
A Dissertation

entitled

The impact of learning analytics and badges in providing immediate detailed

feedback through dashboard on students’ performance

by

Anil Varma Penumatsa

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Masters of Science Degree in Engineering

Dr. Vijayakumar Devabhaktuni, Committee Chair

Dr. Jason Stroud, Committee Co-Chair

Dr. Mansoor Alam, Committee Member

Dr. Ahmad Y. Javaid, Committee Member

Dr. Cyndee Gruden, Dean
College of Graduate Studies

The University of Toledo

December 2018

Copyright 2018, Anil Varma Penumatsa

This document is copyrighted material. Under copyright law, no parts of this
document may be reproduced without the expressed permission of the author.

An Abstract of

The impact of learning analytics and badges in providing immediate detailed
feedback through dashboard on students’ performance

by

Anil Varma Penumatsa

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Masters of Science Degree in Engineering

The University of Toledo
December 2018

The topic of instructional feedback to residents is an under-researched area in med-

ical education. As the demand for feedback in educational information on the progress

of learners continues to grow, the need for delivering effective feedback quickly and

accurately becomes of great importance. Over the years, the paper-based techniques

have been used for feedback. This method delivers feedback in indefinite time. Mean-

while, the residents undergo further evaluations and they often provide an incomplete

picture of the students’ whole performance. Therefore, paper evaluations are frus-

trating and place a heavy burden on instructors to track students’ progress within the

training program. Hence, the web-based instant feedback techniques play a prominent

role to deliver the progress to the students.

This thesis proposes a two-tier cloud-based web model-view-controller (MVC) ar-

chitecture as a proof-of-concept, which allows the instructors to submit the feedback

and the students to check their progress instantaneously in the web browser. This is

accomplished by developing an MVC architecture with a web-based called “Central-

ized Anesthesia Resident Achievement Tracking System (CARATS)”. It is an online

platform for medical faculty members to submit the feedback on multiple areas of res-

ident’s performance including daily performance, oral presentations, and simulation

sessions. Additionally, this system compiles case numbers as logged by the residents

iii

into the ACGME system. All data entered into the system are displayed on a dash-

board in a pertinent graphical format for both the residents and instructors.

The web-based system offers several advantages over traditional feedback mech-

anisms. First, it allows the instructors to easily submit daily feedback on the resi-

dent’s performance and makes such data immediately available to the students via

the dashboard so that corrective measures can be taken immediately, rather than a

month later. Second, by aggregating and integrating performance in multiple areas of

residency in one place and providing an insightful overall score, it allows the students’

and instructors to more easily track the progress throughout the training.

iv

Acknowledgments

Firstly, I would like to thank my advisor Dr. Vijayakumar Devabhaktuni, for all of

his support, patience, motivation, and appreciation over the course of my graduate

studies. I would also like to thank my co-advisor Dr. Jason Stroud for his technical

advice, continuous supervision, participation, and inputs. I would further like to

thank Dr. Ahmad Y. Javaid and Dr. Mansoor Alam for agreeing to serve as members

of my thesis committee. Secondly, I would like to thank The University of Toledo’s

Department of Electrical Engineering and Computer Science for providing me with

financial support in the forms of graduate assistantships and tuition waivers. I would

also like to express my appreciation for the University of Toledo Medical Campus for

the research portion. In addition, I would like to thank my colleague Osama Hussein

for the continuous support during thesis writing. My current and former colleagues

of labs 2042 are also greatly appreciated for their guidance and support.

v

Contents

Abstract iii

Acknowledgments v

Contents vi

List of Tables ix

List of Figures x

List of Abbreviations xiii

1 Introduction 1

1.1 Definition of feedback in clinical education 2

1.2 Feedback Components . 2

1.3 Core competencies in medical education 3

1.4 Flaws in current feedback mechanism 5

1.5 Statement of the problem . 5

1.6 Proposed method . 6

1.7 Thesis Organization . 7

2 Literature Review 8

2.1 Usage of web tools . 8

2.2 Usage of Analytics . 11

2.2.1 Process of analytic applications 12

vi

2.2.2 Dashboard . 12

2.3 Usage of Badges . 14

2.4 Conclusion . 16

3 Architecture Overview 17

3.1 Objectives . 18

3.2 Proposed Architecture . 18

3.3 Decomposition Overview . 20

3.3.1 Client Overview . 20

3.3.2 Services Overview . 21

3.3.3 Database Overview . 22

3.4 Technology Stack . 22

3.4.1 AngularJS . 23

3.4.2 Spring . 24

3.4.3 Microsoft SQL Server . 26

3.4.4 Hibernate . 28

3.4.5 Bootstrap . 29

3.5 Data flow in CARATS Architecture 30

3.6 Client Architecture . 32

3.7 Server Architecture . 38

3.8 Database . 57

3.9 Cloud Deployment . 68

4 Centralized Anesthesia Resident Acheivement Tracking System 74

4.1 Application Overview . 75

4.1.1 User Roles and Security . 78

4.1.2 Password protection . 82

4.1.3 User profile . 84

vii

4.2 Inputs . 85

4.2.1 Simulation Evaluation . 87

4.2.2 Grand Rounds . 90

4.2.3 Case Log . 91

4.2.4 Daily Feedback . 93

4.3 Outputs . 95

4.3.1 Admin pages . 95

4.3.1.1 Summary page details 95

4.3.2 Residents’ dashboard . 98

4.3.2.1 Graphically interfaced individual feedback 100

4.3.2.2 Badges . 112

4.3.2.3 Residency Score . 115

5 Results & Discussions 117

5.1 Daily Feedback . 117

5.2 Dashboard . 118

5.3 Residency Score . 119

5.4 Badges . 120

5.5 Overall performance of CARATS . 122

6 Conclusion Remarks & Future work 124

6.1 Future work . 125

References 126

viii

List of Tables

3.1 The screen sizes implemented in the application 37

3.2 Error code series and their information 47

3.3 The error codes & their information . 48

3.4 Syntax to clear session objects used in the application 53

3.5 Syntax used to implement transactions in the application 54

4.1 Bar graph value representation of simulation evaluation 104

4.2 Bar graph values representation of grand rounds 107

4.3 ACGME standards of Case logs . 111

4.4 Weight-age for resident score. 115

ix

List of Figures

2-1 OFES feedback web form . 9

2-2 The online feedback system developed by Rahmann and Amit 11

2-3 Dashboard developed by Linda Corring and Paula De Barba 14

3-1 CARATS proposed architecture . 19

3-2 Data flow in CARATS . 31

3-3 Flow of data in client archietecture . 33

3-4 The responsive design of CARATS works on these devices 34

3-5 Flow of data in server archietecture . 38

3-6 DAO hibernate archietecture . 49

3-7 DAO hibernate Transaction session states 51

3-8 DAO hibernate Transaction . 53

3-9 Application query flow . 55

3-10 Normalization flow . 63

3-11 Database flow . 64

3-12 Cloud Component layout . 69

3-13 AWS archietecuture flow . 70

4-1 CARATS Home page . 76

4-2 CARATS collaborators expansion pop up 77

4-3 CARATS Login page . 77

4-4 User administration page . 80

x

4-5 Roles structure . 81

4-6 Access denied page . 81

4-7 Navigation bar for different users . 82

4-8 Password change page . 83

4-9 User account details for admin . 84

4-10 User profile details . 86

4-11 Add simulation type form . 88

4-12 Simulation evaluation form . 89

4-13 Grand rounds form . 92

4-14 Case log file upload . 93

4-15 Daily feedback form . 94

4-16 Sample results page navigation link . 95

4-17 Sample column visibility popup . 97

4-18 Presentaion and simulation summary tables 99

4-19 Daily feedback and case log tables . 99

4-20 Resident’s dashboard . 100

4-21 Spider graph representation of simulation evaluations 102

4-22 Listed representation of simulation evaluations 103

4-23 Bar graph representation of simulation evaluations 103

4-24 Spider graph representation of grand rounds 106

4-25 Listed representation of presentation evaluations 106

4-26 Bar graph representation of grand rounds 107

4-27 Checklist representation of case logs . 109

4-28 Bar graph representation of case log . 110

4-29 Stock graph representation of daily feedback 113

4-30 Resident badges . 114

4-31 Residency score . 116

xi

5-1 Bar graph representation of residents’ rating on daily feedback 118

5-2 Bar graph representation of residents’ rating on dashboard 119

5-3 Bar graph representation of residents’ rating on residency score 120

5-4 Bar graph representation of residents’ rating on badge 121

5-5 Bar graph representation of residents’ rating on overall performance of

CARATS . 123

xii

List of Abbreviations

3-D . Three Dimensional

ACGME Accreditation Council For Graduate Medical Education

AMI . Amazon Machine Image

API . Application Programming Interface

AUTH . Authentication

B-Rep . Boundary Representation

CAD . Computer-Aided Design

CARATS Centralized Anesthesia Residents Achievement Track-
ing System’

CASE . Comprehensive Anesthesia Simulation Environment

CORS . Cross-Origin Resource Sharing

CSS . Cascading Style Sheets

CSV . Comma-Separated Values

DAO . Data Access Object

DDL . Data Definition Language

DML . Data Manipulation Language

DNS . Domain Name System

EBS . Elastic Block Store

EC2 . Elastic Compute Cloud

ER . Entity Relationship

FEA . Finite Element Analysis

xiii

FTP . File Transfer Protocol

GIF . Graphics Interchange Format

HTML . Hypertext Markup Language

HTTP . Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JDBC . Java Database Connectivity

JS . JavaScript

JSON . JavaScript Object Notation

LHS . Left-hand Side

MEMS . Micro-Electro-Mechanical Systems

MPS . Multi Pilot Simulator

MVC . Model View Controller

NB . Number of Badges

NCL . Number of Case Log

OFES . Online Feedback System

POJO . Plain Old Java Objects

REST . REpresentation State Transfer

RHS . Right-hand Side

SDF . Score of Daily Feedback

SDK . Software Development Kit

SGR . Score of Grand Rounds

SMTP . Simple Mail Transfer Protocol

xiv

SPA . Single Page Application

SSE . Score of Simulation Evaluation

STL . Stereolithography file format

WAR . Web application ARchive

WebGL Web Graphics Library

XML . Extensible Markup Language

xv

Chapter 1

Introduction

The topic of instructional feedback to residents is an under-researched area in

medical education. Feedback in general education is defined as information on the

progress of learners provided through various channels [1]. As the demand for feed-

back in education continues to grow, the need for delivering effective feedback quickly

and accurately becomes of great importance. Using an effective feedback mechanism

is crucial in clinical learning situations because it motivates residents to correct their

mistakes. Many educational institutions provide feedback via paper evaluations which

reach to residents after a couple of weeks. Meanwhile, the resident undergoes further

evaluations before analyzing their current performance . Moreover, the paper eval-

uations often provide an incomplete picture of student’s whole performance. Paper

evaluations are frustrating and place a heavy burden on instructors to track resident’s

progress within the training program. The greatest challenges in the area of medical

education are (1) delivering the feedback to residents with consistency, in a timely

manner, and (2) tracking of residents’ medical evaluations progress to the instruc-

tors. Overcoming these challenges can potentially increase residents’ motivation and

improves prediction of residents’ success rate.

1

1.1 Definition of feedback in clinical education

In clinical education, feedback is acknowledged as an essential tool in learning.

Judging from the number of publications and their correlated topics, feedback is

crucial [2 - 5]. For example, Hattie and Timberley stated in their review of 196

studies on feedback in the classroom that feedback is as powerful as quality and

quantity of instruction to the residents [6]. Moreno described effective feedback as

important to improve knowledge and skill acquisition [7]. The concept of feedback

is used in various fields and its definition is different in each field. The definition of

feedback in electronics is “the return of a partial fraction of output of a machine or

system as an input to the source to adjust” [8]. The social definition of feedback is

“the control of the behavior of an object by an error at a given time with the specific

goal,” whereas in clinical education, it is the information shared with the resident

concerning the correctness or accuracy [9]. In short, the definition of the feedback for

purpose of this study is a scorecard of resident’s performance.

1.2 Feedback Components

Feedback is instrumental in the learning experience of students and is often given

as a part of the assessment. These assessments can enable learners to consolidate

their strengths and identify their weaknesses. Their strengths and weaknesses direct

them to the necessary actions to achieve the learning outcomes. Feedback is an essen-

tial component in all learning contexts [10]. It serves a variety of purposes including

evaluation of students’ achievements, development of students’ competencies, and un-

derstanding and elevation of students’ motivation and confidence. It can be perceived

as information conveyed to the students to assess themselves. In order to be effective,

feedback on assessment needs to possess a number of qualities: it needs to be timely,

constructive, motivational, personal, manageable, and directly related to assessment

2

criteria and learning outcomes [11]. A feedback strategy should address as many of

these attributes as possible to promote learning. The provision of effective and high-

quality feedback has been identified as a key element of quality teaching, and this

view is well supported by meta-analytic studies [12]. The ideal criteria for effective

feedback in this thesis include goal-referenced, user-friendly, timely or ongoing and

consistent. These are defined as follows.

Goal-referenced : Setting objectives is the key to learning. The residents should

receive performance review on their objectives. The feedback mechanism is crucial to

remind the residents and lead them to achieve their objectives.

User-friendly : User-friendliness helps the resident in understanding the results de-

livered during their curriculum. Misunderstanding the feedback will lead to residents

confusion and thus mistaken actions.

Timely or Ongoing : The sooner the users get feedback, the better they learn.

Timely feedback helps residents avoid committing mistakes. The evaluations are

often coming after weeks hence the residents are not receiving the information to

rectify their mistakes in time.

Consistent : To be useful, the feedback must be consistent all the time. The

residents can assess themselves only by stable and accurate information.

1.3 Core competencies in medical education

Educators in clinical education are tasked with providing accurate, constructive,

and timely feedback on resident’s performance. Previously, the only available feed-

back tool was objective data based on the in-training examination, a once-yearly stan-

dardized exam. Effective feedback to residents is important to acquire new knowledge

and skills, especially in light of the shift toward competency-based education[13]. In

the United States of America, resident assessment follows the developed model of Ac-

3

creditation Council For Graduate Medical Education (ACGME). In July 2002, they

mandated that six core competencies be incorporated into residency training. The

ACGME model is developed to measure the resident’s performance during the train-

ing program.

The six core competencies are as follows

1. Practice-based learning and improvement: Practice-based learning and improve-

ment involve investigation and evaluation of their own patient care.

2. Patient care: Patient care that is compassionate, appropriate and effective.

3. Systems-based practice: Systems-based practice, exhibits an awareness of, and

responsiveness to, a larger context and system of health care.

4. Medical knowledge: Medical knowledge about established and evolving biomed-

ical, clinical and cognate sciences.

5. Interpersonal and communication skills: Interpersonal communication skills

that result in effective information exchange.

6. Professionalism: Professionalism, as manifested through a commitment to car-

rying out professional responsibilities. [13, 14]

The resident’s performance is evaluated on these six core competencies. The

evaluations might be derived from simulation exercise or grand rounds presentation.

There are then presented to the residents as aggregated data, many times. Based on

the evaluations from the attending physicians or instructors, the committee decides

the resident qualification to graduate.

4

1.4 Flaws in current feedback mechanism

Today, as we become more data-driven, the need for timely, meaningful, and

consistent feedback has become more critical. The current feedback mechanism that

most of the universities following are paper evaluations. Providing such feedback is

often difficult due to time constraints. Furthermore, this feedback is often generalized

and comes later in the training cycle, when there is little time to fix deficiencies.

However paper evaluations are not able to deliver actionable, timely, user-friendly

and consistent feedback. This paper evaluation mechanism has many flaws:

User-friendly : The resident should observe all evaluations to assess themselves

on performance. Time consumed for this activity through paper evaluations is high.

Therefore, the residents sometimes are inadvisedly interpolating the data. So, the

evaluation results must be represented in an understandable way to the resident.

Timely or Ongoing : Paper evaluations require a large number of steps that need

human intervention. Additionally the results become available at a later point of

time. The paper evaluations are gathered together and stored at the secure location.

Depending on the availability of the resource, these evaluations are distributed. The

time to reach feedback often takes weeks or months. By that time residents’ have

undergone further evaluations, which can decrease or degrade their performance.

Consistent : The availability of the evaluations through paper restricts the time

factor. The instructors are either provided short time or excess time, which leads

to inconsistent data. Finally, there is no system or administrator to make sure the

evaluations are performed only once by every individual.

1.5 Statement of the problem

Motivating and predicting the resident’s success in clinical education has long been

a concern for instructors. To achieve this, many of the publications and research stud-

5

ies have stated that effective feedback plays an important role and has the potential

to improve learning and performance [15 - 17]. Medical residents believe that they

are not provided with feedback regularly from the instructors [15]. To illustrate this,

Sender-Liberman et al. found that, although 90% of attending surgeons reported that

they gave feedback successfully, only 17% of their residents agreed with this assertion

[16]. The feedback usually constitutes one-way transmission of information from the

instructor to the resident. Feedback is not just telling, it is a process whereby res-

idents obtain information and work to eliminate the differences between standards

and the actual work [17]. The dominant message from the study is that the delivery

medium of the feedback is problematic, both for the residents and instructors. In

the clinical education, residents are required to evaluate or review themselves every

session. The addition of web tools to deliver the feedback has shown decent improve-

ments. Further research needs to be conducted to increase motivation and to predict

the resident’s success by implementing an effective feedback mechanism.

1.6 Proposed method

Instructors in the world of clinical education are critically in need of new tools

and strategies to eliminate the risk of students’ academic failure and to increase their

motivational levels. Motivation is a psychological process that influences the form,

direction, intensity, and duration of work-related behavior [18]. There is no signifi-

cant model in market to increase motivation, but the current market is following the

digital badges system to some extent. For risk of resident’s academic failure, many

theories have stated that use of analytics can increase resident’s decision-making skills

[19]. The decision-making skills help resident to concentrate more on performance.

Analytic techniques utilize large data sets to provide residents with actionable infor-

mation. It helps them to determine the best action to improve their performance.

