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There has been tremendous growth in the quality of communication in the human-

computer interaction field. Some of the focus areas have included intelligent adaptive

interfaces, and multi modality.

An emerging topic in this field of research involves optimal collaboration between

humans and machines to achieve a particular goal. One approach to such a goal

involves sliding-scale autonomy, in which a machine is designed to dynamically adjust

between different levels of autonomy based on a variety of factors, such as the skill

level, workload, and behavior of the human operator.

This thesis proposes a system to dynamically predict skill level and workload for

pilots on a flight simulator using classification and regression algorithms, respectively.

The proposed system uses the pilot's heart rate variability and flight control data.

The flight control data includes pilot interactions, such as throttle and aileron, and

flight sensor data, such as latitude and longitude.

A user study on fifteen pilots was conducted, each flying the same five predefined

routes on a flight simulator. The results indicate that the flight control data alone is

sufficient to provide a near perfect classification of a pilot's skill level of either expert

or novice. On the other hand, it was found that a combination of flight control and

heart rate data produced a more accurate estimate of mental workload and effort.
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The findings provide the first step towards a sliding-scale autonomous system for

airplane pilots.
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Chapter 1

Introduction

1.1 Overview of Autonomous Systems

Most present-day engineering and technological systems possess autonomy to some

extent. Autonomy in these areas ideally means self-governing. The autonomy that

this kind of system holds is bound by a few parameters, within which it can safely

continue to work on its designated task. Such systems do not cause harm to mankind if

they work in an ideal manner, and are being controlled otherwise. Human supervision

is diligently required for sensitive tasks and in cases of uncertainty.

Autonomous systems have demonstrated that they significantly increase opera-

tional capabilities, such as those of armed forces. From [1], autonomous systems are

broadly defined into three types: intelligent, scripted and supervised systems.

• Intelligent autonomous systems use an intelligent autonomy technology to in-

still human intelligence attributes in the back end of the autonomous system

elements. This helps the system in decision making, interpretation, and collab-

oration with other networks and systems.

• Scripted autonomous systems require a preprogrammed script along with well-

defined physical models to accomplish the intended mission objective. Such

systems have no human interaction after they are deployed.
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• Supervised autonomous systems automate the functions of planning, sensing,

monitoring, and networking to carry out the activities associated with an au-

tonomous system. This is generally carried out by using the cognitive abilities of

human operators, via an interaction setup for decision making, to perceive the

meaning of sensor data, diagnose problems, and collaborate with other systems.

Following are some of the important internal processes that make up an au-

tonomous system:

• Planning and Decision: This process is responsible for developing mechanisms

for achieving system goals. This area often involves continuous human-machine

interaction (HMI) to complete tasks.

• Sensing and Perception: The sensing and perception processes collect and inter-

pret data from sensors and networks. This information is then used to develop

a map representation of the goal of the system.

• Monitoring and Diagnosis: These processes are responsible for fault detection

and to help prevent data loss, shut down systems, and isolate fault occurrences.

• Networking and Collaboration: The networking and collaboration process col-

laborates with other autonomous or manned systems in the surroundings with

the help of data links and information content.

• Human-System Interface: Humans are required to provide the objectives and

control measures at the beginning of the system design. They are needed to

interpret the data from the sensors, diagnose problems and authorize the func-

tions of the system.

However, giving more autonomy to systems does not always mean they can per-

form better on their own. In fact, it can even be counterproductive at times [2, 3].
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1.2 Overview of Discrete and Sliding-Scale Auton-

omy

Technological systems are being built to actively adapt to the ever-changing con-

ditions and requirements of a given objective. The design of such systems brings

about the need for adjustable autonomy based on the circumstances and nature of

the tasks. Systems with variable autonomy levels are known as discrete autonomy

systems [4]. These autonomy levels are resolved by a team of engineers/designers.

The robots at the Idaho National Laboratory are an instance of such a system [5].

A high degree of autonomy invariably means that the system can adjust and act

on its own accord, without any supervision. On the other hand, a low degree of

autonomy would require a high presence of human personnel involved in cognitive

tasks for that job and would usually entail a sensitive system.

An important fix in the technological advancement and autonomy sector is trust.

Knowing its limitations, the supervisor must be in a position to trust the process

and work of a machine. After trust has been initiated, the supervisor is then able to

transfer workload in the form of cognitive tasks to the machine [6]. The supervisor

need not know the working of the machine if he or she can understand its decisions.

Discrete systems contain only predefined autonomy levels, which does not allow for

the functions of the system to be modified. This clearly does not provide the operator

with the freedom to regulate the system performance.

In an optimal situation, the various levels of autonomy are based on the complexity

of the operating environment. Systems are now moving from discretely autonomous

to a more sliding-scale approach, providing the end user with much more flexibility

to determine the level of autonomy.

Having a provision to contain sliding-scale autonomy (SSA) greatly affects users,

as their performance is known to increase over a period. By providing a SSA for
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robots, [5] were successfully able to test the advantages of the system over the discrete

autonomous system in place. SSA allows the operator to choose the appropriate

level of control to achieve the task at hand. For tasks the system can handle semi-

autonomously, a high level of control can be used to reduce operator load. This

reduction in load allows the operator to control multiple systems at once, effectively

multiplying the operator's effectiveness. When the system fails or a task must be done

that the system cannot handle, the operator can then use a low level of control to

recover from the failure or perform the difficult task. SSA also reduces the bandwidth

required for operation of unmanned surface vehicles [7].

In 2008, Scott et al. proposed generic conditions for an effective SSA [8]:

1. The system must be capable of operating at different levels of autonomy.

2. The operator must have controls for each level of autonomy.

3. The operator must be able to select the level of autonomy being used.

4. The frequency in which the lower lever interfaces are used must be low.

Conditions 1 and 4 require the system to have significant autonomous capabilities,

while conditions 2 and 3 raise important user interface considerations.

1.3 Overview of Flight Simulation Experiments

Aircraft navigation is a complex time and workload pressured activity affected

by individual factors such as level of expertise and age and external factors such as

climate.

Simulator experiments have materialized to be an alternate way to implement

the practical training of pilots. Simulator settings allow pilots to be put through

additional scenarios and exercises that might not be feasible in practical situations and
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to also have supervision and an opportunity for repeated practices. These simulators

allow pilots to acquire practical scenario skills without having to encounter the same in

a real-life setting. Flight simulators allow pilots to use their domain relevant memory

in a realistic fashion when compared to typical paper and pencil assessments [9, 10].

Numerous studies have pointed that expert pilots were more likely to possess

flexible task management during difficult flight scenarios. There were also varied

decision making processes between expert and novice pilots and studies suggest that

expert pilots would adapt faster to the ever-changing situations [11]. In a similar

setting, expert pilots were found to be adept and knowledgeable when responding to

sudden changes in aviation tasks.

Human factors research has continued to signify that an extreme level of mental

workload decreases an individual's ability to react to incoming information and fur-

ther leads to the increased likelihood of human error. The analysis of mental work-

load has increasingly gained in popularity within the aviation domain [12]. Flight

experience has also shown to have some effect in heart rate (HR) responses to the

physiological workload of flying in a simulator. HR of an expert was seen to be lower

than that of novice pilots [13].

1.4 Overview of Workload

Humans are expected to perform, physically and mentally demanding tasks, es-

pecially with the current and future trends in the advancement of technology [14].

Workload is not only established by the nature of the tasks but also the situational

environment in which it is performed. Individual behavior and skills are also a factor

in determining workload. Tasks may vary from physical actions to cognitive tasks

and also depend on the abilities of the individual.

Subjective workload measures attempt to quantify the effort exerted during task
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performance, using numerical ratings that do not directly measure either task perfor-

mance or physiological responses to work. DiDomenico et al. and John Annet [15, 16]

suggest that an individual's subjective report of perceptions associated with physical

or mental work is generally reflected in the nature of the task, while its demands

are reflected on physical and mental resources. Subjective workload assessments are

based on an individual's personal feelings and perceptions [17].

Subjective ratings are influenced by the individual's current goals, motives, and

plans [16], but rely ultimately on an individual's ability to relate their sensations to

some quantitative measure [18]. Individual differences in response to physical and

mental demands compound the difficulty in understanding and measuring workload

levels.

Operator error prevention and relevant interference would allow for an accurate

evaluation of the mental workload in low and high workload scenarios [19, 20, 21, 22,

23].

Given the new demands and expectations placed on individuals during complex

task performance, the impact and interaction of physical and mental activity is a vital

determinant of overall workload levels.

