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In recent years, the number of patients with liver disease is rapidly increasing

while it remains difficult to detect the symptoms of this disease. A person suffering

from liver dysfunction or damage often feels healthy which makes many health care

providers fail to detect this condition early on, leading to poor patient outcomes.

Such a scenario can be minimized by using clinical decision support systems to op-

timize detection and prediction of liver failure. Although there are many existing

models for liver failure, each of them come with limitations and the issue of liver

failure prediction has not been completely resolved to date. In this study, we have

addressed this issue by leveraging two comprehensive open-access critical care patient

databases to build and validate models for predicting the risk or likelihood of liver

failure. Artificial Neural Network (ANN) model architectures that include Multilayer

Perceptron (MLP), Generalized Feedforward (GFF), and Modular Neural Network

(MNN) were applied to generate a novel 0-100 Liver Failure Risk Index. Models were

developed such that an increasing value of the index is associated with an increased

risk or likelihood of liver dysfunction. The performance of developed models was

compared in terms of sensitivity, specificity, and median lead time for diagnosis. This

study has achieved promising results with the best model achieving 83.3% sensitivity

at a specificity of 77.5% and correctly diagnosed 83.3%(N = 629 out of 755 possible

patients) of liver failure patients. Among these diagnosed patients, the model pre-
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dicted the onset of liver failure in 83.5% (N = 525) of patients with a median of 17.5

hours before the onset of liver failure. Hence, our developed models allow health care

providers to identify patients at risk of liver failure and facilitate early interventions

that may prevent or minimize the associated morbidity and mortality.
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Chapter 1

Introduction

Liver failure is a clinical entity characterized by loss of important metabolic and

immunological liver functions. Despite significant progress in the last 20 years in the

understanding of the pathogenesis of liver failure and the development of management

guidelines, this critical illness is still associated with high morbidity and mortality

rates of up to 80%- unless a liver transplantation (LT) is performed promptly [1]. An

accurate evaluation of the severity of liver failure together with an early identification

of its further development is critical in order to determine the further management

of the patients. Although liver support devices can be leveraged as temporary treat-

ment, in most cases LT remains the only life-saving treatment of liver failure [2]. LT

has been proved to enhance the outcome of these patients by achieving a survival

rate of up to 80% [3]. Timely assessment of the likelihood of liver failure is critical

for health care providers to make decisions on emergency liver transplantation. As

there is a severe shortage of liver donors, it is extremely important to segregate the

patients who require LT from the patients who can be treated just by liver support

devices. Evaluating whether a patient will require LT or will recover with medical

management/treatment is in itself extremely difficult.

1



1.1 Problem Statement

In most of the cases, LT in liver failure patients could be avoided if the liver failure

is detected in early stages. However, detection of a failing liver is complicated in its

early stages. Even though health care providers order liver function tests (LFTs)

for many people, early detection of this disease remains elusive because abnormal

LFTs are indicative of many other diseases besides those related to the liver, such as

metastatic malignancy, inflammatory or infective conditioners, and congestive heart

failure [4]. Hence, LFTs can be misleading and result in inappropriate treatments

leading to increased costs and even morbidity and death [5]. Therefore, an accurate

decision support system which can detect the liver failure before its onset is necessary

for the proper medication and medical treatment of patients.

1.2 Objective

The functionality of any decision support system depends on the accuracy of its

integrated classification and predictive models. The objective of this investigation is

to develop a clinically relevant diagnostic and predictive model, which estimates the

likelihood or risk of liver failure for a patient in an intensive care unit (ICU) using

machine learning, specifically artificial neural networks (ANN). The developed models

are designed to output a finite 0-100 liver failure risk index (LFRI). The higher the

value of the LFRI, the more likely the patient is to experience liver failure in the

future.

1.3 Overview of Liver Functionality

To better understand the severity of liver failure and the importance of identifying

its failure well in advance, it is vital to understand liver functionality. The liver is
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one of the most important and largest solid organ and gland in the human body that

has two sections, called lobes. It is situated above, to the right of the stomach (right

upper quadrant) and below the diaphragm. The liver plays a key role in keeping

the body healthy by detoxifying chemicals and metabolizing drugs. More specifically,

its major functions include the production of bile which helps the body to absorb

fats, proteins, carbohydrates and some vitamins. It also absorbs and metabolizes

bilirubin, creates blood-clotting factors (coagulants), metabolizes fats, proteins, and

carbohydrates, stores vitamins, and minerals, filters blood, produces albumin, and

removes aged and damaged red blood cells [6].

The hepatic artery and portal veins are the two blood sources for the liver; about

2/3 of the blood flow to liver comes from the portal vein and 1/3 from the hepatic

artery whereas blood exits via three hepatic veins. The hepatic artery supplies blood

and oxygen from heart and lungs to the liver whereas veins supply blood-containing

nutrients from the intestine [6].

1.4 Overview of Various Liver Diseases

There are many types of liver diseases that can affect the liver and its functionality.

Liver disease, also known as hepatic disease, is a general term and refers to all the

potential problems which cause the liver not to perform its designated functions. In

general, the functionality of a liver is impacted when at least 75% of its tissue is

affected [4]. An early liver disease may have minimal or no symptoms and often

will be passed over as being the flu. As liver disease progresses, characteristic signs

develop and helps in inferring the cause for it. Based on this cause, liver diseases are

classified into many types. Some of these include cirrhosis, viral hepatitis, fatty liver

disease, genetic liver disease, and alcoholic liver disease.

Cirrhosis is a condition where liver cells are replaced by fibrous tissue. This
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condition can be caused by various factors including alcohol consumption, food con-

taminated by viruses or bacteria, toxins, and hepatitis. It causes a reduction of the

blood flow to the liver which in turn disturbs the functionality of liver [6].

Viral Hepatitis is an inflammation of the liver mainly caused by one of three virus

forms- A, B or C. This disease is usually caused by consuming contaminated food or

water. Typically, up to 50% of those infected with hepatitis can fight off the virus

within six months. However, many patients develop a chronic infection, and the

extent of damage to the liver can be determined by a liver biopsy [7].

The fatty liver disease is due to either the excess buildup of fat in the liver or

more than 5 to 10% of the total weight of liver. This condition is most commonly

seen in people who are diabetic, overweight or have metabolic syndrome. Excess fat

in the liver can lead to inflammation and result in cirrhosis in 20% of the patients [8].

