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The main goal of this research is to present new efficient methods and 

optimization models to enhance the Green Supply Chain Planning (GSCP). As a first 

objective, we focus on developing a novel optimization planning model in a green supply 

chain network consisting of suppliers, assemblers, distribution centers, and retailers. This 

model is subjected to various constraints which are related to the inventory and forward 

logistics management. We applied the proposed model for a vacuum and floor machines 

manufacturer case study located in the Midwestern, U.S. The main objective functions 

include: minimizing the costs of assembling, transporting, holding inventory at 

assembling sites and distribution centers, and shortage at retailers under carbon dioxide 

(CO2) emissions constraints throughout the logistic network; maximizing service levels 

and determining the acceptable service levels to meet final customers’ demands. We 

applied three different solution methods including a gradient-based algorithm in 

MATLAB “Find Minimum of Constrained nonlinear multivariable function (FminCon)”, 

a novel metaheuristic algorithm “Grey Wolf”, and the “Branch and Bound (B&B)” 

algorithm in Lingo to find optimal solutions for the proposed optimization model, which 
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has a specific complexity. We compared the achieved optimal solutions by these 

methods.  The case study and expanded numerical example verify whenever the 

parameter of the minimum service level at retailers’ sites increases or decreases, the 

amount of produced CO2 emissions and the total costs of the supply chain will directly 

correlate. It also demonstrates the trade-offs among the total costs of the supply chain 

network, CO2 emissions, and service levels. The achieved results reflect the efficiency of 

the proposed model for GSCP. As a second objective, we concentrate on revealing more 

information about optimal points in which performance measures of various 

adaptive X ̅quality control charts hold their optimal minimum values. In this way, better

quality control systems can be applied to detect defective parts and errors sooner, reduce 

the wastes, and find the related causes for the various processes involved in supply chain 

networks/production systems in order to achieve more effective GSCP and improve the 

quality control. Previous researches applied a forward viewpoint and evaluated the 

performance of adaptive models only for a specific and limited set of design parameters. 

However, in this research, we use a reverse perspective and search all possible sets of 

design parameters in the response space to find optimal minimum values for three 

performance measures, including adjusted average time until signal, average number of 

observations to signal, and average number of samples to signal. For this purpose, similar 

to recent studies, the Markov-chain approach is applied to develop performance 

measures. Then, a coded algorithm is proposed that explores the entire response surface 

and evaluate the value of each performance measure to find the optimal points. As an 

output, this algorithm obtains sets of initial parameters resulting in optimal minimum 

values of performance measures for adaptive models with respect to broad ranges of 
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shifts in mean. It also computes the values of other performance measures and their 

improvement percentages in comparison to a fixed parameters control chart at obtained 

optimal points. The presented new guideline provides decision makers and quality 

managers with more knowledge about optimal points to choose a proper adaptive model, 

select an appropriate performance measure, and set economical and viable values for 

design parameters for specific ranges of shifts in mean that are estimated to have a higher 

priority in their process control. Finally, the third objective of this research is to evaluate 

the waste streams and recycling opportunities for various echelons of a supply chain. A 

real case study categorized in health care systems is considered for this purpose.  
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Chapter 1

1 Introduction 

Concerns about manufacturing and supply chain consequences on the natural 

environment have been rising for decades. Carbon footprint analysis and control of 

greenhouse gas emissions have become more relevant concepts and necessary practices. 

As the world population grows drastically, resources are further strained. Given this 

situation, finding systematic ways to sustain our resources and surrounding environments 

seems critical. Various instruments alternating from taxes, permits, and voluntary 

incentives to requisite regulatory policies are employed by governments to cope with 

climate change and greenhouse gas emissions. In regards to this issue, Green Supply 

Chain Planning (GSCP) is one of the most essential decisions in today’s global market.  

Companies prefer to gain a competitive advantage by emphasizing their attention on the 

entire supply chain and successful establishment of an environment-friendly planning. 

Currently, industry practitioners and policy makers are under an increasing amount of 

pressure to constantly reduce the negative environmental impact of their supply chains. 

GSCP, an effective method for promoting the environmentally friendly management of 

supply chain activities from beginning to end, has the ability to reduce waste, minimize 

pollution, save energy, conserve natural resources, and control carbon emissions (Min 
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and Kim, 2009; Badkoobehi et al., 2011; Seyedhosseini et al., 2011; Ageron et al., 2012; 

Elahi and Franchetti, 2013; Akhavan et al., 2014; Kusi-Sarpong et al., 2014; Garg et al., 

2015; Giri, et al., 2015; Soleimani and Kannan, 2015; Elahi and Franchetti, 2015a). 

GSCP can be described as a coordination tool of the supply chain in a form that integrates 

environmental concerns and reflects the inter-organizational activities. GSCP copes with 

the acquisition, production and distribution of materials to meet the requirements of 

stakeholders to enhance profitability, competitiveness and the resilience of the suppliers, 

manufacturing system, distribution centers, and retailers in the short and medium terms 

through advanced green performance (Ahi and Searcy, 2013). Improvements by GSCP 

can be categorized as follows (Franchetti et al. (2016a, 2016b): 

 Operations improvement: GSCP improves the operations by incorporating

environmental and waste managerial solutions.

 Agility enhancement: GSCP helps mitigate risks and speed innovations.

 Adaptability improvement: GSCP analysis often leads to innovative processes and

continuous improvements.

 Alignment improvement: GSCP involves negotiating policies with suppliers and

customers, which results in better alignment of manufacturing processes and

principles.

1.1 Objectives and Scope 

In the context of the limitations of previous research (Amin and Zhang, 2013; 

Shankar et al., 2013; Kannan et al., 2013; Fahimnia et al., 2015a; Hsueh, 2015; Coskun 



 

3 

 

et al., 2015; Wu and Chang, 2015; Rodrigues et al., 2015; Sazvar et al., 2014; Govindan 

et al., 2014; Subulan et al., 2014), the objective of this dissertation is to present new 

efficient methods and optimization models to enhance the GSCP. For this purpose, we 

focus on three different perspectives based on studied real cases (Figure 1-1). As a first 

viewpoint, we concentrate on proposing a multi-objective optimization model which 

minimizes total costs under CO2 emissions constraints, controls inventory, and 

maximizes service levels concurrently. Such a novel integrated optimization provides a 

tradeoff model between costs, CO2 emissions, and service levels for GSCP. As a second 

viewpoint, our focus is on improving quality control in various processes integrated with 

the GSCP in order to minimize the amount of defective products and scraps. To achieve 

this outcome, we present a new statistical guideline using adaptive �̅� control charts. As a 

third perspective, we focus on evaluation of waste streams and recycling opportunities for 

various echelons of a supply chain. A real case study categorized in health care systems is 

presented and analyzed in that section. 
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Figure 1-1: Overview of three major perspectives (focus areas) 

considered in this dissertation 
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1.2 Dissertation Contributions 

The main objective of this dissertation is to develop new effective optimization 

methodologies, models, and strategies for GSCP. The proposed methods and models in 

this research can be applied by various supply chain coordinators, production and 

operations managers, manufacturers, and producers. 

 

1.3 Outline of the Dissertation 

The dissertation is divided into six chapters. In chapter 2, a literature review on 

the GSCP models and frameworks are presented. This chapter also includes the definition 

of the problem and the significance of the research, objective and scope, and major 

contributions of the research. In chapter 3, as a first primary research work of this 

proposal, a new optimization model for the GSCP by focusing on objectives containing: 

minimization of total costs under CO2 emissions constraints, and maximization of service 

levels is presented and discussed. We have expanded the data of a real case study for this 

proposed model. In chapter 4, as a second primary research work of this proposal, a new 

statistical guideline using adaptive �̅� control charts for a better quality control of 

processes involved in a GSCP procedure is proposed and analyzed. In chapter 5, as a 

third primary research work of this dissertation, we focus on solid waste stream 

assessment and recycling opportunities to decrease solid wastes in a supply chain. For 

this purpose, real data of a health care system is applied. In chapter 6, a summary of the 

study is presented and some ideas for future research are suggested.  
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Chapter 2

2 Literature Review 

As mentioned in chapter 1, GSCP has received great interest from practitioners 

and scholars in recent years due to pressure from various stakeholders, including 

consumers, community activists, NGOs, governmental legislation, and global 

competition. The need to sustain supply chains has resulted in many companies selecting 

a certain level of commitment in their sustainability practices. Academia and various 

industries of the global economy have implemented triple bottom line and sustainability 

initiatives such as energy efficient technologies, the use of renewable sources, recycling, 

green procurement, reduced packaging, carbon emission accounting, social 

responsibilities, and employee recognition to ensure sustainability and environmental 

aspects in supply chain planning. In GSCP, environmental and social criteria require to 

be fulfilled by the members to remain within the supply chain, whereas it is expected that 

competitiveness would be maintained through meeting customer’s needs and associated 

economic criteria. GSCP concept has been come into sight in the last few years. 

Combining the ‘green’ concept with the ‘supply chain planning’ notion establishes a 

novel paradigm where the supply chain planning will have a direct relationship with the 
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environment. This is noteworthy since historically, these two paradigms have been in 

conflict with each other (Srivastava, 2007; Seuring and Müller, 2008).  

A comprehensive network analysis literature review on GSCP researches was 

presented by Fahimnia et al. (2015b). Based on their findings, the geographic dispersion 

of the research works did signify that Europe, though with few highly influential 

publications, seemed to have the greatest number of works, with North America not far 

behind. The diffusion of the work into Asia is also starting to take place. They observed, 

using an objective clustering approach, that conceptual and empirical studies have set the 

foundation and represent the most influential works. Their topical literature classification 

also demonstrated that prescriptive and quantitative modeling has begun to take on 

greater importance.  

A review of recent literature indicates that multiple research studies have focused 

on GSCP by considering various assumptions and utilizing different methodologies and 

solution methods entailing Gradient-based algorithms (Hsueh, 2015), Meta-heuristics 

methods such as PSO (Shankar et al., 2013), GA (Yeh and Chuang, 2011), Hybrid meta-

heuristics algorithms such as the integration of GA and PSO (Soleimani and Kannan, 

2015), Hybrid solution methods integrating simulation with a meta-heuristic search 

method such as a simulation-based hybrid variable neighborhood search (Zolfagharinia et 

al., 2014), Compromise programming (Elahi et al., 2011a; Elahi and Franchetti, 2012; 

Sazvar et al., 2014), Fuzzy programming (Nie et al., 2009; Kannan et al., 2013; Subulan 

et al., 2014; Kusi-Sarpong et al., 2014, ), Goal Programming (Coskun et al., 2015), 

Scenario development and scenario analysis (Coskun et al., 2015; Rodrigues et al., 2015; 

Amin and Zhang, 2013), Stochastic programming (Mirzapour et al., 2013; Amin and 
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Zhang, 2013), Game theory (Zhang and Liu, 2013), Simulation such as Monte Carlo 

(Mangla et al., 2014), and Multi-Criteria Decision Making (MCDM) (Subulan, et al., 

2014; Wu and Chang, 2015; Kusi-Sarpong et al., 2014). Nie et al. (2009) developed an 

interval fuzzy robust dynamic programming model for the GSCP issue considering 

waste-flow allocation and treatment/disposal facility in situations with highly complex 

and uncertain information. 

 Kusi-Sarpong et al. (2014) introduced a comprehensive framework for green 

supply chain practices in the mining industry. They applied a multiple criteria evaluation 

of green supply programs using a novel multiple criteria approach that integrates rough 

set theory elements and fuzzy TOPSIS for weighting schemes of defined factors.  

This study identified six distinctive green supply chain practices and sub-practices 

that include green information technology and systems, strategic supplier partnership, 

operations and logistics integration, internal environmental management, eco-innovative 

practices, and end-of-life practices. Yeh and Chuang (2011) developed a mathematical 

model for optimal planning in a supply chain network and choosing green partners by 

using GA. Zhang and Liu (2013) applied Game theory in view of the three-level green 

supply chain system, where market demand is associated with the environmentally 

friendly products. Their findings showed that the profits of both the supply chain system 

and participating members get to the optimal level under cooperative decision-making. 

The decision results of contributing members along with the channel profit are far from 

satisfactory under the non-cooperative game. By defining the cooperative parameter, 

green supply chain managers may efficiently get involved in coordination mechanisms to 
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intervene and adjust the green channel to promote the smooth operation of a green supply 

chain.  

Mirzapour et al. (2013) propositioned a stochastic programming approach to 

solve a multi-period, multi-product, multi-site aggregate production-planning problem in 

a green supply chain network for medium-term planning. Mangla et al. (2014) focused on 

the operational green supply chain risk evaluation. They applied Monte Carlo simulation 

to evaluate the related risks. They considered five operational risks containing:  machine/ 

equipment /facility failure, process design risks, lack of skilled labor, green technology 

level inadequacy, a system/software failure. They analyzed their consequences in terms 

of time, brand image, economic, health and safety, and quality. Based on their findings, 

the maximum consequences were seen in time-based consequences and that was 

measured in terms of time delays/disturbances and disruptions. Coskun et al. (2015) 

focused on supply chain network design based on defined green expectations of 

consumer and the retailer’s general expectations from candidate suppliers (i.e. 

manufacturers, carriers and distribution centers on the network). They proposed a goal-

programming model considering three consumer segments, i.e., green, inconsistent and 

red consumers. Green consumer segment defines consumers who demand green products 

for sure and willing to pay extra for them.  The second segment defines inconsistent 

consumers who have some level of awareness towards the environment, yet they prefer a 

green product only if the price is same or less above the price of alternative non-green 

one. Third segment hosts red consumers who do not pay any attention to products' 

greenness and make up his/her purchasing decision based on other commonly used 

criteria. A set of scenarios was also studied to offer an insight on how the consumer 



9 

determination level of greenness affects the green supply network. The ultimate goal of 

this study was to increase the market share of green products by managing the network to 

offer products with the expected greenness level determined by the consumer without 

ignoring profitability. 

The literature review also indicates that the conducted researches on GSCP 

incorporate three aspects of sustainability and green programs: social aspect (Hsueh, 

2015), environmental aspect (Sazvar et al., 2014; Kannan et al., 2013; Govindan et al. 

2013; Coskun et al., 2015; Rodrigues et al., 2015; Amin and Zhang, 2013; Wu and 

Chang, 2015; Kusi-Sarpong et al., 2014 ), and economical aspect (Seyed-Hosseini et al. 

2010a,b; Elahi et al., 2011b,c,d,e; Shankar et al., 2013; Subulan et al., 2014; Yang et al., 

2009; Wu and Chang, 2015; Soleimani and Kannan, 2015; Zolfagharinia et al., 2014; 

Kusi-Sarpong et al., 2014).  

Pishvaee et al. (2012) focused on assessing and controlling emissions across the 

logistics network. They proposed a bi-objective credibility-based fuzzy mathematical 

programming model for designing the strategic configuration of a green logistics network 

under uncertain situation. The model aimed to minimize the environmental impacts and 

the total costs of network establishment concurrently for the sake of offering a practical 

balance. Zhao et al. (2012) proposed an approach, in the context of GSCP, using Game 

theory to examine the strategies chosen by manufacturers to diminish life cycle 

environmental risk of materials and carbon emissions. They attempted to establish a base 

for determining the extent of environmental risk and carbon emissions reduction within 

the application of the ‘tolerability of risk’ notion. Kannan et al. (2013) presented an 

integrated approach of fuzzy multi attribute utility theory and multi-objective 
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programming for rating and selecting the best green suppliers, according to economic and 

environmental criteria and then allocating the optimum order quantities among them. 

They also proposed a mathematical model to maximize the total value of purchasing and 

to minimize the total cost of purchasing. Govindan et al. (2013) proposed a multi-

objective optimization model by integrating sustainability in decision-making on 

distribution in a perishable food supply chain network. They focused on a location–

routing problem with time-windows. Shankar et al. (2013) focused on optimization of 

strategic design and distribution decisions in a supply chain network by minimizing the 

combined facility location, production, inventory, and shipment costs and maximizing fill 

rate. Kannegiesser and Gunther (2013) applied an optimization strategy to set long-term 

sustainability targets for supply chain based on defined performance indicators, e.g. CO2 

emissions, waste, energy and water consumption reduction, and cost reductions. The 

main characteristic of such a strategy was setting concrete targets for different 

dimensions of sustainability. The overall objective consisted of minimizing the number of 

periods required until all of the targets are reached.  

Sazvar et al. (2014) proposed a new replenishment policy in a centralized supply 

chain for deteriorating items. The best transportation vehicles and inventory policy were 

determined by finding a balance between financial and environmental criteria. They 

concentrated on minimization of expected total costs and expected GHG emissions. The 

results verified that if companies allow a minor reduction in the system’s profits, they 

will be able to improve their GHG criteria significantly. Zolfagharinia et al. (2014) 

developed a two-stock inventory control model for a reverse supply chain with separate 

serviceable and remanufacturable inventory stock points. They considered the 
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dependency of product return and market demand in presence of product life cycle in a 

two-stock system with backordering option. The objective of incorporating a 

remanufacturable stock point was to take advantage of low holding cost for storing 

inexpensive returned products and postponing the remanufacturing process to the time 

when needed. To model demand pattern during product life cycle, they introduced an 

order-up-to replenishment policy with five maximum inventory levels corresponding to 

five product life cycle stages including introduction, growth, maturity, saturation, and 

decline stages. A hybrid solution method was developed through integrating discrete 

event simulation with a meta-heuristic algorithm to find a near-optimum solution for the 

proposed inventory control problem. Shafii et al. (2011) focused on minimizing CO2 and 

NOx emissions in automobile industry and conducted various experimental tests to 

investigate the effects of adding water-based Ferro fluid to diesel fuel in a diesel engine. 

They found that adding Ferro fluid to diesel fuel has a significant effect on engine 

performance, increasing the brake thermal efficiency relatively up to 12% and decreasing 

the brake-specific fuel consumption reasonably up to 11% as compared to diesel fuel. 

Moreover, this research paper presented the idea of collecting nanoparticles at the 

exhaust flow using a magnetic bar. 

 

Hsueh (2015) proposed a bi-level programming model to maximize total supply 

chain profits by determining optimal performance levels of corporate social 

responsibility. They used linear inverse demand functions to reflect the impact of 

corporate social responsibility performance on market prices. They showed that in some 
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circumstances, the supply chain’s profits and the individual profits of each supply chain 

actor can be improved by corporate social responsibility collaboration.  

Rodrigues et al. (2015) conducted a study on assessing possible carbon mitigation 

strategies for UK supply chains by using a combination of alternative ports and revised 

multi-modal strategies. They considered whether the use of alternative port gateways can 

contribute significantly to an overall reduction in freight transport-related CO2e
1 

emissions in international supply chains. An activity-based CO2e emission model is used 

to estimate the cost and CO2e impact of five Scenarios which are described in the paper 

as the ‘‘current situation’’ and four ‘‘proposed Scenarios’’. The Scenarios modelled in 

their research paper included a baseline scenario and a series of scenarios which captured 

the outcomes when alternative routes were used. The proposed model assessed the 

tradeoffs between CO2e reduction in road freight transport and modal shift from road to 

water and/rail. A range of variables which can impact on the overall cost and CO2e 

emissions were: terminal building costs, transport operating costs, intermodal freight 

transfer cost, and CO2e emissions derived from the use of alternative modes and routes. 

The aim of the modelling process was to achieve an understanding of how UK import 

containers may potentially be re-routed such that either costs or CO2e emissions, or both, 

could be reduced. The overall aim of their study was to simulate possible CO2e 

mitigation strategies along supply chains in the UK.  

Wu and Chang (2015) identified the critical dimensions and factors for electrical 

and electronic industries and constructed the digraphs to show causal relationships among 

1 CO2e, or carbon dioxide equivalent, is a standard unit for measuring carbon footprints 
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dimensions and factors within each dimension in a green supply chain network. Four 

different dimensions were considered: supplier management (factors: environmental 

auditing for suppliers, supplier environmental questionnaire, requesting compliance 

statement, asking for product testing report, demanding bill of material, establishing 

environmental requirements for purchasing items, implementing green purchasing), 

Product recycling (factors: joining local recycling organization, collaboration on products 

recycling with the same sector industry, produce disassembly manual), Organization 

involvement (factors: green design, top management support, environmental policy for 

green supply chain management, cross-function integration, manpower involvement, 

effective communication platform within companies and with suppliers, establish an 

environmental risk management system for green supply chain management, supplier 

evaluation and selection), and Life cycle management (factors: applying life cycle 

assessment to carry out eco-report and establish an environmental database of products). 

The results showed that organization involvement is the most critical dimension. 

Moreover, top management support and environmental policy for green supply chain 

network are the two critical factors in organization involvement that should be placed in 

highest priority when green supply chain network is to be implemented. 

Several recent studies have also focused on closed-loop supply chains. Yang et al. 

(2009) expanded the research work of Hammond and Beullens (2007) and combined the 

research work of Sheu et al. (2005) to develop a general closed-loop supply chain 

network, which consists of raw material suppliers, manufacturers, retailers, consumers 

and recovery centers. They optimized the equilibrium state of the network by using the 

theory of variational inequalities and the equilibrium condition. Wang and Hsu (2010) 
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examined the integration of forward and reverse logistics with a simplified closed-loop 

model for the logistical planning. They formulated a cyclic logistics network problem 

into an integer linear programming model. They utilized a revised spanning-tree based 

genetic algorithm that was extended by using a determinant encoding representation for 

solving their proposed model. Amin and Zhang (2013) proposed a stochastic 

programming model to minimize the total cost and maximize the recycling and use of 

clean energies like a solar power by collection centers to process products in a closed-

loop supply chain. Elahi and Franchetti (2014) also proposed a comprehensive conceptual 

model for a closed-loop supply chain and considered product life cycle and three types of 

returns into account. In this conceptual model, once products are applied by final 

customers, some of them are returned back. The returning products are delivered to the 

collection site. Commercial returns are fixed at the repair site. These products can be 

utilized as new ones. End-of-use and end-of-life returns are disassembled. In this phase, 

the wastes are separated. End-of-life returns are recycled at recycling sites.  It is also 

assumed that the parts are added to the part inventory as new parts. Subulan et al. (2014) 

developed a multi-objective, multi-echelon and multi-product strategic planning model 

for the lead/acid battery closed-loop supply chain. They focused on three objectives: a) 

minimizing the total cost: summation of fixed opening costs, production costs, 

transportation costs, component purchasing costs, scrap battery purchasing costs, 

recycling costs, collection costs, disposal costs minus revenue obtained from the sales of 

collected scrap batteries, b) maximizing the coverage of collected batteries by opened 

collection centers or hybrid facilities, and c) maximizing the total volume flexibility 

which consists of manufacturing or plant volume flexibility, distribution volume 
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flexibility, recycling volume flexibility and collection volume flexibility. Soleimani and 

Kannan (2015) coped with a closed-loop supply chain design and planning problem 

through a deterministic approach by maximizing the profit. Various cost including fixed 

opening costs, material supplying costs, manufacturing costs, non-utilized capacity costs, 

shortage costs, purchasing costs of return products from customers, disassembly costs of 

return products, recycling costs, remanufacturing costs, repairing costs, disposal costs, 

transportation costs, and inventory holding costs were considered. Garg et al. (2015) 

focused on the environmental issues presented in the design of closed-loop supply chain 

networks. In the reverse chain of the proposed closed-loop supply chain network, 

returned products were collected from their users through a take back scheme. Users were 

paid incentives for returning their end-of-life used products at the company operated 

collection center. Value was recovered by dismantling returned products into the 

components demanded in the spare market.  

 Some of recent researches in the area of GSCP are categorized in Table 2.1 based 

on various elements containing type of model, the number of objective functions, focus 

on profit /cost of supply chain network, number of echelons in the supply chain network, 

and considered decision variables. These researches are also clustered based on the use of 

numerical example/case study, applied methodology and solution Method, 

deterministic/stochastic/fuzzy Model, deterministic/probabilistic demand, single/multi-

period, and single/multi-product. Such a clustering is displayed in Table 2.2. Various 

considered scopes in decisions for the Green Supply Chain Planning (i.e. production or 

manufacturing’s capacity; supplier’s capacity; Distribution center’s capacity; Collection 

center’s capacity; Wholesaler’s capacity; Recycling capacity; Transportation capacity; 
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Inventory; performance evaluation; procurement and order allocation; production and 

operation; transportation, shipment, and logistics management; sustainability and green 

aspects; facility location; partial back-ordering; routing) are also classified in Table 2.3. 

However, all the aforementioned research focused on various issues in the context 

of GSCP, the trade-offs between minimizing total costs (i.e. carbon emission costs, 

transportation costs, holding costs of inventory, fixed ordering costs, costs of purchase, 

assembly costs, and backordering costs of products) and maximizing service levels in a 

multi-sourcing situation with multi-product and multi-period have not been taken into 

consideration. The first goal of this research is to develop a novel optimization planning 

model in a green supply chain network consisting of suppliers, assemblers, distribution 

centers, and retailers. This model is subjected to various constraints which are related to 

the inventory and forward logistics management and carbon dioxide (CO2) emissions 

throughout the logistic network. The proposed model for supply chain network is applied 

in a vacuum and floor machines manufacture case study in the Midwest. The main 

objectives considered are: a) minimizing the costs of assembling, transporting, holding 

inventory at assembling sites and distribution centers, and shortage at retailers; and b) 

maximizing service levels. The model can determine the acceptable service levels to meet 

final customers’ demands. Moreover, as the proposed nonlinear optimization model has 

specific complexity, optimality is achieved by three different solution methods. In the 

first step, an optimization solver, the B&B solver, is utilized to achieve an initial local 

optimum solution. In the second step, a gradient-based programing solver is applied to 

achieve the best solution. In the third step, a metaheuristic algorithm (Grey Wolf 

Optimizer algorithm) is applied to achieve optimality. The case study and expanded 
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numerical example verify that whenever the parameter of the minimum service level at 

retailers’ sites increases or decreases, the amount of produced CO2 emissions and the 

total costs of the supply chain will directly correlate. The achieved results by the three 

different solution methods reflect the efficiency of the proposed model in the context of 

GSCP. The next chapter will focus on the proposed optimization model.
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Table 2.1: Categorizing recent researches in the area of Green Supply Chain Planning based on considered objective and decision 
variables 

Authors 
Model 

Single objective/ 

Bi-objective/ 

Triple-Objective 

Profit/ 

Cost 

Echelons (Layers) in the 

Supply Chain Network 
Decision Variables 

Hsueh (2015) 

Bi-level 

programming 

model 

single objective Profit 
Three echelons: suppliers, one 

manufacturer, and retailers 

 Corporate social responsibility performance level of suppliers, the

manufacturer, and retailers

 Transaction quantity and compensations transferred between the

supplier and the manufacturer/ the manufacturer and retailer

Shankar et al. (2013) 

Bi-objective 

mixed-integer 

non-linear 

programming 

model 

bi-objective Cost 

Three echelons: suppliers, 

production plants, and 

distribution centers (DCs) 

 The number and location of plants in the system

 The flow of raw materials from suppliers to plants

 The quantity of products to be shipped from plants to distribution

centers

Sazvar et al. (2014) 

Linear 

mathematical 

model (multi-

stage stochastic 

programming) 

bi-objective Cost 
Two echelons; a supplier, a 

retailer 

 The  best configuration of vehicle types and order quantities in each

period

Kannan et al. (2013) 

Fuzzy Multi-

objective linear 

programming 

bi-objective Cost 
One echelon, multiple 

suppliers 

 Selecting suppliers based on economic and environmental criteria

 Assigning order quantity

Govindan et al. (2013) 

Multi-objective 

mixed-integer 

programming 

bi-objective Cost 

Three echelons, 

manufacturers, distribution 

centers, and retailers 

 Determining the number and location facilities

 Optimizing the amount of products delivered to lower stages and routes

at each level

 Finding the most efficient vehicle routes to minimize total costs and

environmental effects of all three stages
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Table 2.1 (cont.) 

Authors 
Model 

Single objective/ 

Bi-objective/ 

Triple-Objective 

Profit/ 

Cost 

Echelons (Layers) in the 

Supply Chain Network 
Decision Variables 

Subulan et al. (2014) 

Fuzzy Multi-

objective linear 

programming 

triple-objective Cost 

Five echelons: vendors 

(suppliers); manufacturers, 

regional wholesalers, dealers 

(retailers or authorized 

automotive services); 

potential licensed recycling 

facilities 

 Recycling quantity of used battery at the licensed recycling facility  

 Quantity of used battery sold to any scrap dealer from each of depots 

(Hybrid facility or collection center)  

 Quantity of used battery purchased by each depot (Hybrid facility or 

collection center) from any scrap dealer and sent to the licensed 

recycling facility 

 Amount of material/component purchased from vendors  

 Production quantity of battery in new battery manufacturers  

 Quantity of battery shipped from new battery manufacturers via regional 

wholesalers or hybrid facilities to the battery dealers  

 Quantity of used battery shipped from battery dealers via collection 

centers or hybrid facilities to the licensed recycling facilities 

 Quantity of material/component shipped to new battery manufacturers 

from licensed recycling facilities  

Coskun et al. (2015) 

Goal-

programming 

model 

single objective Profit 
Two echelons: manufacturers 

and distribution centers 

 Amount of demand to be fulfilled in stores for products and Lost sales 

amount for demands  

 Deviational variable for manufacturers for staying (and also exceeding) 

under expectations of segments 

 Deviational variable for manufacturers for staying (and also exceeding) 

under expectations of retailer  

 Deviational variable for carriers and distribution centers for staying (and 

also exceeding) under expectations of segments and retailers 
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Table 2.1 (cont.) 

      Authors 
Model 

Single objective/ 

Bi-objective/ 

Triple-Objective 

Profit/ 

Cost 

Echelons (Layers) in the Supply Chain 

Network 
Decision Variables 

Rodrigues et al. (2015) 
Linear 

programming 
single objective Cost 

One echelon: container handling and 

freight transport 

 Number of units shipped from ports to references cities  

 Evaluating the demand allocation to rail transport and sea-

based transport for specific scenarios 

Amin and Zhang (2013) 

Mixed-integer 

linear 

programming 

bi-objective Cost 
Three echelons: multiple plants, 

collection centers, demand markets 

 Quantity of products produced by plants for demand markets  

 Quantity of returned products from a) demand markets to 

collection centers, b) collection centers to plants, and c) 

collection centers to disposal centers 

Yang et al. (2009) 

Mathematical 

modeling and 

using the 

equilibrium 

condition 

single objective Profit 
suppliers, manufacturers, retailers, 

consumers and recovery centers 

 Each manufacturer must make several basic decisions: (a) 

how much of products to demand; (b) how much of raw 

materials to input; (c) how much of reusable materials to 

input.  

 The consumers take into account in making their decisions: 

(a) how much of the products to purchase from the retailers; 

(b) how much they will be willing to pay for the products; 

(c) how much of the used products willing to return to the 

recovery centers  

Wu and Chang (2015) 

A decision 

making method 

(MCDM) 

single objective none 
three echelons: Suppliers, manufacturers, 

customers 
 Ranking dimensions and finding the factors’ effects 

Soleimani and Kannan 

(2015) 

Mixed-integer 

programming 

model 

single objective Profit 

Multi-echelon: suppliers, manufacturers, 

warehouses, distributors, retailers, 

disassembly centers, redistributors, 

disposal centers 

 Location and allocation variables 
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Table 2.1 (cont.) 

