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Doctor of Philosophy Degree in Mathematics
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This thesis will present an original work characterizing hyponormality and positivity

of Toeplitz operators with bounded symbols on the weighted Bergman spaces of on

the disk and whole complex plane.

Cuckovic and Curto [9] have recently obtained a necessary condition for the hyponor-

mality of the Toeplitz operators with a certain harmonic symbol on the disk in C.

We further extended the same problem to the weighted Bergman space and obtained

the analogous result as in the unweighted Bergman space. This thesis will also survey

the positivity of Toeplitz operators with bounded and unbounded symbols on the

Bergman, Fock and certain Model spaces in terms of the Berezin transform of the

symbol. Inspired by the paper of Zhao and Zheng [10], we have studied positivity of

the Toeplitz operators with a bounded symbol on the Model spaces in terms of the

Berezin transform. Analogous results have been obtained in the Fock space case as

well.
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Chapter 1

Basic Functional Analysis

1.1 Hilbert Spaces[11]

Definition 1. An inner product space (also known as a pre-Hilbert space) is a vector

space V over K = (R or C) together with a map

〈., .〉 : V× V→ K

satisfying (for x, y, z ∈ V and λ ∈ K):

(i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

(ii) 〈x, y〉 = 〈y, x〉

(iii) 〈λx, y〉 = λ〈x, y〉

(iv) 〈x, x〉 ≥ 0

(v) 〈x, x〉 = 0 =⇒ x = 0.

Note that it follows from first three properties that:

(vi) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

(vii) 〈x, λy〉 = λ〈x, y〉.
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An inner product on V gives rise to a norm

||x|| =
√
〈x, x〉.

If the inner product space is complete in this norm (or in other words, if it is complete

in the metric arising from the norm) then we call it a Hilbert space and denote it

by H.

A sequence of vectors {en} in a Hilbert space H is called an orthonormal basis for

H if it has the following properties:

(i) The vectors in {en} are mutually orthogonal;

(ii) Each en is a unit vector;

(iii) For every x ∈ H we have

x =
∞∑
n=1

〈x, en〉en,

with the series convergent in the norm topology of H.

Definition 2. Suppose X and Y are normed spaces and T : X → Y is a linear

transformation (also called a linear operator). If there is a constant C > O such that

||Tx|| ≤ C||x|| for all x ∈ X, then we say that T is a bounded linear operator

from X into Y.

A matrix (aij)1≤i,j≤n gives rise to a bounded linear operator T : Cn → Cn in the

natural way: for x = (x1, ..., xn), we define as

T (x) =



a1,1 a1,2 a1,3 . . . a1,n

a2,1 a2,2 a2,3 . . . a2,n

...
...

...
. . .

...

an,1 an,2 nn,3 . . . an,n





x1

x2

...

xn


, for all x ∈ Cn.
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Lemma 1. For X, Y ∈ H let T : X → Y be a linear operator. Then the following

are equivalent:

(i) T is bounded

(ii) T is continuous

(iii) T is continuous at 0.

For the proof, see Conway “A Course in Functional Analysis”.

Definition 3. Suppose T : H1 → H2 is linear operator between the Hilbert spaces H1

and H2. Then T ∗ : H2 → H1 is a linear adjoint operator if it satisfy 〈Tx, y〉 =

〈x, T ∗y〉 for all x ∈ H1 and y ∈ H2.

A bounded linear operator T on a Hilbert space H is said to be self-adjoint if T = T ∗.

If T is self-adjoint on H then it is easy to see that 〈Tx, x〉 is real for all x ∈ H. It

turns out that the converse of this is also true. Moreover, we have

||T || = sup{|〈Tx, x〉| : ||x|| = 1}

if T is self-adjoint.

Lemma 2. Let T : H → K be a bounded linear operator between two Hilbert spaces.

Then the following statements are true.

(i) (T ∗)∗ = T

(ii) ||T ∗|| = ||T ||

(iii) ker(T ) = ran(T ∗)⊥

(iv) ker(T ∗T ) = ker(T ).
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For the proof, see [11].

Let T = [alj]
m
j,l=1 be m × m matrix then we say that T is positive (or positive se-

mindefinite) if for any complex numbers ζ1, ζ2, ...ζn we have

[
ζ̄1 ζ̄2 . . . ζ̄m

]
T



ζ1

ζ2

...

ζm


=

m∑
j,l=1

aj,lζ̄jζl ≥ 0.

Or we say, if the inner product 〈Tx, x〉 is nonnegative for all x ∈ H, then T is positive

operator. In particular, any positive operator is self-adjoint. Just as for a positive

number, a positive operator can be raised to any positive power. In particular, if n is

a positive integer and T is a positive operator on H, then then there exists a unique

positive operator on H, denoted by T
1
n , such that (T

1
n )n = T . An easy example of

positive operators is T ∗T , where T is any bounded linear operator on H. We denote

σ(T ) as a set of complex number, called the spectrum of T , and defined as follows:

σ(T ) = {λ ∈ C : λI − T in not invertible},

where I is the identity operator on H.

For a bounded linear operator T on H, is invertible if it one-to-one and onto.

Lemma 3. Let H1 and H2 be Hilbert spaces. For a bounded linear operator T : H1 →

H2, the following are equivalent:

(i) T is invertible

(ii) there exists a constant ζ such that T ∗T ≥ ζIH1 and TT ∗ ≥ ζIH2 .

Proposition 1. Let H be a Hilbert space, every positive operator T ∈ B(H) has

non-negative spectrum, i.e. one has the inclusion σ(T ) ⊂ [0,∞).
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Proof. Let T ∈ B(H) be a positive operator. We know that positive operator is self-

adjoint and has a real spectrum. We wish to prove that this spectrum is positive. We

only need to prove that, for every number a ∈ (−∞, 0), the operator A = aI − T is

invertible.

Since, A∗A = AA∗ = a2I−2aT+T 2 and−2aT and T 2 both are positive so A∗A ≥ a2I.

Hence, By the above Lemma 3, Ais invertible so a /∈ σ(T ). Hence the spectrum σ(T )

is positive.

Theorem 1. (The Riesz Representation Theorem):

If φ is a bounded linear functional on a Hilbert space H then there exists some g ∈ H

such that for every f ∈ H, we have φ(f) = 〈f, g〉.

A bounded linear operator T on a Hilbert space H is called hyponormal operator

if T ∗T ≥ TT ∗; normal operator if T ∗T = TT ∗. Clearly all self-adjoint and unitary

operators are normal.

1.2 Bergman Space [11]

Let C be the complex plane. The set

D = {z ∈ C : |z| < 1}

is called the open disk. Let dA denotes area measure on D, normalized so that the

area of D is 1.

dA =
1

π
dxdy =

r

π
drdθ,

where

z = x+ iy = reiθ.

5



For p > 0 and ζ > −1, we define

dAζ(z) = (ζ + 1)(1− |z|2)ζdA(z) and

Apζ(D) = H(D) ∩ Lp(D, dAζ),

whereH(D) is the space of analytic functions in D. These spaces are called Bergman spaces

or Bergman spaces with standard weights.

By the help mean value theorem, we can prove sup norm of f on D is dominated by

the Lp norm. Hence as a consequence, we can easily see Apζ(D)is closed subspace of

Lp(D,Aζ). As it is well known that L2(D, dAζ) is a Hilbert space space so A2
ζ(D)is

also a Hilbert space.

1.2.1 Bergman Kernel

The point evaluation map at z ∈ D is a bounded linear functional on the Hilbert space

A2
ζ(D), the Riesz representation theorem tells that there exists a unique function hz

in A2
ζ(D) such that

f(z) =

∫
D
f(w)hz(w)dAζ

for all f in A2
ζ(D). Let Kζ(z, w) denote the function on D× D defined by

Kζ(z, w) = hz(w).

Then Kζ(z, w) is called the weighted reproducing kernel of A2
ζ(D). When ζ = 0,

we call K(z, w) the Bergman kernel of D.

The expression of kernel Kζ(z, w) in terms of the orthonormal basis {en} is

Kζ(z, w) =
∞∑
n=1

en(z)en(w)

6



and the series converges uniformly on the compact subsets of D × D. In particular,

Kζ(z, w) is independent of the choice of the orthonormal basis {en(z)}.

The reproducing kernel of A2
ζ(D) is given by

Kζ(z, w) =
1

(1− zw)2+ζ
.

Since A2
ζ(D) is a closed subspace of the Hilbert space L2(D, dAζ), there exists an or-

thogonal projection Pζ from L2(D, dAζ) onto A2
ζ(D). Indeed Pζ is an integral operator

because of any f ∈ L2(D, dAζ) we have,

Pζf(z) =

∫
D
Kζ(z, w)f(w)dAζ(w).

1.2.2 Berezin transform

For any z ∈ D, Kζ(z, z) > 0, so we can normalized reproducing kernel to obtain a

family of unit vectors kz, as follows

kz(w) =
K(w, z)√
K(z, z)

, w ∈ D.

Definition 4. Let T be a bounded linear operator on H. We say T̃ is a Berezin

transform of T , as a function on D, is defined as,

T̃ (z) = 〈Tkz, kz〉 for all z ∈ D.

In the same way, we define the Berezin transform of the function. We just replace the

operator T by a function f ∈ L1(D, dAζ) and interpret 〈, 〉 as an integral pairing rather

than an inner product. Thus the Berezin transform of f denoted as the function f̃

7



on D, and defined as,

f̃(z) =

∫
D
f(w)|kz(w)|2dAζ .

By a change of variable, this integral reduces to,

f̃(z) =

∫
D
f ◦ ϕz(w)dAζ(w),

where ϕz(w) is a Mobius transformation.

Whenever f ∈ L∞(D), the Berezin transform of the function f is same as the Berezin

transform of a certain bounded linear operator on A2
ζ(D).

Furthermore, the Berezin transform of a operator T is one-to-one. To prove it, one

has to show, if T̃ = 0 then T = 0.

The fix point characterization of the Berezin transform tells that if ϕ ∈ L1(D, dAζ)

is a complex-valued harmonic function, then ϕ̃ = ϕ. The other direction follows if

ϕ ∈ C(D). For proof, see [11].

Another important characterization about the Berezin transform is that if ϕ ∈ C(D),

then ϕ̃ is in C(D) and ϕ̃ = ϕ on ∂D.

Main part of the proof is , if z0 ∈ ∂D, then limz→z0 ϕz(w) = z0.

Let ϕ ∈ L1(D, dAζ) for some ζ. For the sequence of the Berezin transform of ϕ

{ϕ̃β : β ∈ Z+} we have,

lim
β→∞

ϕ̃β = ϕ

and the convergence is in the norm topology of L1(D, dAζ).

1.2.3 Toeplitz operators on the Bergman space

Given a function ϕ ∈ L∞(D), we define an operator Tϕ on A2
ζ(D) by

Tϕf = Pζ(ϕf), f ∈ A2
ζ(D)

8



where

Pζ : L2(D, dAζ)→ A2
ζ(D)

is a Bergman projection onto A2
ζ(D). The operator Tϕ is called the Toeplitz oper-

ator on the Bergman space A2
ζ(D) with symbol ϕ.

