
A Thesis

entitled

Performance Enhancement of Data Retrieval from Episodic Memory

in Soar Architecture

by

Man B. Bhujel

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Masters of Science Degree in Electrical Engineering

Dr. Vijay Devabhaktuni, Committee Chair

Dr. Ahmad Javaid, Committee Co-Chair

Dr. Devinder Kaur, Committee Member

Dr. Amanda Bryant-Friedrich, Dean
College of Graduate Studies

The University of Toledo

May 2018

Copyright 2018, Man B. Bhujel

This document is copyrighted material. Under copyright law, no parts of this
document may be reproduced without the expressed permission of the author.

An Abstract of

Performance Enhancement of Data Retrieval from Episodic Memory
in Soar Architecture

by

Man B. Bhujel

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Masters of Science Degree in Electrical Engineering

The University of Toledo
May 2018

Episodic memory has been the key component of various intelligent and cogni-

tive architecture that includes the autobiographical events of past experiences. The

implementation of episodic memory enhances the performance of cognitive agents by

utilizing past history for decision making. During episodic retrieval in Soar architec-

ture, the cue matching step involves a two stage process to improve the performance

of the architecture. Soar implements cue matching as a surface cue analysis, which

finds candidate episodes based on the matched leaf node. It then performs a structural

match on candidate episodes with full surface match. However, continuous design re-

search is still needed for minimizing the operational time of episodic processes along

with timely cue-matching as episodic memory grows.

This thesis provides an insight to improve on both stages of cue matching, which

ultimately leads to a quick retrieval of episodes. First, the approximations of origi-

nal implementation base-level activation (BLA) is implemented for determining the

feature weight for surface cue analysis. These methods are computationally effi-

cient. Second, a new approach of solving the constraint satisfaction problem (CSP),

arc-consistency algorithm is implemented for the structural cue analysis. For the ex-

periment, two of the most frequently used testing environment, Eaters and TankSoar,

are chosen.

iii

From the first experiment, it is found that the Eaters agent provides comparable

performance with approximations of BLA and demonstrate applications of approxi-

mations. The approximation of BLA has high computational efficiency. Determining

activation value of working memory elements (WMEs) is a part of cue matching;

hence, incorporating approximation of BLA leads to faster retrieval of episodic mem-

ory. Also, using a new technique for structural graph match, this thesis obtains less

query time compared to original one. This also leads to decrease in retrieval time.

Moreover, the results show that as the size of episodic memory increases, the rate

of change of retrieval time with arc-consistency decreases. With these results, the

ultimate goal of the research is achieved.

iv

To my grandparents and parents for their endless support.

Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Dr. Vijay

Devabhaktuni and my co-advisor Dr. Ahmad Javaid for the continuous support

of graduate study and research, for all their patience, motivation, enthusiasm, and

immense knowledge provided. Their guidance helped me in all the time of research

and writing of this thesis. I would also like to thank Dr. Devinder Kaur for agreeing

to serve as member of my thesis committee.

Second, I would like to thank The University of Toledo’s EECS Department as

well as the Dean’s office for providing me with financial support in the form of grad-

uate assistantship and tuition waivers. My sincere thanks also goes to Dr. Richard

Molyet, for enriching my graduate experience with teaching assistant opportunities.

I would like to extend my sincere gratitude to the Air Force Research Laboratory

(AFRL) for providing the EECS Department with the funding for the research por-

tion of my assistantships. I especially want to express my appreciation to all SoarTech

team members especially Jack Zaientz and Robert P. Marinier III for their sugges-

tion throughout this research work. I also want to thank Student Disability Services

Department of The University of Toledo, notably John Satkowski, for providing me

with part-time employment during the first Fall semester of my graduate studies.

In addition, I thank my lab colleagues for assisting during my graduate research,

stimulating discussions, and editing my thesis. My research group members of NE2042

and NE1024 are also greatly acknowledged. Lastly, I would like to thank my family

for continuous love, support, and motivation throughout my graduate studies.

vi

Contents

Abstract iii

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

List of Abbreviations xiii

List of Symbols xiv

1 Introduction 1

1.1 Soar Cognitive Architecture . 2

1.2 Episodic Memory Retrieval . 4

1.3 Constraint Satisfaction Problem . 6

1.4 Example of Graph Matching as CSP 7

1.5 Proposed Techniques . 8

1.6 Thesis Organization . 10

2 Literature Review 11

2.1 Work in Related Memory Retrieval Research Fields 11

2.1.1 MAC/FAC Similarity Based Model 11

vii

2.1.2 EM-A Generic Memory Module for Episodic Memory 12

2.1.3 Case Based Reasoning (CBR) 13

2.1.4 Neural Model of Episodic Memory 14

2.1.5 Episodic Memory in Soar . 15

2.2 Implementation of Episodic Retrieval in Soar 16

2.2.1 Pilot Implementation . 16

2.2.2 Baseline Implementation . 17

2.2.3 Enhancement to Baseline Implementation 18

2.2.3.1 Partial Matching . 18

2.2.3.2 Interval Based Matching 19

2.3 Constraint Satisfaction Problem . 20

2.3.1 General Approaches for CSP Solving 21

2.3.1.1 Systematic Search 22

2.3.1.2 Consistency Techniques 23

2.3.2 Applications of Constraint Satisfaction 24

3 Approximation of Working Memory Activation for Surface Match

Analysis 25

3.1 Introduction to Working Memory Activation 26

3.2 Working Memory Activation Techniques 27

3.2.1 Base-level Activation . 27

3.2.2 Petrov’s Approximation . 28

3.2.3 Improved Approximation . 28

3.3 Evaluation Methodology . 29

3.3.1 The Eaters Environment . 29

3.3.2 Evaluating Methods . 31

3.4 Experimental Results . 31

viii

3.5 Conclusion . 36

4 Application of Arc-Consistency for Structural Graph Match during

Retrieval 37

4.1 Introduction to Structural Graph Match as CSP 37

4.2 CSP Solver for Cue Matching . 38

4.2.1 Backtracking . 38

4.2.2 Arc-Consistency . 39

4.3 Problem Formulation and Algorithms 40

4.4 Evaluation Methodology . 43

4.4.1 The TankSoar Environment 43

4.4.2 Evaluating Methods . 45

4.5 Experimental Results . 46

4.6 Conclusion . 49

5 Conclusive Remarks 50

5.1 Future Work . 51

5.1.1 Improvement in Computational Model 51

5.1.2 Enhancement of Structural Graph Match 52

5.1.3 More Complex Environment and Tasks 52

References 53

A CSoar Program for Eaters Agent 61

B Episodic Memory: Evaluation Cues for TankSoar 71

C Eaters Agent Simulation Results 73

D TankSoar Episodic Memory Log and Query Time For Retrieval 74

ix

List of Tables

C.1 Comparison of three activation functions using average score of Eaters

agent after 100 actions. 73

D.1 TankSoar episodic memory log with number of episodes. 74

D.2 Total query time of four different cues for TankSoar episodic memory. . . 74

x

List of Figures

1-1 Memory structure in Soar cognitive architecture. 3

1-2 Typical working memory graph structure implemented in Soar and tem-

poral intervals of a node captured in episode. 4

1-3 An episodic memory process in Soar. 5

1-4 Example of graph matching problem. 7

1-5 Solution to graph matching problem. 8

3-1 The representation of time sequence of occurrence of event for BLA. . . . 27

3-2 The representation of time sequence of occurrence of event for Petrov’s

approximation. 28

3-3 Data structure for initial WMA analysis. 29

3-4 The Eaters environment. 30

3-5 Activation dynamics under computation models. 32

3-6 Demonstration of efficiency improvement in computation time. 32

3-7 Eaters agent score depicting progress with Base-level activation. 33

3-8 Eaters agent score depicting progress with Petrov’s approximation. . . . 33

3-9 Eaters agent score depicting progress with Improved approximation. . . . 34

3-10 Comparison of Eaters agents score for three different activation functions. 34

3-11 Comparison of Eaters agents learning rate for three different activation

functions. 35

4-1 Typical WME pattern. 41

4-2 The TankSoar environment. 44

xi

4-3 Different cue structures (a)cue 1 (b)cue 2 (c)cue 3 (d)cue 4 used to search

TankSoar episodic memory. 45

4-4 Query time of cue 1 from TankSoar episodic memory. 46

4-5 Query time of cue 2 from TankSoar episodic memory. 47

4-6 Query time of cue 3 from TankSoar Episodic Memory. 47

4-7 Query time of cue 4 from TankSoar episodic memory. 48

xii

List of Abbreviations

AC . Arc-Consistency

ACT-R Adaptive Control of Thought-Rational

AI . Artificial Intelligence

API . Application Program Interface

BT . Backtracking

CBR . Case Based Reasoning

CSP . Constraint Satisfaction Problem

DFS . Depth First Search

GT . Generate and Test

MAC/FAC Many-are-Called/Few-are-Chosen

NC . Node-Consistency

NN . Nearest Neighbor

PC . Path-Consistency

Soar-EpMem Soar Episodic Memory

SME . Structural-Mapping Engine

WM . Working Memory

WMA . Working Memory Activation

WME . Working Memory Element

WMG . Working Memory Graph

xiii

List of Symbols

A WME Attribute

cn constraint network

C a set of constraints of CSP

D a set of domains for each variables

E any particular episode in episodic memory

I WME identifier

φ natural projection to map WMEs

Q the cue provided for the episodic memory retrieval

Relij a subset of Cartesian product of two domains representing allowed
pairs of values

V WME Value

V ar ordered variables of CSP

W a set of WMEs

X a set of variables of CSP

xiv

Chapter 1

Introduction

Most of the recent cognitive systems have been developed in order to meet human

level performance. One advantage of human over artificial intelligent (AI) systems

is that humans are able to remember personal experiences and use them to learn or

improve future decision making. This type of memory is first described by Endel

Tulving in 1972 as ”Episodic Memory” and characterized the distinction between

knowing and remembering [1]. The ability to remember where, what, when, and

other actions that have taken in various situations provides information for acting in

the present. Knowing the history facilitates to perform several cognitive capabilities

in context of sensing, reasoning and learning.

The simple way of getting the benefits from an agent’s own experiences is to record

them so then later when appropriate they can be examined and reexamined. Episodic

memory can facilitate that process and ultimately improve the cognition. Cognitive

architecture can use its episodic memory to evaluate the resource cost versus gain of

taking certain actions. For example, when an agent meets an enemy, the agent can

examine the past success and failure of possible actions that resulted from a similar

situation and decide the best way to engage the enemy.

Previously, episodic memory was considered to be less important than semantic

memory, but recent research has found that an episodic memory has been crucial in

1

supporting many cognitive capabilities. Rather than going through an entire pro-

cedure, the system can directly access the episodic memory to see past events that

resembles the current situation and takes an action by analyzing the past outcomes.

Moreover, the representation of events in the fashion of spatio-temporal, short-term

slices with a record of progress in goal processing helps to analyze the performance

after the operation.

Episodic memory cannot be isolated, and its performance cannot be analyzed

solely. Instead, it is a component of cognitive architecture that can effectively exploit

the functionality of episodic memory. For this research, Soar architecture is selected

as it is used for both cognitive modeling and artificial intelligence research. Soar also

shares the features of ACT-R [2, 3], Icarus [4], Clarion [5], and EPIC [6] architectures.