1.5 Proposed Analysis Technique

The end goal of this research is to advance the current state-of-the-art in moni-

toring cognitive workload by developing sliding-scale autonomy algorithms based on

heart rate variability (HRV) and task-specific measures in order to enhance human-

machine teaming and adjustable autonomy.

Thus far, prior work on skill level, mental workload and effort prediction has not

taken advantage of data collected from both flight simulators and physiological data.

In this thesis, machine learning algorithms are applied to predict the skill level,
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mental workload, and mental and physical effort of the pilots when performing certain

tasks in a laboratory setting.

Both flight data and physiological data are collected and used for such predictions.

Six different supervised learning classification algorithms are applied to data collected

from subjects flying a flight simulator in a laboratory setting, to automatically de-

termine skill level. The usefulness of the HR data collected was also determined for

improving skill level prediction.

To determine a mental workload prediction, both flight and physiological data

are used in addition to the NASA Task Load Index (NASA-TLX) scores collected

to predict the mental workload on pilots flying through different route scenarios. A

similar methodology is also followed for the overall effort prediction. The usefulness

of the combined data models was also evaluated. The main findings are as follows:

• Using only flight control data, it is possible to obtain near-perfect classification

accuracy (0.99 area under the curve (AUC) in the leave-one-subject-out setting)

of a pilot’s skill level (novice or expert), whereas using only HR data resulted

in a weaker classifier (0.66 AUC).

• Standard regression models are unable to predict both mental workload and

effort on the 0-20 scale as measured using the NASA TLX self-report tool [14]

(R2 values around 0 for both predictions) in the leave-one-subject-out setting

using only flight control data, only HR data, or even a combination of the two

data sources.

• A two-stage predictor for the effort and mental workload was proposed, that

involves first predicting skill level followed by predicting the effort and mental

load using a combination of two regression models, one trained on experts only

and one on novices only. Using the two stage predictor on a combination of flight

and HR data, moderately accurate estimates of mental workload and effort are
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obtained (R2 values around 0.3 for mental workload and R2 values around 0.2

for effort).

1.6 Publications and Contributions to Thesis

The major publications and contributions of this research are presented in Table

1.1.

Table 1.1: Publications and contribution to thesis.

Type Contribution

Journal Paper Pilot Skill Level and Workload Prediction for Sliding-
Scale Autonomy

Source Code A re-usable library with MATLAB and Python source
code of the analysis pipeline
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1.7 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides an overview

of the prior work conducted in the areas of autonomy, workload and NASA-TLX.

Chapter 3 describes the data collection procedure and the details of the experimental

setup. Chapter 4 elaborates on the proposed methodology, which includes feature

construction, and also discusses the machine learning algorithms used in the thesis.

It also discusses the proposed analysis followed for the prediction of skill level, mental

workload, and effort. Chapter 5 discusses the experimental results from the predic-

tions. Chapter 6 provides a summary of the thesis and suggests a path for future

research.

Moreover, the thesis includes an appendix that contains an elaborate list of the

features extracted and results from the IMWUT paper.
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Chapter 2

Literature Review

2.1 Review of Autonomy

The advent of autonomous systems has led to tremendous amounts of increase in

production and service of machinery. This improvement in productivity is achieved by

increasing the number of systems in each person's control. The processing capability

of humans is limited, which limits the amount of attention to be devoted to each

system. This can be overcome by adding intelligence to the systems, thereby allowing

them to operate in autonomous and semi-autonomous modes.

Autonomy can be used to determine the effectiveness of the human-machine team.

Due to the multidisciplinary nature of the human-machine interaction, autonomy

has been conceptualized in a disparate way. Autonomy has been applied in varying

degrees to a wide variety of sectors such as health care nursing tasks [24], domestic

assistance [25], search and rescue [26], and education [27]. Due to the wide range

of service applications, human-machine interaction is often necessary, and systems of

varying autonomy levels are expected to interact with humans having limited or no

formal training [28].

The earliest categorization for the various modes of automation was proposed

by Sheridan et al. [29]. They deduced a ten-point scale and categorized a higher
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level of automation as representing increased autonomy and lower levels as decreased

autonomy. The scale is shown in Table 2.1. This taxonomy specified what information

was communicated to the human as well as allocation of function split between the

human and automation. However, the scale used for taxonomy was restricted to a

particular set of discernible points along the continuum of automation and was applied

mainly to the output functions of decision making and action selection. One of the

disadvantages of the scale was the lack of detailed specification of input functions

which was related to the way in which information was acquired.

Table 2.1: Decision making automation levels (Sheridan & Verplank).

Level of
Automation

Description

1.
The computer offers no assistance; the human must
make all decisions and actions

2. The computer offers a complete set of decision/action alternatives, or

3. Narrows the selection down to a few, or
4. Suggests one alternative, and
5. Executes that suggestion if the human approves, or
6. Allows the human a restricted veto time before automatic execution

7. Executes automatically, then necessarily informs the human, and

8. Informs the human only if asked, or
9. Informs the human only if it, the computer, decides to
10. The computer decides everything, acts autonomously, ignores the human

This 10 point scale was created on a general notion. In 1999, Endsley et al. in

[30] proposed a revised taxonomy with greater specificity on input functions. The

automation levels have been described with the help of the Endsley and Kaber model

[30]. They defined autonomy taxonomy into four generic models which include:

• monitoring - scanning displays

• generating - formulating options or strategies to meet goals

• selecting - deciding upon an option or strategy
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• implementing - acting out a chosen option

Parasuraman et al. in [31] suggested that stages of automation be classified as

input and output functions, which can be automated to differing degrees along a

continuum of fully manual to fully automated. The stages of automation included

the following:

(1) Information acquisition

(2) Information analysis

(3) Decision and action selection

(4) Action implementation.

The idea behind Parasuraman and colleagues' model was to provide an objective

basis for making the choice to examine the extent required for the automation of the

task. The authors proposed a method to evaluate the consequences of the human

operator as well as the automation. This method was used to identify potential

design issues and provide a process to determine the appropriate levels or ranges of

automation.

In the information acquisition stage, automation was used for supporting the pro-

cesses related to sensing and registering input data. This stage of automation was

used for supporting the human sensory and perceptual processes, such as assisting

humans with monitoring environmental factors. In this stage, the automation in-

cluded systems that scan and observe the environment, such as radar, infrared, or

goggles. Automation was also used to organize sensory informations such as an auto-

mated air traffic control system that prioritizes aircraft for handling at higher levels

of information acquisition.

Automation that performed tasks similar to human cognitive function, such as

working memory, was categorized under the information analysis stage. Automation

in this stage was also used to provide integration of multiple input values, make

predictions, or summarize data to the user.
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In the decision selection stage, automation was chosen from decision alternatives.

Automation in this stage would help the medical doctors by providing recommenda-

tion for diagnosis or help with the navigational routes for aircraft in order to avoid

inclement weather.

In the last stage, the action implementation stage, automation was used to execute

the chosen action. As it was the end stage, the automation may complete all, or

subparts, of the task. The implementation stage was used to support an autopilot

function in an aircraft or to use automatic stapler in a photocopy machine.

The research conducted by Huang and colleagues supports the viewpoint stating

that higher autonomy requires less HMI [32, 33, 34]. Their research was mainly

focused on developing a framework for autonomy and metrics used to measure robot

autonomy. Although this framework was used primarily within military applications,

the general framework has been cited more generally as a basis for human-machine

interactive autonomy [35].

In [32], a negative linear correlation between frequency of interaction and auton-

omy was developed, and it was suggested that as the level of autonomy increased,

the interaction frequency decreased. Their model included constructs such as human

intervention, operator workload, operator skill level, and the operator-to-robot ratio.

Similarly, other researchers have also proposed that higher robot autonomy requires

less HMI [35]. Autonomy has been described as the amount of time that a person

can neglect the system, and neglect time refers to the measure of how the systems

task effectiveness declines over time when the system is neglected by the user [36].

There is a striking contradiction between the idea that higher autonomy re-

duces the frequency of interaction and the traditional concept proposed by HMI

researchers that higher robot autonomy enables more sophisticated interaction [28,

37, 38]. Goodrich et al. concluded that it would be harder to achieve autonomous

robots that engage in peer-to-peer collaboration with humans without social interac-
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tion [38].

