

A Dissertation

entitled

Development of Parallel Architectures for Radar/Video Signal Processing Applications

by

Amin Jarrah

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Doctor of Philosophy Degree in Engineering

__

 Dr. Mohsin M. Jamali, Committee Chair

__

 Dr. Mohammad Samir Hefzy, Committee Member

__

 Dr. Ezzatollah Salari, Committee Member

__

 Dr. Devinder Kaur, Committee Member

__

 Dr. Rashmi Jha, Committee Member

__

 Dr. Patricia R. Komuniecki, Dean

 College of Graduate Studies

The University of Toledo

December 2014

Copyright 2014, Amin Jarrah

This document is copyrighted material. Under copyright law, no parts of this document

may be reproduced without the expressed permission of the author.

iii

An Abstract of

Development of Parallel Architectures for Radar/Video Signal Processing Applications

by

Amin Jarrah

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Doctor of Philosophy Degree in Engineering

The University of Toledo

December 2014

The applications of digital signal processing continue to expand and use in many

different areas such as signal processing, radar tracking, image processing, medical

imaging, video broadcasting, and control algorithms for sensor array processing. Most of

the signal processing applications are intensive and may not achieve the real time

requirements. However, the Multi-core phenomenon has been embraced by almost all

processor manufacturers and the road to the future is through parallel processing. Now

we have many parallel processing platforms that developed for high performance such as:

 Multi-Core/Many-Cores

 Graphic Processing Units (GPU)

 Field Programmable Gate Arrays (FPGA)

This research work involves developing optimized parallel architectures of many

signal processing applications such as Extensive Cancellation Algorithm (ECA), Direct

Data Domain (D
3
), Block Compressive Sampling Matching Pursuit algorithm

(BCoSaMP), video processing, Discrete Wavelet Transform (DWT), Particle Filter (PF),

and Iterative Hard Thresholding (IHT) on different platforms such as Multi-core, FPGA

iv

and GPU. This is performed by exploring opportunities of any computation and storage

that can be eliminated to achieve high performance and meet its real time requirements.

Different techniques and ideas have also been derived from different advanced fields to

increase the intelligibility and the usefulness of our research. A new innovative

generalized method is proposed which can be very helpful for many researchers in

various areas. Then, the applications have been moved higher ordering through

implementing interfaces. This makes it adaptable by specifying all the input parameters

of a certain application and fast prototyping through different performance evaluations.

We propose and exploit many parallelization methods and optimization techniques in

order to improve the latency, hardware usage, power consumption, cost, and reliability.

These parallelization methods predict the data path and the control unit of the application

processes. Also, the applications examine into numerical algorithms approaches to

provide a transition from the research theory to the practice and to enhance the

computational and resource requirements by adapting the certain algorithm for high

performance applications. We exploit techniques coupled with high level synthesis tools

by enabling rapid development to generate efficient parallel codes from high-level

problem descriptions. This will reduce the design time, increase the productivity, improve

the reliability, and enable exploration of the design space. Approaches will include

optimizations based on mathematical and/or statistical reasoning, set theory, logic, and

auto-tuning techniques.

Hardware software co-design for these applications has been performed that pushes

performance and energy efficiency while reducing cost, area, and overhead. This has

been accomplished by developing a tool called Radar Signal Processing Tool (RSPT).

v

RSPT allows the designer to auto-generate fully optimized VHDL representation of any

of these signal processing algorithms by specifying many user input parameters through

Graphic User Interface (GUI). This will offer great flexibility in designing signal

processing applications for a System on Chip (SoC) without having to write a single line

of VHDL code. RSPT also communicates with Xilinx toolset to check for the available

FPGA parts installed with the Xilinx toolset and for executing the VHDL synthesis

command chain. Moreover, it utilizes optimization techniques such as pipelining, code

in-lining, loop unrolling, loops merging, and dataflow techniques by allowing the

concurrent execution of operations to improve throughput and latency. Finally, RSPT

provides the designer a feedback on various performance parameters such as occupied

slices, maximum frequency, and dynamic range. This offers the designer the ability to

make any adjustments to the algorithm component until the desired performance of the

overall SoC is achieved.

Parallel approach of IR Video processing is also proposed as it widely used in many

numerous processing applications and not achieve the real time requirements. Analysis

and assessment of the energy dissipation for heterogeneous Network on Chip (NoC)

based Multiprocessor System on Chip (MPSoC) platform running a video application are

performed. It identifies the latency, area, and energy bottlenecks of the entire

heterogeneous platform including processors, interconnection wires, routers, memory,

and caches etc. Also, we propose a new modeling and simulation approach regarding the

channel width and buffer sizing which have a strong impact on the performance and the

overhead of the chip. This approach monitors the state of each link in the NoC topology.

Then, based on the congestion spot and the critical path we can optimize the design by

vi

changing channel width and buffer size until achieving the desired performance.

وعمري قلبي مي .. مداد أبي وأ جناحيّ روحي .. ىإل

لميطفولتي وح رفاق .. خواتيالى إخواني وأ

ربيع وبدايات جمال .. طريق إليكِ حنيني .. إلى الطفلِ الذي ننتظر

vii

Acknowledgments

حِيمِ حْمَنِ الرَّ بسم الله الرَّ

َ مِنْ عِباَدِهِ الْعُلمََاء) (إنَِّمَا يخَْشَى اللهَّ

(Only those fear Allah, from among His servants, who have knowledge)

The Noble Quran (Surat Fatir, Verse 28)

I would like to express my special appreciation and thanks to my advisor Prof.

Mohsin Jamali, you have been a tremendous mentor for me. I would like to thank you

for encouraging my research and for allowing me to grow as a research scientist.

Your advice on both research as well as on my career have been priceless. I would

also like to thank my committee members.

To the beautiful and special family I'm lucky to have, you guys enriched me with

dreams, hope and the desire to be special and different , my great father Abdel Karim,

my sweet mother Hijazia here is my life always for you. My brothers Nabil, Zeyad,

Fouad, Yousef, Mohammad, Jalal, Jamal and my lovely sisters Sahar, Samar and

Tamara. May allah bless you all.

My Haneen, the wonderful, beloved wife and friend I have. With you, I shared

unforgettable moments of happiness, sadness, tiredness and madness as well. You are

my support and I promise to be the same for you.

https://ar-ar.facebook.com/By.The.KinG

viii

Table of Contents

Abstract .. iii

Acknowledgment .. vii

Table of Contents .. viii

List of Tables .. xii

List of Figures ..xv

List of Abbreviations ... xix

1 Introduction………. ...1

 1.1 Problem Statement ..1

 1.2 Parallel Processing Environment ..5

 1.3 Dissertation Outline ..10

2 Parallel Processing Platforms and Tools..12

 2.1 Parallel Processing on Multiprocessor Systems-on-Chips (MPSoC)12

 2.2 Parallel Processing on a GPU Platform ..15

 2.3 Parallel Processing on FPGA Platform ...22

 2.4 High-Level SynthesiTools ..29

 2.5 Conclusion ..50

3 Parallelization of Signal Processing Algorithms ...51

 3.1 Parallel Implementation of IR Video Processing on a GPU53

 3.1.1 Parallelization of Each Step of Video Processing Method54

ix

 3.2 Parrallel Implementation for IR Video Processing on MPSoC Platform60

 3.2.1 DEVS Formalism ...61

 3.2.2 Architecture Description ..62

 3.2.3 Energy Modeling ...64

 3.2.4 Analysis and Optimization Techniques ...65

 3.3 Parallelization of Direct Data Domain (D
3
) for Space Time Adaptive

Processing (STAP) ...68

 3.3.1 Introduction ..68

 3.3.2 STAP Algorithms...69

 3.3.2.1 Interference Covariance Matrix Estimation69

 3.3.2.2 Direct Data Domain (D
3
) Approach ...71

 3.3.3 Inexact Inverse Iteration for Generalized Eigen Value Problem73

 3.3.4 Analysis and Optimization Techniques ...75

 3.3.4.1 Parallel Implementation on FPGA ..75

 3.3.4.2 Parallel Implementation on GPU ..87

 3.4 Parallelization of Extensive Cancellation Algorithm (ECA) for Passive

Bistatic Radar (PBR)..90

 3.4.1 Introduction ..90

 3.4.2 Signal Model and Reference Scenario ...92

 3.4.3 Extensive Cancelation Algorithm (ECA) ..93

 3.4.4 Analysis and Optimization Techniques ...95

 3.4.4.1 Parallel Implementation on FPGA ..96

 3.4.4.2 Parallel Implementation on GPU ..109

x

 3.5 Parallelization of Block Compressive Sampling Matching Pursuit Algorithm

(BCoSaMP) ..116

 3.5.1 Introduction ..116

 3.5.2 Block Compressive Sampling Matiching Pursuit Algorithm

(BCoSaMP) ..119

 3.5.3 Analysis and Optimization Techniques ...121

 3.5.3.1 Parallel Implementation on FPGA ..121

 3.5.3.2 Parallel Implementation on GPU ..126

 3.5.4 Model-Based Iterative Hard Thresholding (MB-IHT) Method128

 3.5.4.1 Parallel Implementation on FPGA ..130

 3.5.4.2 Parallel Implementation on GPU ..132

 3.6 Parallelization of Discrete Wavelet Transform (DWT) Method133

 3.6.1 Introduction ..133

 3.6.2 Discrete Wavelet Transform (DWT) Method135

 3.6.3 Analysis and Optimization Techniques ...137

 3.7 Parallelization of Particle Filter for Tracking Applications140

 3.7.1 Introduction ..140

 3.7.2 Particle Filter Operation ...141

 3.7.3 Analysis and Optimization Techniques ...144

 3.7.3.1 Parallel Implementation on FPGA ..144

 3.7.3.2 Parallel Implementation on GPU ..148

 3.8 Conclusion ..150

4 Radar Signal Processing Tool for Parallel Architectures151

xi

 4.1 Radar Signal Processing Tool (RSPT) ..151

 4.2 Conclusion ..159

5 Simulation Results ...161

 5.1 Simulation of Parallel IR Video Processing Algorithm on GPU161

 5.2 Simulation of IR Video Processing Algorithm on MPSoC163

 5.3 Simulation of Parallel Direct Data Domain (D
3
) Algorithm165

 5.4 Simulation of Parallel Extensive Cancellation Algorithm Algorithm171

 5.5 Simulation of Parallel Block Compressive Sampling Matching Pursuit…. 178

 5.6 Simulation of Parallel Discrete Wavelet Transform (DWT)182

 5.7 Simulation of Parallel Particle Filter...185

 5.8 Simulation of Parallel Model-Based Iterative Hard Thresholding………...188

 5.9 Data Storage Analysis and Optimization ..192

 5.10 Vivado HLS Tool Versus VHDL Programming ..197

 5.11 Conclusion ..198

6 Conclusion and Future Work ...200

References ...205

xii

List of Tables

1.1: GPU Memories Hierarchy Comparison ..20

3.1: Latency and Resource Utilization of Matrix-Vector multiplication85

3.2: Latency and Resource Utilization of Finding the Maximum Element92

3.3: Latency and Resource Utilization of Reference Matrix Implementation105

3.4: Our Matrices Multiplication Method Versus Traditional Method111

3.5: Latency and Resource Utilization of Second Option for M=20 on Artix7 115

3.6: Latency and Resource Utilization of Merging Operation for N=50 and M=25 ...131

3.7: Latency and Resource Utilization of the First Step on Artix7 for both options for

M=10 and N=256 ..139

3.8: Latency and Resource Utilization of Vector Size 1000 ..145

3.9: Resource Utilization of 2-D DWT of Vector Size 128 ...145

5.1: Average Computation Time in Miliseconds ...142

5.2: Energy Dissipation and Analysis for MPSoC Platform..144

5.3: Average Computation Time in Miliseconds ...145

5.4: Resource Utilizations and Overall Implementation Performance on XA7A100T

CSG324 ...148

5.5: Simulation Time for Different Number of Sensors for Meduim Precision149

5.6: Simulation Time for Different Number of Sensors for High Precision149

5.7: Execution Time on Different platform Implementations150

file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636595
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636595
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636595
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636593
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636597
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636597
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636599

xiii

5.8: Resources Utilization on XC6VLX760-2FF1760 FPGA for N=1000 & K=32153

5.9: Time Complexity for the Majors Steps in ECA Before and After Optimization ...154

5.10: Storage Complexity for the Majors Steps in ECA Before and After Optimization154

5.11: Simulation Time for Different Number of Range Bins ..155

5.12: Execution Time of Different Platforms of ECA ...156

5.13: Resource Utilizations and Overall Implementation Performance of BCoSaMP on

Artix7.. ...158

5.14: Simulation Time Comparisons of Different Number of Vector Size with K=50 and

Number of Blocks=5 ..159

5.15: Execution Time of Different Implementations for BCoSaMP160

5.16: Hardware Utilization and Overall Performance for N=64......................................160

5.17: Throughput of Different Implementations for 2-D for N =128160

5.18: Resource Utilization and Overall Implementation Performance160

5.19: Simulation Time Comparison of Different Number of Particles160

5.20: Execution Time of Different Implementation ..160

5.21: Resource Utilization and Overall Implementation Performance on Artix7160

5.22: Simulation Time Comparison of Different number of vector size with K=25160

5.23: Execution Time of Different Implementations on Artix7160

5.24: Hardware Resources and Power Consumption of Placing Data at Various Memory

Locations for 2-D DWT ..160

5.25: Hardware Resources and Power Consumption of Placing Data at Various Memory

Locations for BCoSaMP Algorithm ..160

file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636597
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636597
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598

xiv

5.26: HLS Tool Based Implementation Versus Manual Implementation of Matrix Vector