6

By utilizing the analytical techniques, early warning systems can be constructed to

predict students at-risk of academic failure [20]. Based on the research, Wang and his

colleagues proposed in 2002 that learning management systems such as Blackboard or

Desire2Learn systems may be able to provide an early indicator of medical residents

performance [21]. More recently, John Campbell and his colleagues argued that an-

alytic can offer new insights and identify at-risk or course failure [22]. The outcomes

of this research could be fundamental in creating an effective feedback mechanism by

using analytical techniques and implementing the concept of badges.

1.7 Thesis Organization

This thesis unfolds as follows:

Chapter 2 provides a literature review that presents usage of web tools, analytics

and badges in feedback.

Chapter 3 presents a overall view of the proposed model.

Chapter 4 draws conclusive remarks on the results. It also discusses future research

directions in which the research can be extended.

Moreover, the thesis includes an appendix that contains java source code along

with respective comments.

7

Chapter 2

Literature Review

The purpose of this literature review is to detail usage of web tools, analytics, and

implementation of badges in feedback mechanisms.

2.1 Usage of web tools

The world has been witnessing a rapid increase in the use of technology in every

field. Because of their ease of use, web tools in particular offer the opportunity to

share powerful information and easily collaborate [23]. If they are effectively de-

ployed, they can offer a way to enhance residents’ performance in clinical activities.

Also, they provide a new dimension to deliver medical evaluation results to the resi-

dents. Graham Walton found in a research that students’ highly ranked the usage of

mobile technologies as resources for their studies [24]. At the time of review, mobile

technologies were laptops and mobile phones. Residents are now using mobile tech-

nologies more than ever. The notion of “anytime, anyplace” recently became cheaper

by the mobile and personal technologies [23].

There are several studies conducted on web tools inclusion in the education sys-

tem Hatziapostolou and Paraskakis [25] introduced a web-based tool called the Online

FEedback System (OFES) to conduct a study on communicating feedback and in-

volving students in the feedback process. They included asynchronous discussions,

8

quizzes, announcements, documents and lecture notes in the OFES tool. They made

it accessible to a class of 46 students in 2005 and a class of 34 students in 2006.

Their observation from the database records stated that 100% students accessed the

tool and most of the students re-visited it before the exams. The students considered

OFES tool as a valuable resource before exams and it is warmly welcomed. While the

OFES tool is considered successful in drawing the attention of students, it is failed in

effectively portraying the student’s scores through the coursework.

Figure 2-1: OFES feedback web form

Another study by Sana et al. [26] strengthened the findings of Hatzipostolou

and Paraskakis research that students’ acceptance of web tools is successful. They

developed a tool for the automated generation of feedback. They categorized the

users into admin, student, and faculty depending upon their roles and accordingly

9

granted access to them. Each categorized account was provided access with certain

limitations. The faculty account were given access to view comments or complaints

contributed by students; students’ account were given access to submit comments

on feedback forms or to contact faculty/admin; and the admin account was provided

access to register/edit/update a student account, to register faculty account and their

display, and to generate feedback report. They observed that students more willingly

participated in using the tool and it increased the students’ performance. On the other

hand, they also noticed some disadvantages. There were problems with computerized

timing, flaws in security and limitations in internet access.

In both studies, web tools played a key role especially in promoting interaction,

delivering education and providing communication between instructor and student.

10

Figure 2-2: The online feedback system developed by Rahmann and Amit

2.2 Usage of Analytics

Learning is the product of interaction in several stages through the coursework

[27]. Although the use of web tools promotes the interaction, efficiency in delivering

the education, and providing communication between instructor and user, there is a

concern about the feedback portrayal to residents or users. Most researchers believe

the use of analytics to deliver feedback creates a greater impact on residents’ learning

11

of clinical activities. Also, they asserted that analytic research is a driver to increase

effectiveness and efficiency of learners and teachers [28]. Personal analytic applica-

tions help residents to improve self-knowledge by providing tools for the review and

analysis of their history [29].

2.2.1 Process of analytic applications

Personal analytics are carried out in four stages, namely, awareness, reflection,

sense-making, and impact [30]. Each stage has its own importance. Awareness deals

with data; usually represented as activity streams, tabular overviews, or in other

forms of visual representations. The reflection stage focuses on raising questions and

analyzes relation to the user. The sense-making stage is associated with users response

to raised questions and in the creation of new insights. The final stage, impact, is

to aggregate information about the quality of data delivery and effectiveness to the

user. After the impact stage, the user’s response is transferred again to the first stage,

awareness, and the process is resumed. The impact stage determines the effectiveness

of the data presented to the user and predicts user’s progress towards the goal.

2.2.2 Dashboard

In recent years, dashboards have been developed to support analytic applications.

These are data visualization tools that display the status and key performance met-

rics to the user. They consolidate and arrange the numbers, graphical metrics, and

scorecards on a single template. They are considered as one of the best resource to

the resident for the review on performance and the department to compare between

the residents. Dashboards help in course activity (awareness), teaching practice (re-

flection), following residents at risk (sense-making) and finally motivating the resident

(impact). Interactive dashboards facilitate decision-making capabilities in resident’s

12

performance. The decision dashboard is the display of the needed information to

achieve one or more objectives. The information is consolidated and arranged on

a single screen so it can be monitored at a glance. For example, Dr. Dolan de-

veloped a computerized interactive clinical decision dashboard [31]. Their results

supported the idea that the decision dashboard format can be used to serve in crit-

ical decision-making situations. The majority of their participants considered the

dashboard effective and accurate.

In another study, Corring and Barba asserted the use of a dashboard applica-

tion in delivering feedback to students [32]. They developed students’ dashboard to

present scores. They observed the actions of the students after receiving the feedback

for its influence on performance during coursework. They recruited undergraduate

students and presented the designed dashboard by relating the entire class scores.

They requested the recruited participants to complete the survey at the start of the

semester. Their team conducted it to establish motivations relating to the subject as

well as their personal learning goals. They again interviewed participants during the

seventh week. After the interaction, they observed the following advantages includ-

ing the ease of understanding the scores; the student’s ability to plan new strategies

after the interpretation of the data; and the benefit of presenting all assessment and

learning activities in the consolidated view.

13

Figure 2-3: Dashboard developed by Linda Corring and Paula De Barba

2.3 Usage of Badges

The integration of dashboards with the web tools has increased the ease of un-

derstanding scores and decision making and has the benefit of presenting results in

a consolidated view. However, there is a need to work on the motivational aspects

which is one of the important factors in the effective feedback mechanism. Researchers

hypothesized that high motivation and the accurate feedback could lead to a higher

success rate [33]. The Stephen and Sean conducted a survey and observed that highly

motivated observers performed less accurately, but more confidently than those in the

low motivation condition [33]. To increase the motivation, different organizations are

14

introducing digital badges. Badge advocates claim that badges can be offered as

an alternative assessment to increase the learner motivation while maintaining high-

quality feedback [34]. Some researchers stated that digital badges are going to be

an exceptional innovation in the education system [35]. The institutions issue digi-

tal badges to reflect the learners’ achievements or the milestones along educational

pathway. This concept succeeded in video gaming and has been gaining attraction in

education in recent years. Digital badges can provide evidence of skills and achieve-

ments in an effective manner better than the conservative or the traditional grades

and degrees. This current form of distributing badges for achievements can become

the biggest asset in the education system for the current generation that has been

growing up with technology. One example of the use of badges to increase motivatio-

nis seen in certain digital badges have the potential to become a way to summarize a

residents’ resume in job searches.

The American Museum of Natural History conducted a survey on distributing

digital badges on web tools [34]. Their particular interest was the impact of badges

on student’s and staff’s learning capabilities. They designed 38 unique digital badges;

few of them are shared across program while the others are mostly mutually exclusive.

They observed from the surveys that the educators reported a mild to strong interest

in using digital badges, whereas at the initial stage they displayed a very little interest.

Most of the students believed the badges were more useful for the long-term courses.

Other than the students’ interest in badges, they discovered students enjoyed the pro-

gram more than before; it increased motivation, corrected students towards learning

trajectory, and encouraged students to stay in focus on their objectives. Most of the

students felt pride after receiving the badges for their work. Some students felt that

badges have the potential to serve as their special achievements or proof of effective

learning in the education program during the job interviews. They also believed the

inclusion of digital badges increased the motivation towards subject.

15

2.4 Conclusion

From all of these studies, the researchers’ conclusions and their proposed models

for student’s feedback is explored in various sections. To the best of my knowl-

edge, there is no available model or application for residents’ medical evaluations. To

increase residents’ motivation, an effective feedback mechanism that portrays evalua-

tions and has the ability to deliver constructive and manageable feedback in real time

is needed. Moreover, the application should predict the residents’ outcomes during

the program.

16

Chapter 3

Architecture Overview

The results of traditional evaluations are presented to the residents in a piecemeal

format, lacking any coherence or sense of connectivity. In an effort to improve both

the elicitation of data and delivery of feedback, we designed and developed a web-

based computer interface system for tracking multiple facets of resident education

and achievement known as Centralized Anesthesia Resident Achievement Tracking

System (CARATS). CARATS is an online platform for medical faculty members

to submit feedback on multiple areas of a resident’s performance, including daily

performance, oral presentations, and simulation sessions. Additionally, the system

compiles case numbers as logged by residents into the ACGME system. All data

entered into the system are displayed on a dashboard in a pertinent graphical format

for both the residents and teachers. The data is used in two novel ways. First, the

data used to compute a residency score, akin to credit scores, meant to provide an

overall picture of how the resident is performing and progressing toward graduation.

Second, the data used to provide the basis for achievements, for which the residents

earn badges or digital tokens like we see in fitness contests, video gaming, and other

areas. The proposed web-based system offers several advantages over traditional

feedback mechanisms. First, it allows teachers to easily submit daily feedback on

residents’ performance and makes such data immediately available to the residents

17

via a dashboard so that corrective measures can be taken immediately. Second, by

aggregating and integrating performance in multiple areas of residency in one place

and providing an insightful overall score, it allows residents and teachers to easily

track progress throughout training. Third, through gamification, it motivates medical

residents toward achievements. Finally, CARATS is dynamic and generalized, and

allows development of additional feedback forms, and can be tailored to the specific

needs of a residency program.

3.1 Objectives

We started the development of CARATS by keeping he following five objectives

in mind: 1) to allow faculty to easily submit daily feedback, 2) to make data immedi-

ately available to residents via dashboard, 3) to aggregate and integrate performance

in multiple areas of residency in one place and provide an overall score, 4) to moti-

vate residents toward achievements through gamification, and 5) to create a dynamic

system that allows development of additional feedback forms and can be tailored to

the specific needs of a residency program.

3.2 Proposed Architecture

This section describes the architecture of CARATS. The CARATS website follows

a two-tier application architectural style that involves client and server applications.

This architecture is also known as client server application. In this architecture, the

presentation and business logic runs on client, and server handles the database. The

two-tier architecture offers high performance because of physical closeness of client

and server. Implementation of two-tier architecture brings the following advantages:

[36]

18

1. Less components to integrate and interface help to avoid loading libraries,

2. A single provider can offer majority of integration guarantees,

3. The components/ modules have little overlap,

4. Less communication overhead between the applications,

5. Smaller, faster applications because of their physical closeness,

6. Less development environments to master the application.

CARATS follows model-view-controller architecture. In translation, this archi-

tecture provides a client application that is used for rendering purposes and contains

computation logic. In contrast, the server application maintains the database storage.

As discussed, the proposed architecture is divided into two coupled applications as

shown in figure 3-1.

Figure 3-1: CARATS proposed architecture

19

3.3 Decomposition Overview

The overview of proposed architecture functional decomposition is explained in

this section. All component applications in CARATS are coupled together and inter-

act in a synchronous manner.

3.3.1 Client Overview

The CARATS client is an angular and Spring JSP web SPA that follows MVC

pattern. It uses bootstrap and data tables for rendering the pictorial representations.

The user can only access the CARATS client in the proposed architecture, and its

capabilities are listed below as follows:

1. Retrieving and highlighting the important information to residents on their

individual dashboards,

2. Creating customized analysis reports by using the application,

3. Motivating the residents with innovative achievement badges,

4. Achieving less communication overhead between the applications,

5. Informing the performance growth of the residents’ performance using the daily

feedback stock chart visuals,

6. Predicting the residents’ status by mathematical calculations and presenting

through residency score scorecard,

7. Notifying residents the number of cases completed during the coursework through

the bar graphs and listed cards,

8. Providing the summary of all simulation, grand rounds evaluations results to

the residents,

20

9. Reporting all kind of residents’ evaluations in detailed table format to the med-

ical examiners,

10. Communicating the progress status in each evaluation in percentage computa-

tions,

11. Importing residents case log details to the application in Excel spreadsheet

format.

3.3.2 Services Overview

CARATS services is a Java microservices component and acts as the controller in

the proposed architecture. It uses the standard HTTPS protocols to transfer data in

JSON format. The configured application services can switch persistence providers

without changing the code. To facilitate the maintenance of applications, it supports

third-party libraries and a carefully chosen JDK versions. The APIs used in the

application are intuitive and can hold across many versions. There are no circular

dependencies between packages, which helps to maintain the clean code structure.

The responsibilities of the proposed architecture include the following:

1. Synchronously facilitating the client-server interaction,

2. Exchanging the JSON data,

3. Authenticating and maintaining user sessions,

4. Verifying of roles before accessing the controllers using the roles structure,

5. Searching, sorting, and filtering operations on data,

6. Computing the mathematical calculations before sending to the client in order

to show the numbers effectively,

21

7. Protecting the application against malicious attempts for manipulation or data

retrieval,

8. Validating the client-server handshake requests.

3.3.3 Database Overview

CARATS uses Microsoft SQL server storage to store and retrieve data. The SQL

server database stores all the data like user login information, evaluations data, and

so on. The following are the capabilities and responsibilities of the database:

1. Setting up development and production environments,

2. Assigning the permissions based on the level of database access to the user,

3. Performing backup and recovery,

4. Query performance tuning at the physical server level and query tuning,

5. Authenticating and maintaining user sessions while working on the database,

6. Setting up the authorized handshake of data between server and database,

7. Utilizing the concept of views for faster retrieval of data.

3.4 Technology Stack

This section explains the technologies used in the CARATS client-server applica-

tion. As proposed in the architecture, this application was developed using JAVA,

HTML, JS, and CSS. Details of programming interfaces used in the client-server

architecture are explained in subsections below.

22

3.4.1 AngularJS

AngularJS is a JavaScript-based front-end web application framework developed

to address challenges in single page applications. It is a declarative programme used to

create user interfaces and connect components. It helps to simplify the development

of client-side model-view-controller (MVC) and model-view-view-model (MVVM) ar-

chitectures. AngularJS framework reads HTML page customized tag attributes and

interprets attributes as directives to bind input or output parts of the page. The uses

of AngularJS programming interface are described below as follows:

1. MVC: AngularJS manages MVC components and serves as the pipeline that

connects with minimal coding.

2. Interface: AngularJS uses HTML declarative language which is intuitive and

less convoluted than defining the interface in JavaScript language.

3. POJO Data models: Angular data models follow plain old JavaScript objects

(POJO) and do not require getter and setter functions. Properties can be

changed directly in these models code looks cleaner. Data models are responsi-

ble for data persistence and server syncing.

4. Directives: Directives manipulate the DOM to simulate and help to invent their

own HTML elements. They act as a standalone reusable elements.

5. Filters flexibility: Filters filter the data, including formatting decimal places on

a number, reversing the order of an array, or in pagination. Filters are similar to

directives; they are also standalone functions. Filters help to create a sortable

HTML table without writing any JavaScript.

6. Less code: All the above points up till now mean that less code and AngularJS

helps to write their own MVC pipeline. For example, since directives are sepa-

23

rate from application code, they can be written by a parallel team with minimal

integration issues.

7. DOM manipulations: Traditionally, the view modifies the DOM to add behav-

ior, manipulate, and present data. In Angular, DOM manipulation code should

be inside directives. But Angular sees the view as just another HTML page like

a placeholder for data and the DOM manipulation code placed inside the direc-

tives but not in the view. MVC is all about presenting data into views, and not

having to think about manipulation. This made angular web app development

easy.

8. Service providers: Services involve with the MVC of application, and they pro-

vide an outward API to expose data. Most of the time it maintains an offline

data by syncing with the server to push and pull data. Services are designed in

AngularJS to be standalone objects.

9. Unit testing: Angular is linked by Dependency Injection (DI), manages con-

trollers and scopes. Because all controllers pass information depending on DI,

Angulars unit tests can measure the output and behavior. Angular is equipped

with a mock HTTP provider to inject fake server responses into controllers. [37]

3.4.2 Spring

Spring framework makes it easy to create Java enterprise applications with the

flexibility to create architectures depending on an applications’ needs. Spring frame-

work applications can choose modules from a vast range integrated with the frame-

work. It provides foundational support, including messaging, transactional data and

persistence, and web. The framework is developed around DispatcherServlet which

forwards requests to handlers. The new mechanism Spring developed in 3.0 version

24

helps to create RESTful websites and applications through the @PathVariable anno-

tation. The uses of the Spring framework programming interface are described below

as follows:

1. Clear separation of roles: There is a specialized object for every role like Con-

troller, validator, form object, model object, DispatcherServlet, and so on.

2. Adaptability, nonintrusiveness, and flexibility: The Spring framework has many

controller method signatures the application needs. A few of the parameter

annotations are @RequestParam, @RequestHeader, and @PathVariable for a

given scenario. Annotations help the framework adaptability and flexibility..

3. Reusable business code: One of the most important advantages of the framework

is avoiding duplication of code. The framework allows the application to use

existing business objects as command or form objects instead of copying them

to extend a base class.

4. Binding and validation: The framework offers customizable binding and valida-

tion like type mismatches as application-level validation errors, localized date,

number binding, and manual parsing String-only form objects and converting

them to business objects.

5. Handler mapping and view resolution: Handler mapping and view resolution

in the framework are customizable, and their strategies range from simple to

sophisticated URL-based configuration.

6. Model transfer. The model transfer is flexible and its name/value map supports

easy integration with any view technology.

7. Spring tag library: Spring tag library is a simple yet powerful JSP tag library.

It provides support for data binding and themes features. The custom tags in

the framework allow maximum flexibility in terms of markup code.