Genetic liver diseases are mainly caused due to genetic disorders in patients. The

two most common genetic liver diseases are hemochromatosis and alpha-1 antitrypsin

deficiency (Alpha -1). Hemochromatosis is the most common adult genetic liver

disease in which deposits of iron collect in the liver. Iron deposits may go beyond the

liver, affecting other organs such as the heart, joints, and pancreas. Another most

commonly seen genetic liver disease in children and adults is Alpha-1 anti-trypsin

deficiency. This disease occurs due to the inability to produce enough of a specific

protein, called alpha-1 antitrypsin which is used to prevent the breakdown of enzymes

in various organs [9].

Alcoholic liver disease (ALD) is one of the major medical complications of alcohol

abuse. The three most widely recognized forms of ALD are alcoholic fatty liver

(steatosis), acute alcoholic hepatitis, and alcoholic cirrhosis. At least 80% of heavy

drinkers develop steatosis, 10%-35% develop alcoholic hepatitis, and approximately

10% develop cirrhosis [10].
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1.5 Thesis Organization

This thesis unfolds as follows:

Chapter 2 provides a review of the literature that forms the foundation of this

research. It covers a variety of theoretical backgrounds about prior established re-

search methods in the area of early warning scoring systems that have been used and

developed to detect the liver failure before its onset.

Chapter 3 gives a brief look at ANN models and the different artificial neural net-

work model architectures used in this study. Then, chapter 4 describes the process

of model training and validation set generation, development of neural network mod-

els using the generated datasets, and performance analysis and validation of these

developed models.

Chapter 4 summarizes the results obtained from the developed models and dis-

cusses how this approach overcame the limitations of previous approaches and poten-

tial use of the developed model in real-world clinical settings. Chapter 5 draws final

remarks and discusses possible future directions in which this research could advance.

Further information and the MATLAB (Matrix Laboratory) source code could

be made available upon an email request to either Dr. Ahmad Y. Javaid, Dr. Scott

M. Pappada, or Balaji Sathelly.
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Chapter 2

Literature Survey

In the past few decades, a number of scoring systems have been used to estimate

the likelihood of liver failures such as Sequential Organ Failure Assessment (SOFA),

Acute Physiology And Chronic Health Evaluation II (APACHE II), Child-Turcotte-

Pugh (CTP), and Model for End-stage Liver Disease (MELD). However, not all of

these scores are well validated in liver failure population. Consequently, many new

predictive models have recently been developed using techniques such as logistics

regression model (LRM), ANN, etc. by considering some common independent pre-

dictors like bilirubin total, albumin, prothrombin parameters, etc. These developed

models were validated internally (i.e., using a dataset collected at a single institution

for model development and validation). Performance of these models was compared

with MELD and CTP via evaluating the area under the receiver operating charac-

teristic curves (AUROC). Many of these prior approaches performed better than the

previous scoring systems and have shown certain advantages.

2.1 Previous Approaches

For many years, SOFA and APACHE II scores were considered as good indicators

of prognosis in critically ill patients. Except for initial scores of more than 11 (mor-

tality rate > 90%), a decreasing SOFA score during the first 48 hours was related
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with a mortality rate of less than 6%, while an unchanged or increasing score was

related with a mortality rate of 37% when the initial score was 2 to 7 and 60% when

the initial score was 8 to 11 in the ICU population [11]. Another scoring system,

APACHE II, is a severity-of-disease classification system which is applied within 24

hours of admission of a patient to ICU. Higher APACHE II scores correspond to more

severe disease and a higher risk of death. Some of the prior approaches [12, 13] used

these scoring systems to predict the likelihood of liver failure in ICU patients. In

liver failure patients, APACHE II is superior to SOFA in predicting liver failure and

achieved a sensitivity of 66.3% at specificity 76% when it was validated with a total

of 725 patients with 300 liver failure and 425 non-liver failure patients [14].

Besides these general scoring systems (SOFA, APACHE II), various early warning

scoring systems have been used as the predictive models for liver failure. One of the

most widely used models for liver failure is the CTP score [15]. Although CTP was

originally used for predicting the mortality during surgery, it is now used to predict

the functionality of a liver as well as the necessity of liver transplantation. Another

widely used model for assessing the liver failure is MELD. It is calculated from three

biochemical variables – creatinine, serum bilirubin, and prothrombin time (PT)- and

its performance is more accurate than CTP [16]. To further enhance the performance

of MELD, serum sodium (Na) was incorporated into the MELD score, known as

MELD-Na, to predict the functionality of liver, especially in cirrhosis patients [17].

Zeng et al. completed an investigation to develop an early warning scoring system

to predict the liver failure by using an LRM [18]. This model was developed using a

dataset consisting of 242 liver failure and 285 non-liver failure patients and validated

with a dataset of 446 (210 liver failure, 236 non-liver failure) ICU patients with

the same conditions. This model has identified few independent factors associated

with liver failure in ICU patients which include hepatic encephalopathy, hepatorenal

syndrome, prothrombin, and age. Performance of this warning system was compared
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with MELD and CTP using the AUROC curve and has achieved the highest AUROC

of 0.84.

A similar approach was developed by Ren et al. and considered 1000 critical

care patients which include 474 liver failure and 526 non-liver failure patients [19].

Training and validation datasets were developed by randomly assigning 60% of both

liver failure, and non-liver failure patients to the training dataset and the rest of

the patients were used for the validation dataset. These datasets include independent

variables like age, white blood cell count, bilirubin total, etc. to develop and validate a

multivariate logistic regression model which can be used as an early warning scoring

system for liver failure patients in ICU. Moreover, this model’s performance was

compared with MELD and MELD-Na and achieved a higher AUROC (0.83) than

both MELD and MELD-Na.

Many new mathematical models have been developed in recent years to identify

liver failure before its onset. For example, Sun et al. developed a novel LRM for

identifying liver failure before its onset in 1150 critical care patients (204 liver failure

and 946 non-liver failure patients) [20]. The total patients, in this study, were split

in the ratio of 70:30 to develop training and validation datasets respectively. The

novel LRM developed in this approach included many independent factors such as

albumin, prothrombin activity, hepatorenal syndrome, etc. to identify liver failure

and compared its performance with the MELD scoring system. The newly established

LRM has achieved an AUROC of 0.79 and appears to be superior to the MELD scoring

system in estimating the liver failure among the considered 1150 patients.