Although, Soar architecture has effective and efficient implementation of episodic

memory, which is presented in [7, 8], there is always a need to minimize the growth

in processing time for an episodic memory operations as the number of episodes

increases.

1.1 Soar Cognitive Architecture

Soar cognitive architecture has been developed since 1983 [9] to build general in-

telligent systems. Soar includes a full range of problem solving methods, interact with

the outside world, and learn about all aspects of tasks along with its performance.

The major principles of Soar architecture design is to have distinct architectural

mechanisms represented as productions (permanent knowledge), objects (temporary

knowledge), automatic sub-goaling, and learning mechanisms. Moreover, it includes

procedural, semantic, and episodic memory as well as their respective learning pro-

cesses as reinforcement, semantic, and episodic learning to enhance the Soar agent

performance [10]. Fig. 1-1 displays the overview of the Soar architecture.

2

Figure 1-1: Memory structure in Soar cognitive architecture.

Soar models cognition is based on the symbolic production rule system as a se-

quence of decision cycles. Soar stores its current knowledge and modifies them ac-

cording to goal in temporary memory called working memory (WM). WM reflects

the features, defined by the symbolic triple (identifier, attribute, value), also known

as working memory elements (WMEs) available via sensing and internal processing,

whereas case-based consists of the pre-specified cases and their outcomes [11]. This

working memory depicts the graphical structure known as working memory graph

(WMG) [8] as shown in Fig. 1-2.

The same graphical structure is followed by episodic memory in Soar. This makes

it possible for effective and efficient implementation in terms of episodic storage,

encoding, and retrieval. As working memory holds the short-term knowledge, it is

possible to capture the snapshot by episodic memory for the history of experience.

This makes the Soar-EpMem task-independent, automatic, and architectural [8].

Everything present in the working memory is stored as an episode in episodic

3

Figure 1-2: Typical working memory graph structure implemented in Soar
and temporal intervals of a node captured in episode.

memory. This memory is queried by creating the cue in a cue generator area of

working memory. The best matched episode to the cue is determined and redeemed

in the retrieval area of working memory. This retrieved episode is utilized for future

decision making. In a cognitive architecture, the accuracy of retrieving a episode from

the episodic memory pool is always a challenging task.

1.2 Episodic Memory Retrieval

Retrieval of memory is re-accessing of information of the past from stored memory.

Retrieval generally occurs in response to a particular event. In common practice, it is

known as remembering and quite different from the act of thinking. These retrievals

are not quite identical to the originals but are mixed with an awareness of current

situations.

For accessing the memory, two main methods are involved. These methods are

recognition and recall [12, 13]. Recognition is the process of comparison of information

with memory based on the current event or an object. Although the memory retrieval

4

process depends on the architecture in which the process is involved, the basics remain

the same for every architecture. The cue of the required information is generated and

matched with the stored memory. The matched information is regenerated in the

working memory, which is referred to as recall. Fig. 1-3 shows an overview of the

episodic memory process implemented in Soar.

Figure 1-3: An episodic memory process in Soar.

The main process of any architecture is working memory, which holds the current

state and operators reflecting the current knowledge of the world and the status in

problem solving. Working memory contains elements called working memory ele-

ments (WMEs). Each WME contains a certain information. These WMEs play an

important role in determining the unique episodes and also in matching the relevant

episodes from the episodic memory. Here, the activation of the WMEs comes into

account for finding the episode with the maximum weight. Once candidate episodes

are determined, graph match is introduced to find the exact match.

In Soar, the graph matching step is defined as the constraint satisfaction problem

(CSP). Soar uses a backtracking algorithm as the CSP solver. The main issue of this

algorithm is the occurrence of multiple dead-ends, so it needs to perform frequent

backtracking. Hence, the appropriate CSP solver algorithm is required to decrease

the possibility of facing dead-ends as well as the time required for cue-matching.

5

1.3 Constraint Satisfaction Problem

Constraint satisfaction problems (CSPs) are mathematical problems defined as a

set of given variables together with a finite set of possible values whose state must

satisfy a number of limitations (constraints) [14]. CSPs are the subject of research

for both artificial intelligence and operations research, as their formulation provides a

common basis to analyze and solve problems. CSPs are combinatorial in nature and

therefore require reasonable computational expense to find a solution. Some more

complex CSPs often require a combination of heuristics and combinatorial search

methods to be solved in a reasonable time. Some common examples of CSPs problems

are Sudoku, Tower of Hanoi, Crosswords, Map-coloring, Graph-Matching, etc.

For this thesis, the knowledge of CSP is required during retrieval where the pro-

vided cue takes a form of acyclic graph, partially specifying the subset of an episode

[8]. To perform the matching with graphical cue to the episodes in episodic memory,

the structure of cue also has to be matched. This structural match is interpreted as

constraint satisfaction problem.

CSPs are typically solved using a form of search. Many powerful algorithms that

became a basis of current constraint satisfaction algorithms have been designed. The

most commonly used techniques are; generate and test method, simple backtracking,

local search, and constraint propagation [15]. Simple backtracking is a depth-first

search where partial instantiations are extended by assigning values to the variables,

then ensuring that all constraints are satisfied. If a constraint is violated, the search

has reached a dead-end condition, therefore, must backtrack by changing assigned

variables. Local search methods are incomplete satisfiability algorithms. They may

find the solution of a problem, but may fail even if the problem is satisfiable. Con-

straint propagation modifies the CSPs that enforce them to form a local consistency

[16]. First, it turns problem into simpler form to solve and second, it proves for sat-

6

isfiability or unsatisfiability of problems. The most popular constraint propagation

are arc-consistency, path consistency, and hyper-arc consistency.

Enforcing stronger consistency may lead to fewer assignments done and fewer

dead-ends are explored. It is important to note that stronger methods for main-

taining consistency do not produce better performance. A trade-off exists between

the number of assignments performed and the computational efforts following each

assignment [16].

1.4 Example of Graph Matching as CSP

One of the applications of CSP is graph matching through CSP, which is similar

to this research. A simple example of graph-matching is presented. For any given

two graphs: G1 and G2, the task of graph matching is to check whether G2 contains

the subgraph that matches G1. There exists a graph match if:

• Every node of G1 can be mapped to distinct node of G2, and

• For all x1, y1 nodes in G1 and x2, y2 nodes in G2 are mapped respectively,

whenever (x2, y2) is an edge in G2, then (x1, y1) should be an edge in G1

Figure 1-4: Example of graph matching problem.

7

Fig. 1-4 shows two graphs G1 and G2 as an example of a matching problem. The

task is to find the subgraph G1 in G2. This can be formalized as CSP as follows:

• Variables of CSP: {A,B,C,D,E}

• Domains for each variables: {a, b, c, d, e, f, g, h, i, j}

• Constraint: For all compound labels (< x, p >< y, q >), if x and y are connected

in G1, then p and q must be connected in G2.

In this example, the solution exists, as (< A, h >< B, g >) satisfies the constraint

on A andB because (g, h) is also an edge inG2. The solution mapping with compound

label is (< A, h >< B, g >< c, e >< D, d >< E, b >). This is displayed in Fig. 1-5

below.

Figure 1-5: Solution to graph matching problem.

1.5 Proposed Techniques

The Soar architecture implements the two step matching algorithm to reduce the

search time of retrieval. The first step implements the surface cue analysis, which

counts the matching elements and/or combine with the weight associated with them.

8

The activation value of each element at a particular instance provides the weight to

the WMEs. The second step finds the structural match among the perfect surface

matched candidate to cue what is explained as graph matching. CSP backtracking is

used as the graph matching algorithm.

However, occurrence of multiple frequent backtracking is the main issue for the

current CSP solving technique used in Soar. The expensive graph match will execute

multiple times when there is a perfect match but the structural match fails. In back-

tracking, due to multi-valued attributes, dead-ends might be encountered. This forces

the search time to rise. Thus, the objective of this research is to reduce the overall

retrieval time through the implementation of a computationally efficient activation

approximation technique for assigning weights to WMEs and the application of a new

graph matching algorithm.

The first approach is based on implementing approximation of activation. The

original implementation of Soar uses base-level activation, which uses the exact timing

information of WMEs. In contrast, the approximation tends to have less information

about the WMEs, thus making the approximation more memory efficient as well as

computationally efficient. However, due to the loss of information, the approximation

technique slightly deviates the calculation of activation value, but the performance is

comparable to that of original implementation. This makes the possibility of appli-

cation of approximation as a computational model.

The second approach in this thesis tries to address issues of graph matching of hit-

ting multiple dead-ends and backtracking frequently by implementing the consistent

technique of CSP solving called the arc-consistency (AC) algorithm. Arc-consistency

pre-checks all constraints from the available domains so that the possibility of hitting

dead-ends reduces. This leads to performing the graph matching step only once; as

a result, it reduces the time consumption during search.

9

1.6 Thesis Organization

This thesis proceeds as follows:

Chapter 2 provides a literature review that forms the foundation of this research.

It covers a variety of theoretical backgrounds pertaining to prior established research

methods in the areas of episodic memory, working memory activation, and CSP.

Chapter 3 elaborates about the working memory activation scheme, a preliminary

method that focuses on approximation of the base level activation and implementing

them. Also, the experimental result is presented with Eaters environment.

Chapter 4 explains on the second proposed technique on graph matching, which

includes the computationally efficient algorithm for solving constraint satisfaction

problems. Further explanation of the simulation results are also pointed out.

Chapter 5 draws conclusive remarks on the results. And, it also discusses possible

future directions in which this research can be continued.

Finally, the thesis includes an appendix that contains source code for Eaters agent,

the format of TankSoar cues to be provided to retrieve episodic memory, and tables

of Eaters score and query time from different TankSoar memory.

10

Chapter 2

Literature Review

This chapter provides a background in previously established research works and

methods that forms a foundation for the research of this thesis. Included topics are:

episodic memory retrieval techniques based on respective memory model, prior work

on Soar episodic memory retrieval, and finally a brief concept of constraint satisfaction

problem and existing approaches to solve CSPs.

2.1 Work in Related Memory Retrieval Research

Fields

The retrieval from the episodic memory depends on the way the episodes are

encoded and stored. Different episodic memory modules have their own memory

organization leading to their very own retrieval process.

2.1.1 MAC/FAC Similarity Based Model

MAC/FAC is a model of similarity-based retrieval that has been capable to model

the interesting patterns found in psychological data [17]. The MAC/FAC imple-

ments a two-stage process for judging similarity between episodic memory pool and

cues. The first stage, MAC (“many-are-called”) uses a computationally cheap non-

11

structural matcher to constrain the size for the second stage candidate. Forbus et

al. [17] implement task specific content vectors that are efficiently generated at the

time of episodic storage. During query, a content vector is generated based on cue

and compared with all memory item vectors. The matching candidates are subjected

to the second stage, FAC (“few-are-chosen”). The FAC stage uses a Structural-

Mapping Engine (SME) for structural comparison between candidate episodes and

the cue. MAC/FAC model performs well in querying a small number of feature-

rich and structured memory items. The experimental setup has only 32 feature-rich

episodes.