Multiplication Task ..160

file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349636598

xv

List of Figures

2-1: Multiprocessors Connected by a Single Bus ...14

2-2: Multiprocessors Connected by a Network ..14

2-3: GPU Architecure ...11

2-4: CPU-GPU Connection ..11

2-5: Basic Steps of the Algorithm Execution on GPU ...13

2-6: Conceptual FPGA Architecture ...18

2-7: Design Flow Process Diagram ..20

2-7: Multiple FPGA Interconnection Model...22

2-9: Tools Comparisons ..39

2-10: HLST-Based Implementation Procedure ..40

2-11: Vivado HLS Graphical Interface (Scheduling Graph). ...42

3-1: Generalized Parallel Approach for Signal Processing Applications 50

3-2: Parallelization of Background Model Estimation ..50

3-3: Parallelization of Background Subtraction by Previously Created Background

Model.. ...50

3-4: Example of Connected Component Labeling Parallization Method52

3-5: Basic Relations in On-Chip Traffic Modeling and Simulations55

3-6: Mesh Platform Architecture ..56

3-7: Structure of a Core and the On-Chip Router. ..57

file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349643123
file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349643124

xvi

3-8: Relative Load on Mesh Links..59

3-9: Energy Dissipation on the Mesh Links ...60

3-10: Energy Dissipation on the Mesh Routers ..60

3-11: Flow Chart of NoC Simulation and Design ..61

3-12: Baseline STAP Receiver Configuration ..62

3-13: N-Element Antenna Array with M Taps ...63

3-14: N-Element Antenna Array ...64

3-15: D3 Computational Architecture ..69

3-16: Memory Interface RTL Code Generation Using MIG Tool70

3-17: Loop Dataflow Piplining Technique ...76

3-18: D3 Computational Steps with Conjugate Gradient (CG) Computation Regions ...79

3-19: PCL Geometry ...83

3-20: ECA Computational Architecture ...88

3-21: Reference Matrix Implementation Using D matrix ...90

3-22: Second Part of Clutter Subspace Matrix (X) Implementation92

3-23: Clutter Subspace Matrix (X) Implementation using Shifting Operation.................93

3-24: Clutter Subspace Matrix (X) Implementation Without Multiplication or Shifting

Operation ...93

3-25: Flow Chart for Pipelined Matrix Multiplication ...95

3-26: Blocking Technique ...95

3-27: Conjugate Gradient (CG) Computation Steps ...98

3-28: Parallelization Method of the Reference Matrix ...102

3-29: Parallelization Method via Blocking Technique ...102

xvii

3-30: Core Task of Matrix Multiplication ..102

3-31: Thread Task of Matrix Multiplication ...102

3-32: Parallelization Technique of Matrix-Vector ..102

3-33: Vector Addition Via Blocking Technique ...102

3-34: BCoSaMP Computational Architecture ..112

3-35: MB-IHT Computational Architecture ...112

3-36: Haar Wavelet Transform (HWT) ..112

3-37: Fast Haar Transform (FHT) Operations ..112

3-38: 1-D DWT Implementation ..112

3-39: Loop Dataflow Pipelining Technique ...112

3-40: Particle Filter Computational Steps ...112

3-41: Computational Regions of Particle Filter ..112

3-42: Timing Diagram for Overlapping Particle Filter Operations112

4-1: Overview of software package components ...135

4-2: GUI Flowgraph for VHDL Auto-generation ..136

4-3: Graphical User Interface for Radar Signal Processing Tool (RSPT) of D3137

4-4: Graphical User Interface for Radar Signal Processing Tool (RSPT) of ECA138

4-5: Graphical User Interface for Radar Signal Processing Tool (RSPT) of BCoSaMP139

4-6: Graphical User Interface for Radar Signal Processing Tool (RSPT) of DWT139

4-7: Graphical User Interface for Radar Signal Processing Tool (RSPT) of MB-IHT .139

5-1: Execution Time for Each Algorithm of Video Processing142

5-2: Speedup for Each Algorithm of Video Processing...143

5-3: Energy Analysis for the Embedded Platform ...144

xviii

5-4: The Received Noisy Signal and Jammer Before Filtration147

5-5: The Received Noisy Signal and Jammer After Filtration147

5-6: Effect of Changing the Number of Sensors on Execution Time for Different

Implementation ..147

5-7: 2D-CCF After Cancellation with ECA...152

5-8: Target (circled) at (4,22) Detected in ECA Processing ..153

5-9: Effect of Changing Range Bins (K) on Execution Time for Different

Implementations ...156

5-10: Original Block-Sparse Signal ..157

5-11: BCoSaMP Based Recovery Signal ..158

5-12: Influence of Transform Size on Area (Slices) ...158

5-13: Influence of Transform Size on Power Consumption ...158

5-14: Influence of Transform Size on Maximum Frequency ...158

5-15: Particle Filter Estimation Performance ...158

5-16: Error Rates of 100 Particles Over 50 Time Step ...158

5-17: Original Block-Sparse Signal ..157

5-18: MB-IHT Based Recovery ..158

5-19: Error Rates of Recovering Compressed Sparse Signal Using MB-IHT................157

xix

List of Abbreviations

AMDAdvanced Micro Devices.

APIs............................Application Programming Interfaces.

ARM Advanced RISC Machines.

ASICApplication Specific Integrated Circuit.

BCoSaMPBlock Compressive Sampling Matching Pursuit algorithm.

BDL............................Behavioral Description Language.

CADComputer Aided Design.

CGConjugate Gradient.

CPUCentral Processing Unit.

CUDACompute Unified Device Architecure.

D
3
Direct Data Domain.

DEVSDiscrete Event System Specifications.

DSPDigital Signal Processing.

DWTDiscrete Wavelet Transform.

ECA............................Extensive Cancellation Algorithm.

EDAElectronic Design Automation.

FIFOFirst Input First Output.

FPGAField Programmable Gate Arrays.

fpsFrame Per Seconds.

GPU............................General Processing Unit.

GUIGeographic User Interface.

HDLHardware Description Languages.

HLSHigh Level Synthesis.

HPCHigh Performance Computing.

IHTIterative Hard Thresholding.

I/OInput/output.

IPIntellectual Properties.

IR................................Infrared.

ISE..............................Integrated Software Environment.

file:///E:/Presentations-Reports/Proposal/TOTAL6.docx%23_Toc349643124

xx

MB-IHTModel-Based Iterative Hard Thresholding.

MIMOMultiple Input Multiple Output.

NoCNetwork on Chip.

OpenCOpen Computing Language.

OTPOne Time Programmable.

PCBsPrinted Circuit Boards.

PFParticle Filter.

RAMRandom Access Memory.

RGBRed Green Blue.

RISCReduced Instruction Set Computer.

RTLRegister Transfer Level.

SIMD..........................Single Instruction Multiple Data.

SMStreaming Multiprocessor.

SoCSystem on Chip.

VHDLVHSIC Hardware Description Language.

VLSIVery Large Scale Integration.

WSRWeather Surveillance Radar.

XSG............................Xilinx System Generator.

1

Chapter 1

Introduction

1.1 Problem Statement

Semiconductor technology is approaching its limits, and one way to get future

advances in computing is via parallel processing. There are many application areas that

can benefit from the parallel computing such as signal processing [1-2], radar tracking [3-

5], image processing [6], medical imaging [7-8], video broadcasting [9-11], control

algorithms and sensor array processing [12-14]. Most of the signal processing

applications are computationally and data intensive. So, efficient implementation is

required to achieve high performance and meet their real time constraints.

Researchers in the literature concentrate either on algorithm implementation or on

architecture development. Algorithm researchers perform the implementation based on

their performance parameters such as correctness, efficiency, accuracy etc. while

assuming the underlying architecture would be adequate. On the other hand, architecture

researchers' interest in different performance parameters such as speed, hardware

resources, communication architecture, memory and bus architecture etc. However, it is

2

very difficult to master both the algorithm implementation and the architecture

development at the same time. So, a unifying framework is required to unify the aspects

of algorithms, architectures, and software.

Most processing platforms have a complete system [15-17] on the same chip which

includes multi-cores, Digital Signal Processors (DSP), circuits, memory banks, send and

receive units etc. These platforms become more complex and powerful since it has many

heterogeneous components in their design and the tasks they perform. High Performance

Computing (HPC) research interest to develop a platform that is capable to achieve high

performance for real time applications by improving all the following elements:

 Number of processors

 Processor and memory architecture

 Bus architecture

 Communication with I/O modules

 Energy constrained

 Resilient programming techniques

 Parallel processing friendly environment

Embedded systems come in wide variety of processing elements, memory and other

peripherals. The complexity of an embedded system varies from single core processors to

multi-core and even many-core architectures, including a wide variety of possible

peripherals. Multi-core architectures are relying less on instruction level parallelism as it

3

has reached its limits. Although multi-core solutions offer more parallelism and look

promising for general purpose processing, they might not be efficient in performance and

flexible enough for certain specific tasks. However, the implementation of these

computationally algorithms can be performed using the following parallel processing

platforms where each platform has different trade-offs in terms of latency, area, power

consumption, cost, and flexibility:

 Multi-core through NoC.

 Field Programmable Gate Arrays (FPGAs).

 Graphic Processing Units (GPUs).

There are many parallel processing approaches available in the literature that can be

applied to a given algorithm. Some of the approaches that can be considered are:

 Loop level parallelism: it is a technique where different iterations of the

same loop are executed in parallel on different processors. We can also use

loop interchanges in the nested loops to maximize parallelism in the

innermost loop.

 Data level parallelism can be handled by independently processing data in

parallel.

 Function level parallelism can be exploited by dividing functions into

various stages and executing them either in parallel or pipeline fashion.

4

 Pipelining can improve throughput of the function by allowing the

concurrent execution of operations within a function.

 Dataflow technique that enables concurrency at the function level to

improve throughput and latency.

 In-lining technique that removes all functions hierarchy to reduce the

function call overhead.

 Reusing technique to minimize the area and power consumption.

Functions and loops will iterate over the same hardware resources each

time they execute to maximize the sharing.

 Optimal mapping of arrays on FPGA. FPGA memories have limited

access capabilities (read ports and write ports). This imposes dependencies

which prevents applying some parallelization techniques. For example, a

dual-port RAM, or reconfigured RAM may allow more reads and writes in

the same clock cycle.

 Bit-level parallelism where the amount of information of the processor

that can be processed per cycle (word size) is doubled. This reduces the

number of instructions to perform an operation on variables whose sizes

are greater than the length of the available word size. For example, 8-bit

processor must add two 16-bit integers by first adding the 8 lower-order

bits from each integer, and then add the 8 higher-order bits. So, 8-bit

http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/16-bit
http://en.wikipedia.org/wiki/Integer

5

processor requires two instructions to complete a single operation whereas

a single instruction is required to complete the operation of a 16-bit

processor.

 Instruction-level parallelism where the instruction of a program can be re-

ordered and combined into groups to be executed in parallel without

changing the result of the program. Recently, processors have multi-

stage instruction pipelines where each stage has different action on that

instruction in the stage. For example, processor with an N-stage pipeline

can have up to N different instructions at different stages of completion.

For example RISC processor has five stages: instruction fetch, decode,

execute, memory access, and write back. Moreover, some processors can

issue more than one instruction at a time which is called superscalar

processors. However, this technique can be performed by grouping the

instructions together if there is no data dependency between them.

 Task parallelism where the parallelization is performed when entirely

different code sections are executed either on the same or different sets of

data.

1.2 Parallel Processing Environment

There are many algorithms in different applications that require high level of

parallelization due to their intensive computation requirements. Many parallel processing

http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Instruction_pipeline
http://en.wikipedia.org/wiki/Reduced_Instruction_Set_Computer
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Data_dependency

6

platforms have evolved to achieve higher computational speed such as FPGA

architecture, multi-core, and GPU. In the past, an algorithm working on standard single

processor may be too slow; we desired a high performance CPU that will be able to

execute it in a more efficient way. Despite in the last few years the CPU architecture has

been increasingly improved with many processors, providing a higher level of parallelism

where a lot of operations could be executed in a tiny time, especially in research fields

such as video surveillance [18-19] and for medical image analysis [20]. For this reason,

parallel implementations of such applications have been developed to achieve high

computational speed.

In order to use all the resources of the parallel processing platform and get high

benefit, the application must be parallelized, mapped, and scheduled efficiently to

achieve the following performance parameters:

 Minimum run time

 Minimum code size

 Minimum memory consumption

 Meet real time constraints

 Meet power requirements

 Maximum system throughput

7

Some of the parallel processing platforms are:

 Multi-core computing: this platform contains multiple cores on the same chip.

This can execute multiple instructions from multiple instruction streams. Each

core can be superscalar processor where multiple instructions can be issued from

one instruction stream.

 Symmetric multiprocessing: This platform contains multiple identical

processors that share memory and connect via a bus. However, the bus has a

limitation where the contention prevents scaling. The number of processors that

can be connected to the bus is dependent on electrical characteristics and delays

due to the bus tolerated by the system. So, this type of architecture is not desirable

as system needs to meet definite real time constraints. Higher bus bandwidth will

also be desired.

 Distributed computing: this type of architecture contains multiple processing

units. They are connected with a network and may have distributed memory. This

is highly scalable compared with the symmetric multiprocessing.

 Cluster computing: this type of architecture contains a group of computers that

work together closely. These computer clusters are also connected by a network.

However, the computer in a cluster can be asymmetric where the load balancing

will be more difficult.

 Massive parallel processing: this type of architecture contains single computer

8

with many networked processors. It has the same characteristics as clusters where

the massive parallel processing has specialized interconnect networks. Also, it can

be larger than clusters.

 Grid computing: this type is similar to the distributed computing system. It

makes use of computers communicating over the Internet to work on a given

problem. These types of computing use middleware software layer with the

operating system to manage network resources and standardize the software

interface.

 Reconfigurable computing with Field-Programmable Gate Arrays (FPGAs):

FPGAs have large amount of logic, memory, interconnection and other resources

that can be programmed and re-configured for a given task using Hardware

Description Languages (HDL) such as VHDL or Verilog. However, HDLs need

long time for implementation and verification. So, several C to HDL conversion

tools have been developed that attempt to emulate the syntax and/or semantics of

the C programming language.

 Graphics processing units (GPU): GPU has multi-core architecture consisting of

hundreds of cores. Each core contains a grids and each grid contains threads.

There are threads, thread blocks, and grids of thread blocks that all differentiate

themselves based on memory access and kernel execution. A thread block is a

group of threads that have the ability to cooperate with each other and

communicate via the per-Block shared memory. This type of architecture is

http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/C_to_HDL
http://en.wikipedia.org/wiki/C_programming_language

9

attractive for offloading numerically intensive computations. The combination of

high-bandwidth memories and hardware that performs floating point arithmetic at

significantly higher rates than conventional CPUs makes graphic processors

attractive targets for computational intensive algorithms.

