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Use of unmanned systems in various tasks has increased exponentially in the re-
cent past. These systems enable users to complete vital missions efficiently, without
risking human lives. Nonetheless, these systems pose a threat to the general popula-
tion if the operational cyber security is not handled. Especially, the armed unmanned
aerial vehicle systems (UAVS), which can cause catastrophic damage to life and prop-
erty. It is important to know the risk and understand the impact of various possible
attacks on the overall UAVS. Clearly, the most economical way to achieve this is to
simulate operational scenarios of UAVS before actual deployment. In this disserta-
tion, we propose methods to assess various threats, develop threat models, evaluate
risk and impact of attacks. We finally use these methods to develop a simulation
testbed environment for Unmanned Aerial Vehicle Networks (UAVNet) cyber secu-
rity analysis. The testbed was designed to be open source to enhance the usability
and audience reach. We also demonstrated the use of this testbed in academia for
any related research or student learning and consequently, a performance evaluation
of the testbed for use in generic computing environment was carried out. Based on
the experiments performed for various communication denied scenarios, we evaluate
the impact of various attacks against UAVNet from the communication perspective

and report the results to demonstrate the necessity and usefulness of the simula-
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tion testbed. Implemented attacks include Distributed Denial of Service (DDoS),
Jamming, GPS Jamming and GPS Spoofing. Additional implementation of an anti-
spoofing technique for GPS spoofing was further done to indicate the usefulness of
testbed and flexibility to develop attacks as well as their detection and mitigation

measures.
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Chapter 1

Introduction

The remarkable growth in mobility-aware and location-aware vehicles, as well as
related applications, has led to wide use of such vehicles in almost every domain. Most
of these application domains put human lives at risk due to the unknown nature of
terrain, weather or other environmental factors. One of the most popular class of
vehicles under this category is unmanned aerial vehicles, UAVs. These systems can
be sent to distant planetary bodies for research (e.g., Philae aircraft landed on a
comet after a 10 year journey [1]) or to detect and survey real-time catastrophes like
earthquake [2] and forest fires [3]. UAVs have found their use in applications like
agricultural chemical deployment [4], ecological surveys [5], natural event monitoring
(Hurricane Hunter [6]), disaster management [7] and humanitarian response (e.g.,
damage assessment, search and rescue operations, dropping relief supplies in case of
emergency [8]), 3-D Mapping and photogrammetry [9], wildlife protection [10], etc.
By 2018, only the military UAV market is expected to reach the $80 billion mark [11]

while commercial UAV market is forecasted to reach close to $9 billion.

1.1 Background

In early 2015, commercial UAVs were authorized to fly in US National Airspace
(NAS) by FAA and more than 7500 are expected to be seen in the air by 2020 [6]
1



compared to the number being negligible in 2014. These have also promoted research
in industries and academia. Even today, FAA doesn’t require people to obtain a
license for drones (small and mini-UAVs) which are used for recreational purpose.
However, they still limit drone usage up to a height of 400feet and away from the
airport and air traffic [12]. Availability of low-cost mini-UAVs and DIY drones have
also promoted recreational use as well as research. Nowadays, constructing a drone
is possible in as less as $300 by purchasing separate parts from online stores [13].
Clearly, incorrect or failure in accurate navigation may lead to dangerous and life-
threatening accidents for medium-sized UAVs and thus, necessitates prior testing of

the model in a simulation environment.

1.1.1 Recent Attacks and Failures

With advancement in technology, the application domains of drones are no more
limited to labs or defense. They can also be used by hobbyists, pranksters and
troublemakers. This popularity may lead to an increase in the threats to the general
public as well as chances of adverse usage of an increasingly cheaper technology. After
Iran’s claim of RQ-170 capture, an in-depth study of UAV vulnerabilities has been
done by several researchers including our ACRL (Advanced Computing Research Lab)
team at The University of Toledo. Through our studies, it was understood how easily
a UAV can be compromised and attacked. In 2012, North Korea launched a GPS
Jamming attack on its soil bordering South Korea, which disrupted the navigation
of aircraft, ships and ground vehicles [14]. Several other works discuss recent attacks
on UAVs [15]. A recent news in Washington Post detailed 47 biggest drone failures
during 2001 — 2013 and the plan of US DoD to extend UAV operations to 110 bases
in 39 states by 2017 [16]. Figure 1-1 shows the location of these drone crash incidents
of the severe category (called class A) and the Pentagon’s extension plan of operation

bases to 110.



It was noticed that until 2007, the number of reported cyber-attacks either in the
civilian domain or to military systems were negligible compared to past few years.
The primary reason behind the absence of attacks were the low popularity of these
systems in the civilian domain, which didn’t give adversaries much opportunity to
study and exploit these systems. An earlier incident of satellite hacking was reported
in 2007, which involved a British satellite being controlled by a terrorist group in
1999 [17]. In 2007, another news reported a US Satellite being used by LTTE (a
Sri Lanka-based terrorist organization) to broadcast their messages and videos using
some free bandwidth [17, 18].

The first major case of an attack on a UAV system was the discovery of the record-
ing of a UAV feed when some members of an Irag-based terrorist group were captured
in December 2009. The video feed was captured using a $26 software called SkyGrab-
ber which was designed to capture free satellite-based entertainment channels, using
a satellite antenna [19]. This incident occured due to the reason that terrorists discov-
ered the vulnerability of the video feed being unencrypted. It came to the light later
that this vulnerability was known to the Pentagon since early 1990s [20]. In Septem-
ber, 2011, a malware was found in a Control Room computer of a USAF Base, which
was serving as a base station for UAV Command and Control Network [21]. Later,
it was declared as just a Keylogger, but clearly, was a huge threat to the national
security. On the contrary, physical attacks on these drones pose a threat as loss of
technology to adversaries and troublemakers. In December 2011, Iran claimed that it
shot down a US RQ — 170 stealth drone [22]. In 2014, they again claimed that they
have created a copy of that captured drone through reverse engineering the UAV de-
sign [23]. In August 2014, Iran again claimed that they have shot down and captured
an Israeli stealth, radar-evasive type drone called Heron [24] which could be further
reverse engineered and used against the US and its allies.

Through this discussion, we understand that it is important to evaluate the risk
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Figure 1-1: Class A UAV crash sites (2001-2013) and planned expansion of
drone operations to 110 bases [16].

and vulnerability of a UAV for cyber-attacks based on its components including its
comm-links, storage units, fault handling mechanisms, etc. A report published in
2001 lists the causes of failure for UAVs as “insufficient testing before purchase” and
suggests that it is common to all failed programs [25]. A lot of money invested in
these programs also went waste. Availability of a proper testbed to test these systems
before the flight would lead to the prevention of midair collision and ground casualty.
It would also help prevent any loss of human life and minimize investments in failed
experiments.

Recent increase in attack attempts on these unmanned systems have raised con-
cern among defense as well as commercial manufacturers. With increasing autonomy
level of these systems, concerns over their use have been ever increasing. These con-
cerns necessitate the need of cost-effective and safe virtual simulation testbed envi-
ronment for testing the accuracy of various security implementations in an Unmanned

Aerial System (UAS). Addressing various environment variations, loss of connectivity,

4



and contested communication are some of the important aspects of such a simulation

testbed due to the dependency of UAVS security on communication.

1.1.2 Motivation

This dissertation focuses on design, development and performance evaluation of a
simulation testbed at the Advanced Computing Research Laboratory (ACRL) of the
University of Toledo, so that various cyber-attacks can be implemented and simulated.
Although UAV development started in early 1960s, the primary objective of the
research has been its mission accomplishment capability, reliability, and efficiency in
terms of time and power. Not much attention has been paid to the cyber-security
aspect of such systems until recently. The most important issues in this area are -
vulnerability, breach and threat identification; and corresponding attack prevention,
mitigation, and recovery. Most works in this specific area focus on the causes and
methods of security breaches at the lower-level system components. Surprisingly, very
few works focus on the application or communication security of these unmanned
systems. The need of a simulation testbed which can simulate the single or multi-
UAV behavior and provide a realistic response in case of an attack served as our initial
motivation. It is clear that navigation is one of the vital aspects of unmanned systems.
Therefore, its availability is significant. The auxiliary goal of providing the academia

with a cost-effective mode of simulations was also accomplished simultaneously.

1.2 UAYV Network Architecture

This section discusses the unique nature of a UAV communication network and
how it is different from other types of networks. Further, we discuss different types
of UAV network (UAVNet) architectures used during UAV operations and missions.

From a security and threat analysis perspective, it is necessary to understand



that a typical UAVNet is different from the traditional computer network. Some
researchers have compared it to wireless sensor networks (WSNs) [26] and mobile
ad-hoc networks (MANETS). Although UAVNet bears a close resemblance to WSNs
with respect to use wireless communication protocols [27], there are other aspects in
which they differ. For instance, power requirements, the amount of information being
carried by channels, and the number of nodes in a WSN are much lower than in a
UAVNet. Moreover, the coverage area for a UAVNet is almost a thousand times bigger
than that of a WSN. To reduce power consumption, all nodes in an WSN transmit
their sensor data to a central node, which communicates with external systems. On
the contrary, in the UAVNet, multiple architectures are possible. Some researchers
have also combined the application of UAVs in sensor networks so as to utilize the
bigger coverage area of UAVs [28].

Tactical UAV networks need to follow pre-defined communication architecture
to complete complex operations. They also need to address issues like swarm co-
operation and unforeseen disturbances. In the following section, we discuss some
widely accepted and followed communication network architectures for UAVNets [29].

Broadly, these can be classified into two categories: Centralized and Decentralized.

1.2.1 Centralized

In this kind of UAVNet, one GCS/MCS (Ground/Mission Control Center) is con-
nected to a single UAV called Master UAV (MUAV) and serves as its command center.
All other UAVs are connected to the single GCS/MCS through this MUAV. All other
UAVs use LOS links to communicate with MUAV or each other, and any UAV can
connect to the Satellite due to the temporal as well as the spatial omnipresence of

communication satellites. Figure 1-2 shows such a network.
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Figure 1-2: Centralized UAV communication architecture showing the cen-
tral UAV and backup link

1.2.2 Decentralized

In this type of communication architecture, several GCS/MCS and MoCS (Mobile
Control Centers, e.g., Laptops, PDAs) may be used with several UAVs communicating
to them. The UAVs may use LOS or BLOS links. BLOS links may be established
through other UAVs or Satellites. There are three sub-types of the decentralized
UAVNet architecture based on the number of UAVs indirectly communicating with

each of the control stations and are discussed below:

1.2.2.1 Single UAVs

Single UAVs directly communicate to the control stations without using other
UAVs as repeaters. As a backup, the UAVs can still use other UAVs or a satellite
in case they are too far away from the control station or LOS communication is not

7
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possible. Figure 1-3 shows such a UAV Network scenario.

1.2.2.2 Swarms

In this scenario, multiple UAVs communicate with a single control center, forming
groups or swarms. The UAVs may also have connectivity with each other through
LOS or BLOS links. There can be multiple swarms connected to a single GCS as
well. Alternatively, it is also possible that one swarm can serve as a Master Swarm

and other swarms connect to the GCS through this master swarm.

1.2.2.3 Mixed

In this type of communication architecture, multiple UAVs communicate with
several GCS, UAVs and Satellites. Traditional networking topologies may be deployed

but usually, such decentralized UAVNet have on-the-go communication establishment
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according to the assigned mission. Figure 1-4 shows an example of such a network.

1.3 Related Work

This section discusses various works that have been done in the area of UAV
Network simulation. Many works deemed out of scope, as they primarily focus on
modeling of a single UAV. These works mostly attempted to improve the system per-
formance, flight range, or usability, in a closed laboratory or an open but controlled
environment. It could easily be concluded that there is a lack of close-to-real simulator

for UAV Networks (UAVNet), including UAVs, Satellites, and Ground Control Sta-



tions (GCS), in academia. An ideal testbed should allow inter and intra-component
communication, and component level behavioral analysis. We present a classification
of these existing simulators based on their capability to simulate multiple and single

UAVs as well as the presence of navigation module in the simulation environment.

1.3.1 Software based Single UAV Simulation

Software simulation testbeds are mostly based on well-known software platforms
and do not employ any hardware. Testbeds developed using Matlab-Simulink [30],
FlightGear [31], JSBSim-FlightGear [32, 33] and Matlab-FlightGear [34] are some of
the recent attempts of developing simulator for UAVs. All these simulation testbeds
have focused on testing a single-UAV model instead of modeling its behavior in the

presence of other UAVs in the real world.

1.3.2 Software-Hardware based Single UAV Simulation

Some other simulation testbeds using hardware along with software, have also
been developed where the hardware might be actual UAVs [35], robots [36, 37], or
just laptops [38, 39]. A very recent work of this type [33] focuses on analytical, and
component-based simulation and analysis. This work attempts to address possible

cyber attacks resulting in sensor compromise of various degrees.

1.3.3 Software based Multiple UAV Simulation

This type of simulation testbeds are also based solely on software platforms and
are developed in-house. SPEEDES, Synchronous Parallel Environment for Emula-
tion and Discrete Event Simulation [40], was found to be a promising simulator in
this class. SPEEDES has the capability of simulating a swarm of UAVs on a high-

performance parallel computer to match the communication rate and speed of a real
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UAVNet. Another recent work of this class, DCAS (distributed cyber attack simula-
tor), presents a distributed simulation framework for modeling cyber attacks and the
evaluation of security measures [41]. DCAS is based on an open source HLA (high-
level architecture) simulation engine called Portico. DCAS was designed for generic
wireless and wired networks and can’t use mobile components. UAVSim addresses
these capability limitations by incorporating mobile components and related mobility

models, radio propagation models, ad-hoc routing protocols, etc.

1.3.4 Software-Hardware based Multiple UAV Simulation

This type of simulation testbeds use a combination of software and hardware
platforms, and real or emulated UAVs can be plugged into the simulator. These
are developed in-house for UAV related research, instead of being commercial. In
this category, C3UV, Center for Collaborative Control of Unmanned Vehicles at
UC Berkeley [42] and SCUAL, Swarm of Communicating UAVs at LaBRI [43], were
found to be most promising. Since 2004, the C3UV team has continually updated
their simulation environment. In 2013, the capability of multiple-UAV simulation on
high-performance parallel computing environment was developed. C3UV allows the
use of real UAVs interfaced to the simulator. On the other hand, SCUAL allows use
of real mini-UAVs in a restricted area at the LaBRI, Bordeaux University, France.
SCUAL can be used by other researchers by permission and with some restrictions.
Despite all their achievements, C3UV and SCUAL involves enormous expenses in
terms of the high-performance parallel computing systems or hardware in terms of
real UAVS. UAVSim, on the other hand, was designed to be cost-effective, and the
extra investment is only required if the tested mechanism needs to be implemented

on a UAV.
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1.3.5 UAYV Simulators with GPS

A visual 3D flight simulation software based on Matlab and Simulink was an
early attempt towards simulating UAV that used the navigation module of Flight-
Gear [34]. FlightGear provides a generic GPS support with GPS receivers yet to be
implemented [44]. Another project called UAV Playground was developed in Java
used FlightGear to receive GPS data and achieved GPS tracking through Google
Earth [45]. In industry, the aeronautical division of IDS Corporation has designed
an unmanned aerial vehicle simulator Hero UAVSim [46] composed of ground con-
trol stations (GCS) [47], UAV Simulator, and a sensor payload simulator [48]. The
UAV Simulator has GPS-based auto tracking capability and GPS outage mitigation

measures while GCS has an integrated GPS receiver to determine its actual position.

