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One of the main benefits of a wrist-worn computer compared to other computing

platforms is its ability to collect a variety of physiological data in a minimally intrusive

manner. Among these physiological data, electrodermal activity (EDA) is readily

collected and provides a window into a person’s emotional and sympathetic responses.

Unfortunately, EDA data collected using a wearable wristband are easily influenced

by motion artifacts (MAs) that may significantly distort the data and degrade the

quality of analyses performed on the data if not identified and removed. Prior work

has demonstrated that MAs can be successfully detected using supervised machine

learning algorithms on a small data set collected in a lab setting. In this thesis,

we demonstrate that unsupervised learning algorithms perform competitively and

sometimes even better than supervised algorithms for detecting MAs on EDA data

collected in both a lab-based and a real-world data set comprising about 23 hours

of data. We also find, somewhat surprisingly, that accelerometer data do not appear

to be very useful in detecting MAs in EDA, incorporating accelerometer data as

well as EDA improves detection accuracy only slightly for supervised algorithms and

significantly degrades the accuracy of unsupervised algorithms
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Chapter 1

Introduction

With the increasing popularity of wearable computers on the wrist, including fit-

ness bands and smart watches, there has been tremendous interest in analyzing data

collected from these wearables, particularly physiological data. The physiological

data of a person, such as electrocardiogram(ECG), electromyography(EMG), elec-

troencephalography(EEG), or electrodermal activity(EDA), provides a huge source

of implicit information that can be used to monitor the overall condition of a person,

or infer a person’s reactions to various circumstances. One of these physiological

data that is readily measured by a wearable wristband and reflects the emotional

and sympathetic responses of a person is the electrodermal activity(EDA) [1]. EDA

has been used in many applications including content valence classification [2], stress

detection [3, 4], and classifying autonomic nervous system activity [5]. Silveira et

al. use the EDA responses of viewers watching video content to accurately predict

and classify the explicit feedback of the viewer to the feature films [2]. Hernandez

et al. apply two methods to automatically discriminate the stressful/non-stressful

calls by analyzing the skin conductance (SC) of nine call center employees during

their regular work[3]. Natarajan, Xu, and Eriksson successfully distinguish between

sympathetic and parasympathetic nervous system responses using both photoplethys-

mogram(PPG) data and EDA collected from wearables [5].

1
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Figure 1-1: Examples of SCRs compared to MAs. A sudden increase in SC
may be indicative of the start of an SCR or an MA.

EDA is commonly measured via the skin conductance (SC). When a person is

under stress or at a high level of emotion, the sympathetic nervous system is activated

and causes the person to sweat, increasing the SC in a series of skin conductance

responses (SCRs) where the SC rapidly increases then gradually decays.

EDA data has traditionally been collected using stationary equipment in a lab-

oratory setting, such as the Biosemi ActiveTwo used to collect the DEAP data set

[6]; however, recent wearable wristbands, such as the Affectiva Q sensor [7], offer the

ability to non-invasively measure EDA in real-world environments. The Affectiva Q

Sensor was the world’s first comfortably wearable sensor that can scientifically and

accurately measures the EDA, it captures the electrical conductance across the skin

by passing a miniature amount of current between two electrodes in contact with the

human skin. The Affectiva Q Sensor also measures skin temperature and collects

3-axis accelerometer data [8]. A sample look of Affectiva Q Sensor is presented in

2



Figure 1-2: The wrist worn Affectiva Q Sensor.

Figure 1-2.

One of the main challenges when analyzing EDA data collected from such wear-

ables is the presence of motion artifacts (MAs) in EDA data. Such artifacts may

result from changes in the amount of pressure on the sensor or movements or rota-

tions of the wrist that affects the amount of contact between the electrodes and the

skin. Some examples of SCRs and MAs are shown in Figure 1-1.

Many analyses of EDA data consider features such as the mean and standard

deviation of SC over a time window [5], as well as the number of peaks within the

time window. If MAs are present during this time window, such features can be

significantly affected by the MAs and lead to erroneous results. Thus, it is important

to automatically detect segments of EDA where MAs are present.
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To the best of our knowledge, prior work on suppressing and detecting MAs in

EDA has not taken advantage of data collected from an accelerometer, which is also

typically present on wearable wristbands. Accelerometer data have been shown to

be extremely valuable for suppressing MAs in photoplethysmogram (PPG) data for

heart rate estimation [9].

In this thesis, we apply eight different machine learning algorithms, five supervised

and three unsupervised, to two EDA data sets comprising about 23 hours of data

in both lab and real-world settings, to automatically detect MAs in EDA. We also

evaluate the usefulness of accelerometer data for improving MA detection. Our main

findings are as follows:

• The accuracy of unsupervised learning algorithms is competitive with that of the

supervised algorithms for out-of-sample prediction (when training and testing

on different data sets), and the accuracy is even higher than that of the su-

pervised learning algorithms for in-sample prediction (within a particular data

set).

• Inclusion of the accelerometer data only slightly improves the accuracy of the

supervised learning algorithms and significantly degrades the accuracy of the

unsupervised algorithms.

The comparatively strong performance of unsupervised algorithms is very promis-

ing because they potentially enable MA detection on a large scale without significant

human effort in labeling training data, which addresses a significant problem in ana-

lyzing EDA data collected using wearables. Some of the results from this thesis are

presented in [10].
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Outline

The rest of the thesis is organized as follows:

Chapter 2 provides the background information and details on electrodermal ac-

tivity, as long as the importance of detecting the MAs in EDA data. It then gives a

literature review about the MA suppression and MA detection on EDA data along

with other psycho-physiological data. Chapter 3 describes the two data sets that we

use for our research. Chapter 4 explains the methods we use for the experiment,

from how to construct the features to what machine learning algorithms we use in

our experiment. Chapter 5 gives the details on the experiment set-up, including the

criterion the three experts follow while labeling the data, the way to generate the

ground truth labels, and the cross validation method that is used in the in-sample

and out-of-sample prediction. Chapter 6 and 7 analysis and discusses the experiment

results, then summarizes the thesis and provides the future directions of the research.
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Chapter 2

Background and Related Work

2.1 Electrodermal Activity

EDA refers to the electrical properties of the surface of the skin. When people

are under stress or at a high level of emotion or activity, the sympathetic nervous

system is highly aroused, then sweat gland activity increases, the skin gets sweaty

which in turn changes the electrical potential of the skin, and this change is measured

by the wearable devices and known as the skin conductance response (SCR).[11] [1]

Based on the description in [1], a typical SCR starts with a steep onset, followed by

an exponential decay and lasts between 1-5 seconds, the minimum amplitude of an

SCR is .01 µs. An example of a typical SCR is shown in Figure 2-1.

