
A Dissertation

entitled

Empirical likelihood methods in missing response problems and causal inference

by

Kaili Ren

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Doctor of Philosophy Degree in Mathematics

Dr. Biao Zhang, Committee Chair

Dr. Donald B. White, Committee Member

Dr. Rong Liu, Committee Member

Dr. Tian Chen, Committee Member

Dr. Pamela S. Brewster, Committee Member

Dr. Jiang Tian, Committee Member

Dr. Steven T. Haller, Committee Member

Dr. Amanda Bryant-Friedrich, Dean
College of Graduate Studies

The University of Toledo

August 2016



Copyright 2016, Kaili Ren

This document is copyrighted material. Under copyright law, no parts of this
document may be reproduced without the expressed permission of the author.



An Abstract of
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This manuscript contains three topics in missing data problems and causal infer-

ence.

First, we propose an empirical likelihood estimator as an alternative to Qin and

Zhang (2007) in missing response problems under MAR assumption. A likelihood-

based method is used to obtain the mean propensity score instead of a moment-

based method. Our proposed estimator shares the double-robustness property and

achieves the semiparametric efficiency lower bound when the regression model and

the propensity score model are both correctly specified. Our proposed estimator has

better performance when the propensity score is correctly specified. In addition,

we extend our proposed method to the estimation of ATE in observational causal

inferences. By utilizing the proposed method on a dataset from the CORAL clinical

trial, we study the causal effect of cigarette smoking on renal function in patients with

ARAS. The higher cystatin C and lower CKD-EPI GFR for smokers demonstrate the

negative effect of smoking on renal function in patients with ARAS.

Second, we explore a more efficient approach in missing response problems under

MAR assumption. Instead of using one propensity score model and one working re-

gression model, we postulate multiple working regression and propensity score models.

Moreover, rather than maximizing the conditional likelihood, we maximize the full

likelihood under constraints with respect to the postulated parametric functions. Our
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proposed estimator is consistent if one of the propensity scores is correctly specified

and it achieves the semiparametric efficiency lower bound when one of the working

regression models is correctly specified as well. This estimator is more efficient than

other current estimators when one of the propensity scores is correctly specified.

Finally, I propose empirical likelihood confidence intervals in missing data prob-

lems, which make very weak distribution assumptions. We show that the -2 empirical

log-likelihood ratio function follows a scaled chi-squared distribution if either the

working propensity score or the working regression model is correctly specified. If the

two models are both correctly specified, the -2 empirical log-likelihood ratio function

follows a chi-squared distribution. Empirical likelihood confidence intervals perform

better than Wald confidence intervals of the AIPW estimator, when sample size is

small and distribution of the response is highly skewed. In addition, empirical likeli-

hood confidence intervals for ATE can also be built in causal inference.
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Chapter 1

Introduction

1.1 The missing data problem

Missing data problems are pervasive in medical, social, and economic studies,

which may result in serious impact on the conclusion drawn from the study. There

are numerous reasons that can lead to missing data. For example, some people may

refuse to respond and some people are reluctant to provide all the information in a

sample survey. Some missing data are even designed by researchers, which may save

time and cost, or reduce unplanned missingness. In a longitudinal study, individuals

may drop out before the end of the study, which may also introduce missing data.

Although researchers always try to avoid missing data during the collection period, we

still need to learn how to deal with missing data when the missingness is inevitable.

Missing data may occur in responses, covariates, or both responses and covariates.

Missing data mechanisms, which describe the relationship between the propensity

of data to be missing and measured variables, are often classified as missing com-

pletely at random (MCAR), missing at random (MAR), and missing not at random

(MNAR) (Little and Rubin, 2002). Missing completely at random (MCAR) means

the missingness of data is independent of any observed or unobserved variables. An

example is that some questionnaires are lost by accident in a sample survey. Missing
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at random (MAR) occurs when the missingness only depends on observed data, and

is conditionally independent of unobserved data given observed data. For example,

people in service occupations are less likely to report their income. Missing not at

random (MNAR) indicates that the missingess of data depends on unobserved data.

An example is that in a physical examination, only overweight people have their

weight measured.

Our three research topics focus on missing response problems, under MAR as-

sumption. The main objective in our study is to estimate the population mean. If

the response is fully observed, an intuitive estimate of the population mean is the

sample mean.

1.1.1 Previous methods

When the response is subject to missing data, a naive method is to delete all

cases that contain missing values, and only analyze the complete cases, which is

called complete-case analysis. The complete-case estimator of the population mean

response is then defined as the sample mean of the observed responses. Now, the

question is does the complete-case estimator actually estimate the population mean

response, or is the complete-case estimator a consistent estimator of the population

mean response? The answer is it depends on the missing data mechanism. If responses

are MCAR, the weak law of large numbers suggests that the complete-case estimator

is a consistent estimator of the population mean response. On the other hand, if

the MCAR assumption does not hold, the complete-case estimator does not actually

estimate µ, instead, it estimates the true average of those observed responses. As a

result, many debias approaches are employed by researchers.

The regression estimator is very popular in missing response problems. It starts

with specifying a working regression model for the conditional expectation. A para-

metric working regression model, such as the linear regression model, is often postu-
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lated. Coefficients in the working regression model can be estimated from complete-

case data. The regression estimator is then defined as the average of predicted re-

sponses. Under MAR assumption, the probability of observing the response is condi-

tionally independent of the unobserved response given the covariates, which implies

that the conditional expectation of the response given the covariates is the same in

the observed group, the unobserved group, and the whole population. It explains

why we could use the complete-case data to estimate the regression coefficient. When

the working regression model is correctly specified, the regression estimator is a con-

sistent estimator of the population mean response. From our simulation results, we

notice that the regression estimator is more efficient than other estimators when the

regression model is correctly specified. This is also mentioned by other researchers;

see, for example, Kang and Schafer (2007).

Different from the regression estimator which makes assumptions about the re-

lationship between the response and covariates, the inverse probability weighting

(IPW) methods model the relationship between the missing indicator and covariates,

or propensity score. In a missing data problem, the propensity score is defined as the

probability of observing response given the covariates. We often postulate a para-

metric working model for the propensity score, where the coefficients in the working

propensity score can be estimated by maximizing the binomial likelihood function.

The most popular choice for the working propensity score model is the logistic re-

gression model. Motivated by survey inference of Horvitz and Thompson (1952), an

estimator that weights observed responses by the reciprocal of the predicted propen-

sity scores was proposed, and it is called the Horvitz-Thompson (HT) estimator. If

the working propensity score is correctly specified, the HT estimator is a consistent

estimator.

To enhance precision of the HT estimator, the sum of missing indicator to esti-

mated propensity score ratios is often used as a substitution in the denominator of

3



the HT estimator. In this way, the IPW estimator is given by reweighting the HT

estimator with normalized weights (Hirano and Imbens, 2001). Similar to the HT

estimator, the IPW estimator is also consistent when the working propensity score is

correctly specified. In most cases, the IPW estimator is more efficient than the HT

estimator.

To improve efficiency, Robins et al. (1994, 1995) proposed an augmented inverse

probability weighting (AIPW) method, which augments the IPW methods by adding

an outcome regression term. The AIPW estimator enjoys a double-robustness prop-

erty, which guarantees consistency of the estimator if either the propensity score or

the outcome regression model is correctly specified, and, moreover, the AIPW estima-

tor attains the semiparametric efficiency lower bound (Robins and Rotnitzky, 1995;

Hahn, 1998) when two working models are both correctly specified. The estimated

propensity score in the AIPW estimator can be replaced by the true value when the

true propensity score is known in some special cases, such as in planned missing data

designs. However, a counterintuitive result (Robins et al., 1995) suggests that the

AIPW is more efficient if the estimated propensity score is utilized instead of the true

propensity score, even if the true propensity score is known.

Qin and Zhang (2007) proposed an empirical likelihood (EL) approach for estimat-

ing the population mean by maximizing the conditional sampling likelihood subject

to moment constraints. Instead of using an outcome regression model as in the AIPW

method, the EL method employs a set of known functions, which avoids the estima-

tion of unknown coefficients in the regression function. The constraints in the EL

method calibrate both the propensity score and the known functions. Similar to the

AIPW estimator, the EL estimator also enjoys the double-robustness property; in

addition, it still achieves the semiparametric efficiency lower bound when the true

outcome regression function is a linear combination of the specified known functions

with a correctly specified working propensity score. Simulation results show that the

4



EL estimator is more efficient than the AIPW method when the regression model is

misspecified.

Various other methods related to missing response problems have been proposed

in literature. Wang and Rao (2002) introduced an empirical likelihood approach by

employing kernel regression imputation for missing response data, which estimates

the regression function using the nonparametric kernel method. If the covariate vec-

tor is high-dimensional, the nonparametric method is not very practical due to the

well-known curse of dimensionality. Qin et al. (2008) proposed an efficient and doubly

robust imputation method. Their estimator is derived by adding a new term to the

regression imputation estimator, where the new term is constructed by employing the

empirical likelihood method. This proposed estimator has good efficiency, enjoys the

double-robustness property, and achieves the semiparametric efficiency lower bound

when both propensity score and regression models are correctly specified. More-

over, this estimator does not suffer from the dimensionality problem, since it uses a

parametric regression model instead of a nonparametric one. Han and Wang (2013)

extended the double-robustness property to multiple-robustness property. They pro-

posed a weighted method based on empirical likelihood theory. Instead of postulat-

ing one propensity score model and one outcome regression model, their proposed

method postulates multiple propensity score and outcome regression models. The

weights are estimated by solving multiple constraint equations. Their estimator en-

joys a multiple-robustness property, which allows the estimator to be consistent if any

of the multiple postulated models are correctly specified. The estimator also attains

the semiparametric lower bound if one propensity score model and one regression

model are correctly specified.
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1.1.2 Our proposed methods

In Chapter 2, we propose an empirical likelihood estimator as an alternative to Qin

and Zhang (2007), which makes use of the empirical likelihood approach (Owen, 1988,

1990, 2001; Qin and Lawless, 1994). Our work differs from that of Qin and Zhang

(2007) in three aspects, as described below. First, instead of using a set of known

functions a(x) as in Qin and Zhang (2007), we postulate a working regression model

which possibly involves unknown parameters, but reduces the number of constraints

and lowers the implementation difficulty. Second, instead of constructing constraint

equations by calibrating both the propensity score and the functions a(x) as in Qin

and Zhang (2007), we only employ the calibration constraint equation to match the

first-order moment conditions of the estimated working regression function between

the complete-case subsample and the full sample, with no calibration weighting on the

constraint of the working propensity score; this gives rise to a different empirical like-

lihood method than that of Qin and Zhang (2007) by treating the expected working

propensity score as an unknown parameter in the constraint equations and estimating

the unknown parameter through a profile empirical likelihood function. Although an

additional parameter is introduced in constraint equations because no calibration is

imposed on the working propensity score, the reciprocal of the expected propensity

score parameter is constrained to be equal to one of the two Lagrange multipliers.

This implies that in terms of calculating probability masses supported on observed

data, the computational effort of our proposed empirical likelihood method is compa-

rable to that in Qin and Zhang (2007) because the number of unknown parameters in

our estimating equations is the same as that in the estimating equations of Qin and

Zhang (2007) when the dimension of a(x) equals one. Finally, our proposed partial

calibration weighting method using empirical likelihood yields a different asymptotic

variance of the estimated mean response from that produced by the full calibration

6



weighting empirical likelihood method of Qin and Zhang (2007); neither dominates

each other asymptotically, though simulation results show that our proposed estima-

tor has better performance when the working propensity score is correctly specified.

Apart from these three different aspects, our proposed estimator shares the double-

robustness property and achieves the semiparametric efficiency lower bound when the

working regression model and the working propensity score model are both correctly

specified.

In Chapter 3, we propose another empirical likelihood method in missing response

problems, which employs multiple working propensity score and regression models.

Our proposed method maximizes a full likelihood function instead of a conditional

likelihood function, and includes more constraints, such that the estimator is more

efficient than its competitors. This estimator is consistent when one of the working

propensity score is correctly specified, and it achieves the semiparametric efficiency

lower bound if one of the working regression models is correctly specified as well.

1.2 Causal inference

Questions related to causal inference may arise in many different areas, including,

but not limited to, epidemiologic, social, and econometric studies. For example, what

is the effect of a specific drug in patients with heart disease? How does education affect

people’s income? Do citizens of Beijing die due to air pollution? Researchers have

been studying different types of causal effect problems for decades. The counterfactual

framework described in Rubin (1974) is a fundamental approach to study causal effects

based on the idea of potential outcomes.

The treated and control potential outcomes for an individual, defined as the values

of the outcome if the individual were to receive treatment or control, are counterfactu-

als, because each individual can only be in the treated group or in the control group,
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not both. Assume the stable unit treatment value assumption (SUTVA) holds (Rubin,

1980), there is no treatment variation and potential outcomes are well defined. Our

central interest in causal inference is the estimation of the average treatment effect

(ATE), which is defined as the comparison between two population mean potential

outcomes.

In a randomized experiment, subjects are randomly assigned to treatment or con-

trol groups, which means distributions of baseline characteristics of subjects are bal-

anced in two groups and potential outcomes are independent of treatment assignment.

In this case, the population mean observed outcome among subjects in the treated

group is equal to the population mean potential treated outcome, while the popu-

lation mean observed outcome among subjects in the control group is equal to the

population mean potential control outcome. This indicates that a comparison of mean

observed responses from the two sample groups can be directly used to estimate the

ATE.

Randomized experiments cannot always be conducted due to ethical, budgetary,

or practical reasons. For example, it is infeasible to assign people to smoking or

non-smoking groups to study the causal effects of smoking on some diseases. Ob-

servational studies are often implemented instead of randomized experiments in such

cases. In an observational study, data are observed after the experiment and the

treatment assignment is outside the control of the investigator. In this case, associa-

tion between treatment assignment and covariates and potential outcomes may exist,

and characteristics of the subjects may be unbalanced between the two treatment

groups. A biased result may occur if sample mean difference is used as an estimate of

the ATE in an observational study. For example, if smokers are significantly younger

than non-smokers in an observational study, a sample mean comparison might lead to

unreasonable results, such as smokers have better kidney function than non-smokers.

In an observational study, treatment exposure and potential outcomes are very
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unlikely to be independent; however, it is plausible to make a strongly ignorable

assumption (Rosenbaum and Rubin, 1983), which is potential outcomes are condi-

tionally independent of the treatment exposure given the covariates. This assumption

is also called no unmeasured confounders assumption. By making this assumption,

researchers assume that the covariate vector measured in the dataset contains all con-

founders associated with treatment exposure and potential outcomes and there are

no other unmeasured confounders. Therefore, researchers can make inferences on the

ATE by adjusting these confounders.

An approach of adjusting confounding factors is to match the treated and control

subjects with similar covariate values. The basic idea of the matching approach is

to balance characteristics in two treatment groups and to enforce the observational

study almost the same as a randomized experiment. An intuitive way to achieve the

matching is by matching each treated subject with a control subject who has exactly

the same values of all covariates. It might be very easy to achieve this matching with

only one covariate; however, if the covariate vector is high-dimensional, such match-

ing is almost infeasible. Rosenbaum and Rubin (1983) proposed a propensity score

approach to estimate the ATE by adjusting pretreatment covariates. The propensity

score is defined as the conditional probability of receiving treatment given the co-

variate vector. Rosenbaum and Rubin (1983) provided two effective features for the

propensity score. First, the propensity score is a balancing score, which means the

distribution of the covariate vector is the same in the treated and control group for

subjects with the same propensity score. Second, if the strongly ignorable assump-

tion holds, then the treatment exposure is conditionally independent of the potential

outcome for subjects with the same propensity score. These features allow us to

match the subjects on propensity score instead of covariates (Rosenbaum and Rubin,

1985; D’Agostino, 1998). A parametric working propensity score, such as a logistic

regression model, is often needed in a propensity score matching. After estimating
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coefficients of the propensity score model from the binomial likelihood function, we

can perform a 1 : 1 or k : 1 matching for subjects with similar estimated propen-

sity scores in control and treated groups and make inferences on the ATE using the

matched dataset.

An alternative usage of propensity score for confounder adjustment is through

stratification (Rosenbaum and Rubin, 1984; D’Agostino, 1998; Lunceford and Da-

vidian, 2004). Subjects are stratified into k strata by sample quantiles of estimated

propensity scores. Sample mean difference between two treatment groups can then be

calculated in each stratum, and the ATE can be estimated using the sum of weighted

sample mean differences across all strata. If the balance is still not achieved within

each stratum, residual confounding may still exist and bring about biased estimation.

To reduce the bias, alternative methods such as regression estimates can be applied

instead of the sample mean difference within each stratum.

Another approach to adjust for confounding factors in observational causal infer-

ence is by treating the problem of estimating ATE as a two-sample missing response

problem. If we view the treated responses as missing data for subjects in the con-

trol group, the estimation of the mean potential treated response can be viewed as a

one-sample missing response problem. On the other hand, the mean potential control

response can also be estimated by considering control responses as missing data for

subjects in the treated group. As a result, methods developed in missing response

problems, including, but not limited to the regression estimator, IPW methods, the

AIPW estimator, EL methods, and the multiple-robustness estimator, can be applied

immediately in the estimation of the ATE in observational causal inference; see, for

example, Hahn (1998), Hirano et al. (2003), Tan (2006), Qin and Zhang (2007), and

Zhang (2016). We also extend our proposed empirical likelihood methods in miss-

ing response problems to the estimation of ATE in observational causal inferences in

Chapter 2.
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1.3 Empirical likelihood method

Empirical likelihood is a well-known nonparametric approach introduced by Owen

(1988, 1990, 2001). Parametric likelihood methods are very popular in statistical in-

ference, which require us to specify parametric joint distributions of the data; how-

ever, if the distributions are incorrectly specified, results may no longer be efficient.

The empirical likelihood method surmounts the difficulty of distribution specifica-

tion, while maintaining the attractive advantages of parametric likelihood methods

as well. For example, the Wilks’ theorem still works under an empirical likelihood

setup (Owen, 1988); Bartlett correction can be applied to improve the precision of

inferences (DiCiccio et al., 1991). In addition, semiparametric methods that combine

the empirical likelihood and parametric methods through constraints may achieve

more desirable results on different inference problems; see for example, Qin and Zhang

(2007), Zhang and Zhang (2014), and Wang and Zhang (2014).

In empirical likelihood inferences, the empirical cumulative distribution function

(ECDF) is a nonparametric maximum likelihood estimate of the distribution func-

tion. We define the nonparametric likelihood ratio as the ratio of the nonparametric

likelihood of the cumulative distribution function and the likelihood of ECDF. If we

are interested in a parameter, the profile likelihood ratio function of the parameter

can be defined as the maximum of the nonparametric likelihood ratio under some

constraints with respect to probability masses and the parameter. In addition, if

we are interested in the population mean, the empirical likelihood theorem (Owen,

2001) states that the −2 empirical log likelihood ratio converge in distribution to a

chi-squared random variable with one degree of freedom, which allows us to build

an empirical likelihood confidence interval of the population mean. For more details

please refer to Owen (2001).

Empirical likelihood has very wide applications in different areas in statistics.

11



Chen and Qin (1993) demonstrated that the empirical likelihood method can be ap-

plied to finite population sampling problems to use auxiliary information efficiently.

Smoothed empirical likelihood confidence intervals were developed by Chen and Hall

(1993) for quantiles. Qin and Lawless (1994) utilized the empirical likelihood method

to solve estimating equations when the number of parameters is less than the number

of equations. A blockwise empirical likelihood method proposed by Kitamura (1997)

was applied for general estimating equations with weakly dependent processes. Qin

and Zhou (2006), Zhang and Zhang (2014), and Wang and Zhang (2014) employed

the empirical likelihood method in ROC analysis. Many researchers also applied the

empirical likelihood method to missing data problems. Wang and Rao (2002) intro-

duced an empirical likelihood approach for mean response by using kernel regression

imputation. An empirical likelihood approach proposed by Qin and Zhang (2007)

estimated the population mean by maximizing the conditional sampling likelihood

subject to moment constraints. Xue (2009) constructed empirical likelihood confi-

dence intervals for mean response under MAR assumption after the kernel regression

imputation. For more references on missing data problems, I refer readers to Qin

et al. (2009), Wang and Chen (2009), and Han and Wang (2013).

In Chapter 4, we propose semiparametric empirical likelihood confidence intervals

in missing response problems by utilizing the AIPW method proposed by Robins

et al. (1994). We prove that the −2 empirical log-likelihood ratio function follows a

scaled chi-squared distribution if either the working propensity score or the working

regression model is correctly specified. If the two models are both correctly specified,

the −2 empirical log-likelihood ratio function follows a non-scaled chi-squared distri-

bution. Simulation results suggest that our proposed empirical likelihood confidence

intervals have better performance compared with the Wald type confidence intervals

for the AIPW estimator, when sample size is small and distribution of the response

is skewed. Moreover, this method can be extended to the construction of empirical
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likelihood confidence intervals for the ATE in causal inference.
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Chapter 2

An alternative empirical likelihood

method in missing response

problems and causal inference

2.1 Introduction

Missing data occurs frequently in medical, social, and economic studies. Miss-

ing responses, missing covariates, or both are possible missing data patterns. In

this chapter, we focus on missing response problems. We assume that responses are

missing at random (MAR), which means that the missing indicator variable is condi-

tionally independent of responses given the covariates. The simplest way to deal with

missing data is complete-case analysis, i.e., deleting subjects with missing values and

analyzing the subjects with complete observations. However, this approach may lose

efficiency and lead to biased results unless the missing data mechanism is missing

completely at random (MCAR).

The regression method is an efficient approach to estimate the mean response.