Authors 
Model 

Single objective/ 

Bi-objective/ 

Triple-Objective 

Profit/ 

Cost 

Echelons (Layers) in 

the Supply Chain 

Network 

Decision Variables 

Zolfagharinia et al. (2014) 

Mathematical 

modeling and 

simulation 

single objective Cost 

three echelons: 

supplier, 

manufacturer, 

customer 

 Demand in each period  

 Quantity of ordered products at the beginning of each period  

 Quantity of purchased products at the beginning of each period  

 Quantity of remanufactured products at the beginning of each period 

 Quantity of backordered items at the end of each period  

 Inventory position at the beginning of each period and On-hand inventory and 

Net stock at the end of each period  

 Quantity of products delivered to the market in each period  

Kusi-Sarpong et al. (2014) 
A decision making 

method  
single objective none Not defined  Ranking defined factors in evaluation of green supply programs 

Garg et al. (2015) 

Bi-objective integer 

nonlinear 

programming 

bi-objective Profit 

Supplier, 

manufacturer, 

distribution center, 

customers, collection 

center, repair center, 

decomposition 

center, disposal site, 

dismantler, spare 

market 

 Determining the optimal flow of parts and products in the closed-loop supply 

chain network and the optimum number of trucks hired by facilities in the 

forward chain of the network  

 Quantity of material shipped from suppliers to plants via trucks 

 Quantity of product shipped from: a) plants to distribution centers via trucks 

and b) distribution centers to customers via trucks 

 Quantity of used product returned from: a) customer market zones to 

collection centers and b) collection centers to dismantler center 

 Quantity of components shipped from: a) dismantler to repairing centers, b) 

repairing centers to spare markets, and c) dismantler to decomposition center 

 Quantity of material shipped from a) decomposition center to suppliers and b) 

decomposition center to disposal site 

 Number of various types of vehicles hired by suppliers and DCs. 
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Table 2.2: Clustering recent researches in the area of Green Supply Chain Planning based on applied methodologies 

Authors 
Numerical example/ case 

study, the related industry 

Methodology and Solution 

Method 

Deterministic/ Stochastic/ Fuzzy 

Model 

Deterministic 

/Probabilistic Demand 

Single / Multi-

period 

Single /Multi- 

Product 

Hsueh (2015) Numerical example 

A gradient-based algorithm for 

sensitivity analysis of variation 

inequality models and bi-level 

programming 

Deterministic Deterministic Single Period Single Product 

Shankar et al. 

(2013) 

Case study, Pump 

manufacturing industry 

A swarm intelligence based multi- 

objective hybrid particle swarm 
Deterministic Deterministic Single Period Single Product 

Sazvar et al. 

(2014) 

Case study, pharmaceutical 

industry with perishable 

products (radiopharmaceutical 

product)  

Compromise programming Stochastic Stochastic Multi-period Single Product 

Kannan et al. 

(2013) 

Case study, automobile 

manufacturing company 

Fuzzy Analytic Hierarchy Process, 

Fuzzy TOPSIS, Fuzzy Multi-

objective linear programming 

converting to a single objective 

using a maxi-min formulation 

Triangular fuzzy numbers Deterministic Single Period Single Product 

Govindan et al. 

(2013) 
Numerical example 

Hybrid algorithm based on multi-

objective particle swarm 

optimization (MOPSO) and adapted 

multi-objective variable 

neighborhood search (AMOVNS) 

Deterministic Deterministic Single Period Single Product 

Subulan et al. 

(2014) 

Case study, lead/acid industry 

in Turkey 

Fuzzy goal programming, weighted 

geometric mean for group decision 

making (MCDM)  

Fuzzy Deterministic Single period  Multi-product 
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Table 2.2 (cont.) 

Authors 
Numerical example/ case 

study, the related industry 

Methodology and Solution 

Method 

Deterministic/ Stochastic/ Fuzzy 

Model 

Deterministic 

/Probabilistic Demand 

Single / Multi-

period 

Single /Multi- 

Product 

Coskun et al. 

(2015) 
Numerical example 

Goal programming approach, 

scenario analysis 
Deterministic Deterministic Single period  Multi-product 

Rodrigues et al. 

(2015) 

Case study, data related to 

different major container 

handling ports in UK (locations 

and container volume data for 

all routes analyzed in the five 

scenarios) 

Scenario analysis Deterministic Deterministic Single period Single Product 

Amin and Zhang 

(2013) 

Numerical example based on a 

copier remanufacturing  

Epsilon-constraint method; weighted 

sums method; stochastic 

programming (scenario-based)  

Stochastic Deterministic Single period Multi Product 

Yang et al. 

(2009) 
Numerical example 

Mathematical modeling, using the 

theory of variational inequalities, 

and equilibrium conditions 

Deterministic Deterministic Single period Single Product 

Wu and Chang 

(2015) 

Case study, top five 

downstream suppliers in lead 

frames for the semiconductor 

packaging plants in Taiwan 

MCDM method, DEMATEL 

(Decision-making trial and 

evaluation laboratory method)  

Deterministic Not considered Not considered Single Product 
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Table 2.2 (cont.) 

Authors 
Numerical example/ case 

study, the related industry 

Methodology and Solution 

Method 

Deterministic/ Stochastic/ Fuzzy 

Model 

Deterministic 

/Probabilistic Demand 

Single / Multi-

period 

Single /Multi- 

Product 

Soleimani and 

Kannan (2015) 

Case study, hospital 

furniture manufacturer 

A hybrid algorithm: the genetic 

algorithm (GA) and particle swarm 

optimization (PSO)  

Deterministic Deterministic Multi-period Multi Product 

Zolfagharinia et al. 

(2014) 

Case study, Australian case 

company involved in the 

provision of toner 

cartridges  

A hybrid solution method 

integrating a discrete event 

simulation with a meta-heuristic 

search method, Simulation-based 

Hybrid Variable Neighborhood 

Search 

Deterministic Stochastic Multi-period Multi Product 

Kusi-Sarpong et al. 

(2014) 

Case study, gathering data 

from mining engineers who 

work for Ghanaian mining 

industry 

Integration of rough set theory 

elements and fuzzy TOPSIS 
Fuzzy Not considered Not considered Not considered 

Garg et al. (2015) 

Case study, gathering data 

from a geyser manufacturer 

Delhi and the National 

Capital Region 

 

Interactive Multi- 

Objective 

Programming 

approach algorithm 

 

Deterministic Deterministic Single period Single product 
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Table 2.3: Various considered scopes in decisions for the Green Supply Chain Planning 
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Chapter 3 

3 An integrated trade-off model for green supply chain 

planning: Focusing on Carbon Dioxide Emission, 

Total Costs, and Service 
 

 

In this chapter, in order to develop a new mathematical model in the context of 

GSCP, it is taken into account that the integrated supply chain network has five echelons 

entailing multi-supplier, multi-assembler, multi-DC, multi-retailer, and end customers 

which collaborate with each other effectively. The proposed model captures the trade-offs 

between the total costs and service levels. Here, it is assumed that carbon emissions 

originate from three major sources: (a) The distribution of the components by suppliers to 

assemblers, where the emissions level is based on the traveled distance and amounts of 

products transported; (b) The distribution of the products from assemblers to distribution 

centers and from distribution centers to retailers. For both channels the CO2 emissions 

level is computed based on the traveled distance and amounts of the products transported; 

and (c) The facility (assembly sites, and distribution centers), where the amount of CO2 

emissions is proportional to the area (Agency, I.E., 2014). All considered costs are 

assumed to be known and accurately determined over the planning horizon. Two main 
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objective functions will be considered: 1) Minimizing the total costs of the supply chain, 

which also contains carbon emissions costs. 2) Maximizing service levels.  

 

3.1 Assumptions for Modeling 

The following assumptions are taken into account: 

 Different kinds of components are shipped into assembly plants from some 

selected suppliers. Then, a variety of products will be provided by assembling 

different sets of components. The final products will be delivered to a set of 

distribution centers and consequently will be distributed among different retailers. 

End customers place their orders to these retailers. Figure 3-1 shows a schematic 

of this multi-echelon supply chain.  

 An Integrated GSCP will be developed over a defined and limited production 

planning horizon, which contains multiple periods. 

 Demand of each product type forecasts for the following T periods based on the 

history of prior data.  

 Each retailer may encounter shortages in meeting customers’ demands and partial 

backordering which is applied when a stock-out occurs related to each type of 

product. 

 Each potential supplier has a definite and limited capacity for providing different 

components in each period and has the capability of procuring all kinds of 

components.  
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 For each supplier candidate, the selling price of the components is definite and 

known. 

 All costs are assumed to be known and accurately determined over the planning 

horizon.  

 Distribution centers can hold inventory, but retailers prefer not to hold any 

inventory. Additionally, assemblers fabricate final products by using components 

based on customers’ predicted demands and they prefer to hold inventory related 

to a variety of components. 

 The ordering set-up costs of suppliers are fixed and independent, meaning that for 

different types of ordering products or various amounts of ordering, the ordering 

cost will be the same. 

 There are limitations of capacity for dispatching products from assemblers to 

distribution centers and sequentially from distribution centers to retailers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppliers  

1,2,…,j,..,m 

Assemblers 

1,2,…,k,…,n 

Distribution Centers 

1,2,…,w,..,q 

Retailers 

1,2,…,r,…, v  

End 

customers 

Figure 3-1: The schema of considered multi-echelon supply chain network 
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3.2 Mathematical Modeling  

Considering the abovementioned assumptions and notations mentioned earlier (in 

the Symbol List), the problem can be modeled as follows. Equations and constraints are 

explained in the next section.  

Objective Functions: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑠:𝑀𝑖𝑛 𝑇𝐶 = 𝑈1 + 𝑈2 + 𝑈3 + 𝑈4 + 𝑈5 

Equation 3.2-1 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑒𝑣𝑒𝑙𝑠:𝑀𝑎𝑥 𝑆𝐿𝑖,𝑟,𝑡 = 1 −
∑ 𝐵𝑅𝑖,𝑟,𝑡

𝑡
𝑙=1

∑ 𝐷𝑖,𝑟,𝑡
𝑡
𝑙=1

 

∀𝑖, 𝑟, 𝑡 

Equation 3.2-2 

 

Subject to: 

𝑈1 = 𝜃. (𝐶𝑂2
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 − 𝐶𝑂2

𝐴𝑙𝑙𝑜𝑤𝑒𝑑) 

Equation 3.2-3 

𝐶𝑂2
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠:∑ ∑ ∑(𝜇0. 𝐸𝑘. 𝐴𝑟𝑘)

𝑛

𝑘′=1

𝑛

𝑘=1

𝑇

𝑡=1

+ ∑ ∑ ∑ (𝜇0. 𝐸𝑤. 𝐴𝑟𝑤)

𝑞

𝑤′=1

𝑞

𝑤=1

𝑇

𝑡=1

+ ∑∑ ∑ ∑ ∑𝜇𝑡𝑟

𝑣

𝑟=1

𝑞

𝑤=1

. (𝐶𝐶𝑘,𝑤. 𝑉𝑖,𝑘,𝑤,𝑡 + 𝐶𝐶𝑤,𝑟 . 𝑄𝑖,𝑤,𝑟,𝑡)

𝑛

𝑘=1

𝑝

𝑖=1

𝑇

𝑡=1

+ ∑ ∑ ∑ ∑(𝜇𝑡𝑟 . 𝐶𝐶𝑗,𝑘 . 𝑍𝑢,𝑗,𝑘,𝑡 + 𝜇0. 𝑍𝑢,𝑗,𝑘,𝑡)

𝑛

𝑘=1

𝑚

𝑗=1

𝑎

𝑢=1

𝑇

𝑡=1

 

 

Equation 3.2-4 
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𝑈2 = ∑∑ ∑ ∑(𝜕𝑢. 𝐶𝐶𝑗,𝑘. 𝑍𝑢,𝑗,𝑘,𝑡)

𝑎

𝑢=1

𝑛

𝑘=1

𝑚

𝑗=1

𝑇

𝑡=1

+ ∑ ∑ ∑(ℎ𝑢𝑢,𝑘 . 𝐼𝑈𝑢,𝑘,𝑡) + ∑ ∑ ∑(𝑂𝑗. 𝑌𝑗,𝑘,𝑡)

𝑚

𝑗=1

𝑛

𝑘=1

𝑇

𝑡=1

𝑎

𝑢=1

𝑛

𝑘=1

𝑇

𝑡=1

+ ∑ ∑ ∑ ∑(𝑆𝑢,𝑗 . 𝑍𝑢,𝑗,𝑘,𝑡)

𝑎

𝑢=1

𝑚

𝑗=1

𝑛

𝑘=1

𝑇

𝑡=1

 

 

Equation 3.2-5 

𝑈3 = ∑ ∑ ∑ ∑(𝜕𝑖 . 𝐶𝐶𝑘,𝑤. 𝑉𝑖,𝑘,𝑤,𝑡)

𝑝

𝑖=1

𝑞

𝑤=1

𝑛

𝑘=1

𝑇

𝑡=1

+ ∑ ∑ ∑((𝜏𝑖,𝑘 . 𝛽𝑖,𝑘,𝑡) + (𝐶𝑝𝑟𝑖,𝑘 . 𝑋𝑖,𝑘,𝑡)

𝑝

𝑖=1

𝑛

𝑘=1

𝑇

𝑡=1

+ ∑(𝜌𝑢,𝑖,𝑘 . 𝐹𝑖,𝑢. 𝑋𝑖,𝑘,𝑡)

𝑎

𝑢=1

) 

Equation 3.2-6 

𝑈4 = ∑ ∑ ∑∑(𝜕𝑖 . 𝐶𝐶𝑤,𝑟 . 𝑄𝑖,𝑤,𝑟,𝑡)

𝑝

𝑖=1

𝑣

𝑟=1

𝑞

𝑤=1

𝑇

𝑡=1

+ ∑ ∑ ∑((ℎ𝑤𝑖,𝑤. 𝐼𝑊𝑖,𝑤,𝑡) + ∑(𝑇𝑟𝑝𝑖,𝑘,𝑤. 𝑉𝑖,𝑘,𝑤,𝑡)

𝑛

𝑘=1

)

𝑝

𝑖=1

𝑞

𝑤=1

𝑇

𝑡=1

 

 

Equation 3.2-7 

𝑈5 = ∑∑∑((𝜑𝑖,𝑟 . 𝛼𝑖,𝑟,𝑡) + (𝜋𝑟𝑖,𝑟 . 𝐵𝑅𝑖,𝑟,𝑡) + ∑(𝑇𝑟𝑤𝑖,𝑤,𝑟 . 𝑄𝑖,𝑤,𝑟,𝑡)

𝑞

𝑤=1

)

𝑝

𝑖=1

𝑣

𝑟=1

𝑇

𝑡=1

 

 

Equation 3.2-8 
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𝐼𝑈𝑢,𝑘,𝑡 = 𝐼𝑈𝑢,𝑘,𝑡−1 + ∑𝑍𝑢,𝑗,𝑘,𝑡 − ∑(𝐹𝑖,𝑢. 𝑋𝑖,𝑘,𝑡)

𝑝

𝑖=1

𝑚

𝑗=1

 ∀𝑢, 𝑘, 𝑡 

Equation 3.2-9 

∑ 𝑍𝑢,𝑗,𝑘,𝑡 ≤ 𝐶𝑆𝑢,𝑗

𝑛

𝑘=1

 
∀𝑢, 𝑗, 𝑡 

Equation 3.2-10 

𝐼𝑈𝑢,𝑘,𝑡 ≤ 𝑀𝐼𝑢,𝑘,𝑡 ∀𝑢, 𝑘, 𝑡 

Equation 3.2-11 

(∑∑(𝐹𝑖,𝑢. 𝑋𝑖,𝑘,𝑡)).

𝑝

𝑖=1

𝑇

𝑙=𝑡

𝑌𝑗,𝑘,𝑡 ≤ 𝑍𝑢,𝑗,𝑘,𝑡 ∀𝑢, 𝑗, 𝑘, 𝑡 

Equation 3.2-12 

𝐵𝑅𝑖,𝑟,𝑡 = 𝐵𝑅𝑖,𝑟,𝑡−1 + 𝐷𝑖,𝑟,𝑡 − (∑ 𝑄𝑖,𝑤,𝑟,𝑡

𝑞

𝑤=1

) ∀𝑖, 𝑟, 𝑡 

Equation 3.2-13 

𝐼𝑊𝑖,𝑤,𝑡 = 𝐼𝑊𝑖,𝑤,𝑡−1 + ∑ 𝑉𝑖,𝑘,𝑤,𝑡 − ∑𝑄𝑖,𝑤,𝑟,𝑡

𝑣

𝑟=1

𝑛

𝑘=1

 ∀𝑖, 𝑤, 𝑡 

Equation 3.2-14 
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∑ 𝑉𝑖,𝑘,𝑤,𝑡 = 𝑋𝑖,𝑘,𝑡

𝑞

𝑤=1

 ∀𝑖, 𝑘, 𝑡 

Equation 3.2-15 

𝑄𝑖,𝑤,𝑟,𝑡 ≤ 𝛿𝑤,𝑟 . 𝐶𝑇𝑟𝑤𝑖,𝑤,𝑟 ∀𝑖, 𝑤, 𝑟, 𝑡  

Equation 3.2-16 

𝑉𝑖,𝑘,𝑤,𝑡 ≤ 𝛾𝑘,𝑤. 𝐶𝑇𝑟𝑝𝑖,𝑘,𝑤 ∀𝑖, 𝑘, 𝑤, 𝑡 

Equation 3.2-17 

𝐼𝑊𝑖,𝑤,𝑡 ≤ 𝑆𝑡𝑤𝑖,𝑤 ∀𝑖, 𝑤, 𝑡  

Equation 3.2-18 

𝑋𝑖,𝑘,𝑡 ≤ 𝛽𝑖,𝑘,𝑡 . 𝑀
∞ ∀𝑖, 𝑘, 𝑡 

Equation 3.2-19 

𝐷𝑖,𝑟,𝑡 ≤ 𝛼𝑖,𝑟,𝑡 . 𝑀
∞ ∀𝑖, 𝑟, 𝑡 

Equation 3.2-20 

𝑋𝑖,𝑘,𝑡 ≤ 𝐺𝑖,𝑘 ∀𝑖, 𝑘, 𝑡 

Equation 3.2-21 
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𝐼𝑈𝑢,𝑘,𝑡 , 𝑍𝑢,𝑗,𝑘,𝑡 , 𝑄𝑖,𝑤,𝑟,𝑡 , 𝑉𝑖,𝑘,𝑤,𝑡 , 𝑋𝑖,𝑘,𝑡 , 𝐵𝑅𝑖,𝑟,𝑡 , 𝐼𝑊𝑖,𝑤,𝑡

∈ 𝑍+ ∪ {0} 
∀𝑖, 𝑗, 𝑢, 𝑘, 𝑟, 𝑤, 𝑡 

Equation 3.2-22 

𝑌𝑗,𝑘,𝑡 , 𝛿𝑤,𝑟 , 𝛾𝑘,𝑤, 𝛽𝑖,𝑘,𝑡 , 𝛼𝑖,𝑟,𝑡 ∈ {0,1} ∀𝑖, 𝑘, 𝑟, 𝑤, 𝑡 

Equation 3.2-23 

 

 

As a first step to solve the proposed optimization model, the Bounded objective2 

method is applied to convert the bi-objective mixed-integer model to a single objective 

model. Here, the second objective which refers to maximizing service levels is 

considered as a constraint. Moreover, we have taken upper bounds and lower bounds for 

service levels into account as follows:  

 

𝑆𝐿𝑖,𝑟,𝑡 = 1 −
∑ 𝐵𝑅𝑖,𝑟,𝑡

𝑡
𝑙=1

∑ 𝐷𝑖,𝑟,𝑡
𝑡
𝑙=1

 ∀𝑖, 𝑟, 𝑡 

Equation 3.2-24 

𝑆𝐿𝑖,𝑟,𝑡
𝑚𝑖𝑛 ≤ 𝑆𝐿𝑖,𝑟,𝑡 ≤ 1 ∀𝑖, 𝑟, 𝑡 

Equation 3.2-25 

 

                                                           

2 Bounded objective method is one of the well-grounded approached of multi-objective optimization which 

can be used to get more information and sensitivity analysis to the above-mentioned problem. In this 

method, the main objective function is minimized and all other objective functions are considered in 

constraints with some satisfactory bounds (Marler and Arora, 2004; Kadry and Hami, 2014) 
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3.2.1 Expounded on Equations and Constraints 

In the above proposed mathematical model in Equation 3.2-1, the main objective 

function demonstrates the carbon emission costs as well as the total costs of the supply 

chain. It includes five different terms: U1, U2, U3, U4, and U5. Term U1 is related to 

carbon emission costs by defining 𝜃 (Average expected cost of carbon credits in $/tons of 

CO2) as a parameter, which multiplies the difference between the amount of produced 

CO2 and the maximum amount of allowed CO2 emission (Equation 3.2-2). Carbon 

emissions are calculated across the supply chain by considering the three major sources 

of producing CO2 as shown in Equations 3.2-3 and 3.2-4.  

Term U2 refers to a variety of costs of components: a) transportation costs of 

components from suppliers to assemblers, b) holding costs of inventory at assembly sites, 

c) fixed ordering costs, and d) purchased costs (Equation 3.2-5). Term U3 denotes the 

assembly costs: a) transportation costs of products by assemblers to distribution centers, 

b) fixed costs of assembling, c) costs of regular time assembling, and d) customization 

costs of components in assembling customized products (Equation 3.2-6). Term U4 is 

related to distribution center costs: a) transportation costs of products carried from 

assemblers to distribution centers, b) holding costs of inventory at distribution centers, 

and c) transportation costs of products from distribution centers to retailers, (Equation 

3.2-7). Term U5 is associated with retail costs: a) transportation costs of products carried 

from distribution centers to retailers, b) set-up costs of products at retail sites per order, 

and c) backordering costs of products at retail sites (Equation 3.2-8). 

As it was described earlier, the second objective function is considered as a 

constraint and substituted by equation (Equation 3.2-24) and constraint (Equation 3.2-
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25). The relationship among service levels at retail sites, demands, and back orderings are 

shown by equation (Equation 3.2-24). Constraint (Equation 3.2-25) indicates that the 

value of service levels, which is one of multiple decision variables in the proposed model, 

can vary between the values of parameter 𝑆𝐿𝑖,𝑟,𝑡
𝑚𝑖𝑛 and the value of 1. The parameter of 

𝑆𝐿𝑖,𝑟,𝑡
𝑚𝑖𝑛 is the minimum service level at retail sites determined unanimously by retailers in 

order to meet their customers’ demands, and it varies between 0 and 1. Balanced 

constraints related to components at assembly plants are taken into account in Equation 

3.2-9. Constraint 3.2-10 stands for the capacity limitation of suppliers for providing 

various components. Constraint 3.2-11 demonstrates the storage capacity of assemblers 

for holding components. Constraint 3.2-12 certifies that there is not an order for 

procuring components without charging an appropriate transaction cost.  

Balanced constraints related to retailers are considered in Equation 3.2-13 and for 

distribution centers in Equation 3.2-14. Constraint 3.2-15 guarantees that in each period, 

each assembler ships all the produced final products to a variety of distribution centers 

and doesn’t hold any inventory of final products. Constraint 3.2-16 refers to the capacity 

limitation of transporting final products from distribution centers to retailers. Similarly, 

constraint 3.2-17 stands for the capacity limitation of carrying products from assemblers 

to distribution centers. Constraint 3.2-18 demonstrates the storage capacity for holding 

products at distribution centers. Constraint 3.2-19 refers to whether assembling of 

products is set up in assembly plants or not. Correspondingly, constraint 3.2-20 denotes 

whether retailers place an assembly order for products or not. Constraint 3.2-21 refers to 

the maximum capacity of assembling at assembly plants. Moreover, continuous values 

for orders, amounts of inventory related to components at assembly plants, amounts of 
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producing final products, amounts of backordering, and amounts of holding inventory at 

distribution centers have been satisfied through constraint 3.2-22. Furthermore, constraint 

3.2-23 sets the values of binary variables.  

 

3.3 Selected Solution Method for the Proposed Model  

The nature of the proposed mathematical model for GSCP is that of (MINLP); 

therefore, in this study the defined mathematical problem is solved with three different 

methods. As a first method, the B&B Algorithm is applied to achieve an optimum 

solution and the model is coded in Lingo software (version: Lingo3 14.0). Regarding the 

second method, the proposed model is coded in MATLAB software (version: R2014b) 

and the optimization tool of “FminCon” is applied. As a third solution method, a novel 

metaheuristic algorithm named Grey Wolf Algorithm is applied to achieve the best 

solution. All of the achieved results are also analyzed and discussed.  

 

3.3.1 Finding a local optimal solution using the Branch and Bound 

algorithm 

 

In the first step, an optimization solver, the B&Bsolver, is utilized. The nature of 

the proposed mathematical model for GSCP is that of MINLP; therefore, in this study a 

                                                           

3 Lingo is categorized as a modeling support system. It is suitable for solving linear and NLP problems, 

multi-criteria decision making, inventory management problems, queuing problems, etc. (Trzaskalik and 

Michnik, 2002; Vob and Woodruff, 2005) 
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local optimum solution is achieved by coding the model in Lingo software (version: 

Lingo4 14.0) and applying the B&B algorithm. In the B&B technique, the model is split 

into subclasses to be solved with convex (minimization problem) or linear 

approximations that form a lower bound on the overall cost within the subdivision. With 

subsequent divisions, at some points an actual solution will be achieved which cost is 

equal to the best lower bound obtained for any of the approximate solutions. This 

solution is optimal, though probably not unique. The algorithm may also be stopped 

early, with the assertion that the best possible solution is within a tolerance from the best 

point found; such points are called ε-optimal. Terminating to ε-optimal point is usually 

needed to certify finite termination. This is particularly beneficial for large, difficult 

problems and problems with uncertain costs or values where the uncertainty can be 

projected with proper reliability estimations (Bussieck and Vigerske, 2010). 

 

3.3.2 Finding optimal solutions using a gradient-based algorithm 

In this step, the proposed model is coded in MATLAB software (version: 

R2014b) by defining the objective function, linear and nonlinear constraints. Then, the 

“FminCon” a gradient-based optimization tool, which is one of MATLAB solvers well-

fitted to nonlinear constrained minimization problems, is utilized to search for the best 

solution. After choosing the “FminCon” solver, based on the complexity and state of the 

mathematical model, the interior point algorithm was selected as it is generally 

                                                           

4 Lingo is categorized as a modeling support system. It is suitable for solving linear and NLP problems, 

multi-criteria decision making, inventory management problems, queuing problems, etc. (Trzaskalik and 

Michnik, 2002; Vob and Woodruff, 2005) 



 

13 

 

recommended as the most robust algorithm, and most likely to solve difficult problems 

(Wu et al., 2007a). This solver, which is integrated with an interior point algorithm, 

works by evaluating the objective function at some set of locations that it supplies. A 

simple way of understanding this algorithm is that at the beginning of each iteration, it 

must evaluate the gradient of the objective function at the current point. This gradient 

evaluation will require n objective function evaluations, since it already knows the value 

of the function at that location from the previous iteration. It might take one, or a couple 

more function evaluations based on this information to choose a new location to start the 

next iteration. At the beginning of the next iteration, the algorithm will need to re-

compute the gradient.  It can be generally assumed that “FminCon” will take n function 

evaluations plus a few more evaluations per each of the iterations. The interior-point 

approach to a nonlinear constrained minimization problem is to solve a sequence of 

approximate minimization problems.  

The original problem is defined as follows: 

𝑀𝑖𝑛
𝑥

𝑓(𝑥) 

Equation 3.3.2-1 

Subject to: 

 ℎ(𝑥) = 0 and 𝑔(𝑥) ≤ 0 

Equation 3.3.2-2 

For each μ > 0, the approximate problem is as follows: 

Min
𝑥,𝑠

𝑓𝜇(𝑥, 𝑠) = Min
𝑥,𝑠

𝑓𝜇(𝑥) − 𝜇 ∑Ln (

𝑖

𝑠𝑖) 

Equation 3.3.2-3 
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Subject to: 

ℎ(𝑥) = 0 and 𝑔(𝑥)+s=0 

Equation 3.3.2-4 

 

There are as many slack variables 𝑠𝑖 as there are various inequality constraints g. 

The 𝑠𝑖 variables are restricted to be positive to keep 𝐿𝑛 (𝑠𝑖) bounded. As 𝜇 decreases to 

zero, the minimum of  𝑓𝜇 should approach the minimum of the function f. The added 

logarithmic term is named a barrier function. The approximate problem (Equations 3.3.2-

3 and 3.3.2-4) is a sequence of equality constrained problems. These are simpler to solve 

than the original inequality-constrained problem (Equations 3.3.2-1 and 3.3.2-2). To 

solve the approximate problem, the interior-point algorithm utilizes one of two main 

types of steps at each iteration: a direct step in (x, s) (Newton step) or a conjugate 

gradient step. They are described in the following subsections. 

3.3.2.1 A direct step in (x, s) or a Newton step 

This step attempts to solve the KKT equations for the approximate problem through a 

linear approximation. The KKT conditions are analogous to the condition that the gradient must 

be zero at a minimum, adapted to take constraints into consideration. Under differentiability and 

constraint qualifications, the KKT conditions offer the necessary conditions for a solution to be 

optimal. Under convexity, these conditions are also sufficient. The difference is that the KKT 

conditions hold for constrained problems. The KKT conditions employ the auxiliary Lagrangian 

function: 

 

http://en.wikipedia.org/wiki/Differentiability
http://en.wikipedia.org/wiki/Constraint_qualification
http://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
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𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑𝜆𝑔,𝑖 . g
𝑖
(𝑥) + ∑𝜆ℎ,𝑖 . ℎ

𝑖
(𝑥) 

Equation 3.3.2.1-1 

 

The vector of  𝜆 (which is the concatenation of 𝜆𝑔 and 𝜆ℎ) is the Lagrange multiplier 

vector. Its length is the total number of constraints. The KKT conditions are as follows: 

∇𝑥𝐿(𝑥, 𝜆) = 0 

Equation 3.3.2.1-2 

𝜆𝑔,𝑖 . g
𝑖
(𝑥) = 0 , ∀𝑖 

Equation 3.3.2.1-3 

{

𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0
𝜆𝑔,𝑖 ≥ 0

 

Equation 3.3.2.1-4 

 

 

In defining the direct step, the following variables and definitions are applied: 

H: It denotes the Hessian5 of the Lagrangian of 𝑓𝜇  and is computed by Equation 3.3.2.1-5. 

𝐻 = ∇2𝑓(𝑥) + ∑𝜆𝑖∇
2 g

𝑖
(𝑥) + ∑𝜆𝑗∇

2 ℎ
𝑗
(𝑥)

𝑗𝑖

 

Equation 3.3.2.1-5 

                                                           

5 Hessian is a square matrix of second-order partial derivatives of a function and it explains the local 

curvature of a function of many variables. 

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Function_(mathematics)
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𝐽𝑔 : It represents the Jacobian of the constraint function g.  

𝐽ℎ : It stands for the Jacobian of the constraint function h. 

𝜆: It refers to the Lagrange multiplier vector associated with constraints g. 

y: It expresses the Lagrange multiplier vector associated with h. 

e: It signifies the vector of ones the same size as g. 