1.3.6 Independent Hardware based GPS Simulators

Several hardware based GNSS simulators are available for purchase from various
manufacturers. LabSat simulator [49], a low-cost hardware based simulator, provides
selection options as GPS, GLONASS, Beidou, and Galileo. It generates genuine nav-
igation signal that can be stored, replayed and used in different applications. Spirent
implements several similar hardware, e.g. GSS9000 multi-frequency, multi-GNSS RF
constellation simulator for professional, controllable and repeatable testing in the
lab [50]. A GPS simulator by National Instruments (NI) can produce GPS signals
of up to 12 satellites and are aimed at testing GPS receivers [51]. Many other simu-
lators such as IFEN Inc. NavX-NCS Professional/Essential, CAST Navigation SGX
GPS Satellite Simulator, AeroFlex Portable GPS/Galileo/SBAS Positional Simulator
GPSG-1000, etc., also simulate GPS and GNSS but differ with respect to the range
of signals produced and constellation implemented. In academics, researchers tend

to incline towards open source solutions rather than expensive hardware based solu-
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Table 1.1: Comparison of software based GPS Simulators

Simulator = GNSS Type Language Visualization Vehicular

Network
Simulation
Capability
GSSF Galileo, GPS C++ Yes No
SNACS Supports All  C++ and Yes No
MATLAB
Open- Supports All  C++ Yes No

SESSAME

tions. All the devices discussed here are quite expensive and could not be considered

as low-cost for a UAV simulation testbed developed in an academic setup.

1.3.7 Independent Software based GPS Simulators

Very few researchers have developed pure software-based GNSS simulators. There
were few simulators available for purchase too, but our focus lies in open source so-
lutions. GSSF, SNACS, and Open-SESSAME were the top-three in this category.
Table 1.1 gives a brief, comparative analysis of these three software-based GNSS
simulators. Galileo System Simulation Facility (GSSF) [52] focuses on the Galileo
navigation system. Implemented in C++, it allows longer simulations and large geo-
graphical area coverage. It provides raw Galileo and GPS signal generation, express-
mode simulation, and enough functionality to analyze and visualize data. Satellite
Navigation Radio Channel Signal Simulator (SNACS) [53], on the other hand, is a
single GNSS satellite signal generator. It is open source and implemented in C++
with parallel processing. The radio channel input of SNACS and simulation results
can be analyzed in MATLAB. Open-SESSAME (Open-Source, Extensible Spacecraft
Simulation and Modeling Environment framework) [54] is another popular simulator
that provides dynamics simulation for spacecrafts for developing hardware as well

as testing flight algorithms. Based on C++, it not only provides attitude and orbit
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modeling, but can also be applied for orbit simulation, space environment assessment
or control algorithm validation. One of the biggest limitations of all these simula-
tors was the unavailability of any interfacing with any network simulation software

to enable vehicular-network simulation.

1.4 Research Objectives and Contributions

This dissertation primarily focuses on the design, development and testing of a
simulation framework for the location and mobility-aware unmanned aerial vehicular
networks (UAVNets). As a prerequisite, detailed threat modeling and risk evaluation
has also been performed and discussed in this work. Although more detailed require-
ments of such a testbed have been discussed in the Chapter 3, it should be clear
that such a framework needs to allow any UAVNet simulation including its various
systems, such as navigation. In this work, we demonstrate the navigation capability
using GPS. Therefore, all the discussion from here onwards may refer to GPS and
GNSS interchangeably. This simulation framework, called UAVSim, addresses various
security simulation requirements as well [55]. Additionally, the GNSS/GPS simula-
tion framework have been independently designed so that it can be used in UAVSim
as well as with other OMNeT++ based vehicular network simulations. The outcome
of this research is expected to solve the problem of accurate security simulations of
different types of UAVs available in various domains.

To sum up, following technical contributions have been made in this dissertation:

e A detailed UAV, as well as the UAV system architecture, was developed through
extensive literature survey for accurate system description. In the overall pro-
cess of framework development, this served as a prerequisite to the threat mod-

eling phase.

e Detailed Threat model using the CIA triad and Risk evaluation using standard
14



risk evaluation grid to identify highest priority threat. Omnce a testbed was

developed, this model along with detailed system description provided

— enough details to specify requirements and define the design of the simu-

lation framework

— list of attacks that need to be implemented and understanding of their

detailed anatomy for implementation

e An OMNeT++ based open-source simulation framework for security as well
as swarm simulations of UAV Networks with the flexibility of each and every
environment parameter variation including navigation, weather, mission path,
transmission range, etc. The functionality has been tested and demonstrated

through implementation of various attacks as well as some defense mechanisms.

e An OMNeT++ based independent navigation simulation framework, incorpo-
rating satellites and weather data, has been developed. It enables users to
capture the characteristics of unmanned aerial vehicle mobility and address the

complexity of atmospheric pathways.

e Both the Satellite-end GPS signal transmission and vehicle-end GPS signal
receiver have been implemented using standard trilateration equations. This
receiver can be used in OMNeT++ for simulation as a component of any node,
i.e., it can be used in other vehicular or mobile network simulations to incorpo-

rate GPS navigation.

e An extensive simulation study has been performed to reveal the achievable per-
formance of the simulation framework using a broad range of affecting factors.
Most importantly, the impact of the number of concurrent users, mode of sim-
ulation, etc. has been investigated. These studies prove the correctness and

reasonable performance of the developed framework.
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1.5 Dissertation Outline

Chapter 1 introduces the dissertation topic, its background, and the motivation
behind it. It also discusses related work done in academia and finally, describes
various research objectives and the major contribution of this work.

Chapter 2 presents detailed threat modeling and risk evaluation. It also em-
phasizes on command and control hierarchy definition for UAV systems being used
throughout the US. The threat modeling follows a goal oriented approach and uses
the CIA triad, and risk evaluation is based on standard risk evaluation grid.

Chapter 3 explains the detailed design and requirement of the developed simula-
tion testbed framework. It also discusses platform evaluation and features of some
of them. Next, the implementation of the simulation framework along with detailed
description of all the modules are also discussed in this chapter.

Chapter 4 describes the anatomy and implementation details of various attacks
identified during the threat modeling phase. This chapter describes the working of
these attacks and how some defenses have been implemented. It also investigates
the performance of testbed for high volume traffic during the attack and non-attack
simulations.

Chapter 5 presents various performance evaluation results. This evaluation focuses
on gauging whether the testbed is performing decent enough so that it can be used
by other researchers with generic computing infrastructure. Tests were performed,
and trends were plotted for various attack simulations in this chapter.

Chapter 6 concludes the dissertation by summarizing major results and findings
obtained in this research and gives recommendations for future work. It discusses
possible extensions of some modules and what kind of attacks and their mitiga-

tion/detection measures could be implemented.
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Chapter 2

Threat Modeling and Risk

Evaluation

Much of the research related to security and threat modeling arise from a low-level
system perspective and mostly, focuses on the causes and methods of computer secu-
rity breaches. Nonetheless, these works are focused on answering the same questions:
what are the vulnerabilities of the system in question, how can attacks be prevented
and how can the threats be mitigated. Possibly, a better approach is to perform a
cause-effect analysis defining the cause of unintended or degraded subsystem function-
ality and evaluating the attack severity on mission/task performance [56]. This served
as the primary motivation for the proposed threat analysis and modeling before the
design and development of the introduced simulation testbed framework UAVSim.

Figure 2-1 shows the typical UAV Network communication scenario, which consists
of several components and different kinds of communication links. These links carry
different types of information and data [57]. Typically, this type of network has
three types of links based on the information being transmitted, namely, UAV to the
base, UAV to UAV and UAV to Satellite link. UAV to base links carry telemetry
data, audio, video, and control information. Besides this, satellite links carry GPS,

weather, and meteorological information. UAV to UAV links are usually used in case
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Figure 2-1: Typical UAV network communication scenario

of emergency of lost satellite and base communication link and are used as emergency
channels to transmit any required information.

One of the vital uses of UAVs is in ballistic missile defense networks where UAVs
are typically tasked to patrol an intermediate area between the ballistic missile launch
site and the missile’s intended target. Ballistic missiles are capable of moving at an
extremely high speed and require quick detection, tracking, and elimination. Particu-
larly, detection and tracking should be done as quickly as possible after the launch to

increase the chances of successful interception. The ballistic missile defense network
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Figure 2-2: UAV architecture with basic components

designers intend to intercept the missiles during the boost phase that typically lasts
2-5 minutes. During this time, the missile may quickly move out of the range of
UAV sensors if they are flying directly away from the UAV flight path. Therefore,
information routing in the ballistic missile sensor network has to comply with high
availability as well as security requirements [58]. This case was discussed here to il-
lustrate the time sensitive nature of applications related to UAV and the importance
of communication channel security. UAVs of the size of a hummingbird have also
been designed and operational [59], which clearly indicates that there are no size or

portability problems with these cyber-physical systems.

2.1 UAYV System Modeling

2.1.1 Single UAV Architecture

As an abstract representation, any device or vehicle is usually represented as a
black box during simulations to simplify analysis with respect to external factors. A

similar approach was used for the initial UAV Model design. For simplicity, UAV
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was abstracted as a node that can communicate using short distance as well as long
distance radio signals, with nearby UAVs and satellites. This abstraction also resulted
in faster computation and quicker simulation results.

Further, an advanced UAV model was developed to allow evaluation of more so-
phisticated component level attacks in a UAV. Figure 2-2 shows this advanced model
detailing various system components. This model can be defined as a combination
of six separate, but dependent systems. These modules are Data acquisition module,
AHRS (Altitude and Heading Reference System), NAV (Navigation) System, Control
Module, Data Logging Module and the Telemetry Module [60-62]. The communica-
tion system module has not been shown here as it encompasses all the modules and
any incoming/outgoing command and control signals, and data signals pass through

it. Primary functionality of these six modules are briefly discussed below:

e Data acquisition module: This module is tasked to collect data from the envi-
ronment. [t connects to various sensors installed on the UAV including camera,
heat sensor and infrared sensor. It then sends the required information to
respective modules. For example, attitude information is sent to the AHRS
module while camera data is sent to the Telemetry module for further trans-
mission. Any kind of dysfunction in this module could result in a catastrophic

damage to the UAV.

o AHRS: An AHRS provides 3D orientation of an aircraft by integrating MEMS
based gyroscopes on a circuit board and fusing this data with accelerometer and
magnetometer data. With sensor fusion, drift from the gyroscopic integration
is compensated through the use of reference vectors of gravity and the earth’s
magnetic field. AHRS is more cost effective solution than conventional high-
grade IMUs (Inertial Measurement Units) that only relies on the high bias

stability of the gyroscopes.
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e Navigation System (NAV): It is known that Navigation systems primarily col-
lects and provides location information. Additionally, for systems like GPS,
NAV system also collects timing and mobility information through highly ac-
curate atomic clocks available on the Navigational satellites. These data are
called PNT (Position, Navigation and Timing) and are very crucial for UAV

operation and successful mission completion.

e (Control Module: The control module connects to the actuators of the aircraft
and handles sending various control signals. These control signals instruct the
aircraft to move in a particular direction with a set speed and a specific orien-
tation. Since most UAVs are remotely piloted, this module serves as one of the

most important modules as any discrepancy in this module is unacceptable.

e Data Logging Module: All the data of any aircraft is usually logged in this
module for checks during flight and further analysis in case of crash or system
malfunction. This module stores log information of all data collection, reception,
and transmission as well as stores PNT data after fixed intervals to keep track

of mission.

e Telemetry Module: This module is responsible for automated communication
and data delivery by the UAV to control station or to the satellite. Some
measurements are also made within this module using data collected from the
remote or inaccessible location by the Data Acquisition module. Data is finally
transmitted to receiving equipment at control station for monitoring, either

directly or through a satellite link, depending on link availability.

More about this detailed model and how these six modules have been implemented

in our simulation testbed has been discussed in Chapter 3.
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Figure 2-3: Simple block diagram representation of a UAV network

2.1.2 UAYV Communication Architecture

It is clear that all communication channels used in UAVNets are wireless. This
renders the communication channel vulnerable to various exploits and malicious at-
tacks from aerial intruders flying in the vicinity as well as ground based adversaries.
We have tried to include all communication channels for the system which are impor-
tant with respect to communication and security. It is clear from Figure 2-3 that the
different components of the system rely on wireless communication channels for com-
municating with each other. GCS (Ground Control Stations) can be of three types,
portable, local and HQ. HQ GCS is usually located at a Command & Control Center
or Base of the concerned Agency/Department. Local GCS are the mobile control

stations in the war-zone, typically in the form of a radio-equipped vehicle. Portable

GCS is a sub-class of local GCS and could be PDAs (Portable Digital Assistants),
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smartphones or rugged laptops.

Although various communication channels in a UAVNet seem similar because of
their wireless nature, there are huge differences among them with respect to secu-
rity [63]. The link between a Satellite and a UAV is usually LOS (Line of Sight) radio
communication. UAV-UAV, PDA-UAV, and Local GCS-UAV links could be LOS
radio communication or GPRS/EDGE based using existing communications infras-
tructure. Studies show that by using BOTNETS, a botmaster, and a small drone, it
is possible to break into existing networks through identifying vulnerabilities in these
GPRS or Wi-Fi Networks. This vulnerability can be attributed to the insecure and
unreliable security techniques used in Wi-Fi Networks [64]. Threats to each of these
communication links and components are also different and have different security
requirements. Components like Satellite and HQ GCS might have certain threats
but may not be too vulnerable due to the existing security measures in place [65].
Further, the link between a UAV and the HQ-GCS might be BLOS (Beyond Line of
Sight) in case the UAV is far away from the HQ-GCS. In such situations, a tower or

satellite might be used as a repeater and thus introduces another security loophole.

2.2 Command and Control Hierarchy

One of the important aspects of understanding a system is being aware of the
command and control hierarchy, especially when it is a complex system as UAVS.
The complexity of these systems arises from the involvement of several agencies and
departments in the US in independent drone operations hierarchy. At the top level,
the system operations can be categorized as military and civil operations, as shown
in Figure 2-4. Further, each operation type is carried out by several departments,
and each one of them comprises of several agencies that have their specific missions,

UAVs as well as satellites. This hierarchy is not comprehensive yet and is created
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using information available in the public domain to give designers an idea of various
stakeholders in commercial or military UAV operations.

Another aspect common in all UAV operations is approval and involvement of
FAA. To this end, FAA strictly limits the use of UAVs up to a certain height so
that other commercial and civilian aircraft are not endangered or affected. FAA does
not require people to obtain a license for hobbyist drones (small and mini-UAVs)
which are used for recreational purpose. Such usage is limited to a height of 400 feet
and away from airport and air traffic [12]. Recently developed Lily Drone is a great
example of such a drone that operates in preset flight modes, follows a tracker on the
wrist of the user and lands near the tracker if it is low on battery [66]. As expected,
even this drone goes only to a height of 50 feet. Understanding of these regulations
and C&C hierarchy is also important for hobbyist and designers as these need to be

part of the programming of the UAV.
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2.3 Threat Analysis and Modeling

As mentioned earlier, threat analysis has been completed for the UAVS as a pre-
requisite for designing a simulation testbed. By definition, threat modeling involves
structured analysis of the security of the subject and enables designer to identify,
quantify, and address the security risks associated with that subject. Consequently,
it is considered an important aspect of ensuring the security of a system because it
can lead to discovery of exploitable vulnerability in the system [67].

We follow a goal-oriented approach to the security threat modeling and analysis by
using visual model elements to capture explicitly threat-related concepts [68]. Such a
model enables system designers to understand the threat profile of a system through
proper examination of the system as an adversary would. It also helps them to
determine the number and types of high-level security risks posed to the system [69].
The resulting threat model describes potential attacks on the system. One of the
uses might be to understand the attack severity and to evaluate decisions that will
affect the security of the system over a long period of time [70]. The model can also
be used as a basis for system penetration testing as the system evolves after several
iterations of design, development, and testing [71].

Our attempt to model the threats posed to a UAV system and possible attack
paths of these threats resulted in a threat model shown in Figure 2-5. We will now

discuss these threats in detail using the developed Cyber-Security Threat Model.

2.3.1 Confidentiality Attacks

This property primarily deals with unauthorized access to information and the
most common way of compromising this property is interception of information. The

four major components of the UAV model which are vulnerable to this class of attack
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are the UAV, GCS (all types), communication link and human beings. Threats to
the GCS are mostly software based, namely, virus, malware, trojan, keylogger, etc.
A major threat for a UAV is hacking. It should be understood that software based
threats can affect UAV as well, but there are easier ways to get those threats to the
UAV. The GCS security breach or the UAV security breach itself may lead to other
threats to the UAV, but the need of addressing these threats is mostly fulfilled if
addressed at the GCS level.