2.2 Motion Artifacts in EDA and PPG data

While measuring the EDA data using wearable devices, such as the wristband

or the smart watch, the EDA signal can be easily affected by the motion artifacts.

The MAs usually caused by the change of the contact between the skin and the two

recording electrodes, which is generated by pressure or excessive movements during

the daily activities. Correctly analyzing the EDA signal with MA involved is quite

challenging, since MA might be misidentified as the SCR.[12] For example, since the

6
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Figure 2-1: An example of a typical SCR.

SCR typically starts with a steep onset and has a decay, some researchers use a peak

detection algorithm to identify the SCR,[13] and many MAs can also generate a peak

in EDA, thus the MAs might be misclassified as SCRs and influence the analysis.

Hence, the identification of the EDA portions that contain MA becomes extremely

important in order to obtain the clear EDA data.

As we know that EDA is one of the psycho-physiological signals that can be

collected by wearable devices, and many previous types of research have been done

on detecting and correcting the motion artifacts in these different psycho-physiological

signals. Photoplethysmography (PPG) signal, which is associated with the heart rate

estimation, is one of the most important psycho-physiological signals other than EDA

that attracts lots of attentions from the researchers. PPG is the change of blood’s

volume in the capillary vessel and it is often used for heart rate measurement.[14]

The changes of blood flow in the micro-vascular vessel influence the light absorption

rate and this change can be detected by photo-diode and shown as the PPG.[15] And

similar to EDA, the waveform of PPG can also be easily distorted by MA, especially

7



when the subject is running.

2.2.1 Algorithms to deal with the Motion Artifacts in PPG

data

Many signal processing and noise-reduction techniques have been proposed to

identify and remove MA in the PPG. Han and Kim [16] developed a motion artifact

reduction algorithm which is primarily based on the Normalized Least Mean Square

(NLMS) adaptive filter to compensate the distorted signals using the three-axis ac-

celerometer data. Fukushima et al.[17] developed a spectrum subtraction algorithm

to remove the spectrum of acceleration data from that of a PPG signal. After the Fast

Fourier Transform (FFT), the frequency of the PPG and accelerometer data are both

shown as peaks in spectrums, thus the MA can be removed by simply subtracting

the MA peaks from PPG in spectrums. Lin et al.[18] chose an adaptive filter with a

synthetic reference to eliminate the noise outside the heart rate band and rebuild the

MA free PPG signal with the use of the accelerometer data. Their heart rate detec-

tion algorithm is able to locate the heart rate peak in the spectrum that is mixed with

MA. The TROIKA (signal decomposiTion, sparse signal RecOnstructIon, and spec-

tral peaK trAcking) and JOSS (JOint Sparse Spectrum reconstruction) algorithms

are similar and both developed by Zhang [19][9], the two algorithms are frequency

domain based algorithms that identified and removed spectral peaks of MA in PPG

spectrums with the help of accelerometer data, the two algorithms have high estima-

tion accuracy and are robust to strong motion artifacts. Even though some of the

above mentioned algorithms can successfully identify and remove the MAs in the PPG

signal, they would not work well with the EDA data. As EDA is a non-periodic signal

compared to the PPG, the EDA won’t have significant and clear spectrum peaks after

the FFT, thus these frequency domain algorithms would only contaminate the EDA

8



data and make the identification of the MAs more challenging. However, since the

use of the accelerometer data played an important role in detecting and removing the

MAs from the PPG data, there is a high chance that the accelerometer data would

also be an important factor in dealing with the MAs in EDA data, and the evaluation

of its usefulness in the EDA data is noteworthy.

2.2.2 Algorithms to deal with the Motion Artifacts in EDA

data

MAs in EDA data are dealt with in two very similar ways: MA suppression and

MA detection. However, unlike PPG and other psycho-physiological signals, not much

work has been done on dealing with the MAs in EDA data.

On the MA suppression side, many researchers attempt to clean the portions of

data with MAs by passing it through some type of smoothing filter [20, 3, 21, 22]

or low-pass filter [23][24], which can only deal with small magnitude MA and unable

to remove the obvious high-intensity artifacts. Other researchers used some heuristic

methods to identify MAs by looking for abnormal signal variations. Storm et al.[25]

set thresholds to the amplitude and width of the SCRs and only count the peaks that

fulfill the criteria as SCRs; Kocielnik et al.[22] defined the maximal possible increase

and decrease of the EDA data based on their experimental results, and eliminate the

samples that do not meet those criteria. However, the thresholds and criteria they es-

tablished only suited for particular experiments, and were only verified through visual

inspection. Therefore, these heuristic techniques are not guaranteed to generalized to

other researches or experiments. Chen et al.[20] proposed a method that can remove

the large magnitude motion artifacts from EDA data by using a stationary wavelet

transform (SWT), but for the artifacts that have a similar intensity with the SCR, it

may not work well. In general, the main downsides to MA suppression is that it either

9



distorts the EDA signal that includes the informative SCRs, or it couldn’t establish

a universal criteria that can work in different settings.

The MA detection, on the other hand, aims to identify portions of the data with

MAs so they can be removed from further analysis. Hedman[26] used two independent

EDA sensors, and if there is a rapid increase or decrease in only one sensor, he treated

that as an MA. However, this method is completely lab-based and not practical

for general use at all. Taylor et al. [12] formulated MA detection as a supervised

machine learning problem and demonstrated that supervised learning algorithms can

automatically detect MAs on a small EDA data set collected in a lab environment.

The downside to supervised algorithms is that they require lots of labeled data to

train, which requires significant human effort. Also, the data used in these former

researches are all collected in a limited lab environment, and they only use EDA data

to create features that fed into the machine learning algorithms. We apply supervised

as well as the unsupervised learning algorithms on a real life dataset using both EDA

and acceleration features to evaluate their performance in a real life environment.

10



Chapter 3

Data Description

We use two publicly available data sets with EDA and 3-axis accelerometer data,

both collected using an Affectiva Q sensor [7] worn on the wrist, totaling about 23

hours.

3.1 UT Dallas Stress (UTD) Data

This data set was collected at the University of Texas at Dallas [27]. A total of 20

college students (14 males and 6 females) were asked to perform a sequence of tasks

subjecting them to three types of stress: physical stress (standing, walking, and jog-

ging), cognitive stress (mental arithmetic and the Stroop test), and emotional stress

(watching a horror movie clip). Each task was performed for 5 minutes, and tasks

were separated by 5 minute relaxation periods. The EDA and 3-axis accelerometer

data were collected using an Affectiva Q sensor worn on the wrist of the subjects

during the experiment. Altogether, about 13 hours worth of data was collected. The

detail information of the subjects is shown in Table 3.1.