The role of the system and human in the HMI distinguishes two conceptualizations

of autonomy [39, 40, 41, 42]. Intervention and interaction most likely defines the

role of a human being in connection to the system autonomy. On the other hand,

intervention could also be interpreted as a specific type of interaction, as suggested in

[32], which refers to the frequency of human control. However, performance problems

(e.g., [43, 44]) can be caused by a system acting autonomously without intervention

and reflects the human out-of-the-loop phenomenon in automation. The frequency

of intervention may be more applicable when the role of the user or human being

is to operate the robot (e.g. tele-operation or monitoring). On the other hand, the

sophistication of the interaction might be more applicable when the role of the human

is that of a bystander (e.g. social partner, coworker, or supervisor). Intervention

and interaction should be considered simultaneously when determining the level of

autonomy among the robots. This can be achieved by evaluating the amount and

level of interaction that is required.

Ideally, higher autonomy levels are desirable, but this requires effort, and the

design of such systems must be reliable. The relation between human intervention

and failure rate is almost linear in nature. In terms of cost effect, the ideal solution

would be to lower the failure rate to a point at which it is cheaper for a human to

intervene rather than to undergo system failure. To use this solution, the human

must occasionally have access to low levels of control to recover from system failures

while performing most operations at a high level of control to reduce operator load.

Bradshaw et al., in [45], described adjustable autonomy as “the system being

governed at a sweet spot between convenience and comfort.” Altering the level of

autonomy in certain ways would allow the researcher to get mixed-initiative interac-

tion. [45] used an interesting vacuum cleaner analogy to explain to the researchers,

the concept of mixed-initiative interaction. He stated that the most manual machine
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was a simple vacuum cleaner operated by a human arm. Apart from the motor, all

its actions were supervised by the human. The opposite, a fully-autonomous vacuum

cleaner, turned itself on, vacuumed until it decided that it had finished and then

retreated back to its storage place to recharge. This vacuum cleaner required no

action or initiation from the user. Such a type of mixed-initiative interaction can be

achieved at varying levels.

In addition to dealing with communication delays, adjustable autonomy has also

been applied to problems in which human workload and safety are considerations. The

concept has been applied in both software [46, 47] and hardware agents [48]. Although

promising, challenges in creating systems that effectively employ adjustable autonomy

include issues in mixed initiatives [48, 49], intervention, responsibility, and trust [50].

Researchers from aviation and other human-factors areas provide meaningful insights

into the application of adjustable autonomy in the HMI domain [51].

For many of the applications in which adjustable autonomy and mixed initiatives

are appropriate, it is desirable to allow the human to interact with the system as

naturally as possible. This led to research in advanced interfaces, such as gesture

recognition [52, 53], emotive computing [54], natural language-based interfaces, and

virtual reality-based displays [55]. Additionally, this also led to research in systems

learning from human operators [56] and research in designing intelligent interface

agents [57].

The key element in mixed initiative systems is the on-running dialogue between

human and machine, in which both parties share responsibility for mission safety and

success. This work was well characterized by [58], who emphasized a system centered

view to HMI. Related concepts are also present in some approaches to share control

[59] as well as in situation-adaptive autonomy in aviation automation [51].

SSA allows the operator to choose the appropriate level of control to achieve the

task at hand. For tasks that the system can handle semi-autonomously, a high level
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of control can be used to reduce operator load. This reduction in load allows the

operator to control multiple systems at once, effectively multiplying the operators

effectiveness. When the system fails or a task must be done that the system cannot

handle, the operator can use a low level of control to recover from the failure or

perform the difficult task. SSA also reduces the bandwidth required for operating the

systems.

2.2 Review of Workload

Over the past few years, the high intensity work-life of aircraft pilots and air

traffic control operators has led attention to the area of workload. Increase in task

demands are highly correlated to the subject's capabilities, which may lead to errors

in human factor issues, which become critical for safety. In 1986, Gopher et al. in

[60] provided a state of the art review of workload and its definitions. In 2003, [61]

presented a current review of the workload measurement methods and suggested a few

professional recommendations on various techniques for use in simulations involving

humans. Castor et al. in [62] provided an assessment process to help choose among

the different measures depending on the phenomenon under study.

Task complexity is directly related to mental demand and increases in the process-

ing stages for a task requirement. Both mental demand and task complexity depend

on the goals set for task performance. Task difficulty is related to the processing effort

that is required by the individual and is dependent on context, capacity, strategy, and

state of the allocation of resources.

In 1993, [63] pointed out that workload is not only task-specific but also person-

specific. Workload was further defined as the specified amount of information pro-

cessing for a task performance. It was elaborated that workload was dependent on the

individual and the interaction between task structure and operator, the same tasks
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did not result in an equal amount of workload for all individuals.

O'Donnell et al. in [64] provided an alternate definition of workload. They defined

workload as the portion of the operator's capacity required to perform a task. Years

later, [65, 66] stated that mental workload was dependent on the demands in relation

to the amount of resources the operator can allocate and is a relative concept.

To reduce the workload on operators, there have been numerous advancements and

developments in equipment design. Collision avoidance systems, driver impairment

navigation systems, and traffic information systems have been designed to help drivers

but this has resulted in an overload of information processing [67]. Scheduling is done

to prevent overload, but the operator's limitations must be considered while doing

so. High road-environment demands include having to merge in heavy traffic [68, 69],

while the effects of alcohol, monotony and fatigue have shown to increase workload

by a reduction in capacity [70].

Table 2.2: Factors affecting workload.

Driver State Affecting Factors Driver Trait Factors Environmental Factors
monotony experience road environment demands
fatigue age traffic demands
sedative drugs & alcohol strategy vehicle ergonomics

A list of factors affecting driver workload is explained in Table 2.2. The table dis-

plays driver state, trait, and environmental factors that influences workload. Factors

may either increase or decrease mental workload.

O'Donnel et al. in [64] defined primary-task performance as a measure of com-

prehensive effectiveness of man-machine interaction. They also stated that it was

required to involve task performance and workload measures to draw conclusions

about human-machine interaction and additionally learning more about the opera-

tor's strategy.

One of the requirements for psycho-physiological measures is to accurately study
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and predict mental workload as well as the reference data that establishes the subjects'

unstressed background state. In an ideal scenario, this would act as a baseline for the

evaluation of an individual specific experimental setting.

Recent studies have involved an operator's physiological measures to study the

overall workload during tasks. The advantages with these measures are that they can

be collected continuously, and they are relatively unobtrusive due to miniaturization.

Another advantage is that these measures do not require a response from the oper-

ator. Pupil diameter was found to be sensitive to global activation [71]. Similarly,

the evoked cortical brain potential was sensitive to particular stages of information

processing [72].

In 1992, [73] claimed that the main determinant in HR response in experience

pilots in the absence of physical effort is mental workload. However, in settings such

as laboratory experiments or automobile driving, the workload levels are lower than

pilot workload levels [74]. The HR is influenced by not only physical effort but also

emotional factors [75], such as high responsibility or the fear of failing a test [76].

Other factors affecting cardiac activity are speech and high G-forces [74]. Sedative

drugs and time-on-task results in fatigue which leads to a decrease in average HR

[77], while low amounts of alcohol are reported to increase HR [78].

In 1963, [79] suggested that HRV in the time domain can also be used to mea-

sure mental load. HRV decrease is more sensitive to increases in workload than HR

increase, despite there being several insensitivity reports for HR and HRV [80]. One

of the causes for finding no effect of mental load on HRV is due to the global nature

of the measure and its sensitivity to physical load. [75] showed that an increase in

physical load decreased HRV and increased HR, on the other hand, an increase in

mental load was followed by a reduced HRV and no effect on HR. Fatigue is reported

to increase HRV [77] while hand low amounts of alcohol decrease HRV [81].

Mascord et al. however, report an increase in HRV due to low amounts of alcohol
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and suggest that this phenomenon may be attributed to alcohol-induced fluctuations

in the autonomic control of HR [78]. A decrease in power in the mid frequency and

high frequency bands has been shown to be associated with mental effort and task

demands [76, 82, 83, 84].

[85, 86] concluded that spectral measures are primarily sensitive to task-rest dif-

ferences and do not moderate increases in difficulty within a task. Per [85], only

large differences, such as the transition from single to dual task or automatic vs.

controlled processing, can trigger observable differences on spectral measures. In the

higher workload regions in which performances are affected and overload emerges, the

sensitivity of the measure is nonlinear to increases in the workload [87].

Table 2.3: Alternate naming of heart rate measures.

Variable/Frequency band Abbreviation Alternative name, i = inverse (related)

Heart rate HR
Inter-beat-interval (IBI)i,
Heart Period (HP) i

Heart rate variability HRV
Sinus Arrhythmia, Variation
coefficient (Modulation index)

T-wave TWA T-wave Amplitude

Low frequency band LF
Temperature band,
Slow-wave component

High frequency band HF
Respiratory Sinus Arrhythmia,
V-component, Respiration band

In Table 2.3, alternative naming of HR measures and HRV-frequency bands are

listed.