The primary source of compromising the security of communication links be-
tween various system components is through network attacks such as hacking, eaves-
dropping, identity spoofing, cross-layer attacks [72] and multi-protocol attacks [73].
Clearly, all these attacks might not apply to each of the links available in the system.
The aim of including all of these attacks in one group is to identify possible threats to
various communication links involved instead of identifying the threat for each type
of link separately. When putting proper mitigation measures in place, it is required to
notice which attacks affect these links and deploy the measures accordingly [74]. As
for the human element, the increasing trend of online social and business networking
has resulted in a rise of new kind of threats. Some of these include social engineering,

fake online competitions, blackmailing and behavioral exploit.
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2.3.2 Integrity Attacks

The integrity of any system could easily be compromised using two basic oper-
ations, i.e., modification of existing information or fabrication of new information.
Modification aims at altering the data during transit or in storage while fabrication
involves creating new signals and transmitting it as if they were the original signals.
Natural events like lightning, magnetic pole shifts, sun flares, etc., might cause some
integrity loss and add unwanted noise to the signal. However, these natural events
are occasional, and most communication protocols and equipment attempt to take
care of issues caused by them by having an error detection and correction mechanism.

Next are airborne threats that have three broad categories: jamming, compromis-
ing the signal integrity and tapping or capturing the signal feed. Jamming aims at
disrupting communication through interference with the reception. Researchers have
proposed many defense strategies against jamming in wireless networks but even to-
day, there is no effective solution to this attack. For compromising signal integrity,
distortion and changing the SNR (signal to noise ratio) are the most common ap-
proach. The third way of tapping or capturing the feed is the most difficult type of
attack to launch as it requires a lot of intelligence data in terms of transmission signal
frequency, range, etc. Interestingly, a separate branch of communication engineering
called Signal Intelligence involves the study of such attacks [75, 76]. The last class of
attack in this category is fabricating or modifying information, which includes the use
of malicious code or existing subroutines of the system. Subroutine exploit involves
attacking the system through finding and exploiting vulnerabilities in the code of the
system once the adversary has enough information about the system. This system

information can be gained from a planned or brute force attack.
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2.3.3 Availability Attacks

Primary cyber-attacks which might affect availability of the UAVS are jamming,
falsifying signals and Denial of Service attacks (DoS). As discussed earlier, transmit-
ting false commands or control signals requires a lot of signal intelligence and it can be
a major threat to the UAV system availability. These false signals can actually make
the UAV land or attack somewhere else through incorrect commands. DoS or DDoS
(Distributed DoS) attacks are mainly based on network congestion or overflow in the
network card of the system so that the system appears to be unavailable. During
such an attack, the system or network is actually busy in serving other fake requests.
Three ways of launching such an attack are flooding, spoofing or smurfing and buffer
overflow. Flooding basically floods the network with one or more kinds of network
packets by sending multiple packets to the system to be attacked. Usually SYN, UDP,
ICMP and Ping packets are used in such an attack. Next type of attack belonging to
this class is buffer overflow which aims at overflowing the buffer memory of network
cards on the devices being used in the system. Smurfing involves flooding the system
by broadcasting spoofed network packets and it seems to the target system that all

packets are coming from different addresses [77, 78].

2.3.4 Threat Summary

Being a cyber-physical system, a UAS is vulnerable to most network oriented
cyber-attacks but some of them can be more dangerous than others and can lead to
a more unstable and vulnerable state of the UAS. Therefore, it is important to pri-
oritize threats according to the risks they pose and their impact on the system once
occurred. Based on this priority, threats should be addressed, and proper mitigation
measures should be developed. We have presented a threat classification above, and

it is published in [15] based on the initial analysis. Here, we present an updated and
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Table 2.1: Major security threats to a UAS

Component /Technology Threat/Attack

Weak Encryption

Satellite Communication Congestion due to Traff

Availability Attacks (Jamming, DoS, etc.)
Compromised UAVs

Eavesd i
Other Radio Comm Links avesdropping

Radio Jamming and DoS

Location privacy attack
GPS Spoofing

Unmanned Aerial Vehicle Fuzzing Attack

Hijacking and Immobilization

Gain Scheduling Attack

Malware injection

Ground Control Station Keylogger and other data extraction mecha-

nisms

Weak Authentication

k thenticati
Command and Control Messages Weal message authentication

Control channel jamming

. Sensor and Actuator manipulation
Sensing

Spoofing

improved categorization of threats and associated attacks based on various compo-
nents or technologies of the UAS. Table 2.1 summarizes these threats using several

of our work [15, 55] and other attack reviews [32, 79, 80] in the literature.

2.4 Preliminary Visual Simulation

Initially, we focused on visual simulation of a single UAV so that impacts of an
attack could be evaluated. We used FlightGear v2.6 and modified its inbuilt aircraft

models to design a UAV model similar to the well-known Predator UAV. Figure 2-6
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B FlightGear

3

- Instrument Attacks

Figure 2-6: FlightGear simulation environment showing types of attacks in-
troduced

represents the simulation environment of FlightGear showing the aircraft model in
it. Different views are possible including the one shown in the figure. FlightGear is
an open-source project that supports standard 3D model formats, and much of the
simulator configuration is controlled through XML-based ASCII files. Writing 3rd
party extensions for FlightGear (or even directly modifying the FlightGear source
code) is simple due to its open source nature [81].

To simulate attacks in this visual simulation environment, we induced failures in
various systems to check the system generated alerts and system response to those
failures. Finally, we gauged the level of damage caused by failure to the UAV. It should
be noted that the aircraft in these simulations were entirely dependent on the existing
models designed using one of the three Flight Dynamics modeling software: JSBSim,

YASim or UIUC (LaRCSim). Therefore, any alerts generated, failure mechanism
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Figure 2-7: FilghtGear simulation environment showing various instrument
attacks

activated, etc., should already be part of the model design. Otherwise, it is deemed
to fail. Figure 2-7 shows various failures that could be inserted into the system as a
result of cyber-attacks. These attacks can also be automated by specifying MTBF
(Mean Time Between Failures) specifically for each and every kind of failure caused

by an attack. Three types of attacks were introduced in this system as discussed here:

o Instrument Attacks: This category was used to cause failure of specific aircraft
instruments including navigation, airspeed indicator, altimeter, vertical speed

indicator, turn indicator, heading indicator, magnetic compass, etc.

e System Attacks: This category of attack was used to affect various aircraft
systems such as, the vacuum system, pitot system, electrical system, all engines,

aileron, elevator, rudder, landing gear, flaps, speedbrake, etc.
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e Random Attacks: This category would cause failure on any of the systems as
well as instruments on-board an aircraft and can be set using MTBF or mean

cycles between failure (MCBF).

As a result of this visual simulation, it was noted that most system and instrument
failure lead to a crash of the aircraft if it is in auto-pilot mode. Omne of the most
important use of this simulation was in the next phase of Risk and Impact Evaluation
where impact and the likelihood of various threats were defined as several levels.

Finally, the risk posed by those threats were also calculated.

2.5 Risk Evaluation and Analysis

This section discusses the detailed risk evaluation and analysis posed by major
threats using their likelihood and impact factors. We present the standard Risk
Evaluation Grid used by the NIST as well as European Communication Standard
Institute. Further, we discuss more on likelihood and impact factor evaluation and

finally, we present results obtained by the detailed Risk Analysis.

2.5.1 Risk Evaluation Grid

Table 2.2 shows the Risk Evaluation Grid, which was used for the threat analysis
of various threats. It has been defined as a standard grid in the ETSI (European
Telecommunications Standards Institute) threat assessment methodology [82]. This
grid is used for various detailed security analysis of European telecommunication
systems, and a version of it has also been recognized by NIST for use in the US. This
detailed system analysis helps the designers in determining the likelihood, impact and
risk of each of the possible threats. It also gives developers an insight in the overall

damage that can happen to the system due to a particular threat.
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Table 2.2: Risk evaluation grid

Rationale
Criteria  Cases Difficulty Motivation Ranks
Unlikely Strong Low 1
Likelihood Possibly Solvable Reasonable 2
Likely Strong High 3
User System
Low Annoyance Very Limited Outage 1
Impact  Medium Loss of Service (LoS) Limited Outage
High Long time LoS Long Time Outage
Minor No need for countermeasures 1,2
Risk Major Threat need to be handled 3,4
Critical High Priority 6, 9

2.5.2 Likelihood and Impact

Several researchers have tried to devise mechanisms for deciding the likelihood of
various attacks in different scenarios, and it was found that the likelihood of attacks on
various kinds of networks was entirely different. The likelihood of attack also varies for
each component of the network. A quantitative evaluation algorithm that estimates
risk indices by layering based on the intruding process has also been proposed [83].
This evaluation algorithm also involves simulation of the network and evaluation of
threats and their likelihood based on the simulated network and the algorithm. One
such example is the Threat and Vulnerability Analysis of WiMax/802.16 [78]. The
issue with this type of analysis is that the risk values may be different for different
researchers according to the information available and level of analysis.

The Likelihood parameter evaluates the possibility of attacks being launched. It is
Unlikely if a potential attacker has much less information and needs to resolve several
technical difficulties, or if there is a low motivation. It is Possible if there are lesser or

no technical problems or if there are several reasons for someone to launch an attack.
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Table 2.3: Risk analysis summary

Signal Integrity

Threat Algorithm(s) Likelihood Impact Risk
Jamming 3 1 3
Scrambling /Distortion 2 1 2
Eavesdropping 3 2 6
Cross Layer Attacks 2 1 2
Multi-Protocol Attack 2 1 2
Social Engineering 2 2 4
Spoofing Device List 3 3 9
X.509 device Auth. 2 3 6
Command and No MAC 3 3 9
Control Message SHA-1 MAC 9 3 6
Modification AES MAC 1 3 3
Data Traffic Without AES 3 1 3
Modification With AES 1 1 1
DoS on UAV/GCS EAP/SHA-1/AES/MAC 3 3 9
3 2 6
1 3 3

Malicious Code, Sub-
routine Exploit

Virus, Malware, Tro- 3 2 6
jans and Keyloggers

It is Likely if there are a high motivation and no problems in launching the attack.
Impact signifies the resulting state of the system after an attack. It is Low if the
attack creates only low-level problems, and the problems created are usually reversible
and repairable. It is Medium if the attack is directed to loss of service for a single user
for a considerable amount of time or limited scope outage for a multi-user system.
The impact is High if the attack directed to an individual user causes a loss of service
for an extended or longer periods with many users being affected and possible law
violations or financial losses. The Likelihood and Impact vary from one to three as
shown in Table 2.2. For a given threat, the Risk is calculated as the product of the

Impact and Likelihood values.
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2.5.3 Results

The result of detailed risk analysis is shown in Table 2.3. Evidently, the likelihood
of an attack decreases if there are any security measures in place while the impact
remains the same. For risk values less than 3, no countermeasure is required. As for
values of 3 — 4, the threat ought to be taken seriously. Finally, if the value is 6 — 9,
then the threat is critical and should be addressed as a priority.

It has already been discussed that this type of analysis is subjective, and risk values
may vary according to the detail of analysis and information available regarding the
system. It can be seen from the table that a reduction in likelihood results in an
overall decrease in the risk. It should also be noted from the analysis results that
Spoofing, DDoS, and command /control message modification pose the greatest threat
to such a system and should be addressed on a priority basis. Other major threats are
eavesdropping, software based threats, and signal interruption. Figure 2-6 shows the
GUT of the FlightGear simulation software which was used to simulate the effects of
these attacks and the severity of damage (usually a crash of the UAV). Results from
this analysis will be further used while deciding which attacks to be implemented

first.

2.6 Chapter Summary

In this chapter, initially, the architecture of the overall system and the UAV was
designed by identifying major components of the system as well as that of the UAV.
Two different models were proposed for the UAV: a basic model for faster simulations
and an advanced model for detailed component level analysis. Subsequently, detailed
threat modeling was performed based on these architectures. Also, associated attacks

and possible attack paths were also defined along with the definition of potential
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threats in the detailed threat analysis of the system. A summary of this threat model
was also presented to list most imminent and high-likelihood threats to the UAV
system. Finally, using the basic visual simulation and analysis of how the aircraft
behaves under certain failures caused by attacks, the likelihood of each attack and
how different attacks would affect the system was analyzed. All these steps helped us
in detailed risk analysis of the UAV system and came up with high priority threats.
As discussed in further chapters, this would ease the process of selection of attacks

for implementation and testing of our testbed.
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Chapter 3

Simulation Testbed Development:

UAVSim

After the Threat Modeling and detailed Risk Analysis, our team was ready to
design and implement the simulation environment. During this phase of the work, we
first analyzed and evaluated a few open source options for the testbed development.
It is necessary to reuse existing code rather than recreating it from scratch when we
are aiming to develop an open source software for research and academic use. In
this chapter, we first discuss the requirements for such a simulation environment then
look at possible options for use. Later, we discuss various constraints and limitations
faced by our team before and during the development process. Finally, we present

the detailed design of UAVSim.

3.1 Testbed Requirements

The testbed should fulfill various requirements to be used as a cost-effective
method of simulating UAVs and related security aspects. These requirements along

with some of the advantages of using a software based testbed are listed as follows:
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e UAV operations are supported by several agencies and department and thus
require simulation capability of different terrains, weather, etc. Therefore, such
a simulation testbed should allow users to simulate different mission scenarios

through the use of various mobility models/paths, terrains, weather, etc.

e The aim of developing a testbed for UAVNet is to enable testing and evaluation
of various threats, attacks and their defenses using the basic and newly designed
UAV models. Therefore, the testbed should allow the use of different kinds of

UAV models irrespective of the scenario being modeled.

e Enhanced security might result in the use of additional software or hardware
components in the UAV. The testbed should be able to test the UAV system
performance with these enhanced security measures in place. For detailed se-
curity analysis, a feature to evaluate effects on individual system components

could also be provided.

e Since the testbed will be used by various classes of users, it should provide
an interactive and easy to use GUI and result analysis module. Various intu-
itive options may also be provided for customized result analysis as per user

requirements.

e The UAV in itself acts as a network of components that communicate with each
other. The testbed should allow testing of relevant attacks and their effects on
these UAV components. The designed UAV model should also replicate the

real-world component communication behavior.

e Most UAV simulation tools developed until now focus on specific application
requirement and are not specifically suitable for security analysis due to the lack
of communication protocol implementation, proper GUI, and result analysis

modules.
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e Physical testbed involves investment in expensive hardware for the UAV devel-
opment. This cost can be eliminated by using a software based testbed that
allows users to vary simulation speed during the simulation and gain on-the-go

insights.

e Use of a high-performance computer ensures that the simulation is real-time
and also allows users to slow down the simulation speed. Both of these features

may facilitate gaining valuable insights during the simulation.

3.2 Platform Evaluation

A comparative study was performed among popular and widely used open source
network simulators to understand their capabilities and then decide which platform
should be used for our simulation testbed development. Some graphics based flight
simulation platforms like Flight Gear were also evaluated, but due to their limitation of
single UAV simulation, our focus moved to assess network simulators such as NS-2 and
OMNeT++. After detailed analysis and comparison, it was found that OMNeT+-+
was most suited for our requirements due to its better network animation and support
of a standard language, C++. Additionally, the network definition language (NED)
for OMNeT++ is much user-friendly than Tcl (used in NS-2). Table 3.1 briefly sum-
marizes this comparison. It is clear that OMNeT++ is preferred over NS-2 because of
user-friendly programming model environment, hierarchical model structure, ability
to run large networks and independent co-design of experiments [84].