25

8. Configuration: Spring framework has a powerful and straightforward configu-

ration. This configuration includes easy referencing between contexts like web

controllers to objects. [38]

3.4.3 Microsoft SQL Server

The Microsoft SQL Server is a software product designed by Microsoft to store

and retrieve data as requested by other applications. The applications might be on

the same computer or another computer in a network. The SQL Server follows the

relational database management system principles. The store and retrieve operations

can be invoked on the SQL Server through Tabular Data Stream (TDS), which is an

application layer protocol used to exchange data between a database server and other

software applications. The SQL Server developed in a row-based table structure that

relates data in different tables. It avoids the need to store data in multiple places

within a database. The relational database model provides referential integrity and

other integrity constraints to maintain data accuracy. The uses of the Microsoft SQL

Server framework programming interface are described below as follows:

1. Reliability: In random situations, the client machine may crash while writing

data. This will cause the back-end database to also crash and become corrupt.

But in the SQL Server there is an intermediate stage created called intelligent

data manager, which helps ensure that the clients do not talk directly with the

tables. The intermediate system reads and writes data to and from the tables.

If a client machine crashes, the intelligent data manager realizes the situations

and avoids committing the partially transmitted data. Therefore, the database

continues to perform the upcoming transactions. The system will also maintain

an automatic transaction log for future references. If a backup needs to be

restored the transaction log helps to restore all transactions up to the crash.

26

2. Data Integrity: SQL Server data integrity is enhanced by the application of

“triggers”. Triggers are applied when the transactions or data inserted, updated

or deleted. By using triggers, the table level data can be stored and these records

help in audit processes because they cannot be forgotten.

3. Performance: Every form, report or a query will have access to the certain

number of tables across the network from the server to the clients machine.

Suppose one of the tables contains 50,000 records. The query looks for a single

record, the client pulls all 50,000 records for that single record. It collects

50,000 records over the network, and then 49,999 of these records are thrown

away. Contrast this with SQL Server, filtering takes place on the server, because

of that only 1 record is transmitted. This usually decreases the time required

to pull data, and the amount of data transmitted across the network decreases.

The SQL server improve the performance by overcoming the key parameter:

time constraint.

4. Network Traffic: As can be seen from the previous section, traffic across the net-

work is greatly decreased. This improves network reliability and also improves

the performance of the network for the client application.

5. Scalability: A file server system is designed for a small number of workgroups

and is approximately scalable to 10 concurrent clients. The increase in the

number of clients will lead to the rapid performance degradation. SQL Server

architecture supports hundreds or even thousands of concurrent users without

notable performance degradation.

6. Excellent Data Recovery Support: Microsoft SQL Server has a number of fea-

tures for data restoration and recovery when power losses or improper shutdowns

occur. Every individual table can’t be backed up or restored, but the complete

27

database restoration can be made available through the use of log files, caching,

and backups. [39, 40]

3.4.4 Hibernate

The Hibernate object-relational mapping tool to the relational database for the

Java language is developed to overcome the of limitations of JDBC. Its primary

feature is mapping from Java classes to data tables and data types. It also provides

data query and data retrieval. It is an open-source framework. It uses HQL and SQL

to perform powerful object-relational mapping and to query the database. It is one

of the best tools for ORM mappings in Java and can cut down a lot of complexity.

It also eliminates the defects from application. The uses of the Hibernate framework

programming interface are described below as follows:

1. Object/Relational Mapping: Hibernate helps business logic to access and ma-

nipulate database entities through Java objects. Hibernate takes care of aspects

such as automatic primary key generation, transaction management, and ad-

ministrating database connections, and so on, which eventually helps to speed

up the performance.

2. JPA provider: Hibernate supports the Java Persistence API (JPA), which con-

sists of specifications like accessing, persisting, and managing data.

3. High performance and scalability: Hibernate achieves high performance by sup-

porting lazy initializations, different fetching strategies, and so on. Additionally,

it scales well in any environment.

4. Easy to maintain: Hibernate generates SQL at initialization time and it does

not require any special database tables or fields. The data transaction time is

quick and the maintenance is easy when compared with JDBC.

28

5. Layered Architecture: Hibernate has a layered architecture, so there are no

restrictions to use every piece of code. The applications can use those features

enough for the project.

6. Database Independent: Hibernate is independent of the database engine. It is

offered with a list of Hibernate Dialects to connect with the different databases.

[41, 42]

3.4.5 Bootstrap

Bootstrap was developed at Twitter as a framework to encourage consistency

across their internal tools. Previously, the Twitter team used various libraries for

interface development led to inconsistencies and a higher maintenance. Eventually,

to maintain consistency, they developed the Bootstrap framework. The Bootstrap

framework is a leading responsive, mobile-first framework. Responsive design helps

websites that automatically adjust according to the screen size. It helps to adjust from

navigation, the organization of content, buttons, and image scalability. The respon-

sive websites are designed to prioritize the information different device users need.

It is a free and open-source front-end framework. It holds customizable HTML- and

CSS- based design templates with typography, forms, buttons, navigation, and so on.

It also supports JavaScript extensions and concerns only with front-end development.

1. Customization: The websites developed using Bootstrap do not look like a Boot-

strap website-meaning, the customization of the website completely depends on

developers. Some frameworks offer completely coded from scratch and other

dropped-in templates, but Bootstrap falls in the middle category. Lots of the

work is done in advance, either with the grid system or customizable compo-

nents. Additional JavaScript effects can also be altered or extended.

2. Grid approach: To stay clean and logical on the smallest screens, Bootstrap

29

forces designers to build websites with small screens in mind. Bootstraps grid-

based layout helps developers to focus on it. Its grid approach played a signif-

icant role in its success. Developers are given a choice up to 12 columns in a

layout, which are organized in layout classes extra small, small, medium, and

large for all types of screens.

3. Base styling: Bootstrap supports styling for all fundamental HTML elements.

Elements like typography, code, forms, images, icons, headings, lists, tables,

and buttons can be extended using the Bootstrap framework.

4. Components: Bootstrap prestyled most of the components. Some of the com-

ponents are dropdowns, button groups, navigation bars, breadcrumbs, labels &

badges, alerts, progress bars and many others.

5. Javascript plugins: The Bootstrap packages made components like drop-down

menu interactive with the bundled JavaScript plugins. It also provided JavaScript

plugins to the sliders, tabs, accordions, and so on. Adding these functionalities

takes only a few additional lines of code. [43, 44, 45]

3.5 Data flow in CARATS Architecture

The overview of the steps involved in the data flow across the application is shown

in figure 3-2. The process is explained in the basic note below and will be further

described with detailed descriptions in forthcoming sections.

30

Figure 3-2: Data flow in CARATS

1. Javascript sends data in JSON format with a GET request to a CARATS Con-

troller back end.

2. CARATS Controller doesn’t process any data, it just transfers to the CARATS

service.

3. To implement the logic, the CARATS service needs additional data from the

database. So it transfers the protocol to ServicesDAO to establish a connection

with the database.

4. CARATS ServicesDAO then calls the CARATS repository to process the query

and to retrieve required data. The data goes back to CARATS ServicesDAO

for further process.

5. CARATS ServicesDAO returns the data to the CARATS service to finish its

31

logic and handles the result to CARATS Controller.

6. The CARATS Controller then transforms the data into JSON and returns it to

the front end

3.6 Client Architecture

In this client architecture, the user requests either by typing a URL, clicking a link,

or submitting a form. It goes to the server through the POST or GET requests. The

response to these requests will become either the retrieving the file or output of the

environment. Both will be constructed into an HTTP response to pass information to

further stages. When the response comes back to the client or browser, the Javascript

will start processing it. After finishing the process, the information will be interpreted

by HTML and CSS to display content to the user. Once it displays the content, the

user starts interacting with the interface, which enables Javascript to perform a few

more operations. Initially while loading the page, it will be packed with CSS files,

JavaScript files, images, and other content.

Javascript runs according to the user interactions with the displayed content

through the HTML and CSS. When something changes in the page, the Javascript

also helps in refreshing it. The user interactions will only advance to the server when

the user requests a URL or clicks a link. But there is another scenario where the re-

quests will be sent to the server. When the page has an AJAX request with GET and

POST parameters, it will be forwarded to the server through the Javascript. These

AJAX requests are asynchronous, and a callback function is registered to deal with

the response. The AJAX response will not trigger a page reload as it will be handled

by the callback function. An AJAX request has a URL to relay the current location,

data of the form submission or other data, and callback function for the response.

32

Figure 3-3: Flow of data in client archietecture

The client architecture is developed in a way to avoid cross-browser compati-

bility issues. The transfer of data happens in JSON (Javascript object notation)

format. JSON is a lightweight data-interchange format, and it is based on a subset

of Javascript. It is a completely independent data-interchange language but uses C,

Java, Javascript, Python, and many others. The JSON is developed on two struc-

tures: a collection of name/ value of pairs and ordered list of values. The ways of

transferring data types using the JSON format explained below as follows:

1. The object begins with (left brace) and ends with (right brace) and each

name/pair is followed by : (colon) and it is separated by , (comma).

2. An array begins with [(left bracket) and ends with] (right bracket) and the

values are separated by , (comma).

3. Values can be a number, or true or false or null, or string in double quotes.

4. A string very much like a C or Java string is a sequence of zero or more Unicode

characters enclosed in double quotes. A group of characters makes a string.

33

5. Except that the octal and hexadecimal formats, the regular number used in a

C or Java programs are used in JSON.

6. Whitespace is allowed between any pair of tokens. [46, 47]

Responsive Web design: It is an approach to design and develop a website that

will respond according to the users behavior and environment based on screen size,

platform, and orientation. The type of devices CARATS application supports is

shown in figure 3-4.

Figure 3-4: The responsive design of CARATS works on these devices

To implement responsive web design in the application, it use a mix of flexible

grids and layouts, images, and an intelligent use of CSS media. If the user requests

a website from a tablet or laptop, the website automatically switches its design to

accommodate for resolution, image size, and scripting abilities. As the website is

deployed for users irrespective of place, the application will not consider the settings

like VPN on their devices.

Responsive sites use fluid grids for rendering in different screens. All page elements

in the application are sized by proportion, rather than pixels. So if the application

has three columns, it works on the principle of how wide they should be in relation

to the other columns than individually. The columns widths are defined in the ratio

34

like first column half the page, the second column 30%, and the third column 20%.

Media content like images is also resized using relativity. The images stay within

their relative design element.

Issues to overcome for responsive design: This section describes the problems

rectified for better performance of the application:

1. Mouse vs. touch: To design for mobile devices, the applications need to over-

come the issue of mouse versus touch. On regular desktops, the user handles

navigation and selects items with a mouse. On a smartphone or tablet, the user

mostly uses fingers for the same purposes. The web application must consider

touch into a mouse click. The CARATS application uses in-built plugins to

differentiate and work accordingly.

2. Graphics and download speed: The next major issue is graphics and files down-

load speed on mobile devices. The application is optimized in a way that file

download speed is similar on all devices. The graphics used for analytics are

high end with low configurations, so it works same across platforms.

To overcome responsive design issues and to render according to the screen’s fluid

grids and media queries are used in the application. A detailed explanation provided

below:

Fluid Grids: The usage of the fluid grid is a key behind responsive design. The

fluid grid is getting popular nowadays by moving liquid layout aside. The liquid layout

creates fixed-width layouts and page designs. Whereas the fluid grid considers page

design is fixed, but the width layout varies according to the layouts. The fluid grids

follow the traditional liquid layout. Instead of designing a layout based on pixels, it

does so in terms of proportions. This helps when pixels squeezed into a mobile device

35

or stretched to a larger screen computer or laptop, all of the elements will resize width

in relation to one another.

To calculate the proportions, the screen is divided by its content. Let’s say the

screen is a width of 900px and the content is 300px the system calculates the fluid

layout in relation width using the below equation. The result is 30 percent. So the

content will be given 30 percent of the pixel width across all screens.

Fluid layout in relation width =
Content width

screen pixel size

Fluid layouts can take us only up to a certain limit in responsive design. If the

screen is too small, then the content will be portrayed in an unreadable manner. To

resolve these kinds of issues the media queries are used in the application.

Media Queries: The solution to implement an effective responsive design for smaller

screens is CSS3 media queries, which is having a decent support from many modern

browsers. The application uses the conditional CSS styles to implement the respon-

sive design.

For application purposes, we used the max-width media feature, which allowed us

to apply specific CSS styles. If the browser window drops below a particular width,

then conditional CSS styles become active. The sample conditional CSS code for a

screen size 400px is shown below:

@media s c r e en and (max−width : 400px) {

. content {

f l o a t : l e f t ;

}

. u t i c o n s {

36

d i sp l ay : none ;

}

// and so on . . .

}

In current industrial situations, every device is manufactured with different screen

sizes. The application is designed for mobile, tablet, and computer (both desktop

and laptops) by assuming the pixel sizes, which are shown in table 3-1. The mobile

maximum screen size is considered or limited to 479px. Whenever the screen size

exceeds more than the mobile pixels limit, the application will consider the device as

a tablet. The process goes on by assuming the device screen sizes as mentioned in

the table.

Table 3.1: The screen sizes implemented in the application

Device Max-width

Mobile 479px

Tablet 767px

Laptop 991px

Desktop 991px

37

3.7 Server Architecture

The server architecture processing flow from receiving the request until returning

the response is shown in the 3-5 figure. The straight lines rounded with numbers one

to eight is the actual flow of data from front-end requests to the response to it. The

dotted lines are positioned in the architecture to represent the flow that quietly helps

to further process the data. The flow of the data is explained below in eight steps,

which are noted in the architecture as well.

Figure 3-5: Flow of data in server archietecture

1. DispatcherServlet receives the incoming request to the server.

2. DispatcherServlet selects an appropriate HandlerMapping and then sends the

task. The HandlerMapping decodes the approached URL and maps the con-

troller depending on that information. After mapping the controller, the Han-

dlerMapping will return the mapped controller response to the DispatcherServlet.

38

3. After receiving the mapped controller information, the DispatcherServlet dis-

patches the execution task of the business logic of controller to HandlerAdapter.

4. HandlerAdapter will then calls the business logic process of the controller ac-

cording to the information provided by the DispatcherServlet.

5. The controller performs the business logic and sets the processed results in

Model. The controller then returns the logical name of the view to the Han-

dlerAdapter for further processing.

6. DispatcherServlet forwards the task of determining the view according to the

view name to the next block ViewResolver. The primary role of ViewResolver

is to return the view mapped to the view name to the DispatcherServlet.

7. The rendering process will then be transferred to returned view by the Dis-

patcherServlet.

8. View returns the response to the front end after rendering the model data. [48,

49]

The details of the individual blocks in the server architecture is explained below.

DispatcherServlet: DispatcherServlet is also can be called as the front controller.

It is an actual servlet, which is declared in the web.xml file while configuring the

application. It uses special beans to render the appropriate views and to process

requests. The special Beans are configured in the web application context. The

DispatcherServlet consists of LocaleResolver, which is bound to the request to enable

elements, ThemeResolver is bound to the request to let the elements similar to views,

and MultipartResolver is to inspect the requested multipart files. [50]

39

HandlerMapping: HandlerMapping defines a mapping between requests and han-

dler objects. It is included as beans in the framework or can be implemented by the

developers. It is always wrapped in an execution chain instance, and its implementa-

tions support the mapped interceptors. The HandlerMapping is very powerful in the

framework, and even it makes it possible to write a custom mapping based on session

state, cookie state, and other variables. [51]

HandlerAdapter: The HandlerAdapter acts as an interface that handles the HTTP

requests. It maps a method to a specific URL and is used in conjunction with Han-

dlerMapping. The Servlet has the information about invoking a method but it cannot

invoke directly, so it takes help of HandlerAdapter to do that. HandlerAdapter also

involves in returning the response as model and view to the Servlet. The Handler-

Adapter interface is not intended for application developers but it is available for the

handlers who want to develop their own web workflow. [52]

Controller: The controller serves as a specialized component to autodetect the

implemented classes through the classpath scanning. Based on the RequestMapping

annotations, it is used in combination with annotated handler methods. Controller

operates on HttpServletRequest and HttpServletResponse objects like an HttpServlet.

It processes the request and the obtained result is returned as a model and view objec,t

which the DispatcherServlet will render. Sometimes the null value might be sent to

DispatcherServlet, which states that this object completed request processing and no

model and view to render. [53, 54]

View: Views are labeled by a view name and resolved by a view resolver. The

application supports more than one resolver. View resolvers enable the application to

render models without binding to a specific view technology. It provides the mapping

between actual view and view names. An AbstractCachingViewResolver takes care

40

of caching views, UrlBasedViewResolver affects the direct resolution of symbolic view

names to URL, and XmlViewResolver accepts configuration file written in XML.

These are some of the view resolver examples and their benefits. [55, 56]

The following are the configurable properties of requested URL into a view name:

1. prefix: Prepended string to the generated view name. The default is ””.

2. suffix: Appended string to the generated view name. The default is ””.

3. separator: The string separates URI parts. The default is ”/”.

4. stripLeadingSlash: Boolean specifies whether beginning slash should be re-

moved. The default boolean value is true

5. stripTrailingSlash: Boolean specifies whether ending slash should be removed.

The default boolean value is true.

6. stripExtension: Boolean specifies whether file extension should be removed.

The default boolean value is true.

Model: Model is designed for adding attributes, and it acts like a holder. ModelMap

is an extension to the model and it has the ability to store attributes. It also has the

ability to pass the collection of values. The ModelAndView is the final interface to

pass values to a view. It transfers values to both model and view in one return value.

When incoming requests occur, the @ModelAttribute annotated methods are called

before any controller handler method. Before the execution of the handler methods,

the data will be added to the java.util.map. [57, 58]

Services: The services used in the application are Restful services. They offer

suitable actions like GET, POST, PUT, DELETE, and so on, caching, redirection

and forwarding, and finally security like encryption and authentication. The restful

41

services support backward compatibility; they are scalable and securable services with

evolvable APIs, and they also have the spectrum of stateless to stateful services. The

following are the common annotations used in the application:

1. @Restcontroller: @RestController is an advanced version of the controller. It

holds both @Controller and @ResponseBody annotations, which simplifies the

whole controller implementation. The usage of the @RestController eliminates

the requirement of @ResponseBody.