Over all 20 subjects, 3.8% of the data was determined by three human experts to

contain MAs (see Expert Labeling section for details). On the low end, three subject’s

data contained no MAs as determined by either expert, while on the high end, one

subject’s data contained 14% MAs.
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Table 3.1: Information about the 20 subjects in UT Dallas Stress (UTD)
Data

Subjects Information

Subject ID Age Gender Height [cm] Weight [kg]
1 30 M 177 94
2 28 M 172 68
3 28 M 177 91
4 22 M 167 58
5 30 M 182 82
6 30 F 167 58
7 33 F 157 90
8 27 M 182 64
9 25 M 177 68
10 23 M 180 64
11 26 M 170 71
12 32 F 162 53
13 29 F 167 64
14 19 F 160 50
15 23 M 165 64
16 24 M 180 54
17 23 M 167 57
18 23 M 177 64
19 22 M 167 64
20 24 F 160 44
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Table 3.2: Descriptions of 10 hours of labeled time segments in Alan Walks
Wales data

Date Time Segment Segment Length % Artifacts Description

Walking data: 5 hours total

2013/4/24 4:47 AM–5:47 AM 1 hour 56% Walking and chatting with friend
2013/5/06 11:38 AM–12:38 PM 1 hour 42% Walking and hiking
2013/5/28 6:43 PM–7:43 PM 1 hour 6% Walking around
2013/6/04 4:03 PM–5:03 PM 1 hour 19% Walking around
2013/6/10 10:46 AM–11:46 AM 1 hour 42% Walking around

Resting data: 5 hours total

2013/4/24 5:47 AM–6:47 AM 1 hour 43% Drinking and chatting in a pub
2013/5/14 2:16 PM–2:56 PM 40 minutes 15% Having lunch at a restaurant
2013/5/19 3:20 PM–4:00 PM 40 minutes 4% Having lunch and drinking beer
2013/6/03 1:00 PM–2:00 PM 1 hour 5% Having lunch and chatting with friend
2013/6/11 11:38 AM–12:18 PM 40 minutes 10% Having lunch and reading newspaper
2013/7/10 6:08 PM–7:08 PM 1 hour 8% Having dinner at a restaurant

3.2 Alan Walks Wales (AWW) Data

This data set was collected by Alan Dix while he walked around Wales from mid-

April to July 2013 [28]. He collected 64 days of data and also wore a GPS and

kept a diary of his activities. In order to evaluate the experiment in this daily life

environment, We extracted segments of data over 10 different days resulting in 10

hours of data in total with a variety of daily activities. We split the segments into

two categories of activities: walking and resting. The walking data contain 5 hours

of data collected as Alan was walking or hiking, and the resting data contain 5 hours

of data collected when he was resting, eating, reading, or interacting with others.

The reason we divided the data in this way is that the walking data contain more

physical movements, which in turn have more MAs, while the resting data contain

less physical movements (and less MAs) but more cognitive and emotional activities.

Details of the data that we extracted are shown in Table 3.2. We used both the EDA

and the three-axis accelerometer data from the Alan Walks Wales dataset for our

research.

For the walking data, 33% of the data was determined to contain MAs by all three

human experts. On the low end, one segment’s data contained 6% MAs, while on the
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high end, one segment’s data contained 56% of MAs. For the resting data, 15% of the

data was determined to contain MAs. On the low end, one segment’s data contained

3.7% MAs, and on the high end, one segment’s data contained 43% of MAs.
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Chapter 4

Methods

4.1 Feature Construction

Following the analysis in [12], we divide the data into 5-second time windows. We

construct statistical features on both the EDA and simultaneously collected 3-axis

accelerometer data. Overall, we construct 120 features including 24 EDA features

and 96 acceleration features.

For the EDA data, we consider 6 different signals: the SC amplitude, its first and

second derivatives, and the coefficients of a Discrete Wavelet Transform (DWT) with

the Haar wavelet applied to the SC at 3 different time scales: 4 Hz, 2 Hz, and 1 Hz.

Wavelet transforms are able to capture both frequency and time information, and

the Haar wavelet is excellent at detecting sudden changes in signals, which frequently

occur during MAs. The 6 signals we consider were found to be informative for MA

detection in EDA by Taylor et al. [12]. For each of the 6 signals, we construct 4

statistical features: the mean, standard deviation, maximum, and minimum over the

5-second windows, resulting in 24 total EDA features.

To evaluate the value of the accelerometer data in detecting MAs, we construct

the same set of features as for EDA on each of the 3 axes of accelerometer data, as well

as on the acceleration magnitude (root-mean-square). The acceleration magnitude is
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calculated as:

Mag =
√
a2x + a2y + a2z (4.1)

where Mag is the magnitude, and ax, ay and az stand for the 3 different axis of the

accelerometer data. This results in 24 features for each of the 3 axes and 24 features

for the magnitude for a total of 96 accelerometer features. The detail description

of the 120 constructed feature can be found in table A.1. We arrived at this set of

features after examining a significant amount of prior work on classification using

EDA [3, 21, 12, 5] and accelerometer [29, 30] data. The final selection of features

is admittedly somewhat ad-hoc; however, we believe it is a fair representation of

commonly used features in the literature.

4.2 Data Preprocessing

The preprocessing of the dataset is very important, the normalization and stan-

dardization of the data are commonly applied before fed it into any algorithms in

machine learning field. Since the range of values of raw data might vary widely,

the objective functions of many machine learning algorithms will not work properly

without normalization. For example, in the k-nearest neighbor (kNN) classification

algorithm, the distance between two points can be calculated by the Euclidean dis-

tance, and if one of the features has a wide range of values, this particular feature

will have a huge impact on the distance. Therefore, the range of all features should

be normalized so that each feature contributes approximately proportionately to the

final distance.[31]

In our experiment, after the feature construction is done, we normalized the fea-

ture matrix by calculating the standard score of each feature and use the standard

scores as the final feature matrix. Standard scores are also called z-values, z-scores,
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normal scores, or standardized variables, it indicates how many standard deviations

an element is from the mean.[32] The z-score can be calculated from the following

formula:

z = (X − µ)/σ (4.2)

where z is the z-score, X is the value of the element (in this case the value of each

feature), µ is the sample mean, and σ is the standard deviation.

4.3 Feature Selection

We perform the feature selection to the 120 features we constructed. Feature

selection is also known as variable selection, attribute selection or variable subset

selection in the statistics and machine learning fields, it is the process of selecting a

subset of relevant features that have the most contributions to the prediction variable

or output. Feature selection techniques are used for three reasons before modeling

the data:

• Improve the performance: the modeling accuracy could be improved by remov-

ing less valuable and irrelevant features.