OMNeT++ is open-source, has an excellent network animation module and most
importantly, supports mobile node simulation. It is a C4++ based, modular, open
architecture, discrete event network simulator with strong GUI support and an em-
beddable simulation kernel that allows us to make modifications and develop our cus-

tom modules [85]. Once the base simulation engine was chosen, we evaluated other
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Table 3.1: Comparison of OMNeT++ and NS-2 simulators

OMNeT++ NS-2
Programming model C++ and NED C++ and Tcl/Tk
Model management Independent  kernel Embedded kernel
model model
Model structure Hierarchical ~model Flat model structure
structure
Debugging and tracing Present Third party modules
Running large networks  Limited by system Has scalability issues
memory
Experiment design Topology and models All in one script
separate

reusable modules that can be used for the testbed development. Two such modules
are INET and OS3 (Open Source Satellite Simulator) [86]. INET is a built-in module
of OMNeT++4, which supports all kinds of wireless communication protocols, mobil-
ity models, and radio propagation models. OS3 is another OMNET++ based third
party simulation module for evaluating satellite communication protocol. It provides
a generic satellite constellation that seamlessly integrates real satellite tracks and
weather data to simulate different conditions along with good visualization. Imple-
mentation of a highly accurate and stable satellite movement and modeling in OS3
provided a good base for the development of our navigation system. Being platform
independent, OS3 can be employed easily on any system. In the next few paragraphs,
we discuss more as to why this particular simulation platform was chosen [87].

OS3 or CNI_OS3 implemented simple satellite mobility (such as SatSGP4) without
any satellite communication and satisfied all our other requirements. The foundation
of this work was Galileo Satellite Communication Simulator (GSCS) [88] (also known
as Multi-scale Satellite Simulation Environment (MSSE)). Although GSCS was based
on the INET framework of OMNET++ simulation engine, it was Galileo satellite

navigation system specific. CNI_OS3 uses a TLE (Two-Line Element) format file for
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fetching initial positions of various satellites being used for simulation. Depending
upon the specific Navigation System TLE file used, that particular navigation system
can be simulated. For example, we can use TLE file of 31 GPS satellites to simulate
GPS while we can use a TLE file of 30 Galileo satellites to simulate Galileo Navigation
System. It provides an accurate satellite movement simulation with live weather data,

high-resolution altitude data, different visualization options, etc.

3.3 Constraints and Assumptions

Various constraints and assumptions made during the development of GPS in

UAVSim include the following:

o Generic computing environment: The project being non-funded, available medium-
end systems were used rather than the high-performance parallel computing
systems. Only open source simulation environments could be used because of

the same reason.

e System information and validation data non-availability: Most of the system
information is not available in the public domain and thus gathering various

network and communication-related information posed a significant challenge.

e Distance measurement: In the GPS implementation, instead of calculating the
distance between the satellite and the host using the speed of light and time
difference in transmission and reception, this distance is being sent in the packet
itself. Reason being the limitation of OMNeT++ of Tx/Rx event timing being

exactly the same (accurate up to a nanosecond) to make it appear real-time.

e Trilateration: We have approximated the implementation to a 2-D localization
(trilateration) instead of 3-D (multilateration). This is due to the limitation
posed by UAVSim, CNI_OS3, and the underlying simulation engine OMNeT++.
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o Attacker capability: Capability of attackers have been assumed to be equal or
more than the UAVs in simulations. This enables impact evaluation of more

powerful adversaries as well as scenarios in which our systems are compromised.

e Radio disturbances: The communication environment of the simulation testbed
takes into consideration disturbances caused by random noise, upper layers of

atmosphere and communication signals present in the lower layers.

3.4 UAVSim Design

The simulation testbed is developed using the open source network simulator
OMNeT++ and one of its independently developed open source modules called INET.
Network design and higher level modules are coded in NED, a language specifically
designed for OMNeT++ while the lower level functioning is coded using C++ [85].
Although it has an inbuilt GUI and a result analysis module, we developed another
GUI to make it more user-friendly. Several attacks have been implemented in the
attack library of the testbed. Further, an advanced model of UAV has also been
designed, and external models could also be coded in the simulation environment.
As mentioned earlier, the interactive GUI of the testbed lets the user change various
parameters while advanced users can directly edit the configuration (*.ini) files. The
testbed supports mobile wireless communication, UAV component level modeling
capability, and detailed network analysis at lower levels of the protocol stack. Further,
attacks targeting different layers can also be designed and tested in the testbed.
Another important feature of this testbed from the user perspective is its user-friendly
design and its ability to work on the generic computing environment. Figure 3-1 shows
the high-level architecture of the experimental testbed. We used OMNeT-++ version
4.2.2 with version 2.2 of INET.

An OMNeT++ network model is composed of hierarchically nested modules that
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Figure 3-1: UAVSim simulation environment architecture

communicate through a message passing mechanism. Various modules can send mes-
sages to their destination along a predefined path directly, or through gates and
connections. OMNeT++ has a separate mobility framework that supports node mo-
bility, dynamic connection management, and a wireless channel control [85]. Other
than this mobility framework, there is another mobility module called INET which
has extensive modules for simulation of various wireless protocols including implemen-
tations of various mobility and radio propagation models [89]. We have used OMNeT

++ 4.2.2 and inet 2.0 for our development. The network is defined in NED (Network
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Figure 3-2: UAVSim modules

Description) files using NED language (specifically designed for OMNeT++). This
NED file imports various packages required for the simulation of the network. The
second important component is a configuration file, usually named as omnetpp.ini,
which contains the description of all network parameters including protocols, time to
live, duration of simulation, position of nodes mobility model being used, number of
hosts, etc. This file is used to initiate the simulation, and it also contains various
UAV and attack specifics that are allowed to be modified by the user. In UAVSim,
the GUI sets the various parameters and users don’t need to edit this file. Also,
advanced users can still directly edit this configuration file in UAVSim. Figure 3-2

show various UAVSim modules and how they are placed in the design.
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3.4.1 UAV Model Library (UAVModel)

UAV model library contains all UAV model definitions as well as the attack host
definition. Since attack hosts can be wireless or fixed, they are defined in this module
as sub-categories of the Attack host sub-module. A proper definition of UAVs was
also done in this module using the UAV architecture presented in Section 2.1 which
closely resembles the actual UAV. It depicts the UAV as a combination of six com-
ponents: Data acquisition module, AHRS (Altitude and Heading Reference System),
NAV (Navigation) System, Control Module, Data Logging Module and the Teleme-
try Module. This simple UAV architecture captures the basic functions of a UAV.
Additionally, it is assumed that the wireless attack host has a similar capability to
launch a successful cyber-attack and hence, the same model is used for the wireless
attack host too.

There are two UAV models defined - the basic and advanced. As mentioned earlier,
the basic model is similar to a black box and is emulated using a single communicating
node. None of the components is identified individually in this model. The advanced
model, on the other hand, has six modules and is implemented using different C++
files. These modules communicate with each other using message passing mechanisms
implemented in C4++ and using the NotificationBoard of OMNeT++. Each module
is a separate object (in C++) which sends the required messages to other modules
(objects). The message passing is according to the 6-module UAV architecture defined
earlier, and two types of message signals are passed: data and control signals. Use of
the advanced model increases the simulation by 5-6 times, and that is why we used
the basic model in most simulations.

While running simulations, the main simulation file imports this library to create
UAYV hosts during the simulation. Basic properties of a UAV such as speed, mobility,

communication protocol, radio propagation model, etc., are defined for the model and
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we also let the user customize/define some of them. For advanced users, this module
will also allow users to change default values of some variables, which will require
changes in the C++ and NED files. The NED files define the architecture of the
UAV and the corresponding C++ files define how these components communicate.
The C++ files also define various parameters like time lag, time of response, etc. All
defenses against various attacks will have to be defined in these C++ code files.
Most basic attacks can be simulated using the basic UAV model as it defines the
core components and communication channels. The advanced UAV model also al-
lows communication between the UAV components and allows changes in parameters
related to each one of them. A lot of research in this area involves development,
implementation and testing of new protocols and new defensive techniques. This also
serves as one of the motivations for developing this testbed specifically for UAVs. Im-
plementation of these new protocols or techniques can be achieved by writing modules

in C++ for the protocol and defensive technique.

3.4.2 UAV Network Module (UAVNet)

This module is used to define the various network parameters of the UAV Network,
which are specific and unique to the UAV Network. It is known that the protocols
used for MANETS are similar to the ones being used in UAVs, but the transmission
range, bandwidth and power consumption are quite high. These parameters and other
network specifics like the number of radio channel, fixed host properties, protocols
being used, maximum noise allowed, maximum transmission power, etc. are defined
in this module. Several parameters defined in this module use base packages from
OMNeT++ directly, and others related to mobility and radio communication are

imported from inet 2.0.
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3.4.3 Attack Library (AttackLib)

The Attack module contains all the attack libraries. Apart from using a stan-
dard UAV model, selecting appropriate and conventional attacks is one of the most
important aspects of ensuring the proper working of the testbed. It can also help
the designers of any system prioritize which aspects to address first and accordingly
improve the system. Based on the threat model proposed in [15] we selected two most
important kinds of attacks for UAV systems - DDoS and Jamming. As mentioned in
section 2.5.3, these pose the highest threat and are the most damaging in terms of
compromising Availability of the UAV system. Based on the classification of various
threats and possible attacks on UAVS, we implemented four major attacks in the
attack library of UAVSim, namely, Continuous Jamming, Single Target DDoS, GPS
Jamming and GPS Spoofing. GPS Jamming and Spoofing are the latest addition to
the Attack Library of UAVSim while other two have been demonstrated in one of our

publications [55].

3.4.4 Graphical User Interface (GUI)

GUI is one of the most important sub-modules of UAVSim. This model was
specifically developed to allow users to change parameters and run the simulation for
specific values. The GUI makes the testbed easier to use and reduces the technical ex-
pertise required to understand the underlying architecture and module arrangement.
Users can simply set the values they desire, and other parameters are taken as default
values to run the simulation. While the simulation is running, it shows the real-time
network behavior, which makes it easy to visualize. The attack hosts and the UAV
hosts are also represented using different icons that help the user distinguish between
them. There are circles around each of the hosts that represent its transmission range.

As a future work, another GUI for advanced users can be developed. Currently, these
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Figure 3-3: User-friendly UAVSim GUI for basic users

other advanced options need to be changed in the configuration file manually which

requires more technical expertise. Figure 3-3 shows the basic user GUI designed for

UAVSim.

3.4.5 Satellite Module (SatelliteModel)

Satellite model library has the standard satellite model that inherits its basic
features from the satellite model defined in CNI_OS3. This module has all the fea-

tures related to the implementation of GNSS. Each satellite uses a Two Line Element
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Figure 3-4: Satellite and navigation implementation in UAVSim

(TLE) data, which is a standard format dataset defined by NORAD (North Amer-
ican Aerospace Defense Command), which describes the orbits of all satellites. It
should be noted that other than the basic satellite model, CNI_OS3 doesn’t provide
any communication or navigation-related capability. The GPS functionality has been
added to the satellite model through the development of a broadcasting application
that sends position information to the receivers through radio signals of the L1 fre-
quency range as per the standard GPS implementation. Figure 3-4 represents the
overall design of the Satellite module and navigation. In the next few paragraphs, we

briefly discuss each of these components, including existing mobility component.
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Figure 3-5: World map used for GPS simulations in UAVSim

3.4.5.1 Satellite Mobility

Mobility is the another aspect of the satellite due to which we chose the open
source satellite simulator (CNI_OS3). Two types of mobility, SatSGP4, and FishEye-
SatSGP4 have already been implemented in this simulator. While FishEyeSatSGP4 is
used for a fish-eye view simulation, SatSGP4 is used for regular simulation. SatSGP4
is the standard satellite mobility protocol, and it defines the movement of all terres-
trial satellites. Various parameters related to the mobility are fetched from the TLE
(Two Line Element) data file of each satellite system. The current TLE file being
used is for GPS constellation and contains TLE data for 31 satellites.

Velocity in Stmulation: The map pixels have been considered as the position
(coordinates) of the satellites and hosts. The scaling of the earth to the map has been
done as follows. The radius of the earth is 6371 km, therefore, the circumference of
the earth will be

2mr = 2% 3.14 x 6371 km
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If we imagine opening the globe vertically as a 2-D map as shown in Figure 3-5, the
circumference will give the width of the map while the height of the map will be half

the circumference. The earth map used in our simulations have dimensions as

1080 * 2160 pizels

Therefore, each pixel on the map corresponds to

2% 3.14 % 6371 *« 103
2160

= 18.5 km

Therefore,

1 .
1m = (]_85—*103) pZ.I'@l

Different UAV models available today have different speeds depending upon their
design and usage. The Arcangel-1 has a speed of 150 km/h while Airforce mission
UAVs, like Patroller, can fly at a maximum speed of 240 km/h. Taking an above
average speed of 250 km/h (69.5 m/s) of a UAV, the speed of the satellite on the

simulation map will be

69.5/(18.5 x 10*) = 0.0037 pizels per second

This is the speed we use for all simulations. Thus, a speed of 0.0075 pixels per second

on the map would correspond to a speed of 500 km/h in the real world.

3.4.5.2 Satellite Network Module (GPSSimulation)

Similar to UAV network module, this module defines the network stack of satel-
lites. It defines the communication protocol, transmission power, access points, etc.

This module uses several basic packages from INET for satellite communication while
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the satellite mobility packages are used from OS3.

In this component, we defined the communication network stack for satellites.
We modified the existing satellite model to make it communication capable. Various
libraries from INET and OMNeT++ including communication protocol were used to
implement this module. Different variables that can be modified by the user were also
defined in this model, such as transmission power, differential GPS stations (access

points), data burst duration, the gap between data bursts, etc.

3.4.5.3 Navigation Module (GPSApp)

The main component of a navigation module is its GPS unit that helps it to know
its actual position. It also helps the UAV during different preset navigation modes,
such as position hold, return-to-home, autonomous flight and collision avoidance [90].
Depending upon the area in which the UAV is deployed, a GPS can be used to link
data to its spatial position. This method is called geo-referencing [91]. It is due to
their navigation capability that UAVs have found their application in various fields
and operations. The GPS signals are typically very weak, sometimes less than 100W
and are transmitted over a range of 20 — 25,000 kilometers. This low power makes
them fall below the noise floor spectrum when they reach the earth’s surface [92].
These signals are vulnerable to failure, disruption, and unintentional or deliberate
interference. Clearly, navigation is one of the most critical modules of a remotely
controlled UAV. The increased dependency of UAVs on GPS signals for localization,
navigation and time-synchronization has made it a focus area for adversaries and thus
led to the discovery of its vulnerabilities to attacks like Spoofing and Jamming. Sim-
ulations related to UAV operations involving GPS and related navigational aspects
are quite important for correct simulations.

The navigation module has the receiver end GPS application that enables the

hosts to receive satellite navigation signals carrying its position information. The
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information from four or more satellites is required to calculate the position of the
UAV using multilateration in the 3-D space. In our implementation, we have used
trilateration for localization. Therefore, a minimum of three satellites are required.
Navigation functionality has been added to the satellite model through the devel-
opment of a connectionless, no-reply broadcast application. This application sends
positions information to the receivers through radio signals of the L1 frequency range
as per the standard GPS implementation. The GPS receiver application has also
been implemented separately in hosts that enables them to receive satellite naviga-
tion signals carrying position information.

Packet Structure and Functioning: The space segment constitutes of GPS satel-
lites while the user segment in our simulations would be the UAV hosts. The GPS
application in the satellite creates and broadcasts the packet frames. On the UAV
host, the GPS application receives the packets from various satellites and processes
this received data for localization. The communication between UAVs and satellites
or any GPS receiver is unidirectional, from satellites to the host. Satellites broadcast
signals without waiting for any acknowledgment, and that is why a connectionless
broadcasting protocol have been used. The packets contain the satellite index, X
coordinates and Y coordinates of the satellite sending the packet, and the distance
from that host. For the first time when a UAV receives the packet, it locks on a
fixed number of satellites. After obtaining a lock on three different satellites (in 2-D
implementation), the UAV calculates its position. Further, it calculates its position

whenever it receives three more packets from these locked satellites.
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3.4.6 Additional Features

As mentioned in the previous section, the primary aim of designing and developing
a software based simulation testbed was to evaluate the behavior of a single UAV in
case of attacks. Due to the use of large number of UAVs nowadays, it becomes
essential to assess the performance of these UAVs in a swarm setting. Developing
such a testbed becomes a necessity when the authorities are planning to integrate
UAVs in the National Airspace (NAS). Keeping all these requirements in mind, we
initially worked on UAV component level modeling, individual simulation, attack
classification, and attack modeling [39]. Later, we developed a software simulation
testbed called UAVSim for simulations of all sizes of UAV networks [43]. Clearly, this
testbed is not comprehensive and needs the addition of various UAV models, attacks
and their detection or mitigation measures.