2. @RequestMapping: This annotation decodes information like method type GET/-

POST and defines the URL of the resource. There are three parameters Head-

ers, Value, and Method, which are defined on top of the body to describe the

functionality. The value contains the path information; the headers carry the

authentication and format of the data; and the method will define the request

type GET, POST, and so on.

3. @RequestParam: This annotation helps to find the required parameter defined

in the URL. It decodes the parameter and transfers it to the body to perform

the business logic. Along with the declaration of the annotation, the type of

parameter to search must be defined next to it. It helps the application to mark

the particular data. If the parameter name and targeted name are the same,

the value element can be skipped. Methods can have many @RequestParam

annotations as there are no constraints on it.

4. @RequestBody: This annotation represents the body of the request. It maps

the HttpRequest body to transfer Java object by enabling the automatic deseri-

alization. The application deserializes JSON into a Java type automatically sent

from the client-side controller. Based on Accept header present in the request,

the application uses the HTTP message converters to convert the deserialize

request body into the domain object. [59]

42

Representation State Transfer (REST) is an architecture style designed for dis-

tributed systems. The application uses this design to further strengthen the determin-

ing the controller and carrying the data to the client through the architecture. REST

is a uniform interface and it is not related to HTTP, but it commonly associates with

it. The principals of the REST are described below:

1. Resources: It exposes the directory structure Uniform Resource Identifier (URI).

2. Representations: It transfers JSON or XML to represent attributes and data

objects.

3. Messages: It uses HTTP methods explicitly.

4. Stateless: Between requests, the interaction’s information stores no client con-

text on the server. State dependencies restrict the scalability and they are

limited. The client-side only holds a session state but not the server side. [60]

The application uses HTTP methods to map create, retrieve, update, and delete

CRUD operations to HTTP requests. The requests are never cached, and they do

not remain in the browser history. The bookmarking of the requests is not possible

and there are no restrictions on data length. The following are the HTTP methods

used in the application:

1. GET: GET request helps to retrieve information, and they are safe and idem-

potent. It means the results are same regardless of how many times the system

repeats with the same parameters. They cannot be critical to the operation

of the system as the user doesn’t except them. They might have side effects,

but they are negligible. The GET requests can be either partial or conditional.

When dealing with the sensitive data, the GET requests cannot be used. They

are only good to request the nonsensitive data.

43

2. POST: This is a request method designed to accept the data enclosed in the

body of the request message. It is used for storing the data and sometimes

when uploading a file or while submitting a completed web form. It sends

a representation of new entity of data to the server. Along with the POST

request, additional headers will be sent Content-Type: like application/x-www-

form-urlencoded and Content-length: provides the length of the URL-encoded

form data.

3. PUT: PUT request is a store entity at a URI. It can be used for creating a new

entity or for updating an existing one. Similar to GET request, PUT request

is also idempotent. The idempotent nature is the major difference between the

PUT versus a POST request. In case only a subset amount of data are requested

to replace through PUT request, the system will replace rest of the data with

either null or empty. The PUT request works like if the Request-URI doesn’t

exist it will create one or else it modifies original. It also allows the update or

creates a resource with the same URL object.

4. PATCH: PATCH request is designed to update only the specified fields of an

entity at a URI. This request is neither safe nor idempotent because its operation

cannot ensure the entire resource has been updated. For instance, the PATCH

request will be handy if the application needs to update only one field in the

entire entity. The usage of PUT here replace the other entity fields with either

null or empty. This method affects the resource located by the Request-URI. It

may create some side effects to the other resources like creating a new resource

or modifying the existing one. The PATCH will reduce the workload to change

the other fields in the entity.

5. DELETE: DELETE request helps to remove a resource either asynchronously

or a long-running request. It requests that the server delete the resource by

44

identifying the Request-URI. The DELETE operations are idempotent. Once

the clients request the resource to be deleted, the repetitive of the same request

won’t affect the system. Since the file has been removed already, if the request

is repeated the system just responds with the error file not found.

Exceptions defined in the application: To track errors, we implemented the ex-

ception handling in the application. Exception handling is the mechanism that helps

to handle runtime malfunctions to prevent the abrupt termination of the program.

Programming error, hardware failures, file not found, and resource exhaustion are a

few exceptions that can happen the program executes. The application is built with

methods to store the exception error codes and their location in the database. This

helps to find the error location and resolve. Most of the exception handlers generated

error codes are restricted to display on the client web pages. Exceptions can occur

at runtime known as runtime exceptions and at compile time known as compile-time

exceptions. Predefined and user-defined are the two types of exceptions present in

the application.

Predefined Exception: Predefined exceptions are supplied as a part of JDK. These

exceptions are developed for global or universal problems. A few universal problems

are as follows:

1. Division by zero.

2. Invalid bounds of the array.

3. Invalid formats of a number.

User-Defined Exceptions: User-Defined Exceptions are developed by Java program-

mer. It is supplied as a part of the project to deal with common specific Problems.

A few problems are as follows:

1. Entering negative ages for human beings.

45

2. Entering negative salaries for employees.

3. Trying to deposit the negative amounts.

In Java, exception handling is done by using five key concepts. They are try,

catch, throw, throws, and finally. Among the five, we used only two try and catch in

the application along with the custom exception handlers.

Try: Try is a predefined block. It can be loaded with a block of statements that

will cause problems at runtime. The problematic statements are highly recommended

to write in this block, which helps during the exceptions. If an execution error occurr

in the try block, the program abnormally terminates the current execution and entries

into appropriate catch block. Once the request went to the catch block, control never

comes back to try block. Every try block must be followed with a catch block. One

try block can have many catch blocks. It is preferred to have at least one catch

block. Multiple catch blocks are used for generating user-friendly error messages.

The nested/inner try blocks can be used in the application.

Catch: The catch block is also a predefined block that will be executed when an

exception occurs in the try block. Only one catch block is allowed to execute when

multiple blocks are present. The catch can accommodate try and catch blocks in it.

The catch block can handle all type of exceptions like ArrayIndexOutOfBoundsEx-

ception or ArithmeticException or NullPointerException. If there are no problems

in executing the try block then the catch block or blocks associated with that try

block, will be ignored. Catch blocks execute for a specific type of exception like catch

(ArithmeticException e) that handles ArithmeticException.

The application architecture is defined with 40 standard status codes. They are

used to convey the results of a clients request. The error codes are divided into the

five categories. The status information and their series code are presented in the

below table 3-2.

46

Table 3.2: Error code series and their information

Series What for

1XX informational

2XX success

3XX redirection

4XX client error

5XX server error

• Informational: Protocol-level information will be displayed.

• Success: Indicates request accepted successfully.

• Redirection: In order to complete the request client must take some additional

action.

• Client Error: Error status codes points the finger at clients.

• Server Error: Error status codes points the finger at the server. [61]

The table below summarizes the HTTP methods recommended return values when

used in combination with the resource URIs.

47

Table 3.3: The error codes & their information

HTTP Verb Error codes

POST (Create) 404 (Not Found), 409 (Conflict) if
resource already exists

GET (Read) 200 (OK), single field. 404 (Not
Found), if ID not found or invalid

PUT (Update/Replace) 200 (OK) or 204 (No Content). 404
(Not Found), if ID not found or in-
valid

PATCH (Update/Modify) 200 (OK) or 204 (No Content). 404
(Not Found), if ID not found or in-
valid

DELETE (Delete) 200 (OK). 404 (Not Found), if ID
not found or invalid.

DAO: The application allows switching between persistence technologies without

worrying about exceptions that are technology specific. This framework provides

helpful translation from technology-specific exceptions. The framework exceptions

wrap the other technology exceptions like SQLException, so there is never any risk of

losing the important information. Application DAO is a Java component follows data

access object (DAO) pattern and uses Hibernate- like services to establish sessions

and make calls to the database. The advantages of DAO are as follows:

1. It hides all the data access implementation details and enables transparency by

doing that.

2. It allows to clean-up the resources automatically.

3. If the database provider is changed it allows easy migration.

4. It reduces architecture and code complexity by centralizing the separate data

access layer.

48

Hibernate technology is used in the application for DAO pattern. The architecture

that allows transactions between the server and the database is shown in figure 3-6.

Figure 3-6: DAO hibernate archietecture

1. Configuration: The configuration details are stored in hibernate.properties or

hibernate.cfg.xml files. The files are annotated with the @configuration, which

helps to load the files when a request is placed. The system uses these details

to establish a stable connection with the database. It uses Session factory

to work with both the database and the Java Application. The entire set of

mappings to an SQL database of a Java types application are represented in

these files. There is an additional feature in the hibernate properties to store

all development, testing, and production database details in a single file.

2. Session Factory: It is a factory for Session objects and created by providing

49

the Configuration object. The configuration object contains the database re-

lated property details. Session factory pulls these details either from the hiber-

nate.properties file. The application requests the Session factory for a session

object to initiate the connection. If the application refers to development, test-

ing, and production databases, then it needs to create one Session factory per

database.

3. Session: It represents the interaction between the application and the database

at any point in time. This is represented by the org.hibernate.Session class. The

SessionFactory bean will have the retrieval information for the session instance.

Session main functions are to offer, create, read, and operations. At any given

point in time, the instance will be in the following states:

• Transient: The object has just been instantiated using a new operator and

not associated with a Hibernate session.

• Persistent: Associated with a Hibernate session and detects changes made

to an object. It synchronizes with the database until the work completes.

• Detached: Object has been in the persistent state, but its session has been

closed. It can be reattached to a new session at a later point in time.

Before saving and updating the row data in the database table, every entity

object passes through three states of the object as per as given in the following

figure 3-7.

50

Figure 3-7: Hibernate Transaction session states

4. Query: It allows the application to query the database. This framework provides

two different techniques NamedQuery and CriteriaAPI to query the database.

Both can be used for one or more stored objects. The details of NamedQuery

and CriteriaAPI are explained below:

• NamedQuery: Named query in hibernate is a JPQL or SQL expression

with pre-defined queries. This can be defined either in mapping file or in

an entity class. In this application, it is defined in an entity class. @Named-

Query and @NamedQueries annotations are used for HQL or JPQL expres-

sions. Annotations like @NamedNativeQuery and @NamedNativeQueries

are used for native SQL expression. The application also supports the

queries via stored procedures and functions. The stored procedures and

functions return a result set as the first out-parameter. The Named queries

help while executing the same queries multiple times in more than one ap-

plication. If the configuration is written in the mapping file, the developer

needs to use getNamedQuery() given by session interface. The calling list()

is used for getting the Query reference to execute queries.

• Criteria: The Criteria API in this framework allows the application to build

up a criteria query object programmatically. The org.hibernate.Criteria

interface defines the methods available depending upon the objects. The

51

hibernate interface used in this architecture contains several overloaded

createCriteria() methods. The application uses an entity name or object’s

class to create criteria methods. When the application is executing the

criteria query, it returns instances of the persistent state object’s class.

The criteria query also returns all objects that correspond to the class. The

Criteria API can be used to apply restrictions in your queries to selectively

retrieve objects the way the application could retrieve only residents with

70% of residency scores. This framework also allows the application to do

more complicated queries with the help of Criteria API.

5. First-level cache: While interacting with the database the First-level cache is

used as the default cache for Hibernate Session object and there is no option

to change into disable status. However, hibernate allows for the deletion of

selected objects from the cache or to empty the cache completely through some

methods. The cached memory created or stored for a session is not visible to

other sessions. Once the session is closed, all objects stored in the cache memory

will be cleared. The First-level cache is also called as a session cache. It caches

objects within the current session. All-Session object requests to the database

pass through the first-level cache. Until the next Session object is live, the first-

level cache is available with the session object. This feature helps in not firing

the query again and again within the same session. Different methods used to

clear the session objects in the application are shown in table 3-4.

52

Table 3.4: Syntax to clear session objects used in the application

Syntax What for

evict() to remove a single object from the
first level cache.

clear() to clear the cache i.e delete all the
objects from the cache.

contains() to check if an object is present in
the cache or not.

Figure 3-8: Hibernate Transaction

6. Transaction: Transaction enables the application to achieve consistency in data

transfer. It also helps to roll back the data in case something goes unexpectedly.

The role of the transaction is stated in figure 3-8. The commit is a statement and

a state that informs the database that the transaction is finished and to proceed

with the storing process. The failed state describes something unexpected or

error in code that occoured in the system, so don’t store the data transferred

53

after the last commit. The syntax used to implement the transactions in the

application are shown in the table 3-4.

Table 3.5: Syntax used to implement transactions in the application

Syntax What for

begin() to start a new transaction.

commit() to end the unit of work unless in
FlushMode..

rollback() to force the transaction to rollback.

registerSynchronization() to register a user synchronization
callback for the transaction.

wasCommited() to check if the transaction is com-
mited successfully.

wasRolledBack() to check if the transaction is rolled-
back successfully.

7. Persistent objects: Persistent objects are configured using annotation @Entity.

They are plain old Java objects called as POJOs created to represent rows in

the table in the database.

• Default constructors are created to persist all Java classes.

• All classes are created with an ID to allow easy identification of the ob-

jects within Hibernate and the database. This property helps to map the

primary key of a table.

• All attributes are declared private and their getter and setter methods are

defined in JavaBean style.

• The central feature of Hibernate, proxies which depends on the persis-

tent class implemented. It acts like an interface that declares all public

methods.

54

8. Second-level cache: It helps to store objects across sessions. Application ex-

plicitly enables this cache and it requires to provide the cache provider for a

second-level cache. EhCache is one of the external cache providers. As there

is no need of second cache in this application, this is not enabled or borrowed

from providers. [62, 63, 64, 65, 66]

Application query flow: The application query flow to query the database and

return results presented in a flow chart in figure 3-9 and the steps followed are ex-

plained below:

Figure 3-9: Application query flow

55

1. The DAO starts the process when the application services send a request for

data from the database.

2. In the first step, the HQL written query is translated into a SQL server query,

as the database used in the application is Microsoft SQL server. The DAO

architecture is designed in such a way that a small change in the configuration

file adjusts the database language. According to that configuration change, the

application automatically converts the HQL or Criteria-based queries.

3. After translating the query, the system checks for the required data in the first-

level cache.

4. Depending the availability of the data in the first-level cache, further steps will

be decided. If the data are available in the system, then it returns to the entity

or proceeds to query the database. While proceeding to the next step, the

system changes its current status from a transient state to persistent state.

5. The systems execute the translated query in this stage in the server database

according to the environments. As discussed in above sections, the server

databases can be a development or testing or production environments.

6. The result from the executed query is then transferred to the second-level cache.

As mentioned the current application is not borrowing any third-party cache

system, so the process moves to the region cache step.

7. The system clears the existing session entity data in the first-level cache and

starts a new session. The returned new query results will be stored in the first

level cache.

8. The system returns the entity to the server services and then closes the session

by changing the state to detached. The first level cache data will not be cleared

until the next session requests to clear. [67, 68]

56

3.8 Database

A Database is a collection of related data stored for the purposes of easy ac-

cess, management and updating. The database can based on software or hardware.

Database Management System (DBMS) is a software developed to create and manip-

ulate a database based on users’ input. It allows the user to analyze data easily. It

is provided with an interface to create a database, store and update the data, create

data tables in the database, and more. It also protects and secures the databases. In

case of multiple user requests, it maintains the data consistency.

Database architecture in this application developed focusing on the design, devel-

opment, implementation, and maintenance of residents’ evaluations data. DBMS can

be centralized or decentralized or hierarchical, depending upon its architecture.

• Centralized: All the data will be stored at one location.

• Decentralized: Multiple copies of a single database are stored at different loca-

tions.

• Hierarchical: Data are organized into a tree-like structure.

The operation of DBMS will depend on the tier of architecture used for the appli-

cation. In 1-tier architecture, the user can store data directly in the database. This

setup helps programmers to directly communicate with the database for a quick re-

sponse. 2-tier architecture has an application layer between the user and the DBMS.

It is responsible to communicate the requests and the responses. In 3-tier architec-

ture, there is an additional presentation or GUI layer combined to 2-tier. For the end

user, the presentation layer is the DBMS. Additionally, the end user will have no idea

about the application layer and the database. The CARATS application is using the

2-tier architecture, so only application layer presented in between the database and

the user.

57

The application database is developed by following the Relational Database Man-

agement system (RDBMS) Normalization techniques. The Database Normalization

is a technique that helps in the effective organization of the data. It is a systematic

approach to decompose tables in order to eliminate data redundancy. Additionally,

undesirable characteristics like Insertion, Update and Deletion Anamolies will be

handled in a better way. Normalization is used in the application for mainly two

purposes:

• To eliminate useless data.

• To ensure the data are logically stored.

An anomaly in the database is a variation that might occur when update, insert,

and delete operations differ in some way from what is considered normal. In databases

update, insert, and/or delete operations need to be as straightforward and as efficient

as possible. The anomalies and problems that occur with them are explained below

as follows:

• Update Anomaly: It exists when one or more instances of duplicated data are

updated. If the residents’ evaluation is updated twice or thrice, then it disturbs

the aggregation of the data for analytics.

• Delete Anomaly: It exists when certain attributes are lost because of the dele-

tion of other attributes. Each resident’s evaluation results are interlinked with

a unique ID across all tables. If that unique ID is deleted instead of one eval-

uation result, then all the records connected to the residents will no longer be

visible under them.

• Insert Anomaly: It occurs when certain attributes cannot be inserted into the

database without the presence of other attributes. All evaluation results are

58

distinguished with the help of a unique id. If that id is repeated in an instance

then it ignores the insert operation. [69]

To make the operations as efficient as possible the system utilizing the four normal-

ization techniques. If the data tables are created without following the normalization

techniques then it will have data redundancy. The data redundancy makes it difficult

to handle the database and it will consume more memory space. It not only causes

data loss but also creates a frequent Insertion, Updation, and Deletion anomalies.

The four normalization techniques followed in the application are explained below:

1st Normalization form: The 1st Normal form excepts the table design in a way

that it can easily be extended and easier to retrieve data from it whenever required.

Rules for the First Norm:

1. Rule 1: Single Valued Attributes: Each column of the table should be single-

valued. It means they should not contain multiple values.

2. Rule 2: Attribute Domain should not change: Column of the table should

maintain the same format of entire data in it. It means if the column is designed

for a date of birth, it cannot be filled with text.