The following equation outlines the direct step (Δ 𝑥, Δ 𝑠), here S= diagonal (s) and Λ =diag(𝜆): 

 

[

𝐻
0
𝐽ℎ
𝐽𝑔

  

0
𝑆Λ
0

−𝑆

  

𝐽ℎ
𝑇

0
𝐼
0

  

𝐽𝑔
𝑇

−𝑆
0
𝐼

] [

Δ 𝑥
Δ 𝑠

−Δ 𝑦
−Δ 𝜆

] =

[
 
 
 
∇ 𝑓 − 𝐽ℎ

𝑇𝑦 − 𝐽𝑔
𝑇𝜆

S𝜆 − 𝜇𝑒
ℎ

𝑔 + 𝑠 ]
 
 
 

 

Equation 3.3.2.1-6 

 

This equation comes directly from making an effort to solve Equations 3.3.2.1-2 and 

3.3.2.1-3 employing a linearized Lagrangian. To solve this equation for (Δ 𝑥, Δ 𝑠), the algorithm 

makes an LDL-factorization (where L is a lower unit triangular matrix and D is a diagonal 

matrix) of the matrix. The LDL-factorization is an effective method of solving Ax = b for a large 

symmetric positive definite matrix A. The LDL-factorization needs half the computation of 

Gaussian elimination (LU decomposition), and is always stable. It is more effective than 

Cholesky factorization6 because it keeps away from computing the square roots of the diagonal 

elements. Assume that matrix A (𝐴 = 𝐿𝐷𝐿𝑇) has already been ordered by some fill-reducing 

symmetric permutation (e.g., minimum-degree ordering or nested-dissection ordering). By 

                                                           

6 Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a 

lower triangular matrix and its conjugate transpose. 

http://en.wikipedia.org/wiki/Triangular_matrix#Unitriangular_matrix
http://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Matrix_decomposition
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Lower_triangular_matrix
https://en.wikipedia.org/wiki/Conjugate_transpose
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default, LDL references only the diagonal and lower triangle of A, and assumes that the upper 

triangle is the complex conjugate transpose of the lower triangle. A well-known algorithm that 

performs LDL-factorization is presented by Wu, et al. (2007a). 

3.3.2.2 A conjugate gradient step 

As a default, the interior point algorithm first makes an effort to take a direct step. 

If it cannot, it attempts a conjugate gradient step. One case where it does not take a direct 

step is when the approximate problem is not locally convex close to the current iteration. 

At each iteration the algorithm decreases a merit function, such as Equation 3.3.2.2-1 

(Waltz et al. 2006). 

 

𝑓
𝜇
(𝑥, 𝑠) + 𝜗‖(ℎ(𝑥), 𝑔(𝑥) + 𝑠‖ 

Equation 3.3.2.2-1 

The parameter 𝜗 may increase with iteration number so as to force the solution towards 

feasibility. If an attempted step does not decrease the merit function, the algorithm rejects 

the attempted step, and tries a new step. If either the objective function or a nonlinear 

constraint function returns a complex value or an error at iteration  𝑥𝑗, the algorithm 

rejects 𝑥𝑗. The rejection has the same influence as if the merit function did not decrease 

adequately: the algorithm then tries a different, shorter step. In this approach, in order to 

solve the approximate problem determined by Equations 3.3.2-3 and 3.3.2-4, the 

algorithm adapts both x and s, keeping the slacks s positive. The tactic is to minimize a 

quadratic approximation to the approximate problem in a trust region, bound by the 

linearized constraints. The region that the approximate model is trusted is named the trust 
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region. A trust region is typically a neighborhood centered at the current iterate. The trust 

region is adjusted from iteration to iteration. Roughly speaking, if the computations 

indicate the approximate model fit the original problem well, the trust region can be 

enlarged. Particularly, let R represent the radius of the trust region, and let other variables 

be defined as in Direct Step. The algorithm achieves Lagrange multipliers by 

approximately solving the KKT equations in the least-squares sense, subject to λ being 

positive as demonstrated by the following equation: 

 

∇𝑥𝐿 = ∇𝑥𝑓(𝑥) + ∑𝜆𝑖∇ g
𝑖
(𝑥) + ∑𝑦𝑗∇ℎ

𝑗
(𝑥) = 0

𝑗𝑖

 

Equation 3.3.2.2-2 

 

Then it takes a step (Δ 𝑥, Δ 𝑠) to approximately solve the following model: 

 

min
Δ 𝑥,Δ 𝑠

∇ 𝑓𝑇Δ 𝑥 +
1

2
Δ𝑥𝑇∇𝑥𝑥

2 𝐿 Δ𝑥 + 𝜇 𝑒𝑇𝑆−1Δ 𝑠 +
1

2
 Δ𝑠𝑇  𝑆−1ΛΔ𝑠 

Equation 3.3.2.2-3 

 

Subject to the linearized constraints: 

 

𝑔(𝑥) + 𝐽𝑔Δ𝑥 + Δ𝑠 = 0, ℎ(𝑥) + 𝐽ℎΔ𝑥 = 0  

Equation 3.3.2.2-4 

 

To solve the Equation 3.3.2.1-4, the algorithm attempts to minimize a norm of the 

linearized constraints inside a region with radius scaled by R. Then Equation 3.3.2.1-3 is 

http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brh9shq
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solved with the constraints being to match the residual from solving Equation 3.3.2.1-4, 

staying within the trust region of radius R, and keeping s strictly positive.  

 

3.3.2.3 Tolerances and Stopping Criteria 

The sum of iterations in an optimization depends on a solver (algorithm)’s 

stopping criteria. These criteria contain several tolerances that can be set. Usually, a 

tolerance is a threshold which, if crossed, stops the iterations of a solver. Here, as we 

have coded our defined mathematical model in MATLAB software and applied the 

“FminCon” solver integrated with interior point algorithm as a solution method, the 

following tolerances and stopping criteria are considered. 

 X tolerance: It’s a lower bound on the size of a step, meaning the norm of (𝑥𝑖 −

𝑥𝑖+1). If the algorithm attempts to take a step that is smaller than X tolerance, the 

iterations end. X tolerance can also be used as a relative bound, meaning iterations 

end when: 

|(𝑥𝑖 − 𝑥𝑖+1)| < (𝑋 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ∗ (1 + |𝑥𝑖|)) 

Equation 3.3.2.3-1 

 Function tolerance: It’s a lower bound on the change in the value of the objective 

function during a step. If |(f(xi) − f(xi+1)| < 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, the iterations 

end. Function tolerance can also be applied as a relative bound, meaning iterations 

end when: 

|(𝑓(𝑥𝑖) − 𝑓(𝑥𝑖+1)| < (𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ∗ (1 + |𝑓(𝑥𝑖)|)) 
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Equation 3.3.2.3-2 

 Function tolerance is most often a bound on the first-order optimality measure. 

First-order optimality is a measure of how close a point x is to optimal.  

 Nonlinear tolerance constraint: It’s an upper bound on the magnitude of any 

constraint functions. If it is not satisfied (i.e., if the magnitude of the constraint 

function exceeds nonlinear tolerance constraint), the algorithm attempts to 

continue, unless it is stopped for another reason. 

 Max iterations: It’s a bound on the number of solver iterations. 

 Max function evaluations: It’s a bound on the number of function evaluations. 

 Minimum/Maximum perturbation: It’s a bound on the number of perturbation for 

finite differencing of derivatives. 

 

3.3.3 Finding optimal solutions using Grey Wolf Optimizer algorithm 

 

Based on the literature, meta-heuristic methods can be categorized into two main classes: 

single-solution-based (such as Simulated Annealing method) and population-based. In the single-

solution-based metaheuristics the search process starts with one candidate solution. This single 

candidate solution is then improved over the course of iterations. Population-based meta-

heuristics, however, perform the optimization utilizing a set of solutions (population). In this case 

the search process starts with a random initial population (multiple solutions), and this population 

is enhanced over the course of iterations. Population-based meta-heuristics have some advantages 
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compared to single solution-based algorithms: a) multiple candidate solutions share information 

about the search space which results in sudden jumps toward the promising part of search-space; 

b) multiple candidate solutions assist each other to avoid locally optimal solutions; c) population-

based meta-heuristics generally have greater exploration compared to single solution-based 

algorithms. 

One of the interesting branches of the population-based metaheuristics is swarm 

intelligence. The Grey Wolf Optimizer algorithm is a new swarm intelligence-based 

method which mimics the leadership hierarchy and the hunting mechanism of grey 

wolves in nature. This algorithm proposed by Mirjalili et al. (2014). 

Grey wolves mostly prefer to live in a pack. The leaders are a male and a female, 

called alphas. The second level in the hierarchy of grey wolves is beta. The betas are 

subordinate wolves that help the alpha in decision-making or other pack activities. The 

beta wolf can be either male or female, and he/she is probably the best candidate to be the 

alpha in case one of the alpha wolves passes away or becomes very old. The third level in 

the hierarchy of grey wolves is Delta wolves. Delta wolves have to submit to alphas and 

betas. Besides the social hierarchy of wolves, group hunting is another interesting social 

behavior of grey wolves. The lowest ranking grey wolf is omega. The omega plays the 

role of scapegoat. Omega wolves always have to submit to all the other dominant wolves 

(Figure 3-2).  
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Figure 3-2: Hierarchy of grey wolf (dominance decreases from top down) (Mirjalili et al., 

2014) 

 

The main phases of grey wolf hunting are as follows: 

 Searching the prey 

 Encircling and harassing the prey until it stops moving. 

 Attacking towards the prey 

 Hunting the prey 
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Figure 3-3: Hunting behavior of grey wolves 7(Mirjalili et al., 2014) 

 

3.3.3.1 Search for prey 

 

Grey wolves mostly search according to the position of the alpha, beta, and delta. 

They diverge from each other to search for prey and converge to attack prey. In order to 

mathematically model divergence, we utilize 𝐴  (a coefficient vector) with random values 

greater than 1 or less than -1 to oblige the search agent to diverge from the prey. This 

emphasizes exploration and allows the Grey Wolf Optimizer algorithm to search 

globally. Figure 3-4 shows that |𝐴| > 1  forces the grey wolves to diverge from the prey 

                                                           

7 Section A is related to chasing, approaching, and tracking prey; sections B, C, and D refer to pursuing, 

harassing, and encircling; and section E shows the stationary situation and the attack.  
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to hopefully find a fitter prey. Another element of Grey Wolf Optimizer that favors 

exploration is 𝐶 (a coefficient vector). The 𝐶 vector can be considered as the effect of 

obstacles to approaching prey in nature. Normally, there are obstacles in the hunting 

paths of wolves and in fact prevent them from quickly and conveniently approaching 

prey. This is exactly what the vector 𝐶 does. Depending on the position of a wolf, it can 

randomly give the prey a weight and make it harder and farther to reach for wolves, or 

vice versa.  

 

Figure 3-4: Attacking prey versus searching for prey 

The 𝐶 vector contains random values in [0, 2]. This component provides random weights 

for prey in order to stochastically emphasize (C > 1) or deemphasize (C < 1) the effect of prey in 

defining the distance. This assists Grey wolf optimizer algorithm to show a more random 

behavior throughout optimization, favoring exploration and local optima avoidance. It is worth 

mentioning here that C is not linearly decreased in contrast to A. We deliberately require C to 

provide random values at all times in order to emphasize exploration not only during initial 

iterations but also final iterations. This component is very helpful in case of local optimal 

stagnation, especially in the final iterations. 
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To sum up, the search process starts with creating a random population of grey wolves 

(candidate solutions) in the Grey Wolf Optimizer algorithm. Over the course of iterations, 

alpha, beta, and delta wolves estimate the probable position of the prey. Each candidate solution 

updates its distance from the prey (Fig. 3-5). The parameter a is decreased from 2 to 0 in order to 

emphasize exploration and exploitation, respectively. Candidate solutions tend to diverge from 

the prey when |𝐴| > 1  and converge towards the prey when |𝐴| < 1 . Finally, the GWO 

algorithm is terminated by the satisfaction of an end criterion.  

 

Figure 3-5: Position updating in Grey Wolf optimizer algorithm (Mirjalili et.al, 2014) 
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3.3.3.2 Encircling prey 

 

Grey wolves encircle prey during the hunt. In order to mathematically model 

encircling behavior the following equations are proposed by Mirjalili et al. (2014): 

�⃗⃗⃗� = |𝐶 ⃗⃗⃗⃗  . 𝑋𝑝
⃗⃗ ⃗⃗⃗(𝑡) − �⃗�(𝑡)| 

Equation 3.3.3.2-1 

�⃗�(𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗⃗(𝑡) − 𝐴 .  �⃗⃗⃗� 

Equation 3.3.3.2-2 

  

Where 𝑡 indicates the current iteration, 𝐴 and 𝐶 ⃗⃗⃗⃗  are coefficient vectors, 𝑋𝑝
⃗⃗ ⃗⃗ ⃗ is the position vector 

of the prey, and �⃗� indicates the position vector of a grey wolf. The vectors 𝐴 and 𝐶 ⃗⃗⃗⃗  are computed 

as follows: 

𝐴 = 2�⃗� . 𝑟1⃗⃗⃗ ⃗ − �⃗� 

Equation 3.3.3.2-3 

𝐶 = 2. 𝑟2⃗⃗⃗⃗  

Equation 3.3.3.2-4 

 

Where components of �⃗� are linearly decreased from 2 to 0 over the course of iterations and  𝑟1, 𝑟2 

are random vectors in [0, 1]. Figure 3-6 and Figure 3-7 show how a grey wolf in the position of 

(𝑋, 𝑌) can update its position according to the position of the prey (𝑋∗, 𝑌∗). A grey wolf can 

update its position inside the space around the prey in any random location by using Equations 

Equation 3.3.3.2-1 and 3.3.3.2-2. The same concept can be extended to a search space with n 
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dimensions, and the grey wolves will move in hyper-cubes (or hyper-spheres) around the best 

solution obtained so far. 

 

Figure 3-6: 2D position vectors and their possible next locations (Mirjalili et al., 2014) 

 

 
Figure 3-7: 3D position vectors and their possible next locations (Mirjalili et al., 2014) 
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3.3.3.3 Hunting the prey 

Grey wolves have the ability to recognize the location of prey and encircle them. 

The hunt is usually guided by the alpha. The beta and delta might also participate in 

hunting occasionally. However, in an abstract search space we have no idea about the 

location of the optimum (prey). In order to mathematically simulate the hunting behavior 

of grey wolves, we suppose that the alpha (best candidate solution) beta, and delta have 

better knowledge about the potential location of prey. Therefore, we save the first three 

best solutions obtained so far and oblige the other search agents (including the omegas) to 

update their positions according to the position of the best search agents. The following 

formulas are proposed in this regard. 

 

𝐷𝛼
⃗⃗⃗⃗⃗⃗ = |𝐶1 ⃗⃗⃗⃗⃗⃗  . 𝑋𝛼

⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| 

Equation 3.3.3.3-1 

𝐷𝛽
⃗⃗ ⃗⃗ ⃗ = |𝐶2 ⃗⃗⃗⃗⃗⃗  . 𝑋𝛽

⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| 

Equation 3.3.3.3-2 

𝐷𝛿
⃗⃗ ⃗⃗ ⃗ = |𝐶3 ⃗⃗⃗⃗⃗⃗  . 𝑋𝛿

⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)| 

Equation 3.3.3.3-3 

𝑋1
⃗⃗⃗⃗⃗(𝑡 + 1) = 𝑋𝛼

⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴1
⃗⃗⃗⃗⃗ .  𝐷𝛼

⃗⃗⃗⃗⃗⃗  

Equation 3.3.3.3-4 

𝑋2
⃗⃗⃗⃗⃗(𝑡 + 1) = 𝑋𝛽

⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴2
⃗⃗ ⃗⃗⃗ .  𝐷𝛽

⃗⃗ ⃗⃗ ⃗ 
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Equation 3.3.3.3-5 

𝑋3
⃗⃗⃗⃗⃗(𝑡 + 1) = 𝑋𝛿

⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴3
⃗⃗ ⃗⃗⃗ .  𝐷𝛿

⃗⃗ ⃗⃗ ⃗ 

Equation 3.3.3.3-6 

�⃗�(𝑡 + 1) =
𝑋1
⃗⃗⃗⃗⃗(𝑡 + 1) + 𝑋2

⃗⃗⃗⃗⃗(𝑡 + 1) + 𝑋3
⃗⃗⃗⃗⃗(𝑡 + 1)

3
 

Equation 3.3.3.3-7 

 

Figure 3-6 demonstrates how a search agent updates its position according to 

alpha, beta, and delta in a 2D search space. It can be observed that the final position 

would be in a random place within a circle which is defined by the positions of alpha, 

beta, and delta in the search space. In other words, alpha, beta, and delta estimate the 

position of the prey, and other wolves updates their positions randomly around the prey. 

 

3.3.3.4 Attacking prey 

Grey wolves finish the hunt by attacking the prey when it stops moving. In order 

to mathematically model approaching the prey we decrease the value of �⃗�. Note that the 

fluctuation range of 𝐴 is also decreased by �⃗�. In other words, of 𝐴 is a random value in 

the interval [−2𝑎, 2𝑎] where 𝑎 is decreased from 2 to 0 over the course of iterations. 

When random values of 𝐴  are in [−1,1], the next position of a search agent can be in any 

position between its current position and the position of the prey. Based on Figure 3-4,  

|𝐴| < 1 forces the wolves to attack towards the prey.  
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To sum up, the following flowchart shows how the Grey Wolf Optimizer algorithm 

works. 

 

 

Figure 3-8: The flowchart of Grey Wolf Optimizer algorithm 

 

Pseudo code of the Grey Wolf Optimizer algorithm is also as follows: 

Initialize the Grey Wolf Population 𝑋𝑖 (𝑖 = 1,2, … , 𝑛) 

Initialize a, A, and C 

Calculate the fitness of each search agent 

𝑋𝛼
⃗⃗ ⃗⃗ ⃗ = the position of best search agent (alpha wolf) 

𝑋𝛽  ⃗⃗ ⃗⃗ ⃗⃗ = the position of second best search agent (beta wolf) 
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𝑋𝛿
⃗⃗ ⃗⃗ ⃗ = the position of third best search agent (delta wolf) 

            While (t< Max number of iterations) 

for each search agent 

        Update the position of the current search agent  

End for 

      Update a, A, and C 

           Calculate the fitness of all search agents 

          Update 𝑋𝛼
⃗⃗ ⃗⃗ ⃗, 𝑋𝛽  ⃗⃗ ⃗⃗ ⃗⃗ , 𝑋𝛿

⃗⃗ ⃗⃗ ⃗ 

         𝑡 = 𝑡 + 1 

         End while 

        Return 𝑋𝛼
⃗⃗ ⃗⃗ ⃗ 

 

In the next section, in order to illustrate the efficiency of the proposed model and 

solution, a numerical analysis based on a case study is applied to a considered expanded 

data set. We have utilized the aforementioned methods to achieve the optimal solution. 

 

3.4 Application: Case Study, Computational results, Result 

analysis 

 

In this step, an expanded production dataset from a supply chain network related 

to the production of vacuums, scrubbers, carpet extractors, and floor machines located in 

the Midwestern USA is applied. This network is an integrated structure consisting of 

three suppliers, three assemblers, three distribution centers, three retailers, and end 

customers. 
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As a part of conducting research, related to one of the assemblers, which is 

located in Ohio, USA, a solid waste assessment study performed. Figure 3-9 

demonstrates the Fire and tornado safety plan related to that assembling site. Collecting 

this data set and performing related analysis were done by team members of BWRAP, 

Sustainability Laboratory of MIME Department at University of Toledo. 

The objective of this recycling research as a part of conducting research were to 

determine recycling opportunities and to reduce the amount of waste generated at the 

facility. Table 3.4.2 and Figure 3-10 displays the weight of major solid wastes disposed 

of periodically by this assembler that originates in the offices and shop are.  As shown in 

Table 3.4.2, the facility currently disposes of approximately 11.92 tons of solid waste 

periodically.  Of that total it was determined that 11.37 tons are recyclable. Currently 

8.86 tons out of 11.37 tons are being recycled and 3.07 tons are not recycled. Table 3.4.3 

and Figure 3-11 display the major waste streams generated periodically in the offices and 

shop area of the facility in terms of volume (cubic yards). Results indicate that the studied 

assembling site currently has an effective and efficient waste management and recycling 

program in offices and shop area. 
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Figure 3-9: Fire and tornado safety plan of an assembler in the considered supply chain 

network 
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Table 3.4.1: Periodic tons of recycled and not recycled major solid waste streams 

Component 
Total Weight 

(Tons / Period) 

% of Total   

Weight 

Waste Recycled 

(Tons / Period) 

Waste Not Recycled 

(Tons / Period) 

Waste Streams That Can Be Recycled 

Mixed Scrap Paper (Such 

as Packaging Papers) 
2.31 19.4% 0.31 2.00 

Newspaper 0.00 0.0% 0.00 0.00 

Magazines 0.00 0.0% 0.00 0.00 

Cardboard 0.61 5.1% 0.56 0.05 

Aluminum  0.30 2.5% 0.26 0.04 

PET (1) 0.50 4.2% 0.38 0.12 

HDPE (2) 6.57 55.1% 6.57 0.00 

Other Plastics (such as 

plastic bandings) 
0.10 0.9% 0.00 0.10 

Plastic Wrap (Bubble wrap, 

foam wrap) 
0.20 1.7% 0.00 0.20 

Other (Scrapping metals, 

metal bonding, metallic 

scrap parts) 

0.78 6.5% 0.78 0.00 

Sub Total 11.37 95.4% 8.86 2.52 

Waste Streams That Can Not Be Recycled 

Non-recycling  Major Solid 

Waste (MSW), food waste, 

wax coated papers, and 

Styrofoam 

0.55 4.6% 0.00 0.55 

Sub Total 0.55 4.6% 0.00 0.55 

Grand Total 11.92 100% 8.86 3.07 



 

35 

 

 

Figure 3-10: Periodic weight of major solid waste stream 
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Table 3.4.2: Periodic volume of recycled and not recycled major solid waste streams 

Component Total Volume 

(Yd3 / Period) 

% of Total 

Volume 

Waste Recycled 

(Yd3 / Period) 

Waste Not Recycled 

(Yd3 / Period) 

Waste Streams That Can Be Recycled 

Mixed Scrap Paper 41.97 23.3% 5.59 36.38 

Newspaper 0.00 0.0% 0.00 0.00 

Magazines 0.00 0.0% 0.00 0.00 

Cardboard 24.51 13.6% 22.34 2.17 

Aluminum  18.74 10.4% 16.41 2.33 

PET (1) 24.92 13.8% 18.87 6.05 

HDPE (2) 8.21 4.6% 8.21 0.00 

Other Plastics (such as plastic 

bandings) 
4.17 2.3% 0.00 4.17 

Plastic Wrap (Bubble wrap, 

foam wrap) 
7.60 4.2% 0.00 7.60 

Other (Scrapping metals, metal 

bonding, metallic scrap parts) 
29.40 16.3% 29.40 0.00 

Sub Total 159.52 88.52% 100.82 58.71 

Waste Streams That Can Not Be Recycled 

Non-recycling  MSW, food 

waste, wax coated papers, and 

Styrofoam 

20.69 11.48% 0.00 20.69 

Sub Total 
20.69 11.48% 0.00 20.69 

Grand Total 180.22 100% 100.82 79.40 
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Figure 3-11: Periodic volume of major solid waste stream 

 

It is assumed that the supply chain planning will be determined for three periods. 

During these three periods, the total cost of both the supply chain and CO2 emissions will 
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mathematical model. The values of parameters used as inputs for modeling are shown in 

Tables 3.4.3 to 3.4.12 as follows. 

Table 3.4.3: Demand, Set-up cost ($), and Unit backorder cost ($) of products at retailer’s 

sites 

Demand Period 1 Period 2 Period 3 
Set-up cost / Unit backorder 

cost 

Retailer 1 

Product 1 770 500 550 15; 30 

Product 2 740 510 520 22; 40 

Product 3 690 500 510 15; 60 

Retailer 2 

Product 1 700 510 510 20; 60 

Product 2 590 510 500 18; 50 

Product 3 560 500 510 24; 50 

Retailer 3 

Product 1 760 500 500 18; 45 

Product 2 710 500 520 20; 60 

Product 3 570 510 500 18; 70 

 

Table 3.4.4: Capacity, Unit selling price ($) of components, and Set-up cost ($) per order 

offered by suppliers 

Capacity/Unit 

selling price 
Component 1 Component 2 Component 3  

Set-up cost per 

order 

Supplier 1 1,000; 10 1,500; 30 4,000; 18 100 

Supplier 2 2,000; 15 3,000; 35 2,000; 20 200 

Supplier 3 3,000; 20 3,500; 25 3,000; 15 150 

Table 3.4.5: Coefficient of consumption related to components in forming products and 

Fixed cost of transportation ($) related to products and components per unit distance 

($/mile) 

Coefficient  Component 1 Component 2 Component 3 

Product 1 1 2 2 

Product 2 2 1 3 

Product 3 2 3 2 

The fixed cost of 

transportation 

Product 1/ Component 1 Product 2/ Component 2 Product 3/ Component 3 

0.09; 0.06 0.1; 0.08 0.2; 0.09 
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Table 3.4.6: Unit customization costs ($) of assembling, Fixed costs of assembling ($), 

and Unit regular time assembling cost 

Customization cost of 

assembling  
Component 1 Component 2 Component 3 

Fixed costs of 

assembling/ 

Unit regular time 

assembling cost 

Assembler 1 

Product 1 20 18 30 30; 12 

Product 2 30 20 14 20; 16 

Product 3 20 20 20 60; 13 

Assembler 2 

Product 1 25 15 12 50; 13 

Product 2 15 13 15 30; 15 

Product 3 10 18 30 50; 12 

Assembler 3 

Product 1 10 16 15 40; 10 

Product 2 15 14 11 40; 11 

Product 3 18 16 16 70; 10 

 

Table 3.4.7: Unit inventory holding cost ($) of components and products at assembly and 

distribution centers per unit time 

Inventory holding cost Assembler 1 Assembler 2 Assembler 3 

Component 1 1 1.5 2 

Component 2 2 2 2.5 

Component 3 1 1 2 

Inventory holding cost  DC 1 DC 2 DC 3 

Product 1 1 1.5 2 

Product 2 2 1 2 

Product 3 1 1.5 2 
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Table 3.4.8: Maximum holding capacity of components at assembly sites by period, 

Energy requirement (kWh per ft2) and Size of the facility (ft2) for assemblers and 

distribution centers 

Maximum holding capacity  Period 1 Period 2 Period 3 

Assembler 1 

Component 1 300 200 100 

Component 2 115 150 160 

Component 3 150 145 140 

Assembler 2 

Component 1 120 130 140 

Component 2 110 125 135 

Component 3 130 145 160 

Assembler 3 

Component 1 160 150 110 

Component 2 140 135 160 

Component 3 115 120 135 

 Assembler 1/  DC 1 Assembler 2/  DC 2 Assembler 3/  DC 3 

Energy requirement 7.1; 5.5 7.8; 6.5 8.0; 7.0 

Area 10,000; 3,000 20,000; 7,000 30,000; 8,000 

 

 

Table 3.4.9: Maximum capacity of assembling at each assembly site and Store capacity 

of products at distribution centers in each period 

Capacity  Assembler 1/ DC 1 Assembler 2/ DC 2 Assembler 3/ DC 3 

Product 1 200; 200 230; 210 210; 220 

Product 2 215; 250 220; 260 230; 270 

Product 3 240; 265 245; 280 230; 250 
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Table 3.4.10: Distance, in miles, between various echelons of considered supply chain 

Distance  Assembler 1 Assembler 2 Assembler 3 

Supplier 1 40 35 25 

Supplier 2 50 60 40 

Supplier 3 45 45 30 

Distance DC 1 DC 2 DC 3 

Assembler 1 30 35 40 

Assembler 2 40 100 50 

Assembler 3 60 50 55 

Distance Retailer 1 Retailer 2 Retailer 3 

DC 1 60 55 40 

DC 2 50 65 350 

DC 3 60 70 45 

 

Table 3.4.11: Capacity limit to ship products from assemblers to distribution centers and 

from distribution centers to retailers 

Capacity limits to ship products  DC 1 DC 2 DC 3 

Assembler 1 

Product 1 1,100 1,200 1,300 

Product 2 1,100 1,200 1,100 

Product 3 1,100 1,200 1,000 

Assembler 2 

Product 1 1,150 1,180 1,200 

Product 2 1,200 1,180 1,100 

Product 3 1,100 1,150 1,170 

Assembler 3 

Product 1 1,150 1,200 1,150 

Product 2 1,150 1,170 1,180 

Product 3 1,100 1,150 1,160 

Capacity limits to ship products  Retailer 1 Retailer 2 Retailer 3 

DC 1 

Product 1 1,100 1,300 1,250 

Product 2 1,430 1,410 1,300 

Product 3 1,370 1,380 1,400 

DC 2 

Product 1 1,260 1,270 1,300 

Product 2 1,320 1,360 1,200 

Product 3 1,320 1,350 1,410 

DC 3 

Product 1 1,400 1,450 1,420 

Product 2 1,220 1,340 1,350 

Product 3 1,420 1,450 1,440 
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Table 3.4.12: Unit transportation costs ($) of carrying products from assemblers to 

distribution centers and from distribution centers to retailers 

Transportation cost  DC 1 DC 2 DC 3 

Assembler 1 

Product 1 12 15 18 

Product 2 18 14 16 

Product 3 15 16 18 

Assembler 2 

Product 1 16 14 15 

Product 2 14 16 18 

Product 3 12 16 19 

Assembler 3 

Product 1 12 15 18 

Product 2 18 16 14 

Product 3 12 15 14 

Transportation cost  Retailer 1 Retailer 2 Retailer 3 

DC1 

Product 1 12 15 13 

Product 2 15 14 13 

Product 3 16 15 16 

DC 2 

Product 1 14 16 18 

Product 2 12 15 15 

Product 3 18 17 12 

DC 3 

Product 1 19 17 16 

Product 2 18 16 15 

Product 3 14 12 15 

 

Various ranges of Federal CO2 prices for rule-makings, by discount rate are 

shown in Table 3.4.13 and Figure 3-12 (EPA, 2015a). Based on this data, in this research, 

the carbon cost (the parameter of 𝜃) was set to $50/ton CO2 in the objective function. 
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Table 3.4.1: Range of Federal CO2 Prices for Rulemakings, by discount rate 

(in 2007 Dollars per metric ton CO2) 

 
Discount Rate and Statistic 

Year 5% Average 3% Average 2.5% Average 3% 95th percentile 

2015 $11 $36 $56 $105 

2020 $12 $42 $62 $123 

2025 $14 $46 $68 $138 

2030 $16 $50 $73 $152 

2035 $18 $55 $78 $168 

2040 $21 $60 $84 $183 

2045 $23 $64 $89 $197 

2050 $26 $69 $95 $212 

 

 

 

Figure 3-12: Various ranges of Federal CO2 prices for 2015-2050 

 

Moreover, the value of parameter CO2 allowed was set at 900 tons (that is, the 

carbon dioxide emission allowance, and has been allocated by the government) (Agency, 

I.E., 2015). The value of parameter 𝜇𝑜, which is a CO2 emission factor of a facility, 

measured in tons per kWh of operation, was assumed to be equal to 0.0008. The value of 
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parameter 𝜇𝑡𝑟, which refers to CO2 emission factor for transportation in tons per mile per 

unit, was assumed to be equal to 0.00001 (Agency, I.E., 2015).  

At first we solved the coded proposed mathematical modeling in Lingo software 

and we set the value of maximum service levels for each period equal to 1 and increased 

the minimum value of service levels 𝑆𝐿𝑖,𝑟,𝑡
𝑚𝑖𝑛  starting from 0 (step size 0.1) for each period 

at each iteration. We found that the coded model in Lingo software can be solved for 

various ranges of minimum service levels from 0 to 0.7 and holding the value of 1 for 

maximum service levels, but when we set the value of minimum service levels equal to 

0.8, the model became infeasible and couldn’t be solved by Lingo. Considering that, we 

decided to code and run the proposed model in MATLAB (version R2014b) for 

“FminCon optimization solver” and “Grey Wolf Optimizer algorithm”. In order to have 

fair comparisons we set the value of maximum service levels for each of periods equal to 

1 and the value of minimum service levels for each period equal to 0.7 and 1 and 

achieved the results.  

Using Lingo software, the local optimum solution found at iteration 50,399. 