One of the most important feature and primary focus of UAVSim is the security
simulation for UAVNet. Several attacks have been implemented in the attack library
of the testbed. Further, basic and advanced models of UAV have also been designed
as well as the facility of using external models is provided. These external models
are usually XML based and developed by other researchers. As mentioned earlier,
the interactive GUI of UAVSim lets user vary various parameters while advanced
users can directly manipulate the configuration files. Most performance tests were
performed for security simulations and are reported in chapter 5. Attacks targeting
distinct layers of the protocol stack can be designed, launched and tested in UAVSim.
From the user perspective, one of the most important features of UAVSim is its
user-friendly design and its ability to work on the generic computing environment.

Figure 3-7 summarizes these important features and modules of UAVSim.
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Figure 3-7: Modes of operations and various components of UAVSim

3.4.6.1 User-friendly GUI Simulation

UAVSim supports command line as well as GUI-based simulations. We have
also developed a custom basic GUI for UAVSim, which allows basic users to set
different parameters, according to their requirements. Clearly, users won’t get a lot
of independence in this GUI. The advanced users, on the other hand, can edit all
the parameters by directly editing the omnetpp.ini configuration file of the particular
simulation project. Use of the GUI might cost some computational resource, and
that is why we have evaluated testbed performance using it as one of the performance

parameters.

3.4.6.2 Server Mode Simulation

To enhance the runtime performance of the testbed, a high-performance computer
can be used to run UAVSim. Remote connection details (such as IP, username,
password, etc.) for a high-performance computer or a server can be set in the GUI by
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the administrator for initial use. It is important to know that the core testbed files
should be installed on the server prior to this connection setup, and ssh should also
be enabled on the high-performance computer. These prerequisites ensure seamless

communication and simulation execution.

3.4.6.3 High Speed (No-GUI) Simulation

We already discussed that we developed a user-friendly GUI for UAVSim. The aim
of providing a non-GUI option with a GUI was to enhance the simulation performance
of UAVSim. There is another option of command mode express execution that prints
the minimum required simulation statistics to let the user know that the simulation
is running. Using this option, the simulation can execute at the maximum speed and
thus, gives the best performance. This mode is primarily available for server mode
simulation because the communication with the server might slow down execution.

Nevertheless, this mode can be used on the desktop mode as well as server mode.

3.4.6.4 Concurrent Multi-User Simulation

A multi-user option has also been provided in the testbed that allows multiple
users to run their simulations concurrently on their PCs. This option is based on
the server-mode simulation. If the testbed needs to be used for high-speed simula-
tion in an academic class or lab setup by several users simultaneously, a non-GUI
command-line option is available. One of the prerequisites to use this option is the
connection-oriented access availability on the server to all the users accessing it. This
network access is mandatory to enable independent simulation of each user. The core
simulation modules need to be installed beforehand on the server while users connect
to the server remotely through ssh. Once configured with the connection details to
the server, UAVSim automatically connects to the server and displays results in a

console window.
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3.4.6.5 Swarm Simulation

UAVSim also supports UAV swarm simulation just like any other network simu-
lators. This particular feature allows users to test the UAVNet behavior when large
numbers of UAVs are deployed for an application. This application can be commer-
cial, civil or military in nature. Typically, the swarm of any vehicle is used in wide
area sensing applications or application where a large number of sensors are required.
UAVSim performance for this swarm simulation feature has also been evaluated for

UAVS using single and multiple frequencies.

3.5 Chapter Summary

This chapter primarily details the design and implementation of the proposed
simulation testbed UAVSim. Initially, requirements for such a testbed along with
candidate evaluations and various limitations encountered were discussed. Subse-
quently, the five major modules of UAVSim, UAVModel, UAVNet, AttackLib, GUI
and SatelliteModel, were discussed in detail. Finally, few additional features were

also described, which would enhance the usability and capability of this testbed.
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Chapter 4

Attack implementation and

Analysis

This chapter consists of the core theme of this dissertation. Once the simulation
testbed was developed, the obvious next step was: security simulation. To accom-
plish this task, we primarily implemented two classes of attacks: Availability and
Integrity compromising attacks. As stated in section 2.3, the design of confiden-
tiality compromising attacks requires an enormous amount of intelligence gathering
by the adversary in terms of security mechanisms that could prevent the attacks.
Therefore, such attacks are very sparse in this domain. Simultaneously, it has been
observed that availability attacks are most common and pose a greater threat for
UAV Networks. Further, a detailed risk analysis also indicated the impact severity of
availability attacks in UAV systems. These reasons served as the primary motivation
behind choosing the attack categories mentioned above.

Two specific attacks were chosen in these two classes. For Availability, we chose
DDoS and Jamming while GPS Spoofing and GPS Jamming attacks were chosen in
the second attack class. It should be noted that the GPS Jamming attack also falls
in the Availability attack class. In essence, it is a type of selective jamming which

attempts to specifically jam GPS signals. It has been considered as an integrity
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Table 4.1: Default values of some simulation parameters

Parameter Value

Simulation Time Limit 300 seconds

Radio propagation model Nakagami model [93]
Mobility Type Linear mobility
Packet interval for UAVs 0.05 seconds [94]
Packet interval for attack hosts 0.0001 seconds
Number of UAV hosts 10

Number of attack hosts 30

UAV transmission power 5 Watts

Attack host transmission power 10 Watts

attack because it introduces the vulnerability of false GPS signal acceptance in the
UAV. The following sections discuss the implementation and detailed result analysis

of these four attacks.

4.1 Availability Attacks

This section discusses detailed implementation as well as various results for both
availability attacks: DDoS and Jamming. Using the testbed, we analyzed the effect of
changing various parameters that might affect the overall UAV System in a multi-UAV
environment. Average loss and average round trip time were calculated by averaging
them for all the hosts in the network. These two quantities represent typical network
performance and indicate the reliability and availability of time-sensitive systems.

Some of the default parameters used for these simulations are defined in Table 4.1.

4.1.1 DDoS

The DDoS (Distributed DoS) attack aims at network congestion or overflow in
the buffer memory of the network interface card, to make the host appear unavailable

or offline to all other hosts in the network. It is a well-known attack where services
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or access to resources is compromised by an increase in the round trip time than
the time to live. This increase results in an high packet drop rate. In our attack
implementation and simulations, we have used a hybrid approach for launching this
attack by transmitting a large number of packets from various attack hosts such that

the buffer memory of the wireless network interface card also overflows.

4.1.1.1 Implementation

Th DDoS attack has been implemented in UAVSim using a large number of attack
hosts. This number can be set by the user based on the total number of UAV hosts
in the network such that the attack works. Several cases are possible, including,
testing an attack and testing a defensive technique. It has been experimentally proved
that a single attack host is capable of launching a successful DoS (but not DDoS)
attack using ping packets because of its small payload size [95]. All attack hosts
behave similar to regular UAV hosts and are assigned the IP addresses of the same
range to make them indistinguishable from other trustworthy UAVs. During the
simulation analysis, we have varied this number to check the success rate of attack in
different scenarios. All attack hosts transmit packets to a single UAV host to make it
unavailable and thus, result in a successful attack. By default, the number of attack
hosts is 30, which was calibrated using several simulation experiments. Approximate
time taken to successfully launch this attack is only a few seconds for all simulations

and packet loss for the attacked host reaches 99.9% in less than 2 seconds.

4.1.1.2 Simulation results

For DDoS attack, we discuss effects of three basic parameters on attack perfor-
mance - the impact of mobility, increasing number of UAV hosts, and transmission
range variation of both hosts and attack hosts. For DDoS attack, we assume that the

attacker has already gained information about addresses being used in the system
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and thus, can launch a DDoS attack using IP spoofing. Throughout this section,
irrespective of how many hosts are present, please note that host1 is the host that is
being attacked, and host2 is the host not being attacked. The performance of hosts2
is being monitored for the sake of comparison as all other hosts communicate with

these two hosts.

4.1.1.2.1 Effect of Mobility

Movement of any host in a wireless network plays an important role in the com-
munication due to the reason that devices usually have a limited range and they won’t
be able to communicate with each other once out of range. Therefore, for the first
analysis, we chose four communicating hosts such that all of them have two wireless
network interface cards. These hosts (except hostl) use the first interface to com-
municate with host1l while the second wireless interface card is utilized by all hosts
(except host2) to communicate with host2. The attack is being attempted at host1,
and the corresponding results are presented here.

Figure 4-1 and figure 4-2 show the average loss of the host1 with increasing number
of attack hosts for different mobility models. The average loss is defined as the mean
of packet loss of all the hosts in the network that are trying to connect to the host
under attack, i.e., hostl. As shown in figure 4-1, simulation were ran using different
mobility models, and it was found that in all cases, Mass mobility and Linear mobility
models have the least average loss in the network. Therefore, we tried to analyze these
two models in more detail using more attack hosts. As shown in figure 4-2, these two
models also reach close to 100% average packet loss when the number of attack hosts
is increased to 30.

Figure 4-3 shows the average round trip time (RTT) for the network as the number
of attack hosts is increased. It should be noted that the average RTT increases from

1.69 seconds to over 200 seconds for as less as 16 attack hosts. As the number of attack
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hosts increases to 30, the average RTT increases to around 500 seconds, i.e., more
than 8 minutes. This value exceeds any possible limit of RTT and thus, indicates

that there will be massive delays even if RTT limit is increased.

4.1.1.2.2 Effect of Increased Number of UAV Hosts

In this case, we have fixed the number of attack hosts as 20 and attempted to
analyze the impact of increasing number of UAV hosts in the network, on other
communicating hosts that are not under attack. Of course, one would think that
there should be no effect on other hosts since the attack is being targeted on another
host. Unlike the traditional wired network, there should be no network congestion.
Surprisingly, we see that the presence of attack hosts in the network has a huge effect
on other communicating hosts. Concurrently, we compare it with losses in both these
hosts when there were no attack hosts.

We keep increasing the number of regular hosts to see the impact on hosts com-
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municating to hostl. It has been shown in previous mobility analysis that in the
absence of any attack host, the linear mobility model performs the best; therefore,
we used the same mobility model for this study. Although rectangle mobility is quite
close to the actual UAV movement in real world UAV applications, using it would
not give us a clear idea of the impact because of existing massive losses.

Figure 4-4 shows the analysis result for Mass mobility model when the number of
regular UAV hosts was varied from 4 to 16 in increments of 2. As shown in figure 4-5,
we plotted the loss for the two hosts when they were using linear mobility model in
the presence as well as the absence of attack hosts. The number of attack hosts, in
this case, was also taken as 20 while the number of regular UAV hosts was varied
from 4 to 16. As an additional evaluation parameter, we also calculated the RTT
for each of these simulations. Figure 4-6 shows the average RTT for these mobility

models with increasing number of UAV hosts.
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4.1.1.2.3 Effect of Transmission Range Variation

In this analysis, we tried to evaluate the effect of transmission power variation
in the UAVNet. Due to the wireless nature of links and their dependency on the
transmission power, it is important to know the effect of transmission power varia-
tion on communication. Initially, we attempted to evaluate the effect of increasing
transmission power of UAV hosts from 1W to 10W, where 10W is maximum. As it
can be seen from figure 4-7, that the loss in the host being attacked reduces from
about 100% to 75% while the attack host transmission power stayed fixed at 5W.
This indicates that even if the attack host range is 50% of the regular UAV host, the
loss can’t be avoided. The average loss for regular hosts that are not being attacked
reduces linearly though.

Figure 4-8 shows the results for the case when the transmission power of attack
hosts is increased from 0 to 10W while the regular UAV host transmission power is
fixed at 5W. The figure clearly shows that the average packet loss increases rapidly
when the transmission power of attack hosts is increased up to the transmission power
of UAV hosts and becomes constant afterward. Another important trend to note is
the loss in hosts, which are not directly attacked, remains almost constant in the range
of 50-60%. Even though this loss increases from 18% (when there was no attack),
increased transmission power does not have much effect on it once the DDoS attack

is successfully launched.

4.1.2 Jamming

Jamming is another major attack that belongs to the category of attacks affecting
system availability. It involves the transmission of random noise signals in the mission
area to make all communications difficult. The random signals usually cover a broad

frequency band and thus, renders all communicating hosts in the area unable to com-
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municate. This attack can’t be handled by most of the today’s wireless devices and
is relatively easier to launch. The jamming attack is implemented in UAVSim using
another custom designed program, which enables sending random packets to all UAV
hosts in a round robin manner. Since none of the network simulators we evaluated
had the capability of launching a Jamming attack, we used this method to implement
this attack. The working of this module was verified through experimentation. All
the attack hosts operate at different frequencies and try to block a wide frequency
range in the region to result in a Jamming attack.

All wireless communication in an area can be blocked using Jamming. This attack
results in loss of communication through corruption or loss of packets. The noise signal
usually traverses over all the possible frequencies being used for communication and
prevents transmission and reception at any frequency. If the attack host has an
advanced transmitter, a noise signal can be generated that will be powerful enough
to overwhelm the targeted signals and interrupt communications. The most common
types of signal used in a jamming attack are random noise and pulse [96]. Jamming
equipment is readily available in various online shopping websites like Amazon and
eBay. Jamming equipment can also be mounted on towers to target networks at a

remote location.

4.1.2.1 Implementation

Jamming is implemented in UAVSim by using several attack hosts that send noise
signals to all the hosts in a round-robin manner over different frequencies. The num-
ber of attack hosts can be changed before running the simulation. Transmitting these
random noise signals to all UAV hosts within the range, will launch a jamming attack
as aimed. Several researchers have developed techniques to mitigate the effects of
jamming attacks. Most of these methods employ concepts like frequency hopping

and spread spectrum communication [76]. This is also one of the reasons why we
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implemented jamming for a range of frequency in UAVSim. Post-2010, several re-
searchers have proposed anti-jamming encoding, encryption, etc., however, we have
not addressed those techniques in our jamming attack implementation due to lack
of their use in the real world. To successfully launch this attack, it took 4 seconds
longer than the DDoS attack while packet loss for all hosts reached above 90% for all

hosts.

4.1.2.2 Simulation Results

We have six UAV hosts where three hosts use 5 GHz band and the others use the
10 GHz band. Two hosts in each group are communicating with the third UAV host.
For jamming attacks, we first evaluated the effect of increasing transmission power
of attack hosts on the overall UAVS, without varying the number of attack hosts.
Further, we evaluated the effect of varying number of attack hosts on the UAVS
while the transmission power of all hosts were fixed. All hosts and attack hosts use

the linear mobility model as it was earlier proved to work best during attacks.

4.1.2.2.1 Effect of Transmission Power

In this evaluation, the transmission power of attack hosts was varied from 0 to 10W
while the regular UAV host transmission power was fixed at 5W. We recorded average
packet loss as well as average RT'T for all the transmitting hosts. Figure 4-9 shows
the trend of average packet loss, and it should be noted that the average packet loss
keeps increasing almost linearly with increasing transmission power of attack hosts.
On the other hand, the trend of RTT for these simulations is also interesting. As
evident from figure 4-10, RT'T stays well below the maximum allowed limit of TTL
(in IP networks) until the transmission power of attack hosts is less than that of
regular UAV host, i.e., 5W. Once the transmission power of attack hosts exceed this

value, the RTT increases rapidly to the range of 10 — 25 minutes. Another important
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observation is an almost equal impact on both the attacked and non-attacked UAV

hosts.