Wilson et al. in [17] suggested that HR provided an index of overall workload.

Also, spectral analysis of HRV is more useful as an index of mental workload than

the time series features.

A restriction in the use of HR measures is that, due to the idiosyncratic nature of

the measure, operators are usually required to serve as their own control in workload

assessment [88, 89]. [90] recommended that no corrective action be taken in cases in

which the verbalization duration is short or in which speech is relatively infrequent.
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Another important factor influencing HRV is physical load. Finally, age may affect the

use of HR measures as restriction of subjects to specific age groups may be required

if HRV is the primary workload measure. HRV may decrease with increasing age due

to, amongst others, a decrease in blood vessel flexibility [91].

An alternate and easier method to calculate workload has been self-assessment

methods. These methods involve rating demands based on numerical or graphical

scales. Few subjective techniques use scales that are categorical such as the modified

Cooper-Harper scale. Other techniques are open ended, such as a standard reference

task which would work as an anchor in relation to other subject rated tasks. [92] sub-

divided rating scale methods into single-dimensional ratings such as overall workload,

hierarchical ratings such as the Bedford Scales, and multidimensional ratings such as

Subjective Workload Assessment Technique (SWAT) and NASA-TLX. The relevance

and usage of the NASA-TLX scales are elaborated in the following section.

2.3 Review of NASA-TLX

The NASA-TLX tool is one of the most widely used instruments for measuring

subjective workload. This tool provides an overall index of mental workload as well

as the relative contributions of six sub-scales: mental demands, physical demands,

and temporal demands, effort, frustration, and perceived performance.

The psychometric characteristics of the NASA-TLX are well documented, vali-

dated and were used initially by the Human Performance Group at the NASA Ames

Research Laboratory as a tool for subjective evaluation of individuals workload in

flight simulation [93, 94], air traffic control studies [95], automated and manual con-

trol [96], and vigilance tasks [97]. More recently, it has been used in a variety of

tasks outside of the aeronautical field including the medical domain [98, 99, 100], for

assessment of workload perception and clinical fields [101].
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A principal reason for the popularity of the NASA-TLX among researchers is

its ease of implementation. The multidimensionality of the NASA-TLX allows for a

more detailed analysis of the workload source relative to other techniques that are

based primarily on rankings of mental workload sources. The NASA-TLX is also very

portable and can be used in operational experiments.

[102] in 2004 compared three subjective workload instruments (SWAT, NASA-

TLX, and the Workload Profile) and showed that all three instruments had high

correlations (between 0.73 and 0.79) with one measure of performance but also showed

that NASA-TLX had a higher correlation than the two other instruments with a

second measure of performance. Concurrent validity of the NASA-TLX was found to

be higher than the concurrent validity of the other two workload instruments.

Some researchers have used modified versions of the original NASA-TLX. The

use of an unweighted or raw TLX (RTLX) is the most common, as high correlations

have been shown between the weighted and unweighted scores [103, 104]. Cao et al.,

modified the NASA-TLX sub-scales in their study of vehicle navigation systems [105].

Studies have explored the relationship between NASA-TLX ratings and other

performance factors, such as fatigue [106], stress [107], trust [108], experience [109],

and situational awareness [110]. Other NASA-TLX studies have involved measures

of physiological (e.g. cardiovascular, muscular, and skin-related or brain-related)

function thought to index different aspects of workload [111].

Research has shown the NASA-TLX to be favored most by subjects, when com-

pared with other subjective workload assessment techniques (e.g. SWAT, the Cooper-

Harper scale), and to be highly correlated with other measures of workload [112, 113].

In a review in 2006, [14] estimated that the NASA-TLX has been used in more

than 300 studies, mainly in air traffic control and civilian or military aviation. The

scores have also been used in a health care setting [114]. The literature indicates the

advantages of decision making and flight control of experts in a wide range of various
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tasks [115].
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Chapter 3

Data Collection

To achieve the project objectives, our colleagues at the Wright State Research

Institute (WSRI) and Perduco utilized a protocol that was reviewed and approved

by the Wright State University Institutional Review Board (SC# 6315). Under this

protocol, both expert and novice pilots were recruited from a local community. Novice

pilots were defined as individuals who had less than 40 hours of flight time, while

expert pilots were defined as having greater than 40 hours of flight time. The data

collection procedure is discussed in the following subsections.

A total of 15 pilots were considered for the experiments which included 12 novices

and 3 experts.

Table 3.1: Flight route description.

Flight Route Duration (minutes) Environment Difficulty
1 10 Daytime/Clear Easy
2 15 Nighttime/Clear Hard
3 15 Daytime/Clear Easy
4 15 Daytime/Cloudy Hard
5 10 Daytime/Clear Easy
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3.1 Data Collection Apparatus

An X-plane flight simulator [116] was used to measure flight metrics such as loca-

tion, plane orientation, and speed. Each subject was provided 10 minutes or less to

familiarize himself to the X-plane flight simulator less than one week prior to testing.

Each subject was asked to fly a Cessna aircraft over five different routes with varying

levels of difficulty, as described in Table 3.1.

Each flight was completed either by successfully reaching all the waypoints and

landing the aircraft or by crashing. The first and fifth flights were identical for direct

comparison of learning effects. The corresponding waypoints are shown in Figure

3-1. Heart rate measurements were collected from an ear-clip. The collected data

was synchronized and outputted in a time aligned format.

The data was collected at an operating frequency of 1 Hz. A NASA-TLX sur-

vey was administered after each flight as a subjective measure of workload, and the

subjects were also provided 5 minutes of rest.

Figure 3-1: Waypoint goals.

The X-plane interface display provided the subjects with a first person view of

the cockpit. Figure 3-2 better illustrates the first person view. The cockpit display

provided visualization of the current speed, altitude, and other metrics. While flying,

24



the subject also had vision of an interface, that provided a map with requirements

including flight path with waypoints and target altitude and speed to be met at each

waypoint. The interface displayed target altitude, target speed, and distance from

path at the bottom of the screen. The rest of this interface was occupied by a map

of the flight area with a picture of the plane's current position in X-plane, as well as

a drawn path and waypoints that need to be hit.

Figure 3-2: First person view of the cockpit.

The X-plane simulator allowed the subjects to control the plane with a yoke

controller and foot pedals. The yoke controller allowed for input for a ground-bound

wheel brake, a throttle, an air flap control for in-air braking. The spatial orientation

of the plane was controlled using a yoke. The foot pedals slid backward and forward to

control the ground-bound turning direction, while acting as a toe brake when pressed

down. The yoke controller and foot pedals are shown in Figure 3-3.

3.1.1 Flight Data

The collected flight data included pilot inputs, such as aileron, rudder, elevator,

heading, and throttle as well as flight sensor data, namely latitude, longitude, altitude,
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Figure 3-3: Yoke controller and foot-pedals setup.

and speed. The collected flight data for one of the subjects is shown in Figure 3-4.

3.1.2 Self-Report Data

The NASA-TLX provides a workload assessment on six different scales: mental

demand, physical demand, temporal demand, performance, frustration, and effort.

Subjects were given the survey after each flight. The measures for novices and ex-

perts over each route are shown in Figure 3-5. A particular interest is the difference

between the mean mental workload, and the mean effort (physical and mental) across

experts and novices, which was utilized in our proposed two stage approach (discussed

in chapter 4). For the experiments conducted, the mental workload and effort are

believed to be the best measure for the experimental tasks, and therefore, this thesis

focuses on these predictions.

The detailed information of the subjects is shown in Table 3.2.
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Figure 3-4: Raw flight input data for a single pilot over an entire session (five
routes).

3.2 Experimental Procedure

Test subjects participated in the experiment over the course of two days. On the

first day, the participant was given informed consent and a demographic survey to

complete. Once the documentation was completed, the subject received an acclima-

tion sheet detailing information about the experiment. While the subject read the

sheet, the experimenter flew a basic route and answered any questions, ensuring to

disclose necessary information about how each input device will affect the behavior

of the plane. The user interface interpretation was also addressed. This included the

behavior of waypoints and metric data. After observing a flight, the subject flew the

same basic flight to become acclimated with the equipment.

On the second day, the data collection took place. The experiment was completed
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Figure 3-5: Mean NASA-TLX measures for novices and experts across each
route.

Table 3.2: Information about the fifteen subjects.