Elapsed time was equal to 1,500 seconds. The best value of the objective function (total 

supply chain costs and CO2 costs) achieved equal to 1,109,627 in dollars and the amount 

of current emitted carbon dioxide (CO2) is equal to 1,414.58 in tonnages (CO2 costs is 

25,728 in dollars).  Figure 3-13 shows the achieved results by Lingo software and the 

related initial setting. 
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Figure 3-13: Achieved result by Lingo software and the related initial setting 

 

Then, we generated five different initial random sets in order to solve the 

proposed mathematical modeling by the other aforementioned two methods. Using Lingo 

software, we achieved the same solution, which mentioned earlier, for all of these initial 

random sets. 

We coded the proposed nonlinear model in MATLAB software (version R2014b) 

and “FminCon” optimization tool was applied to achieve the best solution. At first, we 

achieved the best solution for a condition that the value of parameter 𝑆𝐿𝑖,𝑟,𝑡
𝑚𝑖𝑛 is equal to 

0.7 and the maximum service levels is equal to 1 in each periods.  Then, we solved the 

model for a situation in which both of the values of parameter 𝑆𝐿𝑖,𝑟,𝑡
𝑚𝑖𝑛 and maximum 

service levels are equal to 1 in each period. Results are shown in Tables 3.4.14 and 

3.4.15. Tolerances and stopping criteria are set as follows: 
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 X tolerance is set at 1E-10. 

 Function tolerance is set at 1E-6. 

 The nonlinear tolerance constraint is set at 1E-6. 

 The minimum perturbation is set at 0 and maximum perturbation is set at Inf. 

 The maximum function evaluation is set at 9,000,000 and maximum iteration set 

at 4,000. 

 The LDL factorization is selected as a sub-problem algorithm. 

 The Broyden Fletcher Goldfarb Shanno (BFGS) algorithm is selected for Hessian 

calculations. 

Table 3.4.2: Achieved results by FminCon optimization solver (minimum service levels 

0.7, maximum service levels 1) 

Random 

set# 

Elapsed time 

(sec) 

Objective function8 value 

($) 

CO2 

emissions 

CO2 Penalty Cost 

($) 
Iterations  

1 1,846 2,142,134 1,432.65 26,632 4,000  

2 870 2,161,830 1,427.90 26,393 4,000  

3 1,666 2,196,788 1,433.12 26,656 4,000  

4 1,666 1,978,652 1,429.20 26,459 4,000  

5 1,222 2,089,723 1,429.64 26,481 4,000  

 

Table 3.4.3: Achieved results by FminCon optimization solver (minimum service levels 

1, maximum service levels 1) 
Random 

set# 

Elapsed time 

(sec) 
Objective function value ($) 

CO2 

emissions 

CO2 Penalty Cost 

($) 
Iterations 

 

1 1,820 2,395,792 1,438.43 26,921 4,000 
 

2 924 2,283,104 1,429.72 26,486 4,000  

3 937 2,524,225 1,438.81 26,930 4,000  

4 1,796 2,012,723 1,430.98 26,548 4,000  

5 806 2,257,461 1,433.14 26,656 4,000  

                                                           

8 Objective function value refers to the total supply chain costs and CO2 costs. 
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Then, using the same initial random sets (generated earlier) and same conditions 

for minimum and maximum service levels, we coded the proposed mathematical 

modeling in Matlab and utilized Grey Wolf Optimizer approach. At first, we used the 

same number of iterations (4,000) used for FminCon optimization method and found that 

the solution didn’t converge. So, we increased the number of iterations and found that it 

will converge after 10,000 iterations. Results are shown in Tables 3.4.16 and 3.4.17.  

Based on the achieved result by FminCon optimization solver and Grey Wolf 

Optimizer algorithm, when the value of 𝑆𝐿𝑖,𝑟,𝑡
𝑚𝑖𝑛  for ∀𝑖, 𝑟, 𝑡 (these values are set by 

retailers) increases, consequently the value of the objective function (total costs of the 

supply chain network which also contains carbon emissions costs) increase as well. Here, 

it can be inferred that increasing the minimum service levels and meeting more portions 

of customers’ demands are accompanied by increasing the related costs for preparing the 

required products and decreasing the penalty costs of backordered products. The result 

also verifies that the amount of increased costs related to preparing the products and 

meeting customers’ demand outweighs the decreased penalty costs related to decreased 

amount of backordered products.  

Table 3.4.4: Achieved results by Grey Wolf Optimizer algorithm (minimum service 

levels 0.7, maximum service levels 1) 
Random 

set# 

Elapsed time 

(sec) 

Objective function9 value 

($) 

CO2 

emissions 

CO2 Penalty Cost 

($) 
Iterations  

1 757 336,582 1,407.54 25,375 10,000  

2 835 360,560 1,408.46 25,423 10,000  

3 746 331,304 1,408.18 25,409 10,000  

4 780 321,374 1,407.68 25,384 10,000  

5 782 405,309 1,407.41 25,370 10,000  

                                                           

9 Objective function value refers to the total supply chain costs and CO2 costs. 
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Table 3.4.5: Achieved results by Grey Wolf Optimizer algorithm (minimum service 

levels 1, maximum service levels 1) 

Random 

set# 

Elapsed time 

(sec) 

Objective function10 value 

($) 
CO2 emissions 

CO2 Penalty 

Cost($) 
Iterations 

 

1 733 370,931 1,408.66 25,432 10,000  

2 763 456,402 1,407.46 25,373 10,000  

3 763 374,643 1,408.01 25,400 10,000  

4 763 354,568 1,407.61 25,380 10,000  

5 784 474,135 1,408.35 25,417 10,000  

 

 

The achieved results by FminCon Solver, Grey Wolf algorithm, and Lingo 

Branch and Bound algorithm are compared in Tables 3.4.18 and 3.4.19, and Figure 3-14. 

The order of achieved objective function are different and it can be concluded that the 

standard deviation or the parameter of range/average has a better value in achived results 

by FminCon Solver in comparison to Grey Wolf Optimizer algorithm. It shows that the 

achieved results by the Grey Wolf Optimizer algorithm in comparison to FminCon solver 

and Lingo Branch and Bound algorithm are more sensitive toward the initial value of the 

starting point (initial random sets). 

However, the speed of Grey Wolf Optimizer in finding the local optimums is 

more than the FminCon Solver and Lingo Branch and Bound algorithm. The other point 

is that, the convergence in FminCon Solver (4,000 iterations) occurs sooner than the Grey 

Wolf algorithm (at least 10,000). 

 For all methods, increasing the minimum service levels from 0.7 to 1 has been 

accompanied by an increase in the achieved objective function. Moreover, we depicted 

the Amount of products dispatched from assemblers to distribution centers as a sample 

                                                           

10 Objective function value refers to the total supply chain costs and CO2 costs. 
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achieved decision variable for these three different method when minimum service level 

is equal to 0.7 and maximum service level sets at 1 and we can evaluate and analyze how 

much the ordering system is smooth and leveled for each of methods. This indicator can 

also be considered as one of the important key factors in our comparisons (Figuers 3-15 

to 3-17). Considering the achieved results, we can say that each of applied methods has 

their own capability in finding the best solution and evaluation.   

 Lingo Branch and Bound algorithm can give us a solution that is not sensitive 

toward the initial random sets, but it is a local optimum and cannot guarantee that 

it is the best solution and we cannot increase the value of minimum service level 

more than 0.7 and we receive the message of being infeasible. 

 The FminCon solver can give us solutions that are somehow depends on the 

initial random sets but in comparison to the Grey wolf optimizer algorithm they 

are less sensitive. The objective function converges to a definite value sooner than 

the Grey wolf optimizer algorithm. 

 The Grey wolf optimizer algorithm gives us solutions that have a better value for 

the objective function as the main objective is minimizing that but they are very 

sensitive toward initial random sets and the objective function cannot converge to 

a specific value for iterations less than 10,000. 
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Table 3.4.6: Comparing the results of FminCon Solver and the Grey Wolf algorithm for 

(SLmin=0.7, SLmax=1) 

 FminCon (SLmin=0.7, SLmax=1) Grey Wolf (SLmin=0.7, SLmax=1) 

Average 2113825 351026 

Range 218136 83935 

Range/average 0.103 0.239 
 

Table 3.4.19: Comparing the results of FminCon Solver and Grey Wolf algorithm for 

(SLmin=1, SLmax=1) 

 FminCon (SLmin=1, SLmax=1) Grey Wolf (SLmin=1, SLmax=1) 

Average 2294661 406336 

Range 511503 119567 

Range/average 0.223 0.294 

 

 

 

Figure 3-14: Comparing the achieved results for the objective function value by FminCon 

solver, Grey Wolf algorithm, and Lingo Branch and Bound algorithm 
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Figure 3-15: Achieved amount of ordering for products that should be dispatched from 

assembling sites to distribution site by Grey Wolf Optimizer algorithm 

Figure 3-16: Achieved amount of ordering for products that needs to be dispatched from 

assembling sites to distribution site by the FminCon solver 

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27A
m

o
u
n
t 

o
f 

p
ro

d
u
ct

s 
d

is
p

at
ch

ed
 f

ro
m

 a
ss

em
b

le
rs

 t
o

 

d
is

tr
ib

u
ti

o
n
 c

en
te

rs

V(i;k=1,2,3;w=1,2,3;t=1,2,3) for i=1,2,3

Grey Wolf_Random#1_product type1

Grey wolf_Random#2_product type1

Grey wolf_Random #3_product type1

Grey wolf_Random#4_product type1

Grey wolf_Random#5_product type1

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A
m

o
u
n
t 

o
f 

p
ro

d
u
ct

s 
d

is
p

at
ch

ed
 f

ro
m

 a
ss

em
b

le
rs

 

to
 d

is
tr

ib
u
ti

o
n
 c

en
te

rs

V(i;k=1,2,3;w=1,2,3;t=1,2,3) for i=1,2,3

FminCon_Random#1_product type1

FminCon_Random#2_Product type1

FminCon_Random#3_Product type1

FminCon_Random#4_Product type1

FminCon_Random#5_Product type5



 

52 

 

Figure 3-17: Achieved amount of ordering for products that needs to be dispatched from 

assembling sites to distribution site by Lingo Branch and Bound algorithm 

All of the achieved results by FminCon solver and Grey Wolf Optimizer 

algorithm are shown in Figures 3-18 to 3-57. 

 

Figure 3-18: Achieved current function value for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#1) 
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Figure 3-19: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#1) 
 

 
Figure 3-20: Diagram of step size for the best solution found by FminCon (minimum 

service level 0.7, maximum service level 1, Random set#1) 
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Figure 3-21: Achieved current function value for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#2) 

 

 

Figure 3-22: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set# 2) 
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Figure 3-23: Diagram of step size for the best solution found by FminCon (minimum 

service level 0.7, maximum service level 1, Random set#2) 

 

 

Figure 3-24: Achieved current function value for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#3) 
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Figure 3-25: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#3) 

 

 

Figure 3-26: Diagram of step size for the best solution found by FminCon (minimum 

service level 0.7, maximum service level 1, Random set#3) 
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Figure 3-27: Achieved current function value for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#4) 

 

 
Figure 3-28: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#4) 
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Figure 3-29: Diagram of step size for the best solution found by FminCon (minimum 

service level 0.7, maximum service level 1, Random set#4) 

 

 

Figure 3-30: Achieved current function value for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#5) 
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Figure 3-31: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 0.7, maximum service level 1, Random set#5) 

 

Figure 3-32: Diagram of step size for the best solution found by FminCon (minimum 

service level 0.7, maximum service level 1, Random set#5) 
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Figure 3-33: Achieved current function value for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#1) 

 

 

Figure 3-34: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#1) 
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Figure 3-35: Diagram of step size for the best solution found by FminCon (minimum 

service level 1, maximum service level 1, Random set#1) 

 

 

Figure 3-36: Achieved current function value for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#2) 
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Figure 3-37: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#2) 

 

 

Figure 3-38: Diagram of step size for the best solution found by FminCon (minimum 

service level 1, maximum service level 1, Random set#2) 
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Figure 3-39: Achieved current function value for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#3) 

 

 
Figure 3-40: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#3) 
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Figure 3-41: Diagram of step size for the best solution found by FminCon (minimum 

service level 1, maximum service level 1, Random set#3) 

 

Figure 3-42: Achieved current function value for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#4) 
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Figure 3-43: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#4) 

 

Figure 3-44: Diagram of step size for the best solution found by FminCon (minimum 

service level 1, maximum service level 1, Random set#4) 
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Figure 3-45: Achieved current function value for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#5) 

 

 
Figure 3-46: Achieved first-order optimality for the best solution found by FminCon 

(minimum service level 1, maximum service level 1, Random set#5) 
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Figure 3-47: Diagram of step size for the best solution found by FminCon (minimum 

service level 1, maximum service level 1, Random set#5) 

 

Figure 3-48: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 0.7, maximum service level 1, Random 

set#1) 
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Figure 3-49: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 0.7, maximum service level 1, Random 

set#2) 

 

Figure 3-50: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 0.7, maximum service level 1, Random 

set#3) 
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Figure 3-51: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 0.7, maximum service level 1, Random 

set#4) 

 

Figure 3-52: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 0.7, maximum service level 1, Random 

set#5) 
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Figure 3-53: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 1, maximum service level 1, Random set#1) 

 

Figure 3-54: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 1, maximum service level 1, Random set#2) 
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Figure 3-55: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 1, maximum service level 1, Random set#3) 

 

Figure 3-56: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 1, maximum service level 1, Random set#4) 

 



 

72 

 

 

Figure 3-57: Achieved current function value for the best solution found by Grey Wolf 

Optimizer algorithm (minimum service level 1, maximum service level 1, Random set#5) 

 

3.5 Summary 

 
Due to the recently changed environmental requirements, proposing optimization 

models in order to make supply chain planning greener is essential. In this chapter, we 

presented a non-linear optimization approach that can be used for similar supply chains. 

It broadens new horizons for production managers and supply chain practitioners in order 

to consider sustainability issues in their planning decisions. Effective supply chain 

planning can be considered as a promising solution for greenhouse gas control in a whole 

supply chain. This research supports this statement by utilizing a case study and 

recommends various scenarios for supply chain practitioners based on trade-offs among 

service levels, CO2 emissions, and the total costs of the supply chain network. The result 
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verifies that the proposed nonlinear optimization model for the GSCP issue minimizes the 

carbon emissions and total costs of a given supply chain at a very acceptable and efficient 

level. This model can be utilized as an effective tool in the strategic planning for green 

supply chains.  
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Chapter 4 

4 A new guideline for optimal performance evaluation 

of adaptive 𝑿 ̅control chart 
 

A process that is stable and steady nonetheless, operating outside of desired and 

specified limits, needs to be improved through a measured effort to identify the causes 

and origins of current performance, and primarily, improve the process (Wheeler 2004). 

SPC refers to an industry-standard methodology that applies various statistical methods 

comprehensively to measure, control, and improve the quality of industrial processes, 

production systems, and service operations (Wheeler 2004). A control chart is one of the 

efficient tools of quality control in SPC and plays an important role in decreasing the 

amount of waste and defective produced products and components in manufacturing and 

production systems (Montgomery 1980). The first control chart was proposed by 

Shewhart (1931). The Shewhart �̅� control chart is regularly utilized to detect large shifts 

in the mean of a process. The major limitation of this chart is its inadequate statistical 

efficiency towards the detection of small and moderate shifts in the mean of a process. As 

a traditional Shewhart control �̅� chart with FP does not function fast enough to detect 

small to moderate shifts and variances of process parameters, new alternatives mainly 

known as adaptive �̅� control charts are recommended to enhance the performance of 

http://en.wikipedia.org/wiki/Seven_Basic_Tools_of_Quality
http://en.wikipedia.org/wiki/Quality_control
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control charts through varying one or more design parameters (Reynolds 1996; Costa 

1999; Lin and Chou, 2005; De Magalhaes et. al, 2009; Costa and Machado, 2011; 

Mahadik, 2013a; Lee, 2013; Lim et al., 2015, Elahi and Franchetti, 2015b).  

Based on recently obtained data from a process, design parameters that can be 

varied in an adaptive �̅� control chart include: the sample size, sampling interval, and 

width coefficient of control limits. Various studies have focused on the schemes of the 

VSS (Costa, 1994; Castagliola et al., 2012), VSI (Reynolds, 1996; Chou et al., 2006; 

Zhang et al., 2012b; Yang and Yang 2013), and VSC (Chen et al., 2008; Lee et al., 

2013). Some studies have also considered more than one variable design parameter such 

as VSSI (Costa 1997; Wu et al., 2007b; Jensen et al., 2008; Yang and Yang, 2013; Lim et 

al., 2015), VSIC (Chen et al., 2008; Mahadik 2013b), variable sample size and VSSC 

(Chen et al., 2008; Mahadik,  2013a), and VP (Costa, 1999; Costa and Machado, 2011; 

Guo et al., 2014). These studies verify the efficiency of applied adaptive schemes in 

detecting small mean shifts sooner than FP control charts.  

    The study of recent literature in areas of adaptive �̅� control charts reveals that 

various statistical performance measures are also defined and utilized to evaluate the 

performance and efficiency of these control charts containing: ANOS (Chen et al., 2008; 

Lee et al., 2012a; Mahadik, 2013a; Guo et al., 2014), ANSS (Castagliola et al., 2012; 

Mahadik, 2013a; Mahadik, 2013b; Guo et al., 2014), ATS (Wu et al., 2007b; Jensen et 

al., 2008; Chen et al., 2008; Zhang et al., 2012a; Lee et al., 2012a; Lee et al., 2012b; 

Yang and Yang, 2013; Niaki and Jahani, 2013; Lim et al., 2015), AATS (De Magalhaes 

et al., 2009; Costa and Machado, 2011; Lee et al., 2012a; Guo et al., 2014), MATS (Wu 

et al., 2007b), steady-state average time to signal (SSATS) (Mahadik, 2013a), ANSW 
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(Chen et al., 2008), ASWR (Chen et al., 2008), AEQL (Lim et al., 2015),  SDTS (Jensen 

et al., 2008; Zhang et al., 2012a; Lim et al., 2015), ARL (Lee et al., 2012b; Niaki and 

Jahani, 2013), and SDRL (Castagliola et al., 2012). Moreover, recently a number of new 

trends and developments have been applied to the study of control charts such as the 

application of adaptive 𝑋 ̅control charts for correlated data (Chen et al., 2007), the use of 

multivariate control charts for monitoring the process mean vector when quality 

characteristics of interest are multivariate (Reynolds and Stoumbos 2008; Wang 2012; 

Niaki and Jahani 2013), the utilization of evolutionary algorithms (i.e. genetic algorithm 

and particle swarm algorithm) and Mont-Carlo simulation for finding the optimal chart 

parameters (Wang 2012; Lee et al., 2012b; Niaki and Jahani, 2013; Ahmed et al., 2014; 

Morabi et al., 2015), the use of double sampling for increasing the efficiency of adaptive 

�̅� control charts (Costa and Machado, 2011; Lee et al., 2012a; Lee et al., 2012b; Lee 

2013), the application of time-weighted adaptive control charts for displaying the 

cumulative sums of the deviations of each sample value from the target value (Ou et al., 

2012; He et al., 2014), and the employment of adaptive �̅� control charts for case studies 

with estimated design parameters (Zhang et al., 2012a; Castagliola et al., 2012; Lim et 

al., 2015). 

Practically, it is essential for process engineers and decision makers know how to 

set the initial parameters of the utilized control chart to detect the specified shift size as 

soon as possible. In reality, decision makers do not have enough information about the 

instant the process changes or the magnitude of the change. However, they can predict 

and define how much the studied production system is sensitive with respect to various 

ranges of shifts in mean, based on their recognition toward a production system, product 
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type, and defined objectives. For instance, decision makers and quality managers can be 

more sensitive toward small ranges of shifts in mean when they conduct quality control in 

medical industries, health care production systems, and clinical laboratories (Helms 

2009). Although the properties of the adaptive �̅� control charts have been exhaustively 

studied in previous research papers (Costa, 1999; De Magalhaes et al., 2009; Mahadik, 

2013a, b), to the best of our knowledge, no study has been done to find optimal points of 

the response surface in the context of performance evaluation of adaptive �̅� control 

charts, which is the overall goal of this study. In this research, we apply a reverse 

approach and focus on revealing more information about optimal points of the response 

surface in which the defined performance measures of adaptive �̅� control charts have 

their minimum values. In other words, unlike previous conducted research works that 

considered definite values for design parameters and compared the performance of all 

adaptive �̅� control charts just for a specific set of design parameters using a forward 

approach (e.g. Costa, 1999; De Magalhaes et al., 2009), here we utilize a backward 

perspective to find various sets of design parameters in the response surface, with respect 

to each adaptive �̅� control chart and broad ranges of shifts in mean, where each of 

defined performance measures hold their optimal minimum value. Through this reverse 

perspective, decision makers and quality managers will have access to new statistical 

guideline tables and diagrams with more information about design parameters in optimal 

points of each adaptive �̅� control chart, values of defined performance measures at these 

points, and improvement percentages in comparison to the FP control chart for various 

ranges of shifts in mean. Using these statistical guideline tables and diagrams will help 

decision makers have a broader overlook toward optimal points before choosing a proper 
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adaptive �̅� control chart, appropriate performance measures, and cost-effective design 

parameters to detect preferred ranges of shifts in mean and monitor the process 

efficiently. For this purpose, we initially search the entire feasible response space by 

considering coded loops on all possible sets of design parameters derived from literature 

to find optimal minimum values of each of defined performance measures containing 

AATS, ANOS, and ANSS. Secondly, the defined algorithm stores the achieved sets of 

design parameters for each obtained optimal minimum value of a specific performance 

measure and computes the value of other performance measures and all of the related 

design parameters considering broad ranges of shifts in mean (small, medium, and large 

shifts). Thirdly, the improvement percentages of performance measures in comparison to 

the FP �̅� control chart are computed and all obtained information is recorded in tables 

and diagrams. In this way, new statistical guideline tables for decision makers are 

presented which reveal more information about optimal points of each adaptive �̅� control 

chart for various ranges of shifts in mean. Utilizing the presented tables as an efficient 

guideline and the outcome of this research paper enables decision makers and quality 

managers to a) choose a proper adaptive �̅� control chart based on their preferred level of 

complexity in model design, b) select an appropriate performance measure/measures 

which is/are economically viable in terms of sampling expense, and c) set right initial 

design parameters based on a trade-off between improvement percentage and potential 

costs of sampling. The rest of this chapter is structured as follows. Section 4-1 and its 

sub-sections focus on the applied methodology. In Section 4-2 the obtained results are 

illustrated and discussed. Finally, the summary is presented in Section 4-3. 
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4.1 Methodology 

4.1.1 Adaptive �̅� Control Charts and Performance Measures 

In this study, seven different adaptive �̅� control charts and a fixed parameters 

(FP) �̅� control chart are considered in our evaluation as follows: 

1. VIS model with two different sampling intervals (ℎ1, ℎ2 where ℎ1 > ℎ2) 

(Figure 4-1) 

2. VSS model with two different sampling sizes (𝑛1, 𝑛2  where 𝑛1 < 𝑛2) 

(Figure 4-2) 

3. VSC model with two different width coefficients of control limits ( 𝐾1, 𝐾2 

where 𝐾2 < 𝐾1) (Figure 4-3) 

4. VSSI model with two different sample sizes (𝑛1, 𝑛2  where 𝑛1 < 𝑛2) and 

two different sampling intervals (ℎ1, ℎ2 where ℎ1 > ℎ2) (Figure  4-4) 

5. VSIC model with two different sampling intervals (ℎ1, ℎ2 where ℎ1 > ℎ2) 

, two different width coefficients of control limits ( 𝐾1, 𝐾2 where 𝐾2 <

𝐾1), and two different threshold limits (𝑊1,𝑊2 where 𝑊2 < 𝑊1) (Figure 

4-5) 

6. VSSC model with two different sample sizes (𝑛1, 𝑛2  where 𝑛1 < 𝑛2), two 

different width coefficients of control limits ( 𝐾1, 𝐾2 where 𝐾2 < 𝐾1), and 

two different threshold limits (𝑊1,𝑊2 where 𝑊2 < 𝑊1) (Figure 4-6) 

7. VP model with two different sample sizes (𝑛1, 𝑛2  where 𝑛1 < 𝑛2), two 

different sampling intervals (ℎ1, ℎ2 where ℎ1 > ℎ2), two different width 
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coefficients of control limits ( 𝐾1, 𝐾2 where 𝐾2 < 𝐾1), and two different 

threshold limits (𝑊1,𝑊2 where 𝑊2 < 𝑊1) (Figure 4-7) 

8. FP �̅� control chart with fixed design parameters (𝑛0, ℎ0, and 𝐾0 

respectively represent the sample size, the sampling interval, and the width 

coefficient of the control limits) (Figure 4-8) 

 

Figure 4-1: VSI control chart 
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Figure 4-2: VSS control chart 

 

 

Figure 4-3: VSC control chart 
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Figure 4-4: VSSI control chart 

 

 
Figure 4-5: VSIC control chart 
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Figure 4-6: VSSC control chart 

 

 

Figure 4-7: VP control chart 
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Figure 4-8. Standard Shewhart control chart 

 

   We also take three statistical measures of efficiency for the eight control charts 

into account: ANOS, ANSS, and AATS. ANOS is the expected value of the number of 

inspected items from the start of the process until the chart signals (Chen et al., 2008). 

ANSS is the expected value of the number of samples taken from a shift to the time the 

chart signals (Mahadik, 2013b).  And AATS represents the average time since t the mean 

of a process is off-target till  the control chart alarms (De Magalhaes et. al, 2009; Zhang 

et al., 2012b).  

    Here, we have assumed that the process starts in statistical control and then it 

moves to an out-of-control status in future. The shift occurrence time is also an 

exponentially distributed random variable. In evaluating the performance of control 

charts, it is needed to compare their performances under equal conditions. For this 

purpose, the in-control performance of the seven adaptive control charts and the FP 
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control chart are aligned with each other. The applied statistical design model is 

described in the following section. 

 

4.1.2 Applied Statistical Design Model  

 

A statistical design model similar to the model presented by De Magalhaes et. al 

(2009) is applied. They focused on a specific set of design parameters subjected to a 

surveillance policy (De Magalhaes et. al, 2009). However, here we search the entire 

response space to disclose more information such as design parameters and improvement 

percentages about optimal points in which performance measures hold their minimum 

values. Here, it is assumed that the quality characteristic of a process (𝑋), that is being 

monitored by �̅� control charts, follows a normal distribution with mean 𝜇 and a constant 

and known standard deviation 𝜎. When the mean of a quality characteristic is at its target 

value of the process mean 𝜇0, the process considered as in-control and when 𝜇 changes 

from 𝜇0 to 𝜇1 = 𝜇0 ± 𝛿𝜎, 𝛿 > 0 it refers to an out-of-control process. Here, 𝛿 refers to 

the shift in the process mean and is expressed in process standard deviation units. When 

the process shifts to an out-of-control status, it remains in this state until the control chart 

gives a signal. Then a searching process starts to find and eliminate the related cause, 

choose the best statistical design for the next sampling, and set new values for design 

parameters. Let 𝑍𝑖 , 𝑖 = 1,2, … refers to the value of standardized �̅�𝑖 which is calculated 

as follows (Jensen et al., 2008; Mahadik, 2013b): 
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𝑍𝑖 =
�̅�𝑖 − 𝜇0

𝜎

√𝑛𝑖

 

  

Equation 4.1.2-1 

 

Where �̅�𝑖, 𝑖 = 1,2, … is the ith subgroup computed mean using 𝑛𝑖 and 𝑡𝑖 which 

refer to sample size and sampling interval successively (for  𝜇 = 𝜇0, 𝑍𝑖~ 𝑁(0,1)). 

We assume when the process is in-control status (state A where 𝑋~ 𝑁(𝜇0, 𝜎0
2)) in each 

moment of sampling it is possible to have one of these scenarios: LCA :loose control, 

mean: on target, SCA :strict control, mean: on target, or FA: false alarm. Loose control 

stands for controlling a process when the current sample statistic plotted on the control 

chart is close to the center line, therefore, the next sample is taken from the process with 

a smaller sample size and/or a longer sampling interval and/or a larger control limit 

coefficient. In contrast, strict control chart refers to controlling a process once the current 

sample statistic is plotted close to the control limits (but still within them), hence, the 

next sample is taken from the process with a larger sample size and/or a shorter sampling 

interval and/or a smaller width coefficient of control limits in order to detect the possible 

shift as soon as possible. 

The size of the first sampling of the process while it is just started (or re-starting 

after an assignable cause explore and remediation, when appropriate) is randomly 

selected with a probability 𝑝0 of starting in a state of loose control. Alongside the in-

control duration, all samples, including the first one, should have a probability 𝑝0 under 

loose control and a probability (1 − 𝑝0 ) under strict control (Equation 4.1.2-2).  
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𝑝0 = {
𝑃(|𝑍| < 𝑊1 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 |𝑍| < 𝐾1)

𝑃(|𝑍| < 𝑊2 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 |𝑍| < 𝐾2)
    ; Where 𝑍~ 𝑁(0,1) 

Equation 4.1.2-2 

 

    LCA and SCA are considered as transient states, whereas FA is an absorbing 

state. The transition matrix of these three states and the transition matrix between the two 

transient states are shown in Appendix A (Section A.1). The elements of these matrices 

represent the probability of a transition from a previous state to the current state, while 

the process is in-control status and the mean is on target.  

   When the process is out-of-control (state B: 𝑋~ 𝑁(𝜇0 ± 𝛿𝜎0, 𝜎0
2)), it is possible to have 

one of these scenarios within the sampling process: LCB (Loose control, mean: out of 

target), SC B (Strict control, mean: out of target), and TA (true alarm and signal). The 

transition matrix of these three states and the transition matrix between the two transient 

states are demonstrated in Appendix A (Section A.2). The elements of these matrices 

signify the probability of a transition from a previous state to the current one, while the 

process is out-of-control and the mean is off target. 

    The aforementioned matrices are utilized to formulate the considered three 

performance measures: AATS, ANOS, and ANSS. These formulations are displayed in 

Appendix A (Section A.3) and are applied for coding performance measures in the 

proposed algorithm by the following section. 
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4.1.3 The proposed algorithm for finding optimal points 

 

Unlike previous researches (e.g. Costa, 1999; De Magalhaes et al., 2009; 

Mahadik, 2013a) which applied a forward viewpoint and focused on just a specific set of 

design parameters to compare performance of various models, here we use a reverse 

approach to search the entire response space in order to disclose more information about 

the optimal points located in the response space in which performance measures have 

their minimum values. For this purpose, we attempt to find three optimal points for each 

of the seven adaptive models in regard to AATS, ANOS, and ANSS with considering a 

broad range of shift in mean (small, medium, and large shifts). Then, we obtain the initial 

design parameters at these optimal points and records them. At each achieved optimal 

point which is related to the minimization of one the performance measures’ value, we 

get the values of the two other performance measures and record their related initial 

design parameters, too. After getting this information for the seven adaptive models, we 

compute the improvement percentages of performance measures in comparison to the FP 

control chart. We conduct such an analysis for various ranges of shifts in mean at the 

achieved optimal points of the response surface. To search the entire response surface for 

broad ranges of shifts in mean, coded loops using a MATLAB (R2015a) computer 

programming on possible sets of design parameters, extracted from literature (Table 

4.1.3.1), are utilized.  
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Table 4.1.3.1: The range and variation step for the adaptive 𝑿 ̅control chart design 

parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The evolutionary or meta-heuristic algorithms like genetic algorithm can be used 

for this purpose, but they might mistakenly use a local optimum instead of a global one 

and does not result in an exact response. Since the considered search method goes 

through the entire space, the pitfall of local optimal is avoided. The proposed procedure 

has the following steps: 

 
Step1. Initially, the coded algorithm forms for-loops on all possible combinations 

of ℎ1, ℎ2, 𝑛1, 𝑛2, 𝑊1, 𝑊2, 𝐾1, 𝐾2 and fixes 𝑛0 = 5, ℎ0 = 1, and 𝐾0 = 3 as the FP 

parameters. The range and variation step of these parameters are shown in Table 

4.1.3.1. 