Suppose a and b are complex numbers, ϕ and ψ are bounded functions on D. Then

(i) Taϕ+bψ = aTϕ + Tψ

(ii) T ∗ϕ = Tϕ

Moreover, if ϕ ∈ H∞, then

(iii) TψTϕ = Tψϕ

(iv) TϕTψ = Tϕψ.

9



Chapter 2

A necessary condition on the

hyponormality of Toeplitz

operators on the weighted

Bergman space

2.1 Introduction

Let D denote the open disc in the complex plane, and dA denotes the normalized

Lebesgue area measure on D. For −1 < ζ < ∞, the weighted Bergman space,

A2
ζ(D), is a closed subspace of L2(D, dAζ), consisting of all holomorphic square inte-

grable functions on D with respect to the measure,

dAζ(z) = (ζ + 1)(1− |z|2)ζdA(z),
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If ζ = 0, then A2
0(D) = A2(D) is the Bergman space. The inner product on L2(D, dAζ)

is defined as

〈f, g〉ζ =

∫
D
f(z)g(z)dAζ(z) for all f, g ∈ L2(D, dAζ).

For zn ∈ A2
ζ(D), one can compute that,

||zn||2ζ =
Γ(n+ 1)Γ(ζ + 2)

Γ(n+ ζ + 2)
.

Hence, the orthonormal basis {en} is of the form

en(z) =

√
Γ(n+ ζ + 2)

Γ(n+ 1)Γ(ζ + 2)
zn, for z ∈ D

where Γ(s) is the usual Gamma function.

The reproducing kernel in A2
ζ(D) is defined as

K(ζ)
w (z) =

1

(1− zw)2+ζ
for z ∈ D.

For ϕ ∈ L∞(D), the Berezin transform of ϕ on A2
ζ(D) is a function ϕ̃ζ(z) defined

by,

ϕ̃ζ(z) := 〈Tϕkζz , kζz〉 =

∫
D
ϕ(w)|kζz(w)|2dAζ(w),

For ϕ ∈ L∞(D), the Toeplitz operator Tϕ on A2
ζ(D) is defined by

Tϕf = Pζ(ϕf) for f ∈ A2
ζ(D),

where Pζ denotes the orthogonal projection that maps L2(D, dAζ) onto A2
ζ(D). Sim-

11



ilarly, we define the Hankel operators by

Hϕf = (I − Pζ)(ϕf)

from A2
ζ(D) onto A2

ζ(D)⊥ and I is identity operator.

A bounded linear operator acting on H is said to be normal if

T ∗T = TT ∗,

and hyponormal if

T ∗T ≥ TT ∗.

This is equivalent to saying

||Tx|| ≥ ||T ∗x|| for all x ∈ H.

2.2 Preliminaries

C. Cowen [2] gave an elegant characterization of the hyponormality of Toeplitz op-

erator on the Hardy Space with a bounded measurable symbol on T, where T is the

unit circle in the complex plane. He proved that for a symbol ϕ ∈ L∞,

ϕ ≡ f + g (f, g ∈ H2),

the Toeplitz operator Tϕ acting on the Hardy space of the unit circle is hyponormal

if and only if

f = c+ Thg, for some c ∈ C, h ∈ H∞, ||h||∞ ≤ 1.

12



It is natural for us to consider the same problem on the Bergman space. However, C.

Cowen’s proof does not adapt to the Bergman space, since the multiplication operator

Mz is no longer an isometry.

Then, for the case that ϕ is a continuous function, Yufeng Lu and Chaomei Liu [7]

found a sufficient condition for the hyponormality of Tϕ by using the Mellin transform

on weighted Bergman space.

H. Sadraoui [8] gave a necessary and sufficient condition on the Bergman space for

ϕ = f+g with f, g bounded and analytic, which is also true on the weighted Bergman

space.

Theorem 2. ( H. Sadraoui): If ϕ ≡ f + ḡ, then following are equivalent

(i) Tϕ is hyponormal in A2(D);

(ii) H∗ḡHḡ ≤ H∗
f̄
Hf̄ ;

(iii) Hḡ = CHf̄ , where C is a contraction on A2(D).

Later, P. Ahern and Z. Cuckovic [1] generalized H. Sadraouis result by using a mean

value inequality and the Berezin transform.

Theorem 3. (P. Ahern and Z. Cuckovic):

If Tϕ is hyponormal with the symbol ϕ ≡ g + f ∈ L∞(D), then ũ ≥ u, and u :=

|f |2 − |g|2.

Hwang and Lee [5], and Hwang, Lee and Park [6] gave some necessary and sufficient

conditions for the hyponormality of Toeplitz operators on weighted Bergman space

with the class of functions ϕ ≡ f + g (f, g ∈ H2).

Recently, Cuckovic and Curto [9] gave a necessary condition for the hyponormality

of the Toeplitz operators on the Bergman space which stated as follows.

Theorem 4. Assume that Tϕ is hyponormal in A2(D), with symbols of the form

ϕ ≡ αzn + βzm + γz̄p + δz̄q

13



where α, β, γ, δ ∈ C, m,n, p, q ∈ Z+,m < n and p < q, and n−m = q − p. Then

|α|2n2 + |β|2m2 − |γ|2p2 − |δ|2q2 ≥ 2|ᾱβmn− γ̄δpq|.

A natural question arises, do we get the same necessary condition for the weighted

Bergman space with weight (1− |z|2)ζdA where ζ ∈ Z+?

We show the same result holds as in non-weighted case. In fact, we let Tϕ act on the

vectors of the form

zk + czl + dzr (k < l < r),

and then we study the asymptotic behavior of a suitable matrix of inner products, as

k →∞. As a result, we obtain the same result.

Lemma 4. For u, v ≥ 0, we have

Pζ(z
uzv) =


0, if v < u

Γ(v−u+ζ+2)Γ(v+1)
Γ(v−u+1)Γ(v+ζ+2)

zv−u, if v ≥ u.

Proof.

P (zuzv) =
∞∑
n=0

〈
zuzv,

zn

||zn||

〉
zn

||zn||

=
∞∑
n=0

〈zuzv, zn〉zn

||zn||2

=
∞∑
n=0

Γ(n+ ζ + 2)

Γ(n+ 1)Γ(ζ + 2)
〈zv, zn+u〉zn

=


0 if v < u

Γ(v−u+ζ+2)Γ(v+1)
Γ(v−u+1)Γ(v+ζ+2)

zv−u if v ≥ u.

(2.1)

14



Corollary 1. For v ≥ u and t ≥ w, we have the statement,

〈Pζ(zuzv), Pζ(zwzt)〉 =

〈
Γ(v − u+ ζ + 2)Γ(v + 1)

Γ(v − u+ 1)Γ(v + ζ + 2)
zv−u,

Γ(t− w + ζ + 2)Γ(t+ 1)

Γ(t− w + 1)Γ(t+ ζ + 2)
zt−w

〉

=
Γ(v − u+ ζ + 2)Γ(v + 1)

Γ(v − u+ 1)Γ(v + ζ + 2)

Γ(t− w + ζ + 2)Γ(t+ 1)

Γ(t− w + 1)Γ(t+ ζ + 2)
〈zv−u, zt−w〉

=
Γ(t− w + ζ + 2)2Γ(v + 1)Γ(t+ 1)

Γ(t− w + 1)2Γ(v + ζ + 2)Γ(t+ ζ + 2)

Γ(t− w + 1)Γ(ζ + 2)

Γ(t− w + ζ + 2)
δu+t,v+w

=
Γ(t− w + ζ + 2)Γ(ζ + 2)Γ(v + 1)Γ(t+ 1)

Γ(t− w + 1)Γ(v + ζ + 2)Γ(t+ ζ + 2)
δu+t,v+w. (2.2)

Other useful results:

For any

f ∈ A2
ζ(D), f =

∞∑
n=0

bnz
n where bn ∈ C

1. ||zkf ||2 =
∞∑
n=0

|bn|2 Γ(k+n+1)Γ(ζ+2)
Γ(k+n+ζ+2)

||zkf ||2 = 〈zkf, zkf, 〉

=

〈
zk

∞∑
n=0

bnz
n, zk

∞∑
m=0

bmz
m

〉

=
∞∑
n=0

|bn|2〈zk+n, zk+n〉

=
∞∑
n=0

|bn|2
Γ(k + n+ 1)Γ(ζ + 2)

Γ(k + n+ ζ + 2)
. (2.3)

2. Norm value of P (zkf)

Since we have, ||P (zkf)||2 = 〈P (zkf), P (zkf)〉 so we compute the value of P (zkf) first,

(2.4)
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P (zkf) =
∞∑
n=0

〈P (zkf), en〉en

=
∞∑
n=0

〈zkf, en〉en

=
∞∑
n=0

Γ(n+ ζ + 2)

Γ(n+ 1)Γ(ζ + 2)
〈f, zk+n〉zn

=
∞∑
n=0

Γ(n+ ζ + 2)

Γ(n+ 1)Γ(ζ + 2)

〈
∞∑
m=0

bmz
m, zk+n

〉
zn

=
∞∑
n=0

Γ(n+ ζ + 2)

Γ(n+ 1)Γ(ζ + 2)
〈bk+nz

k+n, zk+n〉zn

=
∞∑
n=0

Γ(n+ ζ + 2)

Γ(n+ 1)Γ(ζ + 2)
bk+n

Γ(k + n+ 1)Γ(ζ + 2)

Γ(k + n+ ζ + 2)
zn

=
∞∑
n=0

bk+n
Γ(n+ ζ + 2) Γ(k + n+ 1)

Γ(n+ 1) Γ(k + n+ ζ + 2])
zn. (2.5)

So, (2.4) turns out to be

||P (zkf)||2 =

〈
∞∑
n=0

bk+n
Γ(n+ ζ + 2) Γ(k + n+ 1)

Γ(n+ 1) Γ(k + n+ ζ + 2])
zn,

∞∑
n=0

bk+n
Γ(n+ ζ + 2) Γ(k + n+ 1)

Γ(n+ 1) Γ(k + n+ ζ + 2])
zn

〉

=
∞∑
n=0

|bk+n|2
Γ(n+ ζ + 2)2 Γ(k + n+ 1)2

Γ(n+ 1)2 Γ(k + n+ ζ + 2)2
〈zn, zn〉

=
∞∑
n=0

|bk+n|2
Γ(n+ ζ + 2)2 Γ(k + n+ 1)2

Γ(n+ 1)2 Γ(k + n+ ζ + 2)2

Γ(n+ 1)Γ(ζ + 2)

Γ(n+ ζ + 2)

=
∞∑
n=0

|bk+n|2
Γ(ζ + 2)Γ(n+ ζ + 2) Γ(k + n+ 1)2

Γ(n+ 1) Γ(k + n+ ζ + 2)2
. (2.6)

In particular for k = 1,

||P (zf)||2 =
∞∑
n=0

|bn+1|2
Γ(ζ + 2)Γ(n+ ζ + 2) Γ(n+ 2)2

Γ(n+ 1)Γ(n+ ζ + 3)2

=
∞∑
n=0

|bn+1|
Γ(ζ + 2) (n+ 1)Γ(n+ 2)

(n+ ζ + 2)Γ(n+ ζ + 3)

=
∞∑
n=1

|bn|2
(n)Γ(ζ + 2) Γ(n+ 1)

(n+ ζ + 1)Γ(n+ ζ + 2)
(2.7)
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and for k = 2,

||P (z2f)||2 =
∞∑
n=0

|bn+2|2
Γ(ζ + 2)Γ(n+ ζ + 2) Γ(n+ 3)2

Γ(n+ 1) Γ(n+ ζ + 4)2

=
∞∑
n=0

|bn+2|2
(n+ 2)(n+ 1)Γ(ζ + 2) Γ(n+ 3)

(n+ ζ + 3)(n+ ζ + 2)Γ(n+ ζ + 4)

=
∞∑
n=2

|bn|2
(n)(n− 1)Γ(ζ + 2) Γ(n+ 1)

(n+ ζ + 1)2(n+ ζ)2Γ(n+ ζ)
(2.8)

Proposition 2. (D.Farenick and W.Y. Lee [3]) Let ϕ be a trigonometric polynomial

of the form

ϕ(z) =
N∑

n=−m

anz
n. (2.9)

If Tϕ is a hyponormal operator then m ≤ N and |am| ≤ |aN |.