3. Rule 3: Unique name for Attributes/Columns: To avoid confusion or navigating

to an unintended column, each table should maintain different names for all

columns.

4. Rule 4: Order doesn’t matter: Because each row is treated as same as other

ones, the order of inserting the data doesn’t matter.

Second Normal Form: To satisfy the Second Normal Form, the table must have

two conditions:

59

1. The table should follow all the rules in the First Normal Form.

2. The table should have no Partial Dependency.

The partial dependency exists when at least one column depends on only one

key among the composite key. The composite key is the group primary keys which

help to retrieve unique data according to the situation. For example, the table is

created to store the user login details. The form is developed with additional fields

like profession, kind of access along with username and password information. The

profession of the user related to the user but not on the type of access they required.

Sometimes the admin access is given to the staff who takes care of creating new users

into the system. So the role is partial depends on the user but not on the type of user.

These details must be placed in different tables to decrease the data redundancy. The

Second Normal Form is followed in the application to remove the data repetitiveness.

Third Normal Form: The below are the two conditions that need to be followed

by a table to implement the Third Normal Form:

1. The table should follow all the conditions in the Second Normal form.

2. The table should not have a Transitive Dependency.

Definitions help to understand the transition dependency:

• Candidate Key: A candidate key is a key used for identification of row in a

table by using two or more columns.

• Prime Attributes: The attributes are called as prime attributes when there

exists at least one of the possible candidate key relation.

• Non-Prime Attributes: Attributes which does not exist in any of the possible

candidate keys of the relation are called non-prime attributes.

60

A Transitive Dependency occurs when rather than depending upon the prime

attributes or primary key the non-prime attribute depends on other non-prime at-

tributes. For example, the maximum limit to the daily feedback score is one hundred

but whereas the presentation and simulation evaluations are considered each field is

given with range from poor to excellent. The theme of calculating the performance

is different in this cases. Here, the daily feedback score and both evaluations depend

on the user performance but they are mutually exclusive. In this type of cases, the

Third Normal Form is used in the system to eliminate the transitive dependency.

Boyce-Codd Normal Form (BCNF): BCNF is an extension to the third normal

form. It is also considered as 3.5 Normal Form. The table should follow all the below

conditions to satisfy the Boyce-Codd Normal Form:

1. The table should be in the Third Normal Form.

2. And, for any dependency A → B in a table, A must be a super key. It means,

that for a dependency like A → B, If B is a prime attribute or column then A

cannot be a non-prime attribute.

Fourth Normal Form: The conditions to satisfy the Fourth Normal Form are:

1. The table should be in the BCNF.

2. The table should not have any Multi-valued Dependency.

Multi-valued dependency: If the following conditions exist in a relation(table),

then the table is having a multi-valued dependency.

• First, the table should have more than three columns.

• Second, for a dependency like A → B, for a single value of A multiple values of

B exists.

61

• Third, for a relation R(A, B, C), the relation between A, B and B, C should be

independent of each other.

To avoid the multi-valued dependency, the table must maintain independent non-

prime keys. If there is any relation between non-prime keys, then retrieval of data will

become hard. To avoid the multi-valued dependency in the application, two tables

are created for the user login credential details. The users will have the username,

password, and their roles information. As there are three roles created in the system

(explained in further sections), the user information table might have three rows

of data. Because of this repeat data which is called as a multi-valued dependency,

during data retrieval the system will pull additional unwanted data. One for the user

credentials and another one for the roles information. They both tied together with

the foreign key.

Normalisation Stages followed in the application: The process of applying

Normalisation Stages is performed by a series of tests on a relation. These tests

determine whether it satisfies or violates the requirements. If a test fails then the

relation is decomposed into fraction relations to meet the individual normalization

forms. Usually, the higher the normal form test success indicates the fewer vulnera-

bilities in the relation which causes the anomalies. All the first three norms are based

on the functional dependencies. The below are the steps involved to implement the

normalization forms in the application.

• Step 1: The data source is selected and converted into an unnormalized table.

It means the table is created with multiple values or complex data structures

stored with a single attribute. It is difficult to maintain data changes in this

current form.

• Step 2: The table in unnormalized form is transformed to first normal form.

62

The complex data structures or multivalued columns are converted to columns

with atomic values. This will help the table to not having repeating columns.

• Step 3: In this stage, the table is further transformed to the second normal form.

The columns are categorized and it is organized in a way that each column is

dependent on a primary key of the table.

• Step 4: The third normal form, non-transitive dependency will be executed in

this stage. It makes sure that all of its columns in the table are not transitively

depends on the primary key.

Figure 3-10: Normalization flow

The flow of the implementation of Normalization forms is shown in figure 3-10.

After the implementation of the third normal form, the data may still subject to the

anomalies. In that cases, the further transformations need to be performed on the

tables. The next levels of normalization techniques are normally required for complex

database structures. As the CARATS database is not having complex structures, the

further forms are not implemented.

63

Microsoft SQL Server query execution: The understanding of the Microsoft

SQL Server query execution and the process of retrieving, updating the tables is

shown in figure 3-11 and explained below.

Figure 3-11: Database flow

1. The application layer requests the database either to retrieve data or to manip-

ulate data.

2. Before assigning the request to the task execution, the system checks for the

available workers. When a worker is available, it sends request and idle worker

information to task execution block.

64

3. In task execution, the system according to the given requirement it parses, or

compiles or optimizes data. The plan is stored temporarily on plan cache.

4. Once the plan is finalized to execute the query, the operator sends a request to

the database for data through the buffer pool. Data is temporarily stored in

Data cache.

5. After accumulating the required data, the system executes the task or query.

The gathered information will then transferred to the application layer. The

worker status is changed to idle and passed to the thread pool section.

The details of the blocks in the Database flow is explained below.

Request: In Microsoft SQL server DBMS, the only way the application layer can

interact with the database is by sending requests through commands. The commu-

nication protocols used between the database and the application is called Tabular

Data Stream (TDS). Every request will be processed or transferred through the TDS.

Below are the few request forms used in the application.

1. Batch Request: The batch request is used to execute a bunch of requests.

This requests will contain just T-SQL text having no parameters. The T-

SQL batch may have locally declared parameters. Commands like SqlCom-

mand.ExecuteReader(), ExecuteNonQuery(), ExecuteScalar(), and ExecuteXml-

Reader() are used to invoke the T-SQL batch.

2. Remote Procedure Call Request: This kind of request will have any number of

parameters and a procedure identifier is used to invoke. The client or applica-

tion layer will send an RPC (remote procedure call) message data stream to the

DBMS. The application layer can send a numerical or text value with param-

eters, but it should not send mixing both RPC and parameters. Additionally,

the application layer can send more than one RPC messages at one time.

65

3. Bulk Load Request: Like a bcp.exe utility, the Bulk load is request used for bulk

insert operations. It is the only request that starts executing the task before

completing the TDS protocol. It starts the process and then consumes the data

stream to insert.

The syntax sys.dm exec requests can be used any time of a point to check the

status of requests.

Tasks: Task runs SQL statements or stored procedures with either a single SQL

statement or multiple SQL statements that run sequentially. A task will be built on

the requests, but not on the type of request. For example, the entire Batch request is

considered as a task, not individual statements. The individual statements will not

create new tasks. Sometimes a task can be subdivided to run parallel statements.

The syntax sys.dm os tasks is used to check the status of the tasks. When a request

reaches the DBMS, the task is created and it will be in a pending state. At this stage,

the application layer will have no idea about the request. The engine must assign a

worker to start executing first.

Workers: Initially, at server start up, a certain number of servers are configured

in the system and later can be increased depending upon the demand. They are the

thread pool of SQL Server and only workers can execute code. Workers wait for the

tasks to hit into the system. When they did each worker will take up only one task

and executes it. The status of the worker will be on BUSY until the executing task is

complete. For a SQL batch request, the worker executes the entire batch statement

after statement. It means the execution of each statement must be completed before

the next one starts. The status of workers can be seen by querying sys.dm os workers.

Parsing and Compilation: Once the worker picks up the task from the server

then the first thing the system does is to understand the request. The statements in

66

the task will be parsed and by using the interpreted language the system prepares an

abstract tree structure. The entire batch of a request or a single statement is parsed

and compiled. If an error occurs at this stage, the system will terminate the request

with a compilation error message. The error message will be transferred to the server

to rectify the problems in the statement. The system changes the task status to

complete and the worker will be assigned to the next task. When complex queries

reach to the system like select with too many joins query plan will be created. Query

plan easies the whole process of executing the complex statements. The complex

queries are avoided in the application by using effective where clause conditions. So

the query plan does not take place in this application.

Optimization: In the process of execution of SQL query, the next most important

stage of the request is optimization. The optimization allows the system to choose

the best data access path from all possible alternatives. Consider the system trying

to access a simple query with join between two tables. There will be four possible

ways to access data when each table has an additional index. The Join statements

can be nested, loop, hash, and merger which increases the possibilities more. And

this number of possibilities increase exponentially as the complexity of the query

increases. As the SQL server charges according to the usage, the complex query

increases possibilities which increases the cost. To avoid overuse, the queries are

optimally constructed by simplifying as much as possible in the system. The CPU

consumption and Memory usage are also reduced by simplifying the complexity of

queries. After exploring all these alternatives once a query plan is created, it is cached

for future reuse. Future alike requests can skip the optimization phase and can find

in SQL Server internal cache.

Execution: Once the query is optimized and query plan selected, the request starts

executing. The query plan is translated into execution tree. Each node is called as

67

an operator. All operators works on three methods: open(), next(), and close(). The

operators’ loop starts with open() continues the steps with next() and finally closes by

calling close(). Queries that use parallelism uses a special operator called an Exchange

operator which helps intermediate operations like filtering data, sorting rows and so

on. These exchange operations are implemented at the client level to reduce the

workload on the database. The JavaScript libraries have been used in the client

section. This execution process not only applies to queries, but also insert, delete,

and update modifications. The same execution plans are used for the modifications:

open() for start, next() for steps, and close() for closing. These operators are designed

to work for both regular loops and nested loops. Few operators consume all data

before starting the process. This application has avoided these operators by moving

a few operations to the client side like sorting.

Results: Once all operators in the execution complete their process then the exe-

cution status will changed to completed. The results will return back to the client

program. The last operator means the top one transfers data into network buffers.

Later the data will be sent to the client. The network flow control protocols are

used in the system. Suspension of data will happen when the client is not actively

consuming the result. During this process, the network flow control will terminate

the session. The output parameters of the query can only be checked after the results

consumed on the client side. [66, 67]

3.9 Cloud Deployment

This section discusses the cloud deployment of the proposed CARATS architec-

ture. The client and server applications that come together to form CARATS are

deployed on a single Amazon Web Services (AWS) Elastic Beanstalk instance. The

68

CARATS uses the Apache Tomcat server to serve the client application. All the

components in the CARATS architecture reside on Amazon web services. As shown

in Figure 3-12, the overview of the AWS components are described below:

Figure 3-12: Cloud Component layout

Route 53 is a Domain Name System (DNS) web service that helps to route once

the user requests for a browser Uniform Resource Locator (URL) to hosted zone. [70]

Hosted Zone contains information about how traffic of the specified domain would

be routed on the internet.

Elastic Load Balancing is used based on configured algorithm routes incoming

traffic to multiple targets. [71]

69

Application Load Balancer is used for HTTP port forwarding. For distributed

architectures, it also provides advanced request routing.

Elastic IP address associated with an EC2 instance for reconfiguration. This

helps when the EC2 instance is resized or changed. [72]

Availability Zones indicates geographically separated areas. CARATS uses avail-

ability zone in US East region.

Security Group restricts the access to the hosted components on AWS. All user

HTTP and HTTPS requests are allowed by CARATS application security group.

EC2 corresponds to an AMI instance. It hosts the complete application architec-

ture. CARATS uses EC2 with Windows Server with Microsoft SQL server.

MS SQL Data Store corresponds to MS SQL Server installation on EC2.

Figure 3-13: AWS archietecture flow

70

Figure 3-13 demonstrates the complete flow of an HTTP/HTTPS request. The

possible request flows are explained by two cases which are described below as follows:

CASE 1 (HTTP Request, shown in black): When the user requests the web

URL http://www.utcarats.org from the browser (computer, tab or mobile), the re-

quest forwarded to Route53. The Route53 navigates it to utcarats.org hosted zone

where the request is intercepted by DNS router. The DNS router then forwards it

to Application Load Balancer. The load balancer based on defined algorithms either

forwards or redirects to multiple servers. It has too many purposes, but it is used only

forwarding or redirecting in the application. According to the defined algorithm, the

load balancer redirects the request from port 80 to 8080 of the Elastic IP Address.

The EC2 instance is allocated with elastic IP, on which the CARATS suite of appli-

cations is deployed. The Apache Tomcat is configured on EC2 instance to run at port

8080. The CARATS two-tier architecture application is deployed on this Tomcat web

server. Once the request is reached to web container on EC2, it will be handled by

the application. To secure the data the HTTP request is rerouted to HTTPS request.

Thus, the request is rerouted back to the browser as an HTTPS request. The request

is denoted by https://www.utcarats.org. The flow changes after it reach the Elastic

IP address again. The incremental flow for HTTPS request is described in CASE 2.

CASE 2 (HTTPS Request, shown in blue): In this case, once the request

reaches the Elastic IP Address bypasses the Protocol Routing. Therefore, it will be

forwarded to the CARATS client. To retrieve or send data, the application client is

connected to the services component. The services component then forms response

in JSON and sends back to the user through the client.

The following are the detailed explanation of the components used for the deploy-

ment of the CARATS in Amazon web services.

71

1. Route 53: Route 53 is a DNS, web service that follows a series of steps to turn

the human-readable web address into a machine-readable IP address. In this

case the web url utcarats.org into a physical machine readable address . The

recursive server returns the records from the IP address to the browser. The

browser then opens a connection to the web server and receives the website.

2. Hosted Zone: Hosted Zone holds the data about the traffic routed for the

CARATS domain.

3. Elastic BeanStalk: Based on a configured algorithm the Elastic Load Balancing

routes the incoming traffic to multiple targets and it also handles the application

details of capacity provisioning, load balancing, scaling, and application health

monitoring.

4. Application Load Balancer: Application load balancer is the point of contact

for the clients or users. It distributes incoming traffic to the multiple availability

zones. CARATS application load balancer deployed only in Ohio zone as the

majority users of the website resided in Toledo. It transfers all the requests

from clients or users to the Ohio zone using the configured protocol and port

number. There are no rules or conditions designed for the CARATS application

load balancer for the reason that the single availability zone. The CARATS

application is deployed in us-east-2a zone.

5. Elastic Load Balancer: The Elastic IP address is a static version 4 internet

protocol (IPV4) uses packet switched networks. It is a connectionless protocol

that does not guarantee delivery nor proper sequencing in delivery. We can

mask the failure of the connection of an instance by continues remapping the

address. The AWS does not support the IPV6.

6. Security Groups: Security group operates as a virtual firewall for instance to

72

control traffic both inbound and outbound. The AWS allows five different se-

curity groups to assign for any instance. Basic security groups created for the

CARATS instance to make it available to all users. The CARATS instance

security groups allow HTTP and HTTPS requests from all clients or users.

7. EC2 instance: Amazon Elastic Compute Cloud (EC2) provides virtual comput-

ing environment in AWS cloud. The virtual cloud computing is the delivery of

computing power, storage, and other IT services via the internet. Using AWS

EC2 virtual computing environment eliminates the upfront investment in hard-

ware infrastructure. It allows faster development and deployment. The AWS

can provide securities and configurations for the multiple numbers of servers for

the cross independent applications. The EC2 allows various configurations like

CPU, storage capacity, memory and network capacity.

8. Microsoft SQL Server: AWS offers the Microsoft SQL Server with a number

of versions and editions. There are two possible ways Amazon Elastic Com-

pute Cloud (Amazon EC2) or Amazon Relational Database Service (Amazon

RDS) to deploy Microsoft SQL Server. The CARATS website database system

created on Amazon RDS. The AWS supporting all the Microsoft SQL Server

implications. The database created with db.t2.micro instance class, SSD stor-

age type, general license public model, 20Gib capacity and mysql-5.6 version.

The AWS offering security groups to establish the connection for development

and client-server configurations. Five security groups are created for CARATS

database, in which four of them for development purpose and one to establish

connection with the client application. To save the CARATS user data the

database backup enabled for every seven days. [73]

73

Chapter 4

Centralized Anesthesia Resident

Acheivement Tracking System

The tool is written in Java with back-end Microsoft PL/SQL and front end services

Angular, JavaScript and Bootstrap. The project runs on Tomcat web server which

is accessible from any web browser. It is deployed to supplement the existing paper

evaluations of residents at a medical college in Ohio.

Creating data sharing networks requires a balance of privacy. In order to maintain

the confidentiality of the residents while still allowing the data to be mined for help-

ful observations, we created three roles in CARATS; evaluators, residents, and grand

round’s audience. The evaluators, usually medical instructors, are granted access to

simulation evaluations, grand rounds, daily feedback, and case log pages. The instruc-

tors are also provided access to the admin page, where they can create a new resident

or instructor account. The instructors can submit forms and observe residents’ scores

in a table format. They are only restricted from accessing the residents’ dashboard.

The residents’ account is provided access to the dashboard and grand rounds. The

evaluation results appeared on the dashboard in a graphical representation. To make

the grand round evaluations available to anyone attending a grand rounds presen-

tation, the global login credential account is created. The global credential grants

74

access to the grand rounds evaluations page but is restricted from other pages. The

detailed information and how to operate the application are explained in following

sections.

4.1 Application Overview

The first time the application is requested using a web URL, the Tomcat web

server loads the necessary components which initiate all the modules in the client-

server architecture. The Spring MVC home page controller renders the welcome page

as shown in figure 4-1. The homepage is decorated with the slideshow of UTMC pic-

tures, welcome note, important links, health science contact information, tweets block

to share information with the residents, and the collaborators to the project. The pic-

tures of the collaborators are expandable pop-up’s for their educational background

and research achievements shown as figure 4-2. Blackboard, contact information, fac-

ulty and administration staff re-routing links are provided under the important links

section. All these details can be seen in figure 4-1.