Another similar approach has been developed to establish a new early warning

system for assessing the liver failure risk, named ALPH-Q, which integrates the var-

ious clinical and laboratory parameters like age, gender, body mass index (BMI),

albumin, total bilirubin, etc. to predict the liver functionality [21]. This approach

has considered a total of 874 patients (214 liver failure and 660 non-liver failure) and
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generated two datasets by randomly allocating 75% of both types of these patients

to training dataset and rest to validation dataset. By using these datasets, ALPH-Q

scoring system was developed through Cox Proportional Hazard Regression Analy-

sis, and its performance was compared against CPS, MELD, and previously reported

LRM in terms of the AUROC curve. ALPH-Q scoring system achieved an AUROC

of 0.83 and performed better than CPS, MELD, and LRM for estimating the liver

failure risk in these patients.

Research efforts by Rajanayagam et al. were completed to predict the outcome of

the liver failure in children using an ANN approach [22]. In this approach, the ANN

model incorporated 34 input variables, compared to 3 input variables required to

MELD score. Some of these input variables include alanine aminotransferase (ALT),

aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), albumin, PT,

etc. A comprehensive registry-based dataset consisting of 54 children (29 liver failure,

25 non-liver failure) was used to evaluate the predictive outcomes of the developed

model and compared its predictive accuracy with MELD using AUROC curves. While

AUROC of MELD score was 0.71, ANN model showed a superior performance with

AUROC 0.86, sensitivity 82.6%, and specificity 96%.

Further investigation was completed by Moloud et al. to achieve efficient early

detection of liver failure through an integrated machine learning modeling approach

[23]. This approach included the integration of a multilayer perceptron (MLP) neural

network with various decision trees such as see5 (C5.0), chi-square automatic interac-

tion detector (CHAID), and a boosted classification and regression tree (CART). This

study has collected 583 records related to the Indian Liver Patient Dataset (ILPD)

and 477 non-liver failure patient records from the University of California, Irvine

(UCI) repository dataset. This dataset was divided into 70% for the training stage

and 30% for the validation stage. Several performance metrics such as sensitivity,

specificity, accuracy, etc, were applied in this study. Results indicate that hybridiza-
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tion of MLP neural network and C5.0 methods, namely MLPNN-C5.0, achieved the

best with a sensitivity of 94.16% and a 93.75% specificity when compared with other

algorithms and proved to be a useful approach to diagnose the liver failure before its

onset.

Some of the previous approaches were also developed to detect the different types

of liver diseases like acute liver failure (ALF) [24], cirrhosis [25], hepatitis A, B and

C [26], alcoholic [27], and non-alcoholic related liver diseases [28]. These prior ap-

proaches would be undoubtedly useful for health care providers in treating the pa-

tients. However, there is a significant need for further research to develop much more

effective models and algorithms that support earlier detection or prediction of the on-

set of liver failure. The identified need motivated our team to develop the predictive

models that can diagnose the liver failure in ICU patient population before its onset.

2.2 Advantages of ANN Approach

Physiological systems and its related diseases are extremely complex. Such com-

plex physiological systems and the various parameters and variables that impact and

indicate underlying physiological processes can be modeled by using machine learning

approaches such as an ANN. ANNs are advantageous for diagnosis and prediction as

they consider the effect of variables and parameters which may not be significant by

using conventional statistics [29, 30].

Considering the advantages of ANN, many of the previous models [22, 23] were

implemented, based on ANN, for diagnosing the liver failure before its onset. Al-

though these approaches have achieved a good predictive capacity, lack of external

validation of these developed models and significant size of their validation dataset

makes their modeling approaches potentially less significant and limits their clinical

utility to a single healthcare institution or a specific group or population of patients.
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This implies to a significant need for further research to develop a generalized or

universal predictive model which can identify the liver failure before its onset. This

model’s predictive capacity needs to be significantly high when it is validated with

any potential liver failure patient population in representative real-world clinical set-

tings. Developing such a model will serve to assist health care providers in detecting

the patients at risk for liver failure and provide a mechanism for earlier treatment

and clinical interventions which may provide a means to reduce the morbidity and

mortality associated with liver failure and dysfunction.

The summary of the literature survey is presented in Table 2.1. It gives a brief idea

of the considered independent factors, implemented technique, performance metrics,

and drawbacks of these approaches.
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Table 2.1: Recent Early Warning Scoring Systems in

Liver Failure

Author Features Scoring

System or

Modeling

Technique

Used

Performance Metrics Drawbacks

Evangelos et al. [14] Vital Signs SOFA,

APACHE

II

APACHE II score is superior

to SOFA,

AUROC: Not reported

Sensitivity : 66.3%

Specificity: 76%

Low sensitivity and speci-

ficity
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Rahimi et al. [15],

Weisner et al. [16],

Biggins et al. [17]

Laboratory values CTP,

MELD,

MELD-Na

AUROC:

CTP– 0.75

MELD- 0.8

MELD-Na – 0.83

Not for ICU patients

Zeng et al. [18] Hepatic encephalopa-

thy, hepatorenal syn-

drome, prothrombin,

and age

LRM AUROC: 0.84 Small size and single retro-

spective studies

Ren et al. [19] Age, white blood cell

count, bilirubin total,

etc.

Multivariate

logistic regres-

sion

AUROC: 0.83

Sensitivity: 88.6%

Specificity: 72.2%

Small size and single retro-

spective studies

Sun et al. [20] Albumin, prothrombin

activity, hepatorenal

syndrome, etc.

Novel LRM AUROC: 0.79 Small size and single retro-

spective studies
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SJ et al. [21] Age, gender, BMI, al-

bumin, total bilirubin,

etc.

Cox propor-

tional hazard

regression

analysis

AUROC: 0.83

Sensitivity: 79.3%

Specificity: 75.0%

Not for ICU population,

Small size and single ret-

rospective studies

Rajanayagam et

al. [22]

AST, ALT, albumin,

GGT, albumin, PT,

etc.

ANN AUROC: 0.86

Sensitivity: 82.6%

Specificity: 96%

Not for ICU population,

Small size and single ret-

rospective studies

Moloud et al. [23] Age, gender, albumin,

bilirubin, INR, etc.