Although an episode for any cognitive agent may be less complex with low feature-

contents, the agent may generate thousands to millions of episodes. Also, the major

goal of MAC/FAC is applicable in the psychological phenomena and may include

inaccuracies in retrieval during surface and structural similarity. This model may be

unsuited for the cognitive agents, particularly in cases in which the optimal result is

the main concern and the size of the memory pool is large. Beside this incompati-

bility of this model, the method of structural matching for the retrieval from the few

candidates is quite impressive and is applied in several other retrieval modules.

2.1.2 EM-A Generic Memory Module for Episodic Memory

EM [11] is a generic store to support episodic memory functionality such as plan-

ning, classification, and goal recognition. EM serves as an external component with

an application program interface (API). An episode in EM is represented as a com-

bination of three dimensions: context, contents, and outcome. Context is a general

setting in which the episode happened. Contents is the ordered set of events that

make up episodes. Outcome refers to the specific evaluation of the episode’s effect.

Episodes are stored in memory unchanged and are indexed for retrieval. Multi-layer

indexing is used in the following way: i) shallow indexing in which each episode is

12

indexed by features and, ii) deep indexing in which episodes are linked together by

how they differ structurally from one another.

During retrieval, EM cues are defined as partial episodes. This memory module

employs a two-stage evaluation scheme as in MAC/FAC, whereby a constant number

of potential matches are found, which are then compared using the relatively expensive

semantic matching. First, shallow indexing selects a set of episodes based on the

number of common features between them and the cue. Second, the hill climbing

algorithm is used in this module as semantic matching, which employs sub-graph

isomorphism and transformation rules in order to resolve the mismatches between

two representations. This indexing mechanism and the search-based retrieval set the

approach apart from serial search. The work done by Tecuci and Porter [11] was used

for learning in short, single-task domains and is unclear about scalability.

2.1.3 Case Based Reasoning (CBR)

In the case-base reasoning module, the case structure is predefined and do not

possess the temporal feature of episodic memory. The case-base sizes are either

fixed or grow at a limited rate, which is in contrast to the episodic store that grows

with experience over time. The main focus of this module is to optimize the task

performance for a given case-base, where each case is a problem and its solution [18].

Efficient nearest neighbor (NN) algorithms have been studied in CBR for qualita-

tive and quantitative retrieval [19, 20]. The underlying algorithms and data structures

supporting these algorithms depend on a relatively small static number of case/cue

dimensions. This module of episodic memory does not take advantage of the temporal

structure inherent to episodic memories.

Heuristics methods have been applied for retrieval efficiency [21], refined indexing

[22], storage reduction [23], and unwanted case deletion [24]. It seems that many

researchers achieve gains through the application of two stage cue matching. Initially,

13

the surface similarity is considered and then structural evaluation is applied in next

step [17].

The requirement of dealing with temporal cases has been acknowledged as a sig-

nicant challenge with the CBR. Other motivating research on temporal CBR systems

can be found in [25], and representing and reasoning about time-dependent case at-

tributes is observed in [26]. However, these works fail to deal with accumulating an

episodic store, nor do they have efficient implementation of the temporal cases.

2.1.4 Neural Model of Episodic Memory

Neural model of the episodic memory by Wang et al. [27] learns episodic traces

in response to a continuous stream of sensory input and feedback received from an

environment. This model is hierarchically joining two multi-channel self-organizing

network based on the fusion Adaptive Resonance Theory (fusion ART) network. This

network extracts the key events and encodes in spatio-temporal relation between

events dynamically creating cognitive nodes. The fusion ART network dynamics

provide a set of computational processes for encoding, recognition and reproduction

of patterns.

Other applications involving neural network models of episodic memory that use

associative networks to store the relation between attributes of events and episodes

can be found in [28, 29]. These associative models can handle partial and approxi-

mate matching of events and episodes with complex relationships; they are limited

in recalling information based on the sequential cues. Shastri [30] attempted to ad-

dress these challenges by encoding events as relational structures, but it shows the

insufficiency in learning complex sequential information.

Wang et al. conducted several empirical experimental evaluation showing that

the model provides a good performance in encoding and recalling events and episodes

even with various types of cue imperfections including noisy and/or partial patterns.

14

These models presented the results for a few hundred episodes and still unclear to

scalability to the size of the episodic memory.

2.1.5 Episodic Memory in Soar

Efficient implementation in Soar architecture is shown in [7], providing efficient

storage and retrieval of task-independent episodic memory. The episodes are every

snapshot of the working memory requiring large storage. Episodic memory in Soar

uses a tree structure to store the episodes instead of a linear trace involving more

complex representation, which is later modified by Derbinsky [8], termed as Working

Memory Graph. Each node is a working memory element (WME) with some temporal

information about its occurrence. Hence, episodic memory is found to be temporally

indexed. This also greatly reduces the space needed for storage of episodic memory.

For retrieval, an episodic cue represented as an acyclic graph is provided. It

partially specifies a subset of an episode. Cue matching is defined to identify the

most recent episode that shares the larger number of leaf nodes to cue. The retrieval

of an episode in Soar involves the two-phase cue matching process. The first step

involves surface cue analysis followed by the structural cue analysis similar to above

models. Based on the cue provided, candidate episodes are found with at least one

cue leaf element. Candidate episodes with perfect surface match are submitted to the

second phase for structural graph matching. Standard CSP backtracking algorithm

is applied for structural graph match. The best match is the most recent structural

matching. If no perfect match occurs, then it is considered as a partial match and

the recent episode with the highest number of leaf element matches is considered as

the best match.

15

2.2 Implementation of Episodic Retrieval in Soar

This section includes the development of episodic retrieval in Soar prior to the

application of two stage cue-matching (partial match and structural match).

2.2.1 Pilot Implementation

This was an initial implementation of application of episodic memory in Soar

architecture. The pilot implementation had a lack of task independence and limited

functionality as compared to a recent one [31]. Since this application was the first

step towards the implementation of episodic memory, it worked as a guideline for

the future design space and requirements. After performing certain experiments, it

provided base for comparison for future implementations.

Episodic memory in pilot implementation stored each element as a Soar production

(rule). Soar production represents long-term knowledge as a set of conditions and a

set of actions stored in production memory. The retrieval occurred when special

conditions were met, which fired the production (effectively retrieving the episodic

memory). This led to the development of existing storage and retrieval functionality.

The retrieval in pilot implementation began when retrieval was triggered after

the agent constructed a cue in working memory deliberately. Cue was determined

by creating a sub-state specifically for this purpose, and the agent itself determined

the cue contents with surface features and relation to each other. After this, the

selection of episode started in which episodes were stored as a collection of Soar rules.

Episodic retrieval and matching were a part of a normal Soar decision cycle. The

operator proposal rule would match the cue and if a match occurred, the operator

application rule would recreate the memory. The best match operator was selected

through operator selector in case of multiple memory matching. In the retrieval

phase, the resulting structure was a copy of an original state from which an episode

16

was drawn and overwrote the retrieval cue structure. For meta-data retrieval, only

the numeric ID of episode was provided to the agent.

2.2.2 Baseline Implementation

The most valuable insight gained from the pilot implementation is its use as a

guide for defining the space of an episodic memory system [31]. Also, the importance

of autoneotic episodic memory and selection of the best matched episode are noticed

instead of overwriting the current state. These requirements are introduced in Soar

episodic memory and known as the base-line implementation. In a broad sense,

the difference between these two implementations is an introduction to independent

episodic memory storage.

This independent storage allows implementatio of a partial matching algorithm

that is still present in Soar. The importance of matching comes into account for a

better and faster retrieval technique. Baseline implementation includes an episodic

memory learning module that records a new episode based on the agents behavior.

This episodic memory stores a snapshot of working memory except the contents of

cue construction and episodic memory retrieval sections.

If an agent wishes to retrieve an episodic memory, it constructs a cue that consists

of WMEs in which the agent is looking in a retrieved episode. After the cue is

constructed, it compares the cue to stored episodic memories and determines the

best match. The selected episode is reconstructed as a copy of the original working

memory in reserved space for retrieval.

The retrieval in baseline implementation can be viewed as [31]:

• Retrieval initiation: Just as in the pilot implementation, retrieval is initiated

when an agent constructs a cue in working memory.

• Cue determination: A cue is constructed using rules in a reserved location in

17

working memory. The cue includes the content of WM and can have any number

of WMEs.

• Selection: During episodic retrieval, the cue is compared to all stored episodes

in order to select the best matched. In the baseline implementation, the best

match is determined by the number of matched WMEs between the cue and

the episode. Once an episode has been retrieved, the agent can also retrieve the

next episode in temporal order via a special next command.

• Retrieval: The complete episode is retrieved in a reserved area of working mem-

ory to avoid confusion with the current state of the agent.

• Retrieval meta-data: Several types of meta-data were added to baseline imple-

mentation including time, episode number, number of matching, etc.

2.2.3 Enhancement to Baseline Implementation

Other features had been added to the baseline for efficient retrieval from episodic

memory discussed in following two sections below.

2.2.3.1 Partial Matching

The baseline implementation included a new partial matching algorithm used in

episodic memory selection. Effective partial matching is the major issue faced by

many researchers in AI. Some approaches to partial matching technique include:

• Nearest Neighbor: In this approach, the features of the query are compared to

each episode. The episode with the most features matched with the query is

selected. Its processing is intensive and is also highly sensitive to the amount

of irrelevant features in the instance or query in [32].

18

• String and Hash Matching: String matching focuses on providing a near-best

match rapidly [33]. If the query and instance are presented as a string of

symbols, then this method can effectively be used for partial matching. The

conversion to a string, however, can result in loss of information. Another

option is the hash tables if an effective hash function can be found for query

and instances but the risk is losing the information [34].

• Classifier Systems: Classification techniques can also be applied to partial

matching. The classifier divides on instance into categories and assigns where

a query belongs. Examples of classifier algorithms applied to partial match

include rule induction [35], N-Gram matching [36], and Bayesian learning [37].

• Hybrid Approach: This approach improves the partial match through the com-

bination of a fast inaccurate approach with a slow accurate approach. In par-

ticular, classifier systems (fast approach) can be used to narrow the field for a

nearest neighbor search (slow approach) [38].

Regardless of extensive search procedure, a nearest neighbor search is selected

for baseline because it offers the most accuracy. Retrieving the correct memory is a

critical requirement for an effective episodic memory system. First, only the nearest

neighbor approach is implemented as a cardinality match.

2.2.3.2 Interval Based Matching

In this approach, the episodes are stored implicitly as series of time increments

(ranges of decision cycles) of each node of a working memory tree as shown in Fig.

1-2. The ranges indicate the cycles when the associated WME was in the agents

working memory. This makes the required storage linear in the number of changes to

working memory instead of the number of elements in working memory [7].

19

Then modification in the matching algorithm to use this structure is implemented

as well as the usage of activation values from the episodic memory cue is used to

assign weight to the features of the candidate episodes. The detailed algorithm of

cue-matching using activation values is as follows [31]:

• The system traverses the episodic memory cue and the WMG and the corre-

sponding entry in the WMG is located.