For the symbol,

ϕ = z2 + 2z, (2.10)

Tϕ is not hyponormal on the Hardy space H2(T), because m = 2, N = 1, and m > N

(see proposition 2). However, Cuckovic and Curto [9] proved that Tϕ is hyponormal

in A2(D).

Following the similar idea, we show that Tϕ is hyponormal in the weighted Bergman

space as well.

Theorem 5. For ζ > 0 and ϕ = z2 + βz, show that Tϕ is hyponormal iff

|β|2||zf ||2 + ||P (z2f)||2 ≥ ||β||2||P (zf)||2 + ||z2f ||2

iff

|β| ≥ 2.
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Proof. Since we know,

[T ∗ϕ, Tϕ] = TϕTϕ − TϕTϕ

= (Tz2 + βTz)(Tz2 + βTz)− (Tz2 + βTz)(Tz2 + βTz)

Toeplitz operators with analytic or co-analytic symbols commute so only

the remaining terms are,

= Tz2Tz2 − Tz2Tz2 + |β|2TzTz − |β|2TzTz. (2.11)

We know that Tϕ is hyponormal iff

〈[T ∗ϕ, Tϕ]f, f〉 ≥ 0

〈Tz2Tz2f, f〉 − 〈Tz2Tz2f, f〉+ |β|2〈TzTzf, f〉 − |β|2〈TzTzf, f〉 ≥ 0

||P (z2f)||2 + |β|2||zf ||2 ≥ ||z2f ||2 + |β|2||P (zf)||2

(2.12)

This proves the first part of the theorem.

Next we prove second part of the theorem, which states that,

|β|2||zf ||2 + ||P (z2f)||2 ≥ |β|2||P (zf)||2 + ||z2f ||2 (2.13)

if and only if

|β| ≥ 2.

We have already computed the values of ||P (z2f)||2, ||zf ||2, ||z2f ||2 and ||P (zf)||2 so
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(2.13) becomes

=⇒
∞∑
n=2

|bn|2
(n)(n− 1)Γ(ζ + 2) Γ(n+ 1)

(n+ ζ + 1)2(n+ ζ)2Γ(n+ ζ)
+ |β|2

∞∑
n=0

|bn|2
Γ(n+ 2)Γ(ζ + 2)

Γ(n+ ζ + 3)
≥

∞∑
n=0

|bn|2
Γ(n+ 3)Γ(ζ + 2)

Γ(n+ ζ + 4)
+ |β|2

∞∑
n=1

|bn|2
(n)Γ(ζ + 2) Γ(n+ 1)

(n+ ζ + 1)Γ(n+ ζ + 2)

=⇒
∞∑
n=2

|bn|2
(n)(n− 1) Γ(n+ 1)

(n+ ζ + 1)2(n+ ζ)2Γ(n+ ζ)
+ |β|2

∞∑
n=0

|bn|2
Γ(n+ 2)

Γ(n+ ζ + 3)
≥

∞∑
n=0

|bn|2
Γ(n+ 3)

Γ(n+ ζ + 4)
+ |β|2

∞∑
n=1

|bn|2
(n) Γ(n+ 1)

(n+ ζ + 1)Γ(n+ ζ + 2)
.

(2.14)

Equation (2.14) must hold for every sequences (bn) of coefficients of f . Consider first

sequence (bn) with b0 := 1, and bn; = 0 for all n ≥ 1.

For this sequence (2.14) yields,

|β|2 Γ(2)

Γ(ζ + 3)
≥ Γ(3)

Γ(ζ + 4)

|β|2 ≥ 2Γ(ζ + 3)

Γ(ζ + 4)

|β|2 ≥ 2

ζ + 3
. (2.15)

Next, we take b0 := 0, b1 = 1, and bn := 0 for all n ≥ 2, then (2.14) yields,

|β|2 Γ(3)

Γ(ζ + 4)
≥ Γ(4)

Γ(ζ + 5)
+ |β|2 1

(ζ + 2)(Γ(ζ + 3))

|β|2 2

(ζ + 3)
≥ 6

(ζ + 4)(ζ + 3)
+ |β|2 1

ζ + 2

|β|2 ≥ 6.(ζ + 2)

(ζ + 1)(ζ + 4)
. (2.16)

Finally, we use sequence b0 := 0, b1 := 0, ..., bk−1 = 0, bk := 1, and bn = 0 for all n > k.

Then (2.14) gives us,
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=⇒ (k)(k − 1) Γ(k + 1)

(k + ζ + 1)2(k + ζ)2Γ(k + ζ)
+ |β|2 Γ(k + 2)

Γ(k + ζ + 3)
≥ Γ(k + 3)

Γ(k + ζ + 4)
+

|β|2 (k) Γ(k + 1)

(k + ζ + 1)Γ(k + ζ + 2)

=⇒ (k)(k − 1) Γ(k + 1)

(k + ζ + 1)2(k + ζ)2Γ(k + ζ)
+ |β|2 (k + 1)Γ(k + 1)

(k + ζ + 2)(k + ζ + 1)(k + ζ)Γ(k + ζ)
≥

(k + 2)(k + 1)Γ(k + 1)

(k + ζ + 3)(k + ζ + 2)(k + ζ + 1)(k + ζ)Γ(k + ζ)
+ |β|2 (k) Γ(k + 1)

(k + ζ + 1)(k + ζ + 1)(k + ζ)Γ(k + ζ)

=⇒ (k)(k − 1)

(k + ζ + 1)(k + ζ)
+ |β|2 (k + 1)

(k + ζ + 2)
≥ (k + 2)(k + 1)

(k + ζ + 3)(k + ζ + 2)
+ |β|2 (k)

(k + ζ + 1)

=⇒ |β|2 (k + 1)(k + ζ + 1)− k(k + ζ + 2)

(k + ζ + 1)(k + ζ + 2)
≥

(k + ζ)(k + ζ + 1)(k2 + 3k + 2)− (k2 − k)(k + ζ + 2)(k + ζ + 3)

(k + ζ)(k + ζ + 1)(k + ζ + 2(k + ζ + 3))

=⇒ |β|2(ζ + 1) ≥ 4k2 + 4kζ2 + 4k2 + 12kζ + 2ζ2 + 8k + 2ζ

(k + ζ)(k + ζ + 3)

=⇒ |β|2(ζ + 1) ≥ 4k2(ζ + 1) + 2ζ(ζ + 1) + 4k(ζ + 1)(ζ + 2)

(k + ζ)(k + ζ + 3)

=⇒ |β|2 ≥4k2 + 2ζ + 4k(ζ + 2)

(k + ζ)(k + ζ + 3)
(2.17)

By the help of Wolfram alpha, (See the appendix for details).

max

{
4k2 + 2ζ + 4k(ζ + 2)

(k + ζ)(k + ζ + 3)
: k ≥ 1, ζ > 0

}
=

4(k + 2)

k + 3
k ≥ 1.

Since 4(k+2)
k+3

is increasing in k so max attains at the infinity. One can show the value

of 4(k+2)
k+3

at infinity is 4.

Thus, Tϕ is hyponormal if and only if
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|β| ≥ 2.

Thus the hyponormality in the Hardy space does not imply the hyponormality in

weighted Bergman space.

Next, we introduce facts about the asymptotic expansion of ratios of Gamma func-

tions. For a, b ∈ R,

Γ(k + a)

Γ(k + b)
∼ ka−b

∞∑
i=0

Gi(a, b)

zi
(2.18)

where,

G0(a, b) = 1

G1(a, b) =
1

2
(a− b)(a+ b− 1)

G2(a, b) =
1

12

(
a− b

2

)
{3(a+ b− 1)2 − (a− b+ 1)}

...

We use this facts to compute following ratios of Gamma functions,

Γ(k + 1)

Γ(k + ζ + 2)
∼k−ζ−1

{
1 +

1

2k
(−ζ − 1)(ζ + 2) +

1

12k2

(
−ζ − 1

2

)(
3(ζ + 2)2 − (−ζ)

)}
+O(k−3).

(2.19)
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Γ(k + n+ 1)

Γ(k + n+ ζ + 2)
∼ k−ζ−1

{
1− 1

2k
(ζ + 1)(2n+ ζ + 2) +

1

12k2

(
−ζ − 1

2

)
(
3(2n+ ζ + 2)2 + ζ

)}
+O(k−3). (2.20)

Γ(k + ζ + 2)

Γ(k + 1)
∼kζ+1

{
1 +

1

2k
(ζ + 1)(ζ + 2) +

1

12k2

(
ζ + 1

2

)(
3(ζ + 2)2 − (ζ + 2)

)}
+O(k−3).

(2.21)

Γ(k − n+ ζ + 2)

Γ(k − n+ 1)
∼ kζ+1

{
1 +

1

2k
(ζ + 1)(−2n+ ζ + 2) +

1

12k2

(
ζ + 1

2

)
(
3(−2n+ ζ + 2)2 − (ζ + 2)

)}
+O(k−3). (2.22)

2.3 Main Results

We study the necessary condition for the hyponormality of the Toeplitz operators on

the weighted Bergman space of the disc with symbol of type

ϕ ≡ αzn + βzm + γz̄p + δz̄q

where α, β, γ, δ ∈ C and m,n, p, q ∈ Z+,m < n and p < q with n −m = q − p. We

show if Tϕ is hyponormal then

|α|2n2 + |β|2m2 − |γ|2p2 − |δ|2q2 ≥ (ᾱβmn− γ̄δpq).