ANN AUROC: Not reported

Sensitivity: 31.1%

Specificity: 95%

Small size and single retro-

spective studies14



Chapter 3

Neural Network Modeling

Approach for Predicting Liver

Failure Likelihood

Although few of the prior approaches leveraged ANN architectures, many of these

well-performed approaches considered statistical techniques like LRM to develop pre-

dictive models for estimating the likelihood of liver failure. These statistical tech-

niques allow researchers to develop predictive models which predict the outcome

based on the set of independent variables. However, if the researchers include the

wrong independent variables, then the model will have little to no predictive value.

Also, statistical models are vulnerable to overconfidence and can appear to have more

predictive power than they do as a result of sampling bias [31]. All these limitations

can be easily overcome by ANN models which can be used to perform nonlinear

statistical modeling and provide a new alternative to statistical techniques.

As being a nonlinear statistical data modeling tool, ANNs can reveal the unknown

and weak relationships between the input variables and outcome by considering out-

liers and non-linear interactions among all the existing variables. This ability of neural

networks to detect all possible interactions and the availability of multiple training
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algorithms motivated us to choose ANN architectures for our study [32].

3.1 A Brief Look at Artificial Neural Networks

ANNs are computer architectures which are modeled after brains. It is built

by a series of “neurons” (or “nodes”) which are organized in layers [33]. These

neurons exhibit global behavior determined by the established connections between

the various processing elements and the related parameters within the neural network

architecture. Each connection which connects the neurons in consecutive layers is

weighted. The weight wij represents the strength of the connection between ith neuron

in a layer and jth neuron in the next layer of the network. The structure of a neural

network consists of one “input” layer, one or more “hidden” layers, and one “output”

layer. The number of hidden layers and the number of neurons in each of these layers

depend on the complexity of the considered system. Figure 3-1 shows a typical ANN

architecture with two hidden layers.

In an ANN, data is received through the input layer neurons and then transformed

to the neurons in the first hidden layer through the weighted connections established

between the input layer and the first hidden layer. Here, the data in each layer are

mathematically processed and then the result is transformed to the next layer. Below

steps explain how the incoming data (xi) is processed by jth node in the next layer

and Figure 3-2 represents this process.
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Figure 3-1: General Structure of Artificial Neural Network with Two Hidden
Layers
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1. First, a weighted sum is calculated and then bias term (θj) is added to this sum

according to the below equation:

netj =
∑m

i=1 xi ∗ wij + θj(j = 1, 2, ..., n) (1)

2. netj is transformed using a mathematical ‘transfer function’. This function is

used to normalize all network inputs and outputs to a finite range of values.

This allows the neural network to better identify patterns and trends in data

better than have a range of values between 50 and 500, for example. Many

transfer functions can be used for this. However, a sigmoid function is used in

this effort for the reasons summarized in section ’Model Development’, and it

is shown in the below equation:

f(x) = 1 / ( 1 + e−x ) (2)

3. Finally, the result is transferred to the neuron in the next layer.

After the development of a neural network to an application, training must be

done with the random initial weights chosen. These models are popular because of

its adaptive nature and learn by determining patterns existent in input data. Training

of a network can be done in two ways - supervised training and unsupervised training.

In supervised training, the desired output should be provided along with the inputs

to optimize the network weights to find the best set of weights that lead to mini-

mum error in the output. Some of the areas where models implementing supervised

training can be applied are - function approximation, regression analysis, time series

prediction, and classification such as pattern and sequence recognition, etc. On the

other hand, unsupervised training is applicable when a model must make sense of the

inputs on its own and describes the structure of “unlabeled” data, i.e. data which

has not been classified. Unsupervised training is used for applications including but

not limited to clustering, and anomaly detection [30].
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Figure 3-2: Data Processing in a Neuron

3.2 ANN Model Architectures

3.2.1 MultiLayer Perceptron Model

An MLP is a type of feedforward artificial neural network consisting of at least

three layers of nodes. Each neuron in both hidden layers and output layer uses a

non-linear activation function. Both these multiple layers and non-linear activation

function distinguish MLP from standard linear perceptron and helps these networks

to differentiate the data which is not linearly separable [34]. MLPs are universal

function approximators and can be applied to develop mathematical models using

regression analysis. These networks are well suited for a wide variety of modeling

applications such as pattern classification, prediction, and function approximation.

Pattern classification is concerned with the classification of data into discrete classes.

Prediction is related to forecasting of a time series data when the current and previous

trends are known whereas function approximation involves the task of modeling the

relationship between the variables [35].
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3.2.2 Generalized Feedforward ANN Model

A GFF neural network is an ANN where the unit connections do not form a cycle

such as recurrent neural network models [36]. This network was the first and the

simplest type of ANNs where data moves in only one direction, forward, from the in-

put nodes to the output node through the hidden nodes. This network’s architecture

uses a generalized shunting neuron (GSN) model as its basic computing unit, and this

differentiates this network from MLP which is based on perceptrons. These shunt-

ing neurons are capable of forming the complex, nonlinear decision boundaries and

help the GFF neural network architecture to perform various tasks such as complex

pattern classification problems, dynamical modeling, time series forecasting, pattern

recognition, and data mining [37, 38].

3.2.3 Modular Neural Network Model

MNN is a particular class of MLP in which several parallel MLPs are used to pro-

cess the inputs and then recombine the results. This process leads to forming some

structure within the topology which helps in developing a specialized function in each

sub-module. This approach of Divide and Conquer incorporates many advantages to

a neural network such as scalability, robustness, flexibility in design, and implemen-

tation. Moreover, these networks require a lesser number of weights than an MLP to

build a network of similar size because of partial interconnection between its layers.

Hence, this reduces the number of required training exemplars and helps in speeding

up the training times. However, this network can be segmented into modules in many

ways and it is unclear how to best design the modular topology based on the data

[39]. Figure 3-3 shows an architecture of a modular neural network with ’k’ modules.
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Figure 3-3: Modular Neural Network Architecture

3.3 Model Development and Validation

In this study, we have leveraged the above mentioned ANN architectures for de-

veloping multiple models to estimate the likelihood of liver failure in ICU patients.

Model development and validation is the process of training a model accurately with

a given dataset and validating the performance of this developed model with an-

other dataset. Hence, this process involves two datasets – a training dataset and a

validation dataset.

3.3.1 Model Training and Validation Set Generation

To develop and validate the machine learning-based models that are required to

generate the LFRI, we leveraged two large open-access critical care databases. The

first database used was MIMIC-III (Medical Information Mart for Intensive Care-III).