In order to implement an algorithm efficiently on any parallel processing platform by

utilizing all its features, the following steps must be considered:

 Perform behavioral simulation system using Matlab, C or other languages

for a given algorithm.

 Perform detailed analysis and simulation to neglect any unnecessary

computation task, storage requirement, and area.

 Implement different methods for a given algorithm on the parallel

processing platform to reduce the highly required computation modules

and hardware resources.

 Develop approaches to identify any inherent parallelism in various

computational modules.

 Decompose computational modules into parallel tasks or processes to run

them in parallel as threads.

 Explore ways to efficiently map the algorithm on the target machine.

 Consider the trade-offs between hardware resource utilization, power

10

consumption and execution time.

 Explore performance measurement based on computation time, code size,

power consumption, area, and the throughput.

Nowadays, the researchers widely use FPGAs parallel processing platform [21-27] in

implementing and parallelizing computational algorithms as it supports parallel and

pipelined architecture. FPGAs are reconfigurable and provide option of rapid

prototyping. So, Multi-core, GPU, and FPGA platforms are selected and used extensively

in this work for implementing and parallelizing different signal processing algorithms.

We also propose a new software tool called Radar Signal Processing Tool (RSPT) as a

unifying framework to unify the aspects of algorithms, architectures, and software. It

bridges the gap between the algorithm and architecture scientific communities. So,

hardware software co-design has been performed that pushes performance and energy

efficiency while reducing cost, area, and overhead.

1.3 Dissertation Outline

This dissertation is organized as follows:

 Chapter 2: this chapter provides an overview and background of parallel

processing platforms such as GPU and FPGA, and extensive review of many

High Level Synthesis Tools (HLSTs).

 Chapter 3: Parallel implementations of Extensive Cancellation Algorithm

(ECA), Direct Data Domain (D
3
), Block Compressive Sampling Matching

11

Pursuit algorithm (BCoSaMP), video processing, Discrete Wavelet Transform

(DWT), Particle Filter (PF), and Iterative Hard Thresholding (IHT) have been

performed. It discusses their efficient parallel implementations on FPGA and

GPU platforms.

 Chapter 4: this chapter presents a new software tool called Radar Signal

Processing Tool (RSPT) for VHDL auto-generation for any radar signal

processing algorithm.

 Chapter 5: Behavior simulation of selected radar signal processing algorithms

is provided. It also shows the synthesis and simulation results of their parallel

computation, storage resources, area, and power consumption on both FPGA

and GPU.

 Chapter 6: Conclusions and future work of this research are provided.

12

Chapter 2

Parallel Processing Platforms and Tools

Achieving real time requirements for complex applications require a parallel

processing platform with multiple processing elements, memories, high bandwidth,

caches, etc. Multi-core System on Chip (SoC), Field Programmable Gate Arrays

(FPGAs), and Graphic Processing Units (GPUs) parallel processing platforms have been

used in our work. They differ in the architecture, number and type of hardware resources,

and in their programming environment. Following sections will provide an overview and

background for each one.

2.1 Parallel Processing on Multiprocessor Systems-on-Chips

(MPSoC)

Single processor may be sufficient for low-performance applications that are typical

of early microcontrollers but the increasing number of extensive applications requires

multiprocessors to meet their performance goals. Multiprocessor Systems-on-Chips

(MPSoC) are one of the key applications of VLSI technology today. It is a parallel

processing platform to build complex integrated system. A certain algorithm can be

13

executed on multiple processors simultaneously through two types of interconnections as

shown in Figures 2-1 and 2-2:

 Processors connected via bus.

 Processors connected via network.

Single bus

Processor

Cache

Processor

Cache

Processor

Cache

Memory I/O

………...

………...

Figure 2-1: Multiprocessors connected by a single bus.

Network

Processor

Cache

Processor

Cache

Processor

Cache

………...

………...

Memory Memory Memory

Figure 2-2: Multiprocessors connected by a network

MPSoC has two general communication modes:

 Single address: it offers the programmer a single memory address space that all

processors share. Processors communicate through shared variables in memory

14

where all processors capable of accessing any memory location via load and store

operations.

 Message passing: Multiple processors communicate with each other by explicitly

sending and receiving messages.

MPSoC requires high bandwidth interconnection between the processors to reduce

the execution time as the number of processor increases. However, increasing the

bandwidth by adding more channels improves the performance but also increases the

total energy dissipation and the chip area. Balancing between reduction in the energy

dissipation and the performance trade-off is a serious issue in multi-core systems.

Technology advances in the handheld devices with enormous processing capacity

required for the multimedia applications impose heavy constraints on the energy

dissipation. The energy consumption is becoming a limiting factor for future handheld

devices. Most of the emerging MPSoC platforms nowadays are heterogeneous in nature.

In most of the MPSoC research, processors are organized around a shared bus, but

researchers have launched NoCs communication infrastructure which can be designed to

deal with growing system complexity [28-31].

Manufacturing network on chip is an expensive process requiring a thorough analysis

and optimization before actually fabricating and outputting the product to the market. So,

there is a need for energy analysis for heterogeneous NoC platforms and their memories

for real time applications. A comprehensive method is essential to know bottlenecks of

the energy dissipation in the handheld devices while running a multimedia application in

15

real time. Generally, research groups have focused on on-chip communication energy

consumption for interconnection architecture and homogenous NoC.

2.2 Parallel Processing on a GPU Platform

A Graphic Processing Unit (GPU) is an electronic circuit designed to perform rapid

mathematical calculations especially for the purpose of rendering images. GPU has many

usages such as mobile phones, personal computers, and game consoles. GPU is a very

efficient platform for processing graphics where a high parallel structure of large blocks

of data can be performed concurrently. The first GPU is introduced by NVIDIA (GeForce

256) which is capable of processing millions of operations per second. Intel and AMD

also provide their own graphic processors. GPUs produced by different manufacturers

where each one differs in the following features:

 Streaming Multiprocessor (SM) represents the number and the architecture of

available cores.

 Thread global scheduler to manage the context switches between threads

during execution.

 Host interface represents the connection between the GPU and the CPU.

 Memory structure and sizes

 Cache levels and sizes

 Clock frequency

http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Game_console
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/GPU

16

 Global memory clock

 Cooling of chip mechanism

 Warranties

 Programming environments and tools

GPU platforms support massive computational power for applications requiring

several orders of magnitude higher performance than a conventional CPU. Also, they can

achieve high throughput of some computations that exhibit high level of data parallelism.

GPU has emerged as a new paradigm which is evolved into a highly parallel

multiprocessor with high computation power. GPU is a collection of many processors

with multiple processing units as shown in Figure 2-3. It has high bandwidth memories

and hardware resources. GPU is capable of performing floating point operations at high

speed. However, the performance gains in GPU architectures depend on effective

application parallelization. An efficient implementation on GPU platforms faces two key

challenges: the first challenge is that parallel tasks must be identified and extracted from

the sequential algorithm. The second challenge is that there must be an excellent match

between the extracted tasks and the architecture resources because any mismatch will

lead in performance loss and a decrease of resource utilization.

NVIDIA GForce GTX 260 [32] GPU was used in our work. It contains eight thread

blocks with 512 concurrent threads in each block. Each thread has separate access to

17

individual memory, counters, registers, etc. It runs in Single Instruction Multiple Data

(SIMD) fashion such that all thread blocks execute the same instruction but operate on

different data. Threads communicate with each other via the per-block shared memory as

shown in Figure 2-3.

Figure 2-3: GPU architecture

The memory hierarchy of GPU consists mainly of five memory levels. Each one has

different properties and uses. So, they must be used efficiently to achieve high

performance implementations. The GPU memories are:

 Constant memory: is a memory that can be accessed from any thread in any

block and grid of the GPU. It is used for only read operation which usually

holds the arguments and small data of the kernel functions. It is very limited

device resource (few kilobytes), very fast, and off-chip location.

 Global memory: is a memory that can be accessed from any thread in the

GPU device. This memory is used for both read/write operation. It is used for

transferring the data between CPU and GPU. So, it can’t transfer data directly

18

from host to shared memory, registers, or local memory. However, the

location of global memory is off-chip and therefore it is slower than shared

memory. It has long delays and need a synchronization scheme between

threads accesses to ensure correct result.

 Shared memory: is a memory that can be accessed by any thread in the same

block. This memory is used for both read/write operation where it can’t be

accessed by the host (CPU). However, it resides on GPU chip and therefore it

is very fast but it has a limitation regarding its size.

 Register file: is a memory that can be accessed by only one thread. It’s used

for both read/write operation where all local variables of a thread reside in

these registers. However, these registers have a limited resource. Therefore,

some of the variables and vectors that don’t have enough space in the registers

will be moved to the local memory. Table 1.1 summarizes the comparison

between different types of memory hierarchy of GPU device.

Table 1.1: GPU memories hierarchy comparison

 Memory Location (on/off chip) Access Scope Lifetime

Constant Off R Grid Application

Global Off R/W Grid Application

Shared On R/W Block Kernel

Local Off R/W Thread Kernel

Register On R/W Thread Kernel

CPU and GPU are connected as shown in Figure 2-4. The limitation in the connection

is the low speed of transferring data between the host (CPU) and the device (GPU). The

data transfer inside the GPU device has high speed but still represents a bottleneck for

19

high performance applications. So, placing data at different levels of memory in the GPU

architecture affects the performance.

Host (CPU)

Host Memory

Device (GPU)

Device Memory

High speed

data transfer

Low speed

data transfer

high speed

data transfer

Figure 2-4: CPU-GPU connection.

After moving the data from the host (CPU) to the device (GPU), it is very beneficial

to move the data from global memory to shared memory on the GPU part as shared

memory resides on the GPU chip. This will help in keeping the needed data for each

block in its own shared memory as shown in the following code:

Used shared memory for data storing

__global__ void Function (int m, float *Mat_d, float *V_d)

{ __shared__ float Mat_shared [1024]; //Declared shared memory

 index Thread index

 Mat_shared [index] =Mat_d [index]; //Copy from global to shared

 V_d [index] =Mat_shared [index] /m;} //Execute the task

The shared memory is declared inside the body of the kernel. Then, the data is moved

from the global memory to the allocated storage on shared memory for further

processing. This will reduce the latency as the data will be available to all the threads in

the block inside the GPU chip. This optimization strategy is applied in our

implementation.

20

NVIDIA supports Compute Unified Device Architecture platform (CUDA) and Open

Computing Language (OpenCL). CUDA is an Application Programming

Interfaces (APIs) extension to the C programming language which is developed

specifically for NVIDIA GPUs. OpenCL is a framework for writing programs that

execute across heterogeneous platforms such as CPU, GPU, DSPs, and FPGAs.

However, CUDA and OpenCL allow specified functions from a C program to run on the

GPU's stream processors. This makes C programs to be executed while taking the

advantages of GPUs to operate on large matrices in parallel, while still making use of the

CPU when appropriate.

OpenCL includes a language based on C programming language for writing functions

that execute on OpenCL devices. It also includes Application Programming

Interfaces (APIs) that are used to define and control the platforms. Moreover, it

provides parallel computing using task-based and data-based parallelism. OpenCL has

been adopted by many companies such as Apple, Qualcomm, Advanced Micro Devices

(AMD), NVIDIA, Altera, and Samsung. It has many uses where it gives the ability to

access the GPU for running programs and to automatically compile OpenCL programs

into application-specific processors running on FPGAs. The following steps must be

performed to use the OpenCL in different applications:

 Set up environment: Declare and create the OpenCL context and a command

queue.

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/C99
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/Samsung
http://en.wikipedia.org/wiki/FPGA

21

 Declare buffers & move data: Declare the needed buffers and the transfer

input data to the device.

 Run the program: set the kernel arguments and the work group size and then

enqueue kernel into the command queue to be executed on the device.

 Get result to host: after the program completes its execution, the result will

return back from device buffer to the host memory.

Compute Unified Device Architecture platform (CUDA) [33-35] is a software

development kit. It consists of a library that allows the programmer to develop programs

for GPU utilization. It is developed based on the notion of kernel function which can be

called simultaneously across many threads instances. Each function is identified to be

executed either using CPU or GPU. The programmer must allocate the amount of

memory storage area for each variable in a GPU function. The threads in the kernels

differentiate themselves and work on separate parts of a data set since the kernels have

special thread identification variables. The execution of any algorithm on GPU consists

of four basic steps as shown in Figure 2-5: memory storage allocation on the GPU; copies

the data from the CPU to the GPU, specifies a routine that executes on the GPU

processing elements, finally, copies the data back to the CPU.

22

Memory

Allocation

Copy Data

Host GPU

Kernel function

call

Copy Result

GPU Host

Free Memory

Task1 execution

Device

Task2 execution

Figure 2-5: Basic steps of the algorithm execution on GPU.

2.3 Parallel Processing on FPGA Platform

FPGA is an integrated circuit designed to be configured by the designer where the

configuration is specified using a Hardware Description Language (HDL). It contains

large resources of logic gates and RAM blocks to implement complex digital

computations. It supports very fast I/O and bidirectional data buses. The functions that

are implemented on the FPGA can be re-configured with low non-recurring costs as

FPGA contains reconfigurable interconnects that allow the logic blocks to be wired

together. This makes FPGA platforms suitable for high performance applications.

Field Programmability of FPGA refers to the ability to change the operation at any

time. This makes FPGA very interesting for hardware implementation. Designers can

reprogram it after it’s manufactured rather than limited to unchangeable hardware

http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Logic_gate

23

function. FPGAs may be different from each other since they differ in their size and

internal architecture. However, all FPGAs contain the following basic logic blocks:

 Logic elements.

 Lookup table.

 Memory resources.

 Routing resources.

 Clock.

 Configurable I/O.

Nowadays, FPGA becomes more complex where these basic logic blocks are

combined with arithmetic and control structures such as multipliers, microcontrollers and

others. Also, some of them contain specialized logic blocks that provide programmable

input and output capabilities. FPGAs may differ with each other in terms of following

elements:

 Logic size

 Logic structure

 Speed

 Memory size

24

 Power consumption

Recent research interests in a complete system on a programmable chip where the

logic blocks and interconnects of FPGA are combined with embedded microprocessors.

This design is accomplished by Xilinx and Altera. Xilinx Inc. integrates ARM and other

processors into FPGA device which enables system architects and embedded software

developers to use a combination of serial and parallel processing in their system designs.