4.1.2.2.2 Effect of Increasing Number of Attack Hosts

Effects of increasing number of attack hosts were evaluated while keeping individ-
ual transmission power constant for each type of host in simulations. We consider
three cases. Case I, where the transmission power of the attack host is 10W, and
that of regular UAV host is 5W. Case 11, where the transmission power for the attack
host and regular UAV host is 5W and 10W, respectively. Case III, where transmis-
sion power of both the attack host and the UAV is 2W. Case I results are shown in
figures 4-11 and 4-12. It is clear from figure 4-11 that average packet loss rapidly
increases as the number of attack hosts are increased and crosses the 80% mark.

While figure 4-12 indicates that the RT'T increases exponentially with the number
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of attack hosts and reaches approximately 14 minutes which is obviously, unaccept-
able. Case I results are as expected because the transmission power of attack hosts
was double compared to the regular UAV hosts. Please note that RT'T and Tx power

denotes the round trip time and transmission power in all graphs of this sub-section.

Figures 4-13 and 4-14 show the results obtained for Case II, where the transmission
power of the regular UAV host was double than the transmission power of attack hosts.
Once again, the results are very well expected. Since the attack hosts don’t have a lot
of power to launch the jamming attack with noise signals, they might not be reaching
the UAV at all. It is evident from figure 4-13 that the average packet loss stays well
below 10% for six or fewer attack hosts and does not reach even 20% even when this
number is increased to 14. Similarly, it is clear from figure 4-14 that the RTT suffers

and reaches a little over 70 seconds. This value is still under the maximum allowable
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Figure 4-11: Average packet loss for Case I: Host Tx power - 5W and attack
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Figure 4-13: Average packet loss for Case II: Host Tx power - 10W and attack
host Tx power - 5W

limit of TTL, i.e., 255 seconds. Please note that this value was 800 seconds for worst
possible scenario in Case I.

Case III results are shown in figures 4-15 and 4-16. It is quite clear from both the
charts that even when no attack hosts were present in the mission area, the packet
loss is almost 50%. From Case I and II results, it can be quickly concluded that a
transmission power of 2W was not enough for the regular UAVS to communicate.
The same loss was 50% in Case I (Host Tx Power: 5W) while it was less than 2%
for Case II (Host Tx Power: 10W). A lower transmission power will cause massive
losses in any wireless network, and a threshold should be set to establish a working
communication link.

Similarly, it is evident from figure 4-16 that even attack hosts don’t have much
effect on the regular UAVs because of their weak transmission power, except for the

case when number of attack hosts was 10. This irregular behavior might have been
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Figure 4-14: RTT for Case II: Host Tx power - 10W and attack host Tx
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caused because of the random placement of attack hosts in the mission area when
the number is changed. Further, this random arrangement may have lead to a closer
position to one or more of the regular UAV hosts, which resulted in a successful
jamming attack on those particular hosts. Probably because of the same reason, we

notice a bump in the figure 4-15 when the number of attack host becomes 10.

4.1.2.2.3 Effect of Simulation Progress

It is beneficial to know the impact of an ongoing attack with time, primarily
because such kind of analysis informs the system designers of the degradation in
system performance with time. We recorded the average packet loss and RTT for two
hosts, host1 (being attacked) and host2 (not being directly attacked) at intervals of
50s to see the trend. Figure 4-17 shows the variation in average packet loss for this

evaluation, and it is clear that system performance keeps degrading for both host1
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Figure 4-15: Average packet loss for Case I1I: Host Tx power - 2W and attack
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Figure 4-17: Average packet loss variation as simulation progresses to 300s

and host2 as the simulation progresses. It is expected that the behavior would be
worse in real world courtesy various other environmental losses. Further, figure 4-18
shows the RTT variation as simulation progress and it is interesting to note that
although RTT for attacked host stays above the TTL threshold of 255, it seems to
stabilize and remain close to 300. For non-attacked host, the RT'T remains close to

the median of the 1 — 2 minute range.
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Figure 4-18: RT'T variation as simulation progresses to 300s

4.2 Integrity Attacks

As a second class of attacks, we chose attacks that compromised the Integrity of
a UAVS or UAVNet. To do so, the attacker needs to have an extensive knowledge
about the system they wish to compromise. As a sub-class of these integrity attacks,
we decided to implement navigation compromising attacks and chose GPS Spoofing
and GPS Jamming attack. This section discusses the design, implementation and

related results for these two attacks in our simulation testbed UAVSim.

4.2.1 GPS Spoofing

Studies have established that UAVs are very much vulnerable to GPS Spoofing
attack [97-100], and it can cause catastrophic damage to these systems as well as

human life. Keeping this in mind, we have implemented this attack and demonstrated
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that it can be simulated in UAVSim. One of the most harmful attacks for GPS
devices, it aims at spoofing GPS signals to give a false sense of accurate physical
location and results in mission path diversion. Nowadays, it is comparatively easier
to launch such an attack due to the availability of off-the-shelf GPS signal generators.
Satellite constellation preservation and signal transmission precision are of utmost
importance in such an attack so that spoofing is not detected. Its implementation

has been discussed below in detail.

4.2.1.1 Implementation

We implemented GPS Spoofing attack using a spoofed GPS signal generator,
which is, in fact, another vehicle at almost double the altitude of the UAV being
attacked. Although civil GPS implementation details are public, building such a
generator did pose a few significant challenges due to the complex system design. We
assume a higher altitude for attack host to mislead directional antennas installed on
a UAV for GPS signal reception. The attack host maintains same angle and distance
with the host at all times so that the host does not detect any suspicious activity. The
spoofed signal can contain discrepancy in X-coordinates, Y-coordinates or distance

as represented in the process flow of the attack implementation shown in figure 4-19.

4.2.1.2 Simulation Results

This section presents various results related to the GPS Spoofing attack. For this
attack, the UAV path is important, therefore, two types of mobility, circle and linear,
have been used to demonstrate the possible variation through introduction of minor

errors in any of position or distance values being sent in a GPS frame.

81



e r - w
Process Packet GPSApp J Create Packet
\. - \, y
If
3 v l
If
Locki l Destination M ID
o - 1S Process Start Addresses essage
3 Locked \/ ! |
satellites 3 un}que Process Send Satellite ID
satellites l l
If
Ly Packet J GenerateBurst é
Calcuiate e ‘ Process packet ‘
Position l
= =
Lock=1

Figure 4-19: Data flow diagram for the GPS spoofing attack implementation

4.2.1.2.1 Effect of GPS Spoofing on Linear path

This sub-section discusses GPS Spoofing attack in UAV Network when the UAV
was moving in a linear path. We use a single UAV and a single attack host to launch
the attack. Four cases have been evaluated based on the parameter in which the
discrepancy was introduced. As mentioned before, we have X, Y and distance values
in each GPS packet. Three cases involve discrepancy in each one of them while the
fourth case analyzes the effect of discrepancy in all the three parameters.

Case I: Discrepancy in X-direction - In this case, we vary the X-value and keep

increasing the discrepancy using the expression

=z + (0.005 * s)
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Table 4.2: Default satellite parameters

Parameter Value

Simulation Time Limit 600 seconds
Mobility Type SatSGP4Mobility
Transmitter Power 500W

Packet Interval 0.5 second

Burst Duration 10 seconds

Sleep Duration 0 second

Position Update Interval 1 second

Table 4.3: Default UAV host parameters

Parameter Value

Mobility Type Linear Mobility

Transmitter Power 10W

Speed 250 km/h (0.0037 m/s in sim-
ulation)

Burst Duration 10 second

Sleep Duration 0 second

Position Update Interval 1 second

where s is initialized as 0 and incremented by 1 in each new packet generated. Fig-
ure 4-20 shows the result of this experiment. As seen in the figure, the original
southwest direction of UAV is quite different than the spoofed direction of west. This
shows an increase in calculated Y-values while a decrease in calculated X-values.
Case II: Discrepancy in Y-direction - In this case, we vary the Y-value and keep

increasing the discrepancy using the expression

y =y + (0.005 % s)

where s is initialized as 0 and incremented by 1 in each new packet generated. Fig-
ure 4-21 shows the result of this experiment. As seen in the figure, the (almost) west
direction of UAV is the actual path while spoofed GPS makes the UAV think that it
is going in the northwest direction. This shows a huge decrease in Y-values while a

very minimal impact on X-values comparatively. Clearly, the angle of variation will
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Figure 4-20: Effect of X-value discrepancy on linear path of the UAV

increase if we increase the discrepancy factor of 0.005.

Case III: Discrepancy in X and Y-direction - In this case, we vary the Y-value
and keep increasing the discrepancy using the similar expressions of Case I and II.
Figure 4-22 shows the result of this experiment. As seen in the figure, the UAV thinks
that it is moving in almost reverse of its actual direction. This shows that both X
and Y values are now increasing very rapidly.

Case 1V: Discrepancy in X, Y and Distance - In this case, a similar expression is
used to introduce a discrepancy in all the three variables of X, Y and the distance.
Figure 4-23 shows the result of this experiment. Such discrepancy introduction shows
that the spoofed path is similar to the one obtained when discrepancy was introduced
only in Y-values. This indicates that discrepancy in distance values somewhat negates

the effect of discrepancy in X-values.
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Figure 4-21: Effect of Y-value discrepancy on linear path of the UAV

4.2.1.2.2 Effect of GPS Spoofing on Circular path

In a second set of experiments, the GPS spoofing attack was carried out on a host
moving in a circular path. Its initial position can be anywhere on a circular path
with a radius of 1m and center (561m, 432m) on the map. The starting position was
selected randomly to introduce randomness of UAV position and see if results were
location independent. The attack host also moves in a circular path with its starting
position on a circular path of radius 2m and center (565m, 435m). The attacks were
designed considering different data broadcast from the attack host. Five cases were
analyzed for this particular scenario that are different from linear path scenarios.

Case I: Discrepancy in X-direction - In this case, a discrepancy s is added to

X-values with a factor of 0.005 using the expression

=z + (0.005 * s)
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Figure 4-22: Effect of both X and Y-value discrepancy on linear path of the
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Figure 4-23: Effect of distance, X and Y-value discrepancy on linear path of
the UAV

86



434

4335 |

433 +

432.5 |

432

431.5 |

Y axis (meters on map)

431 +

430.5 |

Calculated Localization
Actual Localization

559 5595 560 560.5 561 561.5 562 562.5 563 563.5 564

X axis (meters on map)

430

Figure 4-24: Effect of low X-value discrepancy on circular path

where, s is initialized as 10 and incremented by one as each new packet is generated.
Figure 4-24 shows the obtained result for this experiment. It is clear that there was
a minor deviation of the host from its original circular path and it almost traverses
the same original path.

Case II: Higher discrepancy in X-direction - Since increasing the discrepancy fac-
tor little by little was not resulting in tangible changes, we increased the discrepancy
factor in X-values by three times to 0.015 while keeping Y and distance values same
for this case. Similar to the Case I, s was initialized as 10 and incremented by one as
each new packet is generated. Figure 4-25 shows the result obtained for this case. As
shown, the spoofed path is quite different from the original path and becomes linear
from the original starting point in the opposite direction.

Case III: Positive discrepancy in X and Y-directions - In this case, we introduce
positive discrepancy in both X and Y-values using similar expression as Case . Result

for this case is shown in figure 4-26 and it shows that the host is actually moving
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Figure 4-25: Effect of high X-value discrepancy on circular path
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Figure 4-26: Effect of positive X and Y-value discrepancy on circular path
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outward in a helical path with varying pitch, while believing that it is moving in a
circular path. It should be noted that the variation is mostly increasing Y-values and
thus, results in a helical path.

Case 1V: Negative discrepancy in X and Y-directions - This case involves negative
discrepancy introduction in both X and Y-values using similar expression as Case I.
Related result are shown in figure 4-27 which clearly shows that initially, the host
followed a path close to the original path and then moved outward following a modified
helical paths. It should be noted that such a discrepancy is resulting in large negative
variations in both X and Y-values.

Case V: Positive discrepancy in X-direction and negative in Y-direction - In this
case, discrepancy was added to X-values while subtracted from Y-values. Figure 4-
28 shows the results obtained for this case. It can be seen that the host follows
inward helical path moving away from its original position. This kind of discrepancy
is resulting in lower positive variation in Y-values while higher, or almost double

positive variation in X-values, and this results in such a helical path.

4.2.2 GPS Jamming

A famous and well known attack which affects the availability of GPS Naviga-
tion and causes total communication failure. As mentioned earlier, Jamming involves
transmission of high and/or low power noise signals to render all communication
receivers in the area non-functional. Several anti-jamming techniques have been pro-
posed to prevent narrow band interference as well as wide band interference, but
there is still no absolute solution to this problem. In this subsection, we discuss the

implementation of GPS Jamming.
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Figure 4-27: Effect of negative X and Y-value discrepancy on circular path
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4.2.2.1 Implementation

We implemented this attack using a large number of attack hosts that roam around
in the mission area and keep transmitting noise signal with high data rate and power
to jam all frequencies. Jammer implementation in our testbed was abstracted through
the use of several hosts to block each frequency intended to be jammed. This ab-
straction is being used due to the limitation of the underlying simulation engine.
Clearly, to jam all communication frequencies, the number of attack hosts required
will be quite large. Therefore, we jammed only a few GHz of bandwidth based on
the frequencies being used in the target area.

For GPS Jamming attack, we have only used linear mobility. In all cases, the speed
on the map was 0.0037 meters per second. As mentioned earlier, this corresponds to a
speed of 250 km/h in the real world. Other default parameters for satellite are shown
in table 4.2 and for hosts are shown in table 4.3. As mentioned earlier, GPS Jamming
attack was implemented in our testbed by using different attack host to jam different
frequencies. Therefore, it is understood that a certain number of attacks hosts would
be required to jam a particular frequency range. This results in partial blockage of the
frequency range and thus, a lesser packet loss of GPS data. Nonetheless, as discussed

later, the attacks were successful.

4.2.2.2 Simulation Results

For the GPS jamming attack, we used 10 UAV hosts roaming in the map in an
area of 1000 * 1000 km. Attack hosts are roaming in the area as well, transmitting
noise signals without any knowledge of UAVs in that area. This specific scenario
makes it more real. We varied the number of attack hosts from 0 to 20 to check the
behavior of the network. The plotted results are shown in figure 4-29 where we show

the average packet loss for these 10 hosts for each case. As expected, the loss increases
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Figure 4-29: Average GPS packet loss with increasing number of attack hosts
for 10 UAV hosts

with increasing number of attack hosts. Some of the lower losses may represent the

unknown movement of the UAVs as well as attack hosts in the target area.

4.3 Attack Defense

In this section, we discuss an attack mitigation and recovery measure developed in
UAVSim to prove its capability to test various defensive measures and evaluate their
performance. To this end, we have implemented a well-known GPS Spoofing detection
and mitigation technique called RAIM (Receiver Autonomous Integrity Monitoring).
Although various RAIM implementations are available in the literature [101, 102], we
attempted to design our independent implementation and test its performance. A
brief introduction about RAIM, its implementation and related results are presented

in this section.
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4.3.1 RAIM

Receiver autonomous integrity monitoring (RAIM) was developed as a technique
to improve the accuracy and reliability of GPS through the use of algorithms adapted
to GPS signal architecture. Assuming that there is at most one type of error present
at a time, there are two aspects of testing possible, namely, the detection test and
the correction test [101]. A detection test is used to identify the exact error while
the correction test corrects it and tests if the correction is working. In the previous
section, it was observed that the Y-value discrepancy often produced large position
errors and may result in catastrophic damages. Therefore, we implement these two

phases in our algorithm.

4.3.1.1 Design and Implementation

The figure 4-30 shows the process flow of the algorithm. Our RAIM algorithm
compares the pseudo-range measurements among themselves to ensure that they are
all consistent. The primary flow of any RAIM algorithm would be to apply fault
detection mechanism on the computed set of the navigation solution, isolate faulty
satellites and provide mitigation level computation so that its availability is main-
tained [103]. Since 3D position calculation requires data from four satellites, four
visible satellites are not enough to provide integrity. If five visible satellites are chosen
and an anomaly is detected, then position calculation from that satellite is discarded.
The rest of the four satellites, again, are not enough to compute the location using
different measurements and verify that the solution is indeed correct. Therefore, the
receiver can issue a warning but not provide integrity. With 6six or more satellites,
the receiver can detect and mitigate the impact of faulty satellite [103].