This database is notable as it is freely available to researchers worldwide with a diverse
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and very large population of ICU patients. It consists of de-identified health-related

information associated with > 45,000 critical care patients admitted from the ICUs

of the Beth Israel Deaconess Medical Center from 2001-2012 [40]. This data was used

to train the various models aimed at predicting the risk for liver failure discussed in

the section below. Model training sets were generated for each ANN using a custom

software application we developed in MATLAB R© (Mathworks, Natick, MA). The

model inputs (categories of input data sources) included in the model training sets for

the ANN models consisted of vital signs and laboratory results collected throughout

a patient’s ICU length of stay. To develop the targeted continuous LFRI (i.e., target

model output) for the training set, patient data was evaluated every hour with respect

to a set of liver failure diagnostic criterion defined by a collaborating critical care

physician. If patients had an ICD-9 (International Classification of Diseases, Ninth

revision) diagnosis of liver failure (570 - 573 and its child codes) [41] during their

ICU stay and met the clinical diagnostic criteria for liver failure at a given timestamp

(evaluated hourly) a “1” was used as the target model output at each time stamp, and

this condition held true throughout the patient’s ICU stay. Where this condition was

not true, a “0” was used as the target or desired model output at each corresponding

time stamp.

To assess and validate model performance and accuracy, we used a second open-

access database, the eICU Collaborative Research Database [42]. This database is

developed through the work of Philips Healthcare and collaborators at the MIT lab-

oratory for computational physiology and maintained by Philips eICU Research In-

stitute (eRI). This database includes time-stamped ICD-9 diagnoses of liver failure

and provided the ability to evaluate the accuracy of developed models in both the

detection (i.e., diagnosis) and prediction (i.e., predictive diagnosis) of the onset of

liver failure. The developed models were validated using 81,135 patients where only

755 patients had a diagnosis of liver failure. Patients were eliminated from the vali-
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dation/testing set if they had a diagnosis of liver failure < four hours into their ICU

admission (i.e., considered a preexisting diagnosis).

It is important to note and recognize that one of the primary issues facing by

researchers in developing machine learning-based models is missing data. This is a

very common problem seen in most of the retrospective studies using health records

databases. Missing data occurs because of the infrequent availability of certain data

sources in the dataset. For example, vital signs are taken frequently in the ICU,

approximately for every hour whereas certain laboratory results are taken much less

frequently, sometimes only once in a day. For our model development, missing data in

both model training and validation sets (described above) were handled by replacing

it with the last known laboratory value. For example, consider a laboratory data

source whose value is missing at a time stamp ‘t’. We try to replace this missing

value with a value of the same data source at timestamp ‘t-1’. If we could not find

a value at this time stamp, then we look for a value at timestamp ‘t-2’ and so on.

Finally, if we do not find any laboratory value in the previous instances for this data

source, then we consider this missing value as ‘-1’. Hence, this approach provided

the capability to generate a significant dataset for models to develop and validate

the models developed during this study using data collected every hour during each

patient’s ICU length of stay.

3.3.2 Model Development

During this study, we investigated the development and application of three dif-

ferent types of neural network model architectures – MLP, GNN, and MNN. For

each of the model architectures investigated, we iteratively changed different model

parameters. Some of the common parameters that were considered to change itera-

tively include – the number of hidden layers, and the number of processing elements

in each of these hidden layers. Model development was initiated by building simple
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neural networks models and then iteratively increased the complexity of these models

by changing the various aforementioned parameters. For example, initially we have

built models with two hidden layers and then tried with three hidden layers and so on.

Also, we have tried to increase the number of processing elements for each of these

hidden layers starting from 5 to 50 to develop different models. Finally, all of these

developed models were validated with the generated validation dataset and compared

the performances of these models to obtain the best model. In this study, the best

models were obtained with two hidden layers having 10, 2 processing elements in the

first and second hidden layers respectively.

In summary, this iterative process of changing different parameters to obtain

the best performing model involves a lot of computation cost, and manual effort.

This process was simplified by using NeuroSolutions R© software (Neurodimension,

Gainesville, FL) which provides an intuitive graphical user interface (GUI) applica-

tion to support model development and validation efforts. Using this software it is a

seamless process to select a desired network architecture and modify various param-

eters within a model architecture.

All models developed during this study were trained using the Levenberg Mar-

quardt (LM) algorithm. This is a backpropagation training algorithm which is more

powerful than the conventional gradient descent algorithm. This algorithm is an iter-

ative technique that finds the minimum of a multivariate function which is expressed

in terms of the sum of squares of nonlinear least-squares problems. In simple terms,

the functionality of this algorithm can be assumed as a combination of steepest de-

scent and the Gaussian-Newton method. When the error is high, LM behaves like

a steepest descent method which is a slow technique but converges. When the error

is low, it works like gaussian-newton method. This algorithm follows an iterative

approach to minimize the error and based on this error’s magnitude; training deter-

mines the degree of weights adjustment to reduce the overall error of the model [43].
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Moreover, these models were configured with batch training and designed to termi-

nate the training process when the model has completed 1000 epochs, or the mean

square error for the cross-validation dataset does not improve after a set number of

epochs or starts increasing which indicates the overfitting of the model.

As described in ‘Model Training and Validation Set Generation’ section, all ANN

models were designed to derive a 0-100 LFRI based on hourly laboratory and vital

signs data. All models implement a sigmoid transfer function to constrain/normalize

model inputs and outputs to a 0-1 range. This function is critical to the design of our

approach as this effectively generates an LFRI value ranging between 0 and 1. Based

on this design, values closer to 0 indicate that the patient is not trending towards a

liver failure state, and values closer to 1 indicate a higher probability that the patient

is in a state of liver failure or liver dysfunction or trending towards one. Finally, the

model output represents a class membership (i.e., with or without liver failure) and

multiplying this output by 100 results in the predetermined 0-100 LFRI value. Based

on this model’s design, a value of LFRI > 50 would indicate that there is a higher

probability that the patient would be at risk for liver failure or dysfunction.

