the upper-

level highlights of this ongoing research described below.

This new filtration process is called vortical cross-step filtration. It is called this

because a ’backward-facing’ step creates a recirculation area, or vortex, inside a slot

as shown in Fig.5-4. A nylon mesh is added between across the slot, which allows

water to pass through, but not particles. The recirculation that forms in this slot is

the key mechanism that prevents clogging as it scours the center of the mesh. This

allows particles to accumulate on the upstream and downstream sides of the mesh,

but not in the middle.

Over the course of the filter development, many different filters were tested, but

only two are described here. The filters were tested in a water tunnel and flow and

collection performance were evaluated qualitatively using both dye injection and by
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Figure 5-4: Basic cross-step vortical filtration mechanisms. A recirculation
pattern forms in the slot which scours the middle of the nylon
mesh, delaying clogging.

seeding the tank with microspheres. The neutrally-buoyant fluorescent microspheres

(Cospheric) were chosen to be the same size as the algae colonies (106-125 µm).

The first filter, shown in Fig.5-5 (top), is based on Sanderson’s original filter. It

is different in that the version shown is approximately double the scale, has nine

constant-width slots (not five variable width), and is perfectly conical (less represen-

tative of original paddlefish-inspiration). It also uses a 100 µm mesh (not 140 µm),

which only has 44% open area (instead of 55%).

This filter was able to generate the same type of vortices between the slots as

observed in Sanderson’s original filters. It is also clear that particles accumulate on

the upstream and downstream sides of the slots, which delays clogging. However,

clogging will eventually occur, because there is no mechanism to remove the particles

from the slots. The second filter remedies this by using a helical slot that extends

from the upstream to the downstream side of the filter, shown in Fig.5-5 (middle).

The version shown has eight helical slots, each with an 120 mm pitch. As before,

particles accumulate on the upstream and downstream sides of the slot. However,

the vortex that forms in the slot also has an axial component that travels along

the helical slot. This axial component enables particles to be transported from the

upstream side of the filter, to the downstream side. Injecting dye in one of the slots
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Figure 5-5: Particles accumulate on the upstream and downstream sides of
the slots for a filter similar to Sanderson’s (top) and for a new
helical design (middle). An axial component to the slot vortices
(blue dye) transports particles downstream (bottom).
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near the upstream side of the filter allows this axial component to be visualized, as

shown in Fig.5-5 (bottom). To enable transport, particles that have been deposited on

the mesh must be re-suspended. In practice, this has been accomplished by tapping

or perturbing the filter.

In addition to tapping, rotating the filters has also had the effect of transporting

particles within the helical slots, either upstream or downstream, depending on the

direction of rotation.

This is only a glimpse into the filters that have been tested, and the parameter

space for this helical filter design is quite large, e.g. conical angle, helix pitch, and slot

width to height ratio. The next critical steps in this filter’s development are validating

that real algae behave similar to the algae-sized, neutrally-buoyant particles, and

designing an interface at the downstream side of the filter to capture particles traveling

through the helical slots.

5.3 UAV-based HAB remote sensing

Equipping each robot with the ability to measure its local algae concentration

would be costly, and the data collected may be too noisy to be useful. For this

reason, the possibility of equipping an unmanned aerial vehicle (UAV) with an algae

remote-sensing instrument was investigated.

A hexacopter kit (Aqua H20) was purchased and assembled, which included a

fiberglass, waterproof body and foam pontoons that allowed it to land on water (see

Fig.5-6). The hexacopter comes with a transparent bubble canopy, which was replaced

with a custom canopy. The new canopy was needed to give a sufficiently-large field of

view for a multi-spectral camera system (Tetracam RGB+3). A 3D-printed bracket

was fabricated to house this multi-spectral instrument, as well as a GoPro Hero 4

Black.

107



Figure 5-6: (Left) Hexacopter body with Tetracam RGB+3 and Go Pro
mounted in a custom bracket, and (Right) Hexacopter landing
on the water.

The RGB+3 is a four-camera system, where one camera is a standard red/green/blue

camera (RGB) and the other three cameras have band-pass filters. Filters were cen-

tered at 660, 680, and 710 nm, which were chosen to match MERIS, a former ESA

satellite. Choosing these particular wavelengths allows the scenes to be processed to

create the cyanobacteria index (CI). This instrument was partially funded by a Small

Ohio Sea Grant.