As no user session exists while loading the welcome page, the navigation bar will

be loaded on top of the page with an evaluation dropdown on the left and a login link

on the extreme right-hand side. When the user clicks the login link, the CARATS

client-server application navigates the user to a secured Login page as shown in Figure

4-3.

When the user provides the credentials “Username” and “Password”, and clicks

the login button, the service request will be passed to the dispatcher servlet and then

to the controller. The controller validates the credentials and returns the response.

Depending on the response from the controller, the user is navigated to different

pages. Once the application received the success response, it saves the user session

information like authentication ID in the browser. Additionally, it hides the Login

75

Figure 4-1: CARATS Home page

76

Figure 4-2: CARATS collaborators expansion pop up

Figure 4-3: CARATS Login page

77

dialog, and to indicate a successful login it loads up the application navbar with

customized links. At this point of time, the login link in the navigation bar is replaced

with customized user profile drop down with few user-related pages. The user logout

session link is visible by expanding the user profile drop-down. The user can log out

at any point of time from the application. Logging out of the application terminates

the current user session, thereby, user session stored in the browser will not be used

for authentication purpose.

4.1.1 User Roles and Security

Among the JDBC, In Memory, and LDAP authentication services, the applica-

tion is configured with the JDBC authentication. The JDBC authentication allows

the application to validate credentials with the database. The application follows

a list of steps to authenticate the user. While authenticating, the application pulls

context information, like a list of roles for the user, after the verification of the pass-

word for the username. The application establishes the security context for the user.

Both username and password are combined into UsernamePasswordAuthentication-

Token. When the user requests a page protected by an access control mechanism,

checks the required permissions for re-routing against the established security con-

text information. The servlet filter is configured in the application to protect the

application URLs’ and help them in redirecting the user to the login form when roles

are not matched. Servlet filter ensures that the authentication of the user before

re-navigating the URL request. In addition, the servlet filter follows the web secu-

rity services which is HTTP basic authentication configured in the application. The

http element, a web-related namespace functionality, is responsible for creating Fil-

terChainProxy to secure all URL’s. Passwords are encoded with password-encoder

element using a secure hashing algorithm. The HTTP authentication is introduced

to implement a request level authentication in the CARATS application.

78

For further strengthening the security of the application, the Cross Site Request

Forgery (CSRF) tokens are implemented. In some cases, there is a chance that

the active user data stored in cookies unintentionally transferred to hackers. This

happens when the user actively participating in the application and the malicious

websites at the same time. So the malicious website takes the advantage of the

weakly protected website to gather private data and misuses it. In order to protect

the cross transformation of data, the CSRF tokens are introduced into the system.

Therefore, every GET and POST requests are equipped with CSRF token in the

header.

To protect the privacy of the data, certain roles are created in the system. We

classified the roles depends on the category of user requirements. According to the

requirements, we designed three roles, namely Role admin, Role user, and Role pres.

The users with Role admin access can submit forms on residents performance in

simulation evaluation, presentation evaluation, and daily feedback and they can also

upload the case log data into the system. The users with admin access can also create a

new user account by accessing the user administration page. The user administration

page is shown in figure 4-4. The admin user is required to fill the fields in the page

username, password, rocket email id without the tag (used for identifying the residents

in the research), designation of the new user, and kind of role the new user eligible

or needed to create a new user. The selection of the role depends on the kind of the

user. There are three kinds of the users, namely resident, lecturer, and presentation

audience implemented on the system. The admin users were not given access to the

resident’s dashboard but they can see the summarized data in other pages explained

in further sections. The Role user users are not authorized to access to the simulation

evaluation, daily feedback, and case log upload pages. They are authorized or given

access to presentation evaluations and their individual dashboards. To protect the

privacy of residents scores, user with Role user access can only navigate to their

79

Figure 4-4: User administration page

own individual dashboards. The dashboards do not have any comparisons or other

residents’ performance metrics. The Role pres is created for certain individuals who

are involved in the presentation evaluations. The presentation role is introduced into

the system to make the presentation evaluations available to the audience. The admin

user can create global credentials before the presentation to obtain the feedback from

all the audience. The complete role structure is shown in figure 4-5.

To implement the roles structure in the application, authentication is configured

in two different stages. One is at HTML page level and the other one at the spring

configuration level. The syntax’s hasAnyRole and hasRole are used to execute the

authorization of pages. The hasAnyRole is used for the pages needed for multiple

access and hasRole for the single access pages. When the user is not assigned with

the role to access the page, the application will re-route to the user denied page with

the home page navigation link. The access denied page is shown in figure 4-6.

The navigation bars are customized according to the type of users. The admin

account users can see the simulation and presentation evaluations under the evalua-

80

Figure 4-5: Roles structure

Figure 4-6: Access denied page

81

Figure 4-7: Navigation bar for different users

tion drop-down, user administration and case log upload under the admin drop-down,

daily feedback link and to the right-hand side a customized profile drop-down. The

JSTL libraries are practiced in the application to restrict the navigation bar with

unwanted links. The JSTL conditional tags used for executing the user role condi-

tions and it displays the content only if the expressions come true. The presentation

users’ navigation bar is displayed with presentation evaluation link under evaluations

drop-down. The Role user navigation bar has the same evaluation drop-down with

presentation evaluation and the dashboard links. The user profile drop-down is com-

mon for every user in the application. The three different navigation bars are shown

in figure 4-7 .

4.1.2 Password protection

Under user profile drop-down in the navigation bar, the update password page is

created to change the customized password provided by the admin user. The admin

account users will create a password for the first time as discussed in the previous

section. After receiving the account details from the admin, the new user must

82

Figure 4-8: Password change page

change the password. The update password page is developed with pre-populated

fields username and rocket ID which cannot be changed during the process. The

application also does not allow the users to change the username or the rocket ID

created by the admin. Once the account is created, even the admin is not given access

to change the username or rocket ID. The only option is to delete the current account

and create a new one for that user. Several rules are created to further strengthen

the password. They will be highlighted in red color under the submit button when

the user attempts to change the password field. The rules are one lower case letter,

one upper case letter, one number, and a minimum password length of 8 characters.

Once the password fulfills the rules one by one, they turn green. The submit button

will work only if the password fulfills all conditions. The update password page is

shown in figure 4-8.

A few spring MVC offered and few additional attributes are created and stored

83

Figure 4-9: User account details for admin

in the database to implement the login effectively. Among all these attributes, only

a couple of them will be displayed in the users summary page. Once the admin

creates the account, the page will be navigated or re-routed to the summary page

to cross check the details. The username, rocket id, and enabled are the three

attributes displayed in tabular format. The enabled attribute describes the status of

the account where one denotes to an active account and zero to an inactive account.

The enabled attribute is developed to add an additional functionality in future to

the application. It is created for the purpose to disable and re-enable an account

for a certain period of time during the course. This feature helps when the user

chooses to take a break during their education. If the account details are misspelled

or unnecessarily created by mistake, the added delete feature under the action table

header helps the admin to undo the account. After the admin click on the delete

button, a delete confirmation dialog will prompt on the screen with the username to

avoid unexpected button hit. The user summary page is shown in figure 4-9.

4.1.3 User profile

The motive to develop a user profile page is to decorate the dashboard with

personal information. The only user information that has been provided to the appli-

cation when admin create a new user is the name of the individual. The profile page

84

allows the application to gather more information about the resident or the lectur-

ers. The first and last name, personal email (not university email), contact number,

gender, address (three fields), and date of joining are the fields presented to the users

to submit as shown in figure 4-10. There are no mandatory fields on this page, the

user can submit with any number of entries. Additionally, this page is constructed

with the pre-populated theme. The fields will be occupied with the previous or last

submitted data. Let’s suppose the user submitted the form with the first and last

name on one of their visits. On their next visit to the page, they can see the fields

filled with the last submitted data. All these fields are presented in such a way that

they can be edited with any format. This page will also help in future work like

dashboard as an abstract to the professional resume. In that case, it helps to fill up

the personal information and brings the completeness to the resume.

4.2 Inputs

The data goes into the system through four individual forms: simulation eval-

uation, grand rounds evaluation, daily feedback, and case log upload. Each

form is designed based on the type of evaluation. The simulation evaluation is de-

signed to submit the simulation results and the page access is given only to the

admin account. Most of the admin accounts created in the application are lecturers

or medical examiners. The grand rounds evaluation page intention is to trans-

fer the feedback generated or submitted by the group of audience in grand rounds.

This page access is given to all account holders irrespective of their roles. The daily

feedback is designed similar to the simulation evaluations but with different criteria.

The case log upload is designed completely different compared to the other forms.

Admin account holder will upload an excel spreadsheet with residents performance

into the system. All the forms are developed with an aim to automate the process

85

Figure 4-10: User profile details

86

of delivering the residents’ feedback and to provide easy access to the forms for the

instructors. The application allows the instructors to easily submit evaluations and

makes the data immediately available to the residents. The admin account users are

provided with access to submit all four forms in the application. Residents and grand

rounds audience can only submit the grand rounds. Most of the evaluations’ fields

are given with five options ranging from one bad to five exceptional. The following

subsections introduce the detailed description of the application input forms:

1. Simulation evaluation

2. Grand rounds

3. Case log

4. Daily feedback

4.2.1 Simulation Evaluation

A simulation is an instrumental design to replicate the real-time patient experi-

ences with guided artificial practice [75]. In the early stages of clinical education, the

residents used to practice on patient bodies. As patients came to realize that residents

were practicing, they often began getting nervous [76]. Since 1960, medical schools

have been using simulation centers to train residents in technical and non-technical

skills. The Simulator One, designed at that time is a computer controlled mannequin

patient simulator which is notable as one of the first Multi Pilot Simulator (MPS)

[77]. The Comprehensive Anesthesia Simulation Environment (CASE) was the first

commercial system introduced and utilized [78]. In simulation centers, most simula-

tions involve mannequins and apparatuses to train the residents. The evaluation of

these simulations is of the utmost important factor in medical education because it is

87

Figure 4-11: Add simulation type form

now included as part of board certification. Therefore, it is important for residents to

receive responsive and effective feedback on simulation sessions during their training.

The simulation evaluation gathers the residents’ and evaluators’ basic information

to relate the data, and various other fields to determine the residents’ performance.

The residents’ name, rank, and the type of simulation fields are used in the application

to relate the data to the resident. The evaluator name which is, by default, the

logged-in username and the date of simulation submitted are gathered for instructors

analysis. This information helps to examine the residents’ performance under them

at any point of time. The simulation evaluations explore various performance fields

such as the resident’s medical knowledge, technical skills, teamwork, leadership, and

professionalism. Each field is presented with five mutually exclusive options, the

lecturers can rate the residents’ performance from poor to excellent. The individual

comments section is placed next to each field for instructors to provide suggestions or

committed mistakes or appreciation to the residents. The additional comment section

is also provided to the instructors to submit the overall performance observations.

To avoid the misspelling of words, the residents’ name, their rank, and type of

simulation are created as the clickable drop-down menu. It allows the instructors

88

Figure 4-12: Simulation evaluation form

89

to choose one value from the pre-defined list comes from the database. There is

a plus symbol placed next to the simulation name field to add a new simulation

type. If the evaluator is not able to find the name of the simulation, they can add

it by using this feature. The add simulation form is shown in figure 4-11. The

resident’s performance and other mandatory fields are marked with a star symbol.

The comment sections in the simulation form are optional fields. If the evaluator

finds it is important to convey a mistake or appreciation, they will use the comment

fields. After submission, the results are posted on the resident’s dashboard and the

evaluators’ simulation results page. The simulation evaluation submission form is

shown in figure 4-12.

4.2.2 Grand Rounds

The purpose of the grand rounds presentations is to present the medical problems

of a patient and the treatment to an audience of doctors, medical students and resi-

dents, and it is one of the principal methods of instruction in teaching hospitals [79].

It helps doctors to improve their speaking skills so they can communicate clearly with

patients and with other doctors. Additionally, it encourages the residents to review

a medical topic in-depth, and also allows them to practice their verbal and non-

verbal communication skills. Grand rounds present medical knowledge from past and

present that helps doctors, residents, and medical students to stay up with the latest

information. These activities keep them competent and, moreover, they promote a

collegial atmosphere [80].

The grand rounds presentation feedback has sections similar to simulation evalu-

ation. It gathers residents’ information through the presentation title and the name

of the presenter. The users submitting the feedback also need to fill the date of pre-

sentation and their rank. It helps the application to group and aggregate data before

presenting it to the residents. The rank field help to prioritize the feedback based on

90

the audience educational status like the faculty feedback first, then anesthetist and

so on. The presenter name and evaluator rank are clickable dropdowns with a

pre-defined list. There are four options coded to the rank dropdown: student, resi-

dent, anesthetist, and faculty. The presenter name pre-defined list comes from the

database.

The residents’ presentation skills are evaluated based on organization, relevance

of topic, the inclusion of appropriate visuals, effectiveness delivery, and knowledge

shared throughout the presentation. As discussed before in the roles section, every

user in the application is provided with access to this page. The audience can rate

these performance fields similar to simulation evaluation from strongly disagree to

strongly agree with five mutually exclusive radio buttons. The presentation evaluation

form is shown in figure 4-13.

4.2.3 Case Log

The intent of the ACGME Resident Case Log system is to record the clinical

experience of the residents [81]. The recorded experience enables residents to check

the progress of their clinical experience. The ACGME logs the number of cases

the resident performs in cardiopulmonary bypass; cardiopulmonary without bypass;

intrathoracic non cardiac; intracerebral endovascular; intracerebral nonvascular open;

intracerebral vascular open; vascular; vaginal delivery; ceserias section; complex life-

threatening pathology; spinal; epidural; nerve blocks; children under three months,

under three years, and under 12 years; and initial pain consultation.

To maintain a record of these cases, we developed a page to upload an excel

spreadsheet file in the application. The access to the case log upload page is given

only to the admin users. To partition the data from excel, the system uses the inbuilt

java and spring libraries. We created a configuration class for the batch job, and it

contains spring bean to describe the flow of it. We also configured an itemreader bean

91

Figure 4-13: Grand rounds form

92

Figure 4-14: Case log file upload

to ensure the method returns residents cases object. The application will ensure that

the created job will ignore the header section of the file. The path is configured in the

system which is not discussed here to secure it. Since the file has a header, we mapped

the rows into X object by using a BeanWrapperRowMapper X class. The system will

use a loop structure to gather all data from the file. When it finds the empty cells, it

stops processing the file. The created objects are further transferred and stored in the

database through DAO and DAOIMPL sections. The file will also have additional

residents’ information to map data with users. The department assigns cases to the

residents in rotation and updates the case logs. Case logs are considered part of the

basis for graduation. Figure 4-14 shows an image of a case log file upload.

The case log file is uploaded to the system every month. The results are displayed

to residents’ dashboard and the customized case log results page to the admins.

4.2.4 Daily Feedback

The daily feedback form gathers the residents’ performance from the medical

instructors. The residents’ information is collected through the residents’ drop-down

that comes with a pre-defined list from CARATS database. The evaluator name field

will take the logged in username by default. This field is not accessible to the admin

users to alter or modify. The date of evaluation is gathered to display data effectively

with specific information. When compared with other pages in the application, the

residents’ performance information is taken on this page is developed in a different

format. One of the fields (Generally, how did today go) is a sliding bar of one to one-

93

Figure 4-15: Daily feedback form

hundred. The sliding bar is developed with a gradient increase in colors red, yellow,

and green. The bar starts with red and turns into yellow and from then yellow to

green. The admins select position among the bar which signifies how they felt the

resident performed, and the selected score is not displayed anywhere in the page.

To further strengthen the score metrics, we implemented mutually exclusive radio

buttons with options of how much time was spent with the resident that day. They

are given with three options: 1) a little means a few nerve blocks or small cases, 2)

moderate for normal cases or half of the day, and 3) a lot for most of the day or

more complex cases. The comments section is provided for appreciation or remarks

and it is an optional field. We combine the work together and sliding bar fields after

submission of form. The medical instructors submit the form after examining the

resident’s work on cases. The main intention of this form is to evaluate the residents’

performance on cases. The daily feedback template is shown in figure 4-15.

94

Figure 4-16: Sample results page navigation link

4.3 Outputs

There are two kinds of data display pages in the application. They are categorized

on the basis of the access to those pages and the information on it. Four pages display

residents’ information to the admins’ account (admin pages) and one page to residents’

account (residents’ dashboard).

1. Admin pages

2. Residents’ dashboard

4.3.1 Admin pages

To distinguish the data in the application, four individual result pages are created.

The re-routing for these pages is not provided in the navbar. Instead, they are

presented in the same evaluation pages. For example, as shown in figure 4-16 the

re-routing link for the presentation evaluation highlighted on the top right-hand side

as the summary. The detailed description is provided in the following section.

4.3.1.1 Summary page details

Once the admin user request for the evaluations results, the HTTP request is

forwarded to the controller. The controller then pulls the data and transfers to

HTML pages. The users to all the summary pages in the application are admin

account holders. They are given access to observe the data and restricted to alter or

modify data in these pages. The data is displayed in table format for all pages in

95

the application. The table is equipped with some features to allow further analysis.

The table’s data is stored in static program storage as part of an initialization phase

or even stored in hardware in application-specific platforms. The first feature is the

search or filter the application uses the JavaScript libraries component to do the

operation on the table data. During the search or filter operation, the system loops

through each row to match the input field value against a list of valid items in the

table. The table is formatted in a way that it hides the content that does not match

the search. These search methods are implemented in the application using smart

searching and they are case-insensitive. The smart searching examples are described

below.

1. Match words out of order: If the user searches for the first and last name it

will match a row containing the first and last name, they appear in the table

regardless of the order or position.

2. Partial word matching: These tables provide immediate feedback to the user

means on-the-fly filtering. A small portion of words can be matched in the

result set like presen will match presentation.

3. Preserved text: The tables are added with the ability to search for an exact

phrase. This can be done by enclosing the search text in double quotes. For ex-

ample “presentation evaluation” matches text contains the phrase presentation

evaluation.

The second feature is the column visibility, this option controls the visibility of

one or more columns in a table. When the user clicks on the column visibility button,

a popup with column names will come out on the screen. The visibility options are

different for every table as they are equipped with different evaluation results. The

expanded popup will show the buttons of all the table’s columns or subsets of those

96

Figure 4-17: Sample column visibility popup

columns. If the user selects the column buttons, they will be hidden on the table.