Proof. Here C := [T ∗ϕ, Tϕ] denotes the self-commutator of Tϕ. We study necessary

conditions on the symbol ϕ, assuming positivity on C.
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We consider the expression 〈Cf, f〉, given by

〈
[(Tαzn+βzm+γzp+δzq)

∗, Tαzn+βzm+γzp+δzq ](z
k + czl + dzr), zk + czl + dzr

〉
,

for large values of k (and consequently large value of l and r). And it is easy to see

〈Cf, f〉 is a quadratic form in c and d, that is,

〈Cf, f〉 ≡ A00 + 2Re(A10c) + 2Re(A01d) + A20cc̄+ 2Re(A11c̄d) + A02dd̄, (2.23)

where A00 = 〈Czk, zk〉, A10 = 〈Czl, zk〉, A01 = 〈Czr, zk〉, A20 = 〈Czl, zl〉, A11 =

〈Czr, zl〉 and A02 = 〈Czr, zr〉.

Alternatively, the matricial form of 2.23 is

〈
A00 A10 A01

Ā10 A20 A11

Ā01 Ā11 A02




1

c

d

 ,


1

c

d


〉
.

(2.24)

Now, we compute the values of coefficient A00 which is just action of Tϕ on monomial

zk.

A00 =〈Czk, zk〉 ≡
〈
[(Tαzn+βzm+γzp+δzq)

∗, Tαzn+βzm+γz̄p+δz̄q ]z
k, zk〉

= 〈(Tᾱz̄n+β̄z̄m+γ̄zp+δ̄zq).(Tαzn+βzm+γz̄p+δz̄q)− (Tαzn+βzm+γz̄p+δz̄q).(Tᾱz̄n+β̄z̄m+γ̄zp+δ̄zq)z
k, zk〉

= 〈(Tᾱz̄n+β̄z̄m+γ̄zp+δ̄zq).(Tαzn+βzm+γz̄p+δz̄q)z
k, zk〉−

〈(Tαzn+βzm+γz̄p+δz̄q).(Tᾱz̄n+β̄z̄m+γ̄zp+δ̄zq)z
k, zk〉. (2.25)

To compute A00 and other coefficients explicitly, we use the facts that Toeplitz oper-

ators with analytic symbols is commutative, two monomials zu and zv are orthogonal

23



whenever u 6= v. Only the remaining terms are,

A00 = |α|2(〈zk+n, zk+n〉 − 〈P (z̄nzk), P (z̄nzk)〉)

+ |β|2(〈zm+k, zm+k〉 − 〈P (z̄mzk), P (z̄mzk)〉)

− |γ|2(〈zp+k, zp+k〉 − 〈P (z̄pzk), P (z̄pzk)〉)

− |δ|2(〈zq+k, zq+k〉 − 〈P (z̄qzk), P (z̄qzk)〉). (2.26)

We compute the first two term of A00; the rest will follow similarly.

|α|2(||zk+n||2ζ−||P (z̄nzk)||2ζ) = |α|2
(

Γ(k + n+ 1)Γ(ζ + 2)

Γ(k − n+ ζ + 2)
− Γ(k + n+ ζ + 2)Γ(k + 1)2Γ(ζ + 2)

Γ(k − n+ 1)Γ(k + ζ + 2)2

)
=
|α|2Γ(ζ + 2)Γ(k + 1)

Γ(k + ζ + 2)

(
Γ(k + n+ 1)Γ(k + ζ + 2)

Γ(k + n+ ζ + 2)Γ(k + 1)
− Γ(k − n+ ζ + 2)Γ(k + 1)

Γ(k − n+ 1)Γ(k + ζ + 2)

)
(2.27)

To compute the difference in (2.27), we multiply (2.20) & (2.21), and (2.19) & (2.22)

and take their difference. First we multiply (2.20) & (2.21).

Γ(k + n+ 1)

Γ(k + n+ ζ + 2)

Γ(k + ζ + 2)

Γ(k + 1)
=1 +

1

2k
(ζ + 1)(ζ + 2) +

1

12k2

(
ζ + 1

2

)(
(2 + ζ)(3ζ + 5)

)
−

1

2k
(ζ + 1)(2n+ ζ + 2)− 1

4k2
(ζ + 1)2(2 + ζ)(2n+ ζ + 2)+

1

12k2

(
−ζ − 1

2

)(
3(2n+ ζ + 2)2 + ζ

)
+O(k−3).

(2.28)

Similarly we multiply (2.19) & (2.22),
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Γ(k + 1)

Γ(k + ζ + 2)

Γ(k − n+ ζ + 2)

Γ(k − n+ 1)
=1 +

1

2k
(ζ + 1)(−2n+ ζ + 2)

+
1

12k2

(
ζ + 1

2

)(
3(−2n+ ζ + 2)2 − (ζ + 2)

)
− 1

2k
(ζ + 1)(2 + ζ)− 1

4k2
(ζ + 1)2(2 + ζ)(−2n+ ζ + 2)

+
1

12k2

(
−ζ − 1

2

)(
3(ζ + 2)2 + ζ

)
+O(k−3).

(2.29)

Now we subtract (2.28)−(2.29) to get the difference (2.27)

= 1
2k

(ζ+1)(2+ζ+2n−ζ−2)+ 1
12k2

(
ζ+1

2

)
{3(2 + ζ)2 − (2 + ζ)− 3(−2n+ ζ + 2)2 + (2 + ζ)}−

1
2k

(ζ + 1)(2n + ζ + 2 − 2 − ζ) − 1
4k2

(ζ + 1)2(2 + ζ)(2n + ζ + 2 − 2n − ζ − 2) +

1
12k2

(−ζ−1
2

)
{3(2n+ ζ + 2)2 + ζ)− 3(ζ + 2)2 − ζ}+O(k−3)

= 1
12k2

(
ζ+1

2

)
{3(2 + ζ)2 − 3(2 + ζ)2 + 12n(ζ + 2) − 12n2} − 1

4k2
4n(ζ + 1)2(2 + ζ) +

1
4k2

(−ζ−1
2

)
{3(ζ + 2)+12n(ζ + 2) + 12n2 − 3(ζ + 2)2}+O(k−3)

= n
k2

{(
ζ+1

2

)
(ζ + 2− n)− 1

4k2
4n(ζ + 1)2(2 + ζ) + n

k2

(−ζ−1
2

)
(ζ + 2− n)

}
+O(k−3)

= n
k2

{
(ζ+1).ζ

2
(ζ + 2− n)− (ζ + 1)2(2 + ζ) + (ζ+1)(2+ζ)

2
.(ζ + 2 + n)

}
+O(k−3)

= n
k2
. (ζ+1)

2

{
ζ(ζ + 2− n)− 2(ζ + 1)(2 + ζ) + (2 + ζ)(ζ + 2 + n)

}
+O(k−3)

= n
k2
. (ζ+1)

2

{
ζ(ζ + 2)− nζ − 2(ζ + 1)(2 + ζ) + (2 + ζ)2 + 2n+ nζ

}
+O(k−3)

= n2

k2
(ζ + 1) +O(k−3).
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Now (2.27) becomes,

=
|α|2Γ(ζ + 2)Γ(k + 1)

Γ(k + ζ + 2)

{n2

k2
(ζ + 1) +O(k−3)

}
using (A), we get

= |α|2Γ(ζ + 2)k−ζ−1
{

1 +O(k−1)
}{n2

k2
(ζ + 1) +O(k−3)

}
= |α|2Γ(ζ + 2)k−ζ−1n

2

k2
(ζ + 1) +O(k−4−ζ)

= |α|2Γ(ζ + 2)k−ζ−3n2(ζ + 1) +O(k−4−ζ)

Hence the first two terms of A00;

|α|2(||zk+n||2ζ − ||P (z̄nzk)||2ζ) = k−ζ−3|α|2Γ(ζ + 2)n2(ζ + 1) +O(k−1)

Following the similar pattern, we obtain remaining terms of A00 as below.

|β|2(||zm+k||2ζ − ||P (z̄mzk)||2ζ) = k−ζ−3|β|2Γ(ζ + 2)m2(ζ + 1) +O(k−1)

|γ|2(||zp+k||2ζ − ||P (z̄pzk)||2ζ) = k−ζ−3|γ|2Γ(ζ + 2)p2(ζ + 1) +O(k−1)

|δ|2(||zq+k||2ζ − ||P (z̄qzk)||2ζ) = k−ζ−3|δ|2Γ(ζ + 2)q2(ζ + 1) +O(k−1)

Finally we take get,

A00 = k−ζ−3(ζ + 1)Γ(ζ + 2)
{
n2|α|2 +m|β|2 − p2|γ|2 − q2|δ|2

}
+O(k−1).

Now we compute A10,

A10 =〈Czl, zk〉 ≡
〈
[(Tαzn+βzm+γzp+δzq)

∗, Tαzn+βzm+γz̄p+δz̄q ]z
l, zk〉

= 〈(Tᾱz̄n+β̄z̄m+γ̄zp+δ̄zq).(Tαzn+βzm+γz̄p+δz̄q)− (Tαzn+βzm+γz̄p+δz̄q).(Tᾱz̄n+β̄z̄m+γ̄zp+δ̄zq)z
l, zk〉

(2.30)
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= 〈(Tᾱz̄n+β̄z̄m+γ̄zp+δ̄zq).(Tαzn+βzm+γz̄p+δz̄q)z
l, zk〉−

〈(Tαzn+βzm+γz̄p+δz̄q).(Tᾱz̄n+β̄z̄m+γ̄zp+δ̄zq)z
l, zk〉.

(2.31)

We again use the facts that Toeplitz operators with analytic symbols are commutative,

two monomials zu and zv are orthogonal whenever u 6= v. Only the remaining terms

of A10 are,

A10 = ᾱβ(〈Tz̄nTzmzl, zk〉 − 〈TzmTz̄nzl, zk〉)δk+n,m+l

+β̄α(〈Tz̄mTznzl, zk〉 − 〈TznTz̄mzl, zk〉)δm+k,n+l

+γ̄δ(〈TzpTz̄qzl, zk〉 − 〈Tz̄qTzpzl, zk〉)δq+k,p+l

+δ̄γ(〈TzqTz̄pzl, zk〉 − 〈Tz̄pTzqzl, zk〉)δp+k,q+l.

(2.32)

Since we have m < n and k < l, so that m + k < n + l, and therefore δm+k,n+l = 0.