• Each entry that is matched in the WMG contains a list of ranges. Each range in

these lists is assigned a match score equal to the activation level of the associated

cue elements.

• All of the selected lists are merged together into a single list of ranges. If two

ranges partially overlap, they are split into two or more separate ranges. For

example, if one list contains two ranges (5-12, 15-25) and the other list contains

one range (7-18) the merged list will contain six ranges (5-6, 7-12, 13-14, 15-18,

19-25). Each range in the merged list has a match score equal to the sum of

the activation levels of all the ranges that entirely covered that range.

• The merged list is traversed to locate the range with the highest match score

(the best match). In case of tie, the most recent cycle is selected.

• The episode can be recreated by traversing the WMG and creating WMEs for

each node that contains the selected cycle in one of its ranges.

2.3 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined as a triplet (X,D,C) where:

• X = {x1, x2,, xn} is the set of variables;

20

• D = {Dx1 , Dx2 ,, Dxn} is the set of variables domains, where Dxi
is the

nonempty set of domain values for the variable xi; and

• C = {C1, C2, ...Cm} is the set of constraints that apply to the variables, restrict-

ing the allowed combination of values for variables.

The solution to a CSP is an assignment of value to each variable such that all con-

straints are satisfied. A CSP is satisfiable or consistent if a solution exists.

We consider that the variable domains are finite sets of values. A constraint Ci is

specified by:

• A scope scp(Ci), which is the set of variables to which the constraint applies,

and

• A relation rel(Ci), which is a subset of the Cartesian product of the domains

of the variables in scp(Ci). Each tuple τi ∈ rel(Ci) specifies a combination of

values that is allowed (i.e. supports) or forbidden (i.e. conflicts or no-goods).

The arity of the constraint is the size of the scope. A constraint can be unary

(arity 1), binary (arity 2), or non-binary (arity > 2).

A binary CSP is represented as a constraint graph in which each node is labeled

by the variable, and the edge between two nodes corresponds to the binary constraint,

binding the variables that label the nodes connected by the edge. Unary constraint

can be represented by the cycle edge.

2.3.1 General Approaches for CSP Solving

CSP solving is basically assigning the values to all the variables without violating

the given constraints. Based on the given conditions the CSP can be consistent or

unsatisfiability. Several techniques are available for solving CSPs. Kumar [15] and

21

Tsang [14] present a good overview of these techniques. CSP solving algorithms can

be categorized into two approaches as discussed below.

2.3.1.1 Systematic Search

Many algorithms for solving CSPs search systematically through the possible as-

signments of values to variables [39]. This method guarantees the solution if it exists

or finds unsatisfiability, but it takes a very long time to do so. A CSP can be solved

using the Generate-and-Test method (GT) that systematically generates each possible

value assignment and then it tests all generated solutions to satisfy all the constraints.

GT method creates a large number of combinations equal to the Cartesian product

of all variable domains.

Faced with the combinatorial explosion of GT, the idea of combining generation

and test led to a BackTracking (BT) algorithm. Backtracking is a more efficient

method of systematic search that relies on Depth First Search (DFS) and based

on recursive BT algorithm. BT attempts to extend the partial solution towards a

complete solution, by repeatedly choosing a value for another variable. Backtrack

search exhaustively and systematically explores combinations of values for variables,

constructively building consistent solutions. The space requirement of BT is linear in

the number of variables. There are many factors that can affect the performance of

search in BT. Some are listed below:

• Thrashing: repeated failure due to same reason;

• Redundancy: conflicting values of variables are not remembered;

• Late detection of conflict: conflict is not detected before it really occurs

To overcome these shortcomings, many modifications to BT such as value or-

dering, heuristics for variable, forward-checking and backward-checking have been

22

introduced to improve its performance. The common wisdom is to instantiate the

most constrained variable first [40–42].

2.3.1.2 Consistency Techniques

To improve the cost of search, it is always beneficial to enforce a consistency

property at the pre-processing stage to prune the search space and maintaining it

after the instantiation of each variable. The consistency-enforcing algorithm makes a

partial solution of a small sub-network extensible to some surrounding network. The

consistency technique is also known as a filtering technique [43]. Thus, consistency

techniques rule out many inconsistent assignments at a very early stage, minimizing

the search for consistent assignment. The consistency techniques are rarely used

alone to solve CSP completely. Different consistency techniques include simple node-

consistent, a very popular arc-consistency, and expensive path-consistency.

CSP is called Node-Consistency (NC) if and only if for every value V in the

current domain DX of X, each unary constraint on X is satisfied. Thus, the node

inconsistency can be eliminated by simply removing those values from the domain

DX of each variable X that do not satisfy a unary constraint on X.

In case of binary CSP, there remains to ensure the consistency of binary con-

straints that cannot be achieved from NC. In a constraint graph, arc defines the

binary constraint, hence called Arc-Consistency (AC). The arc is known to be con-

sistent if and only if, for every value of Vi in the current domain of Xi, which satisfies

the constraints on Xi with respect of value Vj in domain of Xj, as permitted by the

binary constraints between Xi and Xj. The concept of arc-consistency is directional

i.e. if an arc (Xi,Xj) is consistent that does not mean (Xj,Xi) is consistent [44].

A Path-Consistency (PC) implies AC where an arc is equivalent to the path be-

tween the defined nodes or variables. PC extends the consistency test to two or more

arcs meaning that every arc present between the path needs to satisfied. Therefore,

23

the PC is stronger than arc-consistency but requires a lot of computational cost [45].

2.3.2 Applications of Constraint Satisfaction

Examples and applications of CSPs can be found in a variety of real-life problems

because of its potential to model and solve these problems naturally and efficiently.

Several problems of AI and industrial applications can be discussed and defined in

terms of the constraint satisfaction problem model. Some of the major research has

been done in the field of civil engineering [46] for traffic signal monitoring, mechanical

engineering [47] in designing systems, interactive cognition [48], air traffic control, web

applications [49], network security [50], protection and guarantee of personal data/pri-

vacy [51], etc. This framework has already been established in several applications

like resource management and scheduling [52–54] (when time and shared resources

are involved), industrial production planning [55], and vehicular applications such as

vehicle routing [56] and car sequencing [57] used for the purposes of adding several

features in car after building basic models. It has been also explored in the areas of

graphical picture processing [58], natural language processing [59] (by restricting the

roles that each word plays), temporal reasoning [60] (as events are temporally related

to each other), etc. Even the CSP has been applied to the general applications like

awareness [61]. Moreover, CSP can be applied for query processing in databases [62],

which is similar to this thesis research of querying episodic memory.

24

Chapter 3

Approximation of Working

Memory Activation for Surface

Match Analysis

The first part of this thesis research involves the implementation of working mem-

ory activation for surface cue analysis to retrieve an episodic memory. Here, the

research focuses on how the approximation of WMA affects the accuracy of retrieval.

An episode retrieved through different WMA to control the agent movement direction

in every action is applied, and the performance of the agent is analyzed. The plan is

to reduce the time needed by working memory activation, which ultimately leads to

faster data retrieval. The underlying implementation targets cases of episodic mem-

ory in the Soar architecture. This chapter proceeds with an introduction to WMA,

mathematical models of activation functions, and an algorithm for retrieval. Then,

there is an introduction to techniques followed by the agent environment used for eval-

uation. Finally, this chapter discusses the results obtained and provides conclusions

on the perspective results.

25

3.1 Introduction to Working Memory Activation

In human memory, specific items are sensitive to frequency and recency of occur-

rence [63]. The computational model to keep track of these items in any cognitive

system is determined by the working memory activation. These items are the ele-

ments presented in working memory called WME. This provides the activation values

that denotes the importance of WMEs for any particular instance. Basically, the

process of activation is assigning the weight to each WME.

Initially, the working memory activation is introduced by ACT family [2], which

describes the activation of the contents of working memory. Later Ron Chong [64]

implemented WMA in Soar to support forgetting in WM similar to the decay pattern

in ACT-R.

The WMEs activation value in working memory of Soar architecture is updated

as follows:

• WMEs receives initial fixed activation at the time of creation.

• As WMEs are tested by production, they get an activation boost.

• If any action tries to add existing WMEs, they get an activation boost.

• An activation level decay over time as defined by the computational model of

activation.

During retrieval in Soar architecture, activation values obtained from the above

procedure are used for biasing the cue to select the best matched episodes from

memory that works as the feature weighting of each element. The algorithm involved

for retrieval is provided in detail in Subsubsection 2.2.3.2.

26

3.2 Working Memory Activation Techniques

The original implementation of working memory activation is associated with the

Base-level activation (BLA). Approximation of working memory activation can be

used to reduce the computational time in cost of activation value accuracy as well as

to reduce the size of the working memory during runtime [63]. The computational

model involved in Soar architecture and its approximation are discussed below.

3.2.1 Base-level Activation

Base-level activation utilizes all the details of working memory elements. BLA uses

the complete record with exact time stamps of every use requiring more execution

time. The activation value of a certain WME is determined by

A = ln

[
n∑

j=1

t−d
j

]
(3.1)

where n is the number of occurrence, tj is the time since jth activation, and d repre-

sents the decay parameter.

Figure 3-1: The representation of time sequence of occurrence of event for
BLA.

This activation signifies the strength of memory decrease with time. More de-

lays produce smaller losses, which is the base idea that states individual events are

forgotten according to a power function.

27

3.2.2 Petrov’s Approximation

This approximation ignores the timing of occurrence and uses two pieces of in-

formation: i) number of uses n, and ii) total lifetime tn as shown in Fig. 3-2. The

importance of new events and recency factor are diminished. It assumes all events

are approximately evenly spaced. This approximation is also known as optimized

learning equation.

A = ln
[

n

1− d
t−d
n

]
(3.2)

This approximation accounts for large error in determining activation value. It

misses rapid, recency driven component and other transient behavioral effects.

Figure 3-2: The representation of time sequence of occurrence of event for
Petrov’s approximation.

3.2.3 Improved Approximation

The main idea of this approximation is to keep the details of few of the most

recent events and ignore the details of the distant. The new parameter, k, determines

the number of recent events to be taken into account.

A = ln

[
k∑

j=1

t−d
j +

(n− k)(t1−d
n − t1−d

k)

(1− d)(tn − tk)

]
(3.3)

From the equation above, it can be seen that this function keeps track up to time

stamp tk i.e. from j = 1 to k where t1 is the most recent one. Equation 3.2 is a

special case of k = 0.

28

3.3 Evaluation Methodology

This section talks about the testing environment and metrics used for a perfor-

mance evaluation. Initially, using MATLAB, the data having 11 features in each

decision cycle for 20 time steps is generated as shown in Fig. 3-3. Then, comparison

between WMAs is performed using two parameters: i) the sum of activation values

obtained, and ii) the time taken for execution.

Figure 3-3: Data structure for initial WMA analysis.

After this, an agent is used to evaluate performance through the actual imple-

mentation of WMAs in architecture.

3.3.1 The Eaters Environment

To test the performance of the activation methods in real time, an episodic memory

agent is created in a predefined pacman-like game named Eaters [65]. This Eaters

agent moves in a grid world of 15*15 consisting of wall, normal food (blue-colored

diamond shape), bonus food (red-colored square shape), or empty cell.