The color of the column button will change once the user selects it. The transition of

the color is to show the remaining columns. The restore visibility is another button

created on the popup to return to the initial state of the table. The user can click

anywhere outside of the popup to close it. The sample column visibility popup is

shown in figure 4-17, where the white columns are the hidden ones. The restore

column visibility is located at the end of the column list in default white color.

The last feature is the export to excel. It allows the user to export the data from

the table. Once the user clicks on the excel button, it downloads the excel file with

rows of the table data. By default, the exported spreadsheet does not show any row

data if that table row holds null or empty fields. It is noteworthy to mention that the

unusual characters are not allowed and will be removed. Every option provided in

these pages has its own functionality and consists of a range of options. The export

button also has some abilities like including the page title, table captions or custom

message information in addition to the table data. The name of the excel file is given

as the name of the page. For example, the simulation evaluation export spreadsheet

file will have the simulation evaluation name. The first and second rows of the file

will be occupied with the name of the page and the small message of where it has

been downloaded. The header section of the file is copied from the column headers

of the table and highlighted with bold characters. There are some ways which allows

97

user to export the data is explained below.

1. The user can export a small portion of the data by search or filter option. If

the user clicks on the export button after filtering the data as discussed above,

the file will only be included with filtered data.

2. The user can export the selected columns of table data. This works if the

user applies the column visibility functionality before exporting the data. The

selected columns will not be posted on the downloaded file.

3. The user can export a filtered data with few columns. This export works when

the user applies the filter and column visibility functionalities before exporting

the table data. The downloaded file will have the filtered data with only a few

selected columns.

The simulation and presentation evaluation tables are shown in figure 4-18 and

the other daily feedback and case log are shown in figure 4-19. To secure the data,

tables are posted with no data on it.

4.3.2 Residents’ dashboard

Dashboard is designed in CARATS application as a collection of widgets that

gives an overview of the evaluation results and performance metrics are of interest

to the residents. The dashboard lets the residents monitor many metrics at once, so

they can quickly check the evaluations results or see correlations between different

reports. Residents’ dashboard is customized for simulation evaluation, presenta-

tion evaluation, case log, and daily feedback results. Additionally, these results

are used to produce badges and residency scores. All these metrics are developed

for residents to recognize their growth at any point in time where they can enhance

their performance during the semester. The metrics are displayed to the residents

98

Figure 4-18: Presentaion and simulation summary tables

Figure 4-19: Daily feedback and case log tables

99

Figure 4-20: Resident’s dashboard

after several computations. The complete dashboard is shown in figure 4-20. The

dashboard is categorized into the following three sections depending on their purpose

or usage:

1. Graphically interfaced individual feedback

2. Digital badges

3. Residency score

4.3.2.1 Graphically interfaced individual feedback

The graphically interfaced individual feedback category displays the simulation

evaluation, presentation evaluations, case log, and daily feedback in analytics like

100

charts, bar graphs, data tables etc. The simulation evaluation and presentation

evaluations are presented to the residents in spider graphs and listed tables. How-

ever, the daily feedback and case log are presented with bars having both negative

and positive values, stock charts and check listed tables. The detailed description is

provided in the following subsections and they are categorized based on the number

of input sections.

1. Simulation evaluation

2. Grand rounds or Presentation

3. Case log

4. Daily feedback

Simulation Evaluation The usual way of displaying the data is projecting the

numbers on the screen. But instead of the traditional display of data, the simula-

tion evaluation is projected with charts, graphs, and data tables. The simulation

evaluation data is displayed in the following formats:

• Spider graph

• Listed representaion

• Bar graph

• Data table

1. Spider Graph: The spider chart represents the model for the graphic repre-

sentation of all simulation evaluation fields. This visual medium provides the

ability to see the resident’s performance on evaluations. It displays the multi-

variant data of all the simulation evaluations with five wings: residents’ medi-

cal knowledge, technical skills, professionalism, leadership, and teamwork. The

101

Figure 4-21: Spider graph representation of simulation evaluations

simulation evaluations spide graph is shown in figure 4-21. The outer ring in

green color represents the maximum limit that the resident can reach in this

simulation evaluation. The inner ring in red color illustrates the actual score of

the resident.

2. Scorecard: Scorecard of the simulation evaluations is defined in the application

as the listed representation of the average overall scores of the evaluations. The

parameters are the same as the spider graph. The listed simulation evaluations

scorecard is shown in figure 4-22.

3. Bar Graph: The simulation evaluations bar graph represents the overall score

of a resident in all simulation evaluations submitted by each medical instructor.

Each bar is the average simulation evaluation score by one medical instructor.

The number of bars in the bar graph represents the number of medical instruc-

tors that have submitted simulation evaluations so far. The meaning of the

value on the bar can be seen in table 4-1 and the simulation bar graph is shown

in figure 4-23.

102

Figure 4-22: Listed representation of simulation evaluations

Figure 4-23: Bar graph representation of simulation evaluations

103

4. Data table: When the user clicks on the simulation link on top of the spider

graph, a pop up will emerge with the simulation evaluation data table. The sim-

ulation evaluation data table is equipped with the resident’s scores in medical

knowledge, technical skills, teamwork, leadership, and professionalism,

and their respective comments. In addition to that, it is also equipped with eval-

uator name, date of evaluations, goals and the type of simulation details. All

the features equipped for the instructors’ table are also provided to this data

table.

Table 4.1: Bar graph value representation of simulation evaluation

Value Meaning

1 Poor

2 Fair

3 Satisfactory

4 Good

5 Excellent

104

Grand rounds The grand rounds data is also presented in a similar way like sim-

ulation evaluations. They are presented in the following formats:

• Spider graph

• Listed representaion

• Bar graph

• Data table

1. Spider graph: The spider graph displays the multi-variant presentation evalua-

tion data with six wings: organization of slides, increasing the medical knowl-

edge, covering the relevant topic, delivering the topic efficiently, placing ap-

propriate visuals, and overall rating. Figure 4-24 display the representation of

grand rounds in spider graph. The scoring representation is also similar to the

simulation evaluation. The spider ring in color green is the maximum limit

which is 5 and ring in color red is the actual score.

2. Scorecard: The scorecard is the listed representation of spider graph details of

grand rounds. It works similar to the simulation evaluations scorecard and it is

shown in figure 4-25.

3. Bar graph: The bar graph represents the overall resident’s score in a grand

round presentation. Each bar represents the average of all evaluations on that

presentation. The number of bars represents the number of grand rounds pre-

sented by the resident. The bar range is the mean of feedback submitted by

the audience and it is limited from 1 to 5. The bar values meaning is shown in

table 4-2, whereas the representation of grand rounds in the bar graph is shown

in figure 4-26.

105

Figure 4-24: Spider graph representation of grand rounds

Figure 4-25: Listed representation of presentation evaluations

106

Figure 4-26: Bar graph representation of grand rounds

4. Data table: The grand rounds data table is equipped with resident’s scores in the

organization, medical knowledge, the relevance of the topic, effective

delivery, appropriateness of slides; and overall rating. This table is also

provided with all the features that instructors’ table held.

Table 4.2: Bar graph values representation of grand rounds

Value Meaning

1 Strongly disagreed

2 Disagreed

3 Neutral

4 Agreed

5 Strongly agreed

107

Case log The case log data imported into the system is presented in two different

formats to the residents on the dashboard. One is a checklist which gives an overlook

of the cases and the other is a bar graph plots the number of cases in bars.

• Checklist

• Bar graph

1. Checklist: A checklist is chosen in the dashboard to ensure residents’ consistency

and completeness in case logs. It works as a to-do list. The cases completed

will be appended with the check sign in green color, whereas the cases pending

are appended with the cross mark sign in red color. The primary task of the

checklist is to notify the type of cases that residents’ focus should be on. It

audits against the established numbers in the system. The comparison numbers

can be seen in table 4-3 and the checklist is shown in figure 4-27. The checklist

is provided with a hover option. It helps to check the exact number of cases

the resident required to perform or the access number of cases the resident has

already completed. If the resident has performed more than the required number

of cases, the hover will display the number of excess cases with no added symbol;

otherwise, the negative symbol will be affixed to indicate underperformance of

the number of cases.

2. Bar graph: The bar graph consists of parallel bars with varying lengths from

negative to a positive range. The bars at any point in time represents the

resident’s position according to the ACGME standards. When the resident

completes the target number of cases with reference to the ACGME standards,

the rectangular bar crosses zero limit and appears in green; otherwise, it stays

below zero and appears in red. The below zero position directs the resident

to work more on that type of cases. The representation of case log in the bar

108

Figure 4-27: Checklist representation of case logs

graph is shown in figure 4-28. The menu symbol on the top right side of the

graph allows the residents to print or download the graph. The residents can

download the graph in four different formats, namely PNG, JPEG, PDF and

SVG vector image. Once the residents click on the type of download option,

the application pulls out the data from the case logs and downloads it to the

resident with a name chart. The bars also provided with a hover option to know

the current number of cases performed. The hover option will be either in green

or red color depending upon the side of the graph. The hover displays the type

of case, the residents’ name and the number of cases. The bars graph varies its

limit on y-axis according to the maximum number of cases completed in a type

of case. Let’s suppose if the resident completed 128 cases in nerve blocks which

is the highest among all other case types, the system will assign the highest

limit on the y-axis to 150.

109

F
ig

u
re

4-
28

:
B

ar
gr

ap
h

re
p
re

se
n
ta

ti
on

of
ca

se
lo

g

110

Table 4.3: ACGME standards of Case logs

Case Limit

Cardiopulmonary bypass 10

Total Cardiac Cases 20

Intrathoracic non-cardiac 20

Intracerebral nonvascular open 11

Total intracerebral 20

Vascular 20

Vaginal delivery 40

Cegareas section 20

Complex life-threatening pathology 20

Spinal 40

Epidural 40

Nerve blocks 40

Children under three months 5

Children under three years 20

Children under twelve years 100

Initial pain consulations 20

Daily feedback Daily feedback submitted by the medical examiners is displayed

in two different formats on the dashboard.

• Stock chart

• Data table

1. Stock chart: The stock chart is to help the residents to analyze their perfor-

mance ups and downs. By observing the rise and fall of the chart, the residents

will have an edge at predicting the upcoming performance. The first number in

the stock chart displays the residents’ score of their first-day performance. From

111

that point onwards, the score will be the cumulative average of all the resident’s

scores. The stock chart is provided with options to display data from the last

one month, three months, six months, one year, or a custom date range. This

options will be in the disabled state if the data is not within the custom range.

The menu option is included at the top-right corner of the graph. This menu

is customized with print and download options. The graph can be downloaded

in PNG, JPEG, PDF, and SVG vector formats. This helps the residents to

perform analysis more intensively. Additionally, if the user clicks on any point

on the graph, a straight line will be highlighted. On top of the line, a hover

display with the cumulative average up to that day and at bottom of the line

date of that performance evaluation will be displayed. The scrollbar is added

at the bottom to move either side of the graph. The representation of the daily

feedback ratings in the stock chart is shown in figure 4-29.

2. Data table: When the user clicks on the daily feedback link on top of the stock

chart, a pop up will emerge with daily feedback data table. The daily feedback

data table is equipped with the resident’s daily performance scores on different

cases. The fields in the table are evaluator name, evaluations date, score, and

comments. All the features equipped for the instructors’ table are also provided

to this data table.

4.3.2.2 Badges

Badges are presented for accomplishments as a token of appreciation for the good

work [87]. Badges can be either physical or digital. In CARATS the badges are

digital badges. The application is defined with a few benchmarks to assign digital

badges to the resident. For example, if the resident completes the required number

of cases in a chosen field, the badges will be awarded. The unaccomplished badges

112

Figure 4-29: Stock graph representation of daily feedback

are displayed as gray images on the right-hand side. Once the resident completes the

targeted number of cases, the badges become to color images and move to the left-

hand side. Currently, the total number of badges in the system is seven. Depending

on the completion of a number of cases in a field, the residents’ will be assigned digital

badges. For example, if residents complete twenty complex life-threatening pathology

cases then they will be awarded the “Life Saver” badge. Once the badge is awarded,

it moves to the left-hand side as shown in figure 4-30. Similarly, if residents perform

five intrathoracic noncardiac cases, “Double the Lumens Double the Fun” badge will

be awarded. The badges are awarded according to equation 4-1.

113

Figure 4-30: Resident badges

Badges =

What’s become of the broken hearted? Cardiac ≥ 20

Head case Intracerebral ≥ 20

Go with the flow Vascular ≥ 20

Double the lumens, double the fun Intrathoracic non cardiac ≥ 20

Life saver Complex life threatening path ≥ 20

Daiper dandy Less than three months old babies ≥ 20

I finally see your needle Nerve blocks ≥ 50

(4.1)

On top of the achieved and pending badges, the individual evaluations are dis-

played with percentages. The percentages are calculated by taking the arithmetic

mean and then expressed as a fraction of 100. The four sections simulation evalu-

ation, presentation evaluation, case log, and daily feedback are presented in

that block.

114

4.3.2.3 Residency Score

The residency score is displayed in meter gauge format. It is the score of the

resident’s overall performance. The gauge needle adjusts its position according to

the residency score. The score range is limited between zero and one hundred. The

residency score comprised of the resident’s performance in simulation evaluations,

grand rounds, case logs, and daily feedback.

We used equation 4-3 to calculate the residency score. The maximum score that

resident can get is 100. Out of 100, the daily feedback gets the major share of 40

percent, badges get 32 percent, simulation evaluation and grand rounds 10 percent

each, and case log gets 8 percent. The scores are scaled according to their percentages.

The sum of all the parameters will give the residency score. The residency score is

shown in figure 4-31 and equation 4-2 is used to equivalent the case log to eight

percent.

Table 4.4: Weight-age for resident score.

form weightage

Simulation Evaluation (SSE) 10

Grand Rounds (SGR) 10

Daily Feedback (SDF) 40

Number of Badges (NB) 32

Case log (f(NCL)) 8

ResidencyScore = (SDF ∗0.4)+(SGR∗2)+(SSE∗2)+(NB∗(32/7)+f(NCL) (4.2)

115

Figure 4-31: Residency score

f(NCL) =

8 NCL ≥ 425

NCL∗8
425

otherwise

(4.3)

where: NCL = Number of cases completed so far

116

Chapter 5

Results & Discussions

The CARATS is one of the first applications introduced residency score and

achievement badges for delivering residents’ evaluations through web tools. Following

the deployment of the CARATS, we conducted survey to get the residents’ feedback.

Residents were provided with forms to complete an anonymous survey regarding the

CARATS web tool and it’s performance. The questions were given with 5 options

ranging from one as bad to five as exceptional. The thematic anlaysis was conducted

on the data. The surevy results were aimed to explore the accessibility and impact of

the web tool on the residents. In particular, we studied the interaction between the

residents and the tool on five sections: daily feedback, dashboard, badges, residency

score, and overall performance of the web tool.

5.1 Daily Feedback

The residents’ reviews of daily feedback are presented in figure 4-1. Seventy two

percent of the residents considered the daily feedback made an impact in day-to-day

clinical education. Most of them believed that it encouraged them to correct their

mistakes and perform well in subsequent clinical operations. They also believed that

the daily feedback representation in stock charts allowed them to identify trends,

pinpoint problem areas, and direct in an efficient manner.

117

Figure 5-1: Bar graph representation of residents’ rating on daily feedback

5.2 Dashboard

As figure 4-2 indicates, 90% of the residents considered the dashboard is a use-

ful resource to receive evaluations. The majority of the residents reported that they

were able to interpret evaluations at a glance. Through the analysis of the residents’

reviews, it was found that 95% of the residents’ felt dashboard is more informative

and effective than the regular paper evaluations. An element of the dashboard that

had a major influence on the residents was the inclusion of the evaluations in per-

centage. They reported that they were able to judge their standings in evaluations

by percentage representation. All residents affirmed the dashboard information was

effective, informative and it has made a difference in understanding the evaluations.

Residents welcomed the use of analytics for portraying the data. Eighty-four percent

of the residents agreed the use of analytics for evaluations made a huge difference

in decision making. Residents commented that the graphs illustrating their relative

118

Figure 5-2: Bar graph representation of residents’ rating on dashboard

position in evaluations were useful. Moreover, they added that the graphs would

boost their motivation. Residents also appreciated the change of dashboard template

for multiple screens like mobiles, tablets, and laptops. Dashboard improved residents

perceptions of the evaluation’s data and increased the degree of insight. The survey

data also suggested the dashboards can act as a form of a guide for residents planning

their graduation. One of the residents response when asked about the best thing in

the dashboard is “it keeps track of your numbers need to graduate”.

5.3 Residency Score

The residency score is divided into two categories; namely, usefulness and accu-

racy as shown in figure 4-3. Residents showed positive intentions towards residency

score. Sixty-four percent of the residents believed the residency score is useful to

119

Figure 5-3: Bar graph representation of residents’ rating on residency score

analyze their overall performance. They believed the residency score could help them

to understand the amount of work required to showcase excellence in academics. Al-

though the residents agreed with the usefulness of the residency score, only 36% of

them admitted the current algorithm generated residency score is accurate. Majority

of the residents suggested there is a need to improve current algorithm to increase

the accuracy in predicting residency score.

5.4 Badges

Figure 4-4 presents an overview of two characteristics of badges: usefulness and

motivation. We analyzed these characteristics along the research questions presented

to the residents. Seventy-three percent of the residents acknowledged the inclusion of

badges is highly useful in clinical education. Residents acknowledged with badges they

120

Figure 5-4: Bar graph representation of residents’ rating on badges

can compete with others, or with a self-imposed goal to improve their performance in

academics. Our analysis of badges usefulness identified that they can support resident

empowerment by putting them in control of their clinical education. We also observed

concerns that residents expressed about motivational factor through badges. Sixty-

four percent of the residents responded that they are uncertain about the impact of

badges in motivation. Despite the fact that the majority of the residents agreed with

the usefulness of the badges, they considered the increase in the number of badges

might allow them to judge the impact of badges in motivation. Residents preferred to

have more badges in the system to obtain a better conclusion on badges motivational

factor.