Also, p < q implies p+ k < q + l, so that δp+k,q+l = 0. As a consequence,

A10 =ᾱβ
(
〈zm+l, zk+n〉 − 〈P (z̄nzl), P (z̄mzk〉

)
δk+n,m+l

−γ̄δ
(
〈zp+l, zq+k〉 − 〈P (z̄qzl), P (z̄pzk〉

)
δq+k,p+l. (2.33)

We compute the first two terms of A10; From the corollary (2.2), we have

ᾱβ
(
〈zm+l, zk+n〉 − 〈P (z̄nzl), P (z̄mzk〉

)
δk+n,m+l

(2.34)
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=ᾱβ

(
Γ(k + n+ 1)Γ(ζ + 2)

Γ(k + n+ ζ + 2)
− Γ(k −m+ ζ + 2)Γ(ζ + 2)Γ(l + 1)Γ(k + 1)

Γ(k −m+ 1)Γ(l + ζ + 2)Γ(k + ζ + 2)

)
=ᾱβΓ(ζ + 2)

(
Γ(k + n+ 1)

Γ(k + n+ ζ + 2)
− Γ(k −m+ ζ + 2)Γ(l + 1)Γ(k + 1)

Γ(k −m+ 1)Γ(l + ζ + 2)Γ(k + ζ + 2)

)
=ᾱβΓ(ζ + 2)

Γ(k + 1)

Γ(k + ζ + 2)

{
Γ(k + ζ + 2)

Γ(k + 1)

Γ(k + n+ 1)

Γ(k + n+ ζ + 2)
−

Γ(k −m+ ζ + 2)

Γ(k −m+ 1)

Γ(k + n−m+ 1)

Γ(k + n−m+ ζ + 2)

}
(because l = k + n−m). (2.35)

Before computing the difference in (2.35), we calculate the product of ratios first. To

do that we repalce n by n−m in (2.20) to get,

Γ(k + n−m+ 1)

Γ(k + n−m+ ζ + 2)
∼ k−ζ−1

(
1− 1

2k
(ζ + 1)(2n− 2m+ ζ + 2) +

1

12k2

(
−ζ − 1

2

)
(

3(2n− 2m+ ζ + 2)2 + (ζ)
))

+O(k−3) (2.36)

Assuming a = −m+ ζ + 2 and b = −m+ 1 in (2.18) we get,

Γ(k −m+ ζ + 2)

Γ(k −m+ 1)
∼ kζ+1

(
1 +

1

2k
(ζ + 1)(−2m+ ζ + 2) +

1

12k2

(
ζ + 1

2

)
(

3(−2m+ ζ + 2)2 − (ζ + 2)
))

(2.37)

The first product inside the bracket of (2.35) has been obtained in (2.28). And, we

multiply (2.36) and (2.37) to get the second product.

Γ(k + n−m+ 1)

Γ(k + n−m+ ζ + 2)

Γ(k −m+ ζ + 2)

Γ(k −m+ 1)
= 1 +

1

2k
(ζ + 1)(−2m+ ζ + 2)

+
1

12k2

(
ζ + 1

2

)(
3(−2m+ ζ + 2)2 − (ζ + 2)

)
− 1

2k
(ζ + 1)(2n− 2m+ ζ + 2)

− 1

4k2
(ζ + 1)2(2n− 2m+ ζ + 2)(−2m+ ζ + 2) +

1

12k2

(
−ζ − 1

2

)(
3(2n− 2m+ ζ + 2)2 + ζ

)
+O(k−3) (2.38)
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Subtracting (2.28)−(2.38), we get

= − 1
2k

(ζ+1)(2n+ζ+2−2m+ζ+2)+ 1
12k2

(−ζ−1
2

){
3(2n+ζ+2)2 +ζ−3(2n−2m+ζ+

2)2− ζ
}

+ 1
2k

(ζ+ 1)(2 + ζ+ 2n−2m+ ζ+ 2)− 1
4k2

(ζ+ 1)2
{

(2 + ζ)(2n+ ζ+ 2)− (2n−

2m+ζ+2)(−2m+ζ+2)
}

+ 1
12k2

{
3(ζ+2)2−(ζ+2)−3(−2m+ζ+2)2+(ζ+2)

}
+O(k−3)

= 1
12k2

(−ζ−1
2

){
3(ζ + 2)2 + 12n(ζ + 2) + 12n2 − 3(ζ + 2)2 − 12(n−m)2

}
− 1

4k2
(ζ +

1)2
{

2n(2 + ζ) + (2 + ζ)2 + 4m(n−m)− 2(n−m)(ζ + 2) + 2m(ζ + 2)− (ζ + 2)2
}

+

1
12k2

(
ζ+1

2

){
3(ζ)2 − 3(ζ + 2)2 + 12m(ζ + 2)− 12m2

}
+O(k−3)

= 1
24k2

(ζ+ 1)(2 + ζ)
{

12n(ζ+ 2) + 12n2− 12n(ζ+ 2) + 12m(ζ+ 2)− 12n2 + 24mn−

12m2
}
− 1

4k2
(ζ + 1)2

{
2n(2 + ζ) + 4m(n−m)− 2n(ζ + 2) + 2m(ζ + 2) + 2m(ζ + 2) +

1
24k2

ζ(ζ + 1)
{

12m(ζ + 2)− 12m2
}

+O(k−3)

= m
2k2

(ζ + 1)(2 + ζ)(ζ + 2 + 2n−m)− m
2k2

(ζ + 1)2(2n− 2m + 2ζ + 4) + m
2k2
ζ(ζ +

1)(ζ + 2−m) +O(k−3)

= m
2k2

(ζ+1)
{

(2+ζ)(ζ+2+2n−m)−(ζ+1)(2n−2m+2ζ+4)+ζ(ζ+2−m)
}

+O(k−3)

= m
2k2

(ζ + 1)
{
ζ(ζ + 2 + 2n −m − 2n + 2m2ζ − 4 + ζ + 2 −m) + (2ζ + 4 + 4n −

2m− 2n+ 2m− 2ζ − 4)
}

+O(k−3)

= m
2k2

(ζ + 1)2n+O(k−3)

= mn(ζ+1)
k2

+O(k−3)

Therefore (2.35) becomes,

ᾱβΓ(ζ + 2) Γ(k+1)
Γ(k+ζ+2)

{
mn(ζ+1)

k2
+O(k−3)

}
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=ᾱβΓ(ζ + 2)(1 +O(k−1))
{
mn(ζ+1)

k2
+O(k−3)

}
= k−ζ−3ᾱβmnΓ(ζ + 2)(ζ + 1) +O(k−4−ζ).

Other terms of A10 follow similarly, and we get,

A10 = k−ζ−3ᾱβmnΓ(ζ + 2)(ζ + 1) + k−ζ−3γ̄δpqΓ(ζ + 2)(ζ + 1) +O(k−4−ζ)

= k−ζ−3Γ(ζ + 2)(ζ + 1){ᾱβmn− γ̄δpq}+O(k−4−ζ).

Next we compute A01 = 〈Czr, zk〉. We will imitate the calculation for A10. Observe

that k < r, the remaining terms of A01 will be same as (2.32),

A01 = ᾱβ(〈Tz̄nTzmzr, zk〉 − 〈TzmTz̄nzr, zk〉)δk+n,m+r

+β̄α(〈Tz̄mTznzr, zk〉 − 〈TznTz̄mzr, zk〉)δm+k,n+r

+γ̄δ(〈TzpTz̄qzr, zk〉 − 〈Tz̄qTzpzr, zk〉)δq+k,p+r

+δ̄γ(〈TzqTz̄pzr, zk〉 − 〈Tz̄pTzqzr, zk〉)δp+k,q+r. (2.39)

Since we have m < n and k < r, so that m + k < n + r, and therefore δm+k,n+r = 0.

Also, p < q implies p+ k < q + r, so that δp+k,q+r = 0. As a consequence,

A01 =ᾱβ
(
〈zm+r, zk+n〉 − 〈P (z̄nzr), P (z̄mzk〉

)
δk+n,m+r

−γ̄δ
(
〈zp+r, zq+k〉 − 〈P (z̄qzr), P (z̄pzk〉

)
δq+k,p+r. (2.40)

We let l := n+ k −m and r := l + q − p. It follows that n+ k = m+ l < m+ r and

q + k < q + l = p + r. Therefore, both Kronecker deltas appearing in A01 are zero,

and thus A01 = 0.

We compute A11 = 〈Czr, zl〉 where l < r. We replace l with r and k with l in the
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calculation of A10.

A11 =ᾱβ
(
〈zm+r, zl+n〉 − 〈P (z̄nzr), P (z̄mzl〉

)
δl+n,m+r

−γ̄δ
(
〈zp+r, zq+l〉 − 〈P (z̄qzr), P (z̄pzl〉

)
δq+l,p+r. (2.41)

The calculation of A20 = 〈Czl, zl〉 and A02 = 〈Czr, zr〉 are similar to A00. We replace

k by l and r separately to get as follows,

A20 = |α|2(〈zl+n, zl+n〉 − 〈P (z̄nzl), P (z̄nzl)〉)

+ |β|2(〈zm+l, zm+l〉 − 〈P (z̄mzl), P (z̄mzl)〉)

− |γ|2(〈zp+l, zp+l〉 − 〈P (z̄pzl), P (z̄pzl)〉)

− |δ|2(〈zq+l, zq+l〉 − 〈P (z̄qzl), P (z̄qzl)〉). (2.42)

and,

A02 = |α|2(〈zr+n, zr+n〉 − 〈P (z̄nzr), P (z̄nzr)〉)

+ |β|2(〈zm+r, zm+r〉 − 〈P (z̄mzr), P (z̄mzr)〉)

− |γ|2(〈zp+r, zp+r〉 − 〈P (z̄pzr), P (z̄pzr)〉)

− |δ|2(〈zq+r, zq+r〉 − 〈P (z̄qzr), P (z̄qzr)〉). (2.43)

In the calculation of A11, A20 and A02, we use the assumption n−m = q− p, and let

g := n−m = q− p. It follows that l = k+ g and r = l+ g = k+ 2g. Then we imitate

calculation of A10 to obtain A11, and A00 to obtain A02 and A02. It follows,

A11 = k−ζ−3Γ(ζ + 2)(ζ + 1){ᾱβmn− γ̄δpq}+O(k−4−ζ),

A20 = k−ζ−3Γ(ζ + 2)(ζ + 1){|α|2n2 + |β|2m2 − |γ|2p2 − |δ|2q2}+O(k−4−ζ),
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A02 = k−ζ−3Γ(ζ + 2)(ζ + 1){|α|2n2 + |β|2m2 − |γ|2p2 − |δ|2q2}+O(k−4−ζ)

The associated 3× 3 matrix of C become,

M :=


A00 A10 0

Ā10 A20 A11

0 Ā11 A02

 .

We study the asymptotic behavior of kζ+3M as k →∞. We get,

lim
k→∞

kζ+3A00 = Γ(ζ + 2)(ζ + 1){|α|2n2 + |β|2m2 − |γ|2p2 − |δ|2q2} = a (2.44)

lim
k→∞

kζ+3A10 = Γ(ζ + 2)(ζ + 1){ᾱβmn− γ̄δpq} = ρ. (2.45)

Similarly asymptotic expansion of the other entries are,

lim
k→∞

kζ+3A20 = lim
k→∞

kζ+3A02 = a

and,

lim
k→∞

kζ+3A11 = ρ.

It follows that asymptotic expansion of kζ+3M as k →∞ will be a tridiagonal matrix,


a ρ 0

ρ̄ a ρ

0 ρ̄ a

 .

Now, if instead of using a vector of the form

f : zk + czl + dzr (k < l < r)
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with l = k + g and r = l + g = k + 2g (that is, a vector of the form

f : zk + czk+g + dzk+2g,

we were to use a longer vector with similar power structure,

f : zk + c1z
k+g + c2z

k+2g + ...+ cNz
k+Ng,

The associated matrix of C with respect to new f will be of N ×N order.

A =



〈Czk, zk〉 〈Czk+g, zk〉 · · · 〈Czk+Ng, zk〉

〈Czk+g, zk〉 〈Czk+g, zk+g〉 · · · 〈Czk+Ng, zk+g〉
...