Subjects' Information
Subject ID Flight hours Gender Age Dominant hand

1 0 M 30 Right
2 1 M 32 Right
3 0 M 29 Right
4 1200 M 43 Left
5 0 M 22 Right
6 0 M 24 Right
7 3000 M 51 Right
8 0 M 30 Ambidextrous
9 0 M 41 Right
10 0 M 29 Right
11 0 M 24 Right
12 0 M 22 Right
13 0 M 24 Right
14 0 M 32 Right
15 2200 M 40 Right
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over the course of two hours in a series of five flight scenarios as described in Table

3.1. The order of these flights was the same for every subject, and each flight scenario

took approximately 20 minutes to complete. The first and the last flight scenario

were the same in order to measure training effects. The second flight took place at

night to measure the effects of black hole syndrome. The third flight was similar

to routes one and five. It took place at dusk with no other factors affecting the

flight. The goal was to separate flights two and four with an easier simulation to

limit the influence of human factors with respect to the reported task load. Flight

four was a turbulent flight to test for task load and control inputs in a more physically

demanding environment. During the experiment, subjects were told to fly as close to

the goal altitude, speed, and path as possible.
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Chapter 4

Methods and Experiment Setup

In this chapter, we elaborate on the methodology used for the prediction and also

discuss the experiment setup.

A third-order median filter was used as a preprocessing technique to remove noise

from the collected data. Taking into account the different route scenarios, the subjects

completed each route over the range of 5 - 19 minutes.

One-minute time windows were considered to be a good match for the feature

construction of the flight data. After an extensive study of the physiological data

analysis [117], the HR data was split into four-minute time windows, keeping in mind

the frequency domain requirements for feature extraction.

4.1 Feature Extraction

In the areas of machine learning and pattern recognition, feature extraction is

the process of deriving features from the initially acquired data. It is mainly used

to extract hidden information from the data that may not be learned directly from

the raw data [118]. This helps to save computational complexity and is known to

increase the performance of the classifier. Basic feature extraction techniques usually

involve frequency, time, and statistical based features. The most common set of these

features are used here.
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Flight Data A concoction of statistical, frequency, and time domain features were

extracted. The following features were calculated for each of the flight data signals

at every time window:

• Mean, maximum, minimum, and standard-deviation of the original signal.

• Mean, maximum, minimum, and standard-deviation of the derivative of the

original signal.

• Mean, maximum, minimum, and standard-deviation of the double-derivative of

the original signal.

• Mean, maximum, minimum, and standard-deviation of the Haar wavelet func-

tion and the corresponding detail coefficients at levels 1, 2, and 3 of the decom-

posed structure.

Wavelet transforms are used here since it is one of the most desired time frequency

transformations in present day research [119]. Haar wavelet was used for prediction

[120], due to low computing requirements, simplicity and its orthogonal properties

making Haar transforms one of the most widely used wavelets in the signal processing

sector [121].

Heart Rate Data HR data was segmented into four-minute time windows owing

to the needs of the frequency components for the calculation of power estimates. A

fast Fourier transform (FFT) was conducted [117] to extract frequency components.

The high frequency (HF) and low frequency (LF) components and their intervals are

taken into consideration. The total LF power, HF power, and autonomic balance

denoted as the ratio of LF to HF were the three frequency domain features extracted

[122]. The frequency ranges for the LF and HF components were taken from [123]:

• LF: 0.04 Hz - 0.15 Hz
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• HF: 0.15 Hz - 0.40 Hz

The following time domain features were also extracted:

• Mean, maximum, minimum, and standard-deviation of the original signal.

• Mean, maximum, minimum, and standard-deviation of the derivative of the

original signal.

• Mean, maximum, minimum, and standard-deviation of the double-derivative of

the original signal.

4.2 Data Normalization

Data normalization was performed to bring all the variables into proportion with

respect to one another. This improves model behavior and lowers the bias in the

classifier learning. Normalization also ensures that the network is not ill conditioned.

The coefficients of the classifier reflect in the contribution towards the model. Several

algorithms such as multi layered perceptron (MLP) and support vector machines

(SVM) have shown faster convergence results on normalized data [124, 125]. In certain

fields of statistics, normalization is done in terms of scaling to detect anomalies.

In the experiments, after the feature extraction was completed, the feature matrix

was normalized to the ranges [-1,1]. This is computed using the following formula:

Xnew =
Xold −Xnew

max(Xnew) −min(Xnew)
, (4.1)

where Xnew is the new normalized value, min(Xnew) equals -1, max(Xnew) equals

+1 and Xold is the original value of the element.
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4.3 Feature Selection

Feature selection was performed on both the sets of constructed data features.

Feature selection in machine learning is the process of choosing a subset of relevant

features which contribute most to the predictions. Feature selection also helps to

remove redundant features and improves the performance of the model. By using

feature selection, the analysis has a faster computational time as the dimensionality

of the feature space is lowered.

By removing the redundant features, feature selection helps reduce the over-fit of

a model which enhances generalization while noise components are removed. Over-

fitting usually arises when a model is overly complex and/or when a machine learning

algorithm models the training data too well. In such cases, the model not only

learns the relevant data but also the noise that has a negative impact on the model

performance. This in turn leads to the substandard predictive performance of the

model and behaves poorly on the testing data. A lot of techniques have been proposed

to avoid over-fit (e.g. normalization, grid search, early stopping, cross-validation) and

these are generally carried out by either testing the model's performance on a left-out

data set or by penalizing the parameters involved in the machine learning algorithm.

In the experiments conducted, feature selection using the L1-penalized logistic

regression was examined, which automatically performs feature selection. This is

discussed in the next section.

4.4 Grid Search

Grid search is an exhaustive search algorithm that searches for the best set of

parameters within a manually specified range in the parameter space and is found to

be reliable in low dimensional spaces. Grid search in SVMs are generally evaluated

by a performance metric which is an evaluation on a left-out data set [126]. The
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grid search algorithm trains the classifier with all possible outcomes of the parameter

range and outputs the set of values with which the highest score was achieved in the

validation set [126].

The initial choice of the learning parameters for a model is an important step

in obtaining good training models [126]. The complexity of grid search increases

exponentially as the number of parameters to be tuned increases and is not the most

preferred method when it comes to larger and complicated models and datasets [127].

For support vector regression (SVR), the radial basis function (RBF) kernel which

was found to be accurate in [128] was used. Both linear and RBF kernels were modeled

for the SVM classifier. The penalty term was tuned for the SVM classification.

The inverse of regularization strength parameter was tuned for both the penalized

logistic regression models. For the k-nearest neighbors (kNN) classifier, the number

of neighbors parameter was tuned. The number of estimators parameter was tuned

for the random forest classifier and random forest regression and the multiplier term

for the LASSO regression was adjusted so as to retain the lowest mean squared error.

Both the penalty term and the kernel coefficient terms for the SVR are tuned using

the grid-search.

4.5 Machine Learning Algorithms

Machine learning is broadly defined as the ability of a machine to learn without

having to provide explicit instructions. It finds applications in many a field ranging

from pattern recognition to pharmaceuticals and economics. It comprises of algo-

rithms which learn data and build models based on a few predefined parameters.

These algorithms are generally used in decision making, pattern recognition and clas-

sification. The algorithms most widely used in literature are artificial neural networks

(ANN), SVMs, and clustering algorithms.
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4.5.1 Supervised Classification Algorithms

In supervised learning, classification is the problem of identifying a category from

a list of categories, to which an observation belongs. This is determined on the basis

of a training set of data with known class membership. Algorithms that implement

classification are known as classifier.

In this thesis, six widely used classification algorithms were employed for skill level

prediction: SVMs with both linear and RBF kernels, kNN classifiers, random forests,

and logistic regression with both the penalized models (l1 and l2). Area under the

receiver operating characteristic curve (AUC) is chosen as a performance metric.

4.5.1.1 Support Vector Machines

Support Vector Machines are one of the most extensively used supervised learning

algorithms, first explicitly developed by Vapnik [129] in 1995. In this method, data

is mapped to higher dimensions through nonlinear mapping for the simplification

of distinguishing patterns [130]. The term support vectors are those data points

that determine the largest difference of separation amongst two groups. SVMs are

widely used for image classification and in the biological sector. In recent times, the

performance of an SVM is often being considered as a benchmark for categorization

and classification tasks as well as a basis for comparison to other machine learning

techniques.

4.5.1.2 Random Forest Classification

Random forests are a robust classification and regression based ensemble method.

The ensemble of the individual trees formed from the bootstrap samples is known as

a random forest. It is highly suitable for real time implementation [131]. Random

forests are used in fields ranging from gene selection [132] to predicting customer

retention [133] and ecology [134].
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4.5.1.3 Logistic Regression

Logistic regression is a widely used algorithm in machine learning for classification.