Fig. 3-4 shows the screen-shot of the Eaters playing board. The agent can move

towards a cell in four directions except for the cell that contains a wall. If the Eaters

agent moves in a cell containing food, it eats food and gains respective points, leaving

the spot empty. The goal of the agent is to get the maximum points as fast as it can.

29

The agent senses contents of a 2-cell radius as shown in bottom right corner of Fig.

3-4.

Figure 3-4: The Eaters environment.

Soar version 9.4.0 is used to test episodic memory retrieval performance. The

Eaters agent has no knowledge about the value of objects it senses and does not

know which direction it needs to move. The agent uses episodic memory to help

it to choose which direction it should move. The agent will generate cues for each

direction including internal sensing and evaluate the retrieved episodes based on the

score gained moving towards a particular direction. The agent chooses the direction

with the highest score gained and randomly selects if there is a tie. There is no

guarantee of selecting the appropriate episode, depending upon the recorded episodes

and algorithm used for retrieval. During the course of action, the agent builds up the

episodic memory and explores memory for new actions.

The advantage of Eaters is that it includes a simple domain with a set of four

possible objects and four possible actions for the agent, allowing users to focus on

30

episodic memory rather than agent and environment. This also makes users easy to

gather data about performance.

3.3.2 Evaluating Methods

As an episodic memory is no use by itself, to demonstrate the performance, agents

are needed in specific environments for certain tasks. Provided that the episodic mem-

ory in Soar is task-independent, action modeling in a relatively simple environment

and a complex environment are used to address more difficult cognitive capabilities.

In order to evaluate the performance of episodic memory retrieval for different

WMAs, an agent runs using BLA and its approximations. Then, the score gained

by the agent is collected after every move for each computational model until the

completion of 100 actions. Utilizing stored episodes, two more iteration are performed

to study the effect of episodic memory and computational models. Based on score

obtained after 100 moves and the fraction of correct evaluation done by the agent,

the comparison is done among three WMAs. This measures the accuracy of retrieval

and provides the feasibility of using approximations as a computational model.

3.4 Experimental Results

The preliminary result of comparison of three activation functions is shown in

Fig. 3-5 and Fig. 3-6. The results include the sum of activation values of all features

(Fig. 3-3) obtained from these functions and time taken for execution by each of

these models.

Fig. 3-5 shows that the Improved approximation tends to follow the original

Base-level activation. Although, Petrov’s approximation has more error compared

to that of the Improved, it follows the trend of change of activation value. Still, the

performance of retrieval using these techniques needs to be analyzed. Fig. 3-6 depicts

31

Figure 3-5: Activation dynamics under computation models.

that the Petrov’s approximations of BLA is computationally the most efficient.

Figure 3-6: Demonstration of efficiency improvement in computation time.

For the evaluation of performance of the episodic memory retrieval, the Eaters

agent is created with three different activation functions to access episodic memory

pool for deciding new direction of movement. Here, biased activation to match the

cue with episodes in memory is used. For each matching episode, activation values

32

of all matching elements are summed. The one with the highest summed activation

value is considered to be the best match.

Figure 3-7: Eaters agent score depicting progress with Base-level activation.

Figure 3-8: Eaters agent score depicting progress with Petrov’s approxima-
tion.

Fig. 3-7, Fig. 3-8, and Fig. 3-9 depict the score of agents at each step as they

progress until they reach 100 actions for three iteration using BLA, Petrov’s approx-

imation, and Improved approximation, respectively. These figures show progress of

Eaters for a particular run. Moreover, the agents are learning in each step and in each

33

iteration using episodic memory. The results show overlapping in different iterations

because of agents surrounding contents agent and the episodes that led to particular

actions as mentioned earlier.

Figure 3-9: Eaters agent score depicting progress with Improved approxima-
tion.

Figure 3-10: Comparison of Eaters agents score for three different activation
functions.

Fig. 3-10 depicts the average final score gained by an agent after 100 moves in

each iteration for each computational model. The experiment is repeated five times

34

for each case and scores are averaged. After the completion of 100 actions, the Eaters

map and score are reset, but agent is allowed to use stored episodic memory. The

plot shows that the average score of agent with BLA has the highest score in each

iteration followed by Improved approximation and Petrov’s approximation.

Figure 3-11: Comparison of Eaters agents learning rate for three different
activation functions.

Fig. 3-11 shows an alternative view of result presented in Fig. 3-10. Fig. 3-11

shows the fraction of correct evaluation that an agent has made during the course

of 100 actions. From above figure, it can be observed that the agent with Base-

level activation learns the situation quite faster than agents with other two biasing

techniques. Still, the result shows that there is not much difference in the learning

rate of three WMAs and are comparable.

35

3.5 Conclusion

This chapter presents the implementation of a new model for working memory

activation through the incorporation of Petrov’s approximation of original activation

present in Soar. The initial result shows the possibility of approximations of BLA

as a computational model of working memory activation. After implementation of

approximation, the Eaters agent shows the impressive progress in each iteration.

Petrov’s approximation as the computation model also provides the moderately good

learning strategy of episodic memory. The Petrov’s approximation can be applied as

a substitution of original activation because the learning rates are quite comparable,

as displayed in Fig. 3-11.

Petrov’s approximation requires less amount of information of WMEs. That makes

it computationally efficient among three activation functions by reducing the time to

calculate the activation value of WMEs. As the calculation of activation value is

also one of the steps required for cue-matching, incorporating this approximation

method, the retrieval of episodes from memory can be reduced significantly with a

slight trade-off in accuracy.

36

Chapter 4

Application of Arc-Consistency for

Structural Graph Match during

Retrieval

This chapter includes general information about structural graph matching, defi-

nition of graph matching as CSP, and two CSP solving algorithms. It also describes

the environment used, methodology, results, and conclusions.

4.1 Introduction to Structural Graph Match as

CSP

Structural graph match refers to finding similarity between graphs. In other words,

it is finding an isomorphic image of a given graph in another graph. Recall from lit-

erature in Subsection 2.1.5, the cue provided in the Soar architecture is an acyclic

graph that is to be matched with episodes in episodic memory. The second stage of

cue matching involves the structural graph matching. It performs full graph matching

in comparison between cue and candidate episodes structurally. This graph matching

step is defined as the CSP in Soar cognitive architecture. The original algorithm

37

implemented in Soar involves a standard backtracking algorithm. Detailed mathe-

matical representation of structural match as CSP is presented later in Section 4.3.

4.2 CSP Solver for Cue Matching

As mentioned the literature review in Subsection 2.3.1, various techniques are

being developed to solve CSP. Among them, two CSP solving algorithms: i) back-

tracking and ii) arc-consistency, are popular and commonly used. Backtracking has

been implemented in Soar originally. To improve performance of cue matching, this

thesis implements the arc-consistency to minimize search space. The sections below

describe more about these techniques in detail with the general algorithms.

4.2.1 Backtracking

Practically all complete search algorithms for CSPs are based on the backtracking

algorithm. This is the basic algorithm for searching the solution of CSP. The basic

operation of this algorithm is to pick one variable at a time and making sure that the

variable is valid for all labels selected so far. If this is true, then the next step will be

another assignment step, or termination when all variables are assigned (a solution

was found). If an assignment violates a certain constraint, a backtrack step undoes

the last assignment made and the next value in this unassigned variables domain is

assigned instead. If the domain of the current variable is exhausted, and the next

value to be assigned does not exist, another backtrack step is taken. This carries on

until either a solution is found or all the combinations have been tried and failed.

Since BT assigns values step-by-step and backtrack only at the last decision when it

is unable to proceed, it is called chronological backtracking [14].

The algorithm of backtracking is shown below:

38

Algorithm 1: General backtracking algorithm

1 Function BT(X,D,C):Solution
2 Begin
3 BT-recursion (X, {}, D,C)
4 End
5 Function BT-recursion(unassignedX , assigned,D,C)
6 Begin
7 If(unassignedX is empty) Then
8 Return(assigned)
9 Else

10 Pick one value x from unassignedX
11 Repeat
12 Pick one value v from Dx

13 Delete v from Dx

14 If assigned + new assignment < x, v > violates no constraints Then
15 Begin
16 Result← (unassignedX − {x}, assigned + < x, v >,D,C)
17 If Result 6= NIL Then
18 Return Result
19 End If
20 End
21 End If
22 Until Dx is empty
23 Return NIL (NO Solution)
24 End Else
25 End

4.2.2 Arc-Consistency

Arc-Consistency measures the consistency of an arc expressed on each couple of

variables of a problem with binary constraints [39]. Arc-consistency relies on a simple

function called “Revise”. This function is applied to a couple of variables (xi, xj)

connected through a constraint Cij by removing the locally inconsistent values from

the domain Dxi
[43]. These couple of variables represent an arc. The Revise function

deletes domain values of xi with xj if not compatible. In this case, the domains of xj

remains unchanged. Boolean value denotes whether the domain value is deleted or

not. The arc-consistency is verified if and only if all the arcs on the constraint graph

39

are consistent.

Algorithm 2: General Revise Function

1 Function Revise(xi, xj):Boolean
2 Begin
3 CHANGE:=False
4 For each domain values a ∈ Dxi

5 If there is no b ∈ Dxj
such that Relij(xi, xj) Then

6 Begin
7 Delete a from Dxi

8 CHANGE:=True
9 End If

10 End For
11 Return CHANGE
12 End

The general algorithm of AC visits every couple (xi, xj) and removes values from

domain Dxi
that violate Cij and if any value is removed, all the constraints are

examined again, which is given by the algorithm below:

Algorithm 3: General Arc-Consistency Algorithm

1 Function AC(X,D,C):CSP
2 Begin
3 list:={(xi, xj)|Cij ∈ C, i 6= j}
4 Repeat
5 CHANGE:=False
6 For each (xi, xj) ∈ list
7 CHANGE:=Revise(xi, xj) or CHANGE
8 End For
9 Until NOT CHANGE

10 Return Consistent Network
11 End

4.3 Problem Formulation and Algorithms

The Soar episode is a snapshot of a working memory. Therefore, any episode

has the same structure as working memory, as described in Section 1.1. Each parent

40

node represents an identifier of WME, a child node represents either a value or an

identifier of the next WME, and the edge between nodes denotes the attribute of

WME as shown in Fig. 4-1. Hence, an episode can also be defined as a directed

multigraph.

Figure 4-1: Typical WME pattern.

Let us consider a set of WME of an episode E be represented as W = (I, A, V),

where I, A, and V denotes the identifiers (unique symbols), attributes, and values

(identifiers or any other constant values) mapped by three natural projections φI(W),

φA(W), and φV (W), respectively.

For retrieval, a cue is provided that is partially the subset of an episode. Any cue

Q contains the finite set of WMEs (W1, W2,... ,Wn) such that for every consecutive

WME, Wi, and Wi+1, φI(Wi) = φV (Wi+1) and no two WMEs are matching.