After fitting a regression model from the complete-case data, the regression estimator

can be derived by the mean of the fitted values from all subjects; this is motivated
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from survey sampling methods Cochran (2007). Another common approach is the

inverse probability weighting (IPW) method motivated by Horvitz and Thompson

(1952). This method weights the complete-case response by the inverse of estimated

selection probability or propensity score (Rosenbaum and Rubin, 1983). Both of

these methods are simple to use; however, they are not consistent if the regression

model or the propensity score model is misspecified. Robins et al. (1994, 1995) pro-

posed an augmented inverse probability weighting (AIPW) method, which extends

the IPW method by adding a regression term as an augmentation. The AIPW esti-

mator has a double-robustness property, i.e., the estimator is consistent if either the

outcome regression model or the propensity score model is correctly specified. It also

achieves the semiparametric efficiency lower bound when the regression model and

the propensity score model are both correctly specified. Various doubly robust and

multiply robust estimators have been studied in recent years; see for example, Bang

and Robins (2005), Tan (2006), Kang and Schafer (2007), Qin and Zhang (2007), Qin

et al. (2008), Cao et al. (2009), Zhang and Little (2011), and Han and Wang (2013).

In this chapter, we propose an empirical likelihood estimator as an alternative to

Qin and Zhang (2007), which made use of the empirical likelihood approach (Owen,

1988, 1990, 2001; Qin and Lawless, 1994). Our work differs from that of Qin and

Zhang (2007) in three aspects, which are described in Section 1.1.2. Our proposed

estimator also shares the double-robustness property and achieves the semiparametric

efficiency lower bound when the working regression model and the working propensity

score model are both correctly specified.

Estimation of the average treatment effect (ATE) is often the basis of epidemi-

ologic and econometric studies. In a randomized experiment, the ATE can be esti-

mated by simply employing the sample mean difference. However, in an observational

study, the treatment assignment may depend on covariates; thus, the sample mean

difference may no longer be consistent. In this case, the estimation of ATE requires
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adjustment for confounding factors. The propensity score proposed by Rosenbaum

and Rubin (1983) plays a critical role in observational causal inference. It can be

used to adjust for confounding factors through matching, stratification, and weight-

ing; see for example, Rosenbaum and Rubin (1984, 1985), Hahn (1998), Hirano et al.

(2003), Lunceford and Davidian (2004), Qin and Zhang (2007), and Zhang (2016). If

we consider the control responses as missing data for subjects in the treated group,

the estimation of the mean potential control response can be viewed as a one-sample

missing response problem. In the same manner, the mean potential treated response

can be estimated by viewing the treated responses as missing data for subjects in the

control group. As a result, methods developed in the missing data problems can be

applied in the estimation of the ATE in observational causal inference.

Cigarette smoking may worsen renal function in people with diabetes mellitus and

primary kidney diseases (Stegmayr, 1990; Orth et al., 1998; Shankar et al., 2006; Obert

et al., 2011); however, the effect of cigarette smoking on renal function in patients with

atherosclerotic renal artery stenosis (ARAS) is uncertain. In this context, we apply

our proposed method and several other methods on a dataset from the Cardiovascular

Outcomes in Renal Atherosclerotic Lesions (CORAL) clinical trial (Cooper et al.,

2014) to study the causal effect of cigarette smoking on renal function in patients

with ARAS; see Drummond et al. (2015). The CORAL study was a prospective,

international, randomized clinical trial which compared medical therapy only with

medical therapy plus stenting in patients with ARAS, followed from May 2005 to

January 2010. Randomization was carried out by an interactive voice randomization

system (IVRS) with the use of a permuted block design (Cooper et al., 2014). Active

cigarette smoking, defined as regular tobacco use within one year prior to enrollment

in the study, was observed after randomization; hence, the study of the causal effect

of smoking on renal function of ARAS patients is an observational study. In the

CORAL study, 277 (30%) of the 931 enrolled patients were self-reported smokers.
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This chapter is organized as follows. Section 2.2 presents empirical likelihood

estimators in one-sample missing response problem and two-sample missing response

problem (causal inference). Section 2.3 provides theoretical properties and asymptotic

distributions of the proposed estimators. Simulations studied for both one-sample and

two-sample missing data problems are given in Section 2.4. Section 2.5 presents an

application of the proposed method based on a dataset from the CORAL clinical trial

(Cooper et al., 2014). Section 2.6 contains concluding remarks. Proofs of theoretical

results are given in the Section 2.7. Section 2.8 provides some theoretical properties

for estimators in simulation studies.

2.2 Methodology

2.2.1 One-sample missing response problem

As in Qin and Zhang (2007), we consider the standard missing data setup. Let Y ,

X, D be the response variable, covariate vector, and missing indicator respectively,

where D = 1 or 0 as Y is observed or missing, and X is always observed. Our goal is

to estimate the population mean

µ = E(Y ) =

∫ ∫
yf(y, x) dx dy,

where f(y, x) is the joint density function of (Y,X), and µ0 is the true value of µ.

Let (DiYi, Xi, Di), i = 1, . . . , n denote the observed data. Without loss of gen-

erality, we index the subjects with observed response by i = 1, . . . , n1, where n1 =∑n
i=1 Di. Our proposed method requires making assumptions about the propensity

score P (D = 1|X = x) and the conditional expectation E(Y |X = x), which are de-

noted as π(x) and m(x), respectively. A parametric working propensity score model

π(x, γ) for π(x) is often postulated by researchers, where γ is a p× 1 unknown vector
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parameter, and γ is often estimated by maximizing the binomial likelihood

n∏
i=1

π(Xi, γ)Di{1− π(Xi, γ)}1−Di . (2.1)

The most common choice of the propensity score model is the logistic regression model

π(x, γ) =
exp(γTx)

1 + exp(γTx)
.

Similarly, we can posit a parametric working regression model m(x, β) for m(x), where

β is a q×1 unknown vector parameter that can be estimated from complete-case data.

The conditional likelihood founded on (Yi, Xi), given Di = 1, i = 1, . . . , n1 can be

written as

L =

n1∏
i=1

π(Xi, γ)pi
θ

, (2.2)

where

θ =

∫ ∫
π(x)f(y, x)dxdy = E{π(X)}

and pi = f(Yi, Xi) = dF (Yi, Xi), i = 1, . . . , n1, denote positive jumps with sum 1,

where F (y, x) is the joint cumulative distribution function of (Y,X). Accordingly, we

can now treat the inference on the conditional likelihood (2.2) as a biased sampling

problem similar to Vardi (1982, 1985). To obtain a more efficient empirical like-

lihood estimator, we maximize the conditional likelihood (2.2) under the following

constraints

n1∑
i=1

pi = 1,

n1∑
i=1

pi{π(Xi, γ̂)− θ} = 0,

n1∑
i=1

pi{m(Xi, β̂)− m̂(β̂)} = 0, (2.3)

where γ̂ is the maximizer of binomial likelihood (2.1), β̂ is the coefficient of the regres-

sion model m(x, β), and m̂(β̂) = n−1
∑n

i=1m(Xi, β̂). The first constraint corresponds

to the truth that the total jumps equals 1. The second constraint reflects the selection
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bias. The third and final constraint is to improve efficiency by using the regression

function. For fixed (θ, γ), applying the method of Lagrange multipliers shows that

the maximum value of L is attained at

pi(θ) =
1

n1

1

1 + λ1{π(Xi, γ̂)− θ}+ λ{m(Xi, β̂)− m̂(β̂)}
, i = 1, . . . , n1, (2.4)

where λ1 and λ are Lagrange multipliers. Substituting pi(θ)’s into the conditional

likelihood (2.2), the profile likelihood of θ is

L(θ) =

n1∏
i=1

π(Xi, γ̂)

θ

1

n1

1

1 + λ1{π(Xi, γ̂)− θ}+ λ{m(Xi, β̂)− m̂(β̂)}
.

Maximizing the profile likelihood function by differentiating the log-likelihood l(θ),

where l(θ) = log{L(θ)}, with respect to θ and setting the derivative to 0, we obtain

λ1 =
1

θ
.

Under constraints (2.3), θ and λ satisfy

n1∑
i=1

π(Xi, γ̂)− θ
θ−1π(Xi, γ̂) + λ{m(Xi, β̂)− m̂(β̂)}

= 0,

n1∑
i=1

m(Xi, β̂)− m̂(β̂)

θ−1π(Xi, γ̂) + λ{m(Xi, β̂)− m̂(β̂)}
= 0.

(2.5)

Suppose (θ̂, λ̂)T is a solution of equations (2.5). Then from (2.4) we obtain

p̂i =
1

n1

1

θ̂−1π(Xi, γ̂) + λ̂{m(Xi, β̂)− m̂(β̂)}
, i = 1, . . . , n1, (2.6)

It turns out that our proposed estimator is given by

µ̂ =

n1∑
i=1

p̂iYi
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=
1

n1

n∑
i=1

1

θ̂−1π(Xi, γ̂) + λ̂{m(Xi, β̂)− m̂(β̂)}
DiYi. (2.7)

Remark 1: A major difference between our proposed method and Qin and Zhang’s

(2007) empirical likelihood method is in the second constraint of (2.3). Their approach

is to calibrate the estimated working propensity score π(x, γ̂) by matching its first-

order moments from the complete-case covariate vector {(Xi, Di = 1), i = 1, . . . , n}

to the full-data covariate vector (X1, . . . , Xn). By contrast, our approach matches the

first-order moment of π(x, γ̂) from {(Xi, Di = 1), i = 1, . . . , n} to the expected work-

ing propensity score θ = E{π(X, γ)}, an additional unknown parameter introduced

into the second constraint equation in (2.3) due to no calibration on π(x, γ̂). In other

words, Qin and Zhang (2007) performed calibration on both the propensity score

π(x, γ̂) and the known functions a(x) through matching between the complete-case

subsample and the full sample on the covariate vector X, whereas we only perform

partial calibration on m(x, β̂) and impose no calibration constraint on π(x, γ̂). As

a result, the expected working propensity score θ is estimated differently depending

on whether or not calibration is performed on π(x, γ̂). In Qin and Zhang (2007),

θ is estimated by the sample mean propensity score θ̃ = n−1
∑n

i=1 π(Xi, γ̂), which

only uses the observed data on (D,X) and the estimated working propensity score

π(x, γ̂). It is worth pointing out that θ̃ reduces to the non-missing proportion n1/n

for any logistic propensity score with an intercept. In contrast to their estimator θ̃,

our proposed estimator θ̂ is obtained by maximizing the profile likelihood function

L(θ) and has the potential advantages of utilizing all the observed data on (DY,X,D)

and extracting useful information from both working models π(x, γ̂) and m(x, β̂).
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2.2.2 Causal inference or two-sample missing response prob-

lem

Let D denote an indicator of treatment exposure such that D = 1 if treated and

D = 0 if control. Let X denote a covariate vector which is not affected by either

treatment. Denote Y (0) and Y (1) as potential outcomes, respectively, when D = 0

and D = 1. Yi(1)−Yi(0) represent the treatment effect for the ith subject. However,

it cannot be observed, since each subject can only be in the treated group or in the

control group, not both. Accordingly, the actual observed outcome Y is written as

Y = DY (1) + (1−D)Y (0),

and (Yi, Xi, Di), i = 1, . . . , n are observed values. Nevertheless, causal effects are

still comparisons between potential outcomes, which can be measured by the average

treatment effect (ATE), defined as

∆ = E{Y (1)− Y (0)} = µ1 − µ0. (2.8)

In an observational study, the propensity score is the conditional probability of re-

ceiving treatment given the covariate vector X (Rosenbaum and Rubin, 1983), which

is

π(x) = P (D = 1|X = x), 0 < π(x) < 1.

In addition, if the strongly ignorable assumption (Rosenbaum and Rubin, 1983) holds,

which is

{Y (0), Y (1)} |= D|X,

the estimation of ∆ in causal inference can be considered as a two-sample missing

response problem under the missing at random assumption. The two samples are
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(Yi(1), Di, Xi) and (Yi(0), Di, Xi), i = 1, . . . , n, where Yi(1) and Yi(0) are missing

if Di = 0 and Di = 1, respectively. Then we can estimate µ1 and µ0 in (2.8)

separately by our proposed method in Section 2.2.1. Denote mj(x) = E{Y (j)|X =

x}, j = 0, 1. Then we can postulate parametric models π(x, γ), m0(x, β0), and

m1(x, β1), for π(x), m0(x), andm1(x), respectively, where γ can be estimated from the

binomial likelihood function which has the same format as (2.1), βj can be estimated

from the complete-case data of (Yi(j), Di, Xi), i = 1, . . . , n, and j = 0, 1. Write

m̂j(β̂
j) = n−1

∑n
i=1 mj(Xi, β̂

j), n1 =
∑n

i=1Di and n0 = n − n1. On the basis of the

methodology in Section 2.2.1, µ1 is estimated by

µ̂1 =
1

n1

n∑
i=1

1

(θ̂1)−1π(Xi, γ̂) + λ̂1{m1(Xi, β̂1)− m̂1(β̂1)}
DiYi, (2.9)

where θ̂1 and λ̂1 satisfy the equations

n1∑
i=1

π(Xi, γ̂)− θ1

(θ1)−1π(Xi, γ̂) + λ1{m1(Xi, β̂1)− m̂1(β̂1)}
= 0,

n1∑
i=1

m1(Xi, β̂
1)− m̂1(β̂1)

(θ1)−1π(Xi, γ̂) + λ1{m1(Xi, β̂1)− m̂1(β̂1)}
= 0.

Similarly, µ0 is estimated by

µ̂0 =
1

n0

n∑
i=1

1

(θ̂0)−1{1− π(Xi, γ̂)}+ λ̂0{m0(Xi, β̂0)− m̂0(β̂0)}
(1−Di)Yi, (2.10)

where θ̂0 and λ̂0 satisfy the equations

n0∑
i=1

1− π(Xi, γ̂)− θ0

(θ0)−1{1− π(Xi, γ̂)}+ λ0{m0(Xi, β̂0)− m̂0(β̂0)}
= 0,

n0∑
i=1

m0(Xi, β̂
0)− m̂0(β̂0)

(θ0)−1{1− π(Xi, γ̂)}+ λ0{m0(Xi, β̂0)− m̂0(β̂0)}
= 0.
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According to (2.9) and (2.10), we propose the estimate ∆ by ∆̂ = µ̂1 − µ̂0.

2.3 Theoretical Properties

2.3.1 One-sample missing response: consistency when the

working regression model is correctly specified

Suppose that m(x) is correctly modeled by m(x, β). Denote the true value of β as

β0 such that m(x, β0) = m(x), then β̂ → β0 in probability, and, moreover, m̂(β̂)→ µ0

in probability. Applying the results of White (1982), γ̂ → γ∗0 in probability under

suitable regularity conditions, where γ∗0 is the value that minimizes the Kullback-

Leibler discrepancy ∫
log{π(x)/π(x, γ)}π(x) dx

with respect to γ. In addition, suppose (θ̂, λ̂)T is a solution of equations (2.5). We

can prove that (θ̂, λ̂)T → (θ∗0, λ
∗
0)T under suitable regularity conditions. Then the

consistency of µ̂ can be obtained as follows after some algebra, which is

µ̂ =

n1∑
i=1

p̂i{Yi −m(Xi, β̂)}+

n1∑
i=1

p̂im(Xi, β̂)

=
n

n1

1

n

n∑
i=1

Di{Yi −m(Xi, β̂)}
θ̂−1π(Xi, γ̂) + λ̂{m(Xi, β̂)− m̂(β̂)}

+ m̂(β̂)

→ 1

P (D = 1)
E

[
D{Y −m(X)}

θ∗0
−1π(X, γ∗) + λ∗0{m(X)− µ0}

]
+ µ0 = µ0

in probability. It follows that

Theorem 2.3.1 If the regression model m(x, β) is correctly specified, µ̂ is a consis-

tent estimator of µ0.
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2.3.2 One-sample missing response: asymptotic distribution,

consistency, and efficiency when the working propen-

sity score is correctly specified

Now suppose that π(x) is correctly modeled by π(x, γ). Denote the true value of

γ as γ0 such that π(x, γ0) = π(x). Applying the results of White (1982), β̂ → β∗
0

in probability under suitable regularity conditions. Furthermore, m̂(β̂) → m∗
0 in

probability, where m∗
0 = E{m(X, β∗

0)}. Write

v(x, γ) = ∂π(x, γ)/∂γ,

A =
{D − π(X, γ0)}v(X, γ0)

π(X, γ0){1− π(X, γ0)}
,

B = E

[
1

π(X)
{m(X, β∗

0)−m∗
0}2

]
,

G = E

[
Y − µ0

π(X)
{m(X, β∗

0)−m∗
0}
]
,

H =
D(Y − µ0)

π(X)
−GB−1D − π(X)

π(X)
{m(X, β∗

0)−m∗
0}.

(2.11)

Theorem 2.3.2 If the propensity score model π(x, γ) is correctly specified. Under

suitable regularity conditions, µ̂ is a consistent estimator of µ0. Moreover, as n→∞,

n1/2(µ̂− µ0) −→ N(0,Var(K))

in distribution, where

K = H − E(HAT ){E(AAT )}−1A. (2.12)

The proof of Theorem 2.3.2 is given in the Section 2.7.
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From a geometric viewpoint, the term E(HAT ){E(AAT )}−1A in (2.12) can be

viewed as the orthogonal projection of H onto A, and K can be regarded as the

residual. As a result, Var(K) ≤ Var(H). In contrast, the empirical likelihood es-

timator µ̂EL of µ proposed by Qin and Zhang (2007) possesses a different influence

function in that it is the residual KEL = HEL − E(HELA
T ){E(AAT )}−1A from the

projection of HEL onto the linear space spanned by A, where

HEL =
D(Y − µ0)

π(X, γ0)
−GT

ELB
−1
EL

D − π(X, γ0)

π(X, γ0)

(
π(X, γ0)− θ0

a(X)− a0

)

with a0 = E{a(X)} and

GEL = E

{
Y − µ0

π(X, γ0)

(
π(X, γ0)− θ0

a(X)− a0

)}
,

BEL = E

{
1

π(X, γ0)

(
π(X, γ0)− θ0

a(X)− a0

)(
π(X, γ0)− θ0

a(X)− a0

)T}
.

This implies that the proposed estimator µ̂ and the estimator µ̂EL of Qin and Zhang

(2007) have different asymptotic variances Var(K) and Var(KEL); neither estimator

appears to dominate the other one in terms of having a smaller asymptotic variance.

The simulation study presented in the next section shows favorable results and im-

provement of µ̂ under the correct working propensity score. To optimize the cost and

accuracy of a study, planned missing data designs are usually applied by researchers.

In this case, π(x) is known. It follows that,

Corollary 2.3.1 If the true propensity score π(x) is known, we substitute π(x) for

π(x, γ̂) in (2.7). Under suitable regularity conditions, as n→∞,

n1/2(µ̂− µ0) −→ N(0,Var(H))
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in distribution, where H is defined in (2.11).

The proof of Corollary 2.3.1 is similar to that of Theorem 2.3.2 and is omitted.

Although π(x) is known in planned missing data designs, since Var(K) ≤ Var(H), we

can improve the efficiency of µ̂ by postulating a model for π(x). This is a well-known

counterintuitive result (Robins et al., 1995).

Corollary 2.3.2 If the propensity score model π(x, γ) and the working regression

model m(x, β) are both correctly specified, the asymptotic variance Var(HB) reaches

the semiparametric efficiency lower bound, where

HB =
D(Y − µ0)

π(X)
− D − π(X)

π(X)
{m(X)− µ0} =

D{Y −m(X)}
π(X)

+m(X)− µ0.

Proof. If π(x, γ) and m(x, β) are both correctly specified, in (2.11) and (2.12),

B = G = E

[
1

π(X)
{m(X)− µ0}2

]
,

which leads to

H = HB =
D(Y − µ0)

π(X)
− D − π(X)

π(X)
{m(X)− µ0} and E(HAT ) = 0.

Therefore, we have K = HB, and the asymptotic variance Var(HB) equals the semi-

parametric efficiency lower bound (Robins and Rotnitzky, 1995; Hahn, 1998). The

proof is complete.

2.3.3 Theoretical properties in causal inference

Let (µ0
0, µ

1
0,∆0) be the true value of (µ0, µ1,∆). When π(x) is correctly modeled

by π(x, γ), denote the true value of γ as γ0 such that π(x, γ0) = π(x). Applying the

results of White (1982), β̂j → βj∗0 , j = 0, 1, in probability under suitable regularity
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conditions. Furthermore, for j = 0, 1, m̂j(β̂
j) → m∗

j0 in probability, where m∗
j0 =

E{mj(X, β
j∗
0 )}. For j = 0, 1, write

v(x, γ) = ∂π(x, γ)/∂γ,

A =
{D − π(X, γ0)}v(X, γ0)

π(X, γ0){1− π(X, γ0)}
,

Bj = E

[
1

{π(X)}j{1− π(X)}1−j {mj(X, β
j∗
0 )−m∗

j0}2

]
,

Gj = E

[
Y − µj0

{π(X)}j{1− π(X)}1−j {mj(X, β
j∗
0 )−m∗

j0}

]
,

Hj =
Dj(1−D)1−j(Y − µj0)

{π(X)}j{1− π(X)}1−j − (−1)j+1GjB
−1
j

D − π(X)

{π(X)}j{1− π(X)}1−j {mj(X, β
j∗
0 )−m∗

j0},

H∆ = H1 −H0.

(2.13)

Theorem 2.3.3 Under suitable regularity conditions, our proposed estimator ∆̂ has

the following properties:

(a) ∆̂ is a doubly robust estimator, i.e. it is a consistent estimator of ∆ if either

the propensity score model π(x, γ) or the regression models mj(x, β
j), j = 0, 1,

are correctly specified.

(b) If the propensity score model π(x, γ) is correctly specified. As n→∞,

n1/2(∆̂−∆0) −→ N(0,Var(K∆))

in distribution, where

K∆ = H∆ − E(H∆A
T ){E(AAT )}−1A.
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(c) If the true propensity score π(x) is known, we substitute π(x) for π(x, γ̂) in

(2.9) and (2.10). As n→∞,

n1/2(∆̂−∆0) −→ N(0,Var(H∆))

in distribution, where H∆ is defined in (2.13).