...
. . .

〈Czk+Ng, zk〉 〈Czk+Ng, zk+g〉 · · · 〈Czk+Ng, zk+Ng〉


.

We imitate the calculation of A00 to calculate asymptotic expansion of diagonal en-

tries; that is we replace k by k +Ng, we get

lim
k→∞

kζ+3〈Czk+Ng, zk+Ng〉 = (ζ+1)Γ(ζ+2)
{
n2|α|2+m|β|2−p2|γ|2−q2|δ|2

}
= a. ∀N

Similarly we imitate the calculation of A10 to obtain upper diagonal; we replace l by

k +Ng and k by l + (N − 1)g, we get,

lim
k→∞

kζ+3〈Czk+Ng, zk+(N−1)g〉 = Γ(ζ + 2)(ζ + 1){ᾱβmn− γ̄δpq} = ρ ∀ N .

By our assumption we have,

m+ l = k + n

k + g +m = k + n

k +Ng + g +m = k + n+Ng

k +Ng +m = k + n+ (N − 1)g 6= k + n+ (N − t)g ∀ t ≥ 2
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Similarly,

p+ k +Ng 6= n+ q + (N − t)g ∀ t ≥ 2

As in A10, the surviving terms of 〈Czk+Ng, zk+(N−t)g〉, N ≥ 1 & t ≥ 2 are,

=ᾱβ
(
〈 . , . 〉 − 〈 . , . 〉

)
δk+n+(N−t)g,k+Ng+m

+ γ̄δ
(
〈 . , . 〉 − 〈 . , . 〉

)
δk+(N−t)g+q,k+Ng+p.

Therefore, 〈Czk+Ng, zk+(N−t)g〉 = 0, N ≥ 1 & t ≥ 2.

It follows that asymptotic expansion of kζ+3A as k → ∞ will be still a tridiagonal

matrix,



a ρ 0 0 · · · 0

ρ a ρ 0 · · · 0

0 ρ a ρ · · · 0

...
...

...
. . . ρ

0 0 0 · · · ρ a


.

Since this must be true for all N ≥ 1, It follows that asymptotic expansion of kζ+3A

as k →∞ is infinite tridiagonal matrix,

B =



a ρ 0 0 · · ·

ρ a ρ 0 · · ·

0 ρ a ρ · · ·
...

...
...

. . .


.

The hyponormality of Tϕ, detected by the positivity of the self-commutator C, leads

to the positive semi-definiteness of associated matrix. It follows that a necessary

condition for the hyponormality of Tϕ is the positive semidefiniteness of the infinite
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tridiagonal matrix B.

We now consider the spectral behavior of B as an operator on l2(Z+).

Lemma 5. For a ∈ R and ρ ∈ C, the spectrum of the infinite tridiagonal matrix B

is [a− 2|ρ|, a+ 2|ρ|].

Proof. The proof is already known. Here B represents the Toeplitz opertator on

H2(T) with symbol ϕ(z) = a + 2Re(ρ̄z). As symbol is harmonic, the spectrum of

Tϕ = aI + Tρ̄z+ρz̄ is the set a+ 2Re({ρ̄z : z ∈ D}) = a+ 2[−|ρ|, |ρ|].

As a consequences, if B is positive (as an operator on l2(Z+)), then

a ≥ 2|ρ|.

The values of a and b from (2.44) and (2.45) gives,

Γ(ζ + 2)(ζ + a){|α|2n2 + |β|2m2− |γ|2p2− |δ|2q2} ≥ Γ(ζ + 2)(ζ + a){(ᾱβmn− γ̄δpq)}

|α|2n2 + |β|2m2 − |γ|2p2 − |δ|2q2} ≥ (ᾱβmn− γ̄δpq)}.
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Chapter 3

Positivity of Toeplitz operator via

Berezin transform on Model spaces

3.1 Introduction

Denote by T the unit circle in C, and let ds represent the normalized arc length

measure on T. The Hardy Space of the unit disc H2(D) is the set of all functions

f which are holomorphic on D and satisfy the condition

||f ||2 := sup
0<r<1

∫
T
|f(rz)|2ds(z) <∞.

It is well known that for f ∈ H2(D) the integral means

r →
∫
T
|f(rz)|2ds(z)

are increasing in r for r ∈ (0, 1), and so we may conclude that

sup
0<r<1

∫
T
|f(rz)|2ds(z) = lim

r→1−

∫
T
|f(rz)|2ds(z).
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It is also well known for f ∈ H2(D) that the radial limits

f(z) := lim
r→1−

f(rz)

exists almost everywhere on T and that the H2 norm of f coincides with the L2 norm

of the boundary function of f on T. In this way, we regard H2 as a closed subspace

of L2(T), so that it is indeed a Hilbert space.

Definition 5. We say that a function u is an inner function if u is a bounded

holomorphic function on D such that |u(z)| = 1 for almost every z ∈ T.

Examples of inner functions includes: zn, n ∈ N and Blaschke products

β
k∏
i=1

z − ai
1− āiz

,

where |β| = 1, ai ∈ D for 1 ≤ i ≤ k.

Definition 6. The unilateral shift operator S : H2 → H2 is defined by

Sf(z) := zf(z),

for z ∈ D. The unilateral shift operator S is unitarily equivalent to S : l2 → l2 as an

operator defined on sequences of Fourier coefficients of functions in H2 by

S(a0, a1, a2, ...) := (0, a0, a1, a2, ...).

In 1949 Beurling characterized all the S-invariant subspaces in H2.

Theorem 6. Beurling’s Theorem: The nontrivial S-invariant subspaces of H2 are

precisely the subspaces of the form

uH2 = {uf : f ∈ H2},
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where u is an inner function.

Definition 7. Suppose u is an inner function. Then the model space Ku is given by

Ku = (uH2)⊥ = H2 	 uH2.

In other words, model spaces are the orthogonal complements of the nontrivial invari-

ant subspaces for the unilateral shift Sf(z) := zf(z) on H2. Hence, Ku are precisely

the nontrivial invariant subspaces of S∗.

Hence we conclude, model spaces are invariant subspaces for the backward shift op-

erator,

S∗f(z) =
f(z)− f(0)

z
z ∈ D.

The following known proposition describes Model spaces in a different way.

Proposition 3. If u is an inner function, then

Ku = H2 ∩ uzH2,

where we regard the right hand side as a set of functions on T.

Since Ku are closed subspaces of the Hardy space, they are Hilbert spaces with repro-

ducing kernels, which we will now identify. The reproducing kernels for the H2(D),

known as the Szegö kernels, are given by

Sλ(z) =
1

1− λz
,

for λ ∈ D and z ∈ T. From here, one finds that the reproducing kernels Ku
λ for Ku

are given by

Ku
λ(z) =

1− u(λ)u(z)

1− λz
,

for λ ∈ D and z ∈ T.
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Since Ku is a closed subspace of the Hilbert space H2, there must be an orthogonal

projection Pu : H2 → Ku. This projection is an integral operator given by

Puf(λ) = 〈f,Ku
λ〉 =

∫
T
f(z)

1− u(λ)u(z)

1− λz
ds(z),

for λ ∈ D. If u is an inner function and ϕ ∈ L∞(T), we define the truncated Toeplitz

operator T uϕ : Ku → Ku by

T uϕf := Pu(ϕf).

From the integral representation of Pu, we may write T uϕ as an integral operator,

T uϕf(λ) =

∫
T
f(z)ϕ(z)

1− u(λ)u(z)

1− λz
ds(z),

for λ ∈ D. For ϕ ∈ L∞(T), let ϕ̃ represent the Berezin transform of ϕ on Ku, given

by

ϕ̃u(λ) := 〈T uϕkuλ, kuλ〉 =

∫
T
ϕ(eiθ)|kuλ(eiθ)|2dθ,

where kuλ(z) represents the normalized kernel of Ku.

We will concern ourselves with Model Spaces generated by the inner functions u = zn.

It is well known that the matrices of truncated Toeplitz operators with bounded, real

valued symbols on Kzn are simply n× n Toeplitz matrices of the form



ϕ̂0 ϕ̂1 ... ϕ̂n

ϕ̂1 ϕ̂0 ... ϕ̂n−1

...
...

. . .
...

ϕ̂n ϕ̂n−1 ... ϕ̂0


,

where
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ϕ̂n =

2π∫
0

ϕ(eiθ)e−inθdθ,

is the nth Fourier coefficient of ϕ. If ϕ ∈ L∞(D), we say T z
n

ϕ is a positive operator

if it’s associated matrix T nϕ is positive definite, or, in other words, if the determinant

of every principal minor is positive. For more introductory information on Model

spaces, see [4].

3.2 Preliminaries

In the recent years, the Berezin transform has been a useful tool for characterizing

certain properties of Toeplitz operators. Here, we give a brief overview of some major

previous results concerning the characterization of the positivity of Toeplitz operators

in terms of the Berezin transforms of their symbols.

Recently, Zhao and Zheng [10] proved that the positivity of a Toeplitz operator on

the Bergman space is not completely determined by the positivity of the Berezin

transform of its symbol. In fact, they showed that even if the Berezin transform of

a quadratic polynomial in |z| on the unit disk is bounded from below by a positive

number, the Toeplitz operator associated with that symbol may not be positive. We

start with their result in the positive direction.

Theorem 7. [10] Let ϕ = |z|2+a|z|+b, where a, b are real. Suppose a ∈ R\(−2,−5
2
),

then Tϕ is positive if and only if ϕ̃(z) is a nonnegative function on D.

On the other hand, they gave a counterexample to show that the positivity of the

Berezin transform of such a symbol is not sufficient to prove the positivity of its

associated Toeplitz operator.

Theorem 8. [10] Let ϕ(z) = |z|2 + a|z| + b, where a, b are real. For each a ∈
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(−14
9
,−5

4
) ⊂ (−2,−5

4
), there exist b ∈ R and δ > 0 such that

ϕ̃(z) ≥ δ,

for all z ∈ D, but Tϕ is not positive.

Motivated by this paper, we study the relationship between the positivity of trun-

cated Toeplitz operators on finite dimensional model spaces with corresponding inner

functions u = zn and the positivity of their Berezin transforms. We ask the following

question:

3.3 Main Results

Question 1. For the inner functions zn, n ≥ 2, if ϕ ∈ L∞(D) and ϕ̃zn(λ) ≥ 0 for

all λ ∈ D, is T z
n

ϕ positive on Kznλ ?

We answer this question affirmatively in the case that ϕ is real valued and n = 2,

and negatively in the case that ϕ is real valued and n ≥ 3.

Case 1 for n = 2

The Fourier coeficients of ϕ with respect to orthonormal basis {e0 = 1, e1 = z} are

ϕ̂0 = 〈T z2ϕ e0, e0〉 = 1
2π

2π∫
0

ϕ(eiθ)dθ

ϕ̂1 = 〈T z2ϕ 1, z〉 = 1
2π

2π∫
0

ϕ(eiθ)e−iθdθ

ϕ̂−1 = 〈T z2ϕ z, 1〉 = 1
2π

2π∫
0

ϕ(eiθ)eiθdθ

On Kz2λ , we compute the kernel and normalized reproducing kernel,

Kz2

λ (z) = 1 + λ̄z, for λ ∈ D and z ∈ T
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and,

kz
2

λ (z) =
1 + λ̄z√
1 + |λ|2

, for λ ∈ D and z ∈ T.