 

Variable Minimum Value Maximum Value Step 

ℎ1 ℎ0 + 0.01 3 0.01 

ℎ2 0.01 ℎ0 − 0.01 0.01 

𝑛1 1 𝑛0 − 1 1 

𝑛2 𝑛0 + 1 30 1 

𝑊1 0.1 𝐾1 − 0.1 0.1 

𝑊2 0.1 𝐾2 − 0.1 0.1 

𝐾1 0.2 2.9 0.1 

𝐾2 3.1 6 0.1 

FP parameters: 𝑛0 = 5, ℎ0 = 1, 𝐾0 = 3 

𝜆 = 0.0001 

𝛿 ∈ {0.25, 0.5,0.75,1.00,1.25,1.50,2.00,2.50,3.00} 
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Step2. The algorithm specifies various 𝛿 values (small, medium, and large shifts 

in mean) and searches to find the minimum AATS value for each of 

predetermined shifts in mean of δ with respect to the VP model. AATS 

formulation is demonstrated in Equation A.3-5 of the supplementary materials. 

Step3. The algorithm stores the specific combination of design parameters related 

to the obtained optimal minimum AATS value for each of specific shift sizes.  

Step4. The algorithm computes the value of other performance measures (here, 

ANOS and ANSS) at the achieved optimal points for the AATS measure (using 

Equation A.3-6 and A.3-7 of the supplementary materials). 

Step5. The algorithm computes the improvement percentage (% IM) of obtained 

values for each performance measure (PM) of the AATS, ANOS, and ANSS in 

comparison to the FP control chart for various ranges of shifts in mean (using 

Equation 4.1.3-3). The FP chart is applied as a reference of comparisons (Table 

4.1.3.2). Data demonstrated in Table 4.1.3.2 as a reference is obtained based on 

fixing the FP parameters and using PM’s formulations. This data matches with 

presented standard numbers in previous studies in the literature (De Magalhaes et 

al., 2009; Cheng et al., 2013) 

% 𝐼𝑀𝑃𝑀  =
𝑃𝑀𝐹𝑃 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐ℎ𝑎𝑟𝑡 − 𝑃𝑀𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐ℎ𝑎𝑟𝑡

𝑃𝑀𝐹𝑃 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐ℎ𝑎𝑟𝑡

 

Equation 4.1.3-3 
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% 𝐼𝑀𝑃𝑀 refers to the improvement percentage of a performance measure 

for a given adaptive control chart. The term of 𝑃𝑀𝐹𝑃 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐ℎ𝑎𝑟𝑡 is the value of a 

given performance measure for the FP control chart. The term of 

𝑃𝑀𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐ℎ𝑎𝑟𝑡 is the value of the same performance measure for the 

given adaptive control chart. 

Step6. The algorithm follows a similar procedure using steps 2-5 to find the 

minimum ANOS and ANSS values for each of predetermined shifts in mean of δ 

with respect to the VP model. 

Step7. The algorithm repeats the steps of 2-6 to find the minimum AATS, ANOS, 

and ANSS values for each of predetermined shifts in mean of δ with respect to the 

rest of models including VSC, VSI, VSIC, VSS, VSSC, and VSSI. 

 

4.2 Results and Discussion 

Based on the proposed algorithm for finding the optimal points of the various 

models that was described earlier, the obtained results for minimum values of AATS, 

ANOS, and ANSS with respect to various ranges (small: 𝛿 𝜖{0.25, 0.50, 0.75}, medium: 

𝛿 𝜖{1.00, 1.25,1.50}, and relatively large: 𝛿 𝜖{2.00, 2.50, 3.00}) of shifts in mean for the 

VP model is presented in Tables 4.2.1. Similarly, the achieved results for optimal 

Table 4.1.3. 2: The optimum value of the AATS, ANOS, and ANSS in various shifts 

in mean for the FP control chart 

𝛿 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50          3.00 

AATS 133.15940 33.40080 10.76110 4.49530 2.38770 1.56650 1.07580 1.00480 1.00010 

ANOS 665.79720 167.00390 53.80530 22.47660 11.93830 7.83250 5.37920 5.02410 5.00050 

ANSS 133.15943 33.40078 10.76106 4.49531 2.38766 1.56649 1.07584 1.00482 1.00010 



 

92 

 

minimum values of performance measures for the rest of adaptive models entailing VSC, 

VSI, VSIC, VSS, VSSC, and VSSI are demonstrated in Tables A.4.1 to A.4.6 of the 

Supplementary Materials (Appendix A.4). These tables provide decision makers with 

efficient information by showing the sets of design parameters in which minimum value 

for each of the performance measures in various adaptive control charts occur with 

respect to broad ranges of shifts in mean (small, medium, and relatively large). They also 

offer more information about the value of other performance measures and improvement 

percentages in comparison to the FP control chart at these obtained optimum discrete 

points located in the whole feasible response space. In this way, decision makers and 

quality managers can apply the presented data as an efficient guideline to select the most 

effective adaptive �̅� control chart, performance measures, and design parameters with 

respect to a range/ranges of shifts in mean that is/are more significant in their process. 
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Table 4.2.1: The obtained values of design parameters, performance measures, and %IM 

at achieved minimum AATS, ANOS, and ANSS for the VP model 

𝛿 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 

M
in
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g

 A
A

T
S

 f
o

r 
th

e 
V

P
 M

o
d

el
 

Optimum AATS 31.11548 6.12724 2.68081 1.79718 1.56932 1.51749 1.50153 1.50017 1.50002 

% IM 76.63 81.66 75.09 60.02 34.27 3.13 -39.57 -49.30 -49.99 

ANOS 205.64350 54.39360 29.29199 17.55353 11.29634 7.97352 5.63964 5.08826 5.00871 

% IM 69.11 67.43 45.56 21.90 5.38 -1.80 -4.84 -1.28 -0.16 

ANSS 32.35305 6.93023 4.01036 2.87372 2.05927 1.49769 1.10668 1.01471 1.00124 

% IM 75.70 79.25 62.73 36.07 13.75 4.39 -2.87 -0.98 -0.11 

         h1 1.16 1.26 1.59 1.99 2.98 1.99 1.99 1.99 1.50 

        h2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

        n1 1 1 2 3 3 4 4 4 4 

       n2 30 20 10 7 6 6 6 6 7 

       W1 1.48 1.25 0.89 0.67 0.43 0.67 0.67 0.67 0.96 

       W2 1.42 1.22 0.88 0.67 0.43 0.67 0.67 0.67 0.96 

      K1 6.00 6.00 5.00 3.80 3.40 3.10 3.10 3.10 3.10 

      K2 2.33 2.49 2.69 2.79 2.90 2.92 2.92 2.92 2.86 
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AATS 31.11548 6.57984 3.12352 2.12544 1.70754 1.51749 1.50153 1.50017 1.50003 

% IM 76.63 80.30 70.97 52.72 28.49 3.13 -39.57 -49.30 -49.99 

Optimum ANOS 205.64350 50.91952 26.00355 15.99908 10.88660 7.97352 5.63964 5.08826 5.00561 

% IM 69.11 69.51 51.67 28.82 8.81 -1.80 -4.84 -1.28 -0.10 

ANSS 32.35305 6.80667 3.47683 2.40866 1.89824 1.49769 1.10668 1.01471 1.00094 

% IM 75.70 79.62 67.69 46.42 20.50 4.39 -2.87 -0.98 -0.08 

       h1 1.16 1.17 1.40 1.79 2.98 1.99 1.99 1.99 1.99 

      h2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

      n1 1 1 1 1 1 4 4 4 4 

     n2 30 28 15 10 7 6 6 6 6 

      W1 1.48 1.45 1.07 0.76 0.43 0.67 0.67 0.67 0.67 

     W2 1.42 1.39 1.05 0.76 0.43 0.67 0.67 0.67 0.67 

    K1 6.00 6.00 5.80 4.90 4.40 3.10 3.10 3.10 3.10 

    K2 2.33 2.36 2.60 2.74 2.87 2.92 2.92 2.92 2.92 
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AATS 31.11548 6.27686 2.94378 2.00680 1.66237 1.53827 1.50153 1.50017 1.50003 

% IM 76.63 81.21 72.64 55.36 30.38 1.80 -39.57 -49.30 -49.99 

ANOS 205.64350 51.65814 26.89955 17.89733 12.11030 8.66797 5.63964 5.08826 5.00561 

% IM 69.11 69.07 50.01 20.37 -1.44 -10.67 -4.84 -1.28 -0.10 

Optimum ANSS 32.35305 6.71823 3.35499 2.29905 1.78905 1.47120 1.10668 1.01471 1.00094 

% IM 75.70 79.89 68.82 48.86 25.07 6.08 -2.87 -0.98 -0.08 

       h1 1.16 1.21 1.27 1.25 1.20 1.33 1.99 1.99 1.99 

      h2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

      n1 1 1 2 3 4 4 4 4 4 

     n2 30 24 16 13 10 8 6 6 6 

     W1 1.48 1.36 1.24 1.28 1.38 1.15 0.67 0.67 0.67 

    W2 1.42 1.32 1.22 1.26 1.37 1.14 0.67 0.67 0.67 

   K1 6.00 6.00 4.30 3.30 3.10 3.10 3.10 3.10 3.10 

  K2 2.33 2.42 2.50 2.59 2.72 2.81 2.92 2.92 2.92 
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Analyzing the results also indicate on obtaining some identical optimal points 

while minimizing performance measures for each of adaptive models with respect to 

various ranges of shifts in mean (small, medium, or relatively large). From a statistical 

viewpoint, it can refer to this fact that for some specific shifts in mean of various adaptive 

models, optimal minimum values of two or three considered performance measures and 

their related design parameters converge to the same point. Statistical definitions of the 

AATS, ANOS, and ANSS signify when a process works in an out-of-control condition, a 

scheme which has a shorter AATS, smaller ANSS, and smaller ANOS is more desirable 

as such a control chart can detect an off-target condition faster with fewer inspected 

items. Such a condition results in less sampling costs and less effort and we can avoid 

producing a lot of nonconforming items. Considering these facts, once identical optimal 

points with an acceptable improvement percentage in terms of performance are obtained 

for specific ranges of shift in mean with respect to an adaptive model, it verifies that 

performance measures function equally at those optimal points from a statistical 

perspective. Therefore, in such cases decision makers and quality managers can consider 

their economical viewpoint and choose the best performance measure among the 

statically equivalent performance measures if they prefer to focus on controlling the 

quality of their process for a given specific range of shift in mean.  

As an example, based on the presented results for the VP model in Table 4.2.1, 

the same optimal points with acceptable improvement percentages are obtained while 

minimizing AATS, ANOS, and ANSS for a small shift in mean of 𝛿 = 0.25. Identical 

optimal points are also achieved when minimizing AATS and ANOS for a medium shift 

mean of 𝛿 = 1.50 but the improvement percentage of ANOS is less than zero at these 
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points. Therefore, from a statistical viewpoint in such a case, choosing AATS is better 

than selecting ANOS. The same optimal points with negative improvement percentages 

are also obtained while minimizing AATS, ANOS, ANSS for relatively large shifts in 

mean of 𝛿 𝜖{2.00,2.5}. Moreover, the identical optimal points with negative 

improvement percentages are obtained once minimizing ANOS and ANSS for a 

relatively large shift mean of 𝛿 = 3. Thus, statistically choosing VP model is not a proper 

decision for controlling the process quality for relatively large shifts in mean. 

The obtained results shown in Table A.4.1 signify that for the VSC model, same 

optimal points with negative or close to zero values for improvement percentages are 

obtained while minimizing AATS, ANOS, and ANSS for all considered ranges of shifts 

in mean. Thus, from statistical viewpoint, the functionality’s rank of the VSC model 

places near/ after the FP control chart and after the other adaptive models for small and 

medium shifts in mean. In terms of relatively large shifts in mean, its rank places near or 

after the FP control chart.  

The achieved results demonstrated in Table A.4.2 denote that for the VSI model, 

identical optimal points with acceptable improvement percentages are obtained while 

minimizing ANOS and ANSS for small and medium shifts in mean of 

𝛿 𝜖{0.25, 0.50, 0.75, 1.00,1.25}.  

Table A.4.3 shows that for the VSIC model, same optimal points are obtained 

when minimizing ANOS and ANSS for all considered ranges of shifts in mean. Among 

them for the small and medium shifts in mean of 𝛿 𝜖{0.25, 0.50, 0.75, 1.00,1.25}, the 

computed improvement percentages are positive whereas for the relatively large shifts in 
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mean of 𝛿 𝜖{1.5, 2.00,2.5,3.00} the improvement percentages are equal to zero or 

negative values.  

Table A.4.4 demonstrates that for the VSS model, same optimal points with 

positive improvement percentages are found while minimizing AATS, ANOS, and ANSS 

for small shifts in mean of 𝛿 𝜖{0.25, 0.50}. Based on this table, identical optimal points 

with acceptable improvement percentages are obtained while minimizing AATS and 

ANOS for small and medium shifts in mean of 𝛿 𝜖{0.75, 1.00}. Furthermore, the same 

optimal points with negative improvement percentages are obtained while minimizing all 

performance measures for relatively large shifts in mean of 𝛿 𝜖{2.00, 2.50,3.00}. 

Therefore, statistically choosing VSS model is not a proper decision for controlling the 

process quality for relatively large shifts in mean.  

Table A.4.5 verifies that for the VSSC model, the same optimal points with 

positive improvement percentages are obtained while minimizing AATS, ANOS, and 

ANSS for a small shift in mean of 𝛿 = 0.25. It also shows that identical optimal points 

with positive improvement percentages are obtained once minimizing AATS and ANSS 

for small and medium shifts in mean of 𝛿 𝜖{0.50, 0.75, 1.00}. This table also displays 

that the same optimums with negative improvement percentage for the ANOS measure 

are found when minimizing AATS and ANSS for a medium shift in mean of 𝛿 = 1.25. It 

also verifies that identical optimums with negative improvement percentages for the 

AATS and ANOS measures are found when minimizing AATS and ANSS for a 

relatively large shift in mean of 𝛿 = 1.50. Additionally, based on this table for the VSSC 

model, the similar optimal points with negative improvement percentages are achieved 
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while minimizing all performance measures for relatively large shifts in mean of 

𝛿 𝜖{2.00, 2.5, 3.00}. 

Table A.4.6 demonstrates that for the VSSI model, same optimal points with 

positive improvement percentages are obtained while minimizing AATS, ANOS, and 

ANSS for a small shift in mean of 𝛿 = 0.25. It also verifies that identical optimums with 

positive improvement percentages are achieved once minimizing ANOS and ANSS for a 

small shift in mean of 𝛿 = 0.50. It also shows that the same optimums with negative 

improvement percentage for the ANOS measure are obtained once minimizing AATS 

and ANOS for a medium shift in mean of 𝛿 = 1.50. On the basis of data presented by 

this table, the similar optimal points with negative improvement percentages are achieved 

while minimizing all performance measures for relatively large shifts in mean of  

𝛿 𝜖{2.00, 2.5, 3.00}. 

In accordance with obtained results in the aforementioned tables, the optimum 

values of AATS for all adaptive control charts and the FP chart have depicted with 

respect to various ranges of shift in mean: small shifts of 𝛿 𝜖 {0.25,0.50,0.75}, medium 

shifts of 𝛿 𝜖{1.00,1.25,1.50}, and relatively large shifts of 𝛿 𝜖 {2.00,2.50, 3.00} through 

Figure 4-9. The optimum value of ANOS and ANSS for all adaptive control charts and 

the FP chart are also shown through Figure 4-10 and Figure 4-11 respectively.  

Based on the presented data in aforementioned tables and figures, we can rank the 

performance measures of various eight control charts including the seven adaptive 

models and the FP control chart for broad ranges of shifts in means at achieved optimal 

points (Tables 4.2.2 to 4.2.4).  
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Figure 4-9: The optimum values of AATS for various ranges (small, medium, and 

relatively large) of shifts in mean  for seven adaptive models and the FP control chart 
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Figure 4-10: The optimum values of ANOS for various ranges(small, medium, and 

relatively large) of shifts in mean with respect to seven adaptive control charts and the FP 

chart 
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Figure 4-11: The optimum values of ANSS for various ranges (small, medium, and 

relatively large) of shifts in mean with respect to the seven various adaptive models and 

the FP control chart 
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Table 4.2.2: Ranking obtained optimum AATS values for various models with respect to 

small, medium, and relatively large shifts in mean 

Optimum AATS 
Ranks for various shifts in mean of  𝛿 

0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 

𝐴𝐴𝑇𝑆𝑉𝑃 1 1 1 1 1 3 4 5 3 

𝐴𝐴𝑇𝑆𝑉𝑆𝑆𝐶 2 2 3 5 5 7 7 8 6 

𝐴𝐴𝑇𝑆𝑉𝑆𝑆𝐼 3 3 2 2 2 4 3 4 3 

𝐴𝐴𝑇𝑆𝑉𝑆𝑆 4 4 5 6 6 6 6 7 5 

𝐴𝐴𝑇𝑆𝑉𝑆𝐼𝐶 5 5 4 3 3 1 2 3 2 

𝐴𝐴𝑇𝑆𝑉𝑆𝐼 6 6 6 4 4 2 2 2 2 

𝐴𝐴𝑇𝑆𝑉𝑆𝐶 8 8 8 8 8 8 5 6 4 

𝐴𝐴𝑇𝑆𝐹𝑃 7 7 7 7 7 5 1 1 1 

 

Table 4.2.3: Ranking obtained optimum ANOS values for various models with respect to 

small, medium, and relatively large shifts in mean 

Optimum ANOS 
Ranks for various shifts in mean of  𝛿 

0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 

𝐴𝑁𝑂𝑆𝑉𝑃 1 1 1 1 2 4 5 4 5 

𝐴𝑁𝑂𝑆𝑉𝑆𝑆𝐶 1 1 1 1 2 4 5 4 5 

𝐴𝑁𝑂𝑆𝑉𝑆𝑆𝐼 2 2 2 3 3 5 4 3 4 

𝐴𝑁𝑂𝑆𝑉𝑆𝑆 2 2 2 3 3 5 4 3 4 

𝐴𝑁𝑂𝑆𝑉𝑆𝐼𝐶 3 3 3 2 1 1 3 2 3 

𝐴𝑁𝑂𝑆𝑉𝑆𝐼 4 4 5 4 5 2 1 1 2 

𝐴𝑁𝑂𝑆𝑉𝑆𝐶 4 4 5 4 5 2 1 1 2 

𝐴𝑁𝑂𝑆𝐹𝑃 5 4 4 5 4 3 2 1 1 
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Table 4.2.4: Ranking obtained optimum ANSS values for the eight control charts 

containing adaptive models and the FP chart with respect to small, medium, and 

relatively large shifts in mean 

Optimum ANSS 

Ranks for various shifts in mean of  𝛿 

0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 

𝐴𝑁𝑆𝑆𝑉𝑃 1 1 1 1 1 2 4 4 4 

𝐴𝑁𝑆𝑆𝑉𝑆𝑆𝐶 1 1 1 1 1 2 4 4 4 

𝐴𝑁𝑆𝑆𝑉𝑆𝑆𝐼 2 2 2 2 2 1 3 3 3 

𝐴𝑁𝑆𝑆𝑉𝑆𝑆 2 2 2 2 2 1 3 3 3 

𝐴𝑁𝑆𝑆𝑉𝑆𝐼𝐶 3 3 3 3 3 3 2 2 2 

𝐴𝑁𝑆𝑆𝑉𝑆𝐼 4 4 4 4 4 4 1 1 1 

𝐴𝑁𝑆𝑆𝑉𝑆𝐶 4 4 4 4 4 4 1 1 1 

𝐴𝑁𝑆𝑆𝐹𝑃 4 4 4 4 4 4 1 1 1 

 

Moreover, when the decision makers prefer to obtain more information about the 

highest improvement percentage for the AATS measure, the following conclusions can 

be utilized based on Figure 4-12. They can have access to the exact values of 

performance measures and design parameters simultaneously using tables presented in 

this section earlier. 

 The highest improvement percentage for the AATS measure can be assigned to 

the VP control chart for shifts in mean of 𝛿 𝜖 {0.25, 0.50,0.75,1,1.25}. 

 The highest improvement percentage for the AATS measure can be assigned to 

the VSIC and the VSI control charts for a shift in mean of 𝛿 = 1.5 

 The improvement percentage has a negative value, or zero value for shifts in 

mean of 𝛿 𝜖 {2,2.5,3}, which means that using a FP chart in such shifts in mean is 

more efficient than using other adaptive control charts. 



 

103 

 

 

Figure 4-12: The improvement percentages of optimum AATS values for the seven 

adaptive models in comparision to the FP control chart 
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 The improvement percentage has a negative value, or zero value for shifts in 

mean of 𝛿 𝜖 {2,2.5,3}, which means that using a FP chart in such shifts in mean is 

more efficient than using other adaptive control charts. 

 

 

Figure 4-13: The improvement percentages of optimum ANOS values for the seven 

adaptive models in comparision to the FP control chart 
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 The highest improvement percentage for the ANOS measure can be assigned to 

the VSIC control charts for shift in mean of 𝛿 = 1.25. 

 The improvement percentage has a negative value, or zero value for shifts in 

mean of 𝛿𝜖 {1.5,2,2.5,3}, which means that using a FP chart in such shifts in 

mean is more efficient than using other adaptive control charts. 

 

Figure 4-14: The improvement percentages of optimum ANSS values for the seven 

adaptive models in comparision to the FP control chart 
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4.3 Summary 

 

In this research, unlike previous studies which concentrated on evaluating 

performance of adaptive control charts for a specific set of design parameters and used a 

forward perspective, we focused on a reverse standpoint. In order to gain more 

information about design parameters of optimal points with minimum values for 

performance measures of various seven adaptive control charts, a coded algorithm was 

proposed to search the entire response space. In this way, we concentrated on finding 

optimal minimum values of three major performance measures (AATS, ANOS, and 

ANSS) of various adaptive 𝑋 ̅control charts. For this purpose, we considered all possible 

combinations of design parameters and searched the entire feasible response space by 

using programming loops. Afterwards, at each obtained optimal minimum value for a 

given performance measure, the related values for other performance measures, design 

parameters, and improvement percentages in comparison to the FP control chart were 

evaluated for broad ranges of shifts in mean with respect to each adaptive control chart.  

Based on obtained results, more information about the design parameters and 

value of all performance measures at optimal points were disclosed. The implementation 

of proposed methodology and achieved data in this paper, provide an efficient guideline 

for decision makers and quality managers to get more information about discrete optimal 

points in the response space in which performance measures of various adaptive control 

charts have their minimum values for broad ranges of shifts in mean. 
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Chapter 5 

5 Evaluation of Recycling Opportunities and Waste 

Disposal Alternatives in a Health Care Supply Chain 

Using an Intuitionistic Fuzzy VIKOR Method 

 

The two objectives of this chapter are to evaluate recycling opportunities in health 

care supply chains/systems and present a new multi-criteria decision making technique 

based on intuitionistic fuzzy set theory and VIKOR method for assessing health care 

waste disposal technologies. Linguistic variables are utilized by decision makers to 

evaluate the ratings and weights for the determined criteria. The intuitionistic fuzzy 

weighted averaging (IFWA) operator is applied to aggregate individual opinions of 

decision makers into a group evaluation. The computational procedure of the proposed 

methodology is demonstrated through a case study of a hospital located in Ohio, U.S. 

Four health care waste treatment alternatives considered in this research entail 

incineration, steam sterilization, microwave, and landfilling. The proposed approach 

estimates the GHG reductions and potential economic benefit derived from increased 

recycling for the case study. In addition, analyzing the obtained results shows that steam 
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sterilization and microwave technologies are the best alternatives for disposing health 

care wastes as they emit fewer pollutants and generate non-hazardous residues. 

Health care wastes and health stream have steeply increased in recent decades as a 

result of increased population, number, and size of health care facilities, as well as the use 

of disposable medical products (Manga et al., 2011; Moreira et al., 2013; Dursun et al., 

2011a; Dursun et al., 2011b; Liu et al., 2013; Abed-Elmdoust and Kerachian, 2012). In 

accordance with waste categorization for health care systems by WHO, major waste 

streams include general wastes, infectious wastes, pathological wastes, sharp wastes, 

wastes with high content of heavy metals, hazardous wastes, pharmaceutics wastes, and 

radioactive wastes as given in Table 5-1 (Ananth et al., 2010; Komilis et al., 2012; Liu et 

al., 2013). General waste is not regulated or defined as hazardous or potentially 

dangerous waste and does not require special handling or treatment. It can be dealt with 

via municipal waste disposal mechanisms. This kind of waste can also be evaluated for 

potential recycling opportunities. The rest of health care waste streams are regarded as 

special wastes that require special treatment and disposal (Lee et al., 2004; Windfeld and 

Brooks, 2015). Health care waste disposal is an issue of significant scale. The U.S. 

creates over 3.5 million tonnes of medical waste per year with an average disposal cost of 

$790 per tonne (Windfeld and Brooks, 2015). Planning of health care waste management 

is necessary to prevent waste from adversely affecting human and environmental health. 

For the successful implementation of any health care waste management plan, a 

fundamental prerequisite is the availability of sufficient and accurate information about 

the quantities and composition of the waste generated (Qdais et al., 2007). Controlling 

health care wasest is a very critical issue. Sustainability and the health of freshwater 
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ecosystems are vital to insure their safe and continued use. Health care wastes can 

contaminate water resources and soil. The water resources which are close to the 

hospitals and health care centers are also subject to high intensity risk of contamination.  

Daneshvar et al. (2016) focused on water quality and stream health and tried to 

disclose the interactions between socioeconomic variable such as and stream health. For 

this purpose, they applied regression models and evaluated the effects of spatial data 

resolution on environmental justice analysis with respect to stream health integrity. 

Seventeen socioeconomic/physiographic indicators representing population, household 

composition, racial composition of household, female headed households, housing, 

educational disadvantage, economic disadvantage, welfare receipt, and unemployment in 

addition to four stream health measures (including one fish and three macroinvertebrates 

indices) were utilized in their research. 

There are some remedies for improving the water quality such as watershed 

management. Herman et al. (2015) introduced a new approach to improve stream health 

to a desirable condition at the lowest cost by optimizing the best management practice 

implementation plan. Several hydrological models including the Soil and Water 

Assessment Tool (SWAT) and Hydrologic Index Tool (HIT) were integrated and the 

results were used to develop a stream health model. SWAT model was calibrated and 

validated against daily streamflow data from nine US geological gauging stations for a 

10-year-period while the stream health model was calibrated and validated against 193 

biological monitoring sites operated by the Michigan Department of Natural Resources. 

They applied GA to guide the stream health model in order to design the watershed-scale 

management strategies that included five best management practices. Herman et al. 
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(2016) used GA for optimization of bioenergy crop selection and placement based on a 

stream health indicator. Daneshvar et al. (2015) compared multiple-point and single-point 

calibration performance by using SWATsoftware. They considred Saginaw River 

Watershed as a case study. 

 

Javidi Sabbaghian et al. (2016) introduced the application of risk-based MCDM 

for selection of the best agriculture scenario for effective watershed management which 

results in better quality of water resources. They used trapezoidal fuzzy numbers for 

linguistic variables. 

Abouali et al. (2016a) introduced a new MATLAB hydrological index tool  as a 

high performance library to calculate 171 ecologically relevant hydrological indices. The 

software was developed with special emphasis on its computational performance and its 

application for big data sets, containing thousands of streams. 

Another study was also conducted by Abouali et al. (2016b) on proposing a new 

two-phase modeling approach in order to model four biotic indices. For each of these 

indices and in the first phase, initial estimates were provided for both the predicted biotic 

index and the error of those predictions. In the second phase, initial estimates are 

combined with the predicted errors to get a final estimate for the biotic index. 

 

 

To improve health care waste management, several studies have focused on 

selection of the appropriate health care waste disposal methods using MCDM techniques.  

Conventional MCDM techniques such as AHP have been employed in numerous case 
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studies to assess proper technologies for health care waste treatment (Brent et al., 2007; 

Hsu et al., 2008; Karagiannidis et al., 2010). 

As the decision to select an optimal technology for the disposal of health care 

waste is a complicated multi-criteria decision analysis problem involving both qualitative 

and quantitative factors, recent studies have applied hybrid fuzzy logic based MCDM 

methods. Fuzzy logic based MCDM methods help to deal with uncertainty of information 

and the vagueness of decision makers’ recognition. Dursun et al. (2011a) proposed 

MCDM techniques for conducting an analysis based on multi-level hierarchical structure 

and fuzzy logic for the evaluation of healthcare waste treatment alternatives. Hatami-

Marbini et al. (2013) recommended fuzzy group Electre method for safety and health 

assessment in hazardous waste recycling facilities. They considered quantitative data and 

qualitative judgments provided by three decision makers in a case study and captured the 

ambiguity and impreciseness in their judgments with fuzzy logic. Liu et al. (2013) 

applied a VIKOR-based fuzzy method to assess four possible treatment technologies 

including incineration, steam sterilization, microwave, and landfill in accordance with 

defined criteria. In their next study, they focused on the integration of fuzzy multi-

objective ratio analysis with DEMATEL method for the same case study (Liu et al., 

2015).  

Although fuzzy numbers can represent the vagueness of ‘‘agreement’’, they 

cannot depict the ‘‘disagreement’’ of the decision makers and previous studies on 

selection of optimal technologies for health care waste disposal have not dealt with this 

matter. To tackle with this gap, in this chapter we focus on recycling opportunities in 

health care waste streams and propose a hierarchical multi-criteria group decision making 
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model based on IFSs theory and VIKOR method to choose optimal technologies for 

disposing non-recyclable wastes in health care supply chains/systems. We use the 

concept of IFSs theory and linguistic values to overcome the uncertainty. IFSs have 

revealed definite merits in treating vagueness and uncertainty in comparison to fuzzy sets 

theory that cannot consider hesitancy degree of decision makers (Bansal et al. 2014; 

Datta et al., 2013). IFSs enable us to model unknown information utilizing another 

degree called the degree of hesitation. So, in practical situations where the decision 

makers are unsure about the preferences, IFSs would be an appropriate tool to get them 

opinions compared to fuzzy sets. IFSs can represent three grades of membership function 

i.e.; membership degree, non-membership degree, and hesitancy degree (Liu and Wang, 

2007; Xu and Liao, 2013, 2015, Govindan et al., 2015). 

Utilizing VIKOR method, which is one of beneficial MCDM techniques, enables 

us to achieve compromise solutions for a problem with conflicting criteria such as 

evaluation of waste disposal alternatives in health care systems. The compromise solution 

is a feasible solution, which is the closest to the ideal, and a compromise denotes an 

agreement established by mutual concessions. The key benefits of the VIKOR method 

are that it introduces the multi-criteria ranking index based on the particular measure of 

“closeness” to the ideal solution, and the obtained compromise solution provides a 

maximum group utility for the “majority” and a minimum individual regret for the 

“opponent” (Opricovic, 2011; Liu et al., 2013; Mazdeh et al., 2013). An extension of the 

VIKOR in intuitionistic fuzzy environment result in coping with the both tangible and 

intangible criteria and to determine the appropriate treatment alternatives for the health 
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care waste disposal. We also apply an IFWA to aggregate the individual opinions of 

decision makers. 