This integration helps to reduce the power consumption with higher reliability since most

failures in modern electronics occur on Printed Circuit Boards (PCBs) in the connections

between chips.

There are many techniques used to implement the DSP algorithms in the past such as

Application Specific Integrated Circuit (ASIC). However, the ASIC has many drawbacks

including high cost, low flexibility, long time to handle the mapping, routing, placement,

and timing. However, FPGA based hardware implementation can effectively bridge the

gap between software programmable systems and application-specific platforms based on

custom hardware functions. Advances in FPGA lead to implementation of rapid

hardware-accelerated algorithm. It eliminates the complex and time-consuming process

of placing, routing, and timing analysis beside its low cost. FPGA are generally slower

and consume more power than the same applications implemented in custom ASICs.

However, the lowered risk and cost of development of FPGAs have made them good

alternatives to custom ICs.

25

FPGA based systems are reconfigurable and provide option of rapid prototyping. It

includes a large hardware area, memory resources and multiplier blocks surrounded by a

programmable routing fabric that allows blocks to be programmable interconnected as

shown in Figure 2-6. It also has programmable input/output blocks to connect the chip to

the outside world. A large enough collection of gates can be used to implement any

digital circuit including I/O, communication bus interfaces, and even entire

microprocessors.

Figure 2-6: Conceptual FPGA architecture [36]

FPGAs use dedicated hardware for processing logic and do not have an operating

system. Different operations do not have to compete for the same processing resources as

the processing paths are parallel. This means speeds can be very fast, and multiple control

loops can run on a single FPGA device at different rates. Also, the re-configurability of

26

FPGAs can provide designers with almost limitless flexibility. FPGA-based systems can

literally rewire their internal circuitry to allow configuration. The implementation using

FPGAs not only include a larger hardware area, but also embedded processors and

memory resources. This option offers versatility in running diverse software applications

on embedded processors, while taking advantage of reconfigurable hardware resources,

all on the same chip package. Therefore, a hardware chip implementation is more

desirable than software based implementation. The design flow process of FPGA for any

application follows five steps as shown in Figure 2-7.

Design Entry

Technology Mapping

Placement

Routing

Programming Unit

Configured FPGA

Figure 2-7: Design flow process diagram

27

FPGA architectures can be classified into two categories:

 Fuse-based FPGAs: it’s called One Time Programmable (OTP) as it can’t be

modified once it’s programmed.

 SRAM technology-based FPGAs: it supports design changes and updates

throughout the cycle of a product until it’s delivered to the customer.

In order to achieve high performance and meet real time requirements for complex

signal processing applications, FPGAs can be interconnected to each other as shown in

Figure 2-8 to design a complete Multi-FPGA system [37-38]. This may be necessary as

some applications need very high computational and storage resources.

FPGA 1

..... .

..... .

..

...

..
.......

FPGA 2

..... .

..... .
..
...
..

.......

Driver Receiver
Transmission Line

L

Figure 2-8: Multiple FPGA interconnection model.

28

VHDL and Verilog are two popular methods of Hardware Description Languages

(HDLs) for FPGA programming. They are powerful but require high levels of expertise

to program. One of the major problems with reconfigurable computing platforms is the

required design time to get the desired efficiency and performance. Increasingly

sophisticated tools are enabling embedded control system designers to more quickly

create and more easily adapt FPGA-based applications. The design time and the VHDL

programing difficulty can be reduced by the acceptance of High Level Synthesis (HLS)

[39], a compiler for reconfigurable computing platforms.

Many steps must be considered in the design process of FPGA to achieve the desired

performance such as:

 Architectural design: this can be accomplished by writing a pseudo-C code

of the application, then translates it to Verilog or VHDL.

 Compiling: this process transfers the data into registers by compiling the

VHDL or Verilog into Register Transfer Logic (RTL) netlists.

 Synthesis: this step is required to produce bits to control gates and fill

registers and memories on an FPGA. This level is called gate-level logic as it

describes the needed logical gates of the application.

 Placing and Routing: this step places the synthesized subsystems into FPGA

locations and makes necessary connections (FPGA routes) between these

subsystems.

29

 Loading: Finally, after FPGA programs have been compiled, synthesized,

placed, and routed, it must be embedded in the physical FPGAs. So, the

programmer downloads the programming file bits into the FPGA hardware to

implement the gates of the system.

 Debugging programs: this step uses debuggers, simulators, and emulators in

FPGA for verification purposes. These tools enable us to go through the

program execution and observe the effects on flags, register contents, and

memory locations.

2.4 High-Level Synthesis Tools

FPGA technology is an interesting choice to achieve high performance and meet real

time constraints. However, implementing complex applications using a low-level HDL is

a discouraging task for regular DSP or microprocessor user. For this reason, high-level

synthesis tools (HLSTs) [40-43] arise as an alternative to HDLs when using FPGAs.

HLSTs have been evolved since the 1980s. Based on [40], three generations of

HLSTs can be distinguished. The first one was developed during the 1980s and was

mainly a research-oriented one with no or little impact in industry [44]. The lack of a real

need, obscure input languages, and a problematic performance limited the adoption of

these tools [45]. The second generation started in mid 1990s and was fostered by the

major Computer Aided Design (CAD) companies present in the market, i.e. Cadence,

Synopsys, and Mentor Graphics [45]. However, the commercial tools from these

30

companies lack of good performance and reduce learning curve, making it not interesting

for current designers [45]. Finally, the third generation of HLSTs started at the beginning

of 2000s. This generation of tools currently offers improved performance and user

interface leading to a significant reduction in the design times and in the learning process

[45]. Also, most of them have adopted high level languages such as Matlab or C. There

are many HLSTs developed during 2000s such as Vivado HLS from Xilinx, Synphony C

Compiler from Synopsys, Catapult from Mentor Graphics, and CtoS from Cadence.

Raising the abstraction level from low level languages to high level languages such as

C has enabled software engineers to develop more complex applications with improving

productivity. This makes the design process easier. High level synthesis tools also known

as Electronic Design Automation (EDA) tools try to bridge the hardware/software gap by

supporting automatic transformations from high level programming models to RTL

hardware descriptions. This is performed by redirecting the time consuming HDL work

to the compiler instead of the programmer.

HLSTs simplify and accelerate the design process for complex algorithms and ease

the migration of some designs from DSP to FPGAs [46]. There are many DSP design

tools such as DSP Builder and System Generator from Altera and Xilinx, respectively,

which enable the use of Simulink for FPGA design [47]. However, both of them need the

implementation of the control logic that controls the scheduling of the operations which

is one of the most time-consuming tasks, and they are limited to the available library

elements.

31

HLSTs support some directives and constraints defined by the user to optimize the

design according to performance and/or area criteria. This allows obtaining and

comparing different implementations in a few minutes. As a consequence, the design

space exploration is significantly simplified and further optimization can be achieved.

Moreover, the C-based input can include a test bench to verify the output RTL, therefore

improving designer productivity by removing the need to create RTL test benches for

RTL verification. The HLST also creates the required scripts to verify the generated RTL

through co-simulation with the original test bench and a variety of RTL simulators.

Many HLS tools are developed to raise the abstraction level for designing digital

logic. A full comparison between twelve tools regarding their capabilities and limitations

are performed in the following paragraphs [39]. The comparison will be performed based

on many metrics such as:

 Source language and ease of implementation regarding the abstraction level.

 Tool complexity regarding the documentation and the user interface.

 Support for data types.

 Design exploration capabilities.

 Verification and correctness.

 Generated design regarding the size, latency, and resource usage.

32

1. Xilinx AccelDSP

AccelDSP is a high level synthesis tool from Xilinx. It provides the designer the

following capabilities:

 Transforms Matlab floating-point data to hardware description language that

can be implemented in Xilinx FPGA.

 Explores design trade-offs of an algorithm for target FPGA architectures.

 Creates a synthesizable RTL HDL model.

 Creates an HDL test bench for verification purposes.

 Provides automatic conversion from floating-point to fixed-point.

 Provides automatic calling an HDL simulator to run test bench.

 Provides automatic calling of ISE tool to place and route the design.

 A GUI that eases the use of integrated environment with Matlab and Xilinx

ISE.

However, AccelDSP has many limitations such as:

 Works only on streaming functions for image and signal processing

applications which reduces the domain applications.

 A limited part of Matlab code is supported.

33

 Based on [39], AccelDSP is a powerful tool for only streaming applications

and more directives are still needed.

2. Agility compiler

Agility compiler is a tool of electronic system level for SystemC which was acquired

by Mentor Graphics. It provides the designer the following capabilities:

 Automatically generates register transfer language from SystemC code.

 Explores complex algorithms and architectures early in the design.

 Automatically generates a code which is supported for Actel, Altera and

Xilinx FPGAs.

 The generated code is performed by separating the details of the

communication from the implementation modules.

 It contains black boxes where HDL IP can be imported.

 Automatic generations of control and data flow graphs are supported.

However, Agility compiler has many limitations such as:

 It requires writing of certain hardware processes manually.

 A test bench must be implemented manually for verification purposes.

3. Vivado HLS (AutoPiolt)

Vivado HLS tool is acquired by Xilinx where it compiles HDL from a variety of C-

34

based input languages such as ANSI C, C++ and SystemC. It automatically generates the

RTL description of FPGA for a given application using a high-level language. It offers

many advantages:

 Eliminates use of low-level HDL which is time consuming and prone to

errors.

 Provides various directives and constraints that will be useful for an optimized

design.

 Simplifies and accelerates the design process and eases the migration of some

designs from DSP to FPGAs.

 Allows development of optimized hardware-software co-designs and allows

easy comparison of different hardware implementations of the same algorithm

in terms of performance, resources, and estimated power.

 Increases the productivity, improves the reliability, and enables design

exploration to achieve the most efficient implementation.

 Includes a test bench to verify the output RTL through co-simulation with a

variety of RTL simulators.

 Automatically generates the data-path and the control unit.

 Provides a report about clock period, latency, resource estimation, and power

dissipation.

35

 Allows reuse of c-code test bench for RTL simulation reducing the

verification time.

Although HLST gives the user a set of constructs through C/C++ and SystemC to

design a specific application. However, it has many restrictions and limitations:

 Dynamic memory allocation is not supported and a fully specified of all

needed resources is required.

 It has limitations during synthesis when using pointers as well as the size of

the structure pointed to must be known.

4. BlueSpec

BlueSpec is a tool that was developed by BlueSpec Inc. It is Verilog based language

where rules called Guarded Atomic Actions (GAA) must be used in order to implement

the design modules. It offers many advantages:

 Handles the scheduling and dependencies implicitly.

 Pragmas can be performed for rule scheduling.

 Supports a GUI and command line interface for compilation purposes.

 Provides clear readability and traceability of the generated code since it

preserves the signal names in the design.

However, BlueSpec has many restrictions and limitations:

36

 Requires re-implementation of the algorithms where no pre-existing code can

be used.

 Needs long port maps and connection lists since all its modules implemented

separately.

 Has complex code for basic operation since it uses server-client interfacing

approach.

 Difficulty in learning since it uses uncommon rules programming paradigm.

 Doesn’t support any design exploration capabilities.

 Needs to write the testbench manually.

5. Catapult C

Catapult C is a tool that was acquired by Calypto Design Systems. It provides a large

subset of C-based languages. It offers many advantages:

 It’s easy to use as it has a powerful manual and a very clear guide through

HLS process.

 Supports options to select target technology, clock rate, area and latency

constraints, interfaces etc.

 Supports a GUI and command line interface for compilation purposes.

 Optimization techniques are supported to enhance the design.

37

 Includes a test bench to verify the output RTL through Modelsim simulator.

 Provides arbitrary bit width data types.

 Provides an overview of the performance in terms of area, latency, and

throughput in the form of tables and plots.

However, Catapult C has many restrictions and limitations:

 Memory accesses are not optimized.

 A modification of the source code must be performed to enable local buffering

for memory purposes.

6. Compaan

Compaan is a tool developed by Compaan Design that uses Eclipse Software

Development Kit (SDK) tool. It’s not considered as high level synthesis since it doesn’t

generate the processing elements of the application. This tool is mainly designed for

streaming application for heterogeneous multi-core platforms. It has following

advantages:

 Supports some pragmas for auto-parallelization purposes.

 Generates the entire communication infrastructure for an application.

 A FIFO structure is supported for data exchange between different nodes of

multi-core processors.

38

Compaan has many disadvantages and restriction such as:

 Doesn’t support a wide range of applications since it is designed mainly for

streaming applications.

 The mapping process on the resources must be performed manually by the

designer.

 A modification of the source code must be performed by the designer to

change the number of generated nodes for design exploration.

 Writing of functional IP using external tools must be performed by the

designer.

 Supports only uni-directional FIFO interface.

7. C-to-Silicon (CtoS)

CtoS is a tool developed by Cadence where it uses SystemC as a design language. It

accepts several programming languages such as C, C++, and TLM 1.0. Offering many

advantages:

 Supports GUI for compilation and implementation purposes.

 Provides arbitrary bit width and fixed-point data types.

 Supports optimization techniques for both memory mapping and loop

optimization.

39

 Generates RTL models for verification purposes.

CtoS has many disadvantages and restriction such as:

 Developed mainly for ASIC design not for FPGA design.

 Doesn’t support powerful materials and tutorials leaving many questions

unanswered.

 Complicated GUI.

 Difficult to learn since defaults are missing.

 Difficulty in understanding of some options and constraints for some

optimizations.

 The verification process must be performed only through Cadence simulators.

8. CyberWorkBench (CWB)

CWB is a high level synthesis tool based on ANSI C. It accepts a variety of input

languages such as C, SystemC and Behavioral Description Language (BDL). This tool

provides many advantages:

 Supports both GUI and command line for parsing and compilation purposes.

 Supports an interface for both function parameters and global variables.

 Arbitrary bit width and integer data types are supported.

40

 Supports both automatic and manual scheduling.

 A number of optimization techniques such as unrolling and folding are

supported through GUI.

 Pragmas can be set in the source code for certain loops or variables.

 Provides an option where the designer can restrict the number of resources

such as multipliers and adders to balance the design between area and latency.

 Generates various performance diagrams in terms of area/latency for many

combinations of settings to obtain the optimal design.

 Automatically generates test bench with many simulation scenarios for

verification purposes.