• Reduce overfitting: removing the redundant features can enhance the general-

ization, the noise components won’t be able to affect the final output easily.

• Reduce the training time: the dimensionality of the feature space can be reduced

after the feature selection and thus can speed up the training process.

If the data contains many features that are either redundant or irrelevant and if the

removal of these features won’t cause much information loss, which is exactly our

situation, then the feature selection process becomes essential.[33, 34] We only have
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24 EDA features, however, the number of acceleration features we constructed is 4

times of the EDA one. Besides, the acceleration features contain both acceleration

magnitude features and the 3 individual axis’s features, which are highly likely to

contain redundant features. So the feature selection step is very necessary in our

case.

We apply the univariate feature selection technique in our research to select the

valuable features, the feature selection is based on the family-wise error rate that

calculated by doing the analysis of variance (ANOVA) F-test between the features

and corresponding labels. In general, univariate feature selection works by selecting

the best features based on univariate statistical tests. The ANOVA F-test is known

to be nearly optimal in the sense of minimizing false negative errors for a fixed rate

of false positive errors, and the family-wise error rate (FWER) is the probability of

making one or more false discoveries, when performing multiple hypotheses tests.[34]

4.4 Machine Learning Algorithms

We examine 5 widely used supervised algorithms: support vector machines (SVMs),

k-nearest neighbor (kNN) classifiers, random forests, logistic regression, and multi-

layer Perceptron (MLP). We also formulate the problem of predicting MAs as an un-

supervised anomaly detection problem. Among the different unsupervised anomaly

detection approaches, we examine unsupervised variants of the first 3 supervised al-

gorithms: One-class Support Vector Machines (1-class SVMs), kNN distances, and

isolation forests, respectively.

The supervised algorithms are used for binary classification, where the two classes

are MA and clean. The unsupervised algorithms are used for anomaly detection,

where it is assumed that the training data consists of mostly clean data. We inter-

pret the time windows predicted by the unsupervised algorithms as anomalies to be
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predicted MAs.

4.4.1 Support Vector Machines

Support Vector Machine (SVM) is a classifier that constructs a high-dimensional

hyper-plane to perform the classification.[35] The SVM training algorithm builds a

model, or a high-dimensional hyper-plane, base on the given set of training examples

with each marked as belonging to one or the other of two groups. New examples are

then mapped into that model and predicted to belong to a group based on which side

of the hyper-plane they are located. SVM also has different types of kernel functions

to transform testing examples into a higher dimensional feature space and to easier

classify the data.

4.4.2 K-nearest Neighbor Classification

The k-nearest neighbors algorithm is a non-parametric method used for both

classification and regression.[36] For the k-nearest neighbors classifier, the input has

k nearest training examples in the feature space, and the output is a class that

generated by a majority vote of the testing example’s neighbors, the testing example

is assigned to the class most common among its k nearest neighbors.

4.4.3 Random Forests

Random forests or random decision forests[37] is an ensemble learning method for

classification or regression. When used for classification, it constructs a multitude of

decision trees while training and outputting the class that is the mode of the classes

of the individual trees. Random forests averages multiple deep decision trees, trained

on different random parts of the same training dataset, and eventually reducing the

variance.[38] Because of this randomness, the bias of the forest usually increases
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slightly, however due to averaging, its variance decreases, hence it generally boosts

the performance in the final model.[39]

4.4.4 Logistic Regression

Logistic regression was developed by statistician David Cox in 1958.[40] The binary

logistic regression is used to predict the probability of a binary response based on one

or more predictor variables or features. For example, by using logistic regression,

people could find out that the probability of a given outcome could be increased by a

specific percentage with the existence of a risk factor. In the machine learning field,

despite its name, logistic regression is a method for classification, not regression.

4.4.5 Multi-layer Perceptron

A Multi-layer perceptron (MLP) is a class of feed-forward artificial neural network.

A MLP consists of at least three layers of nodes, in other words, between the input and

the output layer, one or more non-linear layers could exist, and these non-linear layers

are called hidden layers. Each node in the MLP is a neuron that uses a non-linear

activation function except for the input nodes. MLP applies a supervised learning

method called back-propagation for training. MLP distinguishes itself from the linear

perceptron by its non-linear activation function and multiple layers. It can learn non-

linear models in order to classify the data that is not linearly separable.[41, 42, 43]

4.4.6 One-class Support Vector Machines

The one-class Support Vector Machines are usually used for anomaly detection.

In one-class SVM, the support vector model is trained on data with only one class,

the normal class. It deduces the properties of normal class to define a frontier, and

then if the examples fall outside the frontier, it unlike belong to the normal class and
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will be predicted as anomaly.[44] This is useful for anomaly detection because most

of the times the network intrusion, fraud, or other anomalous behavior are very few

in the everyday life.

4.4.7 K-nearest Neighbor Distances

The K-nearest Neighbor distance algorithm is different than the kNN classifier in

that it uses the distance between a test sample and its k-th nearest training sample as

its test statistic, whereas the kNN classifier performs a majority vote over the labels

of the k nearest training samples.

4.4.8 Isolation Forests

The isolation forests first select a feature randomly, and then randomly select

a split value between the maximum and minimum values of the selected feature to

’isolates’ the observations. As the recursive partitioning can be represented by a tree

structure, the number of splittings required to ’isolate’ a sample and the path length

from the root node to the terminating node are equivalent to each other. This path

length is averaged over a forest of random trees to measure the normality. Random

partitioning can create much shorter paths for anomalies. Hence, if a forest of random

trees all create shorter path lengths for a particular sample, this sample is most likely

to be anomaly.[45]

4.5 Parameter Tuning

We optimize the parameters of each algorithm by using a grid search with expo-

nential grid and retain the parameters with the highest cross-validation accuracy (see

Results section for details). The grid search is currently the most widely used method

for parameter tuning, since it tries out every parameter in a given range and picks
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the best one, Which is obviously guaranteed to get the global optimum. We use the

Gaussian kernel for the SVM, which was found to be most accurate in [12], and ReLU

activations for the MLPs with up to 2 hidden layers. For the unsupervised algorithms,

we also use the grid search cross-validation approach to select parameters in order to

provide a fair comparison to the supervised algorithms. Since this approach is likely

not possible in practice with unlabeled data, we also experiment with different choices

of parameters to determine the sensitivity of results to the parameter choices.