The hexacopter was primarily flown from the Lake Erie Center boat, on six sam-

pling trips from June-August 2018, and at the Scott Park Campus Pond (same time

period). A custom, folding landing deck was constructed to launch and recover the

hexacopter from the boat, as shown in Fig.5-7.

The RGB+3 was set to capture an image every ten seconds, and an example of a

scene captured by the RGB+3’s band-filtered cameras is given below in Fig.5-8 (top).

For each flight, the GoPro was also set to record video at 30 frames per second (fps)

and 4k resolution, with an example still image shown in Fig.5-8 (bottom). Flights

were typically conducted up to an altitude of 40 m.

Work is continuing on creating CI-scenes, which requires the Tetracam images to

first be converted to reflectance. An example processed scene from the Scott Park
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Figure 5-7: Flights from the LEC boat were launched and recovered using a
deployable flight deck.

Pond is shown in Fig.5-9. One of the difficulties in processing these images is dealing

with sun glint and reflections on the water, which are known issues for remote sensing

applications.

After the CI scenes have been generated and vetted, they can be compared to

remote sensing data collected by same-day NASA Glenn flyovers and to data collected

by Dr. Bridgeman’s group at each site (biovolume, fluorometry data, turbidity, etc.)
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Figure 5-8: Band-filtered images from Tetracam RGB+3 (top) and still
frame from GoPro (bottom). The GoPro has a much wider FOV.
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Figure 5-9: Cyanobacteria Index (left) compared to a true color image (right)
collected on August 10 2018 at the Scott Park Pond.
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Chapter 6

Conclusion

This final section compiles the conclusions from the previous sections, reiterates

the major contributions of this work, comments on future work, and concludes with

an assessment of the readiness level of this technology and a final conclusion.

6.1 Cumulative Conclusions

The major conclusion from Section III (Algae Collection Simulations) was that

performing an unbiased random walk was a viable controls approach to collect a diffu-

sive substance. Although other, more sophisticated approaches (biased random walk,

partitioning) could collect algae more quickly, these approaches imposed additional

requirements on the robot platform. A biased random walk would need to detect the

local algae concentration, which substantially increases robot cost, and a partition-

ing approach requires robots to travel in controlled, straight paths, which would be

difficult in a wavy, turbulent environment.

Also from Section III, it was shown that collection of a diffusive substance is viable

for a range of diffusivities, which can be equated to varying levels of turbulence in the

water. There was not a significant difference in collection rate between many, small

robots and few, large robots, at least until the number of robots became quite small.

Also, it was shown how for a partitioning approach, as the number of robots increases,
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and the size of each partition becomes smaller, that robots spend more time at their

partitions boundaries, which would require more collision avoidance behaviors.

The major conclusion from Section IV (Swarm Interference Simulations and Cost)

was that an optimal robot size could be chosen that would minimize swarm cost, and

that swarm performance is only expected to increase as more robots are added, despite

increasing robot-to-robot interference. This is true as long as robots can process algae

on board, and aren’t required to deposit algae at a central location. Although adding

more robots continues to increase the collection rate, there are diminishing returns

as more and more robots are added.

The major conclusion from Section V (Physical Experiments) is that algae can be

collected using a robot platform, and that the platform and collection process disrupts

the water, having an overall mixing effect on the algae present. It may be possible

to modify the collection process to minimize this mixing, which would motivate more

sophisticated collection behaviors. The major technological barrier that needs to be

overcome is the clogging of the algae-collection nets.

6.2 Major Contributions

The major contributions of this work will be reiterated from most general to most

specific.

This work was part of a much larger effort in the field of swarm robotics to trans-

form robot swarms from lab-only demonstrations to field-capable systems. This work

contributed to this larger effort (i) by exploring swarm performance-cost relationships

and tradeoffs, (ii) by including robot size as a design input, which influences swarm

performance and cost, and by (iii) holistically considering both the swarm platform’s

physical design alongside the control law development. The simple model for swarm

cost, which views robot cost as a combination of fixed costs and robot-size-dependent
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costs, is a powerful and flexible tool for exploring the swarm design space.

At an application-specific level, this work contributed understanding to the novel

problem of swarm collection of a continuously-distributed substance (not just foraging

for discrete objects). Furthermore, it introduced the additional wrinkle of collecting a

diffusive substance, which could be applied to other materials embedded in turbulent

fluids, e.g. microplastics in fresh water and oceans.