 Provides features where some external simulators can be called from CWB.

 The resulting output is written in both VHDL and Verilog languages as well

as generating scripts for RTL synthesis.

CyberWorkBench has many disadvantages and restriction such as:

 Some constructs and functions are non-synthesizable where the designer must

remove it manually.

 The input data need to be converted by the user into a separate file for each

port.

41

 There are some difficulties in understanding the numerous tool options.

9. DK Design Suite

DK Design Suite is a high level synthesis tool developed by Mentor Graphics in

2009. It is appeared before Catapult C tool. This tool accepts Handel-C language as input

language which is a subset of C language. It offers many advantages:

 Supports some extensions of interfaces, arbitrary precision data types, and

parallelism.

 Supports a straightforward GUI for compilation purposes in addition to a

command line interface.

 An excellent Handel-C manual through online help system is supported.

 Generates the RTL output in both VHDL and Verilog languages.

DK Design Suite has many drawbacks and restriction such as:

 Causes difficulties of the designer to explicitly specify parallelism for

generating efficient code from the Handel-C languages.

 DK is mainly designed for FPGA which impede the designer to port it on

different platforms.

 The designer must perform some modifications on the source code such as

adding macros and explicitly defining the parallelism for design space

exploration purposes.

42

 The loops nests must be optimized manually by the designer where the

correctness of such optimizations must be validated through simulations.

 Validation of the generated RTL is difficult since DK has limitations to

expose the data ports on the top level.

10. Impulse CoDeveloper

Impulse CoDeveloper is a high level synthesis tool developed by Impulse Accelerated

Technologies (IAT). It comes with its own IDE where it generates RTL design from C

languages. This tool offers many advantages:

 Supports a wide range of FPGA platforms such as Altera, Nallatech, Pico, and

Xilinx.

 Supports many tutorials to get started and learn its features easily.

 The generated RTL can be combined with IP to build a complete system.

 Provides processor acceleration as the generated hardware accelerators can be

connected to an embedded FPGA processor.

 Supports many ways for communication between processes such as streams,

registers, and signals where the designer can adjust the depth of the streams.

 Supports several libraries and bus interfaces to create interface between the

FPGA and the embedded processor.

 Provides various ways for design optimization to generate an efficient design.

43

 Provides various simulations, verification, and debugging tools such as stage

master debugger and ModelSim simulator.

Impulse CoDeveloper has many drawbacks and restrictions such as:

 Some modifications must be performed by the designer since ImpulseC is

based on ANSI C language with some extensions.

 Doesn’t support any IP to the designer through implementation.

 The generated HDL code files contain large number of lines making

difficulties in reading and modifications.

11. ROCCC

Riverside Optimizing Compiler for Configurable Computing (ROCCC) is a high level

synthesis tool from Jacquard Computing Inc. It can be run under eclipse environment. It

offers some advantages such as:

 Supports arbitrary bit width data type.

 Allows the designer to select some options and constraints to generate

powerful design.

 Supports smart buffers where the fetched data from memory can be re-used in

a subsequent iteration if they have the same data elements.

 Supports a powerful design for streaming and sliding window applications.

44

ROCCC has many drawbacks and restriction such as:

 Accepts a very restrictive subset of C language which restricts the

implementation of the desired design.

 Doesn’t support overflow checking such as out of bound memory size.

 The generated RTL code contains huge file of VHDL making difficulties in

modifications and reading.

 The transfer rate is limited to a single word in every two clock cycles.

 Difficulty in verifying RTL output since the memory interface contains both

synchronous and asynchronous behaviors concurrently.

12. Synphony C Compiler

Synphony C Compiler is a high level synthesis tool from Synopsys which is acquired

from Synfora in 2010. It accepts ANSI C and C++ as input language. This tool offers

some advantages such as:

 Supports many optimization techniques which can be inserted into the source

code through pragma feature.

 Supports an excellent manual which illustrate how to write a code for optimal

design.

 Provides options to include clock rate and some constraints on the input file to

generate the desired design for a certain application.

45

 Provides a GUI and a script for compilation purposes.

 Provides streaming interfaces.

 Automatically generates the test bench for verification purposes.

 Various HDL simulators can be called from the tool.

Synphony C compiler has many drawbacks and restrictions such as:

 The generated output is huge in terms of area leading to a bad design where

corrected settings must be properly assigned.

A summary of the main characteristics and comparisons between the tools is shown

in Figure 2-9. The comparison is performed in terms of different criteria such as:

 The ease of implementation.

 Abstraction level.

 Learning curve.

 Documentation.

 Data types supporting.

 Exploration.

 Verification.

46

Figure 2-9: Tools comparisons [39].

These HLS tools have been developed to move the design effort to higher abstraction

levels. This reduces the design time for FPGA based hardware implementation and speed

up the verification process. Also, it improves the performance and the design exploration

by adopting many optimization techniques. Based on the evaluation in Fig. 2-9, Vivado

HLS tool is chosen since it offers the best performance based on their metrics evaluation.

Moreover Xilinx provided Vivado tool under their university support program. Therefore,

it made easier for us to use it in this work. However, all tools lack exploitation of any

available opportunities of data locality and reduction of memory bandwidth requirements.

47

Also, in all HLS tools [39], even the best ones, exploration and optimization options are

still application specific. It is the responsibility of the designer.

Figure 2-10 shows the Vivado HLST-based implementation procedure. Vivado HLS

allows the user to automatically generate the hardware description code such as Verilog

and VHDL from high level languages such as C, C++, and SystemC. This will be highly

beneficial since the low level language needs strong knowledge of hardware, requires

long time for coding and validation, and is prone to errors. The generated VHDL code

from HLS can be easily converted to bitstream files using Xilinx ISE. Moreover, HLS

provides many optimization options which can help in producing an optimized design

quickly and efficiently that meets the desired performance.

Figure 2-10: HLST-based implementation procedure [48].

Vivado HLS also allows the user to implement the same algorithm in different ways

by applying different directives, constraints, and offers quick comparisons in terms of

48

performance, hardware resources, and estimated power consumption. It offers many

advantages and flexibility to the designer such as:

 Simplifies the design and simulation tasks.

 Reduces the design time.

 Increases the productivity.

 Improves the reliability.

 Enables exploration of the design space.

 Includes a test bench for verification of generated RTL.

 Generates the data-path and the control unit for micro-scheduling operations.

 Supports arbitrary bit-width operations.

 Supports automatic array that can be partitioned, mapped, streamed, or

reshaped to increase the bandwidth.

Vivado HLS also informs the designer about the limiting factors in the design such as

multiple BRAM accesses which needs to be spread out across multiple clock cycles due

to limited resources. Figure 2-11 shows the scheduling graph for a given algorithm as it is

shown in the Vivado HLS GUI. It shows the design of the control unit of a deep pipelined

data-path which is a complex problem.

49

Figure 2-11: Vivado HLS graphical interface (scheduling graph).

Vivado HLS gives the user a set of constructs through C/C++ and SystemC for the

design of a specific application. However, it has many limitations and results in poor

performance. Vivado HLS does not support dynamic memory allocations, recursion, and

has some restrictions on pointers. The program needs to be modified to express arbitrary

bit-width operations as they are not supported in C/C++ specifications. The support for

floating point is also dependent on the HLS tool and the target technology.

Moreover, Vivado HLS does not support certain trigonometric and other

mathematical functions and requires the development of customized functions. It is not

able to extract all the possible parallelism from the sequential program and requires

50

explicit expression of parallelism. However, the coding style of the input program can

drastically influence the end result of the generated design. The efficiency of the design is

also affected by packing the data elements into wider vectors or distributing them across

multiple storage elements, streaming/interface support, and the use of arbitrary precision

types. So, the designer still needs to be aware of the underlying hardware and use the

proper coding style to arrive at an optimized architecture.

2.5 Conclusion

An overview and background on parallel processing platforms and high level

synthesis tools are discussed. Parallel processing platforms such as multi-core, FPGA,

and GPU can run a complex algorithm in a tiny time as they provide hundreds of cores

and resources. Xilinx Vivado HLS tool can significantly reduce the design time of

FPGA-based hardware by avoiding VHDL code. It enables design exploration, and,

therefore, should be considered as a new paradigm in FPGA design for complex

applications.

51

Chapter 3

Parallelization of Signal Processing Algorithms

Signal processing algorithms are computationally and data intensive. These

algorithms will benefit with the availability of parallel processing platforms to meet their

real-time requirements. Some of the signals processing algorithms that are being

investigated in this thesis are IR video processing, Direct Data Domain (D
3
), Extensive

Cancellation Algorithm (ECA), Block Compressive Sampling Matching Pursuit

algorithm (BCoSaMP), Discrete Wavelet Transform (DWT), Particle Filter (PF), and

Iterative Hard Thresholding (IHT). They will be first transformed into highly parallel

algorithms. Then, they will be mapped and scheduled on different platforms such as

CPUs, multi-cores, MPSoCs, GPUs, and FPGAs. Following sections will describe

parallelization, mapping and scheduling of these algorithms on various platforms.

A generalized approach for parallelizing a target algorithm has been adopted as

shown in Figure 3-1. It is accomplished by creating a methodology for various processes

such as evaluation of data dependencies, exploring parallel processing opportunities, and

improving the data locality. So, this exploits any opportunity of optimization to minimize

52

computation time, storage resources, area, power dissipation, and cost.

Signal Processing Algorithm

Simulation & Verification

Develop Various Efficient

Methods for Implementation

Identifies any Inherent

Parallelism in Computational

Modules

Decompose Computational

Modules into parallel Tasks

Broke Parallel Tasks into

Smaller one

Explore Ways to Efficiently

Map the Tasks on Platform

Apply Different Optimization

Techniques

Unrolling Data Flow PipeliningMerging Inlining

Implement it on Various

Platforms

GPU

Memory Allocation

Copy Data from

Host to Device

Kernel Function

Call

Copy Result from

Device to Host

CPU FPGA

Design Entry

Technology

Mapping

Placement &

Routing

Compilation &

Configured FPGA

Generated Optimized Code

Make GUI

Specifies Algorithm Parameters
Code LibraryXilinx

Optimized CodeCompilation

Generate

Desired

Code
Results

Complete

Result

Trade-off

through various

performance

parameters

Latency
Hardware

Resources

Power

Consumption

Final Architecure

 Figure 3-1: Generalized parallel approach for signal processing applications.

53

3.1 Parallelization of IR Video Processing on a GPU

Video processing is applied in numerous processing applications such as security for

shopping malls, detection for military targets to detect suspicious activity, and monitoring

for birds and bats activity to minimize impact of wind turbines on birds and bats [49-51].

The IR camera provides excellent night visibility and situational awareness, even in

absolute darkness. The IR data processing is different from the normal video processing

techniques as it has some unique features that can be exploited. IR camera usually

captures video with less background information and highlights objects with higher

temperature. This helps in subtracting objects from the simple background model. IR

camera is less sensitive to the changes in illumination and makes its background model

more stable. However, the IR camera data are only grayscale images (although they are

recorded in RGB format); the color information is not very useful for identifying

different objects in details.

There are three essential parts for IR video processing: (1) background subtraction (2)

noise filtering and (3) connected component labeling. Background subtraction segments

out image pixels that correspond to moving objects. A statistical background model [52]

is used which takes the mean of the previous n-frames as shown in Equation (3.1) and

subtracted from the current frame. The background model is updated every n-frames. At

the beginning of the video (before the 5th frame), it takes the constant background as

model. The updating starts from the 6
th

 frame to the end of the video. It is useful when

number of targets is not very large. A background model is assembled by observing the

54

temporal history of each pixel.

 ()

∑ ()
 . (3.1)

Where, () is the background model, () is the image for pixel (x, y).

Noise is the unnecessary information of the data/source signal that needs to be

removed. The quantity of the noise is a main factor that affects the quality of the outputs.

By applying morphological operations such as erosion, dilation, closing, and opening,

most salt and pepper noise can be removed and the object can be reshaped. Noise

removal is also helpful for the connected component labeling. Connected component

labeling in IR video processing is used to isolate, measure and identify potential object

regions in an image by assigning a unique number to all foreground pixels that belong to

the same connected component of the image [53]. As a result of the labeling, individual

components can be extracted from the image for further analysis [54-55].

3.1.1 Parallelization of Each Step of Video Processing Method

In order to effectively take advantage of GPU processing, we must extract all the

parallel tasks and exploit all the resources on a GPU. So, fine-grained parallelism within

each video frame must be exploited. IR video processing algorithm will have following

structure.

/* Main program*/

- Background subtraction

- Noise filtering

- Connected component labeling

- End

55

Following sections describe parallelization of three essential phases of video

processing.

Parallelization of Background Subtraction

The objective of the background subtraction is to extract pixels corresponding to

moving objects. In order to estimate the background subtraction, we divide the algorithm

into three parts: 1) Create the background model which estimates the mean of the

previous n-frames to serve as the background for the next n-frames. 2) Background

model is subtracted pixel by pixel from the current frame. 3) Image thresholding is

performed. Mapping of all three parts of the background subtraction algorithm is

performed in the following fashion.

An m*m image will have m
2
 pixels. Operations can be performed in parallel on each

pixel giving us very fine grain parallelism. This work utilizes IR images of size 704*480.

Each column is then mapped on thread block (512 threads/block, 8 blocks/core). Each

thread calculates the mean of the corresponding pixel by using pixels from n-frames. If

there are n-images in a video then each core will receive ten images (five images for

background model estimation and other five images for background subtraction).