For SVMs, the kernel width and Penalty parameter C are optimized; similarly,

the kernel width and the ν of the 1-class SVMs are optimized. For the kNN classifier

and kNN distance, the number of neighbor k is tuned. The number of estimators in

the random forests and isolation forests is optimized. The inverse of regularization

strength, C, is tuned for the logistic regression. The L2 penalty (regularization term)

parameter α and the hidden layer size of the multi-layer perceptron is also determined

in the parameter optimization process by the gird search.
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Chapter 5

Experiment Set-up

The experiments involve evaluating the predictions of the machine learning algo-

rithms compared to hand-labeled MAs by two EDA experts. Code to reproduce the

experiments is available at https://github.com/IdeasLabUT/EDA-Artifact-Detection.

5.1 Expert Labeling

We have three EDA experts hand label each 5-second time window as clean or

containing a MA using the EDA Explorer software [46, 12]. The EDA Explorer

software is an on-line tool for visualization and analysis of Electrodermal Activity

data, which is designed and hosted by the Affective Computing Group from the

Massachusetts Institute of Technology. The EDA Explorer can detect noise within

the EDA signal, detect SCRs, visualize the results, compute features which users can

download, and help researchers label their own signal data. We only use the software

for the EDA data labeling in our research. While labeling, All experts used a common

set of criteria to define an MA in the SC:

• A peak that does not have an exponential decay, except in the case where two

peaks are very close to each other in a short time period so that the decay of

the first peak is interrupted by the second peak;
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• A sudden change in SC correlated with motion;

• A sudden drop of more than 0.1 µS in SC.

The first two criteria were used in [12]; we added the third criterion based on the

physiology of EDA. SC can increase suddenly due to sweat glands releasing sweat,

but there is no physiological mechanism for SC to decrease suddenly [1].

We combined the 3 sets of labels from the three experts into a single label set by

the majority vote, which means if the majority of the three experts (which is at least

2 experts in our case) agree on one label, we will assign this exact label as the final

label for that corresponding time window.

The labels from all three experts were in agreement for 95% and 87% of the time

windows for the UTD and AWW data, respectively. The only two possibilities for

disagreement are two experts labeling as MA and one as clean or vice-versa. When

there was disagreement, 2 MA/1 clean occurred 38% and 44% of the time in the UTD

and AWW data, respectively.

5.2 In-sample Prediction

For the UT Dallas dataset, we evaluate the in-sample prediction accuracy for each

learning algorithm using a leave-one-group-out cross-validation (CV) approach, which

was found to be preferable to k-fold CV for time series data due to the dependence of

time windows [30]. Each training set thus consists of all the samples except the ones

that are in a specific group, and after the training, the model will be tested on that

left out group of data samples. Each subject in the UT Dallas dataset is considered to

be one group, and thus there are 20 groups for the UT Dallas dataset. For the AWW

data, we have only one single subject, but we have 10 hours of labeled time segments

spaced out across 10 different days in the data trace with a total of 11 different time
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segments, so we consider each of these time segments as one group and end up with

11 groups of data for the Alan Walks Wales dataset.

We also split the Alan Walks Wales data into two separate datasets containing

only resting data and only walking data prior to performing the CV to evaluate the

prediction accuracy for both categories of activities, resulting in Alan Walks Wales

resting dataset with 6 groups and Alan Walks Wales walking dataset with 5 groups.

For both data sets, we use the Area Under the Curve (AUC) of the Receiver

Operator Characteristic (ROC) as the accuracy metric. To test the value of the

accelerometer data, we test the learning algorithms on three different feature sets:

ACC only, containing only the 96 features constructed from the accelerometer; EDA

only, containing the 24 features constructed from EDA; and all 120 features.

In the feature selection process, we select the features for the three datasets in-

dividually, and within each dataset, we select the features for EDA only feature set

and acceleration feature set respectively, and then add up the selected features from

these 2 feature sets to form the All feature set. For the Alan Walks Wales resting

dataset, we end up with 61 acceleration features, 16 EDA features, and a total of

77 features in the All feature set; for the Alan Walks Wales walking dataset, there

are 65 acceleration features, 16 EDA features, and add up to 81 features for the All

feature set; and for the UT Dallas dataset, the number of the selected features are:

64 acceleration features, 21 EDA features, and 85 features in All feature set. We

only use the selected features for the 5 supervised learning algorithms, and we use

the original feature sets for the 3 unsupervised learning algorithms. We optimize the

parameters of all the eight algorithms for the three different feature sets individually

using the grid search method.
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5.3 Out-of-sample Prediction

For out-of-sample prediction, we train each learning algorithm on all of the time

windows in one of the two data sets, then test the algorithm’s predictions on all of

the time windows in the other data set. In this experiment, we treat the Alan Walks

Wales data as a single data set by combining the resting and walking sets together so

that the Alan Walks Wales data and the UT Dallas dataset are of roughly the same

size (10 hours of data vs. 13 hours of data). This should be a tougher prediction

task than in-sample prediction because the two data sets contain different activities

and were collected in very different settings (lab-based setting vs. real-world setting)

with different test subjects.

For the feature selection, same as the in-sample prediction task, we select the

features for the two datasets individually, and only use the selected features for the 5

supervised learning algorithms. The selected features of the UTD data maintain the

same, which is 64 acceleration features, 21 EDA features, and 85 features in total.

Since the AWW walking and resting datasets are combined together, we performed

the univariate feature selection on this ”new” dataset and thus 15 features are selected

as the EDA only features, 64 features are selected as the ACC only features, and by

combining the EDA only features and ACC only features, we get a total of 79 features

for the all features set. For all eight algorithms, we use the same parameter tuning

method on the training data set as in the in-sample prediction task. We tested the

same three feature sets as in the in-sample prediction task.
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Chapter 6

Results

6.1 In-sample Prediction

The AUC results of the in-sample prediction task for Alan walks Wales resting,

Alan walks Wales walking, and UT Dallas dataset are shown in Table A.2,A.3, and

A.4, respectively. The receiver operating characteristic (ROC) curves of the in-sample

prediction task using EDA features only for Alan walks Wales resting is shown in Fig-

ure 6.1, and the rest of the ROC curves, including the ROC curves for the acceleration

only feature sets and all feature sets are shown in Appendix A.2: The ROC curves

for the in-sample prediction task.

The first observation from all three data sets is that using only the accelerometer-

derived features (ACC only) provides a significantly worse predictor than the other

two feature sets. Besides, in all three data sets, we do not observe a significant benefit

in using all of the features rather than just the EDA-derived features (EDA only).