During cue matching, an episode is considered to be fully matched to cue Q if

there is a satisfaction of following conditions:

• For any W ∈ E, E(φI(W)) = Q(φI(W))

• For any φV (W) = constant in Q , E(φV (W)) = Q(φV (W))

• For any W ∈ E, E(φA(W)) = Q(φA(W))

• If φI(Wi+1) = φV (Wi) in E, then φV (Wi+1) = φI(Wi) must be in Q

41

A cue Q provided for cue matching is used to generate the constraint network

graph where variables are nodes, and constraints are defined by edges between nodes.

These can be noted as:

• A set of variables X is a set of identifiers in cue Q

• The domain Dx of each variable x is all of the identifiers of working memory

graph

• The WME with constant value in cue defines unary constraint

• Other WME in cue defines the binary constraint

The constraint network graph is generated with the algorithm below:

Algorithm 4: Constraint network generator algorithm

Input : Cue Q and working memory graph wmg
Output: Constraint Network cn = (X,D,C)

1 function ConstraintNetworkGeneration(Q,wmg);
2 for all W ∈ Q do
3 a← Q(φI(W));
4 b← Q(φV (W));
5 X ← X ∪ {a};
6 if b ∈ I in wmg then

// binary constraint

7 Cab ← edges (attribute of that particular W);
8 X ← X ∪ {b};
9 C ← C ∪ {Cab};

10 else
// unary constraint

11 Ca ← edges (attribute of that particular W);
12 C ← C ∪ {Ca};
13 end

14 end
15 for all a ∈ X do

// domains

16 Da ← I ∩ Ca;
17 D ← D ∪ {Da};
18 end

42

The arc-consistency for structural graph match is performed with the following

algorithms:

Algorithm 5: Arc-Consistency algorithm

Input : Variables order, var = {x1, x2, ..., xn} and Constraint Network,
cn = (X,D,C)

Output: Consistent Network
1 function Arc-Consistency(var, cn);
2 for i← n to 1 do
3 for j < i s.t. Relji ∈ cn do

// Relji represent list of allowed value of pairs of values,

/* subset of Cartesian product: Dxi
,, Dxj

*/

4 Revise (xj, xi);

5 end

6 end

Algorithm 6: Revise function

Input : Variables xi and xj, their domains Dxi
and Dxj

and, constraint Relij
Output: Domain Dxi

s.t. xi is arc-consistent with xj
1 function Revise(xi, xj);
2 Dxi

← Dxi
∩ φi(Relij ./ Dxj

)

4.4 Evaluation Methodology

This section presents the environment used for generating the episodic memory

and the methods used for evaluation of structural matching. The above two ap-

proaches of CSP solver are used for full structural graph match. The total time taken

for querying is measured.

4.4.1 The TankSoar Environment

TankSoar is another pre-existing two-dimensional video game environment genre

known as a first person shooter. This is used to test episodic memory retrieval. In

43

this environment, an agent controls a tank in a 15*15 grid maze. This environment

has more features than the Eaters environment. The agent plays with numerous

sensors like path blockage, radar feedback, sound direction, smell, hearing, incoming

path, etc. It then performs multiple actions like turn, move, attack, chase, retreat,

controlling radar, shields, etc. Fig. 4-2 shows the typical TankSoar map with a

display board.

Figure 4-2: The TankSoar environment.

The TankSoar agent named obscure-bot is used where tank roams around the maps

and tries to knock down other tanks if present. To generate the episodic memory

pool, one of them populates episodes based on its sensing and action performed. This

agent is run multiple times to create several sized episodic memory (size of episodic

memory pools are provided in Appendix D). These memory pools are then used

for the evaluation of new structural graph-match algorithm in terms of query time.

For querying the generated memory, four different cues are created as described in

Subsection 4.4.2.

44

4.4.2 Evaluating Methods

For evaluation, four different types of cues which pose questions are created as

described below.

• When was I last at certain (x,y) position on my map?

• When did I last make a radar switch on?

• When did I last have full energy and health and rotate left?

• When did I last sense no blockage on left and I rotate left with radar-power

setting 13?

These cues can be viewed pictorially in graphical structure as following:

Figure 4-3: Different cue structures (a)cue 1 (b)cue 2 (c)cue 3 (d)cue 4 used
to search TankSoar episodic memory.

45

These cues are applied to query various sized episodic memory pool generated

from TankSoar using Soar architecture and the proposed algorithm. Query-time with

Soar and with the proposed one is accessed. The simulation is repeated five times for

each cue with each episodic memory pool and the average time taken for querying is

reported for each case. The comparison is done in terms of the query-time.

4.5 Experimental Results

To evaluate new CSP algorithms, four different test cues are provided. Then,

time consumed to query episodic memory by both the original Soar implementation

using SoarJavaDebugger and the proposed algorithm are measured. Fig. 4-4, Fig.

4-5, Fig. 4-6, and Fig. 4-7 show the query time results which compares the current

implementation of Soar to the proposed algorithm.

Figure 4-4: Query time of cue 1 from TankSoar episodic memory.

46

Figure 4-5: Query time of cue 2 from TankSoar episodic memory.

Figure 4-6: Query time of cue 3 from TankSoar Episodic Memory.

47

From the results obtained, it can be observed that the query time for both the

algorithms gradually increases as the episodic memory size grows. However, the rate

of increase in time is lower with our proposed algorithm. This is due to the multiple

expensive graph match in most of the cases with BT, whereas arc-consistency tightens

the constraints by assigning the domains to variables and removing multiple matches.

Figure 4-7: Query time of cue 4 from TankSoar episodic memory.

Fig. 4-5 shows that cue 2 requires large query time. This is because the number

of matching candidates is large. In every rotation step, TankSoar radar is switched

on. Moreover, the query time with BT is less than that of the proposed technique.

In some cases, if graph match phase occurs early, Soar is able to complete the search

early. Whereas in most of the cases, Soar implementation ended up having graph

match multiple times.

The proposed algorithm assigns domain to variables by single value to make arc-

consistent. This makes it backtrack free match and reduce the search time. The Soar

implementation attempts expensive graph match many times in most of the cases.

48

However, in some cases, the graph match that Soar implements happens earlier in

interval search. This results in quick completion of search in Soar. The proposed

algorithm for structural match performs graph match once in each search. It is also

able to reduce domain to single element each time to make arc-consistent.

4.6 Conclusion

In this chapter, the performance analysis of arc-consistency for structural graph

matching to retrieve an episode from TankSoar environment is presented. This ap-

proach removes the redundant values from the domains, which reduces the search

time. Arc-consistency also performs the graph match once in each search by reducing

the domain to a single element each time to make arc-consistent. The approach taken

in this thesis is able to reduce the time of querying as compared to that of original

implementation of Soar architecture.

Soar-EpMem has effective encoding techniques of episodic memory as well as a

cue matching approach. However, in some cases, the performance reduces due to fre-

quent backtracking caused by perfect match, but no graph match occurs. This thesis

proposes an arc-consistency as an alternative structural graph matching algorithm,

which tightens constraints by assigning domains to variables in which the need of

frequent backtracking is removed. This allows the new algorithm to perform better.

Hence, an episode retrieval time can be reduced through the implementation of

arc-consistency as CSP solver for an efficient structural graph matching algorithm.

49

Chapter 5

Conclusive Remarks

The ultimate goal of this research is to improve the performance of retrieval from

episodic memory in Soar through the incorporation of new techniques in two areas of

cue matching steps. The techniques proposed in chapters 3 and 4 serve as ways to meet

the objective of this research. Given that an episodic memory has been widely used

in intelligent systems, as run-time of system increases, the size of memory becomes

large, and retrieval time increases. A timely retrieval is required for the system to

have effective use of episodic memory.

The primary idea behind the proposed scheme is to introduce approximation to

lower the computational burden of working memory. Following that, implementation

of an arc-consistency algorithm is used to reduce the time of matching by removing

multiple backtracking.

Chapter 3 explains approximations of BLA and presents Eaters performance, ap-

plying different WMAs. The results prove that these approximations do not degrade

the overall performance of the agents by a great factor, and large efficiency in com-

putational time can be achieved as well. As the activation calculation is a part of

the cue matching step, approximations can be implemented to reduce the episode

retrieval time.

In chapter 4, a detailed work related to structural graph match as CSP and its so-

50

lution is discussed. The proposed algorithm is presented and tested with the episodic

memory generated with real testing environment, i.e. TankSoar. Also, from the re-

sults obtained, it can be concluded that the query time using arc-consistency is lower

in comparison to Soar implementation and the rate of increase of retrieval time is

minimized with respect to episodic memory size for most of the cues provided.

Hence, with implementation presented in this thesis, for the cue matching of

episodic retrieval, the episodic memory retrieval can be improved as the size of

episodic memory becomes large during a long run in cognitive systems.

5.1 Future Work

While this thesis demonstrated the possibility of reduction of retrieval time of

episodic memory, this section presents potential to have some of the probable future

directions this research can take.

In addition, research can take more details on approximation of activation in

working memory, which are needed to be studied with respect to working memory

size and management of working memory. Another future direction for this thesis

is applying the proposed algorithm of structural graph match, to be implemented in

Soar architecture and check the performance of an agent.

5.1.1 Improvement in Computational Model

The agent behavior based on the approximations of working memory activation

has been studied. Comparable results on performance are achieved. A detailed study

of working memory size and the management of working memory is to be examined as

a future goal. Moreover, the implementation of other computational models such as

biological based or abstract based models can be studied to enhance episodic learning.

51

5.1.2 Enhancement of Structural Graph Match

The implementation of arc-consistency for structural graph match reduces the

query time for most of the cases. The result produced has unusual cases with cues

having a large number of matching episodes. In the future, other CSP solvers that

best suit all types of cues needs to be studied.

5.1.3 More Complex Environment and Tasks

Additional domains and different sets of test cases for episodic memory also need

to be examined. TankSoar and Eaters are artificial computer games useful for initial

evaluation. However, exploring much longer runs for a larger episodic memory size

with much complex cases is of high importance. In addition, evaluating the perfor-

mance in real world environments is also a necessary action future research should

consider.

52

References

[1] E. Tulving et al., “Episodic and semantic memory,” Organization of memory,

vol. 1, pp. 381–403, 1972.

[2] J. Anderson and C. Lebiere, “The atomic components of thought lawrence erl-

baum,” Mathway, NJ, 1998.

[3] J. R. Anderson, How can the human mind occur in the physical universe? Oxford

University Press, 2009.

[4] P. Langley, “Cognitive architectures and general intelligent systems,” AI maga-

zine, vol. 27, no. 2, p. 33, 2006.

[5] R. Sun, “The clarion cognitive architecture: Extending cognitive modeling to

social simulation,” Cognition and multi-agent interaction, pp. 79–99, 2006.

[6] D. E. Kieras and D. E. Meyer, “An overview of the epic architecture for cogni-

tion and performance with application to human-computer interaction,” Human-

computer interaction, vol. 12, no. 4, pp. 391–438, 1997.

[7] A. M. Nuxoll and J. E. Laird, “Extending cognitive architecture with episodic

memory,” Ann Arbor, vol. 1001, pp. 48 109–2121, 2007.

[8] N. Derbinsky and J. E. Laird, “Efficiently implementing episodic memory,” in

International Conference on Case-Based Reasoning. Springer, 2009, pp. 403–

417.

53

[9] A. Newell, “The william james lectures, 1987. unified theories of cognition,” 1990.