The rest of the chapter is organized as follows: in section 5.1, we present a 

generalized conceptual model to determine recycling opportunities and select the best 

treatment technology/technologies for waste disposal in a health care supply 

chain/system. In section 5.2 and section 5.3, we review some basic definitions of IFSs 

theory and VIKOR method successively. In section 5.4, we present the intuitionistic 

fuzzy group VIKOR method proposed in this study. In section 5.5, we demonstrate the 

application of the proposed method for evaluation of recycling opportunities and 

assessment of waste disposal alternatives in a hospital located in Ohio, Toledo area. We 

also present the achieved results in this section. In section 5.6, we summarize our 

conclusions.  
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Table 5.1: Major healthcare waste streams 

Health care waste category Examples 

a) General wastes 

Wastes derived from normal inpatient wards, outpatient 

examination rooms, first aid areas, administration, 

cleaning services, kitchens, stores, and workshops. 

b) Infectious wastes 

Potentially infectious wastes that require special 

management inside and outside the health care system 

such as microbiological laboratory wastes (blood and 

blood containers, Serologic wastes, etc.), discarded 

surgery wastes, and air filters that contain bacteria and 

viruses. 

c) Pathological wastes 
Tissues, organs, and fluids removed during surgery or 

autopsy medical procedure. 

d) Sharp wastes Needles, syringes, blood vials, etc. 

e) Wastes with high content of heavy 

metals 

Batteries, broken thermometers, blood-pressure gauges, 

etc. 

f) Hazardous wastes 

Wastes that are subject to special handling because of their 

physical /chemical properties or legal reasons such as 

hazardous chemicals. 

g) Pharmaceutics wastes 

Waste entailing pharmaceuticals that are expired or no 

longer needed; items contaminated by or containing 

pharmaceuticals (bottles, boxes). 

h) Radioactive wastes 

Waste containing radioactive substances (e.g. unused 

liquids from radiotherapy or laboratory research; 

contaminated glassware and packages). 

 

5.1 Research Approach 

 

In this section, a generalized conceptual model to determine recycling 

opportunities and select the best treatment technology/technologies for waste disposal in 

a health care system is presented (Figure 5-1). The conceptual model begins with the 

identification of the MSW streams at the health care system that can be completed via 



 

115 

 

several methods such as data provided by the facility through waste hauling and historical 

records. Moreover, by examining typical waste containers at the health care system an 

estimate of the overall MSW stream can be determined. A waste audit is necessary to 

determine annual MSW generation in terms of volume, tonnages, and composition. The 

process involves measuring the size of each container, and based on the number of times 

that the container is emptied and material composition, extrapolating the annual MSW 

stream generated from the container. Then, based on current recycling levels, the amount 

of recyclables disposed at landfills can be determined. This data helps the health care 

system in regards to changes in the present waste management programs to capture the 

most recyclables and reduce the waste hauling expenses. 

Estimation of the GHG emissions can also be done either in MTCE or metric tons 

of carbon dioxide equivalent (MTCO2 Eq.). Table 5.1.1 represents the GHG emissions 

associated with managing one short ton of respective MSW material. These factors were 

provided from the EPA WARM (EPA, 2015b). The negative values in the table represent 

the reduction in emissions. Overall emissions from a waste component can be computed 

by using the following equation: 

 

𝐸𝑥 = (𝑊𝑥
𝑙 × 𝐹𝑥

𝑙) + (𝑊𝑥
𝑟 × 𝐹𝑥

𝑟) 

Equation 5.1-1 
 

Where 𝐸𝑥 is the overall emissions from waste component 𝑥, 𝑊𝑥
𝑙 is the overall 

weight of waste component 𝑥 that is being landfilled. 𝐹𝑥
𝑙 refers to GHG emission factor 

for waste component 𝑥 when recycled. For instance, at a certain facility, if it is evaluated 

that 4 tonnes of PET are generated and disposed at a landfill, the carbon emissions 

http://www.epa.gov/
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associated with the PET is 0.04 MCTE. If the same quantity of PET is captures and 

recycled the emissions reduction will be 1.72 rather than 1.68 MCTE. This is due to the 

fact that these 4 tonnes of PET are not landfilled; this reduces an additional 0.04 MCTE 

as a result of recycling. Based on the waste generation levels at a health care system, 

various recycling opportunities can exist. The major waste streams can be identified and 

all potential possibilities for recycling can be studied for the most feasible economic and 

operational options. Once, the recyclables at the health care system are estimated, 

potential revenue from the sale of these materials on the commodity market can be 

computed on the basis of the current market value. Emissions reduction from recycling 

can be estimated, too.  In the next stage, it is also necessary to evaluate various waste 

disposal alternatives for non-recyclable materials by using efficient MCDM methods. In 

this study, we propose intuitionistic fuzzy based VIKOR method. 

 

 

Table 5.1.1: GHG emission factors for list of materials commonly recycled in 

Lucas County, Toledo, Ohio 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material 
GHG emission factors if 

recycled (MTCE/metric ton) 

GHG emission factors if 

landfilled (MTCE/metric ton) 

Mixed office paper -0.93 0.12 

Cardboard -0.85 0.1 

Newspaper -0.73 -0.24 

PET (1) -0.42 0.01 

HDPE(2) -0.38 0.01 

Aluminum cans -3.72 0.01 
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5.2 Intuitionistic Fuzzy Sets Approach 

 

In order to deal with the vagueness, ambiguity and subjectivity of human 

judgment, fuzzy sets theory (Bellman and Zadeh, 1965) was introduced to express the 

linguistic terms in decision making process. Up to now, many new approaches and 

theories treating imprecision and uncertainty have been proposed. Among them 

intuitionistic fuzzy sets (IFSs) introduced by Atanassov (1986) have been considered as 

Identification of waste streams at the 

health care system 

Collection of data by auditing the 

health care system 

Estimation of overall waste, overall 

emissions under present condition  

Recycling Opportunities 

Evaluation of Waste Disposal 

Alternatives: Using Intuitionistic 

Fuzzy VIKOR  

Estimation of revenue 

from recycling 

Estimation of emissions 

reduction from recycling 

Estimation of the waste stream 

that can be recycled 

Figure 5-1: Flow chart of generalized model to evaluate waste disposal 

alternatives, recycling opportunities, GHG emission, and revenue from 

recycling program 
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suitable ways in modeling many real situations. IFSs are characterized by two functions 

expressing the degree of belongingness and the degree of non-belongingness, 

respectively. In the following, for the purpose of reference, some important definitions 

and notations of IFSs theory will be reviewed.  

Definition 1. IFS A in a finite set X can be defined as (Atanassov, 1986, Nikjoo 

and Saeedpoor, 2014): 

 , ( ), ( ) |A AA x x v x x X   

Equation 5.2-1 

 

Here  ( ), ( ) : 0,1A Ax v x X   are membership function and non-membership 

function sequentially and 0 ( ) ( ) 1A Ax v x   . A third parameter of IFS is IF index 

of ( )A x that implies the hesitation degree of whether x belongs to A or not. 

 

( ) 1 ( ) ( )A A Ax x v x     

Equation 5.2-2 

 

The value of ( )A x indicates whether the knowledge about x is more certain or 

uncertain. Moreover, when for all elements of universe ( ) 1 ( )A Ax v x    or in 

other word IF index is changed into zero, IFS A is transformed into an ordinary 

fuzzy set (Liu and Wang, 2007).  

Definition 2. Let A and B are IFSs of the set X, then some operations are defined 

as follows (Atanassov, 1986): 
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 ( ). ( ), ( ) ( ) ( ). ( ) |A B A B A BA B x x v x v x v x v x x X       

Equation 5.2-3 

 ( ) ( ) ( ). ( ), ( ). ( ) |A B A B A BA B x x x x v x v x x X         

Equation 5.2-4 

 min( ( ), ( )),max( ( ), ( )) |A B A BA B x x v x v x x X    

Equation 5.2-5 

 max( ( ), ( )),min( ( ), ( )) |A B A BA B x x v x v x x X    

Equation 5.2-6 

 

5.3 VIKOR Method 

Opricovic and Tzeng (2004) developed the VIKOR method for multi-criteria 

decision making. This technique focuses on ranking and selecting from a set of 

alternatives, and determines compromise solutions for a problem with conflicting criteria, 

which can help the decision makers to reach a final decision. (Opricovic and Tzeng 

2004). Here, the compromise solution is a feasible solution which is the closest to the 

ideal. It introduces the multi-criteria ranking index based on the particular measure of 

closeness to the ideal solution. If every alternative i is denoted as iA then multi-criteria 

ranking index is shown in the Equation 5.2-7 below for 1 P   : 

 

 

1/

* *

, ,

1

( ) /( )

p
n

P

P i j j i j j j

j

L W f f f f 



 
     

 
 1,2,...,i m  

Equation 5.2-6 
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Within the VIKOR method 1. jL  and . jL are used to formulate ranking measure. 

1. jL  is accounted for “concordance” and can provide information about the maximum 

group utility or majority. Similarly, . jL is interpreted as “discordance” and provides 

information about the minimum individual regret of the “opponent”. Furthermore, in 

comparison to TOPSIS method, another MCDM method, which is based on aggregating 

function representing closeness to ideal, VIKOR method consider the relative importance 

of the distances from ideal points. Also, the normalized value in the VIKOR method does 

not depend on the evaluation unit of criterion function, whereas the normalized values by 

vector normalization in the TOPSIS method may depend on the evaluation unit methods 

(Chu et al., 2007). 

 

5.4 Intuitionistic Fuzzy VIKOR 

In this section, we focus on hybridization of the VIKOR with fuzzy intuitionistic 

approach. Let  1 2, ,..., mA A A A   be a set of alternatives and  1 2, ,..., nX x x x  a set of 

criteria, the intuitionistic fuzzy VIKOR method described next through a series of 

structured and successive steps.  

Step 1. In this stage, the weights of decision makers are determined. Assuming that there 

are L decision makers (DMs) ,their importance are expressed as linguistic terms in 

intuitionistic fuzzy numbers and  , ,K k k kD v   is considered as an intuitionistic fuzzy 
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number for rating of kth DM, then the weight of kth DM can be obtained as Equation 5.4-1 

for 
1

1
L

k

k




   (Boran et al., 2009). 

1

k
k k

k k

k

L
k

k kk
k k

v

v


 





 



  
     

  
     


 

Equation 5.4-1 

 

Step 2. In this stage, the aggregated intuitionistic fuzzy decision matrix based on the 

opinions of DMs is formed. Let  ( ) ( )

,

k k

i j
m n

R r


  is an intuitionistic fuzzy decision 

matrix of each DM and the    set  1 2, ,..., L      where 
1

1
L

k

k




   and  0,1k   

shows the weight of each DM. In order to form an aggregated intuitionist fuzzy decision 

matrix, we have used the intuitionistic fuzzy weighted averaging (IFWA) operator which 

is proposed by Xu (2007), therefore we will have:  ,i j m n
R r


  where:  

 (1) (2) ( ) (1) (2) (3) ( )

, , , , 1 , 2 , 3 , ,

( ) ( ) ( ) ( )

, , , ,

1 1 1 1

, ,..., ...

1 (1 ) , ( ) , (1 ) ( )k k k k

L L

i j i j i j i j i j i j i j L i j

L L L L
k k k k

i j i j i j i j

k k k k

r IFWA r r r r r r r

v v



   

   

 
   

     

 
     
 
   

  

Equation 5.4-2 

 

Here , ( ( ), ( ), ( ))
i i ii j A j A j A jr x v x x   , 1,2,...,i m , 1,2,...,j n  and the aggregated 

intuitionist fuzzy decision matrix will be defined as: 
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1,1 1,

,

,1 ,

m

i j

n n m

r r

R r

r r

 
 

  
 
   

Equation 5.4-3 

 

Step 3. In this stage, the weights of criteria are defined. In order to achieve W which 

indicates a set of grades of importance, all of the DMs’ opinion related to the importance 

of criterion must be combined together. If we assume that ( ) ( ) ( ) ( ), ,k k k k

j j j jW v      is an 

intuitionistic fuzzy number which is allocated to the criterion jx  by kth DM, then the 

weights of criteria can be calculated by using IFWA operator as below: 

 (1) (2) ( ) (1) (2) (3) ( )

1 2 3

( ) ( ) ( ) ( )

, , , ,

1 1 1 1

, ,..., ...

1 (1 ) , ( ) , (1 ) ( )k k k k

L L

j j j j j j j L j

L L L L
k k k k

i j i j i j i j

k k k k

W IFWA W W W W W W W

v v



   

   

 
   

     

 
     
 
   

  

Equation 5.4-4 

 Where 1 2, ,..., jW W W W    ,  , ,j j j jW v     , 1,2,...,j n  

 

Step 4. In this stage, the aggregated weighted intuitionistic fuzzy decision matrix is 

formed. After determining the weights of criteria and formation of aggregated intuitionist 

fuzzy decision matrix, each element of aggregated weighted intuitionistic fuzzy decision 

matrix will be computed according to Equation 4 as follows: 

 , ( ). ( ), ( ) ( ) ( ). ( ) |
i i iA w A W A WR W x x x v x v x v x v x x X         

 

Equation 5.4-5 

 

The . ( )
iA W x  will be considered as follows: 
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. ( ) 1 ( ) ( ) ( ) ( ) ( ). ( )
i i i iA W A W A w A Wx v x v x x x v x v x       

 

Equation 5.4-6 

 

 

Then, the aggregated weighted intuitionistic fuzzy decision matrix will be defined as 

below: 

1,1 1,

,

,1 ,

' '

'

' '

m

i j

n n m

r r

R W r

r r

 
 

   
 
 

 

Where 
'

, , , ,( ', ', ') ( ( ), ( ), ( ))
i i ii j i j i j i j A w j A w j A w jr v x v x x        

Equation 5.4-7 

 

Step 5. In this stage, the best and the worst values (
*

if , if

) for each criterion are 

determined. Assuming that 1J  refers to the benefit criteria, 2J  refers to the cost criteria, 

for 1,2,...,j n  we will have: 

* * * * * *

, 1max  (( max ( ), min ( ), 1 ) | )
i ij i j j A w j j A w j j j j

ii i
f x x v v x v j J             

Equation 5.4-8 

* * * * * *

2min (( min ( ), max ( ), 1 ) | )
i ij ij j A w j j A w j j j j

i i i
f x x v v x v j J          

 

Equation 5.4-9 

1min (( min ( ), max ( ), 1 ) | )
i ij ij j A w j j A w j j j j

i i i
f x x v v x v j J               

 

Equation 5.4-10 

2max (( max ( ), min ( ), 1 ) | )
i ij ij j A w j j A w j j j j

ii i
f x x v v x v j J               

 

Equation 5.4-11 

 

Step 6. In this stage, the values of iS  which refers to the sum of deviations and iR  which 

refers to maximum deviation are computed. 
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* * *

* * *

..

1
. .

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

i i i

n
j A w j j A w j j A W jA w A w A W

i

j j j j j j jA w A w A w A w A W A W

x x v x v x x x
S

x x v x v x x x

   

     

     
 

     
 


 

Equation 5.4-12 

* * *

* * *

..

. .

( ) ( ) ( ) ( ) ( ( ) ( )
max

( ) ( ) ( ) ( ) ( ) ( )

i i ij A w j j A w j j A w jA w A w A w

i
j

j j j j j jA w A w A w A w A w A w

x x v x v x x x
R

x x v x v x x x

   

     

     
 

     
 

  

Equation 5.4-13 

 

Step 7. In this stage, the value of iQ  is calculated as below and the alternatives are 

ranked by sorting the values of iS , iR , iQ  in ascending order. 

* *

* *

( ) ( )
(1 )

( ) ( )

i i
i

S S R R
Q

S S R R
 

 

 
  

   
Equation 5.4-14 

 

Here * min i
i

S S , * min i
i

R R , max i
i

R R  , and   is introduced as a weight for the 

strategy of maximum group utility, whereas (1 ) indicates the weight of the individual 

regret. 

Step 8. In this stage, the alternative 'A  which has the best value of iQ  (minimum value) 

is proposed as a compromise solution if the following two conditions are satisfied. First: 

Acceptable advantage: 

 

( ") ( ')Q A Q A DQ   

Equation 5.4-15 
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Here "A  is the alternative with second position in the ranking list by 
iQ  and 

1

1
DQ

m



 

(m is the number of alternatives). Second: Acceptable stability in decision making: 

Alternative 'A  must also be the best ranked by S or/and R. 

If one of the conditions is not satisfied, then a set of compromise solutions is proposed, 

which consists of Alternatives 'A  and "A  if only second condition is not satisfied, or 

Alternatives ', '',..., MA A A if the first condition is not satisfied; MA is determined by the 

relation ( ) ( ')MQ A Q A DQ   for maximum M (the positions of these alternatives are ‘‘in 

closeness”). 

 

5.5 Case Study and Achieved Results 

The proposed method was applied to a hospital located in Ohio, Toledo to 

evaluate waste disposal alternatives in health care systems. The solid waste assessment 

team of the BWRAP, sustainability laboratory of MIME department at University of 

Toledo, had the opportunity to conduct a recycling survey at a hospital located in Ohio, 

Toledo. The BWRAP is a joint partnership between the Lucas county solid waste 

management district and the University of Toledo. This hospital could accommodate over 

300 patients. A total of 530 solid waste containers were utilized in different areas at this 

hospital. The procedure used to estimate the annual solid waste streams at this hospital 

involved a large sampling of waste containers in several areas (Fig.5-2). The annual 

volume of waste generated was estimated and using the standard densities, the volumes 
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were converted to the annualized weights and compositions as displayed in Table 5.5.1 

and Figure 5-3.  

 

 

Figure 5-2: Some samples of inspected containers 

 

Table 5.5.1: Annual amounts of municipal solid waste generated at the studied hospital 

 

 

 

Component 
Metric Tons per 

Year 

Percent of 

total 

Metric tons 

recycled 

Metric tons 

not recycled 

Waste Streams That Can Be Recycled 

Mixed Office Paper 58.70 12.01% 0 58.70 

Newspaper 72.90 14.92% 0 72.90 

Cardboard 8.30 1.70% 0 8.30 

Aluminum Cans 16.60 3.40% 0 16.60 

PET (1) 22.00 4.50% 0 22.00 

HDPE (2) 81.20 16.62% 0 81.20 

Waste Streams That Cannot Be Recycled 

Non-recyclable/food 

waste 

228.90 46.85% 0 219.10 

Total  488.60 100.00% 0 488.60 
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Figure 5-3: Case study solid waste composition 

 

The team also evaluated the GHG emissions generated from each material by 

using GHG emission factors from Table 5.1.1. This evaluation is shown in Table 5.5.2. 

Table 5.5.3 displays the GHG emissions if additional materials are captured and recycled. 

Figure 5-4 shows the amount of emissions from landfilling and emissions reduction after 

recycling for the studied hospital. Recycling mixed office paper, aluminum cans, 

newspapers, and high-density polyethylene (HDPE) will be associated with significant 

GHG emission reduction of 61.0491 MTCE, 61.9180 MTCE, 35.7210 MTCE, and 

31.6680 MTCE successively. Additional annual revenue generated from recycling are 

shown in Table 5.5.4. The net revenue generated when all the recyclable waste 

components are recycled is approximately $36,973 per year. From the emissions 

standpoint, if the studied hospital recycles all of the potentially recyclable material, the 

overall emissions will reduce considerably from 30.4890 MTCE to -177.2121 MTCE. 

12%

15%

2%

3%

4%
17%

47%

Solid waste composition

Mixed Office Paper

Newspaper

Cardboard

Aluminum Cans

PET (1)

HDPE (2)

Non-recyclable/food waste
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Table 5.5. 2: GHG emissions under present conditions 

Component 
Metric tons 

landfilled per 

year 

Metric tons 

recycled per 

year 

Emissions from 

landfilling per 

year (MTCE) 

Emissions from 

recycling per year 

(MTCE) 

Mixed Office Paper 58.70 0.00 7.0440 0.00 

Newspaper 72.90 0.00 -17.4960 0.00 

Cardboard 8.30 0.00 0.8300 0.00 

Aluminum Cans 16.60 0.00 0.1660 0.00 

PET (1) 22.00 0.00 0.2200 0.00 

HDPE (2) 81.20 0.00 0.8120 0.00 

Non-recyclable/food 

waste 

228.90 0.00 38.9130 0.00 

 

 

Table 5.5.3: GHG emissions if recyclable materials are recycled 

Component 
Metric tons 

landfilled 

per year 

Metric tons 

recycled per 

year 

Emissions 

from 

landfilling per 

year (MTCE) 

Emissions 

after 

recycling per 

year (MTCE) 

Emission 

reduction 

(MTCE) 

Mixed Office Paper 0.00 58.70 0.00 -54.0051 61.0491 

Newspaper 0.00 72.90 0.00 -53.217 35.7210 

Cardboard 0.00 8.30 0.00 -7.0550 7.8850 

Aluminum Cans 0.00 16.60 0.00 -61.7520 61.9180 

PET (1) 0.00 22.00 0.00 -9.2400 9.4600 

HDPE (2) 0.00 81.20 0.00 -30.856 31.6680 

Non-recyclable/food 

waste 
228.90 0.00 38.9130 0.00 0.00 
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Figure 5-4: Emissions from landfilling and Emissions reduction after recycling for the 

case study 

 

 

 

Table 5.5. 4: Total additional revenue generated from increase recycling 

Component 
Metric tons recycled 

per year 

Current Market 

Value per ton in 

USA Midwest 

Revenue in dollars 

from sale of 

recyclables 

Mixed Office Paper 58.70 $40 $2,348 

Newspaper 72.90 $30 $2,178 

Cardboard 8.30 $90 $747 

Aluminum Cans 16.60 $600 $9,960 

PET (1) 22.00 $250 $5,500 

HDPE (2) 81.20 $200 $16,240 

Non-recyclable/food waste 0.00 - - 

Total 259.70 - $36,973 
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In the following stage, four potential treatment technologies (alternatives) have 

been considered to dispose health care wastes as follows: 

1A : Incineration, 2A : Steam sterilization,
3A  : Microwave, and 4A  : landfilling.  

It is needed to choose the best alternative/alternatives and achieve a ranking for 

alternatives. To select the most preferred alternative, an expert committee of three 

decision makers DM1, DM2, and DM3 from different institutions and department 

including a waste disposal company, environmental engineering, and industrial 

engineering has been formed. On the basis of experts’ viewpoint and studied literature 

(Dursun et al., 2011a; Liu et al., 2013; Liu et al., 2015) environmental, economic, 

technical, and social criteria with their related sub-criteria are recognized as Figure 5-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: Defined criteria and their related sub-criteria for selecting the best 

alternative/alternatives for health care waste disposal 

 

In order to obtain the decisions of the three decision makers on the four 

alternative health care waste disposal methods and on the weight of the defined six 

Objective: Selecting the best 

alternative/alternatives for 

disposing health-care wastes 

Economic 

aspect: Net 

cost per ton 

(X1) 

Environmental aspect: 

Waste residuals (X2), 

Release with health effects 

(X3) 

Technical aspect: 

Reliability (X4), 

Treatment 

effectiveness (X5) 

Social 

aspect: 

Public 

acceptance 

(X6) 
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criteria, a number of interviews were conducted. They were asked to provide their 

opinions on the ratings of the alternatives with respect to each criterion and the 

importance weights of the criteria by using the linguistic variables. Here, the VIKOR-

based intuitionistic fuzzy MCDM method is utilized to determine the best health care 

waste treatment alternative. This method consists of the following steps: 

Step 1. Intuitionistic fuzzy number related to the linguistic terms used for the ratings of 

the decision makers and criteria are given in Table 5.5.5. 

Table 5.5.5: Intuitionistic fuzzy number related to the linguistic variables for rating the 

criteria weights and decision makers’ weights 

 

 

The linguistic terms and the weights related to the DMs’ importance has shown in 

Table 5.5.6 and for calculating the weights of the decision makers, Equation 5.4-1 has 

been utilized. 

𝜆𝐷𝑀1 =
0.9

0.9 + (0.75 + 0.05
0.75

0.95
) + (0.5 + 0.05

0.50

0.95
)
= 0.406 

𝜆𝐷𝑀2 =
(0.5 + 0.05

0.50

0.95
)

0.9 + (0.75 + 0.05
0.75

0.95
) + (0.5 + 0.05

0.50

0.95
)
= 0.238 

𝜆𝐷𝑀3 =
(0.75 + 0.05

0.75

0.95
)

0.9 + (0.75 + 0.05
0.75

0.95
) + (0.5 + 0.05

0.50

0.95
)
= 0.365 

 

 

Linguistic terms Intuitionistic fuzzy number ( , ,v  ) 

Very important (VI) (0.90,0.10, 0.00) 

Important (I) (0.75,0.20, 0.05) 

Medium (M) (0.50,0.45, 0.05) 

Unimportant (U) (0.35,0.60, 0.05) 

Very unimportant (VU) (0.10,0.90, 0.00) 
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Table 5.5. 6: The importance of decision makers and their weights 

 

Step 2. Intuitionistic fuzzy numbers related to the linguistic terms which are shown in 

Table 5.5.7 are utilized to rate each alternative respecting each criterion by three decision 

makers.  

 

Table 5.5.7: Linguistic variables for rating the alternatives with respect to criteria  

 

The assessment of the four alternatives on each criterion provided by the decision 

makers is presented in Tables 5.5.8-5.5.11. 

 DM1 DM2 DM3 

Linguistic terms / 

Intuitionistic fuzzy 

number ( , ,v  ) 

Very important (VI) / 

(0.90,0.10, 0.00) 

Medium (M)/ 

(0.50,0.45, 0.05) 

Important (I)/ 

(0.75,0.20,0.05) 

Obtained Weight ( ) 0.406 0.238 0.356 

Linguistic terms Intuitionistic fuzzy numbers ( , ,v  ) 

Extremely high(EH) (1.00,0.00,0.00) 

Very very high(VVH) (0.90,0.10, 0.00) 

Very high(VH) (0.80,0.10,0.10) 

High(H) (0.70,0.20,0.10) 

Medium high(MH) (0.60,0.30,0.10) 

Medium(M) (0.50,0.40,0.10) 

Medium low(ML) (0.40,0.50,0.10) 

Low(L) (0.25,0.60,0.15) 

Very low (VL) (0.10,0.75,0.15) 

Very very low(VVL) (0.10,0.90,0.10) 
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Table 5.5.8: Linguistic assessments of alternatives provided by the five decision makers  

Criterion Alternatives DM1 DM2 DM3 

1X   

  

  

  

1A  VH VVH VH 

2A  MH MH L 

3A  M M M 

4A  MH L L 

2X   

  

  

1A  L MH L 

2A  L VVL M 

3A  L VL L 

4A  MH MH VH 

3X  

  

  

1A  VVH VH H 

2A  ML L VL 

3A  L L L 

4A  VH H VH 

4X  

  

  

1A  VVH VH H 

2A  MH H H 

3A  MH MH M 

4A  L M M 

5X   

  

  

1A  VH VH H 

2A  VH VVH MH 

3A  H M M 

4A  VVL ML L 

6X  

  

  

1A  VVH H H 

2A  L L L 

3A  L ML L 

4A  VH VH VVH 
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As a result of this step, the aggregated intuitionistic fuzzy decision matrix based 

on aggregation of decision makers’ opinions obtained as follows: 

 

                                  𝐴1                              𝐴2                                        𝐴3                               𝐴4 

𝑅 =

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6 [
 
 
 
 
 
 (0.8326,0.0982,0.0692)  (0.5005,0.3827,0.1168) (0.5028,0.3971,0.1002) (0.4199,0.4513,0.1288)  
(0.3557,0.5067,0.1376)  (0.3260,0.5676,0.1064) (0.2185,0.5676,0.2139) (0.6917,0.1990,0.1093) 
(0.8271,0.1264,0.0465) (0.2693,0.6021,0.1285) (0.2517, 0.5976,0.1507) (0.7826,0.1158,0.1017)

(0.8271,0.1264,0.0465) (0.6662, 0.2327,0.1012) (0.5692,0.3300,0.1008) (0.4140,0.4679,0.1180)

 (0.7711,0.1264,0.1025) (0.7844,0.1466,0.0690)  (0.5957,0.2999,0.2044) (0.2360,0.6743,0.0897)

 (0.8096,0.1491,0.0413) (0.2517, 0.5976, 0.1507) (0.2904,0.5722,0.1374) (0.8467,0.0982,0.0551) ]
 
 
 
 
 
𝑇

 

 

𝑟1,1 = (0.8326,0.0982,0.0692) 𝑟1,2 = (0.3557,0.5067,0.1376) 𝑟1,3 = (0.8271,0.1264,0.0465) 

𝑟1,4 = (0.8271,0.1264,0.0465) 𝑟1,5 = (0.7711,0.1264,0.1025) 𝑟1,6 = (0.8096,0.1491,0.0413) 

𝑟2,1 = (0.5005,0.3827,0.1168) 𝑟2,2 = (0.3260,0.5676,0.1064) 𝑟2,3 = (0.2693,0.6021,0.1285) 

𝑟2,4 = (0.6662, 0.2327,0.1012) 𝑟2,5 = (0.7844,0.1466,0.0690) 𝑟2,6 = (0.2517, 0.5976,0.1507) 

𝑟3,1 = (0.5028,0.3971,0.1002) 𝑟3,2 = (0.2185,0.5676,0.2139) 𝑟3,3 = (0.2517, 0.5976,0.1507) 

𝑟3,4 = (0.5692,0.3300,0.1008) 𝑟3,5 = (0.5957,0.2999,0.2044)  𝑟3,6 = (0.2904,0.5722,0.1374) 

𝑟4,1 = (0.4199,0.4513,0.1288) 𝑟4,2 = (0.6917,0.1990,0.1093) 𝑟4,3 = (0.7826,0.1158,0.1017) 

𝑟4,4 = (0.4140,0.4679,0.1180) 𝑟4,5 = (0.2360,0.6743,0.0897) 𝑟4,6 = (0.8467,0.0982,0.0551) 

  

Step 3. The importance of the criteria represented as linguistic terms have been shown in 

Table 5.5.9. Opinions of decision makers on criteria were aggregated by using Equation 

5.4-3 to determine the weight of each criterion.  

Table 5.5.9: The importance weight of criteria 

Criterion DM1 DM2 DM3 

1x
 

I I VI 

2x  I I I 

3x  VI I VI 

4x  I I M 

5x  VI I I 

6x  I M M 
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𝑊{𝑥1,𝑥2,𝑥3,𝑥4,𝑥5,𝑥6} =

[
 
 
 
 
 
(0.8230,0.1533,0.0237)
(0.7528,0.1974,0.0498)
(0.8779,01158,0.0063)
(0.6816,0.2655,0.0530)
(0.8294,0.1419,0.0215)
(0.6245,0.3220,0.0536)]

 
 
 
 
 
𝑇

 

 

Step 4. The aggregated weighted intuitionistic fuzzy decision matrix has formed by 

utilizing Equation 5.2-3as follows:  

                                  𝐴1                              𝐴2                                        𝐴3                               𝐴4 
𝑅 ⊗ 𝑊

=

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6 [
 
 
 
 
 
 (0.6853, 0.2364,0.0783) (0.4119,0.4773,0.1108) (0.4138,0.4895,0.0967) (0.3456,0.5354,0.1190)  
(0.2678,0.6041,0.1282) (0.2454,0.6529,0.1016) (0.1645,0.6176,0.2179) (0.5207,0.3571,0.1222) 
(0.7261,0.2276,0.0463) (0.2365,0.6482,0.1154) (0.2210,0.6441,0.1349) (0.6870,0.2182,0.0948)

(0.5637,0.3583,0.7779) (0.4540,0.4364,0.1096) (0.3880,0.5079,0.1042) (0.2822,0.6092,0.1086)
(0.6395,0.2567,0.1038) (0.6506,0.2739,0.0756) (0.4041,0.4043,0.1016)  (0.1958,0.7229,0.0814)

 (0.5056,0.4231,0.0714) (0.1572,0.7271,0.1157) (0.1814,0.7099,0.1087) (0.5287,0.3885,0.0827) ]
 
 
 
 
 
𝑇

 

 

 

Step 5-7. Net cost per ton ( 1x ), waste residuals ( 2x ), and release with health effects ( 3x ) 

are cost criteria; reliability ( 4x ), treatment effectiveness ( 5x ), and public acceptance ( 6x ) 

are benefit criteria. Thus, the values of 
*

jf  and jf 
for all criteria ratings are determined 

as follows: 

𝑓1
∗ = (0.4119,0.4773,0.1108) 

𝑓2
∗ = (0.1645,0.6176,0.2179) 

𝑓3
∗ = (0.2210,0.6441,0.1349) 

𝑓4
∗ = (0.5637,0.3583,0.7779) 

𝑓5
∗ = (0.6506,0.2739,0.0756) 

𝑓6
∗ = (0.5287,0.3885,0.0827) 

𝑓1
− = (0.6853, 0.2364,0.0783) 

𝑓2
− = (0.5207,0.3571,0.1222) 

𝑓3
− = (0.7261,0.2276,0.0463) 

𝑓4
− = (0.2822,0.6092,0.1086) 

𝑓5
− = (0.1958,0.7229,0.0814) 

𝑓6
− = (0.1572,0.7271,0.1157) 
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The values of iS  , iR , iQ for all alternatives are also computed and shown in Table 5.5.10. 