The truncated Toeplitz operator on the model space Kz2 is,

T z
2

ϕ =

ϕ̂0 ϕ̂−1

ϕ̂1 ϕ̂0

 =

ϕ̂0 ϕ̂1

ϕ̂1 ϕ̂0

 .
Then T z

2

ϕ is positive iff ϕ̂0 > 0 and ϕ̂2
0 − |ϕ̂1|2 > 0. (A)

Similarly the Berezin transform of ϕ is defined as: ϕ̃z2(λ) = 〈T z2ϕ kz
2

λ , k
z2

λ 〉 for all λ ∈ D.

Lemma 6. For ϕ ∈ L∞(∂D), we show ϕ̃(λ) = ϕ̂0 + 2Re(λϕ̂1)
1+|λ|2 for all λ ∈ D.

Proof.

ϕ̃z2(λ) = 〈T z2ϕ kz
2

λ , k
z2

λ 〉

=
1

2π

2π∫
0

ϕ(eiθ)kz
2

λ (eiθ)kz
2

λ (eiθ)dθ

=
1

2π

2π∫
0

ϕ(eiθ)
1 + λeiθ√

1 + |λ|2
1 + λe−iθ√

1 + |λ|2
dθ

=
1

2π(1 + |λ|2)

2π∫
0

ϕ(eiθ)(1 + |λ|2 + λeiθ + λe−iθ)

= ϕ̂0 +
λϕ̂−1 + λϕ̂1

1 + |λ|2

= ϕ̂0 +
λϕ̂1 + λϕ̂1

1 + |λ|2

= ϕ̂0 +
2Re(λϕ̂1)

1 + |λ|2
.

Now we show positivity of the Berezin transform of the real valued symbol implies

the positivity of truncated Toeplitz operator corresponding to inner function z2.
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Theorem 9. Let ϕ ∈ L∞(T) be a real valued function. Then ϕ̃z2 > 0 on D if and

only if T z
2

ϕ is positive on Kz2.

Proof. From Lemma 6, we know that

ϕ̃z2(λ) = ϕ̂0 +
2Re(λϕ̂1)

1 + |λ|2
for all λ ∈ D

Thus,

ϕ̃z2(λ) ≥ 0 ⇐⇒ ϕ̂0 +
2Re(λϕ̂1)

1 + |λ|2
≥ 0

⇐⇒ ϕ̂0 ≥ −
2Re(λϕ̂1)

1 + |λ|2

⇐⇒ ϕ̂0 ≥ sup
λ∈D

−2Re(λϕ̂1)

1 + |λ|2

choose λ = −ϕ̂1x for 0 ≤ x ≤ 1

|ϕ̂1|

⇐⇒ ϕ̂0 ≥ sup
0≤x≤ 1

|ϕ̂1|

2|ϕ̂1|2x
1 + |ϕ̂1|2x2

(3.1)

Let

f(x) =
|ϕ̂1|2x

1 + |ϕ̂1|2x2
.

Then

f ′(x) =
|ϕ̂1|2 − x2|ϕ̂1|4

(1 + |ϕ̂1|2x2)2
,

which shows us that f has a critical point at x = 1
|ϕ̂1| . Continuing,

f ′′(x) =
−2x|ϕ̂1|4(1 + |ϕ̂1|2x2)2 − 4x|ϕ̂1|2(1 + |ϕ̂1|2x2)(|ϕ̂1|2 − x2|ϕ̂1|2)

(1 + |ϕ̂1|2x2)4
.

Note that f ′′( 1
|ϕ̂1|) < 0. At this value of λ, (3.1) becomes
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ϕ̂0 ≥ |ϕ̂1|.

Squaring both sides, we have

ϕ̂2
0 ≥ |ϕ̂1|2

By (A), T z
2

ϕ is positive.

Case 2 for n ≥3

Next, we prove that the positivity of the Berezin transform of real valued symbol is

not enough to prove the positivity of the truncated Toeplitz operator corresponding

to inner function n ≥ 3.

Theorem 10. Let ϕ be the real valued, bounded function given by ϕ(θ) = 1.1 +

3 cos(2θ) for θ ∈ [0, 2π). Then ϕ̃z3(λ) > 0 for all λ ∈ D, but T z
3

ϕ is not positive on

Kz3.

Proof. One can compute, Kλ(z) = 1 + λz + λ
2
z2 and normalized kernel: kλ(z) =

1+λz+λ
2
z2√

1+|λ|2+|λ|4
for all λ ∈ D. For ϕ ∈ L∞(∂D), one can compute,

ϕ̃z3(λ) =
1

2π

2π∫
0

ϕ(eiθ)|kλ(eiθ)|2dθ

=
1

2π

2π∫
0

ϕ(eiθ)
|1 + λeiθ + λ

2
e2iθ|2

1 + |λ|2 + |λ|4
dθ

=
1

2π(1 + |λ|2 + |λ|4)

2π∫
0

ϕ(eiθ)(1 + |λ|2 + |λ|4 + (λ+ λλ2)e−iθ + (λ+ λ
2
λ)eiθ

+ λ2e−2iθ + λ
2
e2iθ)dθ

= ϕ̂0 +
λ+ λλ2

1 + |λ|2 + |λ|4
ϕ̂1 +

λ+ λ
2
λ

1 + |λ|2 + |λ|4
ϕ̂1 +

λ2

1 + |λ|2 + |λ|4
ϕ̂2 +

λ
2

1 + |λ|2 + |λ|4
ϕ̂2

= ϕ̂0 +
2

1 + |λ|2 + |λ|4
Re{(λ+ λλ2)ϕ̂1}+

2

1 + |λ|2 + |λ|4
Re{(λ2)ϕ̂2}
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= ϕ̂0 +
2(1 + |λ|2)

1 + |λ|2 + |λ|4
Re(λϕ̂1) +

2

1 + |λ|2 + |λ|4
Re{(λ2)ϕ̂2}

Since ϕ(θ) = 1.1 + 3 cos 2(θ) = 1.1 + 3 e
2iθ+e−2iθ

2
,

so, the calculations yield,

ϕ̂0 = 1.1

ϕ̂1 = 0

ϕ̂2 =
3

2
.

Hence,

ϕ̃z3(λ) = 1.1 +
2

1 + |λ|2 + |λ|4
Re{3

2
(λ2)}

≥ 1.1 + inf
λ∈D

1

1 + |λ|2 + |λ|4
Re{(3λ2)

= 1.1 + 3(−1

3
)

= .1 > 0

However,

det


ϕ̂0 ϕ̂−1 ϕ̂−2

ϕ̂1 ϕ̂0 ϕ̂−1

ϕ̂2 ϕ̂1 ϕ̂0

 = det


1.1 0 3

2

0 1.1 0

3
2

0 1.1

 = 1.331− 9.9

4
=
−4.576

4
< 0.

We have provided an example of a bounded, real-valued symbol ϕ satisfying ϕ̃z3 > 0

on D whose associate truncated Toeplitz operator T z
3

ϕ is not positive on Kz3 . One

can use the same ϕ to prove ϕ̃zn > 0 on D whose corresponding truncated Toeplitz
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operator T z
n

ϕ is not positive on Kzn for all n ≥ 4.

Next, we observe that the positivity of a truncated Toeplitz operator does not guar-

antee the positivity of its symbol.

Theorem 11. Let ϕ = sin θ+ a, for a ∈ R. We show for certain value of a ∈ R, T z
2

ϕ

is positive but ϕ is negative.

Proof. We first compute Fourier coefficients of T z
2

ϕ :

ϕ̂0 =
1

2π

2π∫
0

(sin θ + a)dθ = a

ϕ̂1 =
1

2π

2π∫
0

(sin θ + a)e−iθdθ =
1

2π

2π∫
0

(sin θe−iθ + ae−iθ)dθ = − i
2

We know that the operator T z
2

ϕ is positive if and only if ϕ̂0 ≥ 0 and ϕ̂2
0 − |ϕ̂1|2 ≥ 0.

From the above, we have

ϕ̂0 = a

ϕ̂2
0 − |ϕ̂1|2 = a2 − 1

4
.

Thus, T z
2

ϕ is positive if and only if a ≥ 1
2
. However, if we let a = 3

4
, we still while T z

2

ϕ

is positive, the symbol ϕ(eiθ) = sin θ + 3
4

is negative for certain values of θ.
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Chapter 4

Positivity of Toeplitz operator via

Berezin transform on the Fock

space.

4.1 Introduction

For fixed α, consider the Gaussian measure, dλα = α
π
e−α|z|

2
dA(z) on C so that∫

C dλα = 1, where dA(z) = dxdy is ordinary area measure. We define Fock space,

denoted by F 2(C), is a set of all entire functions f with the property that the function

f(z)e−
α
2
|z|2 is in L2(C, dλ). F 2(C) is closed subspace of L2(C) with norm

||f ||2 =

(
α

π

∫
C
|f(z)e−

α
2
|z|2 |2dA

) 1
2

and inner product on F 2(C) is defined as,

〈f, g〉 =

∫
C
f(z)g(z)dλα(z) for all f, g ∈ F 2(C).

We study positivity on the Fock space corresponding to α = 1.

Here Kz(w) = ez̄w is a reproducing kernel of F 2(C) and kz(w) = Kz(w)
||Kz || = ez̄w−

|z|2
2 is
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a normalized kernel. For ϕ(z) = ϕ(|z|) we define the Berezin transform as ϕ̃(z) =

〈Tϕkz, kz〉 that maps C→ R.

Let P : L2(C)→ F 2(C) is the orthogonal projection onto the Fock space. For a radial

symbol ϕ(z) = ϕ(|z|) on C, we define the Toeplitz operator Tϕ as

Tϕf(z) = P (ϕf)(z) =

∫
C
ϕ(w)f(w)kz(w)dλ(w)

for all holomorphic polynomials f ∈ F 2(C).

We say Tϕ is positive on F 2(C) iff 〈Tϕf, f〉 ≥ 0 for all f ∈ F 2(C). To show the

positivity of Tϕ, it suffices to prove 〈Tϕen, en〉 ≥ 0 for all n ≥ 0 where en(z) = 1√
n!
zn

is the orthonormal basis for F 2(C).

4.2 Lemmas and Theorems

In this section, we study the relation between the Berezin transforms of the monomial

symbols and the positivity of the Toeplitz operators with that symbols. First, we will

show that the positivity of monomial symbol to any integer power is enough to prove

the positivity of the Toeplitz operator. Second, we will show the positivity of the

Toeplitz operator is not enough to prove the positivity of the associated symbol.

Lemma 7. For any symbol ϕ(z), show that,

ϕ̃(z) =
1

π

∫
C
ϕ(w)e−|z−w|

2

dA(w).