[10] J. E. Laird, The Soar cognitive architecture. MIT press, 2012.

[11] D. G. Tecuci and B. W. Porter, A generic memory module for events, 2007,

vol. 68, no. 09.

[12] G. Gillund and R. M. Shiffrin, “A retrieval model for both recognition and recall.”

Psychological review, vol. 91, no. 1, p. 1, 1984.

[13] J. R. Anderson and G. H. Bower, “Recognition and retrieval processes in free

recall.” Psychological review, vol. 79, no. 2, p. 97, 1972.

[14] E. Tsang, “Foundations of constraint satisfaction,” 1995.

[15] V. Kumar, “Algorithms for constraint-satisfaction problems: A survey,” AI mag-

azine, vol. 13, no. 1, p. 32, 1992.

[16] R. Dechter, Constraint processing. Morgan Kaufmann, 2003.

[17] K. D. Forbus, D. Gentner, and K. Law, “Mac/fac: A model of similarity-based

retrieval,” Cognitive science, vol. 19, no. 2, pp. 141–205, 1995.

[18] M. Lenz and H.-D. Burkhard, “Case retrieval nets: Basic ideas and extensions,”

in Annual conference on artificial intelligence. Springer, 1996, pp. 227–239.

[19] S. Wess, K.-D. Althoff, and G. Derwand, “Using kd trees to improve the retrieval

step in case-based reasoning,” in European Workshop on Case-Based Reasoning.

Springer, 1993, pp. 167–181.

[20] R. H. Stottler, A. L. Henke, and J. A. King, “Rapid retrieval algorithms for

case-based reasoning.” in IJCAI, vol. 89. Citeseer, 1989, pp. 233–237.

[21] A. G. Francis and A. Ram, “The utility problem in case-based reasoning,” in

Case-Based Reasoning: Papers from the 1993 Workshop, 1993, pp. 160–161.

54

[22] S. Fox, D. B. Leake et al., “Using introspective reasoning to refine indexing,” in

IJCAI, 1995, pp. 391–399.

[23] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-based

learning algorithms,” Machine learning, vol. 38, no. 3, pp. 257–286, 2000.

[24] D. W. Patterson, N. Rooney, and M. Galushka, “Efficient retrieval for case-based

reasoning.” in FLAIRS Conference, 2003, pp. 144–149.

[25] D. W. Patterson, M. Galushka, and N. Rooney, “An effective indexing and re-

trieval approach for temporal cases.” in FLAIRS Conference, 2004, pp. 190–195.

[26] M. D. Jære, A. Aamodt, and P. Skalle, “Representing temporal knowledge

for case-based prediction,” in European Conference on Case-Based Reasoning.

Springer, 2002, pp. 174–188.

[27] W. Wang, B. Subagdja, A.-H. Tan, and J. A. Starzyk, “A self-organizing ap-

proach to episodic memory modeling,” in Neural Networks (IJCNN), The 2010

International Joint Conference on. IEEE, 2010, pp. 1–8.

[28] D. Wang, A.-H. Tan, and C. Miao, “Modeling autobiographical memory in

human-like autonomous agents,” in Proceedings of the 2016 International Con-

ference on Autonomous Agents & Multiagent Systems. International Foundation

for Autonomous Agents and Multiagent Systems, 2016, pp. 845–853.

[29] W. Wang, B. Subagdja, A.-H. Tan, and J. A. Starzyk, “Neural modeling of

episodic memory: Encoding, retrieval, and forgetting,” IEEE transactions on

neural networks and learning systems, vol. 23, no. 10, pp. 1574–1586, 2012.

[30] L. Shastri, “Episodic memory and cortico–hippocampal interactions,” Trends in

cognitive sciences, vol. 6, no. 4, pp. 162–168, 2002.

55

[31] A. Nuxoll, “Enhancing intelligent agents with episodic memory,” University

of Michigan. [Online]. Available: https://deepblue.lib.umich.edu/bitstream/

handle/2027.42/57720/anuxoll 1.pdf?sequence=2&isAllowed=y

[32] B. V. Dasarathy, “Nearest neighbor ({NN}) norms:{NN} pattern classification

techniques,” 1991.

[33] G. M. Landau and U. Vishkin, “Fast parallel and serial approximate string

matching,” Journal of algorithms, vol. 10, no. 2, pp. 157–169, 1989.

[34] W. A. Burkhard, “Hashing and trie algorithms for partial match retrieval,” ACM

Transactions on Database Systems (TODS), vol. 1, no. 2, pp. 175–187, 1976.

[35] J. W. Grzymala-Busse and A. Y. Wang, “Modified algorithms lem1 and lem2

for rule induction from data with missing attribute values,” in Proc. of the Fifth

International Workshop on Rough Sets and Soft Computing (RSSC’97) at the

Third Joint Conference on Information Sciences (JCIS’97), Research Triangle

Park, NC, 1997, pp. 69–72.

[36] J. Hakkinen and J. Tian, “N-gram and decision tree based language identification

for written words,” in Automatic Speech Recognition and Understanding, 2001.

ASRU’01. IEEE Workshop on. IEEE, 2001, pp. 335–338.

[37] G. Hua and A. Akbarzadeh, “A robust elastic and partial matching metric for

face recognition,” in Computer Vision, 2009 IEEE 12th International Conference

on. IEEE, 2009, pp. 2082–2089.

[38] N. Cercone, A. An, and C. Chan, “Rule-induction and case-based reasoning:

Hybrid architectures appear advantageous,” IEEE Transactions on Knowledge

and Data Engineering, vol. 11, no. 1, pp. 166–174, 1999.

56

[39] A. K. Mackworth, “Consistency in networks of relations,” in Readings in Artifi-

cial Intelligence. Elsevier, 1981, pp. 69–78.

[40] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Minimizing conflicts:

a heuristic repair method for constraint satisfaction and scheduling problems,”

Artificial Intelligence, vol. 58, no. 1-3, pp. 161–205, 1992.

[41] J. Boutheina and K. Ghédira, “On the enhancement of the informed backtracking

algorithm,” in International Conference on Principles and Practice of Constraint

Programming. Springer, 2003, pp. 967–967.

[42] J. Gaschnig, “A general backtrack algorithm that eliminates most redundant

tests.” in IJCAI, 1977, p. 457.

[43] K. Ghédira, Constraint satisfaction problems: csp formalisms and techniques.

John Wiley & Sons, 2013.

[44] C. Bessiere, K. Stergiou, and T. Walsh, “Domain filtering consistencies for non-

binary constraints,” Artificial Intelligence, vol. 172, no. 6-7, pp. 800–822, 2008.

[45] R. Mohr and T. C. Henderson, “Arc and path consistency revisited,” Artificial

intelligence, vol. 28, no. 2, pp. 225–233, 1986.

[46] K. Mizuno, Y. Fukui, and S. Nishihara, “Urban traffic signal control based on

distributed constraint satisfaction,” in Hawaii International Conference on Sys-

tem Sciences, Proceedings of the 41st Annual. IEEE, 2008, pp. 65–65.

[47] P.-A. Yvars, “Using constraint satisfaction for designing mechanical systems,”

International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 2,

no. 3, pp. 161–167, 2008.

57

[48] A. Vera, A. Howes, M. McCurdy, and R. L. Lewis, “A constraint satisfaction ap-

proach to predicting skilled interactive cognition,” in Proceedings of the SIGCHI

conference on Human factors in computing systems. ACM, 2004, pp. 121–128.

[49] S. Benbernou and M.-S. Hacid, “Resolution and constraint propagation for se-

mantic web services discovery,” Distributed and Parallel Databases, vol. 18, no. 1,

pp. 65–81, 2005.

[50] G. Bella, S. Bistarelli, and S. N. Foley, “Soft constraints for security,” Electronic

Notes in Theoretical Computer Science, vol. 142, pp. 11–29, 2006.

[51] B. Faltings, T. Léauté, and A. Petcu, “Privacy guarantees through distributed

constraint satisfaction,” in Web Intelligence and Intelligent Agent Technology,

2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, vol. 2. IEEE,

2008, pp. 350–358.

[52] I. Crabtree, “Resource scheduling: comparing simulated annealing with con-

straint programming,” BT Technology Journal, vol. 13, no. 1, pp. 121–127, 1995.

[53] S. Lawrence, “Resource constrained scheduling: An experimental investigation

of heuristic scheduling techniques. graduate school of industrial administration,”

1984.

[54] N. Guerinik and M. Van Caneghem, “Solving crew scheduling problems by con-

straint programming,” in International Conference on Principles and Practice

of Constraint Programming. Springer, 1995, pp. 481–498.

[55] J. David and T. Chew, “Constraint-based applications in production planning:

examples from the automotive industry,” Proceedings of Practical Applications of

Constraint Technology (PACT’95). Practical Applications Company, Blackpool,

UK, pp. 37–51, 1995.

58

[56] P. Shaw, “Using constraint programming and local search methods to solve ve-

hicle routing problems,” in International conference on principles and practice

of constraint programming. Springer, 1998, pp. 417–431.

[57] M. Dincbas, H. Simonis, and P. Van Hentenryck, “Solving the car-sequencing

problem in constraint logic programming.” in ECAI, vol. 88, 1988, pp. 290–295.

[58] U. Montanari, “Networks of constraints: Fundamental properties and applica-

tions to picture processing,” Information sciences, vol. 7, pp. 95–132, 1974.

[59] P. Blache, “Constraints, linguistic theories, and natural language processing,” in

International Conference on Natural Language Processing. Springer, 2000, pp.

221–232.

[60] P. Van Beek, “Reasoning about qualitative temporal information,” Artificial

intelligence, vol. 58, no. 1-3, pp. 297–326, 1992.

[61] P. Moore, M. Jackson, and B. Hu, “Constraint satisfaction in intelligent context-

aware systems,” in Complex, Intelligent and Software Intensive Systems (CISIS),

2010 International Conference on. IEEE, 2010, pp. 75–80.

[62] P. G. Kolaitis and M. Y. Vardi, “Conjunctive-query containment and constraint

satisfaction,” Journal of Computer and System Sciences, vol. 61, no. 2, pp. 302–

332, 2000.

[63] A. A. Petrov, “Computationally efficient approximation of the base-level learning

equation in act-r,” in Proceedings of the seventh international conference on

cognitive modeling. Citeseer, 2006, pp. 391–392.

[64] R. Chong, “The addition of an activation and decay mechanism to the soar

architecture,” in Proc. of the 5th Intl. Conf. on Cognitive Modeling, 2003, pp.

45–50.

59

[65] A. Nuxoll and J. E. Laird, “A cognitive model of episodic memory integrated

with a general cognitive architecture.” in ICCM. Citeseer, 2004, pp. 220–225.