 

Table 5.5.10: The values of iS  , iR , iQ for all alternatives 

 𝐴1 𝐴2 𝐴3 𝐴4 

iS
 

2.4448 2.0775 2.2607 4.1651 

iR
 

1.0000 1.0000 0.9349 1.0000 

iQ
 

0.5880 0.5000 0.0439 1.0000 

 

Step 8. The result of ranking alternatives by the values of iS  , iR  and iQ  are shown in 

Table 5.5.11. Based on this result,  3A  has the minimum value of iQ   (0.0439) and the 

two conditions discussed before are checked here. The first condition is satisfied: 

2 3 0.45( ) ( ) 0.333361Q A Q A   . Related to the second condition: the value of iR   for 

alternative 3A   is the minimum and the value of iS   for alternative 2A   is minimum. 

Therefore, alternatives 2A and 3A  are the best choices. Thus, the most suitable health care 

waste treatment technologies are steam sterilization and microwave in this case study. 

Table 5.5. 11: Ranking the treatment technologies (alternatives) for health care wastes 

dispose by the values of iS  , iR  and iQ in increasing order 

 𝐴1 𝐴2 𝐴3 𝐴4 

By iS  3 1 2 4 

By iR  2 2 1 2 

By iQ  3 2 1 4 
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5.6 Summary 

The results obtained in this chapter are in harmony with those achieved by Dursun 

et al. (2011b) and Liu et al. (2013). Steam sterilization and microwave are placed in the 

top rankings since they appear to emit fewer pollutants and generate non-hazardous 

residues. “Incineration” ranks after non-incineration alternative technologies in view of 

the fact that the incineration of health care wastes produces particulate matters and 

chemical compounds that can potentially have an effect on human health and safety, and 

have an adverse impact on the environment. While landfill disposal is an economic 

alternative compared with other alternative methods, it should only be used in a limited 

extent because of its adverse environmental and public health effects. The construction of 

central steam sterilization and microwave units can be viewed as the most cost effective 

and the most suitable solutions from the environmental and public health point of view. 
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Chapter 6 

6 Summary and Future Research 
 

The present dissertation focused on a) proposing an effective optimization model 

for the GSCP under CO2 emission constraints, inventory control, capacity constraints, 

and transportation constraints, b) presenting efficient guideline for a better quality control 

using adaptive control chart in the various processes involved in a supply chain network/ 

production system to minimize wastes and defective products, and c) evaluating the 

waste streams and recycling opportunities for various echelons of a supply chain. The 

achieved results verify that the proposed model, presented guideline, and evaluation of 

waste streams can enhance the GSCP significantly and provide the decision makers with 

various effective scenarios to decide more efficiently when they plan for their green 

supply chain network.  

As a future research, the proposed GSCP optimization model can be extended to 

be applicable for supply chain networks with stochastic demands as well. In such a 

situation, a stochastic programming-based approach can be applied to model the planning 

process as it reacts to demand realizations unfolding over time. In addition, in some cases 

that the location of various echelons in the supply chain network needs to be selected, we 

can take supply chain network configuration and design decisions into account and 
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attempt to optimize distances for transportation/logistics systems in a way that results in 

reduction of CO2 emissions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

140 

 

References 
 

Abed-Elmdoust, A., & Kerachian, R. (2012). Regional hospital solid waste assessment 

using the evidential reasoning approach. Science of the Total Environment, 44, 

67–76. 

Abouali, M.,  Daneshvar, F., Nejadhashemi, A.P. (2016a). MATLAB Hydrological Index 

Tool (MHIT): A high performance library to calculate 171 ecologically relevant 

hydrological indices. Ecological Informatics, 33, 17–23. 

Abouali, M., Nejadhashemi, A.P., Daneshvar, F., Woznicki, S.A. (2016b). Two-phase 

approach to improve stream health modeling. Ecological Informatics, 34, 13–21. 

Agency, I.E. (2014). World energy outlook 2015, source OECD (The Organization for 

Economic Co-operation and Development (OECD) Energy. 

Ageron, B., Gunasekaran, A., & Spalanzani, A. (2012). Sustainable supply management: 

An empirical study. International Journal of Production Economics, 140(1), 168–

182. 

Ahi, P., & Searcy, C. (2013). A comparative literature analysis of definitions for green 

and sustainable supply chain management. Journal of clean production, 52, 329-

341. 

Ahmed, I., Sultana, I., Paul, S.K., & Azeem, A. (2014). Performance evaluation of 

control chart for multiple assignable causes using genetic algorithm. International 

Journal of Advanced Manufacturing Technology, 70, 1889–1902.  

Akhavan, P., Elahi B., & Jafari, M. (2014). A new integrated knowledge model in 

supplier selection: The case of an Asian automotive supply chain. Journal of 

http://www.emeraldinsight.com/doi/abs/10.1108/EBS-07-2014-0035
http://www.emeraldinsight.com/doi/abs/10.1108/EBS-07-2014-0035


 

141 

 

Education, Business and Society: Contemporary Middle Eastern Issues, Emerald 

Group Publishing, 7(4), 333-368. 

Amin, S.H., & Zhang, G. (2013). A multi-objective facility location model for closed-

loop supply chain network under uncertain demand and return. Applied 

Mathematical Modeling, 37, 4165–4176. 

Ananth, A.P., Prashanthini, V., & Visvanathan, C. (2010). Healthcare waste management 

in Asia. Waste Management, 30, 154–161. 

Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96. 

Bansal, A., Kumar, P., & Issar, S. (2014). Evaluation of a 3PL company: an approach of 

fuzzy modelling. International Journal of Advanced Operations Management, 

6(2), 131–161. 

Badkoobehi, H., Elahi, B., & Makui, A. (2011). A Novel Economic Modeling for Supply 

Chain Planning: A Three-Echelon Supply Chain, Business Research Yearbook, 

Publication of the International Academy of Business Disciplines, 18 (2), 433-

439. 

Bellman, R.E., & Zadeh, L.A. (1970). Decision-making in a fuzzy environment. 

Management Science, 17, 141–164. 

Boran, F., Genc, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy 

group decision making for supplier selection with TOPSIS method. Expert 

Systems with Applications, 36, 11363–11368. 

Brent, A.C., Rogers, D.E.C., Ramabitsa-Siimane, T.S.M., & Rohwer, M.B. (2007). 

Application of the analytical hierarchy process to establish health care waste 

http://www.iabd.org/
http://www.iabd.org/


 

142 

 

management systems that minimize infection risks in developing countries. 

European Journal of Operational Research, 181, 403–424.  

Bussieck, M. R. & Vigerske, S. (2011). MINLP Solver Software. Publication of Wiley 

Encyclopedia of Operations Research and Management Science.  

Castagliola, P., Zhang, Y., Costa, A., & Maravelakis, P. (2012). The variable sample size 

X̅ chart with estimated parameters. Quality and Reliability Engineering 

International, 28(7), 687–699. 

Chen, Y. K., Hsieh, K. L., & Chang, C. C. (2007). Economic design of the VSSI X̅ 

control charts for correlated data. International Journal of Production Economics, 

107, 528–539. 

Chen, Y.K., Liao, H.C., & Chiu, F.R. (2008). Re-evaluation of performance for adaptive 

charts: viewpoints of inspection efficiency and efforts. International Journal of 

Quality and Reliability Management, 25(6), 621–635. 

Cheng, Y.T., Yang, C.C., & Wu, S.C. (2013). Optimal variable sample size and sampling 

interval MSE chart based on improved square root transformation. 

Communications in Statistics - Simulation and Computation, 42, 534–551. 

Chou, C.Y., Chen, C.H., & Liu, H.R. (2008). Economic Design of EWMA Charts with 

Variable Sampling Intervals. Journal of Quality and Quantity, 40, 879–896. 

Coskun, S., Ozgur, L., Polat, O., & Gungor, A. (2015). A model proposal for green 

supply chain network design based on consumer segmentation. Journal of 

Cleaner Production, 110, 149-157. 

Costa, A.F.B. (1994). �̅� Charts with variable sample size. Journal of Quality Technology, 

26, 155–163. 



 

143 

 

Costa, A.F.B. (1997). �̅� Charts with variable sample size and sampling intervals. Journal 

of Quality Technology, 29, 197–204. 

Costa, A.F.B. (1999). �̅� Charts with variable parameters. Journal of Quality Technology, 

31, 408–416. 

Costa, A.F.B, & Machado, M.A.G. (2011). Variable parameter and double sampling �̅� 

charts in the presence of correlation: The Markov-chain approach. International 

Journal of Production Economics, 130, 224–229. 

Chu, M. T., Shyu, J., Tzeng, G. H., & Khosla, R. (2007). Comparison among three 

analytical methods for knowledge communities' group-decision analysis. Expert 

Systems with Applications, 33, 1011–1024. 

Daneshvar, F., Jahani, N., & Shafii, M.B. (2011). Performance Investigation of a four 

stroke diesel engine, using water-based ferrofluid as an additive. ASME 2011 

International Mechanical Engineering Congress & Exposition (IMECE2011), 

Denver, Colorado. 

Daneshvar, F., Nehadhashemi, A.P.,  & Herman, M.R. (2015). Comparison of multiple 

point and single point calibration performance for the Saginaw River 

Watershed. 2015 SWAT Conference,  Purdue University, West Lafayette, IN.  

Daneshvar, F., Nejadhashemi, A.P., Zhang, Z., Herman, M.R., Shortridge, A., & 

Marquart-Pyatt, S. (2016). Evaluating stream health based environmental justice 

model performance at different spatial scales. Journal of Hydrology, 538, 500–

514. 

Datta, S., Samantra, C., Mahapatra, S. S., Mondal, G., Chakraborty, P. S., & Majumdar, 

G. (2013). Selection of internet assessment vendor using TOPSIS method in fuzzy 



 

144 

 

environment. International Journal of Business Performance and Supply Chain 

Modelling, 5(1), 1–27. 

De Magalhaes, M.S., Costa, A.F.B., & Moura Neto, F.D. (2009). A hierarchy of adaptive 

�̅� control charts. International Journal of Production Economics, 119, 271–283. 

Dursun, M., Karsak, E.E., & Karadayi, M.A. (2011a). Assessment of health-care waste 

treatment alternatives using fuzzy multi-criteria decision making approaches. 

Resources, Conservation and Recycling, 57, 98–107. 

Dursun, M., Karsak, E.E., & Karadayi, M.A. (2011b). A fuzzy multi-criteria group 

decision making framework for evaluating health-care waste disposal alternatives. 

Expert Systems with Applications, 38, 11453–11462. 

Elahi, B., Seyed-Hosseini, S. M., & Makui, A. (2011a). A fuzzy compromise 

programming solution for supplier selection in quantity discounts situation. 

International Journal of Industrial Engineering & Production Research 22(2), 

107–114. 

Elahi, B., Etaati, L., and & Seyed-Hosseini, S.M. (2011b). An Integrated Modeling for 

Supplier Selection and Optimal Lot Sizing: A Case Study of Four-Echelon Supply 

chain. IEEE International Technology Management Conference (ITMC). San 

Jose, CA, 877 – 884. 

Elahi, B., Seyed-Hosseini, S.M., and & Makui, A. (2011c). A New Strategic Modeling 

Approach for Optimization of a Four-Echelon Supply Chain. Proceedings of the 

6th International Congress on Logistics and SCM Systems (ICLS 2011). 

Kaohsiung, Taiwan, 281-293. 

http://198.55.49.74/en/VEWSSID/J_pdf/120820110204.pdf
http://198.55.49.74/en/VEWSSID/J_pdf/120820110204.pdf


 

145 

 

Elahi, B., Seyed-Hosseini, S.M., and & Makui, A. (2011d). A New MCDM Approach 

Developing for Selecting Suppliers in a Supply Chain under Uncertain 

Environment. Proceedings of the 6th International Congress on Logistics and 

SCM Systems (ICLS 2011). Kaohsiung, Taiwan, 655–667. 

Elahi, B., Pakzad-Jafarabadi, Y., Etaati, L., & Seyedhosseini, S.M. (2011e). Optimization 

of supply chain planning with considering defective rates of products in each 

echelon. Technology and Investment. 2 (3), 211–221. 

Elahi, B., & Franchetti, M.(2012). A Proposed Mathematical Model for a Sustainable 

Supply Chain Planning. In the proceeding of Perspectives on Sustainability in 

Higher Education and Beyond in Northwest Ohio, Toledo, Ohio.  

Elahi, B., & Franchetti, M. (2013). Optimization Modeling for Green Supply Chain 

Planning. Air & Waste Management Association’s 107th Annual Conference and 

Exhibition. Chicago, IL. 

Elahi, B., & Franchetti, M. (2014). A new optimization model for closed-loop supply 

chain networks. Technology Management Conference (ITMC), 2014 IEEE 

International, Chicago, IL, 1-9, DOI: 10.1109/ITMC.2014.6918604.  

Elahi, B., & Franchetti, M. (2015a). A Multi-Objective Proposed Mathematical Model 

for a Health Care Supply Chain with Perishable Product”, S. Cetinkaya and J. K. 

Ryan, eds.  Proceedings of the 2015 Industrial and Systems Engineering Research 

Conference. Nashville, TN , 1514-1523. 

Elahi, B., & Franchetti, M. (2015b). A New Guideline for Improving Quality Control in 

Production and Statistical Processes. Midwest graduate research symposium. 

Toledo, OH. 

http://www.scirp.org/journal/PaperInformation.aspx?paperID=7016
http://www.scirp.org/journal/PaperInformation.aspx?paperID=7016
http://www.scirp.org/journal/PaperInformation.aspx?paperID=7016
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918604
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918604
http://dx.doi.org/10.1109/ITMC.2014.6918604


 

146 

 

EPA 2015a. The cost of carbon dioxide. URL: 

https://www3.epa.gov/climatechange/EPAactivities/economics/scc.html 

EPA 2015b. Waste Reduction Model. URL: https://www.epa.gov/warm. 

Fahimnia, B., Sarkis, J., & Davarzani, H. (2015a). Green supply chain management: A 

review and bibliometric analysis. Intentional Journal of Production Economics, 

162, 101-114. 

Fahiminia, B., Sarkis, J., & Eshragh, A. (2015b). A tradeoff model for green supply chain 

planning: A leanness-versus-greenness analysis. Omega, 54, 173–190. 

Franchetti, M., Elahi, B., & Ghose, S. (2016a). Value Creation through Sustainable 

Manufacturing: Practical Implementation Roadmap. First Edition, Industrial 

Press, South Norwalk, CT,  ISBN: 9780831135218. 

Franchetti, M., Elahi, B., & Ghose, S. (2016b). Green and Lean Management: Green 

Supply Chain, Logistics, and Transportation. Machado C.,  and  Davim, J.P., eds. 

Springer, in press. 

Garg, K., Kannan, D., Diabat, A., & Jha, P.C. (2015). A multi-criteria optimization 

approach to manage environmental issues in closed loop supply chain network 

design. Journal of Cleaner Production, 100, 297–314. 

Giri, B.C., & Sharma, S. (2015). Optimizing a closed-loop supply chain with 

manufacturing defects and quality dependent return rate. Journal of 

Manufacturing Systems, 35, 92–111. 

Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-

vehicle location–routing problem with time windows for optimization of 

https://www3.epa.gov/climatechange/EPAactivities/economics/scc.html
http://www.sciencedirect.com/science/journal/09596526/100/supp/C


 

147 

 

sustainable supply chain network of perishable food. International Journal of 

Production Economics, 152, 9-28. 

Govindan, K., Khodaverdi, R., & Vafadarnikjoo, A. (2015). Intuitionistic fuzzy based 

DEMATEL method for developing green practices and performances in a green 

supply chain. Expert Systems with Applications, 42, 7207–7220. 

Guo, Z.F., Cheng, L.S., & Lu, Z.D. (2014). Economic design of the variable parameters 

X̅control chart with a correlated A & L switching rule. Quality and Reliability 

Engineering International, 30(2), 235–246. 

Hammond, D., & Beullens, P. (2007). Closed-loop supply chain network equilibrium 

under legislation. European Journal of Operational Research, 183, 895–908. 

Hatami-Marbini, A., Tavana, M., Moradi, M., & Kangi, F. (2013). A fuzzy group Electre 

method for safety and health assessment in hazardous waste recycling facilities. 

Safety Science, 51 (1), 414-426. 

He, F., Shu, L., & Tsui, K.L. (2014). Adaptive CUSUM charts for monitoring linear 

drifts in Poisson rates, International Journal of Production Economics, 148, 14–

20. 

Helms, J.R. (2009). Mathematics for Medical and Clinical Laboratory Professionals. 

Delmar, Cengage learning, Clifton Park, New York. 

Herman, M.R., Nejadhashemi, A.P., Daneshvara, F., Ross, D.M., Woznickia, S.A.,  

Zhang, Z., & Esfahanian, A.H. (2015). Optimization of conservation practice 

implementation strategies inthe context of stream health. Ecological Engineering , 

84, 1–12. 



 

148 

 

Herman M. R., Nejadhashemi A. P., Daneshvar F., Abouali M., Ross D. M., Woznicki S. 

A., & Zhang Z. (2016). Optimization of Bioenergy Crop Selection and Placement 

Based on a Stream Health Indicator Using an Evolutionary Algorithm. Journal of 

Environmental Management, in press.  

Hsu, P.F., Wu, C.R., & Li, Y.T. (2008). Selection of infectious medical waste disposal 

firms by using the analytic hierarchy process and sensitivity analysis. Waste 

Management, 28, 1386–1394. 

Hsueh, C.F. (2015). A bi-level programming model for corporate social responsibility 

collaboration in sustainable supply chain management. Journal of Transportation 

Research Part E, 73, 84-95. 

Sabbaghian, R.J., Zarghami, M., Nejadhashemi, A.P., Sharifi, M.B., Herman, M., & 

Daneshvar, F. (2016). Application of risk-based multiple criteria decision analysis 

for selection of the best agricultural scenario for effective watershed management. 

Journal of Environmental Management, 168, 260-272. 

Jensen, W.A., Bryce, G.R., & Reynolds, Jr. M.R. (2008). Design issues for adaptive 

control charts. Quality and Reliability Engineering International, 24, 429–445. 

Kadry, S., & Hami, A.E. (2014). Numerical Methods for Reliability and Safety 

Assessment: Multi-scale and Multi-Physics Systems. Springer, 353-355.  

Kannan, D., Khodaverdi, R., Olfat, L., Jafarian, A., & Diabat, A. (2013). Integrated fuzzy 

multi criteria decision making method and multi-objective programming approach 

for supplier selection and order allocation in a green supply chain. Journal of 

Cleaner Production, 47, 355-367. 



 

149 

 

Kannegiesser, M., & Gunther, H.O. (2013). Sustainable development of global supply 

chains: sustainability optimization framework. Flexible Services and 

Manufacturing Journal, 26, 24-47, DOI 10.1007/s10696-013-9176-5. 

Karagiannidis, A., Papageorgiou, A., Perkoulidis, G., Sanida, G., & Samaras, P. (2010). 

A multi-criteria assessment of scenarios on thermal processing of infectious 

hospital wastes: a case study for Central Macedonia. Waste Management, 30, 

251–262. 

Komilis, D., Fouki, A., & Papadopoulos, D. (2012). Hazardous medical waste generation 

rates of different categories of health-care facilities. Waste Management, 32, 

1434–1441. 

Kusi-Sarpong, S., Bai, C., Sarkis, J., & Wang, X. (2014). Green supply chain practices 

evaluation in the mining industry using a joint rough sets and fuzzy TOPSIS 

methodology. Resources Policy, 46, 86-100. 

Lee, B.K., Ellenbecker, M.J., & Moure-Ersaso, R. (2004). Alternatives for treatment and 

disposal cost reduction of regulated medical wastes. Waste Management, 24(2), 

143–51. 

Lee, P.H., Chang, Y.C., & Torng, C.C. (2012a). A design of S control charts with 

combined double sampling and variable sampling interval scheme. 

Communications in Statistics – Theory and Methods, 41(1), 153–165.  

Lee, P.H., Torng, C.C., & Liao, L.F. (2012b). An economic design of combined double 

sampling and variable sampling interval X̅ control chart. International Journal of 

Production Economics, 138, 102–106.  

http://link.springer.com/journal/10696
http://link.springer.com/journal/10696


 

150 

 

Lee, P.H., Huang, Y.H., Kuo, T.I., & Wang, C.C. (2013). The effect of the individual 

chart with variable control limits on the river pollution monitoring. The Journal of 

Quality and Quantity, 47, 1803–1812. 

Lee, P.H. (2013). Joint statistical design of �̅� and S charts with combined double 

sampling and variable sampling interval. European Journal of Operational 

Research, 225, 285–297. 

Lim, S.L., Khoo, M.B.C., Teoh, W.L., & Xie, M. (2015). Optimal designs of the variable 

sample size and sampling interval �̅� chart when process parameters are estimated. 

International Journal of Production Economics, 166, 20–35. 

Lin, Y.C., & Chou, C.Y. (2005). On the design of variable sample size and sampling 

intervals X̅ charts under non-normality. International Journal of Production 

Economics, 96, 249–261. 

Liu, H.W., & Wang, G.J. (2007). Multi-criteria decision-making methods based on 

intuitionistic fuzzy sets. European Journal of Operational Research, 179 (1), 

220–233. 

Liu, H.C., Wu, J., & Li, P. (2013). Assessment of health-care waste disposal methods 

using a VIKOR-based fuzzy multi-criteria decision making method. Waste 

Management, 33, 2744–2751. 

Liu, H.C., You, J.X., Lu, C., & Chen, Y.Z. (2015). Evaluating health-care waste 

treatment technologies using a hybrid multi-criteria decision making model. 

Renewable and Sustainable Energy Reviews, 41, 932–942. 



 

151 

 

Mahadik, S.B. (2013a). �̅� Charts with variable sample size, sampling interval, and 

warning limits. Quality and Reliability Engineering International, 29(4), 535–

544. 

Mahadik, S.B. (2013b). �̅� Charts with variable sampling interval and warning limits. 

Journal of Academia and Industrial Research, 2(2), 103–110. 

Manga, V.E., Forton, O.T., Mofor, L.A., & Woodard, R. (2011). Health care waste 

management in Cameroon: a case study from the Southwestern Region. 

Resources, Conservation and Recycling, 57, 108–116. 

Mangla, S.K., Kumar, P., & Barua, M.K. (2014). Monte Carlo Simulation Based 

Approach to Manage Risks in Operational Networks in Green Supply Chain. 

Procedia Engineering, 97, 2186-2194. 

Marler, R.T., & Arora, J.S. (2004). Survey of multi-objective optimization methods for 

engineering. Structural and Multidisciplinary Optimization, 26, 369–395. 

Mazdeh, M.M., Razavi, S.M., Hesamamiri, R., Zahedi, M.R., & Elahi, B. (2013).  An 

empirical investigation of entrepreneurship intensity in Iranian state universities. 

Higher Education, Springer, 65 (2), 207-226. 

Min, H., & Kim, H. (2012). Green supply chain research: Past, present, and future. 

Logistics Research, 4, 39–47. 

Mirjalili, S., Mirjalili, S.M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in 

Engineering Software, 69, 46-61. 

Mirzapour, S.M.J., Baboli, A., & Sazvar, Z. (2013). A stochastic aggregate production 

planning model in a green supply chain: Considering flexible lead times, 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjQ1ZjRg6XLAhXFtoMKHfpfAx0QjhwIBQ&url=http%3A%2F%2Fwww.springer.com%2Fengineering%2Fmechanics%2Fjournal%2F158&psig=AFQjCNGUvgOvS3_-x2L7qD7tETLHu44tkQ&ust=1457112079865779
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=NIkMkqUAAAAJ&citation_for_view=NIkMkqUAAAAJ:eQOLeE2rZwMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=NIkMkqUAAAAJ&citation_for_view=NIkMkqUAAAAJ:eQOLeE2rZwMC


 

152 

 

nonlinear purchase and shortage cost functions. European Journal of Operational 

Research, 230, 26–41. 

Montgomery, D.C. (1980). The economic design of control charts: a review and literature 

survey. Journal of Quality Technology, 12, 75-87. 

Morabi, Z.S., Owlia, M.S., Bashiri, M., & Doroudyan, M.H. (2015). Multi-objective 

design of X̅ control charts with fuzzy process parameters using the hybrid epsilon 

constraint PSO. Applied Soft Computing, 30, 390–399. 

Moreira, A.M., & Gunther, W.M. (2013). Assessment of medical waste management at a 

primary health-care center in Sao Paulo, Brazil. Waste Management, 33, 162–167. 

Niaki, S.T.A., & Jahani, P. (2013). The economic design of multivariate binomial 

EWMA VSSI control charts. Journal of Applied Statistics, 40(6), 1301–1318. 

Nie, X., Huang, G.H., & Li, Y. (2009). Capacity Planning for Waste Management 

Systems: An Interval Fuzzy Robust Dynamic Programming Approach. Journal of 

Air & Waste Management Association, 59, 1317–1330. 

Nikjoo, A. V., & Saeedpoor, M. (2014). An intuitionistic fuzzy DEMATEL methodology 

for prioritizing the components of SWOT matrix in the Iranian insurance industry. 

International Journal of Operational Research, 20(4), 439–452. 

Opricovic, S., & Tzeng, G. (2004). Compromise solution by MCDM methods: A 

comparative analysis of VIKOR and TOPSIS. European Journal of Operational 

Research, 156, 445–455. 

Opricovic, S. (2011). Fuzzy VIKOR with an application to water resources planning. 

Expert Systems with Applications, 38, 12983–12990. 



 

153 

 

Ou, Y., Wu, Z., & Tsung, F. (2012). A comparison study of effectiveness and robustness 

of control charts for monitoring process mean. International Journal of 

Production Economics, 135, 479–490. 

Pishvaee, M.S., Torabi, S.A., & Razmi, J. (2012). Credibility-based fuzzy mathematical 

programming model for green logistics design under uncertainty. Journal of 

Computer and Industrial engineering, 62, 624-632. 

Qdais, H.A., Rabi, A., & Abdulla, F. (2007). Characteristics of the medical waste 

generated at the Jordanian hospitals. Clean Technologies and Environmental 

Policy, 9,147–52. 

Reynolds Jr., M.R. (1996). Shewhart and EWMA variable sampling interval control 

charts with sampling at fixed times. Journal of Quality Technology, 28, 199–212. 

Reynolds, M.R.Jr., & Stoumbos, Z.G. (2008). Combinations of multivariate Shewhart 

and MEWMA control charts for monitoring the mean vector and covariance 

matrix. Journal of Quality Technology, 40, 381–393. 

Rodrigues, V.S., Pettit, S., Harris, I., Beresford, A., Piecyk, M., Yang, Z., & Ng, A. 

(2015). UK supply chain carbon mitigation strategies using alternative ports and 

multimodal freight transport operations. Transportation Research Part E, 78, 40-

56. 

Sazvar, Z., Mirzapour Al-e-hashem, S.M.J., Baboli, A., & Akbari Jokar, M.R. (2014). A 

bi-objective stochastic programming model for a centralized green supply chain 

with deteriorating products. International Journal of Production Economics, 150, 

140–154. 



 

154 

 

Seuring, S., & Müller, M. (2008). A literature review to a conceptual framework for 

sustainable supply chain management. Journal of Cleaner Production, 16, 1699–

1710. 

Seyed-Hosseini, S.M., Elahi, B., & Barzinpour, F. (2010). Multi-Supplier, Product and 

Buyer, Mixed Integer Order Splitting in a Two-Echelon Supply Chain. Journal of 

International Management Studies: special issue of the international academy of 

business and economics, 10 (3), 171-178. 

Seyed-Hosseini, S. M., Elahi, B., & Akhlaghy, A. (2011a). Proposing a non-linear 

mathematical model for order splitting in a supply chain with perishable products: 

solving by genetic algorithm. International Journal of Business Research, 11(4), 

104-111. 

Seyed-Hosseini, S. M., Elahi, B., & Makui, A. (2011b). Proposing a Mathematical 

Programming Model for Optimization of Supply Chain Scheduling. Academy of 

Business Research Journal (ABRJ),1, 64–75. 

Shafii, M.B., Daneshvar, F., Jahani, N., & Mobini, K. (2011). Effect of Ferrofluid on the 

Performance and Emission Patterns of a Four-Stroke Diesel Engine. Advances in 

Mechanical Engineering, 2011, 1-5, DOI:10.1155/2011/529049. 

Shankar, B.L., Basavarajappa, S., Kadadevaramath, R.S., & Chen, J.C.H. (2013). A bi-

objective optimization of supply chain design and distribution operations using 

non-dominated sorting algorithm: A case study. Expert Systems with Applications, 

40, 5730–5739. 

Sheu, J.B., Chou, Y.H., & Hu, C.C. (2005). An integrated logistics operational model for 

green-supply chain management. Transportation Research Part E, 41, 287–313. 

https://sites.google.com/site/behinelahi/goog_1811547616
https://sites.google.com/site/behinelahi/goog_1811547616


 

155 

 

Shewhart, W.A. (1931). Economic Control of Quality of Manufactured Product, Van 

Nostrand, New York. 

Soleimani, H., & Kannan, G. (2015). A hybrid particle swarm optimization and genetic 

algorithm for closed-loop supply chain network design in large-scale networks. 

Applied Mathematical Modelling, 39(14), 3990–4012. 

Srivastara, S.K. (2007). Green supply-chain management: a state-of-the-art literature 

review. International Journal of Management Reviews, 9 (1), 53–80. 

Subulan, K., Tasan, A.S., & Baykasoglu, A. (2014). A fuzzy goal programming model to 

strategic planning problem of a lead/acid battery closed-loop supply chain. 

Journal of Manufacturing Systems, 37, 243–264. 

Trzaskalik, T., & Michnik, J. (2002).  Multiple Objective and Goal Programming: Recent 

Developments. Springer, Business & Economics, Physica-Verlag Heidelberg, 

New York, 61-90, ISBN: 3-7908-1409-1. 

Vob, S., & Woodruff, L.D. (2005). Introduction to Computational Optimization Models 

for Production Planning in a supply chain. Springer Berlin Heidelburg, New 

York, 135-141. 

Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An interior algorithm for 

nonlinear optimization that combines line search and trust region 

steps. Mathematical Programming, 107(3), 391–408. 

Wang, H.F., & Hsu, H.W. (2010). A closed-loop logistic model with a spanning-tree 

based genetic algorithm. Computer and operations research, 37, 376-389. 



 

156 

 

Wang, W. (2012). A simulation-based multivariate Bayesian control chart for real time 

condition based maintenance of complex systems. European Journal of 

Operational Research, 218, 726–734. 

Wheeler, D. J. (2004). Advanced topics in statistical process control: the power of 

Shewhart's charts. SPC press, Knoxville, Tennessee. 