The inclusion of accelerometer-derived features appears to have minimal effect on

the supervised learning algorithms, which only improve by 0.4% on average, and it

reduces the AUC of the unsupervised algorithms by 4.3% on average. Additionally,

when comparing the AUCs and the ROC curves of the supervised and unsupervised

algorithms on EDA features only, we notice that the unsupervised algorithms (on
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Table 6.1: Alan Walks Wales resting data’s in-sample prediction AUC using
leave-one-subject-out cross-validation. The top five algorithms
are supervised, while the bottom three are unsupervised. Highest
value for the data set is shown in bold.

Alan Walks Wales resting data

Algorithm All features ACC only EDA only

Logistic regression 0.843 0.665 0.715
Multi-layer Perceptron 0.681 0.414 0.694

SVM 0.685 0.426 0.684
kNN classification 0.670 0.595 0.701

Random forest 0.750 0.601 0.705
1-class SVM 0.830 0.780 0.767
kNN distance 0.803 0.719 0.891

Isolation forest 0.818 0.697 0.800

Table 6.2: Alan Walks Wales walking data’s in-sample prediction AUC using
leave-one-subject-out cross-validation. The top five algorithms
are supervised, while the bottom three are unsupervised. Highest
value for the data set is shown in bold.

Alan Walks Wales walking data

Algorithm All features ACC only EDA only

Logistic regression 0.812 0.652 0.798
Multi-layer Perceptron 0.791 0.655 0.778

SVM 0.801 0.641 0.782
kNN classification 0.770 0.650 0.766

Random forest 0.811 0.658 0.784
1-class SVM 0.579 0.586 0.759
kNN distance 0.776 0.691 0.847

Isolation forest 0.673 0.564 0.781
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Table 6.3: UT Dallas data’s in-sample prediction AUC using leave-one-
subject-out cross-validation. The top five algorithms are super-
vised, while the bottom three are unsupervised. Highest value for
the data set is shown in bold..

UT Dallas data

Algorithm All features ACC only EDA only

Logistic regression 0.942 0.851 0.935
Multi-layer Perceptron 0.927 0.835 0.926

SVM 0.917 0.843 0.864
kNN classification 0.922 0.868 0.926

Random forest 0.936 0.880 0.926
1-class SVM 0.880 0.882 0.908
kNN distance 0.923 0.885 0.935

Isolation forest 0.910 0.895 0.900

EDA features only) perform very competitively with and sometimes even better than

the supervised algorithms. From the ROC curve of the Alan walks Wales resting

with EDA features only dataset, which is shown in Figure 6.1, we can clearly see that

the three unsupervised learning algorithms outperform all of the supervised learning

algorithms greatly, with the highest AUC which is 0.89 for kNN distance, second

highest AUC 0.80 for isolation forests, and third highest AUC 0.77 for 1-class SVMs.

We expand on these points in the Conclusion and Future Works section.

Also, by applying the feature selection for the supervised learning algorithms, the

AUC is only slightly improved for most of the cases, the original results shown in

the ISWC paper that without the feature selection are included in the Appendix A.4:

The AUC tables shown in ISWC paper without feature selection.

6.2 Out-of-sample Prediction

The results of the out-of-sample prediction task are shown in Table A.5 and Table

6.5 for the AUC, and one of the receiver operating characteristic (ROC) curves for

the out-of-sample prediction task, which is training on Alan Walks Wales data and
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MLP (AUC = 0.69)
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Figure 6-1: The ROC curves for Alan walks Wales resting data using only
EDA features.

testing on UT Dallas data using ACC features only, is shown in Figure 6-2. The

rest of the ROC curves for the out-of-sample prediction task are shown in Appendix

A.0.3: The ROC curves for the out-of-sample prediction task.

In this task, from Table A.5 and Table 6.5, we observe the very similar results

as in the in-sample prediction task, that using the EDA only features resulted in

better performance than using all features or ACC only features for the majority

of the algorithms in both data sets, especially for the three unsupervised learning

algorithms. Besides this, notice that the results are much worse for all the eight

algorithms when training on the lab-based UTD data and testing on the real-world

AWW data, as one might expect when attempting to generalize from data collected

in a lab setting.
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kNN Classification (AUC = 0.83)
Random Forests (AUC = 0.85)
MLP (AUC = 0.83)
kNN Distances (AUC = 0.87)
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Figure 6-2: The ROC curves for training on Alan Walks Wales data and
testing on UT Dallas data using only ACC features.

Notice also that the unsupervised algorithms are again highly competitive with

the supervised ones. In the case that training on the AWW data and testing on the

UTD data with ACC features only, as we can see from both Table A.5 and Figure

6-2, the three unsupervised algorithms achieve the top 3 highest AUC, and the kNN

distances algorithm has the highest, which is 0.870.

In practice, choosing parameters for the unsupervised algorithms is very difficult

without labeled data, in which case CV is not possible. We do find that the kNN

distance algorithm does not appear to be very sensitive to the choice of the number

of neighbors. By sweeping the number of neighbors from 1 to 30, the AUC remains
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Table 6.4: Out-of-sample prediction AUC while train on Alan Walks Wales
dataset and test on UT Dallas dataset. Highest value for the data
set is shown in bold.

Train on AWW, test on UTD

Algorithm All features ACC features EDA features

Logistic regression 0.942 0.857 0.940
Multi-layer Perceptron 0.943 0.829 0.934

SVM 0.942 0.850 0.940
kNN classification 0.918 0.844 0.946

Random forest 0.922 0.860 0.937
1-class SVM 0.879 0.862 0.894
kNN distance 0.906 0.870 0.905

Isolation forest 0.902 0.864 0.905

Table 6.5: Out-of-sample prediction AUC while train on UT Dallas dataset
and test on Alan Walks Wales dataset. Highest value for the data
set is shown in bold.

Train on UTD, test on AWW

Algorithm All features ACC features EDA features

Logistic regression 0.828 0.695 0.846
Multi-layer Perceptron 0.836 0.691 0.849

SVM 0.844 0.690 0.822
kNN classification 0.763 0.670 0.827

Random forest 0.749 0.391 0.850
1-class SVM 0.731 0.658 0.814
kNN distance 0.727 0.647 0.835

Isolation forest 0.741 0.670 0.759

between 0.936 and 0.938 when training the kNN distance algorithm on the AWW data

and testing on the UTD data. However, isolation forests are slightly more sensitive to

the parameters, the AUC ranging from 0.86 to 0.91 for the number of base estimators

changing between 1 to 40. And 1 class SVMs are the most sensitive ones, the AUC

can be varied up to 0.2 difference by choosing different kernel width γ and ν value.
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Chapter 7