(d) If the propensity score model π(x, γ) and the working regression models mj(x, β
j)

are both correctly specified. The asymptotic variance Var(H∆B) reaches the semi-

parametric efficiency lower bound, where

H∆B =
D(Y − µ1

0)

π(X)
− (1−D)(Y − µ0

0)

1− π(X)

−
[
D − π(X)

π(X)
{m1(X)− µ1

0} −
π(X)−D
1− π(X)

{m0(X)− µ0
0}
]

=
D{Y −m1(X)}

π(X)
− (1−D){Y −m0(X)}

1− π(X)
+m1(X)−m0(X)−∆0.

The proof of Theorem 2.3.3 is similar to proofs of Theorem 2.3.1, Theorem 2.3.2,

Corollary 2.3.1, and Corollary 2.3.2, and is omitted.

2.4 Simulation studies

2.4.1 One-sample missing response problem

The first simulation study is presented to compare the performance of relative

estimators and our proposed estimator µ̂ in a one-sample missing response problem.

The relative estimators include the full data sample mean

Ȳ =
1

n

n∑
i=1

Yi,
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the complete-case estimator

µ̂CC =

∑n
i=1DiYi∑n
i=1 Di

,

the regression estimator

µ̂REG =
1

n

n∑
i=1

m(Xi, β̂),

the Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952)

µ̂HT =
1

n

n∑
i=1

DiYi
π(Xi, γ̂)

,

the inverse probability weighting (IPW) estimator (Hirano and Imbens, 2001)

µ̂IPW =

∑n
i=1DiYi/π(Xi, γ̂)∑n
i=1Di/π(Xi, γ̂)

,

the augmented inverse probability weighting (AIPW) estimator (Robins et al., 1994)

µ̂AIPW =
1

n

n∑
i=1

{
DiYi

π(Xi, γ̂)
− Di − π(Xi, γ̂)

π(Xi, γ̂)
m(Xi, β̂)

}
,

and the empirical likelihood (EL) estimator (Qin and Zhang, 2007)

µ̂EL =
n∑
i=1

θ̂π−1(Xi, γ̂)

1 + η̂T r(Xi, γ̂, θ̂, â)
DiYi

/ n∑
i=1

Di,

where θ̂ = n−1
∑n

i=1 π(Xi, γ̂), a(x) = (a1(x), . . . , ar(x))T are r independent known

functions, â = (n−1
∑n

i=1 a1(Xi), . . . , n
−1
∑n

i=1 ar(Xi))
T , and η̂ = (η̂1, η̂

T
2 )T is the

solution of
n1∑
i=1

r(Xi, γ̂, θ̂, â)

1 + ηT r(Xi, γ̂, θ̂, â)
= 0

with

r(x, γ, θ, a) =

 1− θπ−1(x, γ)

π−1(x, γ){a(x)− a}

 .
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We generate data by the following process: X ∼ Un(−2.5, 2.5), D|X = x ∼ Ber{π(x)},

and Y |X = x ∼ N{m(x), 4x2 + 2}, where

π(x) =
exp(−0.1 + 0.5x− 0.3 exp(x))

1 + exp(−0.1 + 0.5x− 0.3 exp(x))

and

m(x) = 1 + 2x+ 3x2,

such that the missing rate is around 0.69 and µ0 = 7.25. The working propensity

scores are

πT (x, γT ) =
exp(γT0 + γT1x+ γT2 exp(x))

1 + exp(γT0 + γT1x+ γT2 exp(x))

and

πF (x, γF ) = 1− exp{− exp(γF0 + γF1x
2 + γF2x

4)}.

The working regression models are

mT (x, βT ) = βT0 + βT1x+ βT2x
2

and

mF (x, βF ) = βF0 + βF1x+ βF2 exp(x),

or

aT (x) =

 x

x2

 and aF (x) =

 x

exp(x)


for µ̂EL. Some theoretical properties and approximate sampling variances for estima-

tors used in simulation studies are provided in Section 2.8.

Let

dX =
X̄o − X̄m√

s2o+s2m
2

(2.14)
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denote the standardized difference between observed and missing groups of covariate

X in one sample, where X̄o and X̄m denote the sample mean of covariateX in observed

and missing groups, and s2
o and s2

m denote the sample variances, respectively.

Figure 2-1 presents the histograms with kernel density curves of X̄ and exp(X) in

observed and missing groups from 5000 Monte Carlo samples with sample size 500.

The left panel of Figure 2-1 shows that there is no significant difference between ob-

served and missing groups in covariate X. Mean (±SD) of X̄ in observed and missing

groups are −0.015 ± 0.101 and 0.004 ± 0.082, respectively; the mean standardized

difference between observed and missing groups in X is d̄X = −0.014 with 95% confi-

dence interval -0.197 to 0.170. In the meantime, the right panel of Figure 2-1 indicates

a significant difference between the two groups in exp(X). Mean (±SD) of exp(X) in

observed and missing groups are 1.97± 0.18 and 2.62± 0.17, respectively; the mean

standardized difference between observed and missing groups in X is d̄exp(X) = −0.23

with 95% confidence interval -0.41 to -0.05. In this case, the complete-case estimator

µ̂CC will introduce biases, and therefore, debias methods should be applied.

5000 Monte Carlo simulations are then conducted with two sample sizes, 300 and

500, under four scenarios:

(a) both π(x) and m(x) are correctly modeled by πT (x, γT ) and mT (x, βT ) or aT (x),

(b) π(x) is correctly modeled by πT (x, γT ), m(x) is incorrectly modeled bymF (x, βF )

or aF (x),

(c) m(x) is correctly modeled by mT (x, βT ) or aT (x), π(x) is incorrectly modeled

by πF (x, γF ),

(d) both π(x) and m(x) are incorrectly modeled by πF (x, γF ) and mF (x, βF ) or

aF (x).

We examine and compare the bias and root-mean-squared error (RMSE) of each

estimator. The results are shown in Table 2.1, Figure 2-2, and Figure 2-3 present
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Figure 2-1: Histograms with kernel density curves of X̄ (left) and exp(X)
(right) in observed and missing groups based on 5000 Monte
Carlo simulations with n=500

the boxplots of 8 estimators from 5000 Monte Carlo samples of size 300 and 500,

respectively.

Since Ȳ is the sample mean with no missing data, it always performs the best,

as expected, and we use it as a benchmark. Conversely, µ̂CC only uses information

of the complete-case responses, because it always has the largest biases and RMSEs

under MAR assumption, therefore, performs the worst under the four scenarios.

The first scenario considers the case that both π(x) and m(x) are correctly mod-

eled. At n=300 and n=500, the bias of µ̂REG, µ̂HT, µ̂IPW, µ̂AIPW, µ̂EL, and µ̂ are

all small. Then, by comparing the RMSEs, µ̂REG performs the best. The RMSEs

of µ̂AIPW, µ̂EL, and µ̂ are very close, which are smaller than the RMSEs of µ̂HT and

µ̂IPW.

The second scenario compares the performance of the estimators when π(x) is
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correctly modeled, but m(x) is incorrectly modeled. As expected, the bias of µ̂REG

is large because of the misspecified working regression model. All estimators with

working propensity score have small bias. Our proposed estimator is more efficient

than other estimators, since the RMSE of µ̂ is smaller than other estimators, especially

at n=300, the RMSE of µ̂ is smaller than that of µ̂EL by 10%. The boxplots also

show that µ̂ has fewer outliers compared to other estimators.

Under the third scenario, m(x) is correctly modeled, but π(x) is incorrectly mod-

eled. Large biases demonstrate that µ̂HT and µ̂IPW are no longer consistent. The

three doubly robust estimators have similar biases and RMSEs. However, the RMSE

of µ̂ is still smaller than that of µ̂EL.

The last scenario examines the case that both π(x) and m(x) are incorrectly

modeled. All the estimators produce some biases to a certain extent, except for Ȳ ;

however, µ̂EL performs much better than other estimators by comparing the biases

and RMSEs. The boxplots indicate that µ̂EL has fewer outliers than other estimators

in this case. In addition, the performance of µ̂AIPW is the second worst except for

µ̂CC, which is consistent with the results given by Kang and Schafer (2007).
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Table 2.1: Biases and root-mean-squared errors (RMSEs) of Ȳ , µ̂CC, µ̂REG,
µ̂HT, µ̂IPW, µ̂AIPW, µ̂EL, and µ̂ based on 5000 Monte Carlo simu-
lations. Missing rate is about 69%.

n=300 n=500 n=300 n=500

Estimator BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

(a) Both correctly modeled (b) π(x) correctly modeled
Ȳ 0.001 0.405 −0.000 0.317 0.003 0.412 0.000 0.321
µ̂CC −1.468 1.595 −1.483 1.560 −1.465 1.588 −1.476 1.550
µ̂REG 0.007 0.531 −0.007 0.415 0.123 0.629 0.109 0.490
µ̂HT −0.022 0.718 −0.021 0.524 −0.020 0.722 −0.016 0.524
µ̂IPW −0.020 0.644 −0.019 0.484 −0.020 0.646 −0.016 0.484
µ̂AIPW 0.005 0.549 −0.008 0.429 0.042 0.636 0.019 0.488
µ̂EL 0.005 0.552 −0.008 0.430 0.020 0.668 −0.005 0.475
µ̂ 0.005 0.547 −0.008 0.428 0.033 0.602 0.014 0.463

(c) m(x) correctly modeled (d) Both incorrectly modeled
Ȳ 0.007 0.409 0.002 0.322 0.003 0.406 0.006 0.316
µ̂CC −1.449 1.575 −1.460 1.539 −1.457 1.581 −1.473 1.550
µ̂REG 0.007 0.539 0.003 0.417 0.127 0.639 0.111 0.487
µ̂HT −0.122 0.658 −0.130 0.503 −0.136 0.652 −0.132 0.500
µ̂IPW −0.122 0.647 −0.130 0.498 −0.136 0.640 −0.132 0.496
µ̂AIPW 0.007 0.551 0.003 0.423 0.303 0.729 0.297 0.578
µ̂EL 0.005 0.557 0.002 0.427 0.068 0.587 0.049 0.441
µ̂ 0.006 0.553 0.003 0.425 0.235 0.676 0.226 0.522

Ȳ , µ̂CC, µ̂REG, µ̂HT, µ̂IPW, µ̂AIPW, and µ̂EL are corresponding to full data sample mean,
complete-case estimator, regression estimator, Horvitz-Thompson estimator, inverse proba-
bility weighting estimator, augmented inverse probability weighting estimator, and empirical
likelihood estimator, respectively, defined in Section 2.4.1; µ̂ is corresponding to our proposed
estimator, defined in Section 2.2.1.
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Figure 2-2: Estimates of Ȳ , µ̂CC, µ̂REG, µ̂HT, µ̂IPW, µ̂AIPW, µ̂EL, and µ̂ based
on 5000 Monte Carlo simulations with sample size 300. Missing
rate is about 69%
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(b) π(x) correctly modeled

E
st

im
at

es

●●

●

●
●

●●

●

●

●

●●

●●

●

●
●

●
●

●

●
●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●
●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●

●
●●

●

●

●

●

●

●

Y µ̂CC µ̂REG µ̂HT µ̂IPWµ̂AIPW µ̂EL µ̂

5
6

7
8

9

(c) m(x) correctly modeled
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Figure 2-3: Estimates of Ȳ , µ̂CC, µ̂REG, µ̂HT, µ̂IPW, µ̂AIPW, µ̂EL, and µ̂ based
on 5000 Monte Carlo simulations with sample size 500. Missing
rate is about 69%
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2.4.2 Causal inference or two-sample missing response prob-

lem

The second simulation study is presented to compare the performance of relative

estimators and our proposed estimator ∆̂ in causal inference. Since causal inference

can be viewed as a two-sample missing response problem, the relative estimators can

be directly derived from the methods used in one-sample missing response problem,

defined as the full data sample mean difference

∆̄ =
1

n

n∑
i=1

{Yi(1)− Yi(0)} ,

the complete-case (CC) estimator

∆̂CC =

∑n
i=1DiYi∑n
i=1Di

−
∑n

i=1(1−Di)Yi∑n
i=1(1−Di)

,

the regression estimator

∆̂REG =
1

n

n∑
i=1

{
m1(Xi, β̂

1)−m0(Xi, β̂
0)
}
,

the Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952)

∆̂HT =
1

n

n∑
i=1

[
DiYi

π(Xi, γ̂)
− (1−Di)Yi

1− π(Xi, γ̂)

]
,

the inverse probability weighting (IPW) estimator (Hirano and Imbens, 2001)

∆̂IPW =

∑n
i=1DiYi/π(Xi, γ̂)∑n
i=1 Di/π(Xi, γ̂)

−
∑n

i=1(1−Di)Yi/ {1− π(Xi, γ̂)}∑n
i=1(1−Di)/ {1− π(Xi, γ̂)}

,
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the augmented inverse probability weighting (AIPW) estimator (Robins et al., 1994)

∆̂AIPW =
1

n

n∑
i=1

{
DiYi

π(Xi, γ̂)
− Di − π(Xi, γ̂)

π(Xi, γ̂)
m1(Xi, β̂

1)

}
− 1

n

n∑
i=1

{
(1−Di)Yi

1− π(Xi, γ̂)
+
Di − π(Xi, γ̂)

1− π(Xi, γ̂)
m0(Xi, β̂

0)

}
,

and the empirical likelihood (EL) estimator (Qin and Zhang, 2007)

∆̂EL =
n∑
i=1

θ̂π−1(Xi, γ̂)

1 + (η̂1)T r1(Xi, γ̂, θ̂, â1)
DiYi

/ n∑
i=1

Di

−
n∑
i=1

(1− θ̂) {1− π(Xi, γ̂)}−1

1 + (η̂0)T r0(Xi, γ̂, θ̂, â0)
(1−Di)Yi

/ n∑
i=1

(1−Di),

where θ̂ = n−1
∑n

i=1 π(Xi, γ̂); for j = 0, 1, aj(x) = (aj1(x), . . . , ajrj(x))T are rj in-

dependent known functions, âj = (n−1
∑n

i=1 aj1(Xi), . . . , n
−1
∑n

i=1 ajrj(Xi))
T , and

η̂j = (η̂j1, (η̂
j
2)T )T is the solution of

nj∑
i=1

rj(Xi, γ̂, θ̂, âj)

1 + (ηj)T rj(Xi, γ̂, θ̂, âj)
= 0

with

rj(x, γ, θ, aj) =

1− θj(1− θ)1−jπ−j(x, γ){1− π(x, γ)}−(1−j)

π−j(x, γ){1− π(x, γ)}−(1−j){aj(x)− aj}

 .

We generate data by the following process: Y (1) = 2 + 3X1 + X2 + ε1, Y (0) =

1 +X1 + 2X2 + ε0, X1, X2, ε1, ε0 ∼ N(0, 1), D|X = x ∼ Ber{π(x)}, where

π(x) =
exp(−1 + 0.5x1 − 0.3x2

2)

1 + exp(−1 + 0.5x1 − 0.3x2
2)

such that the average treatment rate is around 0.23 and ∆0 = 1. The working
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propensity scores are

πT (x, γT ) =
exp(γT0 + γT1x1 + γT2x

2
2)

1 + exp(γT0 + γT1x1 + γT2x2
2)

and

πF (x, γF ) =
exp(γF0 + γF1 exp(x1) + γF2x2)

1 + exp(γF0 + γF1 exp(x1) + γF2x2)
.

The working regression models are

m1T (x, β1
T ) = β1

T0 + β1
T1x1 + β1

T2x2,

m0T (x, β0
T ) = β0

T0 + β0
T1x1 + β0

T2x2

and

m1F (x, β1
F ) = β1

F0 + β1
F1x1 + β1

F2x
2
2,

m0F (x, β0
F ) = β0

F0 + β0
F1x

2
1 + β0

F2x2,

or

a1T (x) =

x1

x2

 , a0T (x) =

x1

x2


and

a1F (x) =

x1

x2
2

 , a0F (x) =

x2
1

x2


for ∆̂EL.

Redefine dX in (2.14) as the standardized difference between treated and control

groups of covariate X in one sample. Figure 2-4 presents the histograms with kernel

density curves of X1 and X2
2 in treated and control groups from 5000 Monte Carlo

samples with sample size 500, which shows that there are significant differences be-

tween treated and control groups in both X1 and X2
2 . Mean (±SD) of X1 in treated
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Figure 2-4: Histograms with kernel density curves of X1 (left) and X2
2 (right)

in treated and control groups based on 5000 Monte Carlo simu-
lations with n=500

and control groups are 0.36 ± 0.09 and −0.11 ± 0.05, respectively; the mean stan-

dardized difference between treated and control groups in X1 is d̄X1 = 0.48 with 95%

confidence interval 0.27 to 0.69; meanwhile, mean (±SD) of X2
2 in treated and control

groups are 0.68±0.09 and 1.10±0.08, respectively; the mean standardized difference

between treated and control groups in X2
2 is d̄X2

2
= −0.33 with 95% confidence inter-

val -0.52 to -0.15. It implies that the strongly ignorable assumption (Rosenbaum and

Rubin, 1983) holds, and the sample mean difference estimation will be biased.

5000 Monte Carlo simulations are then conducted with two sample sizes, 300 and

500, under four scenarios:

(a) π(x), m0(x), and m1(x) are all correctly modeled by πT (x, γT ), m0T (x, β0
T ), and

m1T (x, β1
T ) (or πT (x, γT ), a0T (x), and a1T (x)),

(b) π(x) is correctly modeled by πT (x, γT ), m0(x) andm1(x) are incorrectly modeled
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by m0F (x, β0
F ) and m1F (x, β1

F ) (or a0F (x) and a1F (x)),

(c) m0(x) and m1(x) are correctly modeled by m0T (x, β0
T ) and m1T (x, β1

T ) (or a0T (x)

and a1T (x)), π(x) is incorrectly modeled by πF (x, γF ),

(d) π(x), m0(x), and m1(x) are all incorrectly modeled by πF (x, γF ), m0F (x, β0
F ),

and m1F (x, β1
F ) (or πF (x, γF ), a0F (x), and a1F (x)).

Bias and root-mean-squared error (RMSE) of each estimator are given in Table 2.2.

Figure 2-5 and Figure 2-6 present the boxplots of 8 estimators from 5000 Monte Carlo

samples of size 300 and 500, respectively. Results in Table 2.2, Figure 2-5, and Figure

2-6 show that under the causal inference setting, the proposed estimator ∆̂ performs

better than other methods in most cases under four scenarios, except for ∆̂REG when

the working regression models are correctly specified. When the propensity score

model is correctly specified and the regression models are misspecified, the RMSE

of ∆̂ is much less than that of ∆̂EL (18% reduction when n=300). In this case, the

boxplots also show that ∆̂ has much fewer outliers than ∆̂EL (Panel (b) in Figure 2-5

and Figure 2-6).
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Table 2.2: Biases and root-mean-squared errors (RMSEs) of ∆̄, ∆̂CC, ∆̂REG,
∆̂HT, ∆̂IPW, ∆̂AIPW, ∆̂EL, and ∆̂ based on 5000 Monte Carlo
simulations. Average treatment rate is about 23%.

n=300 n=500 n=300 n=500

Estimator BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

(a) All correctly modeled (b) π(x) correctly modeled
∆̄ 0.000 0.151 −0.001 0.117 −0.003 0.154 −0.001 0.120

∆̂CC 1.201 1.272 1.191 1.234 1.191 1.263 1.191 1.234

∆̂REG 0.003 0.194 −0.001 0.150 0.110 0.281 0.111 0.227

∆̂HT 0.006 0.402 −0.001 0.288 −0.005 0.384 0.000 0.282

∆̂IPW 0.022 0.399 0.009 0.297 0.012 0.389 0.011 0.297

∆̂AIPW 0.002 0.206 −0.001 0.157 −0.002 0.270 −0.001 0.209

∆̂EL 0.003 0.204 −0.001 0.155 −0.007 0.323 −0.000 0.237

∆̂ 0.003 0.201 −0.001 0.154 −0.001 0.265 −0.001 0.205
(c) m(x) correctly modeled (d) All incorrectly modeled

∆̄ −0.004 0.152 0.001 0.118 −0.000 0.152 −0.000 0.118

∆̂CC 1.200 1.271 1.201 1.244 1.191 1.262 1.193 1.236

∆̂REG −0.005 0.193 −0.000 0.151 0.112 0.276 0.114 0.225

∆̂HT 0.417 0.621 0.418 0.593 0.423 0.542 0.410 0.572

∆̂IPW 0.467 0.570 0.472 0.541 0.468 0.570 0.464 0.536

∆̂AIPW −0.004 0.207 0.000 0.157 −0.009 0.281 −0.031 0.431

∆̂EL −0.005 0.198 0.000 0.153 0.022 0.252 0.023 0.198

∆̂ −0.005 0.195 0.000 0.152 0.009 0.231 0.002 0.188

∆̄, ∆̂CC, ∆̂REG, ∆̂HT, ∆̂IPW, ∆̂AIPW, and ∆̂EL are corresponding to full data sample mean dif-
ference, complete-case estimator, regression estimator, Horvitz-Thompson estimator, inverse
probability weighting estimator, augmented inverse probability weighting estimator, and em-
pirical likelihood estimator, respectively, defined in Section 2.4.2; ∆̂ is corresponding to our
proposed estimator, defined in Section 2.2.2.
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(b) π(x) correctly modeled
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(c) m1(x) and m0(x) correctly modeled
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(d) All incorrectly modeled
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Figure 2-5: Estimates of ∆̄, ∆̂CC, ∆̂REG, ∆̂HT, ∆̂IPW, ∆̂AIPW, ∆̂EL, and ∆̂
based on 5000 Monte Carlo simulations with sample size 300.
Average treatment rate is about 23%
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(b) π(x) correctly modeled
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(c) m1(x) and m0(x) correctly modeled
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Figure 2-6: Estimates of ∆̄, ∆̂CC, ∆̂REG, ∆̂HT, ∆̂IPW, ∆̂AIPW, ∆̂EL, and ∆̂
based on 5000 Monte Carlo simulations with sample size 500.
Average treatment rate is about 23%
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2.5 Application to the CORAL data

The CORAL study (Cooper et al., 2014) was a prospective, international clinical

trial of individuals with ARAS. Patients were randomly assigned to either a stenting

plus medical therapy group or a medical therapy only group and were then followed

to a maximum of 8 years; however, the study of the causal effect of smoking on

renal function of patients with ARAS is an observational study, since smoking/non-

smoking groups were not randomly assigned. As a result, differences of covariates

in treated and control groups may cause biases if the sample average difference is

used to estimate the ATE ∆. Methods used in the simulation study are then applied

to the CORAL baseline dataset to adjust for confounding factors. We examine the

ATE of smoking on patients’ renal function measured by cystatin C and CKD-EPI

glomerular filtration rate (CKD-EPI GFR). Note that lower cystatin C and higher

CKD-EPI GFR represent better renal function.