Windfeld, E.S., & Brooks, M.S.L. (2015). Medical waste management: A review. 

Journal of Environmental Management, 163, 98-108.  

Wu, M., He, B., & She, J.H. (2007a). A fast LDL-factorization approach for large sparse 

positive definite system and its application to one-to-one marketing optimization 

computation. International Journal of Automation and Computing, 4(1), 88-94, 

DOI: 10.1007/s11633-007-0088-2. 

Wu, Z., Zhang, S., & Wang, P. (2007b). A CUSUM scheme with variable sample sizes 

and sampling intervals for monitoring the process mean and variance. Quality and 

Reliability Engineering International, 23(2), 157–170. 

Wu, H.H., & Chang, S.H. (2015). A case study of using DEMATEL method to identify 

critical factors in green supply chain management. Applied Mathematics and 

Computation, 256, 394–403. 

Xu, Z. S. (2007). Intuitionistic fuzzy aggregation operators. IEE Transaction of Fuzzy 

Systems 15, 1179–1187. 

Xu, Z., & Liao, H. (2013). Intuitionistic fuzzy analytic hierarchy process. IEEE 

Transactions on Fuzzy Systems, 22(4), 749–761. 

Yang, G.F., Wang, Z.P., & Li, X.Q. (2009). The optimization of the closed-loop supply 

chain network. Transportation Research Part E, 45, 16–28. 



 

157 

 

Yang, Y.M., Su, C.Y., & Pearn, W.L. (2010). Economic design of X̅control charts for 

continuous flow process with multiple assignable causes.  International Journal 

of Production Economics, 128, 110–117. 

Yang, C.C., & Yang, S.F. (2013). Optimal variable sample size and sampling interval 

‘mean squared error’ chart. The Service Industries Journal, 33(6), 652–665. 

Yeh, W.C., & Chuang, M. C. (2011). Using multi-objective genetic algorithm for partner 

selection in green supply chain problems. Expert Systems with Applications, 

38(4), 4244-4253. 

Zhang, Y., Castagliola, P., Wu, Z., & Khoo, M.B.C. (2012a). The variable sampling 

interval X̅ chart with estimated parameters. Quality and Reliability Engineering 

International, 28(1), 19–34. 

Zhang, J., Li, Z., & Wang, Z. (2012b). A new adaptive control chart for monitoring 

process mean and variability. The International Journal of Advanced 

Manufacturing Technology, 60, 1031–1038. 

Zhang, C.T., & Liu, L.P. (2013). Research on coordination mechanism in three-level 

green supply chain under non-cooperative game. Journal of Applied 

Mathematical Modeling, 37, 3369-3379.  

 Zhaoa, R., Neighbourb, G., Hanc, J., McGuirea, M.,  & Deutzd, P. (2012). Using game 

theory to describe strategy selection for environmental risk and carbon emissions 

reduction in the green supply chain. Journal of Loss Prevention in the Process 

Industries, 25 (6), 927–936. 

http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/article/pii/S0950423012000708
http://www.sciencedirect.com/science/journal/09504230
http://www.sciencedirect.com/science/journal/09504230


 

158 

 

Zolfagharinia, H., Hafezi, M., Farahani, R.Z., & Fahimnia, B. (2014). A hybrid two-stock 

inventory control model for a reverse supply chain. Transportation Research Part 

E, 67, 141–16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

159 

 

Appendix A 

A Supplementary Materials  
 

This appendix is related to supplementary materials for Chapter 4. 

 

A.1 The transition matrix for the in-control state  

 

When the process is in the control state (state A), the transition matrix (𝑃A) is 

defined by Equation A.1-1. Here, 𝑃𝑖𝑗
𝐴 refers to the probability of a transition to go from ith 

state (previous state) to jth state (current state), while the process is in the control state and 

the mean is on target. Please note that 𝑖 = 1 or 𝑗 = 1 is related to the loose control state; 

𝑖 = 2 or 𝑗 = 2  is linked with the strict control state; and 𝑖 = 3 or 𝑗 = 3 is associated with 

the absorbing state (false alarm). The transition matrix between transient states (𝑄A) is 

also shown by Equation A.1-2. The transition probabilities for the in-control duration are 

also demonstrated by Equations A.1-3 to A.1-6. 

 

𝑃A = [
𝑃11

A 𝑃12
A 𝑃13

A

𝑃21
A 𝑃22

A 𝑃23
A

0 0 1

] 
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Equation A.1-1 

𝑄A = [
𝑃11

A 𝑃12
A

𝑃21
A 𝑃22

A ] 

Equation A.1-2 

𝑃11
A = 𝑃(|𝑍| < 𝑊1)𝑒

−𝜆ℎ1 

Equation A.1-3 

𝑃12
A = 𝑃(𝑊1 < |𝑍| < 𝐾1)𝑒

−𝜆ℎ1  

Equation A.1-4 

𝑃21
A = 𝑃(|𝑍| < 𝑊2)𝑒

−𝜆ℎ2 

Equation A.1-5 

𝑃22
A = 𝑃(𝑊2 < |𝑍| < 𝐾2)𝑒

−𝜆ℎ2  

Equation A.1-6 

 

 

A.2 The transition matrix for out-of-control state  

 

While the process is in the out-of-control state (state B), the transition matrix (𝑃B) 

is defined by Equation A.2-1. Where R is the transition matrix from transient states to the 

absorbing state TA, 0 is a zero matrix that shows the impossibility of moving from the 

absorbing state to a transient state, I is an identity matrix which refers to intelligence that 

the system cannot leave the absorbing state when it arrives there. Here, 𝑃𝑖𝑗
B is the 

probability of a transition to move from ith state (previous state) to jth state (current state), 
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while the process is in the out-of-control state and the mean is out-of-target. Please note 

that, 𝑖 = 1 or 𝑗 = 1 is related to the loose control state; 𝑖 = 2 or 𝑗 = 2  is linked with the 

strict control state; and 𝑖 = 3 or 𝑗 = 3 is associated with the absorbing state (true alarm). 

The transition matrix between transient states (𝑄B) is also shown by Equation A.2-2. The 

transition probabilities for the out-of-control duration are also demonstrated by Equations 

A.2-3 to A.2-5. 

 

𝑃B = [
[
𝑃11

B 𝑃12
B

𝑃21
B 𝑃22

B ] 𝑅 = [𝑃13
B 𝑃23

B ]𝑇

0 = [0 0] 𝐼 = [1]

] 

Equation A.2-1 

𝑄B = [
𝑃11

B 𝑃12
B

𝑃21
B 𝑃22

B ] 

Equation A.2-2 

𝑃𝑖1
𝐵 = 𝑃(−𝑊𝑖 − 𝛿√𝑛𝑖 < 𝑍 < 𝑊𝑖 − 𝛿√𝑛𝑖)    ∀ 𝑖 = 1,2 

Equation A.2-3 

𝑃𝑖2
B = 𝑃(𝑊𝑖 − 𝛿√𝑛𝑖 < 𝑍 < 𝐾𝑖 − 𝛿√𝑛𝑖) +  𝑃(−𝐾𝑖 − 𝛿√𝑛𝑖 < 𝑍 < −𝑊𝑖 − 𝛿√𝑛𝑖)    

∀ 𝑖 = 1,2 

Equation A.2-4 

𝑃𝑖3
B = 𝑃(𝑍 > 𝐾𝑖 − 𝛿√𝑛𝑖) + 𝑃(𝑍 < −𝐾𝑖 − 𝛿√𝑛𝑖)    ∀ 𝑖 = 1,2 

Equation A.2-5 
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A.3 AATS, ANOS, and ANSS formulas  

Let 𝜏 be the expected time between the lth and the (l + 1)th samples taken just prior 

to the occurrence of an assignable cause and the occurrence itself (DeMagalhaes et al. 

2009; Yang et al. 2010). That is: 

 

𝜏 =
∫ 𝜆𝑒−𝜆𝑡(𝑡 − 𝑙. ℎ)𝑑𝑡

(𝑙 + 1).ℎ

𝑙.ℎ

∫ 𝜆. 𝑒−𝜆𝑡𝑑𝑡
(𝑙 + 1).ℎ

𝑙.ℎ

= 
1 − (1 + 𝜆ℎ) 

𝜆. (1 − 𝑒−𝜆ℎ)
 

Equation A.3-1 

 

If 𝑛𝑖 samples are taken at ℎ𝑖 sampling intervals and the process goes out-of-

control in the sampling intervals between the lth and the (l + 1)th samples, the expected 

time of occurrence (𝜏𝑖) within these sampling intervals can be formulated by equation 

(S.13) (DeMagalhaes et al. 2009; Yang et al. 2010). 

 

𝜏𝑖 =
∫ 𝜆𝑒−𝜆𝑡(𝑡 − 𝑙. ℎ)𝑑𝑡

(𝑙 + 1).ℎ

𝑙.ℎ

∫ 𝜆. 𝑒−𝜆𝑡𝑑𝑡
(𝑙 + 1).ℎ

𝑙.ℎ

= 
1 − (1 + 𝜆. ℎ𝑖). 𝑒

−𝜆.ℎ𝑖

𝜆. (1 − 𝑒−𝜆.ℎ𝑖)
    ∀ 𝑖 = 1,2 

Equation A.3-2 

 

To formulate the AATS, it is required to determine the average number of visits 

to each state of the Markov-chain, once the process is out-of-control. Based on the 

properties of Markov-chains, one has that the average number of visits to any transient 

state is: 

[𝑉𝐿𝐶B 𝑉𝑆𝐶B] = 𝑉𝐵
𝑇(𝐼 − 𝑄𝐵)

−1
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Equation A.3-3 

Where:  

𝑉𝐵
𝑇 = [𝑝0

(1 − 𝑝
0
)] and 𝑄𝐵 = [

𝑃11
𝐵 𝑃12

𝐵

𝑃21
𝐵 𝑃22

𝐵 ] 

Equation A.3-4 

 

Here, 𝑉𝐵
𝑇 is the vector of initial probabilities when the process is out of control. 

Moreover, the term of (𝐼 − 𝑄𝐵)−1
𝑖𝑗

 that is the ijth component of the 2 × 2 matrix of 

(𝐼 − 𝑄𝐵)−1demonstrates the average number of visits to the jth transient state before 

absorption occurs with the assumption that the process is started in ith transient state. 𝑉𝐿𝐶B  

and 𝑉𝑆𝐶B  represent the average number of visits to the related state when the mean is out-

of-control. The equations for the AATS, ANOS, and ANSS are formulated, respectively 

by Equations A.3-5: (S-18) (DeMagalhaes et al. 2009). 

𝐴𝐴𝑇𝑆 = ℎ1. 𝑉𝐿𝐶B + ℎ2. 𝑉𝑆𝐶B + (ℎ1 − 𝜏1
𝐵). 𝑝0 + (ℎ2 − 𝜏2

𝐵). ( 1 − 𝑝0) 

Equation A.3-5 

𝐴𝑁𝑂𝑆 = 𝑛1. 𝑉𝐿𝐶B + 𝑛2. 𝑉𝑆𝐶B  

Equation A.3-6 

𝐴𝑁𝑆𝑆 = 𝑉𝐿𝐶B + 𝑉𝑆𝐶B 

Equation A.3-7 
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A.4 Achieved Results  

Table A.4.1: The obtained values of design parameters, performance measures, and %IM 

at achieved minimum AATS, ANOS, and ANSS for the VSC model 

 

 

 

𝛿 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 

M
in

im
iz

in
g

 A
A

T
S

 f
o

r 
th

e 
V

S
C

 M
o

d
el

 

Optimum AATS 133.65944 33.90079 11.26107 4.99532 2.88767 2.06650 1.57585 1.50483 1.50011 

% IM -0.38 -1.50 -4.65 -11.12 -20.94 -31.92 -46.48 -49.76 -50.00 

ANOS 665.79716 167.00390 53.80532 22.47656 11.93832 7.83246 5.37919 5.02410 5.00052 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ANSS 133.15943 33.40078 10.76106 4.49531 2.38766 1.56649 1.07584 1.00482 1.00010 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

       W1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

       W2 3.60 3.60 5.40 5.40 5.40 5.40 5.90 6.00 6.00 

      K1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

      K2 3.60 3.60 5.40 5.40 5.40 5.40 5.90 6.00 6.00 

M
in

im
iz

in
g

 A
N

O
S

 f
o

r 
th

e 
V

S
C

 M
o

d
el

 AATS 133.65944 33.90079 11.26107 4.99532 2.88767 2.06650 1.57585 1.50483 1.50011 

% IM -0.38 -1.50 -4.65 -11.12 -20.94 -31.92 -46.48 -49.76 -50.00 

Optimum 

ANOS 
665.79716 167.00390 53.80532 22.47656 11.93832 7.83246 5.37919 5.02410 5.00052 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ANSS 133.15943 33.40078 10.76106 4.49531 2.38766 1.56649 1.07584 1.00482 1.00010 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

      W1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

     W2 3.60 3.60 5.40 5.40 5.40 5.40 5.90 6.00 6.00 

    K1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

    K2 3.60 3.60 5.40 5.40 5.40 5.40 5.90 6.00 6.00 

M
in

im
iz

in
g

  
A

N
S

S
 f

o
r 

th
e 

V
S

C
 

M
o

d
el

 

AATS 133.65944 33.90079 11.26107 4.99532 2.88767 2.06650 1.57585 1.50483 1.50011 

% IM -0.38 -1.50 -4.65 -11.12 -20.94 -31.92 -46.48 -49.76 -50.00 

ANOS 665.79716 167.00390 53.80532 22.47656 11.93832 7.83246 5.37919 5.02410 5.00052 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Optimum ANSS 133.15943 33.40078 10.76106 4.49531 2.38766 1.56649 1.07584 1.00482 1.00010 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

     W1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

    W2 3.60 3.60 5.40 5.40 5.40 5.40 5.90 6.00 6.00 

   K1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

   K2 3.60 3.60 5.40 5.40 5.40 5.40 5.90 6.00 6.00 
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Table A.4.2: The obtained values of design parameters, performance measures, and %IM 

at achieved minimum AATS, ANOS, and ANSS for the VSI model 

 

𝛿 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 
M

in
im

iz
in

g
 A

A
T

S
 f

o
r 

th
e 

V
S

I 
M

o
d

el
 

Optimum AATS 116.31792 20.13565 4.42348 1.95566 1.57308 1.51332 1.50087 1.50006 1.50001 

% IM 12.65 39.72 58.89 56.50 34.12 3.39 -39.51 -49.29 -49.99 

ANOS 665.79716 167.00390 53.80532 22.47656 11.93832 7.83246 5.37919 5.02410 5.00052 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ANSS 133.15943 33.40078 10.76106 4.49531 2.38766 1.56649 1.07584 1.00482 1.00010 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

         h1 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1.50 1.10 

        h2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

       W 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.96 1.67 

M
in

im
iz

in
g

 A
N

O
S

 f
o

r 
th

e 
V

S
I 

M
o

d
e
l 

AATS 116.79478 29.35838 6.51676 2.62867 1.80510 1.53607 1.50863 1.50338 1.50002 

% IM 12.29 12.10 39.44 41.52 24.40 1.94 -40.23 -49.62 -49.99 

Optimum ANOS 665.79716 167.00390 53.80532 22.47656 11.93832 7.83246 5.37919 5.02410 5.00052 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ANSS 133.15943 33.40078 10.76106 4.49531 2.38766 1.56649 1.07584 1.00482 1.00010 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

       h1 2.80 1.20 1.20 1.20 1.20 2.70 1.10 1.10 1.20 

      h2 0.03 0.60 0.03 0.04 0.08 0.05 0.08 0.70 0.07 

     W 0.45 0.96 1.36 1.36 1.34 0.46 1.64 1.15 1.34 

M
in

im
iz

in
g

  
A

N
S

S
 f

o
r 

th
e 

V
S

I 
M

o
d

el
 

AATS 116.79478 29.35838 6.51676 2.62867 1.80510 1.54629 1.50378 1.50020 1.50004 

% IM 12.29 12.10 39.44 41.52 24.40 1.29 -39.78 -49.30 -49.99 

ANOS 665.79716 167.00390 53.80532 22.47656 11.93832 7.83246 5.37919 5.02410 5.00052 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Optimum ANSS 133.15943 33.40078 10.76106 4.49531 2.38766 1.56649 1.07584 1.00482 1.00010 

% IM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

       h1 2.80 1.20 1.20 1.20 1.20 1.50 1.10 1.10 1.10 

      h2 0.03 0.60 0.03 0.04 0.08 0.05 0.01 0.03 0.30 

     W 0.45 0.96 1.36 1.36 1.34 0.94 1.67 1.67 1.52 
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Table A.4. 3: The obtained values of design parameters, performance measures, and %IM 

at achieved minimum AATS, ANOS, and ANSS for the VSIC model 

 

𝛿 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 
M

in
im

iz
in

g
 A

A
T

S
 f

o
r 

th
e 

V
S

IC
 M

o
d

el
 

Optimum 

AATS 
113.63549 18.73685 4.14595 1.92384 1.57081 1.51319 1.50087 1.50007 1.50001 

% IM 14.66 43.90 61.47 57.20 34.21 3.40 -39.51 -49.29 -49.99 

ANOS 633.42691 149.58542 48.75759 20.95857 11.61809 7.78865 5.38393 5.02610 5.00071 

% IM 4.86 10.43 9.38 6.75 2.68 0.56 -0.09 -0.04 0.00 

ANSS 126.68538 29.91708 9.75152 4.19171 2.32362 1.55773 1.07679 1.00522 1.00014 

% IM 4.86 10.43 9.38 6.75 2.68 0.56 -0.09 -0.04 0.00 

         h1 1.60 2.20 3.00 3.00 3.00 3.00 3.00 1.70 1.10 

        h2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

       W1 0.88 0.60 0.43 0.43 0.43 0.43 0.43 0.81 1.68 

       W2 0.88 0.60 0.43 0.43 0.43 0.43 0.43 0.81 1.64 

      K1 3.30 3.50 3.70 3.50 3.30 3.10 3.10 3.10 3.10 

      K2 2.77 2.84 2.88 2.89 2.91 2.96 2.96 2.90 2.57 

M
in

im
iz

in
g

 A
N

O
S

 f
o

r 
th

e 
V

S
IC

 M
o

d
el

 

AATS 115.11888 20.64126 5.54867 2.56422 1.79992 1.57970 1.56836 1.50436 1.50010 

% IM 13. 55 38.20 48.44 42.96 24.62 -0.84 -45.79 -49.72 -50.00 

Optimum 

ANOS 
604.03404 123.43849 37.52074 17.22132 10.47378 7.52024 5.37972 5.02419 5.00053 

% IM 9.28 26.09 30.27 23.38 12.27 3.99 -0.01 0.00 0.00 

ANSS 120.80681 24.68770 7.50415 3.44426 2.09476 1.50405 1.07594 1.00484 1.00011 

% IM 9.28 26.09 30.27 23.38 12.27 3.99 -0.01 0.00 0.00 

       h1 1.10 1.10 1.10 1.10 1.10 1.10 3.00 3.00 3.00 

       h2 0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.90 0.90 

       W1 1.68 1.68 1.68 1.68 1.68 1.68 0.06 0.06 0.06 

      W2 1.60 1.59 1.59 1.60 1.62 1.64 0.06 0.06 0.06 

     K1 3.30 3.40 3.40 3.30 3.20 3.10 3.10 3.10 3.10 

     K2 2.33 2.28 2.28 2.33 2.41 2.57 3.00 3.00 3.00 

M
in

im
iz

in
g

 A
N

S
S

 f
o

r 
th

e 
V

S
IC

 M
o

d
el

 

AATS 115.11888 20.64126 5.54867 2.56422 1.79992 1.57970 1.56836 1.50436 1.50010 

% IM 13.55 38.20 48.44 42.96 24.62 -0.84 -45.79 -49.72 -50.00 

ANOS 604.03404 123.43849 37.52074 17.22132 10.47378 7.52024 5.37972 5.02419 5.00053 

% IM 9.28 26.09 30.27 23.38 12.27 3.99 -0.01 0.00 0.00 

Optimum 

ANSS 
120.80681 24.68770 7.50415 3.44426 2.09476 1.50405 1.07594 1.00484 1.00011 

% IM 9.28 26.09 30.27 23.38 12.27 3.99 -0.01 0.00 0.00 

       h1 1.10 1.10 1.10 1.10 1.10 1.10 3.00 3.00 3.00 

      h2 0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.90 0.90 

     W1 1.68 1.68 1.68 1.68 1.68 1.68 0.06 0.06 0.06 

     W2 1.60 1.59 1.59 1.60 1.62 1.64 0.06 0.06 0.06 

    K1 3.30 3.40 3.40 3.30 3.20 3.10 3.10 3.10 3.10 

    K2 2.33 2.28 2.28 2.33 2.41 2.57 3.00 3.00 3.00 
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Table A.4.4: The obtained values of design parameters, performance measures, and %IM 

at achieved minimum AATS, ANOS, and ANSS for the VSS model 

 

𝛿 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 
M

in
im

iz
in

g
 A

A
T

S
 f

o
r 

th
e 

V
S

S
 M

o
d

el
 

Optimum 

AATS 
75.54977 8.80913 4.22246 2.88266 2.29413 1.95955 1.59654 1.51184 1.50069 

% IM 43.26 73.63 60.76 35.87 3.92 -25.09 -48.40 -50.46 -50.05 

ANOS 518.61770 78.60572 35.22012 19.99309 13.13184 8.95720 5.57871 5.07099 5.00407 

% IM 22.11 52.93 34.54 11.05 -10.00 -14.36 -3.71 -0.93 -0.07 

ANSS 75.04976 8.30912 3.72245 2.38266 1.79412 1.45954 1.09653 1.01183 1.00068 

% IM 43.64 75.12 65.41 47.00 24.86 6.83 -1.92 -0.70 -0.06 

        n1 1 1 3 3 4 4 4 4 4 

       n2 30 30 21 15 12 9 6 6 6 

       W 1.47 1.47 1.58 1.38 1.52 1.28 0.67 0.67 0.67 

M
in

im
iz

in
g

 A
N

O
S

 f
o

r 
th

e 
V

S
S

 M
o

d
el

 

AATS 75.54977 8.80913 4.44528 3.08690 2.48555 2.00222 1.59654 1.51184 1.50069 

% IM 43.26 73.63 58.69 31.33 -4.10 -27.81 -48.40 -50.46 -50.05 

Optimum 

ANOS 
518.61770 78.60572 32.78648 18.23341 11.49781 8.00065 5.57871 5.07099 5.00407 

% IM 22.11 52.93 39.06 18.88 3.69 -2.15 -3.71 -0.93 -0.07 

ANSS 75.04976 8.30912 3.94527 2.58689 1.98554 1.50221 1.09653 1.01183 1.00068 

% IM 43.64 75.12 63.34 42.45 16.84 4.10 -1.92 -0.70 -0.06 

      n1 1 1 1 1 1 4 4 4 4 

     n2 30 30 19 11 7 6 6 6 6 

     W 1.47 1.47 1.22 0.84 0.43 0.67 0.67 0.67 0.67 

M
in

im
iz

in
g

  
A

N
S

S
 f

o
r 

th
e 

V
S

S
 M

o
d

el
 

AATS 75.54977 8.80913 4.22246 2.88266 2.29413 1.95955 1.59654 1.51184 1.50069 

% IM 43.26 73.63 60.76 35.87 3.92 -25.09 -48.40 -50.46 -50.05 

ANOS 518.61770 78.60572 35.22012 19.99309 13.13184 8.95720 5.57871 5.07099 5.00407 

% IM 22.11 52.93 34.54 11.05 -10.00 -14.36 -3.71 -0.93 -0.07 

Optimum 

ANSS 
75.04976 8.30912 3.72245 2.38266 1.79412 1.45954 1.09653 1.01183 1.00068 

% IM 43.64 75.12 65.41 47.00 24.86 6.83 -1.92 -0.70 -0.06 

      n1 1 1 3 3 4 4 4 4 4 

     n2 30 30 21 15 12 9 6 6 6 

     W 1.47 1.47 1.58 1.38 1.52 1.28 0.67 0.67 0.67 
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Table A.4.5: The obtained values of design parameters, performance measures, and %IM 

at achieved minimum AATS, ANOS, and ANSS for the VSSC model 

𝛿 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 
M

in
im

iz
in

g
 A

A
T

S
 f

o
r 

th
e 

V
S

S
C

 M
o

d
el

 

Optimum 

AATS 
32.85306 7.21824 3.85500 2.79906 2.28905 1.97121 1.60669 1.51472 1.50094 

% IM 75.33 78.39 64.18 37.73 4.131 -25.84 -49.35 -50.75 -50.08 

ANOS 205.64350 51.65814 26.89955 17.89733 12.11030 8.66797 5.63964 5.08826 5.00561 

% IM 69.11 69.07 50.01 20.37 -1.44 -10.67 -4.84 -1.28 -0.10 

ANSS 32.35305 6.71823 3.35499 2.29905 1.78905 1.47120 1.10668 1.01471 1.00094 

% IM 75.70 79.89 68.82 48.86 25.07 6.08 -2.87 -0.98 -0.08 

        n1 1 1 2 3 4 4 4 4 4 

       n2 30 24 16 13 10 8 6 6 6 

       W1 1.48 1.36 1.24 1.28 1.38 1.15 0.67 0.67 0.67 

       W2 1.42 1.32 1.22 1.26 1.37 1.14 0.67 0.67 0.67 

      K1 6.00 6.00 4.30 3.30 3.10 3.10 3.10 3.10 3.10 

      K2 2.33 2.42 2.50 2.59 2.72 2.81 2.92 2.92 2.92 

M
in

im
iz

in
g

 A
N

O
S
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o

r 
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e 
V

S
S

C
 M

o
d

el
 

AATS 32.85306 7.30668 3.97684 2.90867 2.39825 1.99770 1.60669 1.51472 1.50094 

% IM 75.33 78.12 63.04 35.29 -0.44 -27.53 -49.35 -50.75 -50.08 

Optimum 

ANOS 
205.64350 

50.9195

2 
26.00355 15.99908 10.88660 7.97352 5.63964 5.08826 5.00561 

% IM 69.11 69.51 51.67 28.82 8.81 -1.80 -4.84 -1.28 -0.10 

ANSS 32.35305 6.80667 3.47683 2.40866 1.89824 1.49769 1.10668 1.01471 1.00094 

% IM 75.70 79.62 67.69 46.42 20.50 4.39 -2.87 -0.98 -0.08 

      n1 1 1 1 1 1 4 4 4 4 

     n2 30 28 15 10 7 6 6 6 6 

      W1 1.48 1.45 1.07 0.76 0.43 0.67 0.67 0.67 0.67 

     W2 1.42 1.39 1.05 0.76 0.43 0.67 0.67 0.67 0.67 

    K1 6.00 6.00 5.80 4.90 4.40 3.10 3.10 3.10 3.10 

    K2 2.33 2.36 2.60 2.74 2.87 2.92 2.92 2.92 2.92 

M
in

im
iz

in
g

  
A

N
S

S
 f

o
r 

th
e 

V
S

S
C

 M
o

d
el

 

AATS 32.85306 7.21824 3.85500 2.79906 2.28905 1.97121 1.60669 1.51472 1.50094 

% IM 75.33  78.39  64.18  37.73  4.13  -25.84  -49.35  -50.75  -50.08  

ANOS 205.64350 51.6581

4 

26.89955 17.89733 12.11030 8.66797 5.63964 5.08826 5.00561 

% IM 69.11  69.07  50.01  20.37  -1.44 -10.67 -4.84 -1.28 -0.10 

Optimum 

ANSS 
32.35305 6.71823 3.35499 2.29905 1.78905 1.47120 1.10668 1.01471 1.00094 

% IM 75.70  79.89  68.82  48.86  25.07  6.08  -2.87 -0.98 -0.08 

      n1 1 1 2 3 4 4 4 4 4 

     n2 30 24 16 13 10 8 6 6 6 

     W1 1.48 1.36 1.24 1.28 1.38 1.15 0.67 0.67 0.67 

    W2 1.42 1.32 1.22 1.26 1.37 1.14 0.67 0.67 0.67 

   K1 6.00 6.00 4.30 3.30 3.10 3.10 3.10 3.10 3.10 

  K2 2.33 2.42 2.50 2.59 2.72 2.81 2.92 2.92 2.92 
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Table A.4.6: The obtained values of design parameters, performance measures, and %IM 

at achieved minimum AATS, ANOS, and ANSS for the VSSI model 

 

𝛿 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50 3.00 
M
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g
 A

A
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S
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V
S

S
I 

M
o

d
el

 

Optimum 

AATS 
69.87237 7.25176 2.84609 1.81962 1.57067 1.51754 1.50143 1.50014 1.50002 

% IM 47.53 78.29 73.55 59.52 34.22 3.13 -39.56 -49.30 -49.99 

ANOS 518.61770 82.46233 37.79387 20.02113 11.68018 8.00065 5.57871 5.07099 5.00630 

% IM 22.11 50.62 29.76 10.93 2.16 -2.15 -3.71 -0.93 -0.12 

ANSS 75.04976 8.60981 4.70250 3.23167 2.12337 1.50221 1.09653 1.01183 1.00090 

% IM 43.64 74.22 56.30 28.11 11.07 4.10 -1.92 -0.70 -0.08 

         h1 1.16 1.19 1.50 1.99 2.98 1.99 1.99 1.99 1.50 

        h2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

        n1 1 1 2 3 3 4 4 4 4 

       n2 30 26 11 7 6 6 6 6 7 

      W 1.47 1.40 0.96 0.67 0.43 0.67 0.67 0.67 0.96 

M
in

im
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in
g

 A
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O
S
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e 
V

S
S

I 
M

o
d

el
  

AATS 69.87237 7.34155 3.52175 2.21258 1.70836 1.51754 1.50143 1.50014 1.50002 

% IM 47.53 78.02 67.27 50.78 28.45 3.13 -39.56 -49.30 -49.99 

Optimum 

ANOS 
518.61770 78.60572 32.78648 18.23341 11.49781 8.00065 5.57871 5.07099 5.00407 

% IM 22.11 52.93 39.07 18.88 3.69 -2.15 -3.71 -0.93 -0.07 

ANSS 75.04976 8.309123 3.94528 2.58689 1.98554 1.50221 1.09653 1.01183 1.00068 

% IM 43.64 75.12 63.39 42.45 16.84 4.10 -1.92 -0.70 -0.06 

       h1 1.16 1.16 1.28 1.66 2.98 1.99 1.99 1.99 1.99 

      h2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

      n1 1 1 1 1 1 4 4 4 4 

     n2 30 30 19 11 7 6 6 6 6 

     W 1.47 1.47 1.22 0.84 0.43 0.67 0.67 0.67 0.67 

M
in

im
iz

in
g

  
A

N
S

S
 f

o
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AATS 69.87237 7.34155 3.19485 2.08276 1.70561 1.54883 1.50143 1.50014 1.50002 

% IM 47.53 78.02 70.31 53.67 28.57 1.13 -39.56 -49.30 -49.99 

ANOS 518.61770 78.60572 35.22012 19.99309 13.13184 8.95720 5.57871 5.07099 5.00407 

% IM 22.11 52.93 34.54 11.05 -10.00 -14.36 -3.71 -0.93 -0.07 

Optimum 

ANSS 
75.04976 8.30912 3.72245 2.38266 1.79412 1.45954 1.09653 1.01183 1.00068 

% IM 43.64 75.12 65.41 47.00 24.86 6.83 -1.92 -0.70 -0.06 

       h1 1.16 1.16 1.12 1.20 1.14 1.25 1.99 1.99 1.99 

      h2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

      n1 1 1 3 3 4 4 4 4 4 

     n2 30 30 21 15 12 9 6 6 6 

    W 1.47 1.47 1.58 1.38 1.52 1.28 0.67 0.67 0.67 

 