All created threads calculate in parallel the mean value of the pixels in the first

column for the five frames and store the result as background model as shown in Figure

3-2. All threads subtract in parallel the value of each pixel in the column from the

background model and store the result as shown in Figure 3-3. A pseudo code of the

background subtraction is as follows:

56

Function Background Subtraction

For i 0 to Num_Frames

 { F(i) Read Frames;}

Declare host variables (CPU);

Declare integer k, k1;

Declare device variables (GPU);

 k1=0;

For k 0 to (Num_Frames-5), K+=5

{If (k=0)

 {For i 0 to Rows

 {For j 0 to Cols

 {F1=F(k);

 F2=F(k+1);

 F3=F(k+2);

 F4=F(k+3);

 F5=F(k+4);}}

Copy the frames F1, F2, F3, F4, F5 to the device}

Do in parallel on the device:

{Call BackgroundModel_Kernel (attributes)}

/*Execute on host following code */

For i 0 to Rows

 {For j 0 to Cols

 {F1=F(k1+5);

 F2=F(k1+6);

 F3=F(k1+7);

 F4=F(k1+8);

 F5=F(k1+9);}}

Copy the frames F1, F2, F3, F4, F5 to the device

Do in parallel on the device:

Call BackgroundSub_Kernel (attributes)

K1+=5;}

/* functions to be executed in parallel */

/* code for background model estimation */

BackgroundModel_Kernel

Declare X index for the thread in x-dimension;

Declare Y index for the thread in y-dimension;

Average= mean value of the five frames

BackgroundModel [Y*Rows+X] =Average;

/* code for background subtraction*/

BackgroundSub_Kernel

Declare X index for the thread in x-dimension;

Declare Y index for the thread in y-dimension;

BackgroundSub [Y*Rows+X] =the current five Frame – BackgroundModel

57

Figure 3-2: Parallelization of background model estimation

Figure 3-3: Parallelization of background subtraction using previously created

background model

Parallelization of Noise Filtering

Noise filtering is also mapped similar to the approach shown in Figure 3-2. It also

uses column-wise parallelism. There is no inter thread dependencies and the operations

on a pixel are independent of the operations on other pixels in that frame. Following is

the parallel pseudo code for dilation and erosion algorithms.

Function Dilation (GPU)

Declare X index for the thread in x-dimension;

Declare Y index for the thread in y-dimension;

{For (X, Y) in frame

 For i 0 to KerX {

 For j 0 to KerY

58

 {If (frame[x-i][y-j] =255 &&ker [i][i]=255)

 {Value=255; break ;}

Else {Value= 0 ;}}}

Output_Dilation [X*Cols+Y] Value}}

Function Erosion (GPU)

Declare X index for the thread in x-dimension;

Declare Y index for the thread in y-dimension;

{For (X, Y) in frame

 For i 0 to KerX {

 For j 0 to KerY

 {If (frame[X-i][Y-j] =0 &&ker [i][i]=0)

 {Value=0; break ;}

 Else {value=255 ;}}}

Output_Erosion [X*Cols+Y] Value;}

Parallelization of Connected Component Labeling

Connected component labelling involves scanning an image, pixel-by-pixel (from top

to bottom and left to right) in order to identify connected pixel regions by moving along a

row until it comes to a point p (pixel to be labelled). When this is foreground object then

it examines the neighbours of p which have already been encountered in the scan. After

completing the scan, the equivalent label pairs are sorted into equivalence classes and a

unique label is assigned to each class. As a final step, a second scan is made through the

image, during which each label is replaced by the label assigned to its equivalence

classes. In this work, 8-connected neighbours are used for labelling objects in the image.

In order to perform labelling operation in parallel, image is processed row-wise. Each

row is divided into four threads as shown in Figure 3-4. This process creates a data

http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm

59

dependency as the second thread cannot start processing until first one is done. A

synchronization scheme has been devised and uses a synchronization point in the form of

a flag.

In order to show the method clearly, suppose there are four threads (Th1 to Th4) and

the image in this case has 704 rows and 480 columns assuming an IR image of 704*480.

So we divide the number of row pixels between four threads. First 120 pixels in the first

row will be labelled by Th1 and the next 120 pixels by Th2. It can be seen that Th2 can’t

start labelling in the same row as Th1 until Th1 is completed its labelling. But, after Th1

completed labelling of the first 120 pixels in the first row it will start with the second

row. Simultaneously Th2 can start labelling the second half of the first row. Threads will

start executing in parallel.

 (a) (b) (c) (d)

a) Th1 labeling its portion b) Th1 and Th2 are labeling concurrently c) Th1, Th2 and

Thr3 are labeling concurrently d) The four threads labeling together.

Figure 3-4: Example of connected component labelling parallelization method

Following is the pseudo code of the connected component labeling.

Function Component Labeling (GPU)

Declare Offset = row/ number of threads;

For row in data {

K= calculate the start index for this thread;

While (condition of this thread is 0; then wait)

 For K in row to K+Offset

 {Label the pixel;

60

 If (all the neighbors = 0), then a new label is assigned

 Else if (only one neighbor =1), then assign its label to it;

 Else if (more than one neighbor =1), then assigns one of the label to the pixel and

make a note of the equivalence ;}

 Set the condition of the next thread to 1;}

3.2 Parallel Implementation for IR Video Processing on

MPSoC Platform

Networks-on-chip has been seen as an interconnect solution for complex system but

the performance and the energy dissipation still represent limiting factors for Multi-

Processors Systems-on-Chip (MPSoC). The future handheld devices must support

multimedia applications for long battery life but this type of application imposes heavy

constraints in terms of energy and forces the designers to optimize all parts of the

platform to achieve the desirable goals. So, extensive energy analysis for heterogeneous

NoC platform and a comprehensive method are essential to know bottlenecks of the

energy dissipation in the handheld devices while running a video application in real time.

Generally, research groups have focused on on-chip communication energy

consumption for interconnection architecture and homogenous NoC. The objective of this

work is to analyze and assess the energy dissipation for heterogeneous NoC-based

MPSoC platform running a video application. It identifies bottlenecks for the entire

platform. Also, we propose a new modeling and simulation approach regarding the

channel width and buffer sizing which have a strong impact on the performance and the

overhead of the chip. We showed that there are some hot spots in the system regarding

61

the channel width and buffer size must be optimized to get a better performance.

Simulation is performed by running a video processing algorithm. It includes the

reading of video data into memory and storing it. The video processing algorithm is then

partitioned, parallelized, mapped and scheduled on multi-core processors. This video

chain is mapped on a heterogeneous NoC platform based on mesh topology.

3.2.1 DEVS Formalism

The Discrete Event System Specification (DEVS) formalism provides a means of

specifying a system mathematically. DEVS has also been applied in many areas such as

in computer [56], manufacturing [57], transportation traffic [58], command and control

[59] and networking [60]. It provides a rich environment in which any phenomena could

be modeled by producing a mathematical model which in turn can be simulated under the

DEVS simulation environment [61]. Some input events can occur from users or from

other running tasks which affect the application behavior. An application running on one

intellectual property generates output for other interconnected intellectual properties. In

addition, the application transition from one state to another can be described by some

functions or algorithms. Hence, an application can be modeled as a discrete event system

with some specific parameters that needs to be computed by observing the application

under consideration. DEVS allows variation of different parameters and performance

evaluation that can be performed by exploring as many NoCs architectures as possible

until an optimal architecture can be found [61].

62

DEVS modelling and simulation define four variables: desired application, model,

simulator and the experimental environment as shown in Figure 3-5. A video processing

application is used to model and optimize the NoC architecture for best bandwidth, low

power dissipation and low latency. The model has mathematical relations and instructions

that produce traffic properties observed in the real application. The behavior of a model is

the set of all possible input/output combinations. The simulator executes the model in

order to emulate the real system for comparisons, evaluations and analysis. Finally, the

experimental environment defines the constraints and conditions under which the system

was observed to collect its output behavior. For example, the application might be

running on individual processing cores, two levels of caches L1 and L2, and a shared

memory between different cores.

Model

Desired

Application
Simulator

Experimental Frame

Observed Traffic Simulation

Relations
Modeling Relations

Figure 3-5: Basic relations in On-Chip Traffic modeling and simulations.

3.2.2 Architecture Description

The proposed heterogeneous NoC-based MPSoC platform is shown in Figure 3-6. It

uses a 3x3 mesh NoC. The platform employs a 2-D mesh topology which contains a

Master Processing Element (Master PE) which is placed in the center of the chip. It is

63

responsible for reading of the video and distributing partitioned tasks to other nodes.

Master PE partitions, parallelizes, maps and schedules on Multi-Core (slave cores). The

Master PE contains a large memory to store a series of video images. When the execution

starts, the Master PE allocates a subset of images to the Slave Processing Elements (Slave

PEs) for processing and remaining frames are stored in the memory. This memory keeps

all task codes necessary in any instance of the applications execution. During execution,

tasks are dynamically loaded from the memory of the Master PE to Slave PEs. When the

Slave PE finishes execution, it returns the result back to the Master PE and requests for

another job.

Slave PE 1 Slave PE 2 Slave PE 3

L1

L2

L3

L4

Slave PE 7 Slave PE 8 Slave PE 9

L21

L22

L23

L24

Slave PE 4 Master PE 5 Slave PE 6

L11

L12

L13

L14

L5 L6

L7 L8

L9 L10

L15 L16

L17 L18

L19 L20

Figure 3-6: Mesh platform architecture.

Each Processing Element (PE) in Figure 3-6 has a router that has five bidirectional

ports: north, west, east, south and local as shown in Figure 3-7. The local port is

connected to the PE and others are connected to neighboring routers. Each router has a

buffer to receive data from the PE. A single round-robin arbitration schedules grants

64

access to incoming packets, and a deterministic distributed XY routing algorithm

determines the path between source and target.

Processing

Core
Router

Switch
B

u
ffe

r

N
o

rth

 O
u

tp
u

t

N
o

rth

 In
p

u
t

Buffer

West

Output
West

Input

Buffer

East

Output

East

Input
B

u
ffe

r

S
o

u
th

 O
u

tp
u

t

S
o

u
th

In
p

u
t

Buffe
r

Loca
l

O
utp

ut
Local

Input

Figure 3-7: Structure of a core and the on-chip router.

3.2.3 Energy Modelling

Energy modelling for NoC architectures became one of the critical issues in NoC.

There are many energy models that have been proposed [29-30]. Ye et al. [29] proposed a

model for energy consumption of network routers. The bit energy () metric is defined

as the dynamic energy consumed when one bit of data is transported through the router:

 (3.2)

Where , and represent the dynamic energy consumed by the switch,

buffering and interconnection wires inside the switching fabric, respectively.

Since in Equation (3.2), is the dynamic energy consumed on wires inside the

switch fabric for NoC, the dynamic energy consumed on the links between tiles ()

65

should also be included. Thus, the average dynamic energy consumed in sending one bit

of data from a tile to its neighbouring tile can be calculated as:

 + (3.3)

Let to be the average energy consumption of transferring one bit of data through a

router, that is:

 (3.4)

Consequently, the average energy consumption of sending one bit of data from tile ti to

tile tj is:

 () (3.5)

Where is the number of routers a given bit needs to pass through; similar energy

models have also been used extensively in other works in high-level/system-level NoC

[30-31].

3.2.4 Analysis and Optimization Techniques

An IR video processing application is used for simulation purposes since it provides

excellent night visibility, situational awareness, less sensitive to the changes in

illumination, and makes the background model more stable. The energy consumption of

various components was modeled similar to the Ebit model [62] and Noxim simulator

[63] using DEVS. The configuration and modeling of energy dissipation for memory and

caches is based on Ayala [64]. Ayala provides in-depth analysis of the energy

consumption of memory hierarchy. It measures the energy dissipation from the write

access, read access, input address bus, output address bus, output data bus, pre-charge

and comparators.

66

There are twenty-four links (unidirectional) in mesh topology as shown in Figure 3-8.

The packets are routed based on XY routing algorithm. Packets are first routed in the X

direction, until reaching the Y coordinate. Then they are forwarded in the Y direction.

Eight links (L2, L3, L5, L9, L16, L20, L22 and L23) have not been used due to mesh

topology and properties of XY routing algorithm. Therefore, these links will be removed

to decrease the static energy dissipation, area cost and the total wire length. Relative

traffic load for IR video processing on all remaining links (16 Links) of the mesh is

shown in Figure 3-8.

Figure 3-8: Relative load on mesh links.

Link 15 has the smallest load in the system and is denoted by one unit. Other links

loads are measured relative to the load on Link 15. The highest relative load in the mesh

topology is on links L12 and L13 as they are directly connected to the Master PE. Master

PE distributes frames for nodes 1, 3, 4, 6, 7 and 9 via these two links. It can also be seen

that links 7 and 18 have relatively moderate load. This is due to that Mater PE receives

result on Link 7 from PEs 1 to 3. Similarly Link 18 has a moderate load due to return

results from PEs 7 to 9.

67

Energy dissipation on all remaining links (16 Links) and routers of the mesh is shown

in Figures 3-9 & 3-10 respectively. The highest energy dissipation in the mesh is on the

links L12 and L13; because they are directly connected to the Master PE (the utilization

of these links is very high). Similarly the router number 5 (Master PE) has the highest

energy dissipation due to its high utilization.

Figure 3-9: Energy dissipation on the mesh links.

Figure 3-10: Energy dissipation on the mesh routers.

It can be seen from Figure 3-8 that the physical network model needs different

bandwidths and different buffer sizes for links and routers. Since there is a lot of

congestion on the master core links and its router, therefore the bandwidth of the links

connected to the master core (L12 and L13) is increased by a factor of two by adding

more virtual channel. The buffer sizes of the router 4, 5 and 6 are increased by a factor of

two. A flowchart for these optimizations is shown in Figure 3-11.

68

Connect PEs with Mesh Topology

Running IR video processing application

Measure Utilization over Links

Perform optimization on Link

bandwidth and buffer size.

Reach

Performance

goal

Final Design

Yes

NO

Figure 3-11: Flow chart of NoC simulation and design.

3.3 Parallelization of Direct Data Domain (D
3
) for Space

Time Adaptive Processing (STAP)

3.3.1 Introduction

Space Time Adaptive Processing (STAP) is a signal processing technique used to

suppress the effects of co-channel interference, Inter-Symbol Interference (ISI), and

jammers in communications systems. STAP algorithms contribute in achieving greater

capacity and communication quality [65]. Many variations of STAP algorithms have

been proposed to effectively detect a moving target in the presence of cluttered

environment [66-70].

69

The fundamental principle in all STAP algorithms involves the use of multiple

receive antennas on the receiving platform. The incoming digitized received signals are

adaptively weighted using a variety of algorithms in order to steer the antenna gain

towards the desired signals while nulling the signals from unwanted noise and

interference. Figure 3-12 shows the baseline setup for most STAP implementations.

X X X X

Antenna

Receiver

Adaptive

Weight

d d

Figure 3-12: Baseline STAP receiver configuration.