Of the 931 patients enrolled in the CORAL study, 277 (30%) were self-reported

smokers. Smokers were significantly younger than non-smokers (63.3±9.1 and 72.4±7.8

years, respectively; p <0.001), establishing age as a main confounder in the estimation

of the smoking effect, since reduced renal function is related to advancing age (Cooper

et al., 2014). The distributions of age in smokers and non-smokers are shown in Figure

2-7. Logistic regression and linear regression models are postulated as the working

propensity score and the working regression models, respectively. After model se-

lection, covariates X are determined to be Age, Gender, BMI, and Diabetes status.

Also, we have Y =cystatin C or CKD-EPI GFR and D =Smoking status. Observe

that of the 931 patients, 46 are missing CKD-EPI GFR, 45 are missing cystatin C, 4

are missing BMI, 13 are missing Diabetes status, and 10 are missing smoking status.

It is plausible to assume that the missingness in these variables are completely at ran-

dom; therefore, the patients with missing data are excluded. Based on complete-case

45



Age (years)

D
en

si
ty

20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

Smoking (n=277)
Non−smoking (n=644)

63.3 ± 9.1

72.4 ± 7.8

P Value<0.001

Figure 2-7: Distributions of age in smokers and non-smokers (mean ± stan-
dard deviation)

data from the remaining 866 patients, results of the estimation of ATE are shown in

Table 2.3 and Table 2.4 .

Table 2.3 shows the ATE of smoking on cystatin C of the patients. Before the

adjustment for confounding factors, sample mean comparison ∆̂CC = −0.007 with

a P-value = 0.842, which implies that smoking has no effect on renal function of

patients by means of cystatin C. Nevertheless, after adjusting for confounder, almost

all estimators present a significant positive ATE at α = 0.05, except for ∆̂HT, which

implies smoking worsens renal function of patients by means of cystatin C.

Furthermore, Table 2.4 shows the ATE of smoking on CKD-EPI GFR of the

patients. Before the adjustment for confounding factors, sample mean comparison

∆̂CC = 5.68 with a P-value = 0.002, which indicates smoking has a contradictory
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beneficial effect on renal function of patients by means of CKD-EPI GFR. However,

after the adjustment for confounding factors, all estimators give an opposite sign of

ATE; in addition, ∆̂REG, ∆̂AIPW, ∆̂EL, ∆̂ are significantly negative at α = 0.05, which

indicates smoking worsens renal function of patients by means of CKD-EPI GFR.

Finally, the higher cystatin C and lower CKD-EPI GFR for smokers demonstrated

the negative effect of smoking on renal function for patients with ARAS.

Table 2.3: Average treatment effect (ATE) of smoking on renal function
of patients with ARAS measured by cystatin C (mg/L). ATE,
standard error (SE), 95% confidence interval and P-value of ∆̂CC,
∆̂REG, ∆̂HT, ∆̂IPW, ∆̂AIPW, ∆̂EL, ∆̂.

Cystatin C

Estimator ATE SE 95% CI P-value

∆̂CC −0.007 0.036 [−0.078, 0.064] 0.842

∆̂REG 0.149 0.043 [0.064, 0.234] 0.001

∆̂HT 0.087 0.062 [−0.035, 0.209] 0.062

∆̂IPW 0.117 0.045 [0.029, 0.204] 0.045

∆̂AIPW 0.140 0.047 [0.048, 0.232] 0.003

∆̂EL 0.138 0.044 [0.052, 0.224] 0.002

∆̂ 0.140 0.044 [0.054, 0.227] 0.001

Table 2.4: Average treatment effect (ATE) of smoking on renal function of
patients with ARAS measured by CKD-EPI GFR (ml/min per
1.73 m2). ATE, standard error (SE), 95% confidence interval and
P-value of ∆̂CC, ∆̂REG, ∆̂HT, ∆̂IPW, ∆̂AIPW, ∆̂EL, ∆̂.

CKD-EPI GFR

Estimator ATE SE 95% CI P-value

∆̂CC 5.68 1.82 [2.11, 9.25] 0.002

∆̂REG −6.08 1.92 [−9.83, −2.32] 0.002

∆̂HT −4.66 2.69 [−9.92, 0.60] 0.083

∆̂IPW −3.53 1.95 [−7.36, 0.29] 0.070

∆̂AIPW −5.24 2.04 [−9.24, −1.25] 0.010

∆̂EL −4.47 1.92 [−8.22, −0.71] 0.020

∆̂ −4.94 1.92 [−8.71, −1.17] 0.010

47



2.6 Concluding remarks

In this chapter, we have proposed an alternative empirical likelihood approach

to estimating mean response and causal effect under MAR assumption. In common

with estimators proposed by Robins et al. (1994) and Qin and Zhang (2007), our

proposed empirical likelihood estimator also enjoys the double-robustness property

and achieves the semiparametric efficiency lower bound when the regression model

and the propensity score model are both correctly specified. Compared to Qin and

Zhang (2007), our approach postulates a working regression model instead of a set

of known functions, which reduces calculation difficulty. Furthermore, our approach

performs calibration only on the working regression function, whereas the approach

of Qin and Zhang (2007) performs calibration on both the working propensity score

and the known functions a(x). The difference in whether calibration is performed

on the working propensity score entails that the estimation of the expected propen-

sity score in our proposed method is likelihood-based, while the estimation of the

expected propensity score in Qin and Zhang (2007) is moment-based. Moreover, our

proposed approach yields different asymptotic variances of the estimated mean re-

sponse and ATE from those in Qin and Zhang (2007); neither dominates each other

asymptotically. However, our simulations show favorable results and improvements

of our approach under our simulation settings. Simulation results indicate that our

proposed method is appreciably more efficient, in general, than its competitors when

the working propensity score is correctly specified, especially when the working re-

gression model is misspecified. It would be interesting to compare the two methods

theoretically, and this provides a venue for further research.

48



2.7 Proof of Theorem 2.3.2

Based on the likelihood theory, γ̂ is a solution of the score equation

U(γ) =
n∑
i=1

{Di − π(Xi, γ)}v(Xi, γ)

π(Xi, γ){1− π(Xi, γ)}
= 0

derived from the binomial likelihood (2.1). Taylor expansion of U(γ̂) at γ0 gives

γ̂ − γ0 =
1

n
{E(AAT )}−1U(γ0) + op(n

−1/2), (2.15)

Write

C = E

[
vT (X, γ0)

π(X, γ0)
{m(X, β∗

0)−m∗
0}
]
.

Then expanding the second equation of (2.5) at (θ0, 0, γ0, β
∗
0) leads to

0 =

n1∑
i=1

θ0

π(Xi, γ0)
{m(Xi, β

∗
0)− m̂(β∗

0)}+

[
n1∑
i=1

1

π(Xi, γ0)
{m(Xi, β

∗
0)− m̂(β∗

0)}

]
(θ̂ − θ0)

−

[
n1∑
i=1

θ2
0

π2(Xi, γ0)
{m(Xi, β

∗
0)− m̂(β∗

0)}2

]
λ̂

−

[
n1∑
i=1

θ0π
T
1 (Xi, γ0)

π2(Xi, γ0)
{m(Xi, β

∗
0)− m̂(β∗

0)}

]
(γ̂ − γ0)

+

[
n1∑
i=1

θ0

π(Xi, γ0)

{
∂m(Xi, β

∗
0)

∂βT
− 1

n

n∑
i=1

∂m(Xi, β
∗
0)

∂βT

}]
(β̂ − β∗

0) +Op(1)

=
n∑
i=1

θ0{Di − π(Xi, γ0)}
π(Xi, γ0)

{m(Xi, β
∗
0)−m∗

0} − nθ2
0Bλ̂− nθ0C(γ̂ − γ0) + op(n

1/2),

which suggests that,

λ̂ =
1

nθ0

B−1

n∑
i=1

Di − π(Xi, γ0)

π(Xi, γ0)
{m(Xi, β

∗
0)−m∗

0}−
1

θ0

B−1C(γ̂−γ0)+op(n
−1/2) (2.16)
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Next, based on the expansions (2.15), (2.16) and the result n/n1 = θ−1
0 + op(1), we

expand µ̂− µ0 at (θ0, 0, γ0, β
∗
0), which gives

µ̂− µ0 =

n1∑
i=1

p̂i(Yi − µ0)

=
1

n1

n∑
i=1

1

θ̂−1π(Xi, γ̂) + λ̂{m(Xi, β̂)− m̂(β̂)}
Di(Yi − µ0)

=
1

n1

n∑
i=1

θ0Di(Yi − µ0)

π(Xi, γ0)
+

1

n1

n∑
i=1

Di(Yi − µ0)

π(Xi, γ0)
(θ̂ − θ0)

− 1

n1

n∑
i=1

θ2
0Di(Yi − µ0)

π2(Xi, γ0)
{m(Xi, β

∗
0)− m̂(β∗

0)}λ̂

− 1

n1

n∑
i=1

θ0Di(Yi − µ0)vT (Xi, γ0)

π2(Xi, γ0)
(γ̂ − γ0) +Op(n

−1)

=
1

n

n∑
i=1

Di(Yi − µ0)

π(Xi, γ0)
−G

[
1

n
B−1

n∑
i=1

Di − π(Xi, γ0)

π(Xi, γ0)
{m(Xi, β

∗
0)−m∗

0} −B−1C(γ̂ − γ0)

]

− E
[

(Y − µ0)vT (X, γ0)

π(X, γ0)

]
(γ̂ − γ0) + op(n

−1/2)

=
1

n

n∑
i=1

[
Di(Yi − µ0)

π(Xi, γ0)
−GB−1Di − π(Xi, γ0)

π(Xi, γ0)
{m(Xi, β

∗
0)−m∗

0}
]

− E
[

(Y − µ0)vT (X, γ0)

π(X, γ0)
−GB−1v

T (X, γ0)

π(X, γ0)
{m(X, β∗

0)−m∗
0}
]

(γ̂ − γ0) + op(n
−1/2)

=
1

n

n∑
i=1

[
Hi − E(HAT ){E(AAT )}−1Ai

]
+ op(n

−1/2)

where

Hi =
Di(Yi − µ0)

π(Xi, γ0)
−GB−1Di − π(Xi, γ0)

π(Xi, γ0)
{m(Xi, β

∗
0)−m∗

0},

Ai =
{Di − π(Xi, γ0)}v(Xi, γ0)

π(Xi, γ0){1− π(Xi, γ0)}
, i = 1, . . . , n.

Applying the central limit theorem, we obtain that

n1/2(µ̂− µ0) −→ N(0,Var(K))
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in distribution, where

K = H − E(HAT ){E(AAT )}−1A.

In addition, by using the law of large numbers, µ̂ − µ0 converge to 0 in probability,

which proves the consistency of µ̂. The proof of Theorem 2.3.2 is complete.

2.8 Some theoretical properties for estimators in

simulation studies

In this section, we briefly introduce some theoretical properties for estimators used

in simulation studies. Approximate sampling variances are also given for calculation

purpose.

2.8.1 Regression estimator

Write w(x, β) = ∂m(x, β)/∂β. When the working regression model m(x, β) is

correctly specified, β̂ → β0 in probability. Applying lemma 7.2.2A of Serfling (1980),

page 253, we have

µ̂REG
p−→ E{m(X, β0)}

= E{E(Y |X)}

= µ0,

which means µ̂REG is a consistent estimator. Moreover, assume Var(εi|Xi) is a con-

stant σ2, Taylor expansion of µ̂REG − µ0 at β0 gives

µ̂REG − µ0 =
1

n

n∑
i=1

[
{m(Xi, β0)− µ0}
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+ E
{
wT (X, β0)

}
E
{
Dw(X, β0)wT (X, β0)

}−1
Di {Yi −m(Xi, β0)}w(Xi, β0)

]
+ op(n

−1/2),

which suggests that under suitable regularity conditions,

n1/2(µ̂REG − µ0) −→ N(0, σ2
REG)

in distribution, as n→∞, where

σ2
REG = Var {m(Xi, β0)}+σ2E

{
wT (X, β0)

}
E
{
Dw(X, β0)wT (X, β0)

}−1
E {w(X, β0)} .

The approximate sampling variance of µ̂REG is then given by

σ̂2
REG = σ̂2

m + σ̂2w̄T Ê−1
m w̄,

where

σ̂2
m =

1

n

n∑
i=1

{
m(Xi, β̂)− µ̂REG

}2

,

σ̂2 =
1

n1

n∑
i=1

Di

{
Yi −m(Xi, β̂)

}2

,

w̄ =
1

n

n∑
i=1

w(Xi, β̂),

Êm =
1

n

n∑
i=1

Diw(Xi, β̂)wT (Xi, β̂).
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2.8.2 Horvitz-Thompson (HT) estimator

If the working propensity score is correctly specified, γ̂ → γ0 in probability.

Lemma 7.2.2A of Serfling (1980), page 253 implies that

µ̂HT
p−→ E

{
DY

π(X, γ0)

}
= E

{
E(D|X)E(Y |X)

π(X, γ0)

}
= µ0,

which suggests that µ̂HT is a consistent estimator of µ. In addition, Taylor expansion

of µ̂HT − µ0 at γ0 gives

µ̂HT − µ0 =
1

n

n∑
i=1

({
DiYi

π(Xi, γ0)
− µ0

}

− E
[
DY vT (X, γ0)

π2(X, γ0)

]
E

[
v(X, γ0)vT (X, γ0)

π(X, γ0) {1− π(X, γ0)}

]−1 {Di − π(Xi, γ0)}v(Xi, γ0)

π(Xi, γ0){1− π(Xi, γ0)}

)

+ op(n
−1/2),

which suggests that under suitable regularity conditions,

n1/2(µ̂HT − µ0) −→ N(0, σ2
HT)

in distribution, as n→∞, where

σ2
HT = Var

{
DY

π(X, γ0)

}
−E

[
DY vT (X, γ0)

π2(X, γ0)

]
E

[
v(X, γ0)vT (X, γ0)

π(X, γ0) {1− π(X, γ0)}

]−1

E

[
DY v(X, γ0)

π2(X, γ0)

]
.

The approximate sampling variance of µ̂HT is then given by

σ̂2
HT = σ̂2

HT0 − V̄ T
HTÊ

−1
π V̄HT,
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where

σ̂2
HT0 =

1

n

n∑
i=1

{
DiYi

π(Xi, γ̂)
− µ̂HT

}2

,

V̄HT =
1

n

n∑
i=1

DiYiv
T (Xi, γ̂)

π2(Xi, γ̂)
,

Êπ =
1

n

n∑
i=1

{Di − π(Xi, γ̂)}2 v(Xi, γ̂)vT (Xi, γ̂)

π2(Xi, γ̂) {1− π(Xi, γ̂)}2 .

2.8.3 Inverse probability weighting (IPW) estimator

Similar to µ̂HT, µ̂IPW is also a consistent estimator of µ when the working propen-

sity score is correctly specified. Taylor expansion of µ̂IPW − µ0 at γ0 gives

µ̂IPW − µ0 =
1

n

n∑
i=1

(
Di(Yi − µ0)

π(Xi, γ0)

− E
[
D(Y − µ0)vT (X, γ0)

π2(X, γ0)

]
E

[
v(X, γ0)vT (X, γ0)

π(X, γ0) {1− π(X, γ0)}

]−1

· {Di − π(Xi, γ0)}v(Xi, γ0)

π(Xi, γ0){1− π(Xi, γ0)}

)
+ op(n

−1/2),

which suggests that under suitable regularity conditions,

n1/2(µ̂IPW − µ0) −→ N(0, σ2
IPW)

in distribution, as n→∞, where

σ2
IPW = E

{
D(Y − µ0)2

π2(X, γ0)

}
− E

[
D(Y − µ0)vT (X, γ0)

π2(X, γ0)

]
E

[
v(X, γ0)vT (X, γ0)

π(X, γ0) {1− π(X, γ0)}

]−1

E

[
D(Y − µ0)v(X, γ0)

π2(X, γ0)

]
.
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The approximate sampling variance of µ̂HT is then given by

σ̂2
IPW = σ̂2

IPW0 − V̄ T
IPWÊ

−1
π V̄IPW,

where

σ̂2
IPW0 =

1

n

n∑
i=1

{
Di(Yi − µ̂IPW)

π(Xi, γ̂)

}2

,

V̄IPW =
1

n

n∑
i=1

Di(Yi − µ̂IPW)vT (Xi, γ̂)

π2(Xi, γ̂)
,

Êπ =
1

n

n∑
i=1

{Di − π(Xi, γ̂)}2 v(Xi, γ̂)vT (Xi, γ̂)

π2(Xi, γ̂) {1− π(Xi, γ̂)}2 .

2.8.4 Augmented inverse probability weighting (AIPW) es-

timator

Write

µ(y, x, d, γ, β) =
d {y −m(x, β)}

π(x, γ)
+m(x, β),

a(x, d, γ) =
{d− π(x, γ)}v(x, γ)

π(x, γ){1− π(x, γ)}
,

b(y, x, d, β) = d {y −m(x, β)}w(x, β),

c1(y, x, d, γ, β) =
d {y −m(x, β)} vT (x, γ)

π2(x, γ)
,

h1(x, d, γ) =
{d− π(x, γ)}2 v(x, γ)vT (x, γ)

π2(x, γ) {1− π(x, γ)}2 ,

c2(x, d, γ, β) =
{d− π(x, γ)}wT (x, β)

π(x, γ)
,

55



h2(x, d, β) = dw(x, β)wT (x, β).

2.8.4.1 Working propensity score is correctly specified

If the working propensity score is correctly specified, γ̂ → γ0 in probability. Under

suitable regularity conditions, β̂ → β∗
0 in probability (White, 1982). It follows that

µ̂AIPW
p−→ E

{
DY

π(X, γ0)
− D − π(X, γ0)

π(X, γ0)
m(X, β∗

0)

}
= E

{
E(D|X)E(Y |X)

π(X, γ0)
− E(D|X)− π(X, γ0)

π(X, γ0)
m(X, β∗

0)

}
= µ0.

Taylor expansion of µ̂AIPW − µ0 at (γ0, β
∗
0) gives

µ̂AIPW − µ0 =
1

n

n∑
i=1

[
{µ(Yi, Xi, Di, γ0, β

∗
0)− µ0}

− E {c1(Y,X,D, γ0, β
∗
0)}E {h1(X,D, γ0)}−1 a(Xi, Di, γ0)

]
+ op(n

−1/2),

It suggests that under suitable regularity conditions,

n1/2(µ̂AIPW − µ0) −→ N(0, σ2
AIPW1)

in distribution, as n→∞, where

σ2
AIPW1 = Var

[
µ(Y,X,D, γ0, β

∗
0)− E {c1(Y,X,D, γ0, β

∗
0)}E {h1(X,D, γ0)}−1 a(X,D, γ0)

]
.

2.8.4.2 Working regression model is correctly specified

On the other hand, if the working regression model is correctly specified, β̂ → β0

in probability. Under suitable regularity conditions, γ̂ → γ∗0 in probability (White,
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1982). It follows that

µ̂AIPW
p−→ E

[
D {Y −m(X, β0)}

π(X, γ∗0)
+m(X, β0)

]
= E

[
E(D|X) {E(Y |X)−m(X, β0)}

π(X, γ∗0)
+m(X, β0)

]
= µ0.

Taylor expansion of µ̂AIPW − µ0 at (γ∗0 , β0) gives

µ̂AIPW − µ0 =
1

n

n∑
i=1

[
{µ(Yi, Xi, Di, γ

∗
0 , β0)− µ0}

− E {c2(X,D, γ∗0 , β0)}E {h2(X,D, β0)}−1 b(Yi, Xi, Di, β0)

]
+ op(n

−1/2),

It suggests that under suitable regularity conditions,

n1/2(µ̂AIPW − µ0) −→ N(0, σ2
AIPW2)

in distribution, as n→∞, where

σ2
AIPW2 = Var

[
µ(Y,X,D, γ∗0 , β0)− E {c2(X,D, γ∗0 , β0)}E {h2(X,D, β0)}−1 b(Y,X,D, β0)

]
.

2.8.4.3 Both working models are correctly specified

When both working models are correctly specified, the large-sample variance re-

duces to

σ2
AIPWopt = Var {µ(Y,X,D, γ0, β0)} ,

which is the semiparametric efficiency lower bound (Robins and Rotnitzky, 1995;

Hahn, 1998).
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2.8.4.4 Approximate sampling variance

The approximate sampling variance of µ̂AIPW is given by

σ̂2
AIPW =

1

n

n∑
i=1

Ĝ2
AIPW,

where

ĜAIPW = µ(Yi, Xi, Di, γ̂, β̂)− 1

n

n∑
i=1

c1(Yi, Xi, Di, γ̂, β̂)

{
1

n

n∑
i=1

h1(Xi, Di, γ̂)

}−1

a(Xi, Di, γ̂)

− 1

n

n∑
i=1

c2(Xi, Di, γ̂, β̂)

{
1

n

n∑
i=1

h2(Xi, Di, β̂)

}−1

b(Yi, Xi, Di, β̂).
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Chapter 3

An empirical likelihood method in

missing response problems using

multiple models

3.1 Introduction

In Chapter 2, we proposed an empirical likelihood method in missing response

problems under MAR assumption. We demonstrated that the proposed estimator in

Chapter 2 is doubly robust and achieves the semiparametric efficiency lower bound

when the working propensity score and the working regression model are both cor-

rectly specified. Performances of different estimators were also compared in simulation

studies and we noticed that our proposed estimator had better performance under

some specific settings.