Proof. We have,

ϕ̃(z) =〈Tϕkz, kz〉
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=

∫
C
ϕ(w)kz(w)kz(w)dλ(w) (4.1)

=
1

π

∫
C
ϕ(w)

Kz(w)

||Kz||
Kw(z)

||Kz||
e−|w|

2

dA(w)

=
1

π

∫
C
ϕ(w)

Kz(w)

||Kz||
Kw(z)

||Kz||
e−|w|

2

dA(w)

=
1

π

∫
C
ϕ(w)

ezw

e
|z|2
2

ewz

e
|z|2
2

e−|w|
2

dA(w)

=
1

π

∫
C
ϕ(w)ezw−|z|

2+zw−|w|2dA(w)

=
1

π

∫
C
ϕ(w)e−(z−w)(z−w)dA(w)

=
1

π

∫
C
ϕ(w)e−|z−w|

2

dA(w). (4.2)

We will show that limit of the Berezin transform at the infinity of a monomial symbol

is infinity.

Lemma 8. For symbol ϕ(z) = |z|, show that,

lim
z→∞
|̃z| = lim

z→∞

∫
C
|w|e−|z−w|2dA(w) =∞.

Proof. Since,

∫
C
|w|e−|z−w|2dA(w) ≥

∫
{w:|z−w|≤1}

|w|e−|z−w|2dA(w)

and,

|z − w| ≥ |z| − |w|

|w| ≥ |z| − |z − w|

|w| ≥ |z| − 1
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also,

|z − w| ≤ 1

|z − w|2 ≤ 1

so,

e−|z−w|
2 ≥ e−1.

Therefore,

∫
C
|w|e−|z−w|2dA(w) ≥

∫
{w:|z−w|≤1}

(|z| − 1)e−1dA(w)

=(|z| − 1)

∫
{w:|z−w|≤1}

e−1dA(w)

=(|z| − 1)e−1π

Hence,

lim
z→∞

∫
C
|w|e−|z−w|2dA(w) =∞

i.e

lim
z→∞

ϕ̃(z) = lim
z→∞
|̃z| =∞

The following theorem shows that if a symbol of the Toeplitz operator is harmonic

with certain property then the symbol and its Berezin transform are same.

Theorem 12. Suppose ϕ is harmonic function on C satisfying ϕ◦ta ∈ L1(C, dλ), a ∈

C,where ta(z) = z + a. Then ϕ̃ = ϕ. Consequently, ϕ̃(z) ≥ 0 ⇐⇒ Tϕ ≥ 0
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Proof. For fixed z, tz is holomorphic so ϕ◦tz is harmonic. By the mean-value theorem,

ϕ ◦ tz(0) =

∫
C
ϕ ◦ tz(w)dλ(w)

ϕ(0 + z) =

∫
C
ϕ(w + z)

1

π
e−|w|

2

dA(w)

ϕ(z) =
1

π

∫
C
ϕ(w + z)e−|w|

2

dA(w)

let w + z = ζ so that w = ζ − z

ϕ(z) =
1

π

∫
C
ϕ(ζ)e−|z−ζ|

2

dA(ζ)

ϕ(z) = ϕ̃(z)

Next, we show the relation between positivity of Toeplitz operators and the Berezin

transforms of monomial symbols.

Lemma 9. For ϕ(z) = |z|m,m ∈ Z+ prove that,

〈T|z|men, en〉 =
1

n!
Γ(n+

m

2
+ 1)

Proof.

〈T|z|men, en〉 =

∫
C
ϕ(w)|en(w)|2dλ

=

∫
C
|w|m 1

n!
|w|2n 1

π
e−|w|

2

dA(w)

=
1

πn!

∫ ∞
0

∫ 2π

0

rm+2ne−r
2

rdrdθ

=
1

πn!

∫ ∞
0

∫ 2π

0

rm+2n+1e−r
2

drdθ

=
1

n!

∫ ∞
0

r
m
2

+ne−rdr (substitution)
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=
1

n!

∫ ∞
0

r
m
2

+n+1−1e−rdr (4.3)

=
1

n!
Γ(
m

2
+ n+ 1).

Next, we compute the Berezin transforms of the monomial symbols.

Lemma 10. For the symbol ϕ(z) = |z|m, show that ϕ̃(z) = e−R
2∑∞

k=0
R2k

(k!)2
Γ(k+m

2
+1)

where R ∈ R and z = Reiα.

Proof.

ϕ̃(z) =
1

||Kz||2
〈TϕKz, Kz〉

=
1

||Kz||2

〈
∞∑
k=0

〈TϕKz, ek〉ek,
∞∑
k=0

〈Kz, ek〉ek

〉

=
1

||Kz||2
∞∑
k=0

〈TϕKz, ek〉〈Kz, ek〉

=
1

||Kz||2
∞∑
k=0

〈Kz, T
∗
ϕek〉〈ek, Kz〉

=
1

||Kz||2
∞∑
k=0

〈Kz, λkek〉〈ek, Kz〉 where λk = 〈T|z|mek, ek〉

=
1

||Kz||2
∞∑
k=0

λk〈Kz, ek〉ek(z)

=
1

||Kz||2
∞∑
k=0

λk〈ek, Kz〉ek(z)

=
1

||Kz||2
∞∑
k=0

λkek(z)ek(z)

=
1

||Kz||2
∞∑
k=0

λk|ek(z)|2

we use by lemma 9 for λk, and we get,
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=
1

e|z|2

∞∑
k=0

1

k!
Γ(k +

m

2
+ 1)

1

k!
|z|2k (4.4)

for z = Reiα we get,

=
1

eR2

∞∑
k=0

R2k

(k!)2
Γ(k +

m

2
+ 1)

Now, we prove the positivity of the Berezin transform of the monomial radial symbol

implies the positivity of the Toeplitz operator associated with that symbol.

Theorem 13. For the symbols ϕ(z) = |z|m + a, m ∈ Z+, a ∈ R, show that ϕ̃(z) ≥

0 ⇐⇒ Tϕ ≥ 0.

Proof. Assume that ϕ̃(z) ≥ 0. From Lemma 10 we get,

ϕ̃(z) = e−R
2
∞∑
k=0

R2k

(k!)2
Γ(k +

m

2
+ 1) + a, where z = Reiα.

The Berezin transform at the origin,

ϕ̃(0) = Γ(m
2

+ 1) + a ≥ 0

By Lemma 9 we get,

〈T|z|m+aen, en〉 =
1

n!
Γ(n+

m

2
+ 1) + a ∀n ≥ 0

⇐⇒ 1

n!
Γ(
m

2
+ 1 + n) + a ∀n ≥ 0

⇐⇒ 1

n!

{
(
m

2
+ 1 + n− 1)(

m

2
+ 1 + n− 2)(

m

2
+ 1 + n− 3)...(

m

2
+ 1 + 2)

(
m

2
+ 1 + 1)(

m

2
+ 1)Γ(

m

2
+ 1)

}
+ a
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≥ 1

n!
{n(n− 1)(n− 2)(n− 3)...3.2.1Γ(

m

2
+ 1)}+ a

= Γ(
m

2
+ 1) + a

= ϕ̃(0) ≥ 0

Thus, ϕ̃(z) ≥ 0 =⇒ 〈Tϕen, en〉 ≥ 0 for all n ≥ 0 =⇒ Tϕ ≥ 0.

Another way to prove Theorem 13 is to show 1
n!

Γ(n + m
2

+ 1) is increasing in n for

fixed m. For that we prove,

(n+ 1)thterm

nthterm
> 1

Here, nth term=
(n+m

2
)!

n!
and (n+ 1)th term =

(n+m
2

+1)!

(n+1)!

So that,

(n+ 1)thterm

nthterm
=

(n+ m
2

+ 1)!

(n+ 1)!
.

n!

(n+ m
2

)!
=
n+ m

2
+ 1

n+ 1
= 1 +

m
2

n+ 1
> 1 ∀ n.

Since 〈T|z|m+ae0, e0〉 = ϕ̃(0) ≥ 0 is a first term of 〈T|z|m+aen, en〉 and we showed

〈T|z|m+aen, en〉 is increasing in n so that 〈T|z|m+aen, en〉 ≥ 0.

Now, we prove that positivity of the Toeplitz operators on the Fock space is not

enough to prove the positivity of associated symbols.

Theorem 14. For symbol, ϕ(z) = |z| − a, a ∈ R, the following are equivalent:

(a) Tϕ ≥ 0 on F 2(C)

(b) a ≤ Γ(3
2
)

(c) ϕ̃(z) ≥ 0 on C

Proof. (a)⇐⇒ (b)

By the Lemma 9 we have,
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〈Tϕen, en〉 = 1
n!

Γ(n+ 3
2
)− a

Tϕ ≥ 0 ⇐⇒ 1

n!
Γ(n+

3

2
)− a ≥ 0 ∀n ≥ 0

⇐⇒ a ≤ 1

n!
Γ(n+

3

2
) ∀n ≥ 0

⇐⇒ a ≤ Γ(
3

2
) (It is true because

1

n!
Γ(n+

3

2
) increasing in n).

(a) =⇒ (c) is obvious.

(c) =⇒ (b)

Let ϕ̃(z) ≥ 0 for all z ∈ C

so, ϕ̃(0) ≥ 0

by Lemma 10 we get,

Γ(3
2
)− a ≥ 0

Hence, a ≤ Γ(3
2
).

Thus, for 0 < a ≤ Γ(3
2
), we have Tϕ(z) ≥ 0 but ϕ(0) < 0.
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4.3 Appendix

7/21/2018 maximize[{4k^2+2m+4k(m+2)}/{(k+m)(k+m+3)}, m>0, k>=1}] - Wolfram|Alpha

http://www.wolframalpha.com/input/?i=maximize%5B%7B4k%5E2%2B2m%2B4k(m%2B2)%7D%2F%7B(k%2Bm)(k%2Bm%2B3)%7D,+m%3E0,+k%3E%3D1… 1/1

TOURPRO   APPS  Sign in

An attempt was made to �x mismatched parentheses, brackets, or braces.



Pro  Web Apps  Mobile Apps  Products  Business Solutions  API & Developer Solutions  About

Resources & Tools  Blog  Community  Contact  Connect    

  ©2018 Wolfram Alpha LLC  Terms  Privacy

  wolfram.com  Wolfram Language  Wolfram for Education  Wolfram Demonstrations  Mathematica  MathWorld



English

d^2/dk dk ((4 k^2 + 2 m + 4 k (m + 2))/((k + m) (k + ...=
omg, what is dihydrogen monoxide?=
contour plot (4 k^2 + 2 m + 4 k (m + 2))/((k + m) (k + ...=

cheapest laptops=
English keyboard "maximize[{4k^2+2m+4k(m+2)}/{(k...=

Related Queries:

Have a question about using Wolfram|Alpha?
Contact Pro Premium Expert Support » 

Give us your feedback » 

Download Page POWERED BY THE WOLFRAM LANGUAGE

 Open code

Input interpretation:

 

Global maximum:

        Browse Examples  Surprise Me

maximize[{4k^2+2m+4k(m+2)}/{(k+m)(k+m+3)}, m>0, k>=1}]

Instantly go further. Continue your computation in the Wolfram Cloud » ×
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