Due to the fast-changing clutter scenario, the received data may not be stationary and

statistically-based methods such as covariance matrix suffer from performance

degradation and fail if the interference scenario ever becomes heterogeneous [71]. Direct

Data Domain (D
3
) method does not assume the stationary nature of the data and can also

deal with heterogeneous interference. It can effectively suppress the clutter [72-75].

3.3.2 STAP Algorithms

Two algorithms for STAP are examined and discussed in this section; interference

covariance matrix estimation (a statistical method) and Direct Data Domain (D
3
)

processing approach (a non-statistical method).

3.3.2.1 Interference Covariance Matrix Estimation

Interference covariance matrix estimation is a well-known classical approach to

70

STAP implementation. It utilizes tapped delay lines and adaptive weights as shown in

Figure 3-13.

X X

Antenna

Receiver

Adaptive

Weight

d

X

X

X

X

Adaptive

Weight

Adaptive

Weight

 Output

X X

d

X

X

X

X

Figure 3-13: N-element antenna array with M taps.

Each of the tapped delay signals is adaptively weighted that minimizes interference

and noise while preserving or enhancing the desired signal. The final output signal is the

sum of all the weighted taps. The classical interference covariance estimation approach

has been proven to have excellent interference cancellation performance in homogeneous

correlated interference scenarios. However, if the interference scenario ever becomes

heterogeneous, statistical methods will fail [71]. This lends non-statistical methods such

as D
3
 as the algorithm of choice with inferior homogeneous performance as a tradeoff.

71

3.3.2.2 Direct Data Domain (D
3
) Approach

The Direct Data Domain (D
3
) approach uses no tapped delay lines following the

weight on each receiver element; therefore, the voltages are then summed and the output

()Y t is given as shown in Figure 3-14.

Signal

2
sin(

)

d

sin(
)

d

X

X X X

() TY t W X

Antenna

Receiver

Adaptive

Weight

Plane W
ave Front

(

1)
sin

N

d

d d

Figure 3-14: N-element antenna array.

The signal arrives at each antenna at different times depending upon the direction of

arrival of the target and the geometry of the array. Let ()S t denote the desired signal.

The received signal voltage on each antenna element is the sum of the desired signal plus

noise and interference [75-76]. Hence:

() () () 1, 2,........X t S t N t k N
k k k

 (3.6)

72

Where ()X t
k

 is the received voltage on an antenna and ()kS t & ()kN t are the desired

signal and noise contributions on the antenna respectively. If is the direction of the

desired signal, then the received signal on each antenna element can be modeled [75-76]

by:

(2 /)sin() () k

j kdS t S t e (3.7)

Where d is the distance between antenna elements and is the wavelength of the desired

signal [75-76]. The received signal after weighting then becomes:

1

() ()
M

k k

k

Y t W X t

 (3.8)

Or in a matrix form:

() TY t W X (3.9)

Where (T) denotes transpose and

 1 2 3 T

MW W W W W (3.10)

 1 2 3 T

MX X X X X (3.11)

Where M is the number of degrees of freedom set by (1) / 2M N .

If the actual received voltages are written as a vector X and the modeled received

desired signals are written as a vector S, then the difference contains just the noise and

interference which is desired to be eliminated [75-76]. This can also be written as:

X S (3.12)

1 2 1 2

2 3 1 2 3 1

1 1

M M

M M

M M N M M N

X X X S S S

X X X S S S

X X X S S S

73

Where is the complex amplitude of the desired signal.

So, the goal of D
3
 is to find an adaptive weighting vector that minimizes this

interference output and gets the target desired signal without distortion. Calculating the

weight vector requires a method to solve the generalized eigenvalue problem as shown in

Equation (3.13).

 0X S W (3.13)

The most time-consuming part of the D
3
 algorithm is the computation of the

generalized eigenvalue problem. Its computation consists of a sequence of complex

operations such as matrix multiplication, matrix inversion, division, additions and

subtractions. Also, the development of solving matrix inversion and finding the

parameters of linear algebraic equations require a large number of complex computations.

Therefore, in this work, a combination of inexact inverse iteration and Conjugate

Gradient (CG) methods is proposed for solving the generalized eigenvalue problem

required in D
3
 algorithm. Transformed algorithms are parallelized and have been

implemented on both FPGA and GPU.

3.3.3 Inexact Inverse Iteration for Generalized Eigen Value Problem

There are many algorithms that are available to solve the generalized eigenvalue

problem such as subspace iterations, the Lanczos algorithm, Arnoldi algorithm, and

rational Krylov subspace method [77-78]. Many of these algorithms require inverting and

factorizing a shift matrix and are limited to problems of moderate size. Inexact inverse

iteration has been proven to converge linearly if the inner thresholds satisfy certain

74

conditions [79-81]. This method converges linearly at essentially at the same rate as the

exact case [82]. The standard inverse iteration algorithm to solve the generalized

eigenvalue problems can be described by the following pseudo code:

Standard Inverse Iteration Algorithm

Given 0x ;

For k 0 to till convergence
1

1

1 1 1

;k k

k k k

y X Sw

w y y

End

This method uses 1X which may not be available because of its singularity property.

Moreover, it can be computationally intensive. So, an iterative method can be used to

solve 1k kXy Sw , this is called inner iterations [83]. The inverse iteration method used in

this work is called the outer iteration. So, for each step of outer iteration, we seek an

approximate solution 1ky that satisfies 1k k kXy Sw q , where kq is called residual that

satisfies certain termination criterion in the inner iteration (1k k kq y) where k

k r .

If we use ky as an initial approximation to 1ky , we aim at solving:

k k k kX Sw Xy q where 1k k ky y (3.14)

So, we consider the following version of inexact inverse iterations [83] to solve the

generalized eigenvalue problem:

Inexact Inverse Iteration Algorithm

Given 0w ; set 0y =0.

For k 0 to till convergence

k k kr Sw Xy ;

k k kX r q (Solved using both CG and LU decomposition)

75

 Stopping criterion with kq satisfying 1k k kq y

1k k ky y

1 1max()k ky

1 1 1k k kw y

End

In order to find the weights, we need to find an inverse of matrix (k k kX r q)

which requires a complex computation. Therefore, two methods are implemented and

parallelized for solving the matrix inversion problem; Conjugate Gradient (CG) method

[84] and LU-Decomposition method [85].

3.3.4 Analysis and Optimization Techniques

Parallel processing in both FPGA and GPU has been used to achieve the real-time

constraints. The following sections describe some of the optimizations that have been

incorporated.

3.3.4.1 Parallel implementation on FPGA

FPGAs are appropriate to provide increased computation time as they provide

flexibility in allocating needed resources. Figure 3-15 shows the computational steps to

implement the D
3
 algorithm using Inexact Inverse Iteration Algorithm (IIIA) and

Conjugate Gradient (CG). It also shows data dependency between various operations and

their computational sequence. It is proposed that the input should be stored in a DDR3

SDRAM. Generally, SDRAM is used for performance critical applications where its

architecture supports high bandwidths, low power dissipation, high densities, and fast

access times [86-88]. So, it has the ability to transfer the data at high rate while allowing

greater capacities [87].

76

Xilinx has released a memory interface for DDR3 which handles everything for

communication between the system and memory [87]. DDR3 provides two burst modes

for both reading and writing and a prefetch buffer [86]. DDR3 memory has increased the

bandwidth and the Column Access Strobe (CAS) time is very close to 0 ns [87].

In order to set up the interface between the FPGA and DDR3 SDRAM external

memory, Memory Interface Generator (MIG) must be used to generate the RTL code of

the memory interface as shown in Figure 3-16. MIG is a tool under the core generator of

Xilinx software which supports memory interface for FPGA. Memory interface from

MIG is composed of many modules which make both communication and testing of the

memory more easily.

77

BRAMs

Initializations: w0, y0=0,k=0;

Data

First Stage

Second

Stage

DDR3 SDRAM

Read

Data

Xδk = rk + qk

(Solved using CG)

yk+1 = yk + δk

FPGA

Data

rk = Swk - Xyk

X and S vectors

σk+1 = max (yk+1)

wk+1 = yk+1/σk+1

 Y =
1

M

n

 Xn(t) * wn

Reach

Convergence

Nok=k+1

Yes

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 3-15: D
3
 computational steps

78

Project Navigator

Complete Design

MIG Outputs

Memory Controller

MIG

Core Generator

Download Design to FPGA

Figure 3-16: Memory interface RTL code generation using MIG tool.

The received and desired signals have a vector structure with dimension N based on

Equations (3.6) and (3.7). However, step one of D
3
 algorithm in Figure 3-15 needs to

construct and build the matrices X and S based on Equation (3.12). These matrices will

be used in many steps throughout the algorithm. The building of these matrices requires

additional resources for storage and computation due to following reasons:

 Building of X and S matrices each with a size (M*M) requiring two for-loops

with a time complexity of O (M
2
).

 2M
2
 registers are required for matrices storage.

However, the rows of matrices X and S are the same with only shifting by one

element. These matrices are only used through the algorithm by multiplying them with a

vector. So, this structure can be exploited to implement a new code for matrix-vector

multiplication. This new code contributes to the following advantages:

 Eliminating construction of matrices X and S.

 Storage areas for these matrices are eliminated.

79

 Accessing the data in the memory is more efficient as we deal with vector

instead of a matrix where all the data are contiguous. This contributes in

reducing the miss rate and it will be very helpful for prefetching technique to

hide memory latency by overlapping the execution with memory access.

Following code is used to implement the matrix-vector multiplication in steps one and

six of the algorithm in Figure 3-15.

Serial Matrix-Vector Multiplication

Declare X[N], Res[M], sum=0, index=0;

Loop1: While (index<M){

Loop2: For i 0 to M

 {sum=sum+X[index+i]* vector[i];}

Res[index]=sum; sum=0; index++}

Moreover, our new code can be performed in parallel since there is no dependency.

Loop unrolling and loop pipelining are two effective types of parallelization methods in

FPGA. In order to choose the best parallelization method, both of them have been

experimented via simulation. The performance parameters in terms of latency, memory

usage, and power dissipation are obtained as shown in Table 3.1. One interesting

observation is that applying loop unrolling to the outer loop doesn’t achieve performance

enhancement as with the inner loop. This is because the inner loop performs the

operation on every element in the array, whereas the outer loop only uses the first

element of each row.

80

Loop unrolling was the fastest compared with other options when both inner and outer

loops are fully unrolled. However, it causes excessive memory usage, area, and high

power dissipation. On the other hand, the performance of the pipelining method for the

outer loop was found to be approximately the same as the unrolling method for both

loops in terms of latency. Also, pipelining technique worked better than loop unrolling

when unrolled one of the loops. So, the Loop pipelining technique of the outer loop is

chosen as a tradeoff since it performs in parallel with the reuse of the same hardware

resources across different stages to achieve high speed with awareness of power, area,

and cost.

Table 3.1: Latency and resource utilization of matrix-vector multiplication for N=100 and

m=10 on Artix7 (XA7A100T CSG324) -1q

 No

Optimization

Pipelining

Outer

Loop

Pipelining

Inner

Loop

Pipelining

both

Loops

Unrolling

Outer

Loop

Unrolling

Inner

Loop

Unrolling

both

Loops

Latency

(cycles)

9201 513 1012 2001 9100 1701 511

Clock

period (ns)

6.68 8 7.18 8 6.68 8 8

FF 255 1424 302 264 16370 1421 128018

LUT 215 1202 306 225 22878 1208 111037

DSP48E 4 40 5 4 400 40 4000

Power 46 264 59 46 3964 266 24304

Step two requires the solving of matrix inversion problem. Conjugate Gradient (CG)

and LU-Decomposition are two methods which can be used for solving this constraint.

Following sections will explain each method and how they are parallelized.

LU decomposition

LU decomposition method is a kind of exact solutions of system of linear algebraic

equations and to find the inverse of a matrix which was introduced by mathematician

81

Alan Turing [89]. This method attempts to decompose the coefficient matrix into two

lower and upper triangular matrices. Suppose that A can be factored into the product of a

lower triangular Matrix L and an upper triangular matrix U such that A LU , when this

is possible, we say that A has an LU-decomposition (we assume that A is a nonsingular

matrix). Then, to solve the system of Ax b , it is enough to solve this problem in two

stages using Equations (3.15) and (3.16) [85]:

Lz b (Solve for z) (3.15)

Ux z (Solve for x) (3.16)

To derive an algorithm for the LU-decomposition of A , we start with the formula for

matrix multiplication using Equation (3.17) [85]:

min(,)

1 1

i jn

ij is sj is sj

s s

a l u l u

 (3.17)

where 0isl for s i , and 0sju for s j is used.

Each step in this process determines one new row of U and one new column in L. At

step k, it can be assumed that the rows 1,2,......, 1k have been computed in U and that

columns 1,2,......, 1k have been computed in L. Putting i j k in Equation (3.17), we

obtain [78]:

1

1

k

kk ks sk kk kk

s

a l u l u

 (3.18)

If kku or kkl has been specified, then Equation (3.18) can be used to determine the other

coefficients. Equation (3.17) can be used to compute for the
thk row (i k) and the

thk

column (j k), respectively [78].

http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/LU_decomposition#cite_note-1

82

1

1

k

kj ks sj kk kj

s

a l u l u

 (1k j n) (3.19)

1

1

k

ik is sk ik kk

s

a l u l u

 (1k j n) (3.20)

Equation (3.19) can be used to obtain the elements
kju if 0kkl . Similarly, Equation

(3.20) can be used to obtain the elements ikl if 0kku [85].