Double robust estimators require one of the two working models to be correctly

specified, yet this assumption is not always valid in practice. A method utilizing more

than two working models may give us a better option, although it usually increases

the calculation difficulty. Han and Wang (2013) proposed an estimator based on

empirical likelihood theory, which is more robust than double robust estimators. Their
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proposed method employs multiple propensity score and outcome regression models in

multiple constraint equations. The estimator is then constructed by the weighted sum

of observed responses, in which weights are estimated by solving multiple constraint

equations. Their estimator enjoys a multiple-robustness property, which means the

estimator is consistent if any of the multiple postulated models are correctly specified.

The estimator also attains the semiparametric lower bound if one propensity score

model and one regression model are correctly specified.

Motivated by Han and Wang (2013), we proposed a new empirical likelihood

method in missing response problems under MAR assumption, which also utilizes

multiple working propensity score and regression models instead of only one working

propensity score and one working regression model. Our proposed method has four

major differences compared to Han and Wang (2013). First, rather than maximizing

the conditional likelihood function under a series of constraints as in Han and Wang

(2013), we maximize a full likelihood function, which makes use of more information.

Second, Han and Wang (2013) build calibration constraint equations to match the

first-order moment of estimated working propensity scores and regression functions

between complete cases and full cases; instead, we have no calibration but to introduce

a series of unknown parameters as the expected working propensity scores and regres-

sion functions in constraint equations. Some parameters are canceled or combined at

a later stage, and the rest are estimated from the constraint equations. Third, our

constraint equations not only contain propensity score and regression models, but also

include first derivatives of the working propensity scores. As a result, when one work-

ing propensity score is correctly specified, the projected linear space in our method

is larger than that in Han and Wang (2013), such that the asymptotic variance of

our estimator is smaller or equal to that of Han and Wang (2013), and our estimator

is more efficient. Finally, our estimator is consistent when one working propensity

score is correctly specified, and it achieves the semiparametric efficiency lower bound
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if one working regression model is correctly specified as well; however, different from

Han and Wang (2013), our estimator does not enjoy the multiple-robustness prop-

erty because our estimator is no longer consistent if all working propensity scores are

misspecified, even when one working regression model is correctly specified. Similar

to Chapter 2, our new method can also be applied to observational causal inference

by considering the estimation of the average treatment effect as a two-sample missing

response problem.

This chapter is organized as follows. Section 3.2 presents an empirical likelihood

estimator in one-sample missing response problem using multiple working propensity

score and regression models. Section 3.3 contains theoretical properties and asymp-

totic distributions of the proposed estimator. Section 3.4 provides a simulation study

comparing different methods in one-sample missing data problem. Section 3.5 con-

tains concluding remarks. Proofs of the theoretical results are given in Section 3.6.

3.2 Methodology

As specified in Chapter 2, we consider the standard missing data setup. Denote

Y , X, and D as the response variable, covariate vector, and missing indicator, re-

spectively, where D = 0 if Y is missing, and D = 1 if Y is observed; X is always

observed. Our goal is, none the less, to estimate the population mean

µ = E(Y ) =

∫ ∫
yf(y, x) dx dy,

where f(y, x) is the joint density function of (Y,X). The true value of µ is denoted

as µ0.

Let (DiYi, Xi, Di), i = 1, . . . , n denote the observed data. Without loss of gener-

ality, we index the subjects with observed response by j = 1, . . . , n1 and the subjects

with missing response by i = 1, . . . , n0, where n1 =
∑n

i=1 Di and n0 = n − n1.
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It is required in our proposed method to make assumptions about the propensity

score P (D = 1|X = x) and the conditional expectation E(Y |X = x), which are

denoted as π(x) and m(x), respectively. Instead of postulating only one working

propensity score, we postulate multiple parametric working propensity score models

{πk(x, γk); k = 1, . . . , K} for π(x), where γk are rk × 1 unknown vector parameters,

estimated by maximizing the binomial likelihood

n∏
i=1

πk(Xi, γk)
Di{1− πk(Xi, γk)}1−Di . (3.1)

The most common choice of the propensity score model is the logistic regression

model

πk(x, γk) =
exp(γTk x)

1 + exp(γTk x)
.

At the same time, we posit parametric working regression models {ml(x, βl); l =

1, . . . , L} for the conditional expectation E(Y |X = x), where βl are sl × 1 unknown

vector parameters that can be estimated from complete-case data. In addition, we de-

fine a series of functions as products of each term of {1−πk(x, γk); k = 1, . . . , K} and

each term of {ml(x, βl); l = 1, . . . , L}, denoted as {hs(x, γs, βs); s = 1, . . . , S, S =

K × L}={[1− πk(x, γk)]ml(x, βl); k = 1, . . . , K, l = 1, . . . , L}.

In our proposed method, a full likelihood founded on (Yi, Xi, Di), i = 1, . . . , n is

employed instead of the conditional likelihood function, which is

LF =
n∏
i=1

π(Xi)
Di{1− π(Xi)}1−Di

n1∏
j=1

f(Yj, X1j)

n0∏
i=1

f(X0i)

=

n1∏
j=1

π(X1j)

n0∏
i=1

{1− π(X0i)}
n1∏
j=1

pj

n0∏
i=1

qi, (3.2)

where pj = f(Yj, X1j), j = 1, . . . , n1 and qi = f(X0i), i = 1, . . . , n0, denote positive

jumps. X1j and X0i denote covariates with respect to Dj = 1 and Di = 0, respec-
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tively. To obtain an efficient empirical likelihood-based estimator, we maximize the

full likelihood (3.2) under the following constraints.

n1∑
j=1

pj = 1,

n0∑
i=1

qi = 1,

n1∑
j=1

pj{πk(X1j, γ̂k)− θk} = 0,

n1∑
i=1

qi{πk(X0i, γ̂k)− θk} = 0,

n1∑
j=1

pj{hs(X1j, γ̂s, β̂s)− hs} = 0,

n0∑
i=1

qi{hs(X0i, γ̂s, β̂s)− hs} = 0,

n1∑
j=1

pj{vk(X1j, γ̂k)− vk} = 0,

n1∑
i=1

qi{vk(X0i, γ̂k)− vk} = 0, (3.3)

where γ̂k is the maximizer of binomial likelihood (3.1), β̂l is the coefficient of the re-

gression model ml(x, βl), γ̂s and β̂s are from γ̂k’s and β̂l’s, vk(x, γk) = ∂π(x, γk))/∂γk,

θk = E{πk(X, γk)}, hs = E{hs(X, γs, βs)}, and vk = E{vk(X, γk)}. The first two

constraints correspond to the truth that the total jumps equals 1. The next two

constraints reflect the selection bias. By using regression functions and first deriva-

tives of the working propensity scores in the last four constraints, the efficiency of the

proposed method can be improved. Write

π(x, γ̂) = {π1(x, γ̂1), . . . , πK(x, γ̂K)}T ,

h(x, γ̂, β̂) = {h1(x, γ̂1, β̂1), . . . , hS(x, γ̂S, β̂S)}T ,

v(x, γ̂) = {vT1 (x, γ̂1), . . . , vTK(x, γ̂K)}T ,

θ = {θ1 . . . , θK}T ,

h = {h1 . . . , hS}T ,
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v = {vT1 . . . , vTK}T .

Following the method of Lagrange multipliers, write

Q =

n1∑
j=1

log(pj) +

n0∑
i=1

log(qi) + λ1(1−
n1∑
j=1

pj)− n1λ
T
2

n1∑
j=1

pj{π(X1j, γ̂)− θ}

− n1λ
T
3

n1∑
j=1

pj{h(X1j, γ̂, β̂)− h} − n1λ
T
4

n1∑
j=1

pj{v(X1j, γ̂)− v}

+ λ5(1−
n0∑
i=1

qi)− n0λ
T
6

n0∑
i=1

qi{π(X0i, γ̂)− θ}

− n0λ
T
7

n0∑
i=1

qi{h(X0i, γ̂, β̂)− h} − n0λ
T
8

n0∑
i=1

qi{v(X0i, γ̂)− v}.

Setting the partial derivatives of Q with respect to pj and qi to 0, gives

∂H

∂pj
=

1

pj
−λ1−n1λ

T
2 {π(X1j, γ̂)−θ}−n1λ

T
3 {h(X1j, γ̂, β̂)−h}−n1λ

T
4 {v(X1j, γ̂)−v} = 0,

∂H

∂qi
=

1

qi
−λ5−n0λ

T
6 {π(X0i, γ̂)−θ}−n0λ

T
7 {h(X0i, γ̂, β̂)−h}−n0λ

T
8 {v(X0i, γ̂)−v} = 0.

It follows that

n1∑
j=1

pj
∂H

∂pj
=

n1∑
j=1

[
1− pjλ1 − n1pjλ

T
2 {π(X1j, γ̂)− θ} − n1pjλ

T
3 {h(X1j, γ̂, β̂)− h}

− n1pjλ
T
4 {v(X1j, γ̂)− v}

]
= 0,

n0∑
i=1

qi
∂H

∂qi
=

n0∑
i=1

[
1− qiλ5 − n0qiλ

T
6 {π(X0i, γ̂)− θ} − n0qiλ

T
7 {h(X0i, γ̂, β̂)− h}

− n0qiλ
T
8

n0∑
i=1

qi{v(X0i, γ̂)− v}
]

= 0,
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which leads to

λ1 = n1,

λ5 = n0.

So we obtain the maximum value of LF at

pj(θ, h, v) =
1

n1

1

1 + λT2 {π(X1j, γ̂)− θ}+ λT3 {h(X1j, γ̂, β̂)− h}+ λT4 {v(X1j, γ̂)− v}
,

qi(θ, h, v) =
1

n0

1

1 + λT6 {π(X0i, γ̂)− θ}+ λT7 {h(X0i, γ̂, β̂)− h}+ λT8 {v(X0i, γ̂)− v}
,

(3.4)

where j = 1, . . . , n1, i = 1, . . . , n0; λ2, λ3, λ4, λ6, λ7 and λ8 are Lagrange multipli-

ers. Substituting pj(θ, h, v)’s and qi(θ, h, v)’s into the full likelihood (3.2), the profile

likelihood of (θ, h, v) is

LF(θ, h, v) =

n1∏
j=1

π(X1j, γ̂)

n0∏
i=1

{1− π(X0i, γ̂)}

·
n1∏
j=1

1

n1

1

1 + λT2 {π(X1j, γ̂)− θ}+ λT3 {h(X1j, γ̂, β̂)− h}+ λT4 {v(X1j, γ̂)− v}

·
n0∏
i=1

1

n0

1

1 + λT6 {π(X0i, γ̂)− θ}+ λT7 {h(X0i, γ̂, β̂)− h}+ λT8 {v(X0i, γ̂)− v}
.

Then, we maximize the profile likelihood by differentiating the log-likelihood lF(θ, h, v),

lF(θ, h, v) =

n1∑
j=1

log{π(X1j, γ̂)}+

n0∑
i=1

log{1− π(X0i, γ̂)} − n1 log n1 − n0 log n0

−
n1∑
j=1

log[1 + λT2 {π(X1j, γ̂)− θ}+ λT3 {h(X1j, γ̂, β̂)− h}+ λT4 {v(X1j, γ̂)− v}]

−
n0∑
i=1

log[1 + λT6 {π(X0i, γ̂)− θ}+ λT7 {h(X0i, γ̂, β̂)− h}+ λT8 {v(X0i, γ̂)− v}],
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with respect to (θ, h, v) and set the derivative to 0, we obtain that

λ6 = −n1

n0

λ2,

λ7 = −n1

n0

λ3,

λ8 = −n1

n0

λ4.

We reparameterize from (λ2, λ3, λ4) to ρ = n1

n
(1− λT2 θ − λT3 h− λT4 v, λT2 , λT3 , λT4 )T . It

follows from constraints (3.3) that,

n∑
i=1

{
Diφ(Xi, γ̂, β̂)

ρTφ(Xi, γ̂, β̂)
− (1−Di)φ(Xi, γ̂, β̂)

1− ρTφ(Xi, γ̂, β̂)

}
= 0 (3.5)

where φ(x, γ̂, β̂) = {1, πT (x, γ̂), hT (x, γ̂, β̂), vT (x, γ̂)}T . Suppose ρ̂ is a solution of

equations (3.5), then from (3.4) we obtain that

p̂j =
1

n

1

ρ̂Tφ(X1j, γ̂, β̂)
, j = 1, . . . , n1. (3.6)

It turns out that our proposed estimator is given by

µ̂F =

n1∑
j=1

p̂jYj

=
1

n

n∑
i=1

1

ρ̂Tφ(Xi, γ̂, β̂)
DiYi. (3.7)

3.3 Theoretical Properties

Without loss of generality, suppose that π(x) is correctly modeled by π1(x, γ1).

Denote the true value of γ1 as γ10 such that π1(x, γ10) = π(x). Applying the results of

White (1982), γ̂k → γ∗k0 and β̂l → β∗
l0 in probability for k = 1, . . . , K and l = 1, . . . , L,

under suitable regularity conditions. Moreover, since π(x) is correctly modeled by
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π1(x, γ1), we have γ∗10 = γ10. Write

C =
D(Y − µ0)

π(X)
,

M =
D − π(X)

π(X){1− π(X)}
φ(X, γ∗0 , β

∗
0),

H = C − E(CMT )
{
E(MMT )

}−1
M. (3.8)

Theorem 3.3.1 If {πk(x, γk); k = 1, . . . , K} contains a correctly specified propensity

score model for π(x), µ̂F is a consistent estimator of µ0; moreover, under suitable

regularity conditions, as n→∞,

n1/2(µ̂F − µ0) −→ N(0,Var(H))

in distribution.

Proof. The proof of Theorem 3.3.1 is given in Section 3.6.1.

From the geometric viewpoint, E(CMT )
{
E(MMT )

}−1
M can be regarded as the

orthogonal projection of C onto the linear space spanned by M , and the influence

function H can be viewed as the residual of the projection. In contrast, µ̂HW in Han

and Wang (2013) has a different influence function, which is

HHW = C −
[
GHW1B

T
HW1MHW1 +GHW2B

T
HW2MHW2

]
,

where

θ∗k0 = E{πk(X, γ∗k)},

m∗
l0 = E{ml(X, β

∗
l )},
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φHW(X, γ∗0 , β
∗
0) =

{
π1(X, γ∗10)− θ∗10, . . . , πK(X, γ∗K0)− θ∗K0,

m1(X, β∗
10)−m∗

10, . . . ,mL(X, β∗
L0)−m∗

L0}T ,

MHW1 =
D − π(X)

π(X)
φHW(X, γ∗0 , β

∗
0),

GHW1 = E

{
(Y − µ0)φTHW(X, γ∗0 , β

∗
0)

π(X)

}
,

BHW1 = E

{
φHW(X, γ∗0 , β

∗
0)φTHW(X, γ∗0 , β

∗
0)

π(X)

}
,

MHW2 =
D − π(X)

π(X){1− π(X)}
v1(X, γ10),

GHW2 = E
{

(C −GHW1B
T
HW1MHW1)MT

HW2

}
,

BHW2 = E(MHW2M
T
HW2).

Since GHW1B
T
HW1MHW1 +GHW2B

T
HW2MHW2 belongs to the linear space spanned by M

in our proposed method, Var(H) ≤ Var(HHW), which means our proposed estimator

µ̂F is more efficient when one working propensity score is correctly specified.

In addition, when one working regression model is correctly specified, say, m1(x, β1)

without loss of generality, then β∗
10 = β10, m1(x, β10) = m(x), and {1−π(X)}−1φ(X, γ∗0 , β

∗
0)

contains m(X). It follows that

Corollary 3.3.1 If one propensity score model and one working regression model are

correctly specified, the asymptotic variance Var(HB) of the estimator µ̂F reaches the

semiparametric efficiency lower bound, where

HB =
DY

π(X)
− D − π(X)

π(X)
m(X)− µ0.

Proof. The proof of Corollary 3.3.1 is given in Section 3.6.2.
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3.4 Simulation study

In this section, we compare the performance of our proposed estimator µ̂F with

several relative estimators in a missing response problem. Some relative estima-

tors have been defined in Section 2.4.1, including the full data sample mean Ȳ , the

complete-case estimator µ̂CC. the regression estimator µ̂REG, the Horvitz-Thompson

(HT) estimator µ̂HT, the inverse probability weighting (IPW) estimator µ̂IPW, and the

augmented inverse probability weighting (AIPW) estimator µ̂AIPW. We also include

the multiply robust estimator proposed by Han and Wang (2013)

µ̂HW =

n1∑
j=1

ŵjYj

=
n∑
i=1

DiYi

1 + η̂Tg(Xi, γ̂, β̂)

/ n∑
i=1

Di

1 + η̂Tg(Xi, γ̂, β̂)
,

where η̂ = (η̂1, . . . , η̂K+L) is a solution of the equation

n∑
i=1

Dig(Xi, γ̂, β̂)

1 + ηTg(Xi, γ̂, β̂)
= 0,

and

θ̂k =
1

n

n∑
i=1

πk(Xi, γ̂k),

m̂l =
1

n

n∑
i=1

ml(Xi, β̂l),

g(Xi, γ̂, β̂) = {π1(Xi, γ̂1)−θ̂1, . . . , πK(Xi, γ̂K)−θ̂K ,m1(Xi, β̂1)−m̂1, . . . ,mL(Xi, β̂L)−m̂L}.

In missing response problems, propensity score models are built on full data,

so we can perform goodness-of-fit tests on working propensity scores. However,

working regression models are constructed on complete-case data, thus we cannot

test if the models fit well on full data, which may lead to misspecification on re-
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gression models. In our simulation study, we employ one correctly specified and

one misspecified working propensity score models on the two methods using mul-

tiple models. For methods containing only one propensity score model, the cor-

rect working propensity score is applied. Moreover, a misspecified working regres-

sion model is posited whenever a working regression model is needed. Suppose

X = (X1, X2) is a two-dimensional covariate vector, where X1 and X2 are indepen-

dent standard normal random variables. The error term ε also follows the standard

normal distribution. Y = 2 + 3X1 + X2 + ε, and D|X = x ∼ Ber{π(x)}, where

π(x) = 1 − {1 + exp(γ00 + γ01x1 + γ02x2)}−1, and (γ00, γ01, γ02) = (−1, 0.3, 0.3),

(−1, 0.6, 0.6), and (−1, 0.9, 0.9), such that µ0 = 2 and the dependence of the propen-

sity score on covariates increases as γ01 and γ02 become larger. The correct working

propensity score is π1(x, γ1) = 1−{1 + exp(γ10 + γ11x1 + γ12x2)}−1 and the misspeci-

fied working propensity score is π2(x, γ2) = 1− exp{− exp(γ20 + γ21x1 + γ22x
2
2)}. The

misspecified working regression model is m1(x, β1) = β10 + β11x1 + β12x
2
2.

For different values of (γ00, γ01, γ02), biases and root mean square errors (RMSEs)

are compared for the eight estimators, based on 5000 Monte Carlo simulations with

three sample sizes: 500, 2000, and 5000. Results are shown in Table 3.1, Table 3.2,

and Table 3.3.

The sample mean Ȳ always performs the best, because it is calculated from the full

data. µ̂CC is calculated from the complete-case response, thus it always has the largest

biases and RMSEs as expected under MAR assumption. Since we use a misspecified

working regression model in our simulation studies, µ̂REG gives us biased results as

well. The other five estimators provide very small biases because of the correctly

specified working propensity score. Comparing the RMSEs, µ̂AIPW performs better

than µ̂HT and µ̂IPW, but not as good as µ̂HW and µ̂F. Next, we focus on comparison

between µ̂HW and µ̂F.

When n = 500, µ̂F does not perform as good as µ̂HW, because µ̂F employs a large
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Table 3.1: Biases and RMSEs of Ȳ , µ̂CC, µ̂REG, µ̂HT, µ̂IPW, µ̂AIPW, µ̂HW,
and µ̂F when (γ00, γ01, γ02) = (−1, 0.3, 0.3) based on 5000 Monte
Carlo simulations. Missing rate is about 72.3%.

n=500 n=2000 n=5000

Estimator BIAS RMSE BIAS RMSE BIAS RMSE

Ȳ −0.0014 0.1496 −0.0016 0.0733 0.0006 0.0474
µ̂CC 0.8368 0.8829 0.8370 0.8483 0.8394 0.8441
µ̂REG 0.2069 0.2747 0.2044 0.2231 0.2086 0.2161
µ̂HT −0.0022 0.1928 −0.0021 0.0944 0.0011 0.0597
µ̂IPW −0.0011 0.2004 −0.0018 0.0977 0.0012 0.0617
µ̂AIPW 0.0052 0.1769 −0.0004 0.0870 0.0017 0.0556
µ̂HW 0.0019 0.1694 −0.0008 0.0836 0.0019 0.0535
µ̂F 0.0056 0.1741 −0.0016 0.0838 0.0011 0.0532

number of constraint equations. The number of constraint equations is 11 in simula-

tion studies. Small sample size may result in large variance and poor performance.