Conclusion and Future Works

In all of our experiments, we found, somewhat surprisingly, that the accelerometer-

derived features added little value to supervised learning algorithms (0.4% improve-

ment on average). This does not necessary imply that the accelerometer data itself

has little value—it could be that the features we adopted, which are commonly used

for activity recognition, are not ideal for MA detection. However, the experts noticed

that, on some occasions, even though the acceleration changes, the EDA doesn’t get

affected at all. This phenomenon has been noticed quite frequently by all three ex-

perts especially when they are labeling the Alan Walks Wales data. This is somehow

reasonable, since the Alan Walks Wales data contains much more physical movements

than the UT Dallas data, it contains 5 hours of walking and hiking data in the walk-

ing subset, which results in tons of acceleration changes, however, such movements

may not cause any change in the contact between the EDA electrodes and the skin

and thus don’t affect the EDA signal. An example of such a time window is shown

in the Figure 7-1. From this figure, we can clearly see that one of the axis of the

acceleration, which is the red lines in the figure, has a significant change, however,

the EDA data hasn’t been affected and doesn’t change at all. Conversely, the Figure

7-2 shows an example of a time window where the accelerometer data is helpful. In

the Figure 7-2, if we only concentrate on the EDA data, we might think it is the decay
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of an SCR, which has no MAs at all, but after we examine the acceleration data, we

can clearly see the correlation between the 2 data, and find out that the decay is

actually associate with the acceleration change, thus it is actually a motion artifact

in the EDA data. Since the accelerometer data only slightly improve the supervised

algorithms, it is reasonable to expect that they would degrade the unsupervised algo-

rithms, which cannot distinguish between important and irrelevant features without

labeled data. This aligns with our experimental findings.

We also observed that the overall performance of the unsupervised learning algo-

rithms can be very competitive with the supervised ones, especially for the real-world

data that are collected in the everyday life instead of from a lab, which contains more

MAs and with a much more complex scenario. We believe this finding has profound

consequences, enabling automatic MA detection on a large scale without the need for

significant human effort in labeling data!

Some future works could be focused on the feature construction and feature se-

lection. The features we construct are the most commonly used ones, but they only

consist and based on 4 main statistic values, a wider variety of the features, especially

for the acceleration data, should be collected in order to have a more comprehensive

and convincing result. The feature selection process should also be modified with

some other widely used and reliable feature selection techniques, such as wrapper fea-

ture selection, recursive feature elimination or neighborhood components analysis, in

order to have a more valuable subset of features that are closely related to each algo-

rithm. The evaluation of algorithms for other more complex machine learning settings

that lie in between supervised and unsupervised settings, especially semi-supervised

learning and transfer learning, would also be of tremendous value for EDA motion

artifact detection, as would evaluation of algorithms such as deep neural networks

capable of automatically learning features directly from the raw data.
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Figure 7-1: Examples of time windows where kNN classifier using all features
fails but using EDA only succeeds.

35



0 1 2 3 4 5
2.2

2.3

2.4

2.5
C

o
n

d
u

c
ta

n
c
e

 (
S

)

0 1 2 3 4 5

Time (s)

-1

0

1

2

A
c
c
e

le
ra

ti
o

n
 (

g
's

)

Figure 7-2: Examples of time windows where kNN classifier using all features
succeeds but using EDA only fails.
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[30] Nils Y Hammerla and Thomas Plötz. Let’s (not) stick together: Pairwise simi-

larity biases cross-validation in activity recognition. In Proc. ACM Int. Jt. Conf.

Pervasive Ubiquitous Comput., pages 1041–1051, 2015.

[31] Selim Aksoy and Robert M Haralick. Feature normalization and likelihood-based

similarity measures for image retrieval. Pattern recognition letters, 22(5):563–582,

2001.

[32] Wilfrid Joseph Dixon, Frank Jones Massey, et al. Introduction to statistical

analysis, volume 344. McGraw-Hill New York, 1969.

[33] Mairead L Bermingham, Ricardo Pong-Wong, Athina Spiliopoulou, Caroline

Hayward, Igor Rudan, Harry Campbell, Alan F Wright, James F Wilson, Felix

Agakov, Pau Navarro, et al. Application of high-dimensional feature selection:

evaluation for genomic prediction in man. Scientific reports, 5, 2015.

[34] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An intro-

duction to statistical learning, volume 112. Springer, 2013.

[35] Christopher JC Burges. A tutorial on support vector machines for pattern recog-

nition. Data mining and knowledge discovery, 2(2):121–167, 1998.

[36] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3):175–185, 1992.

[37] Tin Kam Ho. Random decision forests. In Document Analysis and Recognition,

1995., Proceedings of the Third International Conference on, volume 1, pages

278–282. IEEE, 1995.

41



[38] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of sta-

tistical learning, volume 1. Springer series in statistics New York, 2001.

[39] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[40] Strother H Walker and David B Duncan. Estimation of the probability of an

event as a function of several independent variables. Biometrika, 54(1-2):167–

179, 1967.

[41] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of

brain mechanisms. Technical report, CORNELL AERONAUTICAL LAB INC

BUFFALO NY, 1961.

[42] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning inter-

nal representations by error propagation. Technical report, California Univ San

Diego La Jolla Inst for Cognitive Science, 1985.

[43] George Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

[44] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor,

and John C Platt. Support vector method for novelty detection. In Advances in

neural information processing systems, pages 582–588, 2000.

[45] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In Data

Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages 413–

422. IEEE, 2008.

[46] Sara Taylor and Natasha Jaques. EDA Explorer. http://eda-explorer.media.

mit.edu/.

42

http://eda-explorer.media.mit.edu/
http://eda-explorer.media.mit.edu/


Appendix A

Detailed feature description and

ROC curve plots

A.1 The detailed description of all the features

Table A.1: Description of the constructed features

Feature Index Statistical Features Data/signal

1 mean

Raw EDA
2 standard deviation

3 maximum

4 minimum

5 mean

First derivative of the raw EDA data
6 standard deviation

7 maximum

8 minimum

9 mean

Second derivative of the raw EDA data
10 standard deviation

11 maximum

12 minimum

Continued on next page
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Table A.1 – continued from previous page

Feature Index Statistical Features Data/signal

13 mean

1Hz wavelet coefficients of the raw EDA
14 standard deviation

15 maximum

16 minimum

17 mean

2Hz wavelet coefficients of the raw EDA
18 standard deviation

19 maximum

20 minimum

21 mean

4Hz wavelet coefficients of the raw EDA
22 standard deviation

23 maximum

24 minimum

25 mean

3-axis acceleration magnitude
26 standard deviation

27 maximum

28 minimum

29 mean

First derivative of the 3-axis acceleration magnitude
30 standard deviation

31 maximum

32 minimum

33 mean

Second derivative of the 3-axis acceleration magnitude
34 standard deviation

35 maximum

36 minimum

37 mean

x axis acceleration
38 standard deviation

39 maximum

40 minimum

Continued on next page
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Table A.1 – continued from previous page