At a yet more specific level, it contributed an analytical basis for interference

between robots in the swarm, based on the physical parameters of number of potential

collision pairs (a mathematical combination) and robot size, for the case where robots

do not need to deposit any materials in a central location. It also was able to uncover

a relationship between partition’s perimeter to area ratio as the number of robots and

partitions increases, in a Voronoi partitioning scheme.

Finally, the physical experiments performed (swarm algae collection, bio-inspired

cross-step filtration, UAV-based HAB remote sensing) were all important contribu-

tions. The swarm algae collection experiments are a proof of concept of the overall

idea of collecting harmful algae using a swarm of robots. The bio-inspired cross-step

filtration is a promising technology for not only algae-collection, but also for other

filtration applications where clogging is an issue. UAV-based HAB remote sensing

could be used for directing a swarm of surface robots to problem areas, and can

also be used to generate a new data product for environmental scientists and water

management professionals.

6.3 Readiness Level Assessment

There are several technological areas that need to be further developed. In the

current form, a swarm built after this model could only collect algae for a relatively

short amount of time. The robots have a limited battery life, and so would need
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either a way of continuously recharging its batteries (e.g. solar panels), or a system

for exchanging spent batteries for fresh batteries. In the current form, robots can

only collect algae, but can neither process it on-board, nor deposit it somewhere else.

There is also not a mature human-swarm interface for communicating higher level

commands to the swarm, e.g. using knowledge of bloom locations to direct the swarm

where to work.

The robot platform itself would need to be modified to operate in rougher waters,

meaning improving resistance to capsizing, or adding the ability to continue operating

if capsized, and sufficient motor power to navigate larger currents and waves.

These areas that need further work are certainly not insurmountable, and are

engineering problems that, with attention, could be solved. To motivate this further

effort, it is worthwhile to reexamine where this type of swarm could be used

It was initially suggested that this swarm could be deployed around a drinking

water intake. Since the 2014 water crisis, water treatment plants have upgraded

their facilities, adapted their treatment strategies, and now are more capable in early

detection of blooms. Given these improvements, they could likely treat almost any

bloom. This means that adding a robot swarm would not change whether or not

a treatment facility could treat a bloom. There are significant costs with treating

these blooms, as were detailed in Section II. Because these costs are known, a cost

argument could be made for using a robot swarm, but it would have to be significantly

less expensive to replace established treatment technologies.

The strength of using a swarm is the ability to scale up the swarm size to fit the

application. To take advantage of this strength, a swarm should be used to tackle a

larger area. If a swarm is used in this way, it is offering a capability that conventional

technologies cannot match.
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6.4 Future Work

Walking through this research process has uncovered many diverse avenues for

future work. The areas include extensions of the current lines of research, as well as

new lines of research, with both types listed below.

The physical system that was tested only comprised three robots. A swarm with

more robots would need to be tested to gain a better understanding of the complex

interaction between the swarm and the environment. The three-robot system was

tested for a limited duration under close supervision. It would be necessary to run this

system for a longer duration test, eventually unsupervised, to better assess system

performance. Finally, the surface boats and UAV were used simultaneously, but

without communicating with one another. Adding communication between these

two robot types would enable more sophisticated collection behaviors without the

additional cost of equipping each boat with algae-sensing capability.

One of the most intriguing areas is the application of this approach to similar

problems, for example, collecting microplastic particles in oceans. One challenge

with this application could be the large range of particle sizes, or additional challenges

stemming from also trying to collect microplastic fibers.

Another interesting idea raised was considering robot size as a design input, where

a swarm could comprise many, small robots, or few, large robots. This was explored

for this specific application, but it would be quite interesting to explore it for other

swarm applications, e.g. collective transport.

A major lesson learned from the interference research was how swarm performance

curves are different when robots are or are not required to return collected objects to

a central location. It would be quite interesting to investigate how performance tran-

sitions from one case to another by starting with only a single deposition point, but

continuing to add additional deposition points, distributed throughout the domain.
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6.5 Final Conclusion

Using a robot swarm to mitigate harmful algal blooms remains an intriguing option

and merits further exploration. There remain significant, yet not insurmountable,

engineering problems which need to be addressed to create a working system. Bringing

this robot swarm to a mature, operational state would require a larger, dedicated team

and additional financial resources. Proof of commercial viability would be the next

step in justifying this next level of personnel and material investment.
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