A similar method has been used in our GPS anti-spoofing (RAIM) algorithm

design where five satellites are used for detection and mitigation based on our 2D
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Figure 4-30: RAIM implementation algorithm flow

implementation constraint. When the packets are received for the first time, there
is no lock on the satellites. To implement RAIM, the original GPS implementation
algorithm was modified to accept packets from five unique satellites instead of three.
Once the packets are received, RAIM algorithm is called to detect any attack host.
Various combinations of these satellites, which will be 10, and their corresponding
packet data are created, and position of the host for each combination is calculated
through the trilateration equations. Clearly, if the data in all packets are correct, the
position of the host calculated by each combination of satellites should be approxi-
mately equal. If there is the slightest error in the data sent by the satellites, it can be
identified up to 2 digits after the decimal. After the threshold of the computational
differences, the discrepancy becomes apparent and indicates that one of the satellites
in that combination must be an attack host. Other combinations are checked for the
discrepancy and the satellite id common in all those combinations is labeled as the
attack host.

Once the attack host is identified, three out of the remaining four satellites are
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locked, and the host starts accepting packets from them. It is possible that the
discrepancy in packets sent by the attack host is not detected in the first attempt,
and the host acquires a lock on it. The idea of the spoofing attack is to deviate the
path of the host. The RAIM function is called repeatedly at fixed intervals to check
if the calculation was indeed correct. The next time RAIM is called, the discrepancy
in the position calculated would naturally increase, and it will be easily identifiable,
and thus, the mitigation technique could be successful. From the results, if three
or more satellites appear to be faulty, the lock is completely released and a new set
of satellites are selected which go through the same detection and mitigation steps

before the lock is acquired again.

4.3.1.2 Simulation Results

To test accurate working of our implementation of RAIM and check various pa-
rameters affecting its affect, we ran various simulations while introducing discrepancy
in X as well as Y-values of the coordinates. Following are various results obtained

through these experiments.

4.3.1.2.1 X-value Discrepancy Detection and Correction

First, a discrepancy was introduced in the X-values of the transmitted coordinates.
RAIM duration is a parameter that sets the time interval after which RAIM will
run again to check the consistency of the position calculated. We varied the RAIM
duration from 30 seconds to 120 seconds, and it was observed that RAIM works best
when this interval of the consistency check is set at 90 seconds. Please note that one
unit on these graphs is about 9.25 km, and the speed of the UAV was 250 km/h.

Figures 4-31 to 4-35 show the obtained results for X-value discrepancy introduction
detection and correction for the durations as mentioned above. Please note that the

green line indicates the actual path, the red indicates the spoofed path while pink
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Figure 4-31: X-value discrepancy detection and correction for RAIM dura-
tion=30s

and blue indicates the RAIM corrected path. It is evident from these figures that the
distance (or time) taken by the RAIM algorithm to detect the GPS-spoofing attack is
quite high for shorter RAIM durations. Up to a certain RAIM duration (90 seconds),
the detection distance (or time) decreases but we see that when the RAIM duration is
increased to 120 seconds, its performance reduces drastically. Figures 4-34 and 4-35
clearly indicate this reduction in RAIM performance and show the correction distance
for 90 and 120 seconds, respectively. Readers should also note that the direction of
the spoofed path is variable in each simulation. This variation is due to the random
initial location of the attack host in each simulation that results in path change in a
different direction each time.

Interestingly, one of the shortcomings of our RAIM implementation was noted to
be its inability to correct the path when RAIM duration was too short, i.e., 30 seconds.

As evident from figure 4-32, although RAIM was able to detect a discrepancy, initial
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Figure 4-32: X-value discrepancy detection and correction for RAIM dura-
tion=45s

RAIM correction (blue) was still unable to correct the path, and it was continuing
calculating the incorrect path. This means that the correction algorithm was not
able to differentiate the attack host from genuine navigation satellites. In the second
iteration after the RAIM duration gap, RAIM was able to correct the path once the
attack host introducing discrepancy was easily identifiable due to significant errors in
localization. Further, the correction was improved once this duration was increased
to 45 seconds as shown in figure 4-33. In this case, the distance (or time) taken
by RAIM algorithm to autocorrect the position information was larger than the 30s
case. When the RAIM duration is further increased to 60 seconds, the correction was
accurate but the distance taken was too large.

When this duration is increased to 90 seconds, the detection and correction was
very accurate as well as quick. Finally, when the RAIM duration is further increased

to 120 seconds, we see the adverse effects on the RAIM operation. Although the
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Figure 4-33: X-value discrepancy detection and correction for RAIM dura-
tion=60s
correction is accurate in this case, it takes almost 3 times the distance than the 90

seconds case to correct the path.

4.3.1.2.2 Y-value Discrepancy Detection and Correction

Next, a similar discrepancy was introduced in the Y-values of the transmitted
coordinates. Similar to the previous experiment, we varied the RAIM duration from
30 seconds to 120 seconds, and it was once again observed that RAIM works best
when this interval of the consistency check is set at 90 seconds. Thus, the RAIM
duration was used as 90 seconds for all other RAIM related simulations. We will now
discuss these results in detail.

Figures 4-36 to 4-40 show the obtained results for Y-value discrepancy introduction
detection and correction for the durations mentioned above. Once a comparison is

made between the results for X-value discrepancy and the Y-value discrepancy, it is
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Figure 4-34: X-value discrepancy detection and correction for RAIM dura-
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Figure 4-36: Y-value discrepancy detection and correction for RAIM dura-
tion=30s
notable that the correction works better for the Y-value discrepancies. At this point
of time, our earlier analysis of GPS spoofing attack should be revisited. According to
those results, Y-value discrepancies were much worse compared to X-values and thus,
should be easily detectable and explains why the performance for RAIM is better for
Y-value discrepancies.

As indicated in Figures 4-36 and 4-37, for RAIM durations of 30 and 40 seconds,
the results are quite different for this evaluation. RAIM is not only able to detect but
accurately correct the path of the attacked host. The only issue here is the longer
distance (or time) it takes to make that correction. Similar to previous X-value
discrepancy results, the detection was improved for other RAIM durations until a
duration of 90 seconds. Finally, as evident from figure 4-40, the performance at a
duration of 120 seconds was almost three times worse than the best case of 90 seconds.

As a conclusion, it can be noted that the overall performance of our RAIM imple-
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Figure 4-37: Y-value discrepancy detection and correction for RAIM dura-
tion=45s
mentation is acceptable and it can correct the path of the UAV within few kilometers
of the launch of attack when the RAIM consistency check is set as 90 seconds. Further
improvement of this algorithm for better and quicker detection as well as correction

can be undertaken as future work.

4.4 Chapter Summary

Through all these attack implementation, various results were obtained and valu-
able insights were gained. These insights further prove the usability and close-to-real

simulation capability of the testbed. Some of these insights are listed below:

e Most cyber-attacks, which aim to take control over the subject, do not involve
a large amount of data transmission. Instead, these attacks require minimal

data transfer of some unique command and control messages. Therefore, sim-

101



535 T . . . .

5345 .
- 534 + J
18]
E
6 5335 | ;
&
Qi
]
£ 533 + .
; \%
> 5325 ¢t 1
532 Calculated Localization 1
Actual Localization
RAIM Localization
531.5 i T T

1070 1070.5 1071 1071.5 1072 1072.5 1073
X axis (meters on map)

Figure 4-38: Y-value discrepancy detection and correction for RAIM dura-
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Figure 4-39: Y-value discrepancy detection and correction for RAIM dura-
tion=90s
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Figure 4-40: Y-value discrepancy detection and correction for RAIM dura-
tion=120s

ulation capability of high computing resource consumption attacks (from the
testbed perspective) proves the UAVSim capability of simulating other complex
attacks. These complex attacks will consume fewer resources of the underlying

computing infrastructure.

e An increase in the number of attack hosts results in an increase of the average
data loss and packet round trip times for all the simulations. Some irregularities
were also found which could be caused by random placement of attack hosts

when the number of attack hosts was changed in similar simulations.

e The number of attack hosts required to launch a jamming attack varied under
different simulation conditions but, in general, a number greater than 30 was
enough to launch a successful attack. For more sophisticated attacks, such as

GPS Spoofing, only a single attack host was enough.
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e With the increase in the number of attack hosts, the average packet loss in-
creases linearly and the round trip time increases exponentially for both avail-

ability attacks.

e The average loss quickly became close to 100% for simulations of 10s while it
decreased for longer simulations of 300s. This shows that during an attack, the
system could not work for the first few minutes and may take some time to start
communicating again. This also demonstrates the time it takes for the network
to recover and stabilize in case of an attack using existing congestion control

algorithms.

e On similar lines, it was observed that UAVs were not able to communicate with
each other below a certain transmission power and at certain levels of transmis-
sion power, the loss was almost 50% without any attack in progress. Further,
with an increased transmission power, even low power continuous jamming at-

tacks were unsuccessful.

e The loss for all mobility models reach above 80% for as less as 10 attack hosts.
Linear mobility model resembles the actual UAV path and has the lowest loss
rate, which shows that if the location of UAV is unknown to attack hosts, it

would require a large number of attack hosts to launch the attack successfully.

e Even for the Linear mobility model, the actual data loss (without any recov-
ery measure in place) was about 20% initially and increased to 86% when the
number of attack hosts is increased to 14 and becomes close to 99% when it is
increased to 30. Also, this data is for a 5-minute network simulation with attack
host packet transmission interval of 0.0001 seconds. For a 10-second simulation,
the loss instantly reached 100%. This shows that if the UAV path is traceable
and there is enough number of attack hosts in the vicinity, the system could

become dysfunctional in as short as few seconds.
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e Loss in a regular host that is not being attacked increases to about 60% when
the UAVNet is under attack. This loss was earlier close to 20% for all commu-
nicating hosts irrespective of the number of UAV hosts in the network (which
occurs due to limited transmission power). This shows that the increase in traf-
fic in the area during the attack can also cause a mild jamming attack on other

hosts that are not being directly targeted.

e The loss for the attacked host remains nearly 90% all the time irrespective
of the number of UAV hosts in the network. This clearly indicates that an
increased number of UAVs to ensure redundancy in the UAVNet is not of much
help if some specific UAV hosts are targeted by an attacker. The attack will be

successful and lead to total system failure in due time.

e Regarding GPS Jamming attack, the results were quite expected and similar to
real-world jamming scenarios. As the number of attack hosts were increased,
average GPS packet loss increased and reached up to 90% that indicates quite
successful jamming. Clearly, UAV may go out of range of other UAVs and

would render UAV unable to communicate with other UAVs.

e For GPS Spoofing attack, when discrepancy was introduced in only X-values, it
was noticed that different motion paths have different variations, which implies

that the variations could not be generalized.

e Discrepancy factor variation results in variation of the spoofed path as well. In
case of circular path, this increase led to a spoofed linear path compared to a
spoofed circular path when the factor was lower. Thus, low discrepancy factors
would be hard to detect and can make a UAV lock on an attack host as a real
satellite. The attack host can then increase the discrepancy factor to cause

drastic path deviations.
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e For GPS Spoofing attacks, it was noticed that generally, variation in Y-values
are resulting in worse effects. In case of linear path, the resultant deviations
were huge. In case of circular path, Y-value discrepancies caused resultant
helical path, which could confuse the UAV and correction made to correct its

path may lead to a crash.

e For GPS Spoofing attacks, the spoofed paths are generally similar to original
paths in terms of the class of curve, i.e., spoofed paths for original linear paths
were linear while for circular paths, they were curved paths. This would result
in tougher detection of discrepancy or path deviation if the discrepancy factor

is quite low.

e For RAIM implementation, it was noted that higher the discrepancy, easier and
quicker it was to detect the error introduction. Further, a RAIM consistency
check duration of 90 seconds worked best for various simulation experiments

and was able to correct the path within few kilometers.
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Chapter 5

Testbed Performance Evaluation

Focus of this chapter is to demonstrate the utility of UAVSim when used with
generic computing infrastructure. In research or an academic setup, resources are
constrained, and purchasing expensive high-end computing infrastructure becomes
difficult. This limitation brings us back to one of the original requirements of the
testbed - it should allow users to use it for any UAV network in a cost-effective
manner. As mentioned in section 1.3, various in-house developed simulators that allow
UAV swarm simulation, use high-end computing facilities and are proprietary. On
the contrary, UAVSim has been designed to work with an existing simulation engine
and other open source components. Thus, UAVSim is free to use and provides code
editing at all levels of simulation. Simultaneously, UAVSim does not need expensive
servers to run simulations but users might need to compromise on computation time.

Another important point to note is the increase in simulation run times for Jam-
ming attack. DDoS attack works on the principle of sending a huge number of packets
to one host causing network congestion and preventing it from communicating with
other hosts. On the other hand, Jamming operates by transmitting pulses or noise
signals on a broad frequency band to prevent communication in a wireless channel.
Therefore, to implement a DDoS attack, a lesser number of attack hosts are required

as only single host working at a frequency needs to be jammed. On the contrary,
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Jamming requires all the frequencies to be jammed for a successful attack.

Most cyber-attacks that aim to take control over the subject involve transmission
of particular command and control message instead of large amount of data transmis-
sion. Therefore, simulation of high computing resource consumption attacks (from
the testbed perspective) would indicate the testbed’s capability to simulate other

lower resource consuming attacks.

5.1 System Setup

5.1.1 Hardware Setup

The PC we used for most simulations has an Intel CoreTM i7-3770 CPU (1 x
3.40 GHz 4-core, L2/L3 Cache: 1 MB/8 MB) and a system memory of 8.0 GB. The
server used for server mode simulations has an Intel Xeon Processor E5-2630 (2 x
2.30 GHz 6-core, L2/L3 Cache: 1.5/15 MB) and a system memory of 64.0 GB. For
concurrent multi-user simulations, the same PC was used to access the server using

eight simultaneous terminal sessions.

5.1.2 Software Setup

Both of the systems defined in the previous paragraph, the PC and the server
machines, run Ubuntu version 12.04 L'TS. The server runs the 64-bit server version of
Ubuntu (no GUI) while the PC is running the 64-bit desktop version with GUIL. Both
the machines have OMNeT++ version 4.2.2 with INET version 2.2 and CNI_OS3
version 1.0. As mentioned earlier, UAVSim uses OMNeT++ and these two open

source modules to accurately simulate a UAV Net.
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5.1.3 Simulation Setup

All simulations were 300 seconds long while the actual time taken to finish this
simulation were observed. As mentioned earlier, the time it takes to attack highly
secure time-sensitive military systems, such as a missile defense system, is only a few
seconds. Even in our simulations, attacks were successful within few seconds of the
start of the simulation. The basic abstracted UAV Model was used for our simulation
as using more advanced models detailing various sub-modules would increase the
simulation time about six folds. Advanced UAV models could also be used with the
implementation of complex confidentiality or integrity compromising attacks. As an
example, we did implement GPS Spoofing attack and for those simulations, we used
the advanced UAV model with navigation. The frequency of UAV communication
was fixed at 5 GHz for DDoS or single target attack scenario while it was varied
between the range of 5- 15 GHz for Jamming or multiple target attack scenarios.

Several cases were simulated for different types of evaluation. For Case I, runtime
and swarm behavior analysis, we varied both the number of attack hosts as well as
the number of UAVs. In Case I,, the number of UAVs was varied from 50 to 500
and in Case [, the number of attack hosts was varied from 2 to 20. In case of
multiple frequency swarm simulations, the actual run time reached close to a day
after 350 hosts, therefore, the simulations for this scenario in Case I, was stopped
at this number. Further, for checking the multi-user behavior, two separate analysis
were done with separate cases. Case II, where the performance of swarm behavior
with multiple concurrent users was evaluated. Case Il,, where 50 hosts were used
for swarm behavior analysis while the concurrent number of users was increased from
1 to 8. Case I, the number of hosts, was increased to 100. Case III, where the
performance of the testbed was evaluated for attack simulation. Case I11, involves

use of five attack hosts and Case I11], uses ten attack hosts, keeping the number of
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Figure 5-1: Run time variation with number of UAVs for single frequency
swarm simulation

UAV hosts as 10 for both the scenarios. These three cases will be referred to during

the discussion and analysis in the rest of the chapter.