3.3.3 Model Performance Analysis and Validation

Sensitivity and specificity of the LFRI in diagnosing and predicting the onset of

liver failure was evaluated using a static model output threshold value (φLFRI) of 50

based on the model’s design justification provided previously. In medical practice, it

is nearly impossible to achieve perfect discrimination between diseased patients and

healthy patients with a single threshold value (φLFRI). This scenario implies to se-

lect the best compromise between sensitivity and specificity by considering different

diagnostic test results. As such, AUROC curves should be leveraged to provide a

clearer understanding of a model’s diagnostic capabilities [44]. The AUROC is the

most commonly used receiver operating characteristic (ROC) metric which summa-
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rizes the overall diagnostic accuracy of a test or model/classifier. Its value ranges

from ‘0’ to ‘1’ where ‘1’ implies that the test is entirely accurate and ‘0’ implies that

the test is entirely inaccurate. Hence, the higher the value of AUROC, the better the

model’s diagnostic capabilities [45]. For this study, the AUROC was calculated to

evaluate the diagnostic capabilities of the LFRI with variable thresholds ranging from

0 to 100. Additional model performance metrics included: the predictive capacity of

the LFRI or % of patients that were correctly diagnosed with liver failure by the

LFRI model before the onset of liver failure. We also calculated the mean lead time

to diagnosis +/- the standard deviation (SD) and median lead time to diagnosis for

each model. The mean lead time is calculated as the average lead time to diagnosis of

all patients where liver failure was predicted by the model before a clinical diagnosis

was made and SD measures the dispersion of lead times of all these patients relative

to its mean. The median lead time represents the central lead time in the group of

these sorted lead times obtained for all patients who were detected before clinical

diagnosis. For the distribution of lead times, if both the measures - mean and median

are significantly different, then it indicates that the distribution of lead times data is

skewed, i.e. the data is far from being normally distributed. For such kind of data

distribution, the median gives a more appropriate idea about data distribution [46].

Figure 3-4 explains the whole process of neural network model development using

different architectures and validation for analyzing its performance.
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Figure 3-4: Process of Model Development and Validation
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Chapter 4

Results and Discussion

In this study, we have validated the developed models against different perfor-

mance metrics such as sensitivity, specificity, predictive capacity, AUROC, mean,

and median lead time. Below description shows a comparative analysis of various

developed models in terms of these performance metrics and LFRI plots obtained for

the best model.

4.1 Results

As explained in the ‘Model Development’ section, we have developed various mod-

els by iteratively changing different parameters of neural network architectures and

validated these developed models with eICU validation dataset. Table 4.1 shows the

performance metrics - sensitivity and specificity - obtained for some of the developed

models which were configured with two, three, and four hidden layers and six, four,

and three processing elements in each of these hidden layer respectively.
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Table 4.1: Performance Metrics

Model
2 Hidden Layers 3 Hidden Layers 4 Hidden Layers

6 PEs in each hidden layer 4 PEs in each hidden layer 3 PEs in each hidden layer
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

MLP 75.2% 71.5% 72.7% 65.3% 68.1% 64.2%
GFF 69.5% 70.8% 65.2% 66.7% 63.6% 66.3%
MNN 76.8% 35.6% 74.8% 33.2% 72.4% 29.7%

Table 4.2: Confusion Matrix for the best models

Model True Positive False Positive True Negative False Negative

MLP 629 18084 62296 126
GFF 682 45877 34503 61
MNN 578 14734 65646 181
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Table 4.2 summarizes the confusion matrix and Table 4.3 includes the model per-

formance metrics calculated for the best models developed by configuring the various

neural network model architectures with two hidden layers and 10, 2 processing ele-

ments in the first and second hidden layers respectively.

Table 4.3: Performance Metrics for the best models

Model Sensitivity Specificity Predictive Capacity

MLP 83.3% 77.5% 83.5% (N=525)
GFF 76.1% 81.6% 80.1% (N=546)
MNN 91.8% 42.9% 90.3% (N=522)

Figures 4-1, 4-2, and 4-3 contain the ROC curves obtained for the best models

and Table 4.4 shows the calculated AUROC for these models. In this investigation,

a patient was identified with probable liver failure if his or her LFRI exceeds the

specified threshold value (φLFRI). Among the 81,135 patients (755 positives, 80,380

negatives) in the validation set where the final outcome was known, the MLP model,

achieved the highest AUROC (as shown in Table 4.4), identified the patients before

the onset of liver failure with an AUROC of 0.86 and achieved a sensitivity of 83.3% at

a specificity of 77.5%. For all the patients who were detected before clinical diagnosis,

we have obtained a distribution of lead times with a mean of 34.4 hours +/- 27.7 hours

and median of 17.5 hours. As this distribution was positively skewed ( i.e. median

<< mean), the median would be a better measure of predictive performance of the

developed model.

Table 4.4: AUROC for the best models

Model AUC

MLP 0.8622
GFF 0.8618
MNN 0.8266
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Figure 4-1: ROC Curve for MLP Model

Figure 4-2: ROC Curve for GFF Model
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Figure 4-3: ROC Curve for MNN Model

The developed LFRI is intended to alert for impending or concurrent liver failure in

a patient when the LFRI reaches or exceeds a threshold value (φLFRI) of 50. Figures

4-4, 4-5, 4-6, 4-7, and 4-8 show the model-generated 0-100 LFRI plots for sample

ICU patients from the model validation set. In these figures, the horizontal dotted

black line represents the static LFRI threshold value (φLFRI) of 50 implemented for

this effort. The circular indicator, in figures 4-4, 4-6, and 4-8 indicate the initial

time at which model-generated LFRI exceeded the defined threshold value (φLFRI).

The vertical dashed red line in figures 4-4, 4-6, and 4-7 represent the timestamp of

the occurrence of an initial clinical diagnosis of liver failure during the patient’s ICU

length of stay.

Figure 4-4 shows the model-generated 0-100 LFRI plot for a sample liver failure

patient who was diagnosed by the model before the onset of liver failure (True Posi-

tive). Here, the LFRI exceeded the chosen threshold value (φLFRI) around 70 hours

before the onset of liver failure. Also, the LFRI stays above the threshold and con-

tinues to increase for the remainder of the patient’s ICU admission which indicates

that the model has detected many hours before that the patient is more likely to
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Figure 4-4: Risk Index Plot for Liver Failure Patient A (True Positive)

experience liver failure.

Figure 4-5 shows the model-generated 0-100 LFRI plot for a sample non-liver

failure patient (True Negative) from the model validation set. Here, the LFRI is

below the threshold value (φLFRI), as desired, during the entire stay of ICU patient

which indicates that the patient is less likely to have or experience liver failure.