It was developed by David Cox in 1958 [135]. The logistic model is used to estimate

the probability of a response based on predictor variables (features).

L1 regularized logistic regression requires solving a convex optimization problem.

In particular, it is often used for feature selection and for avoidance of over-fitting,

and has been shown to have good generalization performance in the presence of many

irrelevant features [136, 137].

4.5.1.4 K-Nearest Neighbor Classification

In the field of pattern recognition, the kNN algorithm is a non-parametric method

used for both classification and regression [138]. For kNN classification, the input

has k-nearest training instances, and the output is a class membership dependent on

the majority vote of the test instance’s neighbors. This method is amongst the most

simple machine learning algorithms and is an instance based learning approach. The

algorithm is usually sensitive to the local data structure [139].

4.5.2 Supervised Regression Algorithms

Supervised regression algorithms are a set of statistical models used to estimate

relationships between variables. These algorithms are widely used in forecasting stock

prices and understanding gene networks. The algorithms makes predictions from data

by learning the relationship among the features and the observed responses. Regres-

sion in some cases, refers to specifically the estimation of continuous response (de-

pendent) variables, as opposed to the discrete response variables used in classification

[140].

The features extracted from the flight and HR data were also used to determine
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the amount of mental workload and effort put in by the pilots. For the prediction of

mental workload and effort, LASSO regression, SVR, and random forest regression

were employed. Data from the NASA-TLX served as the ground truth. The root

mean-squared-error (RMSE) and the coefficient of determination (R2) score were

chosen as the performance metrics.

4.5.2.1 LASSO Regression

In the area of machine learning, LASSO regression is a regression analysis method

that performs both feature selection and regularization to enhance the prediction ac-

curacy and to interpret the statistical model produced. It was introduced in 1996

by Robert Tibshirani [141]. This regression was initially designed for least squares

models' [142]. LASSO's ability to perform subset selection relies on a form of con-

straint and has a variety of interpretations including in terms of geometry, Bayesian

statistics, and convex analysis [143].

4.5.2.2 Support Vector Regression

SVMs possess a lot of different characteristics: absence of local minima, usage of

kernels, number of support vectors and sparsity of the solutions. Similar to classifica-

tion, the SVR contains all the main features that characterize the maximum margin

algorithm. A non-linear function is learned by the machine by mapping into high

dimensional feature space. SVR attempts to minimize the generalization error bound

so as to achieve generalized performance.

4.5.2.3 Random Forest Regression

Random forest regression was first proposed by Brieman et al [144]. It is a flexible

and robust regression method used for modeling the input-output functional relation-

ship. In the random forest, each tree acts on its own accord and the final prediction
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is made by considering the mean of the individual tree outputs. It also handles high

dimensional data effectively [131].

4.6 Experiment Setup

The predictions were carried out using the machine learning libraries [145] in

Python.

Two validation methods were chosen for sample prediction accuracy:

• Leave-a-subject-out validation (15 subjects)

• Leave-a-route-out validation (5 routes)

The leave-a-subject-out validation method involved holding all data for one sub-

ject as testing and training the model on data from all other subjects. This process

was repeated over all possible subjects involved, which is done to evaluate the ability

of the model to generalize the performance on a new pilot data.

As the name suggests, the leave-a-route-out validation method holds data for one

route and trains on data from the other routes. All subjects are considered in this

case. This method examines variability across the five pre-defined routes. This was

done to evaluate the model performance to a new-route assignment for which no

training data exists.

Both methods are a standard in most user and driver based studies. These meth-

ods are preferred over other cross-validation methods such as 10-fold cross validation,

due to the dependence of time windows for the same subject (pilot).

There were some equipment malfunctions in the HR data collection for a few

subjects over certain routes. Out of the 75 total routes (5 flown by each of the 15

pilots), 68 routes have both flight control and HR data. Results on these 68 routes

are reported.
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To examine the importance of the different types of data collected in the experi-

ments, each of the machine learning algorithms were tested on two different feature

sets: flight data only, containing a total of 252 features constructed from the flight

control data variables; and HR data only, containing a total of 15 features constructed

from the HR data.

4.6.1 Skill Level Prediction

The ability of a system to modify its functionality based on the skill level of the

operator is of utmost importance in the design of a sliding-scale autonomous system.

The skill level of the operator is likely to affect the optimal level of autonomy.

To combat the class imbalance problem (12 novices and 3 experts), the sampling

designs were modified [146]. The predefined class weights were adjusted in a way

that the weights are inversely proportional to the corresponding class frequencies.

This method was followed for both the l1 and l2 penalized logistic regression and the

SVMs.

Figure 4-1: Data analytics pipeline for pilot skill level prediction using flight
inputs and heart rate.

The pipeline of the analysis followed for skill level prediction is shown in Figure

4-1.

As previously stated, both HR and flight data features are extracted duly con-
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sidering the respective time windows and normalized to the ranges of [-1,1]. AUC

was chosen as the performance metric. The supervised classification algorithms were

tuned for specific parameters using a grid search where parameters with the highest

AUC were retained for classification. All of the above methods involved a binary

classification output, in which the classes were differentiated as a novice or expert.

Classification was performed using two different analysis patterns to investigate

the advantages of a SSA. The coarse analysis detected the average skill predictions-

per-route for each pilot, while the fine analysis detected the skill predictions across

each of the time windows in a particular route. Since the prediction of skill level

across each window is likely to be noisy, more focus was put on the results from the

coarse analysis.

4.6.2 Mental Workload and Effort Prediction

The features extracted from the flight and HR data are used to determine the

amount of mental workload on the pilots. A similar process was carried out to measure

the amount of effort put in by the pilots. The RMSE and R2 score were chosen as

the performance metrics. A grid-search was performed on the parameters for all

supervised regression algorithms, and the parameters with the least mean-squared-

error were retained for prediction. Two different analysis approaches were conducted:

• Single-Stage Approach

• Two-Stage Approach

4.6.2.1 Single-Stage Approach

The single-stage analysis pipeline for mental workload and effort prediction for

the single-stage prediction is illustrated in Figure 4-2. As seen in the figure, the

pipeline was similar to the classification analysis only to be replaced by the regression
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Figure 4-2: Data analytics pipeline for single-stage pilot mental workload
and effort prediction using either flight inputs or heart rate data.

models and corresponding mental workload and effort prediction. The two data

sources (flight and HR) were also combined to learn the importance of data fusion. A

convex combination of the individual model predictions was performed. This convex

combination model was optimized to retain the least RMSE using the same leave-a-

subject-out and leave-a-route-out validation methods as for skill level prediction. The

convex combination was chosen over training a single model on an enlarged feature

set due to the differences in the lengths of time windows for flight control and HR

data.

4.6.2.2 Two-Stage Approach

From the results discussed in Chapter 6, it was seen that the single-stage approach

was unable to accurately predict mental workload.

In an effort to improve the prediction, a two-stage regression approach was pro-

posed. The analysis pipeline for the two-stage regression is shown in Figure 4-3. In

this approach, two individual expert and novices regression models were trained, each

with both expert and novice pilot data keeping in mind the ground truth. To improve

the prediction model, the predicted probabilities attained from the skill classification

(logistic regression) were also incorporated in the analysis. The predicted class proba-

bilities were appropriately multiplied with the predictions from the regression models

and summed to attain a final prediction.

This method was considered citing a real-time setting where an arbitrary pilot’s
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workload is to be determined. A convex combination of the flight and HR data

prediction was used to determine the final mental workload and effort prediction.

Figure 4-3: Data analytics pipeline for proposed two-stage pilot mental work-
load and effort prediction by first predicting skill level then com-
bining two different mental load and effort regression models.
The pipeline can be applied to either flight inputs or heart rate
data.
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Chapter 5

Results and Discussion

5.1 Skill Level Prediction

The results of the coarse analysis for skill level prediction are shown in Tables 5.1

and 5.2, respectively.

Table 5.1: Skill level prediction AUC using leave-a-subject-out CV.

Leave-a-Subject-out Validation
Algorithm Flight only HR only

Logistic Regression- L1 Penalty 0.95 0.67
SVM-RBF kernel 0.99 0.66

Logistic Regression 0.99 0.67
SVM-Linear kernel 0.88 0.64

Random Forest 0.95 0.46
kNN 0.99 0.49

It is seen that, by using only the flight data-derived features (flight only), the

classification model was successfully able to predict the skill level of the subjects, and

a near-perfect AUC was attained in each setting. This indicated that the model was

able to reliably predict the skill level of a pilot based on the way the pilot controls

flight. On the other hand, using only HR data resulted in an inferior classifier when

compared to the flight data.