µ̂F performs better as the sample size becomes larger. It outperforms µ̂HW when

n = 2000 and 5000, especially when (γ00, γ01, γ02) = (−1, 0.6, 0.6) and (−1, 0.9, 0.9),

such that the dependence of the propensity score on the covariate vector is strong.
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Table 3.2: Biases and RMSEs of Ȳ , µ̂CC, µ̂REG, µ̂HT, µ̂IPW, µ̂AIPW, µ̂HW,
and µ̂F when (γ00, γ01, γ02) = (−1, 0.6, 0.6) based on 5000 Monte
Carlo simulations. Missing rate is about 70.5%.

n=500 n=2000 n=5000

Estimator BIAS RMSE BIAS RMSE BIAS RMSE

Ȳ −0.0031 0.1502 0.0010 0.0737 −0.0002 0.0473
µ̂CC 1.4875 1.5100 1.4877 1.4933 1.4858 1.4880
µ̂REG 0.3672 0.4069 0.3696 0.3798 0.3682 0.3724
µ̂HT 0.0036 0.2605 0.0027 0.1275 0.0005 0.0805
µ̂IPW 0.0113 0.2936 0.0045 0.1457 0.0011 0.0918
µ̂AIPW 0.0100 0.2114 0.0046 0.1059 0.0003 0.0669
µ̂HW 0.0160 0.1815 0.0082 0.0903 0.0028 0.0578
µ̂F 0.0188 0.1869 0.0056 0.0875 0.0015 0.0558

Table 3.3: Biases and RMSEs of Ȳ , µ̂CC, µ̂REG, µ̂HT, µ̂IPW, µ̂AIPW, µ̂HW,
and µ̂F when (γ00, γ01, γ02) = (−1, 0.9, 0.9) based on 5000 Monte
Carlo simulations. Missing rate is about 68.2%.

n=500 n=2000 n=5000

Estimator BIAS RMSE BIAS RMSE BIAS RMSE

Ȳ 0.0005 0.1476 −0.0002 0.0730 −0.0017 0.0469
µ̂CC 1.9025 1.9176 1.9025 1.9063 1.9004 1.9019
µ̂REG 0.4816 0.5111 0.4810 0.4884 0.4816 0.4846
µ̂HT 0.0105 0.3957 −0.0032 0.2149 −0.0011 0.1232
µ̂IPW 0.0380 0.4516 0.0031 0.2475 0.0018 0.1510
µ̂AIPW 0.0207 0.2850 0.0025 0.1550 0.0018 0.0939
µ̂HW 0.0470 0.2038 0.0175 0.1021 0.0088 0.0654
µ̂F 0.0465 0.2143 0.0124 0.0962 0.0052 0.0609
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3.5 Concluding remarks

In this section, we have proposed an empirical likelihood method in missing re-

sponse problems under MAR assumption. Similar to Han and Wang (2013), our

method also utilizes multiple working propensity score and regression models. Both

methods achieve the semiparametric efficiency lower bound when one propensity score

and one working regression model are correctly specified. Compared to Han and Wang

(2013), our approach maximizes a full likelihood function rather than a conditional

likelihood function under a series of constraints. Our constraints do not calibrate

propensity scores and regression functions, but introduce a series of unknown param-

eters as the expected working propensity scores and regression functions in constraint

equations. Some parameters are canceled or combined at a later stage, and the rest

are estimated from constraint equations. This is different from the calibration setup

in Han and Wang (2013). In addition, our constraint equations include the first

derivatives of working propensity scores beyond the propensity scores and regression

functions. As a result, our estimator is more efficient when one working propensity

score is correctly specified. Different from Han and Wang (2013), our estimator does

not share multiple-robustness property because our estimator is no longer consistent

if all working propensity scores are misspecified, even when one working regression

model is correctly specified. Simulation results show that our proposed estimator

performs better than its competitors when the working propensity score is correctly

specified, and the sample size is large.
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3.6 Proofs

3.6.1 Proof of Theorem 3.3.1

Write

ρ0 = (0, 1, 01×(K+S+
∑K

k=1 rk−1)),

B = E

[
1

π(X){1− π(X)}
φ(X, γ∗0 , β

∗
0)φT (X, γ∗0 , β

∗
0)

]
,

G = E

[
Y − µ0

π(X)
φT (X, γ∗0 , β

∗
0)

]
,

Ĉi =
Di(Yi − µ0)

π1(Xi, γ̂1)
,

M̂i =
Di − π1(Xi, γ̂1)

π1(Xi, γ̂1) {1− π1(Xi, γ̂1)}
φ(Xi, γ̂, β̂),

Ci =
Di(Yi − µ0)

π1(Xi, γ10)
,

Mi =
Di − π1(Xi, γ10)

π1(Xi, γ10) {1− π1(Xi, γ10)}
φ(Xi, γ

∗
0 , β

∗
0),

For fixed (γ̂, β̂), expanding the equation (3.5) at ρ0 leads to

0 =
n∑
i=1

{
Diφ(Xi, γ̂, β̂)

π1(Xi, γ̂1)
− (1−Di)φ(Xi, γ̂, β̂)

1− π1(Xi, γ̂1)

}

−
n∑
i=1

[
Diφ(Xi, γ̂, β̂)φT (Xi, γ̂, β̂)

π2
1(Xi, γ̂1)

+
(1−Di)φ(Xi, γ̂, β̂)φT (Xi, γ̂, β̂)

{1− π1(Xi, γ̂1)}2

]
(ρ̂− ρ0) +Op(1)

=
n∑
i=1

Di − π1(Xi, γ̂1)

π1(Xi, γ̂1) {1− π1(Xi, γ̂1)}
φ(Xi, γ̂, β̂)− nB(ρ̂− ρ0) + op(n

1/2),
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which suggests that,

ρ̂− ρ0 =
1

n
B−1

n∑
i=1

Di − π1(Xi, γ̂1)

π1(Xi, γ̂1) {1− π1(Xi, γ̂1)}
φ(Xi, γ̂, β̂) + op(n

−1/2). (3.9)

Next, for fixed (γ̂, β̂), expanding µ̂F − µ0 at ρ0 gives

µ̂F − µ0 =

n1∑
i=1

p̂i(Yi − µ0)

=
1

n

n∑
i=1

1

ρ̂Tφ(Xi, γ̂, β̂)
Di(Yi − µ0)

=
1

n

n∑
i=1

Di(Yi − µ0)

π1(Xi, γ̂1)
− 1

n

n∑
i=1

Di(Yi − µ0)

π2
1(Xi, γ̂1)

φT (Xi, γ̂, β̂)(ρ̂− ρ0) +Op(n
−1)

=
1

n

n∑
i=1

{
Ĉi −GB−1M̂i

}
+ op(n

−1/2). (3.10)

Next, we partition φ(Xi, γ̂, β̂) into

φ1(Xi, γ̂, β̂)

φ2(Xi, γ̂)

, where

φ1(Xi, γ̂, β̂) = {1, πT (Xi, γ̂), hT (Xi, γ̂, β̂), vT2 (Xi, γ̂2), . . . , vTK(Xi, γ̂K)}T ,

φ2(Xi, γ̂) = v1(Xi, γ̂1).

It follows that partitions of G, B, M̂i, and Mi are given by

G = (G1, G2) =

(
E

[
Y − µ0

π(X)
φT1 (X, γ∗0 , β

∗
0)

]
, E

[
Y − µ0

π(X)
φT2 (X, γ∗0)

])
,

B =

B11 B12

B21 B22


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=


E

[
φ1(X, γ∗0 , β

∗
0)φT1 (X, γ∗0 , β

∗
0)

π(X){1− π(X)}

]
E

[
φ1(X, γ∗0 , β

∗
0)φT2 (X, γ∗0)

π(X){1− π(X)}

]
E

[
φ2(X, γ∗0)φT1 (X, γ∗0 , β

∗
0)

π(X){1− π(X)}

]
E

[
φ2(X, γ∗0)φT2 (X, γ∗0)

π(X){1− π(X)}

]
 ,

M̂i =

M̂i1

M̂i2

 =


Di − π1(Xi, γ̂1)

π1(Xi, γ̂1) {1− π1(Xi, γ̂1)}
φ1(Xi, γ̂, β̂)

Di − π1(Xi, γ̂1)

π1(Xi, γ̂1) {1− π1(Xi, γ̂1)}
φ2(Xi, γ̂)

 ,

Mi =

Mi1

Mi2

 =


Di − π1(Xi, γ10)

π1(Xi, γ10) {1− π1(Xi, γ10)}
φ1(Xi, γ

∗
0 , β

∗
0)

Di − π1(Xi, γ10)

π1(Xi, γ10) {1− π1(Xi, γ10)}
φ2(Xi, γ

∗
0).

 .

In addition,

B−1 =

b11 b12

b21 b22

 ,

GB−1 = (G1b11 +G2b21, G1b12 +G2b22),

where

b11 = B−1
11 +B−1

11 B12(B22 −B21B
−1
11 B12)−1B21B

−1
11 ,

b12 = −B−1
11 B12(B22 −B21B

−1
11 B12)−1,

b21 = −(B22 −B21B
−1
11 B12)−1B21B

−1
11 ,

b22 = (B22 −B21B
−1
11 B12)−1.
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Based on the likelihood theory, γ̂1 is a solution of the score equation

n∑
i=1

{Di − π1(Xi, γ1)}v1(Xi, γ1)

π1(Xi, γ1){1− π1(Xi, γ1)}
= 0

derived from the binomial likelihood (3.1). Taylor expansion of the score equation at

γ10 gives

γ̂1 − γ10 = B−1
22

1

n

n∑
i=1

Mi2 + op(n
−1/2). (3.11)

Since 1
n

∑n
i=1 M̂i2 = 0, Taylor expansion of µ̂F − µ0 in (3.10) reduces to

µ̂F − µ0 =
1

n

n∑
i=1

{
Ĉi − (G1b11 +G2b21)M̂i1

}
+ op(n

−1/2). (3.12)

Note that

{G2 − (G1b11 +G2b21)B12}B−1
22

=−G1B
−1
11 B12

{
B−1

22 + b22B21B
−1
11 B12B

−1
22

}
+G2

{
B−1

22 + b22B21B
−1
11 B12B

−1
22

}
=−G1B

−1
11 B12b22

{
(B22 −B21B

−1
11 B12)B−1

22 +B21B
−1
11 B12B

−1
22

}
+G2b22

{
(B22 −B21B

−1
11 B12)B−1

22 +B21B
−1
11 B12B

−1
22

}
=G1b12 +G2b22. (3.13)

Expanding µ̂F − µ0 in (3.12) at (γ∗0 , β
∗
0), together with (3.13) gives

µ̂F − µ0 =
1

n

n∑
i=1

Ci − E
{
Y − µ0

π(X)
vT1 (X, γ10)

}
(γ̂1 − γ10)

− (G1b11 +G2b21)

(
1

n

n∑
i=1

Mi1 − E
[
φ1(X, γ∗0 , β

∗
0)vT1 (X, γ10)

π(X){1− π(X)}

]
(γ̂1 − γ10)

)
+ op(n

−1/2)

=
1

n

n∑
i=1

Ci − (G1b11 +G2b21)
1

n

n∑
i=1

Mi1

− {G2 − (G1b11 +G2b21)B12}B−1
22

1

n

n∑
i=1

Mi2 + op(n
−1/2)
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=
1

n

n∑
i=1

Ci − (G1b11 +G2b21)
1

n

n∑
i=1

Mi1 − (G1b12 +G2b22)
1

n

n∑
i=1

Mi2 + op(n
−1/2)

=
1

n

n∑
i=1

{
Ci −GB−1Mi

}
+ op(n

−1/2)

=
1

n

n∑
i=1

{
Ci − E(CMT )

{
E(MMT )

}−1
Mi

}
+ op(n

−1/2).

The central limit theorem indicates that n1/2(µ̂F− µ0) −→ N(0,Var(H)) in distribu-

tion, where H = C −E(CMT )
{
E(MMT )

}−1
M . Moreover, the consistency of µ̂F is

also given by the law of large numbers. The proof of Theorem 3.3.1 is complete.

3.6.2 Proof of Corollary 3.3.1

Write

A = DY/π(X).

Similar to the proof of Theorem 3.3.1, the influence function of the estimator µ̂F can

be written as,

HB = A− E(AMT )
{
E(MMT )

}−1
M − µ0.

We partition φ(X, γ∗0 , β
∗
0) into

φa(X, γ∗0 , β∗
0)

φb(X, γ
∗
0 , β

∗
0)

, where

φa(X, γ
∗
0 , β

∗
0) = {1, πT (X, γ∗0), h2(X, γ∗20, β

∗
20), . . . , hS(X, γ∗S0, β

∗
S0), vT (X, γ∗0)}T ,

φb(X, γ
∗
0 , β

∗
0) = h1(X, γ10, β10).
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It follows that the partition of M is given by

M =

Ma

Mb

 =


D − π(X)

π(X){1− π(X)}
φa(X, γ

∗
0 , β

∗
0)

D − π(X)

π(X){1− π(X)}
φb(X, γ

∗
0 , β

∗
0).

 .

In addition,

E(AMT ) =
{
E(AMT

a ), E(AMb)
}
,

E(MMT ) =

E(MaM
T
a ) E(MaMb)

E(MbM
T
a ) E(M2

b )

 .

We notice that E(AMT
a ) = E(MbM

T
a ) = {E(MaMb)}T and E(AMb) = E(M2

b ). Write

Z0 = E(MaM
T
a ), Z1 = E(MaMb), and Z2 = E(M2

b ). It follows that

E(AMT )
{
E(MMT )

}−1
= (ZT

1 , Z2)

Z0 Z1

ZT
1 Z2


−1

= (ZT
1 , Z2)

z11 z12

z21 z22


=
(
ZT

1 z11 + Z2z21, Z
T
1 z12 + Z2z22

)
,

where

z11 = Z−1
0 + Z−1

0 Z1(Z2 − ZT
1 Z

−1
0 Z1)−1ZT

1 Z
−1
0 ,

z12 = −Z−1
0 Z1(Z2 − ZT

1 Z
−1
0 Z1)−1,

z21 = −(Z2 − ZT
1 Z

−1
0 Z1)−1ZT

1 Z
−1
0 ,

z22 = (Z2 − ZT
1 Z

−1
0 Z1)−1.
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Next,

ZT
1 z11 + Z2z21 = ZT

1 Z
−1
0 + ZT

1 Z
−1
0 Z1(Z2 − ZT

1 Z
−1
0 Z1)−1ZT

1 Z
−1
0 − Z2(Z2 − ZT

1 Z
−1
0 Z1)−1ZT

1 Z
−1
0

=
{

1 + ZT
1 Z

−1
0 Z1(Z2 − ZT

1 Z
−1
0 Z1)−1 − Z2(Z2 − ZT

1 Z
−1
0 Z1)−1

}
ZT

1 Z
−1
0

= 01×(K+S+
∑K

k=1 rk)

and

ZT
1 z12 + Z2z22 = −ZT

1 Z
−1
0 Z1(Z2 − ZT

1 Z
−1
0 Z1)−1 + Z2(Z2 − ZT

1 Z
−1
0 Z1)−1

= 1

suggest that

HB = A− E(AMT )
{
E(MMT )

}−1
M − µ0

= A− (01×(K+S+
∑K

k=1 rk), 1)

Ma

Mb

− µ0

=
DY

π(X)
− D − π(X)

π(X)
m(X)− µ0.

The proof of Corollary 3.3.1 is complete.
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Chapter 4

Empirical likelihood confidence

interval in missing response

problems and causal inference

4.1 Introduction

In previous chapters, we have introduced several methods for mean response esti-

mation when the response are subject to missing data under MAR assumption. For

each method, we can construct a Wald type confidence interval using the approxi-

mate sampling variance based on normal approximation. When sample size is large,

a Wald confidence interval usually performs well; however, when sample size is small,

and distribution of the response is highly skewed, a Wald confidence interval may

no longer perform well. In this chapter, we propose empirical likelihood confidence

intervals, which perform better compared to the Wald confidence intervals in small

sample size, highly skewed missing response problems.

Empirical likelihood, introduced by Owen (1988, 1990), is a nonparametric method

for constructing confidence intervals of the mean and other parameters. It has many

advantages compared to Wald type confidence intervals and the bootstrap method
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(Hall and La Scala, 1990; DiCiccio et al., 1991; Owen, 2001). Empirical likelihood

methods have been studied comprehensively during the last three decade; see for ex-

ample, Chen and Qin (1993), Chen and Hall (1993), Qin and Lawless (1994), and

Kitamura (1997). In addition, empirical likelihood methods have been applied ex-

tensively to different areas, such as ROC analysis (Qin and Zhou, 2006; Zhang and

Zhang, 2014; Wang and Zhang, 2014), missing data problems and causal inference

(Wang and Rao, 2002; Qin and Zhang, 2007; Qin et al., 2009; Wang and Chen, 2009;

Han and Wang, 2013; Zhang, 2016), and longitudinal data analysis (Xue and Zhu,

2007a,b; Han et al., 2014). Liang et al. (2008) proposed an empirical likelihood-based

confidence interval for the mean response in a missing response problem under MCAR

assumption. They used a ratio imputation method (Rao and Sitter, 1995) to impute

missing values. The empirical likelihood-based confidence interval is compared with

two Jackknife-based confidence intervals, and is used to estimate CD4+ cell counts

in an AIDS clinical trial study. Xue (2009) proposed empirical likelihood confidence

intervals for mean response with MAR data. After the kernel regression imputa-

tion, he constructs a weight-corrected empirical likelihood ratio for the population

mean. The empirical likelihood ratio can be constructed with or without auxiliary

information, and is shown to be asymptotically chi-squared distributed. It follows

the construction of empirical likelihood confidence intervals. Simulation results indi-

cated advantages of the empirical likelihood confidence intervals compared to normal

approximation methods; however, the curse of dimensionality still exists for kernel

regression imputation when the covariate vector is high-dimensional.

Although several empirical likelihood-based confidence intervals for missing re-

sponse problems have been proposed by using kernel regression imputation or ratio

imputation, a semiparametric empirical likelihood confidence interval has not been

well established. In this chapter, we propose semiparametric empirical likelihood

confidence intervals in missing response problems under MAR assumption by utiliz-
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ing the AIPW method proposed by Robins et al. (1994). The central idea for our

proposed method is to create a pseudo empirical likelihood ratio for the population

mean by using estimated functions from the AIPW method. We demonstrate that

the −2 empirical log-likelihood ratio function follows a scaled chi-squared distribution

if either the working propensity score or the working regression model we propose is

correctly specified; if the two models are both correctly specified, the −2 empirical

log-likelihood ratio function follows a non-scaled chi-squared distribution. Simulation

results show that our proposed empirical likelihood confidence intervals perform bet-

ter than Wald type confidence intervals for the AIPW estimator when sample size is

small and distribution of the response is skewed. Our proposed method can also be

extended to the construction of empirical likelihood confidence intervals for the ATE

in causal inference.

This chapter is organized as follows. Section 4.2 introduces empirical likelihood

confidence intervals in one-sample missing response problem and causal inference,

along with theoretical properties. In section 4.3, we conduct a simulation study to

compare the proposed semiparametric empirical likelihood confidence intervals with

Wald type confidence intervals. Section 4.4 presents an application of the proposed

confidence intervals based on a dataset from the CORAL clinical trial (Cooper et al.,

2014). Section 4.5 provides concluding remarks. Proofs of theoretical results are given

in Section 4.6.
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4.2 Methodology

4.2.1 Empirical likelihood confidence interval in one-sample

missing response problem

The setup of the missing response problem is the same as previous chapters.

Let Y , X, D denote the response variable, covariate vector, and missing indicator,

respectively, where D = 1 or 0 as Y is observed or missing, and X is always observed.

Our goal is to construct a confidence interval for the population mean

µ = E(Y ) =

∫ ∫
yf(y, x) dx dy,

under MAR assumption, where f(y, x) represents the joint density function of (Y,X),

and let µ0 denote the true value of the population mean µ.

We denote the observed data as (DiYi, Xi, Di), i = 1, . . . , n. Without loss of

generality, subjects with observed response are indexed by i = 1, . . . , n1, where

n1 =
∑n

i=1Di. Our proposed method requires making assumptions about the propen-

sity score P (D = 1|X = x) and the conditional expectation E(Y |X = x), which are

denoted as π(x) and m(x) respectively. We postulate a parametric working propen-

sity score model π(x, γ) for π(x) and a parametric working regression model m(x, β)

for m(x), where γ is a p× 1 unknown vector parameter estimated from the binomial

likelihood function, and β is a q × 1 unknown vector parameter estimated from the

complete-case data. The AIPW estimator (Robins et al., 1994) is then given by

µ̂AIPW =
1

n

n∑
i=1

µ(Yi, Xi, Di, γ̂, β̂), (4.1)

where

µ(y, x, d, γ, β) =
dy

π(x, γ)
− d− π(x, γ)

π(x, γ)
m(x, β),
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γ̂ is the maximizer of the binomial likelihood function, and β̂ is the coefficient of the

regression model m(x, β). Let γ0 and β0 be the true values of γ and β.

Since E {µ(Y,X,D, γ0, β0)} = µ, the empirical likelihood ratio function is then

defined as

R0(µ) = sup

{
L(F )

L(Fn)

∣∣∣∣ T (F ) = µ, F ∈ F

}
= sup

{
n∏
i=1

npi

∣∣∣∣∣ pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pi {µ(Yi, Xi, Di, γ0, β0)− µ} = 0

}
,

nevertheless, the true values γ0 and β0 are not known in real data problems. We

replace γ0 and β0 by their estimates γ̂ and β̂, then the pseudo empirical likelihood

ratio function,

R(µ) = sup

{
n∏
i=1

npi

∣∣∣∣∣ pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pi

{
µ(Yi, Xi, Di, γ̂, β̂)− µ

}
= 0

}

can be maximized over the positive jump size pi, i = 1, . . . , n, by the Lagrange

multiplier method. We obtain that

p̂i(µ) =
1

n
[
1 + λ̂(µ)

{
µ(Yi, Xi, Di, γ̂, β̂)− µ

}] ,
where λ̂(µ) is the solution of

n∑
i=1

µ(Yi, Xi, Di, γ̂, β̂)− µ

n
[
1 + λ

{
µ(Yi, Xi, Di, γ̂, β̂)− µ

}] = 0. (4.2)

It turns out that the profile likelihood of µ is

R̂(µ) =
n∏
i=1

np̂i(µ) =
n∏
i=1

1

1 + λ̂(µ)
{
µ(Yi, Xi, Di, γ̂, β̂)− µ

} .
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Define the −2 empirical log-likelihood ratio function as

l̂(µ) = −2 log R̂(µ) = 2
n∑
i=1

log
[
1 + λ̂(µ)

{
µ(Yi, Xi, Di, γ̂, β̂)− µ

}]
.