Feature Index Statistical Features Data/signal

41 mean

First derivative of the x axis acceleration
42 standard deviation

43 maximum

44 minimum

45 mean

Second derivative of the x axis acceleration
46 standard deviation

47 maximum

48 minimum

49 mean

y axis acceleration
50 standard deviation

51 maximum

52 minimum

53 mean

First derivative of the y axis acceleration
54 standard deviation

55 maximum

56 minimum

57 mean

Second derivative of the y axis acceleration
58 standard deviation

59 maximum

60 minimum

61 mean

z axis acceleration
62 standard deviation

63 maximum

64 minimum

65 mean

First derivative of the z axis acceleration
66 standard deviation

67 maximum

68 minimum

Continued on next page
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Table A.1 – continued from previous page

Feature Index Statistical Features Data/signal

69 mean

Second derivative of the z axis acceleration
70 standard deviation

71 maximum

72 minimum

73 mean

1Hz wavelet coefficients of the 3-axis acceleration magnitude
74 standard deviation

75 maximum

76 minimum

77 mean

2Hz wavelet coefficients of the 3-axis acceleration magnitude
78 standard deviation

79 maximum

80 minimum

81 mean

4Hz wavelet coefficients of the 3-axis acceleration magnitude
82 standard deviation

83 maximum

84 minimum

85 mean

1Hz wavelet coefficients of the x axis acceleration
86 standard deviation

87 maximum

88 minimum

89 mean

2Hz wavelet coefficients of the x axis acceleration
90 standard deviation

91 maximum

92 minimum

93 mean

4Hz wavelet coefficients of the x axis acceleration
94 standard deviation

95 maximum

96 minimum

Continued on next page
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Table A.1 – continued from previous page

Feature Index Statistical Features Data/signal

97 mean

1Hz wavelet coefficients of the y axis acceleration
98 standard deviation

99 maximum

100 minimum

101 mean

2Hz wavelet coefficients of the y axis acceleration
102 standard deviation

103 maximum

104 minimum

105 mean

4Hz wavelet coefficients of the y axis acceleration
106 standard deviation

107 maximum

108 minimum

109 mean

1Hz wavelet coefficients of the z axis acceleration
110 standard deviation

111 maximum

112 minimum

113 mean

2Hz wavelet coefficients of the z axis acceleration
114 standard deviation

115 maximum

116 minimum

117 mean

4Hz wavelet coefficients of the z axis acceleration
118 standard deviation

119 maximum

120 minimum

47



A.2 The ROC curves for the in-sample prediction

task
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Figure A-1: The ROC curves for Alan walks Wales resting data using all

features.
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Figure A-2: The ROC curves for Alan walks Wales resting data using only

acceleration features.
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Figure A-3: The ROC curves for Alan walks Wales resting data using only

EDA features.
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Figure A-4: The ROC curves for Alan walks Wales walking data using all

features.
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Figure A-5: The ROC curves for Alan walks Wales walking data using only

acceleration features.
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Figure A-6: The ROC curves for Alan walks Wales walking data using only

EDA features.
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Figure A-7: The ROC curves for UT Dallas data using all features.
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Figure A-8: The ROC curves for UT Dallas data using only acceleration

features.
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Figure A-9: The ROC curves for UT Dallas data using only EDA features.
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A.3 The ROC curves for the out-of-sample predic-

tion task
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Figure A-10: The ROC curves for training on Alan Walks Wales data and

testing on UT Dallas data using all features.
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Figure A-11: The ROC curves for training on Alan Walks Wales data and

testing on UT Dallas data using only ACC features.
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Figure A-12: The ROC curves for training on Alan Walks Wales data and

testing on UT Dallas data using only EDA features.
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Figure A-13: The ROC curves for training on UT Dallas data and testing on

Alan Walks Wales data using all features.
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Figure A-14: The ROC curves for training on UT Dallas data and testing on

Alan Walks Wales data using only ACC features.
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Figure A-15: The ROC curves for training on UT Dallas data and testing on

Alan Walks Wales data using only EDA features.
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A.4 The AUC tables shown in ISWC paper with-

out feature selection

Table A.2: Alan Walks Wales resting data’s in-sample prediction AUC using

leave-one-subject-out cross-validation. The top five algorithms

are supervised, while the bottom three are unsupervised. Highest

value for the data set is shown in bold.

Alan Walks Wales resting data

Algorithm All features ACC only EDA only

Logistic regression 0.843 0.714 0.775

Multi-layer Perceptron 0.683 0.539 0.696

SVM 0.689 0.582 0.688

kNN classification 0.674 0.582 0.738

Random forest 0.747 0.583 0.712

1-class SVM 0.844 0.763 0.850

kNN distance 0.807 0.723 0.898

Isolation forest 0.804 0.711 0.885
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Table A.3: Alan Walks Wales walking data’s in-sample prediction AUC using

leave-one-subject-out cross-validation. The top five algorithms

are supervised, while the bottom three are unsupervised. Highest

value for the data set is shown in bold.

Alan Walks Wales walking data

Algorithm All features ACC only EDA only

Logistic regression 0.807 0.649 0.796

Multi-layer Perceptron 0.788 0.663 0.777

SVM 0.798 0.684 0.782

kNN classification 0.740 0.641 0.776

Random forest 0.815 0.671 0.796

1-class SVM 0.768 0.683 0.760

kNN distance 0.774 0.705 0.847

Isolation forest 0.693 0.619 0.735
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Table A.4: UT Dallas data’s in-sample prediction AUC using leave-one-

subject-out cross-validation. The top five algorithms are super-

vised, while the bottom three are unsupervised. Highest value for

the data set is shown in bold.

UT Dallas data

Algorithm All features ACC only EDA only

Logistic regression 0.941 0.852 0.935

Multi-layer Perceptron 0.928 0.842 0.928

SVM 0.913 0.852 0.898

kNN classification 0.846 0.832 0.870

Random forest 0.935 0.852 0.937

1-class SVM 0.859 0.862 0.900

kNN distance 0.911 0.875 0.930

Isolation forest 0.909 0.878 0.900

Table A.5: Out-of-sample prediction AUC with EDA only features.

Train/Test Set

Algorithm AWW/UTD UTD/AWW

Logistic regression 0.943 0.846

Multi-layer Perceptron 0.943 0.859

SVM 0.944 0.822

kNN classification 0.946 0.827

Random forest 0.940 0.843

1-class SVM 0.891 0.847

kNN distance 0.913 0.854

Isolation forest 0.911 0.774
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