To understand the importance of the different features constructed from the flight
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Table 5.2: Skill level prediction AUC using leave-a-route-out CV.

Leave-a-Route-out Validation
Algorithm Flight only HR only

Logistic Regression- L1 Penalty 1 0.77
SVM-RBF kernel 1 0.86

Logistic Regression 1 0.82
SVM-Linear kernel 0.94 0.83

Random Forest 1 0.84
kNN 1 0.81

control data, features with non-zero weights in the L1-penalized logistic regression

were examined. The mean numbers of features over both the validation methods for

flight control data are shown in Table 5.3. From the number of features selected, it

is apparent that the two most important variables are the speed and heading. It is

likely that the experts’ prior flight experience allowed them to fly through the routes

both faster and more on-course compared to the novices. All the 15 HR data features

were deemed important by the L1-penalized logistic regression.
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Figure 5-1: Mean predicted probabilities per route using logistic regression
in the leave-a-route-out validation.

The mean predicted probabilities per route (coarse analysis) over all subjects in

the leave-a-route-out validation setting with logistic regression is shown in Figure 5-1.

The coarse analysis in the leave-a-subject-out validation is illustrated in Figure 5-2.

From Figure 5-1, it can be seen that separating experts from novices is extremely

straightforward in the leave-a-route-out setting. It is more impressive that separating
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Table 5.3: Importance of flight data variables: number of features selected
(calculated by the ’L1’ penalty); Mean (SD).

Flight data variables Leave-a-Subject-out Validation Leave-a-Route-out Validation
Throttle 20.53 (1.36) 20.40 (2.19)
Aileron 19.93 (1.62) 19.20 (2.16)
Elevator 16.60 (1.45) 16.60 (3.78)
Heading 24.26 (1.22) 23.20 (0.83)

Longitude 15.46 (1.30) 15.20 (2.77)
Altitude 20.26 (1.22) 19.40 (2.60)
Rudder 14.66 (1.67) 13.60 (2.07)
Latitude 14.13 (1.35) 13.40 (2.70)

Speed 26.40 (1.18) 26.40 (1.52)
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Figure 5-2: Mean predicted probabilities per route using logistic regression
in the leave-a-subject-out validation.

experts from novices can be done quite accurately even in the leave-a-subject-out

setting as shown in Figure 5-2. Notice that there are only 2 pilots, 1 novice and 1

expert, for which the algorithm makes incorrect predictions on any route.

The fine analysis was conducted to study the skill prediction at each time window.

The theory that, as time progresses, the results from the fine analysis would match

that from the coarse analysis is supported by Figures 5-3 and 5-4. This aligned with

the experimental findings. The results from the fine analysis involving the individual

time windows over the leave-a-subject-out validation and leave-a-route-out validation

are shown in Figures 5-3 and 5-4, respectively. The prediction AUCs are over each of

the first 5 minutes for each route. Notice from Figure 5-4 that in the leave-a-route-out

setting it is even possible to accurately predict skill level on a minute-by-minute basis
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Figure 5-3: Predicted probabilities over individual time windows for all clas-
sifiers in the leave-a-subject-out validation.

without any averaging or smoothing over time. This indicated that the proposed

model is robust to the introduction of new routes. On the other hand, from Figure

5-3, the prediction AUCs on a minute-by-minute basis are lower than in the coarse

analysis setting. This is also a reasonable result, as it should certainly be difficult to

predict whether a pilot is an expert or novice from only observing one minute of flight

from that pilot. After averaging over 10-15 minutes of flight as done in the coarse

analysis, a near-perfect prediction of skill level was obtained.

5.2 Mental Workload Prediction

The results of the mental workload prediction from the single-stage approach are

tabulated in Tables 5.4 and 5.5, respectively. The key observation is that the indi-

vidual regression models were unable to predict the mental workload. A combination

of the two data sources did not help in the prediction either. Better results were

achieved in the leave-a-route-out setting, where the variation due to differences in

self-report scales of the pilots are no longer present. In this setting, an acceptable
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Figure 5-4: Predicted probabilities over individual time windows for all clas-
sifiers in the leave-a-route-out validation.

R2 score of 0.53 was obtained. It is notable that the kernel-based SVR model did a

better job in predicting the mental workload in this setting when compared to the

linear LASSO model and the ensemble tree model.

Table 5.4: Mental workload prediction using leave-a-subject-out CV in the
single-stage approach; RMSE (R2).

Leave-a-Subject-out Validation
Algorithm Flight only HR only All features

SVR 4.25 (-0.02) 4.30 (-0.04) 4.19 (0)
LASSO 4.28 (-0.03) 4.40 (-0.09) 4.22 (0)

Random Forests 4.31 (-0.05) 4.41 (-0.10) 3.59 (0.26)

The two-stage approach was considerably better when compared to the previous

approach in the leave-a-subject-out setting, as seen in Table 5.6. Using the skill level

prediction and the individual novice and expert regression models, the two-stage

approach was able to more accurately predict the mental workload when combining

both the flight and HR data, resulting in R2 values around 0.3, compared to 0 for

the single-stage predictor, which is seen from Tables 5.6 and 5.7 respectively. The

two-stage predictor provided a slight improvement in the leave-a-route-out setting
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Table 5.5: Mental workload prediction using leave-a-route-out CV in the
single-stage approach; RMSE (R2).

Leave-a-Route-out Validation
Algorithm Flight only HR only All features

SVR 2.86 (0.54) 3.96 (0.12) 2.86 (0.54)
LASSO 3.95 (0.12) 4.06 (0.07) 3.87 (0.15)

Random Forests 2.92 (0.52) 4.08 (0.07) 2.92 (0.52)

also (R2 values around 0.58).

Using a weighted combination of skill level probabilities and individual regression

models, this approach was considered as it reflects a real-world scenario in which

an out of the data-set sample/subject would be evaluated provided the skill level

is unknown. The convex combination of the HR and flight data was able to better

predict the mental workload when compared to the individual data set models. This

is seen in both approaches.

For the above mentioned approaches, flight control data only analysis with all

routes in consideration was also conducted to include the 7 additional routes without

HR data. This did not yield any significant change in the results.

Table 5.6: Mental workload prediction using leave-a-subject-out CV in the
two-stage approach; RMSE (R2).

Leave-a-Subject-out Validation
Algorithm Flight only HR only All features

SVR 4.09 (0.05) 4.15 (0.03) 3.50 (0.30)
LASSO 4.18 (0.01) 4.27 (0.01) 3.65 (0.23)

Random Forests 4.19 (0.01) 4.59 (-0.19) 3.68 (0.23)
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Table 5.7: Mental workload prediction using leave-a-route-out CV in the two-
stage approach; RMSE (R2).

Leave-a-Route-out Validation
Algorithm Flight only HR only All features

SVR 2.71 (0.59) 3.45 (0.33) 2.70 (0.59)
LASSO 3.40 (0.35) 3.73 (0.21) 3.34 (0.37)

Random Forests 2.78 (0.57) 3.94 (0.12) 2.78 (0.57)

5.3 Effort Prediction

A similar process to that of the mental workload prediction was followed for effort

prediction. The results from the single stage approach for the total effort prediction

are shown in Tables 5.8 and 5.9, respectively. As observed for the mental workload

prediction, the single stage regression models were not able to predict the total effort,

and better results were achieved in the leave-a-route-out validation.

The combined model, using both the flight and HR data derived features, added

little value to the prediction. R2 scores in the ranges of 0.2-0.3 were achieved in

the leave-a-route-out validation. The kernel based SVR model did a a better job in

predicting the effort when compared to the other methods.

Table 5.8: Effort prediction using leave-a-subject-out CV in the single-stage
approach; RMSE (R2).

Leave-a-Subject-out Validation
Algorithm Flight only HR only All features

SVR 3.86 (-0.03) 3.83 (-0.01) 3.60 (0.11)
LASSO 4 (-0.10) 3.82 (-0.01) 3.63 (0.09)

Random Forests 4.23 (-0.23) 4.09 (-0.15) 3.59 (0.11)

The two-stage approach for effort prediction performed comparatively better than

the single-stage approach, as seen in Tables 5.10 and 5.11, respectively. The leave-a-

route-out validation setting performed the effort prediction better than the leave-a-

subject-out validation as was seen for the mental workload prediction.

The convex combination of both data sources resulted in R2 values of around 0.4
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Table 5.9: Effort prediction using leave-a-route-out CV in the single-stage
approach; RMSE (R2).