Write

v(x, γ) = ∂π(x, γ)/∂γ,

w(x, β) = ∂m(x, β)/∂β,

A(x, d, γ) =
{d− π(x, γ)}v(x, γ)

π(x, γ){1− π(x, γ)}
,

B(y, x, d, β) = d {y −m(x, β)}w(x, β),

C1(y, x, d, γ, β) =
d {y −m(x, β)} vT (x, γ)

π2(x, γ)
,

H1(x, d, γ) =
{d− π(x, γ)}2 v(x, γ)vT (x, γ)

π2(x, γ) {1− π(x, γ)}2 ,

C2(x, d, γ, β) =
{d− π(x, γ)}wT (x, β)

π(x, γ)
,

H2(x, d, β) = dw(x, β)wT (x, β),

Ĝi =
{
µ(Yi, Xi, Di, γ̂, β̂)− µ̂AIPW

}
−

 1

n

n∑
i=1

C1(Yi, Xi, Di, γ̂, β̂)

{
1

n

n∑
i=1

H1(Xi, Di, γ̂)

}−1
A(Xi, Di, γ̂)

−

 1

n

n∑
i=1

C2(Xi, Di, γ̂, β̂)

{
1

n

n∑
i=1

H2(Xi, Di, β̂)

}−1
B(Yi, Xi, Di, β̂),

σ̂2
0 =

1

n

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ̂AIPW

}2

,
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σ̂2
1 =

1

n

n∑
i=1

Ĝ2
i .

(4.3)

In the next three subsections, we show that the −2 empirical log-likelihood ratio

function follows a scaled chi-squared distribution if either the working propensity

score or the working regression model is correctly specified. In addition, if the two

models are both correctly specified, the −2 empirical log-likelihood ratio function

follows a chi-squared distribution.

4.2.1.1 Working propensity score is correctly specified

Suppose that π(x) is correctly modeled by π(x, γ). Denote the true value of γ

as γ0 such that π(x, γ0) = π(x). Applying the results of White (1982), β̂ → β∗
0 in

probability under suitable regularity conditions. Then, we have

Theorem 4.2.1 If the working propensity score π(x, γ) is correctly specified. Under

suitable regularity conditions, the −2 empirical log-likelihood ratio function l̂(µ0) has

an asymptotic scaled chi-squared distribution with one degree of freedom, which is

σ̂2
0

σ̂2
1

l̂(µ0)→ χ2
1

in distribution, as n→∞.

The proof of Theorem 4.2.1 is given in Section 4.6.1.

4.2.1.2 Working regression model is correctly specified

Suppose that m(x) is correctly modeled by m(x, β). Denote the true value of β

as β0 such that m(x, β0) = m(x). Applying the results of White (1982), γ̂ → γ∗0 in

probability under suitable regularity conditions. Then, we have
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Theorem 4.2.2 If the working regression model m(x, β) is correctly specified. Under

suitable regularity conditions, the −2 empirical log-likelihood ratio function l̂(µ0) has

an asymptotic scaled chi-squared distribution with one degree of freedom, which is

σ̂2
0

σ̂2
1

l̂(µ0)→ χ2
1

in distribution, as n→∞.

The proof of Theorem 4.2.2 is given in Section 4.6.2.

It follows that the empirical likelihood confidence interval for the population mean

µ can be constructed by

{
µ

∣∣∣∣ σ̂2
0

σ̂2
1

l̂(µ) ≤ χ2
1(1− α)

}
, (4.4)

where χ2
1(1 − α) is the (1 − α)th quantile of the chi-squared distribution with one

degree of freedom.

When sample size is small, researchers suggest to use a threshold F1,n−1(1 − α)

instead of χ2
1(1 − α) (Owen, 2001), where F1,n−1(1 − α) is the (1 − α)th quantile of

the F distribution with 1, n−1 degrees of freedom. Similarly, z1−α/2 is often replaced

by tn−1(1− α/2) in a Wald type confidence interval.

4.2.1.3 Both working models are correctly specified

If the two working models are both correctly specified, σ̂2
0/σ̂

2
1 → 1 in probability

as n→∞, which yields the following corollary.

Corollary 4.2.1 If the working propensity score π(x, γ) and the working regression

model m(x, β) are both correctly specified. Under suitable regularity conditions, the −2

empirical log-likelihood ratio function l̂(µ0) has an asymptotic chi-squared distribution

88



with one degree of freedom, which is

l̂(µ0)→ χ2
1

in distribution, as n→∞.

4.2.2 Empirical likelihood confidence interval in causal infer-

ence

Let D be an indicator for two possible treatment exposure such that D = 1 if

treated and D = 0 if control. Let X denote a vector of covariates, whose values are

not affected by either treatment. Denote Y (0) and Y (1) as potential outcomes when

control and treated, respectively. The actual observed outcome Y is written as

Y = DY (1) + (1−D)Y (0),

and (Yi, Xi, Di), i = 1, . . . , n, are n observed values in a random sample. Assume

SUTVA holds (Rubin, 1980), our central interest is to construct a confidence interval

for the average treatment effect (ATE), which is defined as the comparison between

two population mean potential outcomes,

∆ = E{Y (1)− Y (0)} = µ1 − µ0.

The propensity score is defined as the conditional probability of receiving treat-

ment given the covariate vector X, which is

π(x) = P (D = 1|X = x), 0 < π(x) < 1.

In addition, if the strongly ignorable assumption holds, the estimation of ∆ in causal
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inference can be considered as a two-sample missing response problem under the miss-

ing at random assumption. The two samples are (Yi(1), Di, Xi) and (Yi(0), Di, Xi),

i = 1, . . . , n, where Yi(1) and Yi(0) are missing if Di = 0 and Di = 1, respectively.

Denote mj(x) = E{Y (j)|X = x}, j = 0, 1. Then we can postulate parametric models

π(x, γ), m0(x, β0), and m1(x, β1), for π(x), m0(x), and m1(x), respectively, where γ

can be estimated from the binomial likelihood function, βj can be estimated from the

complete-case data of (Yi(j), Di, Xi), i = 1, . . . , n, and j = 0, 1. On the basis of the

methodology in Section 4.2.1, ∆ can be estimated by

∆̂AIPW =
1

n

n∑
i=1

∆(Yi, Xi, Di, γ̂, β̂
0, β̂1),

where

∆(y, x, d, γ, β0, β1) =

{
dy

π(x, γ)
− d− π(x, γ)

π(x, γ)
m1(x, β1)

}
−
{

(1− d)y

1− π(x, γ)
+
d− π(x, γ)

1− π(x, γ)
m0(x, β0)

}
.

The pseudo empirical likelihood ratio function can be written as

R(∆) = sup

{
n∏
i=1

npi

∣∣∣∣∣ pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pi

{
∆(Yi, Xi, Di, γ̂, β̂

0, β̂1)−∆
}

= 0

}
.

It follows from the procedure in Section 4.2.1 that the −2 empirical log-likelihood

ratio function can be defined as

l̂(∆) = −2 log R̂(∆) = 2
n∑
i=1

log
[
1 + λ̂(∆)

{
∆(Yi, Xi, Di, γ̂, β̂

0, β̂1)−∆
}]

.
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where λ̂(∆) is the solution of

n∑
i=1

∆(Yi, Xi, Di, γ̂, β̂
0, β̂1)−∆

n
[
1 + λ

{
∆(Yi, Xi, Di, γ̂, β̂0, β̂1)−∆

}] = 0.

For j = 0, 1, write

v(x, γ) = ∂π(x, γ)/∂γ,

wj(x, β
j) = ∂mj(x, β

j)/∂βj,

A(x, d, γ) =
{d− π(x, γ)}v(x, γ)

π(x, γ){1− π(x, γ)}
,

Bj(y, x, d, β
j) = dj(1− d)1−j {y −mj(x, β

j)
}
wj(x, β

j),

C1j(y, x, d, γ, β
j) =

dj(1− d)1−j {y −mj(x, β
j)} vT (x, γ)

π2(x, γ)
,

H1(x, d, γ) =
{d− π(x, γ)}2 v(x, γ)vT (x, γ)

π2(x, γ) {1− π(x, γ)}2 ,

C2j(x, d, γ, β
j) =

{d− π(x, γ)}wTj (x, βj)

πj(x, γ) {1− π(x, γ)}1−j

H2j(x, d, β
j) = dj(1− d)1−jwj(x, β

j)wTj (x, βj),

K̂i =
{

∆(Yi, Xi, Di, γ̂, β̂
0, β̂1)− ∆̂AIPW

}
−

 1

n

n∑
i=1

{
C11(Yi, Xi, Di, γ̂, β̂

1) + C10(Yi, Xi, Di, γ̂, β̂
0)
}{ 1

n

n∑
i=1

H1(Xi, Di, γ̂)

}−1


· A(Xi, Di, γ̂)

−

 1

n

n∑
i=1

C21(Xi, Di, γ̂, β̂
1)

{
1

n

n∑
i=1

H21(Xi, Di, β̂
1)

}−1
B1(Yi, Xi, Di, β̂

1)
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−

 1

n

n∑
i=1

C20(Xi, Di, γ̂, β̂
0)

{
1

n

n∑
i=1

H20(Xi, Di, β̂
0)

}−1
B0(Yi, Xi, Di, β̂

0),

σ̂2
∆0 =

1

n

n∑
i=1

{
∆(Yi, Xi, Di, γ̂, β̂

0, β̂1)− ∆̂AIPW

}2

,

σ̂2
∆1 =

1

n

n∑
i=1

K̂2
i .

Let ∆0 be the true value of ∆. Followed by Theorem 4.2.1 and Theorem 4.2.2, we

have

Theorem 4.2.3 Under suitable regularity conditions, if either the working propensity

score π(x, γ), or both working regression models m0(x, β0) and m1(x, β1) are correctly

specified, the −2 empirical log-likelihood ratio function l̂(∆0) has an asymptotic scaled

chi-squared distribution with one degree of freedom, which is

σ̂2
∆0

σ̂2
∆1

l̂(∆0)→ χ2
1

in distribution, as n→∞.

It follows that the empirical likelihood confidence interval for the ATE ∆ can be

constructed by {
∆

∣∣∣∣ σ̂2
∆0

σ̂2
∆1

l̂(∆) ≤ χ2
1(1− α)

}
.

Similar to Section 4.2.1, χ2
1(1− α) can be replaced by F1,n−1(1− α) when sample

size is small.

If the three working models are both correctly specified, σ̂2
∆0/σ̂

2
∆1 → 1 in proba-

bility as n→∞, which yields the following corollary.

Corollary 4.2.2 If the working propensity score π(x, γ) and the working regression

models m0(x, β0) and m1(x, β1) are all correctly specified. Under suitable regularity
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conditions, the −2 empirical log-likelihood ratio function l̂(∆0) has an asymptotic

chi-squared distribution with one degree of freedom, which is

l̂(∆0)→ χ2
1

in distribution, as n→∞.

4.3 Simulation study

In this section, we compare performances of four confidence intervals with 1 − α

confidence level, which are

(a) Wald normal confidence interval for AIPW estimator (Wald-z)

(
µ̂AIPW − z1−α/2

√
σ̂2

1

n
, µ̂AIPW + z1−α/2

√
σ̂2

1

n

)
,

where µ̂AIPW is defined in (4.1), σ̂2
1 is defined in (4.3), and z1−α/2 is the (1 −

α/2)th quantile of the standard normal distribution,

(b) Wald t confidence interval for AIPW estimator (Wald-t)

(
µ̂AIPW − tn−1(1− α/2)

√
σ̂2

1

n
, µ̂AIPW + tn−1(1− α/2)

√
σ̂2

1

n

)
,

where tn−1(1− α/2) is the (1− α/2)th quantile of the t distribution with n− 1

degrees of freedom,

(c) Empirical likelihood confidence interval constructed by (4.4) (EL-χ2),

(d) Empirical likelihood confidence interval constructed by (4.4), but replace χ2
1(1−

α) by F1,n−1(1− α) (EL-F).
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We generate data by the following process: X ∼ Un(−2.5, 2.5), D|X = x ∼ Ber{π(x)},

and Y |X = x ∼ N{m(x), 4}, where

π(x) =
exp(1 + x+ 0.5x2)

1 + exp(1 + x+ 0.5x2)

and

m(x) = 1 + 2x+ 3x2,

such that the missing rate is around 0.20 and µ0 = 7.25. The working propensity

scores are

πT (x, γT ) =
exp(γT0 + γT1x+ γT2x

2)

1 + exp(γT0 + γT1x+ γT2x2)

and

πF (x, γF ) =
exp(γF0 + γF1x)

1 + exp(γF0 + γF1x)
.

The working regression models are

mT (x, βT ) = βT0 + βT1x+ βT2x
2

and

mF (x, βF ) = βF0 + βF1x.

Figure 4-1 presents histograms of Y and µ(Y,X,D, γ̂T , β̂T ) from one sample of

the simulation study, when π(x) and m(x) are both correctly modeled and n=50. It

is seen from the histograms that the distribution of the fully observed response and

estimated function are both skewed to the right based on our simulation settings.

We generate 5000 Monte Carlo random samples with three nominal levels 1−α =

0.90, 0.95, and 0.99, and five sizes: n = 30 and 50 are viewed as small sample sizes,

n = 80 and 100 are viewed as moderate sample sizes, and n = 500 is viewed as large

sample size. We consider four scenarios:
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Figure 4-1: Histograms of Y and µ(Y,X,D, γ̂T , β̂T ) when π(x) and m(x) are
both correctly modeled, n=50

(a) both π(x) and m(x) are correctly modeled by πT (x, γT ) and mT (x, βT ),

(b) π(x) is correctly modeled by πT (x, γT ), m(x) is incorrectly modeled bymF (x, βF ),

(c) m(x) is correctly modeled bymT (x, βT ), π(x) is incorrectly modeled by πF (x, γF ),

(d) both π(x) and m(x) are incorrectly modeled by πF (x, γF ) and mF (x, βF ).

Under each scenario, confidence intervals (CI), average lengths (AL), and coverage

probabilities (CP) are presented in Tables 4.1, 4.2, 4.3, and 4.4. The simulation results

can be summarized as follows:

Overall, nominal levels does not affect the comparison between different methods

very much. When sample size is large, performances of four methods are very close.

Since the distribution of the response is skewed to the right, the empirical likelihood

based confidence intervals have a right shift compared with the Wald type confidence

intervals. Next we focus on comparisons of the four methods when sample size is

small or moderate, under the following scenarios:

95



(1) At least one of the working models are correctly specified (Tables 4.1, 4.2, and

4.3).

When sample size increases, the coverage accuracies increase as well, but the

average lengths decrease; besides, the differences between four methods become

smaller. When nominal level 1 − α increases, the average lengths increase as

well.

In pairwise comparison, we first compare Wald-z and Wald-t confidence inter-

vals. As we expect, Wald-t confidence intervals have uniformly longer average

lengths and higher coverage accuracies than Wald-z confidence intervals when

sample size is small and moderate. For example, when two working models are

both correctly specified, n=30, and 1 − α = 0.9, Wald-t confidence interval is

0.12 longer on average, while 1.16% more accurate than Wald-z confidence in-

terval. Comparisons between EL-χ2 and EL-F confidence intervals give similar

results.

Comparisons between Wald-z and EL-χ2 confidence intervals show that EL-χ2

confidence intervals have slightly longer average lengths, but higher coverage

accuracies than Wald-z confidence intervals when sample size is small and mod-

erate. For example, when two working models are both correctly specified,

n=30, and 1 − α = 0.9, EL-χ2 confidence interval is 0.03 longer on average,

while 1.24% more accurate than Wald-z confidence interval. Comparisons be-

tween Wald-t and EL-F confidence intervals suggest similar results.

Last, but not least, we compare performances between Wald-t and EL-χ2 con-

fidence intervals. We notice that EL-χ2 confidence intervals have uniformly

shorter average lengths, but slightly higher coverage accuracies in most cases

(26 out of 36 cases) than Wald-t confidence intervals when sample size is small

and moderate. For example, when two working models are both correctly speci-
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fied, n=30, and 1−α = 0.9, EL-χ2 confidence interval is 0.09 shorter on average,

but 0.08% more accurate than Wald-t confidence interval.

(2) Both working models are incorrectly specified (Tables 4.4).

All four methods have very low coverage accuracies, although Wald type con-

fidence intervals perform better. When sample size increases, the coverage ac-

curacies decrease, which is contrary to other three scenarios. and the average

lengths decrease. When nominal level 1 − α increases, the average lengths in-

crease as well.

In summary, the empirical likelihood based confidence intervals perform better

than Wald type confidence intervals when sample size is small or moderate, at least

one of the working models is correctly specified, and distribution of the response is

skewed. To obtain a more accurate confidence interval when sample size is small, a

threshold F1,n−1(1−α) should be used instead of χ2
1(1−α) in an empirical likelihood

confidence interval.

97



Table 4.1: Wald-z, Wald-t, EL-χ2, and EL-F confidence intervals (CI), and
the associated average lengths (AL) and coverage probabilities
(CP), when π(x) and m(x) are both correctly modeled, under
different nominal levels and sample sizes, based on 5000 Monte
Carlo simulations. Missing rate is about 20%.

1− α = 0.9 1− α = 0.95 1− α = 0.99

Method CI AL CP CI AL CP CI AL CP

n=30

Wald-z (5.28,9.18) 3.90 87.44 (4.92,9.57) 4.65 93.20 (4.21,10.32) 6.12 97.46
Wald-t (5.22,9.24) 4.02 88.60 (4.82,9.67) 4.85 94.08 (3.99,10.54) 6.54 98.26
EL-χ2 (5.40,9.32) 3.93 88.68 (5.08,9.78) 4.70 94.00 (4.47,10.69) 6.22 98.42
EL-F (5.34,9.40) 4.06 89.60 (4.99,9.90) 4.91 95.14 (4.29,10.96) 6.67 98.88

n=50

Wald-z (5.70,8.76) 3.05 87.48 (5.44,9.09) 3.65 94.08 (4.86,9.66) 4.80 98.38
Wald-t (5.67,8.79) 3.11 88.16 (5.39,9.14) 3.74 94.72 (4.76,9.75) 4.99 98.66
EL-χ2 (5.78,8.85) 3.07 88.44 (5.54,9.22) 3.68 94.76 (5.03,9.89) 4.86 98.74
EL-F (5.75,8.88) 3.13 89.36 (5.50,9.28) 3.77 95.28 (4.95,10.01) 5.06 98.94

n=80

Wald-z (6.03,8.47) 2.44 89.12 (5.78,8.69) 2.90 94.18 (5.35,9.17) 3.82 98.62
Wald-t (6.02,8.49) 2.47 89.52 (5.76,8.71) 2.95 94.56 (5.30,9.22) 3.92 98.86
EL-χ2 (6.08,8.53) 2.45 89.34 (5.85,8.77) 2.92 94.60 (5.46,9.32) 3.86 98.86
EL-F (6.07,8.55) 2.48 89.78 (5.83,8.80) 2.96 94.94 (5.42,9.38) 3.95 99.10

n=100

Wald-z (6.16,8.35) 2.18 89.36 (5.96,8.56) 2.60 94.28 (5.54,8.96) 3.42 98.58
Wald-t (6.15,8.36) 2.20 89.72 (5.94,8.57) 2.63 94.50 (5.51,8.99) 3.48 98.64
EL-χ2 (6.21,8.39) 2.19 89.84 (6.01,8.62) 2.61 94.60 (5.64,9.08) 3.44 98.86
EL-F (6.20,8.41) 2.21 90.28 (6.00,8.64) 2.64 94.82 (5.61,9.12) 3.51 99.08

n=500

Wald-z (6.76,7.74) 0.98 90.42 (6.66,7.83) 1.17 94.66 (6.48,8.02) 1.54 99.02
Wald-t (6.76,7.74) 0.98 90.50 (6.66,7.84) 1.17 94.72 (6.48,8.02) 1.54 99.02
EL-χ2 (6.77,7.75) 0.98 90.40 (6.68,7.85) 1.17 95.02 (6.50,8.04) 1.54 99.00
EL-F (6.77,7.75) 0.98 90.50 (6.67,7.85) 1.17 95.08 (6.50,8.05) 1.55 99.04
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Table 4.2: Wald-z, Wald-t, EL-χ2, and EL-F confidence intervals (CI), and
the associated average lengths (AL) and coverage probabilities
(CP), when π(x) is correctly modeled and m(x) is incorrectly
modeled, under different nominal levels and sample sizes, based
on 5000 Monte Carlo simulations. Missing rate is about 20%.