Figure 4-6 shows a similar LFRI plot, as in Figure 4-4, for a different liver failure

patient (True Positive Diagnosis but non-predictive). However, the model diagnosed

the patient around 10 hours after the onset of liver failure. This delay could be oc-

curred due to multiple reasons. One potential reason for this delay could be associated

with missing data where some of the critical model predictors indicating liver failure

or increased risk for liver failure are unavailable in the patient record. As explained in

the ‘Model Training and Validation Set Generation’ section, this data was generated

using the last known laboratory values, and if it was in the normal range, then the

model cannot detect in the early stages and leads to delay in diagnosis.

Figure 4-7 shows a model-generated 0-100 LFRI plot for a sample liver failure

patient where the model-generated LFRI never exceeded the threshold value (φLFRI)
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Figure 4-5: Risk Index Plot for Non-Liver Failure Patient B (True Negative)

Figure 4-6: Risk Index Plot for Liver Failure Patient C (True Positive with
Negative Lead Time)
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Figure 4-7: Risk Index Plot for Liver Failure Patient D (False Negative)

for this patient and hence wrongly classified as non-liver failure patient (False Neg-

ative). This could be due to the absence of some potential LFTs results such as

alkaline phosphate (ALP) test as well as the unavailability of other laboratory test

results that indicate the liver function status [47]. These LFTs were not incorporated

in the databases considered in this study. Including such potential LFTs along with

current predictors will help the model to generate a better LFRI and minimizes the

false negative cases.

Figure 4-8 shows a model-generated 0-100 LFRI plot for a sample non-liver failure

patient. For this patient, although the LFRI was slightly above the threshold value

(φLFRI) only once during the entire ICU stay, the model has classified the patient as

likely to have a liver failure (i.e., a false positive). This situation could be improved

in the future by modifying the alerting algorithm and its corresponding logic for the

LFRI model. Potential improvements could be made such as altering the detection

criteria such that a patient would be diagnosed only after the LFRI remains above the

detection threshold value (φLFRI) for at least 2 hours or some other desired length of

time.
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Figure 4-8: Risk Index Plot for Non-Liver Failure Patient E (False Positive)

4.2 Discussion

4.2.1 Summary

Detection of liver failure and dysfunction in its early stages may promote more

timely treatment and interventions by health care providers and consequently, en-

hance patient outcomes. To achieve this, our study has developed a neural network

modeling approach to predict the likelihood of liver failure before its onset in ICU

patients. As the neural network modeling techniques are capable of estimating the

impact of various inputs/independent variable on output/dependent variable, the ap-

plication of this kind of modeling technique towards the prediction of the likelihood

of liver failure is more suitable than the other modeling techniques used in prior

approaches.

Some of the previous approaches [12, 13] tried to use organ failure scoring sys-

tems such as SOFA, APACHE II to evaluate the illness severity amongst liver failure

patients. As these scoring systems are intended for broader organ systems, the high
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values of these scores indicate that the patient is at critical (without inspection of

the various dimensions of the scoring system that contributes to the final compos-

ite value). Therefore, these prior approaches potentially fail to identify the patients

who are at the highest risk for a specific acute condition with high sensitivity and

specificity. Low sensitivity diagnostic tools often fail to identify the correct outcome

for many patients, and this leads to uncertainty in benefiting from early treatment.

We have overcome this drawback by generating a predictive model exclusively for

identifying liver failure patients and achieved promising results of 83.3% sensitivity

at a specificity of 77.5% and correctly identified 83.3%(N=629) of patients with liver

failure that were present in the eICU validation set. The LFRI successfully predicted

the onset of liver failure in 83.5% (N=525) of the 629 patients with a median of 17.5

hours before its onset.

In recent years, many prior approaches implemented various machine learning

algorithms to develop the predictive models for early identification of the liver fail-

ure. Most of these models however, have not been developed and tailored for use in

ICU patient population. The ICU is one of the most crucial functioning operational

units in a hospital. Each ICU has a different environment that represents the surgi-

cal procedure followed by medical specialists. ICU teams comprise of highly skilled

intensive care doctors, specialists, and nurses who are skilled in providing care to

critically ill patients using specialized, technical and monitoring equipment. Unlike

general patients, daily monitoring of ICU patients is necessary because the optimiza-

tion of patient statuses including but not limited to: hemodynamic, ventilation and

nutrition is critical to improving the survival of patients. So, the surveillance and

monitoring of ICU patients are extremely important, and the inability to detect or

predict liver failure in these patients may lead to catastrophic consequences [48, 49].

As explained in the ‘Model Training and Validation Set Generation’ section, we have

addressed this challenge by developing models from a broad ICU patient population
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with and without liver failure.

In each of the prior approaches [18, 19, 20, 21, 22, 23], models were developed and

validated with a relatively small sample size from a single-center retrospective studies.

Systematic reviews which evaluate this kind of approaches all conclude that such

studies have the characteristics of deficiencies in study design, inadequate statistical

methodology, and poor reporting [50, 51]. Moreover, this kind of validation makes

the developed models only work effectively for a particular health care institution

or a small subset or population of patients which impacts its overall clinical utility.

It is necessary to see how well a model performs with patients from a different but

“plausibly related” population. Therefore, impact studies should not be considered

until the robustness and generalizability of the developed model is verified with one

or more external validation databases [52].

Further, all the previous approaches [18, 19, 20, 21, 22, 23] developed and validated

the predictive models using datasets which included an almost equal number of both

liver failure and non-liver failure patients. Testing a developed predictive model

with a validation dataset which has an equal ratio of with and without liver failure

condition would just artificially inflate the values of sensitivity and specificity. For

example, for such kind of validation sets, a predictive model can easily achieve 50% of

sensitivity just by outputting ‘1’ to the entire dataset without considering any input

values/predictors. However, in the real world, a very poor prevalence of liver failure

patients, between 1.0 to 5.0%, can be seen in the ICU patient population [53]. In

this study, there were only a total of 755 patients diagnosed with liver failure in the

ICU out of 81,135 patient admissions. The ratio (approx. 0.01) of patients with liver

failure to those that do not have the condition is thus much less than the near 0.5

ratios implemented in most prior approaches. Hence, our study aims to address the

previous limitation by validating the LFRI models with a representative real-world

ICU patient dataset as described below.
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Moreover, all of the prior approaches [18, 19, 20, 21, 22, 23] have considered only

laboratory results as input features to estimate the likelihood of liver failure before its

onset. Models developed during this effort have incorporated a more comprehensive

set of model input features. The developed models provide a more comprehensive

assessment of patient status by evaluating 24 patient data sources (i.e., model inputs)

that include a range of laboratory results and vital signs. While increasing the number

of required data sources by the model may be viewed as a potential limitation of

the approach, it can also be viewed as a positive advancement. The incorporation of

more model inputs provides the models with an improved ability to establish complex

relationships between clinical factors that impact liver failure which is unaccounted

for by some of the less sophisticated prior approaches developed and investigated to

date.