Leave-a-Route-out Validation
Algorithm Flight only HR only All features

SVR 3.00 (0.38) 3.78 (0.01) 2.99 (0.39)
LASSO 3.56 (0.13) 3.70 (0.06) 3.48 (0.17)

Random Forests 3.05 (0.36) 3.87 (-0.03) 3.01 (0.38)

in the leave-a-route-out setting. The convex combination of data proved to provide

better results when compared to the individual data models and the same was seen

in both validation approaches.

Table 5.10: Effort prediction using leave-a-subject-out CV in the two-stage
approach; RMSE (R2).

Leave-a-Subject-out Validation
Algorithm Flight only HR only All features

SVR 3.65 (0.08) 3.65 (0.08) 3.16 (0.31)
LASSO 4.02 (-0.01) 3.94 (-0.07) 3.52 (0.14)

Random Forests 4.25 (-0.24) 4.19 (-0.21) 3.39 (0.20)

Table 5.11: Effort prediction using leave-a-route-out CV in the two-stage ap-
proach; RMSE (R2).

Leave-a-Route-out Validation
Algorithm Flight only HR only All features

SVR 2.92 (0.41) 3.31 (0.25) 2.87 (0.43)
LASSO 3.28 (0.26) 3.47 (0.17) 3.24 (0.28)

Random Forests 3.02 (0.37) 3.73 (0.04) 3.00 (0.38)
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Chapter 6

Conclusive Remarks

The end goal of this research was to investigate multiple machine learning algo-

rithms and concepts, and to incorporate these methods to develop a novel pipeline

analysis for the prediction of pilot skill level and workload (mental workload and ef-

fort). Hence, analysis approaches for skill level, mental workload, and effort prediction

were presented in Chapter 4.

After a brief literature review focusing on autonomy and workload in Chapter

2, Chapter 3 elaborated on the data collection and experimental set-up procedure

followed by Wright State Research Institute and Perduco.

We found that by using flight and HR data, it is possible to predict the skill level

of the subjects. On the other hand, it was found that standard regression models

were unable to predict workload accurately. This was seen for all data sources (flight

only, HR only, and both).

When comparing the multiple data sources, it was found that the HR data added

little value to the prediction. This does not imply that the HR data provided little in-

formation, but rather could simply mean that the features extracted were not ideal for

the above mentioned predictions. The prediction results from the HR data analysis

could also call for better physiological data signals to be collected, such as electro-

dermal activity (EDA), photoplethysmography (PPG) data, and electrocardiography
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(ECG) data. Another issue with the HR data results could be attributed to the low

sampling rate of the HR data collection equipment. Researchers have suggested that

HRV analysis be executed with data that has a sampling rate of more than 250 Hz

[147].

For skill level prediction, using just the flight data derived features, a near perfect

prediction accuracy was achieved, and the pipeline suggested in Figure 4-1 could be

used in a real-time setting to help aid the research. The collection of the various flight

control input signals proved beneficial to determine the differences in an expert and

novice’s aviation abilities. From the flight control input data importances, we also

learned that the heading and speed variables were considered to be most important

in the model learning for skill level prediction.

Mental workload and effort prediction were considered as these variables were

found to be the most important parameters for pilot prediction in the current exper-

imental settings.

For both mental workload and effort prediction, the two-stage approach incorpo-

rating the individual regression models and the probability estimates from the skill

level prediction proved to be a more comprehensive approach, when compared to

the single stage model, which was quite straightforward. For both approaches, the

convex combination of the flight and HR data produced the better results among all

comparisons. This helped us to ascertain the importance of data fusion in predictive

modeling and, more importantly, workload prediction.

An additional issue with the HR data is the presence of motion artifacts that may

lead to unwanted solutions. We manually adjusted all discrepancies in the data, but

this approach would not be ideal in a real-time setting.

The SVR model with the RBF kernel worked out to be the better choice in mental

workload and effort predictions in both validation settings. For classification, all

algorithms employed produced competitive accuracies.

52



In the experiments, no artifact detection methods were used. Employing an ar-

tifact detection algorithm would have likely increased the prediction accuracy for

each algorithm, but its effect on the combined model is unclear. Overall, however,

the progress made by our approach will be quite beneficial to the advancements of

human performance, autonomy, and human-computer interaction as a whole.

6.1 Future Work

Skill and workload prediction is one of the first steps in building a human-machine

team with the ultimate goal of modifying the level of task assignment based on the

workload feedback determined as the experiment progresses.

One of the areas of potential future work could be focused on feature extraction.

The most common statistical based values were used to derive features. A wider

variety of features especially for the HR data could be computed in order to have

a better effect on the predictions. As mentioned in the previous section, workload

measures could be better predicted by collecting additional physiological data signals

such as EDA, PPG and ECG and performing appropriate feature construction.

These approaches could also be modified to a more complex learning scenario

by using semi-supervised or active learning methods. This would greatly help the

experiments to be evaluated in a real-time setting thereby providing feedback to the

subjects on-the-fly. Methods such as deep neural networks can also be used, as they

have the capability to automatically learn features from the raw data.
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Appendix A

Detailed feature description and

Additional Results

A.1 The detailed description of flight data features

Table A.1: Description of the flight data constructed features

Feature Index Statistical Features Flight data signal

1 mean

Signal
2 maximum

3 minimum

4 standard deviation

5 mean

First derivative of the signal
6 maximum

7 minimum

8 standard deviation

9 mean

Second derivative of the signal
10 maximum

11 minimum

12 standard deviation

Continued on next page
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Table A.1 – continued from previous page

Feature Index Statistical Features Data/signal

13 mean

Haar wavelet transform of the signal
14 maximum

15 minimum

16 standard deviation

17 mean

Haar wavelet detail coefficients at level 1 (signal)
18 maximum

19 minimum

20 standard deviation

21 mean

Haar wavelet detail coefficients at level 2 (signal)
22 maximum

23 minimum

24 standard deviation

25 mean

Haar wavelet detail coefficients at level 3 (signal)
26 maximum

27 minimum

28 standard deviation

The following flight data signals were used to derive the above mentioned features-

throttle, aileron, elevator, heading, longitude, altitude, rudder, latitude, speed.
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A.2 The detailed description of HR data features

Table A.2: Description of the HR data constructed features

Feature Index Statistical Features Data/signal

1 mean

Heart rate
2 maximum

3 minimum

4 standard deviation

5 mean

First derivative of the heart rate
6 maximum

7 minimum

8 standard deviation

9 mean

Second derivative of the heart rate
10 maximum

11 minimum

12 standard deviation

13 mean total low frequency power (LFP)

14 maximum total high frequency power (HFP)

15 minimum autonomic balance (ratio of LFP to HFP)
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A.3 Results from the ACM-IMWUT paper

The results from the mental workload prediction and the corresponding plots of

the skill prediction were conducted on the L1 penalized logistic regression.

Table A.3: Skill level prediction AUC using leave-one-subject-out and leave-
one-route-out CV.

Leave a Subject Out Leave a Route Out
Algorithm Flight only HR only Flight only HR only

Logistic regression (L1 penalty) 0.95 0.67 1 0.86
SVM (RBF kernel) 0.99 0.66 1 0.77
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Figure A-1: Mean predicted probabilities per route using logistic regression
(L1 penalty) in the leave-a-route-out validation.

Table A.4: Mental workload prediction using leave-one-subject-out and
leave-one-route-out CV in the single-stage approach; RMSE (R2).

Leave a Subject Out Leave a Route Out
Algorithm Flight only HR only All features Flight only HR only All features

SVR 4.25 (-0.01) 4.30 (-0.04) 4.23 (-0.01) 2.85 (0.53) 3.96 (0.12) 2.85 (0.53)
LASSO 4.28 (-0.03) 4.40 (-0.09) 4.28 (-0.03) 3.94 (0.12) 4.06 (0.07) 3.87 (0.15)
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Figure A-2: Mean predicted probabilities per route using logistic regression
(L1 penalty) in the leave-a-subject-out validation.
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Figure A-3: Predicted AUC over individual time windows for all classifiers
in the leave-a-subject-out validation.
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Figure A-4: Predicted AUC over individual time windows for all classifiers
in the leave-a-route-out validation.
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Table A.5: Mental workload prediction using leave-one-subject-out and
leave-one-route-out CV in the two-stage approach; RMSE (R2).

Leave a Subject Out Leave a Route Out
Algorithm Flight only HR only All features Flight only HR only All features

SVR 3.99 (0.12) 4.15 (0.03) 3.48 (0.31) 2.71 (0.59) 3.53 (0.30) 2.71 (0.59)
LASSO 4.08 (0.06) 4.31 (-0.05) 3.59 (0.27) 3.38 (0.35) 3.80 (0.19) 3.35 (0.37)
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