1− α = 0.9 1− α = 0.95 1− α = 0.99

Method CI AL CP CI AL CP CI AL CP

n=30

Wald-z (5.31,9.17) 3.86 87.16 (4.91,9.50) 4.59 92.20 (4.17,10.21) 6.04 97.26
Wald-t (5.25,9.23) 3.99 88.16 (4.81,9.60) 4.79 93.10 (3.96,10.43) 6.47 98.04
EL-χ2 (5.35,9.25) 3.90 87.76 (4.95,9.61) 4.66 93.28 (4.23,10.42) 6.18 97.90
EL-F (5.28,9.32) 4.03 88.82 (4.86,9.72) 4.86 94.36 (4.03,10.66) 6.64 98.48

n=50

Wald-z (5.72,8.76) 3.04 88.62 (5.40,9.01) 3.61 92.78 (4.85,9.61) 4.76 98.04
Wald-t (5.69,8.79) 3.10 89.32 (5.36,9.06) 3.70 93.42 (4.75,9.70) 4.95 98.34
EL-χ2 (5.75,8.81) 3.06 89.18 (5.44,9.09) 3.65 93.60 (4.91,9.74) 4.84 98.44
EL-F (5.72,8.84) 3.12 90.04 (5.40,9.14) 3.74 94.22 (4.81,9.85) 5.04 98.68

n=80

Wald-z (6.05,8.48) 2.43 88.90 (5.79,8.68) 2.88 94.62 (5.34,9.13) 3.79 98.42
Wald-t (6.04,8.49) 2.45 89.32 (5.77,8.70) 2.93 94.88 (5.29,9.17) 3.88 98.74
EL-χ2 (6.08,8.51) 2.44 89.32 (5.82,8.72) 2.90 94.96 (5.39,9.21) 3.82 98.82
EL-F (6.06,8.53) 2.46 89.86 (5.80,8.75) 2.95 95.26 (5.34,9.26) 3.92 99.08

n=100

Wald-z (6.15,8.32) 2.17 89.14 (5.95,8.55) 2.59 94.84 (5.55,8.96) 3.41 98.62
Wald-t (6.13,8.33) 2.20 89.62 (5.94,8.56) 2.62 95.22 (5.52,9.00) 3.48 98.78
EL-χ2 (6.16,8.35) 2.18 89.62 (5.98,8.58) 2.60 95.14 (5.59,9.03) 3.44 98.98
EL-F (6.15,8.36) 2.20 90.02 (5.96,8.60) 2.64 95.44 (5.56,9.06) 3.51 99.10

n=500

Wald-z (6.76,7.74) 0.98 89.60 (6.67,7.84) 1.17 94.98 (6.48,8.02) 1.54 99.06
Wald-t (6.75,7.74) 0.98 89.68 (6.67,7.84) 1.17 95.00 (6.48,8.02) 1.54 99.06
EL-χ2 (6.76,7.74) 0.98 89.72 (6.68,7.85) 1.17 95.06 (6.49,8.03) 1.54 99.12
EL-F (6.76,7.74) 0.98 89.76 (6.68,7.85) 1.17 95.14 (6.49,8.04) 1.55 99.14
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Table 4.3: Wald-z, Wald-t, EL-χ2, and EL-F confidence intervals (CI), and
the associated average lengths (AL) and coverage probabilities
(CP), when π(x) is incorrectly modeled and m(x) is correctly
modeled, under different nominal levels and sample sizes, based
on 5000 Monte Carlo simulations. Missing rate is about 20%.

1− α = 0.9 1− α = 0.95 1− α = 0.99

Method CI AL CP CI AL CP CI AL CP

n=30

Wald-z (5.33,9.24) 3.92 86.84 (4.94,9.60) 4.66 92.96 (4.19,10.31) 6.12 97.56
Wald-t (5.26,9.31) 4.05 87.72 (4.84,9.70) 4.86 94.02 (3.98,10.52) 6.55 98.32
EL-χ2 (5.46,9.40) 3.94 87.68 (5.13,9.82) 4.69 93.96 (4.50,10.70) 6.20 98.38
EL-F (5.41,9.48) 4.07 88.92 (5.04,9.94) 4.90 95.12 (4.33,10.97) 6.64 98.98

n=50

Wald-z (5.71,8.76) 3.06 89.06 (5.43,9.08) 3.65 93.76 (4.86,9.66) 4.80 98.28
Wald-t (5.68,8.79) 3.12 89.76 (5.38,9.12) 3.74 94.28 (4.76,9.75) 4.99 98.60
EL-χ2 (5.79,8.86) 3.07 89.66 (5.55,9.22) 3.67 94.78 (5.06,9.90) 4.84 98.88
EL-F (5.77,8.90) 3.13 90.32 (5.51,9.27) 3.76 95.30 (4.98,10.02) 5.04 99.12

n=80

Wald-z (6.04,8.48) 2.44 89.62 (5.80,8.71) 2.90 93.84 (5.35,9.17) 3.82 98.72
Wald-t (6.03,8.50) 2.47 89.88 (5.78,8.73) 2.95 94.22 (5.31,9.22) 3.91 98.86
EL-χ2 (6.10,8.54) 2.44 90.00 (5.88,8.80) 2.91 94.28 (5.49,9.33) 3.84 98.94
EL-F (6.09,8.56) 2.47 90.48 (5.86,8.82) 2.96 94.56 (5.44,9.38) 3.94 99.14

n=100

Wald-z (6.14,8.32) 2.18 89.38 (5.96,8.56) 2.60 94.80 (5.54,8.95) 3.41 98.72
Wald-t (6.13,8.33) 2.20 89.78 (5.94,8.58) 2.64 95.06 (5.50,8.98) 3.48 98.84
EL-χ2 (6.19,8.37) 2.18 89.80 (6.02,8.64) 2.61 94.92 (5.64,9.08) 3.43 99.06
EL-F (6.18,8.39) 2.21 90.08 (6.01,8.65) 2.64 95.36 (5.61,9.12) 3.50 99.18

n=500

Wald-z (6.76,7.75) 0.98 89.28 (6.67,7.84) 1.17 94.88 (6.48,8.01) 1.54 98.86
Wald-t (6.76,7.75) 0.98 89.32 (6.66,7.84) 1.17 94.92 (6.47,8.02) 1.54 98.86
EL-χ2 (6.77,7.76) 0.98 89.50 (6.68,7.85) 1.17 94.88 (6.50,8.04) 1.54 98.88
EL-F (6.77,7.76) 0.98 89.56 (6.68,7.85) 1.17 94.92 (6.50,8.04) 1.54 98.92
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Table 4.4: Wald-z, Wald-t, EL-χ2, and EL-F confidence intervals (CI), and
the associated average lengths (AL) and coverage probabilities
(CP), when π(x) and m(x) are both incorrectly modeled, under
different nominal levels and sample sizes, based on 5000 Monte
Carlo simulations. Missing rate is about 20%.

1− α = 0.9 1− α = 0.95 1− α = 0.99

Method CI AL CP CI AL CP CI AL CP

n=30

Wald-z (5.80,10.10) 4.30 84.32 (5.37,10.51) 5.13 91.28 (4.59,11.31) 6.72 97.22
Wald-t (5.73,10.17) 4.45 85.54 (5.26,10.62) 5.35 92.56 (4.35,11.54) 7.19 98.10
EL-χ2 (5.93,10.28) 4.35 83.42 (5.56,10.76) 5.20 90.64 (4.88,11.74) 6.86 96.88
EL-F (5.87,10.36) 4.49 85.06 (5.46,10.89) 5.43 91.96 (4.68,12.04) 7.36 97.96

n=50

Wald-z (6.22,9.59) 3.37 83.14 (5.93,9.94) 4.01 89.92 (5.29,10.56) 5.27 97.30
Wald-t (6.19,9.62) 3.43 83.72 (5.87,9.99) 4.11 91.00 (5.18,10.67) 5.48 97.92
EL-χ2 (6.31,9.70) 3.39 81.82 (6.04,10.09) 4.05 88.76 (5.48,10.83) 5.35 96.90
EL-F (6.28,9.73) 3.45 82.62 (6.00,10.15) 4.15 89.80 (5.39,10.96) 5.57 97.46

n=80

Wald-z (6.57,9.25) 2.68 80.10 (6.30,9.49) 3.18 89.00 (5.80,9.99) 4.18 96.76
Wald-t (6.56,9.26) 2.71 80.62 (6.28,9.51) 3.23 89.60 (5.75,10.04) 4.29 97.38
EL-χ2 (6.63,9.31) 2.69 78.76 (6.38,9.58) 3.20 87.92 (5.93,10.15) 4.22 96.12
EL-F (6.61,9.33) 2.72 79.28 (6.36,9.61) 3.25 88.64 (5.88,10.21) 4.33 96.50

n=100

Wald-z (6.68,9.08) 2.40 79.02 (6.48,9.33) 2.85 86.52 (6.03,9.78) 3.75 96.64
Wald-t (6.67,9.09) 2.42 79.70 (6.46,9.35) 2.89 87.10 (5.99,9.82) 3.83 96.96
EL-χ2 (6.73,9.13) 2.40 77.32 (6.54,9.40) 2.86 85.08 (6.12,9.90) 3.78 95.50
EL-F (6.72,9.14) 2.43 77.88 (6.52,9.42) 2.90 85.80 (6.09,9.95) 3.86 96.12

n=500

Wald-z (7.37,8.44) 1.08 36.40 (7.25,8.53) 1.28 50.34 (7.05,8.74) 1.69 74.06
Wald-t (7.36,8.44) 1.08 36.48 (7.25,8.53) 1.29 50.44 (7.05,8.74) 1.69 74.44
EL-χ2 (7.37,8.45) 1.08 35.28 (7.26,8.54) 1.28 48.88 (7.07,8.76) 1.69 71.36
EL-F (7.37,8.45) 1.08 35.44 (7.26,8.54) 1.29 49.04 (7.07,8.76) 1.69 71.74
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4.4 Example

We apply methods introduced in this chapter to the dataset from the CORAL

study (Cooper et al., 2014) introduced in Section 2.5. We calculate 95% confidence

intervals for ATE of smoking on patients’ renal function measured by cystatin C and

CKD-EPI GFR. Results are shown in Table 4.5. Since the sample size 866 is large,

there is almost no difference between Wald-z and Wald-t, and between EL-χ2 and EL-

F confidence intervals. Empirical likelihood based confidence intervals are wider than

Wald type confidence intervals. Four confidence intervals for the ATE of smoking on

cystatin C are all above 0, and on CKD-EPI GFR are all below 0, which indicate a

negative effect of smoking on renal function for patients with ARAS.

Table 4.5: 95% confidence intervals for ATE of smoking on patients’ renal
function measured by cystatin C and CKD-EPI GFR

Cystatin C CKD-EPI GFR

Wald-z (0.0481,0.2318) (-9.237,-1.251)
Wald-t (0.0479,0.2319) (-9.243,-1.245)
EL-χ2 (0.0461,0.2347) (-9.092,-0.944)
EL-F (0.0460,0.2348) (-9.097,-0.938)

4.5 Concluding remarks

In this chapter, we propose semiparametric empirical likelihood confidence inter-

vals in missing response problems under MAR assumption, and extend them to causal

inference. After deriving the −2 empirical log-likelihood ratio function, we demon-

strate that the −2 empirical log-likelihood ratio function follows a scaled chi-squared

distribution if either the working propensity score or the working regression model

is correctly specified, besides, if the two models are both correctly specified, the −2

empirical log-likelihood ratio function follows a non-scaled chi-squared distribution.
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Simulation results show that our proposed empirical likelihood confidence intervals

are more accurate than the Wald type confidence intervals for AIPW estimator when

sample size is small and distribution of the response is skewed.

4.6 Proofs

In this section, we provide proofs of Theorem 4.2.1 and Theorem 4.2.2.

4.6.1 Proof of Theorem 4.2.1

Write

H1 = E {H1(X,D, γ0)} ,

C1 = E {C1(Y,X,D, γ0, β
∗
0)} ,

σ2
01 = Var {µ(Y,X,D, γ0, β

∗
0)− µ0} ,

σ2
11 = Var

[
{µ(Y,X,D, γ0, β

∗
0)− µ0} − C1H

−1
1 A(X,D, γ0)

]
.

Based on the likelihood theory, γ̂ is a solution of the score equation

n∑
i=1

A(Xi, Di, γ) =
n∑
i=1

{Di − π(Xi, γ)}v(Xi, γ)

π(Xi, γ){1− π(Xi, γ)}
= 0

derived from the binomial likelihood function. Taylor expansion of the score equation

at γ0 gives

γ̂ − γ0 =
1

n

n∑
i=1

H−1
1 A(Xi, Di, γ0) + op(n

−1/2),
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Then expanding the equation (4.2) at λ̂ = 0 leads to

0 =
1

n

n∑
i=1

µ(Yi, Xi, Di, γ̂, β̂)− µ0

1 + λ̂
{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}
=

1

n

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}
− 1

n

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2

λ̂+ op(n
−1/2),

which suggests that,

λ̂ =
1
n

∑n
i=1 µ(Yi, Xi, Di, γ̂, β̂)− µ0

1
n

∑n
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2 + op(n
−1/2)

=
µ̂AIPW − µ0

1
n

∑n
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2 + op(n
−1/2).

Fix (γ̂, β̂), we expand l̂(µ0) at λ̂ = 0, which gives

l̂(µ0) = −2 log R̂(µ0)

= 2
n∑
i=1

log
[
1 + λ̂

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}]
= 2

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}
λ̂−

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2

λ̂2 + op(1)

= 2nλ̂ {µ̂AIPW − µ0} − nλ̂2 1

n

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2

+ op(1)

=
n {µ̂AIPW − µ0}2

1
n

∑n
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2 + op(1). (4.5)

Then expanding µ̂AIPW − µ0 at (γ0, β
∗
0) gives

µ̂AIPW − µ0 =
1

n

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}
=

1

n

n∑
i=1

{µ(Yi, Xi, Di, γ0, β
∗
0)− µ0}
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− 1

n

n∑
i=1

Di {Yi −m(Xi, β
∗
0)} vT (Xi, γ0)

π2(Xi, γ0)
(γ̂ − γ0)

− 1

n

n∑
i=1

{Di − π(Xi, γ0)}wT (Xi, β
∗
0)

π(Xi, γ0)
(β̂ − β∗

0) +Op(n
−1)

=
1

n

n∑
i=1

{µ(Yi, Xi, Di, γ0, β
∗
0)− µ0} − C1(γ̂ − γ0) + op(n

−1/2)

=
1

n

n∑
i=1

[
{µ(Yi, Xi, Di, γ0, β

∗
0)− µ0} − C1H

−1
1 A(Xi, Di, γ0)

]
+ op(n

−1/2)

The central limit theorem suggests that
√
n {µ̂AIPW − µ0} → N(0, σ2

11) in distribution.

Apply lemma 7.2.2A of Serfling (1980), page 253, we have

1

n

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2

→ σ2
01,

σ̂2
0 → σ2

01,

and

σ̂2
1 → σ2

11,

in probability as n→∞. It follows that

σ̂2
0

σ̂2
1

l̂(µ0) =
σ̂2

0

σ̂2
1

n {µ̂AIPW − µ0}2

1
n

∑n
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2 + op(1)

→ χ2
1

in distribution. The proof of Theorem 4.2.1 is complete.

4.6.2 Proof of Theorem 4.2.2

Write

u(x, β) = ∂w(x, β)/∂β,
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H2 = E {H2(X,D, β0)} ,

C2 = E {C2(X,D, γ∗0 , β0)} ,

σ2
02 = Var {µ(Y,X,D, γ∗0 , β0)− µ0} ,

σ2
12 = Var

[
{µ(Y,X,D, γ∗0 , β0)− µ0} − C2H

−1
2 B(Y,X,D, β0)

]
.

Based on the likelihood theory, β̂ is a solution of the score equation

n∑
i=1

B(Yi, Xi, Di, β) =
n∑
i=1

Di {Yi −m(Xi, β)}w(Xi, β) = 0.

Assume the variance of the regression error is a constant. Taylor expansion of the

score equation at β0 gives

0 =
n∑
i=1

Di {Yi −m(Xi, β0)}w(Xi, β0)

+
n∑
i=1

[
−Diw(Xi, β0)wT (Xi, β0) +Di {Yi −m(Xi, β0)}u(Xi, β0)

]
(β̂ − β0) +Op(1)

=
n∑
i=1

B(Yi, Xi, Di, β0)− nH2(β̂ − β0) + op(n
1/2),

which yields

β̂ − β0 =
1

n

n∑
i=1

H−1
2 B(Yi, Xi, Di, β0) + op(n

−1/2).

Then expanding µ̂AIPW − µ0 at (γ∗0 , β0) gives

µ̂AIPW − µ0 =
1

n

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}
=

1

n

n∑
i=1

{µ(Yi, Xi, Di, γ
∗
0 , β0)− µ0}

− 1

n

n∑
i=1

Di {Yi −m(Xi, β0)} vT (Xi, γ
∗
0)

π2(Xi, γ∗0)
(γ̂ − γ∗0)
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− 1

n

n∑
i=1

{Di − π(Xi, γ
∗
0)}wT (Xi, β0)

π(Xi, γ∗0)
(β̂ − β0) +Op(n

−1)

=
1

n

n∑
i=1

{µ(Yi, Xi, Di, γ
∗
0 , β0)− µ0} − C2(β̂ − β0) + op(n

−1/2)

=
1

n

n∑
i=1

[
{µ(Yi, Xi, Di, γ

∗
0 , β0)− µ0} − C2H

−1
2 B(Yi, Xi, Di, β0)

]
+ op(n

−1/2)

The central limit theorem suggests that
√
n {µ̂AIPW − µ0} → N(0, σ2

12) in distribution.

Apply lemma 7.2.2A of Serfling (1980), page 253, we have

1

n

n∑
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2

→ σ2
02,

σ̂2
0 → σ2

02,

and

σ̂2
1 → σ2

12,

in probability as n→∞.

The above results, together with (4.5) imply that

σ̂2
0

σ̂2
1

l̂(µ0) =
σ̂2

0

σ̂2
1

n {µ̂AIPW − µ0}2

1
n

∑n
i=1

{
µ(Yi, Xi, Di, γ̂, β̂)− µ0

}2 + op(1)

→ χ2
1

in distribution. The proof of Theorem 4.2.2 is complete.
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G., Rambausek, M., Roccatello, D., Schäfer, K., Sieberth, H. G., Wanner, C.,

Watschinger, B., and Zucchelli, P. (1998). Smoking as a risk factor for end-stage

renal failure in men with primary renal disease. Kidney international, 54(3):926–

931.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single func-

tional. Biometrika, 75(2):237–249.

110



Owen, A. B. (1990). Empirical likelihood ratio confidence regions. The Annals of

Statistics, 18(1):90–120.

Owen, A. B. (2001). Empirical likelihood. Chapman and Hall/CRC, Boca Raton.

Qin, G. and Zhou, X. H. (2006). Empirical likelihood inference for the area under the

roc curve. Biometrics, 62(2):613–622.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations.

The Annals of Statistics, 22(1):300–325.

Qin, J., Shao, J., and Zhang, B. (2008). Efficient and doubly robust imputation

for covariate-dependent missing responses. Journal of the American Statistical

Association, 103(482):797–810.

Qin, J. and Zhang, B. (2007). Empirical-likelihood-based inference in missing re-

sponse problems and its application in observational studies. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 69(1):101–122.

Qin, J., Zhang, B., and Leung, D. H. (2009). Empirical likelihood in missing data

problems. Journal of the American Statistical Association, 104(488):1492–1503.

Rao, J. N. and Sitter, R. (1995). Variance estimation under two-phase sampling with

application to imputation for missing data. Biometrika, 82(2):453–460.

Robins, J. M. and Rotnitzky, A. (1995). Semiparametric efficiency in multivariate re-

gression models with missing data. Journal of the American Statistical Association,

90(429):122–129.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression co-

efficients when some regressors are not always observed. Journal of the American

Statistical Association, 89(427):846–866.

111



Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric

regression models for repeated outcomes in the presence of missing data. Journal

of the American Statistical Association, 90(429):106–121.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score

in observational studies for causal effects. Biometrika, 70(1):41–55.

Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies

using subclassification on the propensity score. Journal of the American Statistical

Association, 79(387):516–524.

Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a control group using

multivariate matched sampling methods that incorporate the propensity score. The

American Statistician, 39(1):33–38.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and

nonrandomized studies. Journal of Educational Psychology, 66(5):688–701.

Rubin, D. B. (1980). Comment on randomization analysis of experimental data:

The fisher randomization test. Journal of the American Statistical Association,

75(371):591–593.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley,

New York.

Shankar, A., Klein, R., and Klein, B. E. (2006). The association among smoking,

heavy drinking, and chronic kidney disease. American journal of epidemiology,

164(3):263–271.

Stegmayr, B. (1990). A study of patients with diabetes mellitus (type 1) and end-

stage renal failure: tobacco usage may increase risk of nephropathy and death.

Journal of internal medicine, 228(2):121–124.

112



Tan, Z. (2006). A distributional approach for causal inference using propensity scores.

Journal of the American Statistical Association, 101(476):1619–1637.

Vardi, Y. (1982). Nonparametric estimation in the presence of length bias. The

Annals of Statistics, 10(2):616–620.

Vardi, Y. (1985). Empirical distributions in selection bias models. The Annals of

Statistics, 13(1):178–203.

Wang, D. and Chen, S. X. (2009). Empirical likelihood for estimating equations with

missing values. The Annals of Statistics, 37(1):490–517.

Wang, Q. and Rao, J. (2002). Empirical likelihood-based inference under imputation

for missing response data. The Annals of Statistics, 30(3):896–924.

Wang, S. and Zhang, B. (2014). Semiparametric empirical likelihood confidence inter-

vals for auc under a density ratio model. Computational Statistics & Data Analysis,

70:101–115.

White, H. (1982). Maximum likelihood estimation of misspecified models. Economet-

rica, 50(1):1–25.

Xue, L. (2009). Empirical likelihood confidence intervals for response mean with data

missing at random. Scandinavian Journal of Statistics, 36(4):671–685.

Xue, L. and Zhu, L. (2007a). Empirical likelihood for a varying coefficient model with

longitudinal data. Journal of the American Statistical Association, 102(478):642–

654.

Xue, L. and Zhu, L. (2007b). Empirical likelihood semiparametric regression analysis

for longitudinal data. Biometrika, 94(4):921–937.

113



Zhang, B. (2016). Empirical likelihood in causal inference. Econometric Reviews,

35(2):201–231.

Zhang, D. and Zhang, B. (2014). Semiparametric empirical likelihood confidence

intervals for the difference of areas under two correlated roc curves under density

ratio model. Biometrical Journal, 56(4):678–696.

Zhang, G. and Little, R. (2011). A comparative study of doubly robust estimators of

the mean with missing data. Journal of Statistical Computation and Simulation,

81(12):2039–2058.

114