5.2 DDoS

This subsection covers the results for all the simulations of DDoS attack. Various
simulations were done for the above mentioned 3 cases, namely Case I, II and III.
We have analyzed the effect of increasing number of UAVs, attack hosts, concurrent

users in server mode operation and use of GUI.

5.2.1 Number of UAVs

For this analysis, we have used Case I, (number of UAVs varied). As mentioned

earlier, Case [, involves the use of regular UAV hosts to determine the UAVSim capa-

110



3000

"Simulation Time

2500 +

2000 r

1500 }

1000 |

Total Bun Time (sec)

500 r

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
Number of Attaclk Nodes

Figure 5-2: Run time variation with number of attack hosts for DDoS attack

bility of UAV swarm simulation, additional to the primary ability of UAVNet security
simulation. It is clear from figure 5-1 that the testbed run-time varies exponentially
with the increasing number of UAV hosts for this attack. Clearly, the run time is
directly proportional to the powers of each 50 hosts and thus, can easily be predicted
for a higher number of UAVs. Simulation time for 500 nodes is about an hour, and it
indicates that a much larger number can be used for UAV swarm simulations while

using a single frequency for communication.

5.2.2 Number of Attack Hosts

We used Case I, (varying the number of attack hosts) for the second analysis. Fig-
ure 5-2 represents the performance for simulations with increasing number of attack
hosts with the number of UAVs as 10. The trend clearly indicates that the runtime
variation is exponential with respect to the number of attack hosts, with a multiple of

2 rather than 50 of the previous case. Therefore, a large number of attack hosts may
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not be used for security simulations. Keeping in mind the number of attack hosts
that can be simulated in a reasonable time, using a large value (more than 50) for

this variable is not required.

5.2.3 Graphical User Interface

As a third analysis, we used the use of GUI (graphical user interface) which
displays the network animation, as a performance metric. It is known that having a
GUI to display the network behavior and statistics during a CPU intensive operation
might impact the system performance. Therefore, we used Case I,, where we varied
the number of attack hosts and measured the speed of simulation for GUI and non-
GUI options. Figure 5-3 show the results obtained for GUI and non-GUI options
on the server as a green line and a red line, respectively. The blue line shows the
percentage difference between the two modes with respect to the lower value (non-GUI
option).

As shown in figure 5-3, the non-GUI runtime follows a non-linear polynomial trend
with respect to the number of attack hosts. The percentage change between the GUI
and non-GUI modes for a DDoS attack is not more than 7% for all cases with most
cases being between 2 — 5%. Therefore, it can be said that the performance is not

much affected by the use of GUI for this particular attack.

5.2.4 Number of Concurrent Users - Single Frequency Swarm

Scenario

The fourth performance test was done by changing the number of simultaneous
users accessing the simulation framework in parallel, using the high-speed server mode
option. As discussed earlier, the server mode works only in a non-GUI mode to

improve execution performance. We increased the number of parallel users from 1 to
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8 to check the effect on the performance of UAVSim in terms of average runtime for
users.

Figure 5-4 show the evaluation results for Case 11, (50 UAV hosts) and I, (100
UAV hosts) using the DDoS attack scenario. As mentioned earlier, in this scenario,
there are no malicious hosts and all UAVs transmit at a frequency of 5 GHz. This
simulation aims at analyzing the performance of UAVSim for multiple parallel users,
simulating a swarm using single frequency in the absence of an attack. Please note
that the two vertical axes show the variation of total run time for the two Cases, 11,
and II,. The error bars in the chart show the maximum and minimum time while

the points depict the average time.
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Figure 5-4: Run time variation with number of concurrent users in server
mode operation for single frequency swarm simulation

5.2.5 Number of Concurrent Users - DDoS Security Simula-
tion

The fifth performance metric for single frequency simulations involves the per-
formance evaluation of UAVSim for DDoS attack simulations with multiple parallel
users using it in server mode operation. To this end, Cases 11, (5 attack hosts) and
I11, (10 attack hosts) were used. Figure 5-5 show the test results for this experiment.
As mentioned earlier, the number of malicious hosts was changed for the two cases,
keeping the number of UAV hosts as 10. The number of attack hosts used is much
lesser than Case II because these attack hosts generate a lot more traffic in the net-
work and cause an increase in the execution time. Similar to the previous analysis,
the two vertical axes show the variation of total runtime for two different numbers of

attack hosts. The error bars in the chart represent the maximum and minimum time
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Figure 5-5: Run time variation with number of concurrent users in server
mode operation for DDoS attack

while the points represent the average time.

5.3 Jamming Attack - Multiple Targets

This section covers the results of experiments for Jamming attack and multiple
frequency simulation performances. These simulations were done for the 3 cases
mentioned in subsection 5.1.3, namely Case I, IT and III. We have analyzed the effect
of increasing number of UAVs, attack hosts, concurrent users in server mode operation

and use of GUI.

5.3.1 Number of UAVs

We have used Case I, (number of UAVs varied) for this experiment. It should

be noted that this simulation seems similar to DDoS attack UAV-only simulation,
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but it differs in the use of multiple frequencies for communication rather than single.
As mentioned earlier, the frequency range for UAV-UAV communication lies between
5-15 GHz for this case. This has been done to make sure that all frequencies are
jammed in the attack area. It is clear from figure 5-6 that the testbed run-time varies
exponentially with the increasing number of UAV hosts.

The simulation runtime, in this case, is directly proportional to the higher powers
of each 50 hosts and thus, is easily predictable for a higher number of UAV hosts.
Simulating a large number of UAVs would pose a challenge for this case because, for
350 nodes, the runtime reaches almost a day. It is also evident that the exponent

might be higher than what was found in single frequency swarm simulation.

5.3.2 Number of Attack Hosts

Case I, (varying the number of attack hosts) has been used for the second anal-
ysis of multiple frequency security simulation. Figure 5-7 shows the performance for
simulations with increasing number of attack hosts with the number of UAV hosts
fixed as 10. It is clear that the attack simulation trend for the multi-frequency at-
tack simulation (Jamming attack) is non-linear polynomial instead of an exponential
trend. Since the trend is not exponential, a large number of attack hosts may be used
for security simulations of Jamming attack. From a comparison of the two attack
scenarios, it is evident that the runtime for Jamming attack for Case I, is roughly
half of the DDoS attack simulation runtime. Once again, keeping in mind the number
of attack hosts required for a successful attack, large numbers (more than 50) need

not be used.
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5.3.3 Graphical User Interface

We used Case [, (varying the number of attack hosts) to measure the speed of
simulation for GUI and non-GUI options. Figure 5-8 present the results obtained
for the GUI and non-GUI options in the server mode as a red line and a green line
respectively, as indicated in the chart. The blue line (showing a heartbeat trend)
represents the percentage variation between the two modes with respect to the lower
value (non-GUI option).

The percentage variation between the GUI and non-GUI options for the Jamming
attack is entirely random and higher for the lower number of attack hosts. Mostly,
it is between 2 — 6%. This trend is completely opposite to the pattern obtained for
DDoS attack simulation. It is evident that the performance is not affected by the use
of GUI for a Jamming attack. The insignificant changes in performance for Jamming
attack in current and previous case can be attributed to its already high simulation

times.

5.3.4 Number of Concurrent Users - Multiple Frequency Swarm

Simulation

This performance test was performed with a variable number of parallel users
using the simulation testbed in the server mode option. The number of parallel users
was increased from 1 to 8, and simulation run time for Cases I1, (50 UAV hosts)
and I, (100 UAV hosts) were evaluated. Figure 5-9 show the evaluation results
using the multiple frequency swarm simulation scenario. These scenarios do not use
any malicious host and all UAVs communicate at different frequencies in the range
of 5-15 GHz. This simulation was meant to evaluate the performance for multiple
parallel users, simulating a swarm with multiple frequencies in the absence of an
attack. Please note that the two separate vertical axes show the variation of total run
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time for the two Cases, I, and II,, lower numbers, of course, depicting Case I1,.
The error bars in the chart show the maximum and minimum time while the points
represent the average time.

It should be noted that both Cases I, and I, follow the similar trend after a
certain number of users and the run time seems to be becoming invariable. Another
important aspect to note is the average percentage variation in both cases is less than

5% between the time taken for single and 8 concurrent users.

5.3.5 Number of Concurrent Users - Jamming Attack Secu-
rity Simulation

The final performance test for Jamming attack involves the performance analysis
for the Jamming attack simulation with multiple users using UAVSim concurrently.
Run time values for Cases 11, (5 attack hosts) and 111, (10 attack hosts) were
evaluated. Figure 5-10 shows the performance test results for these cases. The two
separate vertical axes in this evaluation also show the variation of total run time
for two different numbers of attack hosts. The error bars in the chart represent
the maximum and minimum time while the points represent the average time. It is
evident that the plot for both cases follow similar trend once the number of concurrent
users increases to three. Analogous to the previous evaluation of swarm simulation,
the overall percentage variation between maximum and minimum run times for each
case is less than 10%. The highest runtime variation for both instances was at 7
concurrent users while the lowest difference for Case 111, was at 2 and for Case I11,

at 3 concurrent users.
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Figure 5-10: Run time variation with number of concurrent users in server
mode operation for Jamming attack

5.4 Chapter Summary

In this chapter, several performance tests for variation in the number of UAVs, the
number of attacks hosts, use of a GUI or non-GUI option and number of parallel users
were performed. These tests gave us meaningful insights in terms of the estimated
operational capacity of UAVSim. Although some simulation times were quite high
in case of swarm simulations for a large number of hosts, the performance was very
reasonable for security simulations. Some important points that can be noted from

the analysis are as follows:

e Total run time varies exponentially with the number of attack hosts in security
simulations as well as the number of UAVs in swarm simulation. It should be
noted that despite the trend, the variation in these numbers is very different.
The attack hosts change by 2 while, the UAVs change by 50. This gives a
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clear indication of how many attack hosts and UAV hosts can be deployed in

particular simulation scenario.

Using the GUI for any security simulation has huge impact on performance for
DDoS attacks, but the variations are very low for the Jamming attack. The
Jamming attack requires more processing in terms of creation of channels for
different frequencies and transmission of packets and results in slower execution
times in general. Therefore, use of GUI doesn’t impact these execution times

any further.

Performance evaluation for multiple parallel users using the testbed in server
mode shows that performance is not greatly affected with increasing number
of users, and average variation reduces as number of concurrent users increases

more than four.

The average simulation time saturates after a certain number of users and shows
a trend of becoming invariable with respect to the number of concurrent users.
The variation in minimum and maximum shows that total system performance

is not affected much.

It should be noticed that the simulation times for multiple parallel user analysis
follows the same trend for a different number of UAVs or attack hosts once the
number of users is more than four. This implies that irrespective of the number,
the trend would be similar and thus, the runtime can easily be determined for

higher number of users.

The simulation run time for 20 attack hosts for both types of attacks took
approximately half an hour. Practically, the number of attack host to launch
such attacks is much less. For example, we need only one attack host for a

successful GPS spoofing attack [104] and thus, the simulation capability is quite
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extensive.

The variation in run time for multiple parallel users not being exponential indi-
cates the UAVSim’s capability of handling more than 20 concurrent users. This

particular evaluation was done for up to 8 users and showed an expected trend.

Most of the trends follow the same pattern for both availability attacks. The run
times are in general much higher for Jamming than the DDoS simulation. The
main reason behind this is the anatomy of the simulation for these two attacks.
Successful execution of a single target DDoS attack requires one host to be made
unavailable while Jamming attempts to block a wide range of frequency, i.e.,
all hosts in the area be made unavailable. The underlying simulation engine of
OMNeT++ simulates single object for a single channel (single frequency), and
packets are transmitted on that channel within the same object (channel). Using
several channels increases the inter-process communication between objects for

packet transmission and causes an increase in total run time of simulations.

Parts of results of this performance evaluation stage were also accepted as a

conference paper [105] and a full article in a reputed peer-reviewed journal [106].
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Chapter 6

Conclusion and Future Work

This chapter concludes this dissertation with a summary of achievements of this

work and further discussion about possible future work directions in this area.

6.1 Conclusion

In essence, this work presents three significant contributions in the field of UAV
security research - threat modeling and risk analysis of a UAV system; development of
a simulation testbed environment for UAV networks; and demonstration of capability
and usability of this testbed to simulate various attacks and their mitigation measures.
To this end, several tasks were accomplished, and they are summarized below.

Although threat analysis of the Radio Communication of a UAV was already
done [63], the overall security threat analysis of a UAV system was not accomplished
until this work. The detailed threat analysis of the system is aimed at system ar-
chitects as well as the users of the UAV system to help them be aware of, identify
vulnerabilities and put mitigation and recovery measures for them. Since most of
the information regarding measures already in place is confidential, it is still hard to
identify which threats might affect the UAV systems most. What is certain is the
presence of vulnerabilities in the UAV system, and the fact that many remain to be

found. Adversaries are working day and night to attack our systems and any single
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small vulnerability can’t be ignored, to ensure the security of our systems. The de-
velopment of a detailed threat model was the first achievement of this work and was
published as a peer-reviewed article [15].

Further, we presented the UAVSim testbed, developed for security experiments of
UAV networks in a cost-effective manner. UAVSim allows users to use different UAV
models, simulate attacks and generate graphical results. Various simulations were
performed to analyze the impact of two categories of the attack on the UAVS. These
categories were Availability and Integrity attacks. Under the Availability attack class,
we implemented the DDoS and Jamming attack against the UAV network. Navigation
related attacks (GPS Spoofing and Jamming) were chosen for implementation under
the integrity property violating attack class. Results from the analysis of these attack
demonstrated the capability of the testbed to simulate the UAVNet as well various
possible attacks. It was also shown that the testbed can be used for evaluating
attacks and various mitigation measures. From a research perspective, UAVSim is a
novel attempt to simulate the communication behavior of a UAVNet and the impact
of attacks on the communication channels of this network rather than focusing on
simulation of a single UAV. Development of this testbed is the second achievement
of this work and its source code as well as detailed documentation (including user
manual and installation manual) are available online.

Finally, the simulation run time analysis for high-resource consumption attacks
as well as swarm simulations in UAVSim was presented to demonstrate its use in
a generic computing environment. Various simulation results indicate that the per-
formance of UAVSim is consistent, and it allows users to customize various options,
according to their requirements. Along with attack simulation targeting single and
multiple hosts, UAVSim was proved to be capable of simulating large UAV swarms.
Performance for parallel multi-user operation in server mode was also evaluated for

different scenarios. Although a scenario with a maximum of 8 concurrent users was
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tested, it was established that for a reasonable number of simultaneous users, UAVSim
will perform sufficiently fast. Interactive GUI, enhanced high-speed mode of opera-
tion, support of simultaneous users, etc. are some of the additional features which

were discussed.

6.2 Future Work

As a future work, various mitigation techniques of currently available attacks
in the attack library can be implemented. Although the impact of few attacks on
UAV communication such as DDoS and Jamming have already been presented, more
complicated attacks have yet to be implemented in this framework. The design of
more UAV models for inclusion in the UAV models library as well as the design of
more attacks for inclusion in the attack library also pose challenges and are potential
future works. Further, new protocols, advanced attacks and various defensive and
mitigation techniques could also be incorporated in UAVSim. Clearly, availability of

real mission data will allow accurate testing of the design and other implementations.
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Appendix A

Online Resources

Several project resources including the source code are available online, and their

corresponding URLs have been provided here for future reference:

1. Project Page: http://www.yazdan.us/research
2. Source Code: https://github.com/ayjavaid/0OMNET_0S3_UAVSim
3. Installation Manual: http://www.yazdan.us/InstallationManualvl.0.pdf

4. User Manual: http://www.yazdan.us/UserManualvl.0.pdf
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