The performance of the LFRI models developed during this effort can be improved

by a number of methods in the future. Future efforts will investigate the further

expansion of the set of model inputs used by the model. Some of the model inputs

that can be considered in future efforts include but are not limited to: results from

ALP, GGT, and lactate dehydrogenase (LD) tests, as well as globulin parameters, etc.

The main challenge in expanding the feature set is to make sure that the data of these

new features would be available across multiple datasets so that the generalizability

of the developed models would not be compromised.

Further as mentioned in the section ‘Introduction’, apart from liver diseases, ab-

normal LFTs are indicative of many other diseases such as congestive heart failure,

metastatic malignancy, etc. For example, Batin et al. completed an investigation and

proved the prognostic importance of abnormal liver function tests, particularly AST

and bilirubin, in chronic heart failure [54]. In general, the prognosis of patients with

chronic heart failure is poor [55]. Although there are certain variables, such as left

ventricular dysfunction, that can be used to predict the outcome obtaining the val-
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ues for these variables involve specialized techniques and may not be available to the

majority of patients. Hence, these simple LFTs which provide predictive information

would be of obvious value. As the LFRI model developed in this approach considers

these simple LFTs along with vital signs, this model could be useful to identify chronic

heart failure patients by suspecting the incorrectly classified liver failure patients for

this disease and confirming it further with the specialized techniques.

An ideal diagnostic model has high sensitivity combined with high specificity.

However, models that are used in daily routine rarely conform to this criteria. There-

fore, it is often necessary to find a sensible trade-off between the sensitivity and

specificity to choose an appropriate model [56]. This implies that a model with

high sensitivity can be achieved by compromising specificity and, conversely, a higher

specificity can be achieved by accepting a lower sensitivity. When specificity which

is related to the false positive rate (FPR = 1-Specificity) is low, it implicates a high

frequency of false alarms that a health care provider has to respond, and this causes

them alarm fatigue. Care providers with alarm fatigue tend to ignore or difficult to

distinguish between alarms. This can result in a delay in intervention and patient

harm, the US Food and Drug Administration specified a report which shows that

there were 566 alarm-related deaths between 2005 and 2008 [57]. Hence, the extent

to which the health care providers respond to an alarm, triggered by this model,

related to a patient’s high risk of developing liver failure is to be considered. At

present, this is unknown and can be included in the factors which are independent

of the prediction risk. Other such factors include frequency of alarms that a model

should be generated to health care providers, the kind of mechanism used to convey

these warnings, and the minimization of false alarms. Also, false alarms can be min-

imized by accepting a lower sensitivity model. For instance, in this approach, the

MLP model has achieved a specificity of 77.5% which implies an FPR of 22.5%. This

shows that 22.5% of alerts generated by this model are false alarms and this can be re-
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duced by accepting a lower sensitivity model developed using GFF architecture (from

Table 4.3, sensitivity=76.1% and specificity=81.6%) in this study. Investigation of

all these issues and the work environment where the model needs to be used should

be addressed before its deployment to avoid alarm fatigue and achieve an appropriate

model in a clinical setting [58].

4.2.2 Limitations of the Effort

There are some limitations in our study. First, the prediction risk for each patient

was validated only to evaluate the detection performance of the model. A potential

study is needed to find whether and how this LFRI can impact remedial judgments.

Second, the sensitivity and specificity of ICD-9 codes are diagnosis dependent [59].

In addition, these coding practices were prejudiced to the more frequently code, the

more critical cases [60]. This limitation can be fixed by using automated tools to

retrieve diagnosis-related information from the discharge notes [61].
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Chapter 5

Conclusion and Future Works

In conclusion, neural network models developed in this effort have been demon-

strated to predict the likelihood of liver failure for a patient in ICU many hours before

standard screening protocols. This was accomplished by considering a number of data

sources from the patient’s electronic medical record (EMR) including but not limited

to: laboratory results and vital signs. The performance of this model has also been

validated externally using data of critical care patients from a completely different

database and achieved a high sensitivity of 83.3% at a specificity of 77.5%. Moreover,

this model has identified 83.5% (N=525) of liver failure patients with a median of

17.5 hours before the onset of liver failure. Achieving such a high performance when

validated with an external database patient records substantiates that our approach

has built a promising generalized model for predicting the liver failure in ICU pop-

ulation. Coordinating both evidence-based remedies and performance enhancement

measures with such models can result in significant improvement of the outcome in

ICU patients and helps in reaching the goal of learning health care systems.

Future research will be dedicated on the optimization of predictive accuracy of

the model-generated LFRI. Model performance will be optimized in the future by

investigating different sets of model inputs and predictors as described previously.

Another focus area of the future research will be on the development of patient
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population-specific models. These types of models are gaining more popularity in

research groups worldwide because of its potential to optimize the clinical treatment

by predicting the outcomes of therapies, improving diagnosis, and informing the de-

sign of surgical platforms [62]. These models can be developed using training data of

similar characteristics like morbidities, reasons for admission, age, gender, etc. For

example, patient-specific models developed for alcoholic liver failure patients would

be more accurate than the general model in predicting the risk of liver failure in

alcoholic patients.

In addition, a limitation of this investigation was the ICD-9 coding practices.

These codes were prejudiced to the more frequently codes which leads to more critical

cases. This limitation will be addressed in future studies by considering automated

tools to extract the diagnosis-related information from discharge notes.

While the models developed during this effort were designed for a very specific

functionality (i.e., detection of risk for and the likelihood of liver failure), the LFRI

modeling approach will be part of a much larger vision. Similar models predicting

risk for organ failure or other patient outcomes will be integrated into a comprehen-

sive clinical decision support system and patient monitoring tool for the ICU which

will serve to identify at-risk patients and to focus treatment priorities for healthcare

professionals. Efforts to develop such a comprehensive system are ongoing at the

University of Toledo in close collaboration between the College of Engineering and

the College of Medicine and Life Sciences.
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