60

Appendix A

CSoar Program for Eaters Agent

epmem −−s e t l e a r n i n g on

epmem −−s e t t r i g g e r dc

epmem −−s e t ba lance 0

epmem −−s e t graph−match o f f

epmem −−s e t database f i l e

epmem −−s e t path f irstBLA . db

epmem −−s e t append on

wma −−s e t a c t i v a t i o n on

################## I n i t i a l i z a t i o n operator

sp {propose∗ i n i t i a l i z e −ea t e r

(s t a t e <s> ˆ s u p e r s t a t e n i l

−ˆname)

−−>

(<s> ˆ operator <o> +)

(<o> ˆname ea t e r)

(cmd c l og | f oo . l og |)

61

(cmd c l og −c)

}

sp {apply∗ i n i t i a l i z e −ea t e r

(s t a t e <s> ˆ operator <op>)

(<op> ˆname ea t e r)

−−>

(<s> ˆname ea t e r

ˆ count 0)

}

c l e a n s the output−l i n k once commands complete

sp {apply∗ cleanup ∗output−l i n k

(s t a t e <s> ˆ operator <op>

ˆ s u p e r s t a t e n i l

ˆ i o . output−l i n k <out>)

(<out> ˆ<cmd> <id>)

(<op> ˆname move)

(< id> ˆ s t a t u s)

−−>

(<out> ˆ<cmd> <id> −)

}

######################## misc u s e f u l e l a b o r a t i o n r u l e s

sp { e l a b o r a t e ∗ s t a t e ∗name

(s t a t e <s> ˆ s u p e r s t a t e . operator . name <name>)

−−>

(<s> ˆname <name>)

}

62

sp { e l a b o r a t e ∗ s t a t e ∗top−s t a t e

(s t a t e <s> ˆ s u p e r s t a t e . top−s t a t e <ts>)

−−>

(<s> ˆtop−s t a t e <ts>)

}

sp { e l a b o r a t e ∗top−s t a t e ∗top−s t a t e

(s t a t e <s> ˆ s u p e r s t a t e n i l)

−−>

(<s> ˆtop−s t a t e <s>)

}

sp { e l a b o r a t e ∗ s t a t e ∗ i o

(s t a t e <s> ˆ s u p e r s t a t e . i o <io>)

−−>

(<s> ˆ i o <io>)

}

#######################################

sp {propose∗move

(s t a t e <s> ˆname ea t e r

ˆ i o . input−l i n k .my−l o c a t i o n .

<dir >. content

{ <content> <> wal l })

−−>

63

(<s> ˆ operator <o> +)

(<o> ˆname move

ˆ d i r e c t i o n <dir>

ˆ content <content>)

(wr i t e | | <dir >)

(wr i t e | | <content> (c r l f))

}

sp { ea t e r ∗ e l a b o r a t e ∗move−t i e

(s t a t e <s> ˆ impasse t i e

ˆ a t t r i b u t e operator

ˆ c h o i c e s mu l t ip l e

ˆ s u p e r s t a t e . name ea t e r)

−−>

(<s> ˆname move−t i e)

(wr i t e | ” e l a b o r a t e ∗move t i e ” | (c r l f))

}

sp {propose∗move−t i e ∗ eva luate

(s t a t e <s> ˆname move−t i e

ˆ item <ss−op>

−ˆeva luated . name <dir >)

(<ss−op> ˆ d i r e c t i o n <dir >)

−−>

(<s> ˆ operator <o> + =)

64

(<o> ˆname eva luate

ˆ d i r e c t i o n <dir >)

(wr i t e | | <dir> (c r l f))

(wr i t e | ” propose∗move−t i e ∗ eva luate ” | (c r l f))

}

##

sp {propose∗ eva luate ∗query

(s t a t e <s> ˆname eva luate

−ˆepmem . command . query

−ˆepmem . command . next)

−−>

(<s> ˆ operator <o> + =)

(<o> ˆname query)

(wr i t e | ” propose∗ eva luate ∗query ” | (c r l f))

}

sp {apply∗query

(s t a t e <s> ˆ operator <o>

ˆepmem . command <cmd>

ˆ s u p e r s t a t e . operator . d i r e c t i o n <dir1 >)

(<o> ˆname query)

−−>

(<cmd> ˆ query <q>)

(<q> ˆ i o <io>)

(< io> ˆoutput−l i n k . move . d i r e c t i o n <dir1 >)

(< io> ˆ input−l i n k . foo <bar>)

65

}

###

sp {propose∗ eva luate ∗ r e s u l t

(s t a t e <s> ˆname eva luate

ˆepmem . command . query

ˆepmem . r e s u l t .<< s u c c e s s f a i l u r e >>)

−−>

(<s> ˆ operator <op> + =)

(<op> ˆname r e s u l t)

}

sp {apply∗ r e s u l t ∗ f a i l u r e

(s t a t e <s> ˆ operator <op>

ˆepmem <epmem>

ˆ s u p e r s t a t e <ss>

ˆ qu i e s c ence t)

(<ss> ˆ operator <ss−op>)

(<op> ˆname r e s u l t)

(<epmem> ˆ r e s u l t . f a i l u r e

ˆcommand . query . i o . output−l i n k .

move . d i r e c t i o n <dir >)

−−>

(<ss> ˆ eva luated <e>)

(<e> ˆname <dir>

ˆ found f

ˆ value 0)

66

(wr i t e | | f a i l u r e)

(wr i t e | | <dir> (c r l f))

}

###

sp {apply∗ r e s u l t ∗ s u c c e s s

(s t a t e <s> ˆ operator <op>

ˆepmem <epmem>

ˆepmem . command <cmd>

ˆ s u p e r s t a t e <ss>)

(<epmem> ˆ r e s u l t . r e t r i e v e d . i o . input−l i n k . e a t e r . s c o r e <v1>)

(<cmd> ˆ query <q>)

−−>

(<cmd> ˆ query <q> −

ˆ next <n>)

(<s> ˆ f i r s t −s co r e <v1>)

(wr i t e | | f i r s t −s co r e (c r l f))

}

sp {propose∗ eva luate ∗ r e s u l t 2

(s t a t e <s> ˆname eva luate

ˆepmem . command . next

ˆepmem . r e s u l t .<< s u c c e s s f a i l u r e >>)

−−>

(<s> ˆ operator <op> + =)

(<op> ˆname r e s u l t 2)

}

sp {apply∗ r e s u l t 2 ∗ s u c c e s s

67

(s t a t e <s> ˆ operator <op>

ˆepmem <epmem>

ˆ s u p e r s t a t e <ss>

ˆ f i r s t −s co r e <f1>)

(<ss> ˆ operator . d i r e c t i o n <dir >)

(<op> ˆname r e s u l t 2)

(<epmem> ˆ r e s u l t . r e t r i e v e d . i o . input−l i n k . e a t e r . s c o r e <v>)

−−>

(<ss> ˆ eva luated <e>)

(<e> ˆname <dir>

ˆ found t

ˆ value (+ (− <f1>) <v>))

(wr i t e (c r l f) | | s u c c e s s)

(wr i t e (c r l f) | | <v>)

(wr i t e (c r l f) | | (− <f1 >))

}

##

sp {propose∗move−t i e ∗copy

(s t a t e <s> ˆname move−t i e)

−−>

(<s> ˆ operator <op> + <)

(<op> ˆname copy)

}

sp {apply∗copy

(s t a t e <s> ˆ operator <op>

68

ˆ s u p e r s t a t e <ss>

ˆ item <ss−op>

ˆ eva luated <e>)

(<op> ˆname copy)

(<ss−op> ˆ d i r e c t i o n <dir >)

(<e> ˆname <dir>

ˆ value <v>)

−−>

(<ss> ˆ operator <ss−op> = <v>)

(wr i t e (c r l f) | | <dir >)

(wr i t e | | <v> (c r l f))

}

#######################################

sp {apply∗move

(s t a t e <s> ˆ i o . output−l i n k

ˆ operator <o>

ˆ i o . input−l i n k . e a t e r . s c o r e <score >)

(<o> ˆname move

ˆ d i r e c t i o n <dir >)

−−>

(<s> ˆ operator <o> + =)

(<o> ˆname remove)

(ˆmove . d i r e c t i o n <dir >)

69

(wr i t e (c r l f) |move d i r e c t i o n : | <dir> (c r l f))

(wr i t e (c r l f) | s co r e : | <score> (c r l f))

}

Apply∗move∗remove−move :

I f the move operator i s s e l e c t e d ,

and there i s a completed move command on the output l ink ,

then remove that command .

sp {apply∗move∗remove−move

(s t a t e <s> ˆ i o . output−l i n k

ˆ operator . name remove)

(ˆmove <mv>)

(<mv> ˆ s t a t u s complete)

(ˆ<cmd> <id>)

−−>

(ˆmove <mv> −)

(wr i t e | ”move removed ” | (c r l f))

}

70

Appendix B

Episodic Memory: Evaluation Cues

for TankSoar

Cue 1 . (<cmd> ˆ query <cue>)

(<cue> ˆ i o <io>)

(< io> ˆ input−l i n k < i l >)

(< i l > ˆx 1)

(< i l > ˆy 1)

Cue 2 . (<cmd> ˆ query <cue>)

(<cue> ˆ i o <io>)

(< io> ˆoutput−l i n k)

(ˆ radar <sw>)

(<sw> ˆ switch on)

Cue 3 . (<cmd> ˆ query <cue>)

(<cue> ˆ i o <io>)

(< io> ˆ input−l i n k < i l >)

(< io> ˆoutput−l i n k)

71

(ˆ r o t a t e <dir >)

(<dir> ˆ d i r e c t i o n l e f t)

(< i l > ˆ hea l th 1000)

(< i l > ˆ energy 1000)

Cue 4 . (<cmd> ˆ query <cue>)

(<cue> ˆ i o <io>)

(< io> ˆ input−l i n k < i l >)

(< io> ˆoutput−l i n k)

(ˆ r o t a t e <dir >)

(<dir> ˆ d i r e c t i o n l e f t)

(ˆ radar−power <set >)

(< set> ˆ s e t t i n g 13)

(< i l > ˆ blocked)

(ˆ l e f t no)

72

Appendix C

Eaters Agent Simulation Results

Table C.1: Comparison of three activation functions using average score of
Eaters agent after 100 actions.

Activation Functions Iteration 1 Iteration 2 Iteration 3
Base-level 371 458 506
Petrov’s Approximation 349 411 445
Improved Approximation 370 421 491

73

Appendix D

TankSoar Episodic Memory Log

and Query Time For Retrieval

Table D.1: TankSoar episodic memory log with number of episodes.

S.N. Number of Episodes Tag
1 11142 Ep1
2 51807 Ep2
3 109793 Ep3
4 160087 Ep4
5 201116 Ep5
6 324771 Ep6

Table D.2: Total query time of four different cues for TankSoar episodic
memory.

Tag
Query Time for Different Cues

Cue 1 Cue 2 Cue 3 Cue 4
BT AC BT AC BT AC BT AC

Ep1 51.752 42.328 63.541 69.342 59.5824 47.3486 54.8424 33.834
Ep2 90.964 47.828 319.051 411.434 90.3942 56.0046 92.7468 36.508
Ep3 142.2986 52.85 638.789 874.82 144.49 68.638 145.554 43.728
Ep4 184.0808 62.822 956.761 1413.83 181.327 75.664 175.907 57.784
Ep5 239.5742 67.542 1410.44 2251.3 327.123 87.348 235.161 65.01
Ep6 324.5454 76.998 2236.22 4432.42 353.916 103.42 337.296 90.196

74