121

5.5 Overall performance of CARATS

The performance of CARATS is examined by several factors, namely, construc-

tiveness, effectiveness, timeliness, overall performance, and the impact on medical

evaluations. Reviews showed that the residents were able to receive real-time assess-

ment and effective evaluations. The residents appreciated the real time assessments.

Additionally, they confirmed that there used to be uncertainty in receiving paper

evaluations. They were also not able to confirm the time factor in receiving paper

evaluations. Ninety-eight percent of the residents praised CARATS for delivering

quality evaluations. They confirmed the CARATS made evaluations easier and in-

creased the transparency. They felt it made easier to evaluate themselves in clinical

education. Eighty-two percent of the residents confirmed that the usage of CARATS

made an immense impact in clinical evaluations as shown in figure 4-5 . Moreover,

all residents rated the CARATS overall performance a better solution for effective

feedback in clinical education compared to the paper evaluations. They observed the

CARATS has the potential to become an e-portfolio.

122

Figure 5-5: Bar graph representation of residents’ rating on overall perfor-
mance of CARATS

123

Chapter 6

Conclusion Remarks & Future

work

The goal of this research was to produce a new effective feedback mechanism

that is transparent, constructive, motivational, and informative. The web tool called

CARATS is proposed in chapter 3. The primary idea behind the proposed web tool

is to use analytics, badges, and algorithms to produce residency score. The reviews

carried out here strongly confirmed that the residents accepted the representation

of evaluations in a dashboard. Residents believed the dashboard transformed the

evaluations into consumable information. The use of learner analytics through the

CARATS application to different evaluations has shown great improvement in deliv-

ering the feedback. The longitudinal studies with dashboards are required to assess to

what extent dashboards can contribute to improving residents performance in clinical

education. Most of the concerns raised in the literature were about effective feedback

mechanisms to residents, and the findings from this study have demonstrated that the

CARATS has potential as an effective way to provide feedback as shown by the fact

that the majority of the residents were able to identify gaps in their performance. De-

spite it’s efforts and achievements, the current study could not confirm the accuracy

of residency scores and motivation through badges.

124

The CARATS achieved the following: 1) A single interface to provide resident

feedback in multiple areas of training; 2) a daily feedback form that is simple, mobile

device-friendly and informative; 3) a dashboard view allowed residents to conveniently

view evaluation data; 4) evaluation data is made available immediately (timely); 5)

achievement badges introduced gamification to motivate resident activity; and 6)

dynamic structure allowed for development of new evaluation inputs in the future.

6.1 Future work

The current product represents the first step toward the development of an all-

inclusive resident evaluation suite. Further, we can develop a Clinical Competency

Committee Dashboard view for instructors in which all of the residents’ evaluation

data will available in one view. There are still many challenges to improve the effec-

tive feedback delivery via CARATS. However, the usefulness of dashboard, badges,

and motivational feedback to students found in this study indicates that further ex-

ploration of other possibilities is worthwhile. While this analysis is not without its

drawbacks or areas for continued improvement like the algorithm of residency score,

the outcomes are such that continued use of CARATS would help to develop a new

algorithm to produce the residency score and to ultimately assist students in their

academics.

125

References

[1] Robert B. Barr & John Tagg (2012), From Teaching to Learning A

New Paradigm For Undergraduate Education, Change: The Magazine of Higher

Learning, 27:6, 12-26, DOI: 10.1080/00091383.1995.10544672

[2] Carol Evans, Making Sense of Assessment Feedback in Higher Education ,

Volume: 83 issue: 1, page(s): 70-120.

[3] Johannes Brug & Karen Glanz , The Impact of Computer-Tailored Feedback

and Iterative Feedback on Fat, Fruit, and Vegetable Intake , Volume: 25 issue: 4,

page(s): 517-531.

[4] David A. Davis, MD and Mary Ann Thomson, BHSc, Changing Physi-

cian PerformanceA Systematic Review of the Effect of Continuing Medical Edu-

cation Strategies, JAMA. 1995;274(9):700-705.

[5] Julian C Archer , State of the science in health professional education:

effective feedback

[6] Hattie, J. (1999), Influences on student learning , Unpublished inaugural lec-

ture presented at the University of Auckland, New Zealand.

[7] Paul Black & Dylan Wiliam (2006), Assessment and Classroom Learn-

ing, Assessment in Education: Principles, Policy & Practice , 5:1, 7-74, DOI:

10.1080/0969595980050102

[8] Oxford English Dictionary Online, [Accessed 06 06 2018.] 1995;70:898931.

126

[9] J M Monica van de Ridder, What is feedback in clinical education?, Medical

Education 2008: 42: 189197 doi:10.1111/j.1365-2923.2007.02973.x

[10] Dreifuerst, Kristina Thomas, THE ESSENTIALS of DEBRIEFING in Sim-

ulation Learning: A Concept Analysis, March-April 2009 - Volume 30 - Issue 2 -

p 109114.

[11] Thanos Hatziapostolou, Iraklis Paraskakis, Enhancing the Impact of For-

mative Feedback on Student Learning Through an Online Feedback System , Elec-

tronic Journal of e-Learning Volume 8 Issue 2 2010, (pp111 - 122), available online

at www.ejel.org.

[12] Astin, A.W. (1991), Student Perceptions and Preferences for Feedback , vol.

4, No. 3

[13] Frey, K. , Edwards, F. , Altman, K. , Spahr, N. and Gorman, R.

S. (2003), The Collaborative Care curriculum: an educational model address-

ing key ACGME core competencies in primary care residency training., Medical

Education, 37: 786-789. doi:10.1046/j.1365-2923.2003.01598.x.

[14] Robert MD, MEd, MBA, Feedback for Learners in Medical Ed-

ucation: What Is Known? A Scoping Review, Academic Medicine.

doi:10.1097/ACM.0000000000001578

[15] Clare Delany & Elizabeth Molly , Clinical Education in the Health Profee-

sions, ISBN 978 0 7295 3900(pbk).

[16] J M Monica van de Ridder, What is feedback in clinical education?, Medical

Education 2008: 42: 189197 doi:10.1111/j.1365-2923.2007.02973.x

[17] Butler D, Winne P, Feedback and selfregulated learning: a theoretical synthe-

sis., Rev Educ Res1995;65 (3):24581.

127

[18] Gary J. Greguras , SelfConstruals, Motivation, and FeedbackSeeking Be-

haviors, International Journal of Selection and Assessment, 16: 282-291.

doi:10.1111/j.1468-2389.2008.00434.x.

[19] Jennifer Moye, Daniel C. Marson , Assessment of Decision-Making Capacity

in Older Adults: An Emerging Area of Practice and Research , The Journals of

Gerontology: Series B, Volume 62, Issue 1, 1 January 2007, Pages P3P11.

[20] StevenLonn, Investigating student motivation in the context of a learning ana-

lytics intervention during a summer bridge program, 10 August 2014.

[21] Leah P.Macfadyen, Mining LMS data to develop an early warning system for

educators: A proof of concept, 29 September 2009.

[22] Campbell, & Oblinger, D. (2007), Academic analytics. Washington, DC:

EDUCAUSE Center for Applied Research.

[23] Maged N Kamel Boulos, Inocencio Maramba and Steve Wheeler,

Wikis, blogs and podcasts: a new generation of Web-based tools for virtual col-

laborative clinical practice and education, Boulos et al; licensee BioMed Central

Ltd. 2006.

[24] Graham Walton, Susan Childs and Elizabeth Blenkinsopp, Using mo-

bile technologies to give health students access to learning resources in the UK

community setting ,09 November 2005.

[25] Thanos Hatziapostolou, Iraklis Paraskakis, Enhancing the Impact of For-

mative Feedback on Student Learning Through an Online Feedback System , Elec-

tronic Journal of e-Learning Volume 8 Issue 2 2010, (pp111 - 122), available online

at www.ejel.org.

128

[26] Ms. Sana Rahman & Mr. Amit P. Raut, ONLINE STUDENT FEED-

BACK SYSTEM

[27] Tanya Elias, Learning Analytics: Definitions, Processes and Potential ,January,

2011

[28] Buckingham Shum, S., Gaevi, D., & Ferguson, R. (Eds.). (2012)., Pro-

ceedings of 2ndInternational Conference on Learning Analytics and Knowledge

New York, NY: ACM.

[29] Verbert, Katrien & Duval, Erik, Learning Analytics Dashboard Applica-

tions

[30] Thomas H. Davenport, Jeanne G. Harris, Competing on Analytics: The

New Science of Winning

[31] James G Dolan, Peter J Veazie and Ann J Russ, Development and ini-

tial evaluation of a treatment decision dashboard, Dolan et al.; licensee BioMed

Central Ltd. 2013

[32] Linda Corrin, Paula de Barba , Exploring students’ interpretation of feedback

delivered through learning analytics dashboards , November 2014

[33] Stephen Porter PhD, Sean McCabe Michael Woodworth Kristine A.

Peace , Genius is 1% inspiration and 99% perspiration or is it? An investigation

of the impact of motivation and feedback on deception detection,24 December

2010.

[34] Samuel Abramovich , Christian Schunn, Ross Mitsuo Higashi, Are

badges useful in education? it depends upon the type of badge and expertise of

learner

129

[35] Linda Corrin, Paula de Barba , How do students interpret feedback delivered

via dashboards?, Proceedings of the Fifth International Conference on Learning

Analytics And Knowledge, 978-1-4503-3417-4, Poughkeepsie, New York, 430-431

[36] Spring mvc [online] , Available : https://www.quora.com/What-are-the-

advantages-and-disadvantages-of-architecture-1-tier-2-tier-3-tier-and-n-tier .

[37] 10 Reasons Why You Should Use AngularJS [online] , Available :

https://www.sitepoint.com/10-reasons-use-angularjs/ .

[38] Web MVC framework [online] , Available :

https://docs.spring.io/spring/docs/5.0.0.M4/spring-framework-

reference/html/mvc.html .

[39] Advantages and Disadvantages of Microsoft SQL [online] , Available :

https://www.techwalla.com/articles/advantages-disadvantages-of-microsoft-sql .

[40] What is the advantage of Microsoft SQL Server over Access? [online] ,

Available : http://expresstechnology.com/knowledgebase/what-is-the-advantage-

of-microsoft-sql-server-over-access/ .

[41] Hibernate Advantages [online] , Available :

https://javapapers.com/hibernate/hibernate-advantages/ .

[42] Hibernate Tutorial [online] , Available :

https://howtodoinjava.com/hibernate-tutorials/ .

[43] Bootstrap 3: The Leading Responsive, Mobile-First Framework [on-

line] , Available : https://www.upwork.com/hiring/development/bootstrap-3-

front-end-framework-responsive-mobile-first-sites/ .

[44] 6 Reasons to Choose the Bootstrap CSS Framework [online] , Available

: https://www.ostraining.com/blog/coding/bootstrap/ .

130

[45] Bootstrap (front end framework [online] , Available :

https://en.wikipedia.org/wiki/Bootstrap (front-end framework .

[46] Introducing JSON [online] , Available : https://www.json.org/.

[47] Javascript [online] , Available :http://profsamscott.com/javascript/ .

[48] Overview of Spring MVC Architecture [online] , Available

:https://terasolunaorg.github.io/guideline/1.0.1.RELEASE/en/Overview/SpringMVCOverview.html

.

[49] Spring MVC Architecture [online] , Available :

https://www.java4coding.com/contents/spring/08springMVCArchitecture.html.

[50] The DispatcherServlet [online] , Available :

https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch15s02.html

.

[51] Interface HandlerMapping [online] , Available :

https://docs.spring.io/spring-framework/docs/current/javadoc-

api/org/springframework/web/servlet/HandlerMapping.html .

[52] Interface HandlerAdapter [online] , Available

:http://profsamscott.com/javascript/ .

[53] Interface Controller [online] , Available

: https://docs.spring.io/spring/docs/current/javadoc-

api/org/springframework/web/servlet/mvc/Controller.html .

[54] Spring Boot @Controller [online] , Available :

http://zetcode.com/springboot/controller/ .

131

[55] Spring MVC - Auto translation of view name [online] , Available

: https://www.logicbig.com/tutorials/spring-framework/spring-web-mvc/view-

name-translator.html .

[56] Views and resolving them [online] , Available :

https://docs.spring.io/spring/docs/3.0.0.M3/reference/html/ch16s05.html

.

[57] Model, ModelMap, and ModelView in Spring MVC [online] , Available

: https://www.baeldung.com/spring-mvc-model-model-map-model-view.

[58] Interface Model [online] , Available : https://docs.spring.io/spring-

framework/docs/current/javadoc-api/org/springframework/ui/Model.html .

[59] Building REST services with Spring [online] , Available :

https://spring.io/guides/tutorials/bookmarks/ .

[60] Understanding REST [online] , Available :

https://spring.io/understanding/REST .

[61] Using HTTP Methods for RESTful Services [online] , Available :

https://www.restapitutorial.com/lessons/httpmethods.html .

[62] Hibernate Tutorial [online] , Available :

https://howtodoinjava.com/hibernate/merging-and-refreshing-hibernate-

entities/ .

[63] Hibernate Merging and Refreshing Entities [online] , Available :

http://profsamscott.com/javascript/ .

[64] Hibernate Query Cache Example [online] , Available :

http://www.tecbar.net/hibernate-query-cache-example/.

132

[65] Flow of Hibernate Application [online] , Available :

http://www.java2success.com/hibernate/hibernate-flow.jsp .

[66] Hibernate - Sessions [online] , Available :

https://www.tutorialspoint.com/hibernate/hibernate sessions.htm .

[67] Hibernate Transaction Management Example [online] , Available :

https://www.javatpoint.com/hibernate-transaction-management-example .

[68] Hibernate - Persistent Class [online] , Available :

https://www.tutorialspoint.com/hibernate/hibernate persistent classes.htm

.

[69] Anomalies [online] , Available : https://www.sqa.org.uk/e-

learning/MDBS01CD/page 22.htm .

[70] Amazon Route 53 [online] , Available : https://aws.amazon.com/route53/ .

[71] What Is a Classic Load Balancer? [online] , Available :

https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/introduction.html

.

[72] Elastic IP Addresses. [online] , Available :

https://docs.aws.amazon.com/index.html#lang/en us .

[73] Amazon Relational Database Service (RDS) [online] , Available :

https://aws.amazon.com/rds/ .

[74] Gerald Kayingo, PhD, PA-C, Virginia McCoy , The Health Professions

Educator: A Practical Guide for New and Established .

[75] Okuda, Y. , Bryson, E. O., DeMaria, S. , Jacobson, L. , Quinones,

J. , Shen, B. and Levine, A. I. (2009), Utility of Simulation in Med-

133

ical Education: What Is the Evidence?. , Mt Sinai J Med, 76: 330-343.

doi:10.1002/msj.20127.

[76] Cooper, J B and Taqueti, V R, A brief history of the development of man-

nequin simulators for clinical education and training , BMJ Quality & Safety

2004;13:i11-i18.

[77] Gaba DM, The future vision of simulation in health care , BMJ Quality &

Safety 2004;13:i2-i10.

[78] Van Hoof, Thomas J. MD, EdD; Monson, Robert J. PhD; Majdalany,

Gibran T. PhD; Giannotti, Tierney E. MPA; Meehan, Thomas P.

MD, MPH, A Case Study of Medical Grand Rounds: Are We Using Effective

Methods? , Anesthesiology 8 2006, Vol.105, 279-285. doi.

[79] Hebert, Randy S. MD, MPH; Wright, Scott M. MD , Re-examining the

Value of Medical Grand Rounds , Anesthesiology 8 2006, Vol.105, 279-285. doi.

[80] Salazar, Dane MD; Schiff, Adam MD; Mitchell, Erika MD; Hopkin-

son, William MD , Variability in Accreditation Council for Graduate Medical

Education Resident Case Log System Practices Among Orthopaedic Surgery Res-

idents , Anesthesiology 8 2006, Vol.105, 279-285. doi.

[81] Corbeil, Maria Elena; Corbeil, Joseph Rene; Rodriguez, Ignacio E ,

DIGITAL BADGES IN HIGHER EDUCATION: A THREE-PHASE STUDY

ON THE IMPLEMENTATION OF DIGITAL BADGES IN AN ONLINE UN-

DERGRADUTE PROGRAM , Issues in Information Systems . 2015, Vol. 16

Issue 4, p1-9.

[82] Frey, K. , Edwards, F. , Altman, K. , Spahr, N. and Gorman, R.

S. (2003) , The Collaborative Care curriculum: an educational model address-

134

ing key ACGME core competencies in primary care residency training., Medical

Education, 37: 786-789. doi:10.1046/j.1365-2923.2003.01598.x.

[83] Hyland, P. (2000), Learning from feedback in assessment, In P. Hyland & A.

Booth (Eds.), The practice of university history teaching (pp. 233-247). Manch-

ester: Manchester University Press.

[84] Astin, A.W. (1991), Assessment for excellence: The philosophy and practice of

assessment and evaluation in higher education , New York: Macmillan Publishing

Company.

[85] Black, P & William, D. (1998), Assessment and classroom learning. Assess-

ment in Education: Principles, Policy & Practice, 5 (1), 7-74.

[86] Hattie, J.A., & Timperley, H. (2007) , The power of feedback. Review of

Educational Research , 77, 81-112.

[87] Corrin, Linda & de Barba, Paula. (2014), Exploring students’ interpretation

of feedback delivered through learning analytics dashboards.

[88] Veloski J, Boex JR, Grasberger MJ, Evans A, Wolfson DB, Systematic

review of the literature on assessment, feedback and physicians clinical perfor-

mance : BEME Guide No. 7. Med Teach 2006;28 (2):11728.

[89] Rolfe IE, Sanson-Fisher RW, Translating learning principles into practice a

new strategy for learning clinical skills Med Educ 2002;36:34552.

[90] Georges L. Savoldelli, M.D., M.Ed., Value of Debriefing during Simulated

Crisis Management: Oral versusVideo-assisted Oral Feedback , Anesthesiology 8

2006, Vol.105, 279-285. doi.

135

[91] Dreifuerst, Kristina Thomas, THE ESSENTIALS of DEBRIEFING in Sim-

ulation Learning: A Concept Analysis, March-April 2009 - Volume 30 - Issue 2 -

p 109114.

136