The pseudo code of the LU-factorization algorithm is presented as:

LU Decomposition for solving

Given [][]X M M ; []kr M ; []kq M

Define N ;

Define (1) / 2M N ;

Define [] {0};k M

Define ;k kb r q

Define [][] {0}, [][] {0}, , [] {0};l M M u M M sum z M

For k 1 to M

 { [][] 1;u k k

Loop1: For i k to M

 { 0;sum

For p 1 to k -1

[][]* [][];sum l i p u p k

[][] [][] ;l i k X i k sum

 }

Loop2: For j k +1 to M

 { 0;sum

For p 1 to k -1

[][]* [][];sum l k p u p j

[][] ([][]) / [][];u k j X k j sum l k k

 } }

//*FINDING Z; LZ=b by forward substitution */

For i 1 to M ;

 { 0;sum

83

For p 1 to i

[][]* [];sum l i p z p

[] ([]) / [][];z i b i sum l i i

 }

//**********FINDING X; UX=Z***********//

For i M to 0 ; 0; ;i i

 { 0;sum

For p M to i ; ; ;p i p

[][]* []sum u i p p ;

[] ([]) / [][];i z i sum u i i }

LU-Decomposition must be implemented and parallelized in an efficient way to get

benefits from the resources of parallel processing platforms. LU decomposition has two

loops (Loop1 and Loop2) that depend on each other. So, they can’t be executed

simultaneously due to the dependency between them. Loop2 needs the value of l to

complete the computation and Loop1 needs the value of u from Loop2. However, Loop 2

can begin execution after completion of the first iteration of the Loop1. Loop1 has an

additional iteration than Loop2. So, the dataflow pipelining optimization techniques

between these loops are very effective since it takes a sequential loop and creates parallel

processing architecture. Without dataflow pipelining, Loop1 must execute and complete

all its iterations before Loop2 can begin execution. Loop2 will then execute and will

provide the value of u to Loop1. It will reduce the overall throughput and increase the

latency. However, with dataflow pipelining, these loops can be allowed to operate in

parallel in such a way that when Loop1 finishes the first iteration then it forwards the

value l to Loop2. Loop2 will supply the value of u to Loop1 after completing its all

iterations.

84

Dataflow mechanism inserts channels between the loops to insure that the data can

flow asynchronously from the first Loop to the next one as shown in Figure 3-17. This

improves both the throughput and the latency.

Void function() {

……………...

Loop1: for(i=0;i<N;i++) {

………………

}

Loop2: for(i=0;i<M;i++) {

………………

}

}

Loop_1

Loop_2

LOOP1 LOOP2 LOOP1

LOOP2

 (a) Without Dataflow (b) With Dataflow

Figure 3-17: Loop dataflow pipelining technique.

Conjugate Gradient

The computation of step two requires following computation and storages:

 Computation of matrix inversion Z () .

 Matrix-vector multiplication where y = rk + qk

 Storage for Z and F.

However, the computation of vector (δ) in step two in Figure 3-15 can be performed in

an efficient way using the CG method. CG is a good option for this type of computation

due to the following reasons:

 It can deal with different dimensions where many other inversion algorithms

require a square matrix.

85

 Eliminates performing the computation of matrix inversion and the matrix-

vector multiplication separately.

 It eliminates matrix inversion storage requirements (Z).

The pseudo code of the CG method is presented as:

Serial Conjugate Gradient Method (CG)

Declare X[M];

For c 1 to M {

For d 0 to N

{ sum=sum+X[c][d]* δ[d];}

r[c]=y[c]-sum; sum=0; }

For d 0 to M {

 {p[d]=r[d]; rsold=rsold+r[d]*r[d];}

For index 1 to converge {

For c 1 to M {

 For d 0 to N { Region 1

 Sum+=X[c][d]*p[d];}

Ap[c]=sum; sum=0;}

 For d 0 to M {

tem=tem+p[d]*Ap[d];} Region 2

alpha=rsold/tem;

 For d 0 to M {

δ[d]= δ0[d]+alpha*p[d]; Region 3

r[d]=r[d]-alpha*Ap[d];}

 For d 0 to M {

rsnew=rsnew+r[d]*r[d];} Region 4

 For d 0 to M {

p[d]=r[d]+(rsnew/rsold)*p[d];} Region 5

rsold=rsnew;}

While (i<M){

For d 0 to N

{sum+=X[i+d]* δ[d];

 r[c]=y[c]-

sum;sum=0;i++

While (i<M){

For d 0 to N

{sum+=X[i+d]*p[d];

Ap[i]=sum;sum=0;i++

86

Since we treat X as its original structure (vector), two steps of CG method need to be

modified to match our new code as shown in its pseudo code. Full parallelization of CG

can’t be achieved due to data dependencies as the next computational step depends on the

result of the current step. However, the CG is divided into five computational regions

where each region can be performed in parallel by applying pipelining technique.

Moreover, it is not necessary for region 2 to wait until region 1 completes all its

iterations. So, region 2 can start execution after the first iteration of region 1 is

completed. This can be exploited by applying the dataflow technique between these

regions where the data can flow asynchronously from the first region to the next one. So,

regions 1 and 2 execute in a pipelined fashion until all iterations are completed. Region 1

forwards the value of the current iteration to region 2 and begins with the next iteration at

the same time region 2 can start execution. Similar approach is applied to regions 3 and 4.

Third and fifth steps of the algorithm in Figure 3-15 require vector-vector addition and

division respectively. These steps can be fully parallelized by applying loop unrolling

technique where each step is performed by one clock cycle instead of M clock cycles.

Step four requires finding the maximum element in a vector which is parallelized by

applying pipelining technique where the latency is improved as shown in Table 3.2.

87

Table 3.2: Latency and resource utilization of finding the maximum element with vector

size 100 (N=100) on Artix7 (XA7A100T CSG324) -1q

 No Optimization Pipelining Optimization

Latency (cycles) 200 102

Clock period (ns) 6.24 6.24

FF 46 49

LUT 124 131

Power 15 16

3.3.4.2 Parallel implementation on GPU.

D
3
 algorithm is also implemented and parallelized on GPU architecture to get benefits

from the use of parallel processing to achieve real time requirements. Also, the result of

HLS tool on FPGA implementation can be compared against the outcomes of GPU

architecture to draw fair comparisons.

Step one of the algorithm in Figure 3-15 requires 2M vector-vector multiplications and

M vector-vector subtractions. However, these operations can be fully parallelized by 2M

threads where each thread multiplies one vector-vector multiplication as shown in the

following code:

Parallel Matrix-Vector Multiplication

int index Thread index;

Fori 0 to M

{ Res[index] + =X[index+i]* vector[i];}

Also, vector-vector subtraction is accomplished by M threads where each thread

subtracts one subtraction operation. Following paragraphs describe the parallelization

method for each region in the CG method as shown in Figure 3-18.

88

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Conjugate Gradient Regions

Region 1

Region 2

Region 3

Region 4

Region 5

Figure 3-18: D

3
 computational steps with Conjugate Gradient (CG) computation regions.

Region 1 of CG is parallelized using the same technique as in step one where each

thread works on one vector-vector multiplication. Regions 3 and 5 in CG are fully

parallelized by M threads where each loop is executed by one clock cycle instead of M

clock cycles as shown in the following pseudo code:

Parallel Method for Region 3

int index Thread index;

δ[index] = δ0[index]+alpha* p[index];

r[index] =r[index]-alpha*Ap[index];

Regions 2 and 4 of CG require vector-vector multiplication. So, a synchronization

scheme is required since the global accumulation variable is shared between all the

threads of the multiplied vector elements that must be protected to get correct results. Full

parallelization of these regions by M threads adds an overhead more than the desired

computation itself because of synchronization scheme. Therefore, we run these regions

under the GPU platform with different number of threads with a tradeoff with

synchronization scheme to choose the optimal number of threads where each thread

multiplies ten elements and save a result into its private variable. A pseudo code of

parallel vector-vector multiplication for regions 2 and 4 is as follows:

89

Parallel Vector-Vector Multiplication

int index Thread index;

Tile_Size=10;.

x=index*Tile_Size.

y=(index+1)*Tile_Size.

For i x to y {

Local_sum+=Vec[i]*Vec[i];}

__syncthreads();

Global_sum+=Local_sum;

Unlock_suncronization();

Third and fifth steps of the algorithm in Figure 3-15 require vector-vector addition and

division respectively. These steps can be fully parallelized where each step is performed

by M threads that are executed in one clock cycle instead of M clock cycles.

Step four in Figure 3-15 requires finding the maximum element in a vector. In order to

parallelize this operation efficiently, we have divided the vector by multiple threads

where each thread finds its local maximum element on its own vector part. Then the

global maximum element is found by comparing these local maximum elements.

However, this technique requires a lock and barrier synchronizations to ensure correct

results since there is a data shared by all the threads. Following code is used to find the

maximum element in a vector.

Parallel of Finding the Maximum element in a Vector

Declare Y[N], Max;

Void max (int P){

intlocal_max=Y[P*N/M];

 For i P*(N/M) to (P+1)*(N/M)

 If(Y[i]>local_max) {local_max=Y[i];}

Lock_Synchronization ();

If(local_max>Max) {Max=local_max;}

Unlock_Synchronization (); Barrier_Synchronization ();

90

3.4 Parallelization of Extensive Cancellation Algorithm

(ECA) for Passive Bistatic Radar (PBR)

3.4.1 Introduction

Bistatic radars have the transmitter and the receiver antennas at separate locations

[90-91]. On the other hand, conventional monostatic radars have the transmitter and the

receiver at the same location. Passive radars have only a receiver and they simply listen

to transmitted data from other radars or electromagnetic emitters. Passive radars are able

to utilize signals of opportunity available in the environment. These signals may be

broadcast FM radio, TV signals, mobile phones, and others. They can be very useful in

detecting targets without emitting any Radio Frequency (RF) of their own. The scattered

RF signal can be received by one antenna called surveillance antenna and compared with

the received signal from another antenna which is called a reference antenna.

Recently, Passive Bistatic Radars (PBR) have received great interest among radar

researchers. PBRs have low cost, reduces electromagnetic pollution and the interference

with other necessary sources. They also do not need dedicated transmitter and frequency

allocation. One drawback of PBR is that transmitted signals are not under the control of

the radar designer. The PBR then deals with unknown transmitted RF signals and has a

variable structure of the ambiguity function. So, Passive radars do not have luxury of

having appropriate ambiguity function and narrow peaks in both range and Doppler [92].

Therefore, PBR requires the use of two correlated passive antennas to collect RF signals

in order to detect the desired target. The surveillance antenna steers towards the area that

91

needs to be surveyed and the reference antenna steers towards the transmitter antenna

[92]. In order to get a good signal to noise ratio, PBR requires a long integration time for

surveillance since the received RF signals are continuous waveforms [93].

PBR is based on the promise of use of unknown RF transmitted signal [94-95]. It

contributes to the following:

 Strong clutter can mask some targets.

 A small fraction of the direct signal can mask target echoes.

 Strong target echo can mask other echoes from other targets.

A number of researchers [96-102] have used different techniques to overcome the

above concerns. Colone et al. has proposed Extensive Cancellation Algorithm (ECA)

[92] which is a very effective way to mitigate the direct signal, multipath and clutter

echoes in PBR. Also, it is able to detect desired target accurately for the strong - clutter

environment and long-range detection. However, ECA is a computationally intensive

algorithm and may not be able to provide target information in real-time. ECA will

benefit from the parallel processing to achieve real-time requirements. Parallel processing

systems may utilize multi-core, Network on Chip (NOC), Field Programmable Gate

Arrays (FPGAs), and Graphic Processing Units (GPUs). Parallel hardware should be

efficient in terms of latency, area, power consumption, cost, and flexibility.

92

3.4.2 Signal Model and Reference Scenario

An example of a PBR geometry for detecting and locating the desired target is shown

in Figure 3-19. ECA needs two separate antennas; the reference antenna steered toward

the transmitter and the surveillance antenna looking in the direction of the surveyed area.

Target

Transmitter

Antenna

Surveillance

Antenna

Reference

Antenna

Direct Signal

Multipath

Clutter

Multipath

Clutter

Figure 3-19: PCL geometry.

The total received signal in the surveillance antenna [92] is given by

2

1

0

1

() () ()

() (), 0 t<T

T

dm

c

N
j f t

surv surv m m

m

N

i ci surv

i

s t A d t a d t e

c d t n t

 (3.21)

where T0 is the observation time; d(t) is the complex envelope of the direct signal; Asurv

is the amplitude of the direct signal; am, τm, and fdm are the amplitude, delay, and the

Doppler frequency respectively of the m
th

 target;
ic and

ci are the amplitude and the

delay of the i
th

 stationary ground scatter; ()survn t is the thermal noise contribution.

The total received signal in the reference antenna [92] is given by

() () ()ref ref refs t A d t n t (3.22)

where Aref is the complex amplitude and ()refn t is the thermal noise contribution.

93

Collected samples []survs i at the surveillance antenna are in the following vector form

[92]:

[] [[0], [1], [2],....., [1]]T

surv surv surv surv survs i s s s s N (3.23)

With 0,......, 1i N , /i st i f

Where N is the number of samples to be integrated,
sf is the sampling frequency which

satisfies the Nyquist theorem.

Similarly, the collected samples at the reference antenna are in the following vector form

[92]:

[[1],......, [0],......, [1]]T

ref ref ref refs s R s s N (3.24)

Where 1R is the number of additional samples included in integration time in order to

achieve an acceptable signal to noise ratio.

3.4.3 Extensive Cancelation Algorithm (ECA)

ECA for PBR is developed based on the Least Square (LS) technique [102-103]. It

exploits the signal model and finds the minimum residual signal power after cancellation

of the direct signal and clutter [92], thus:

 2min survs X (3.25)

1 1[.....]p ref ref ref ref p refX B S S S S S (3.26)

where B is an incidence matrix that selects only the last N rows of the following matrix

[92]:

1,......., 1,......, 1,

1 1

0 otherwise

ij i N j N R

ij

B b

i j R
b

 (3.27)

94

 p is a diagonal matrix that applies the phase shift corresponding to the pth Doppler

bin [92]:

2

2 /(1)

1 0 0

0 0

0 0

j p

p

j p N R

e

e

 (3.28)

2 1[]K

ref ref ref ref refS s Ds D s D s (3.29)

Where D is defined as

, 1,......., 1,

1 1

0 otherwise

ij i j N R

ij

D d

i j
d

 (3.30)

Solving Equation (3.25) yields

1()H H

survX X X s (3.31)

Therefore, the surveillance signal after cancellation becomes [92]:

1[()]H H

ECA surv N survs s X I X X X X s (3.32)

The two-dimensional Cross Correlation Function (2D-CCF) at the output of the

cancellation filter becomes [92]:

1

* 2 /

0

, []. [].
N

j pi N

ECA ref

i

l p s i s i l e

 (3.33)

Where l = 0… 1R is the time bin representing the time delay respect to the direct signal.

p is the Doppler bin representing the Doppler frequency of the backscattered echo from a

target.

Equation (3.32) shows many complex operations such as complex matrix multiplication,

Hermitian, inversion etc. The algorithm has a complexity of
2 2[log]O NM M M where

95

M = (Number of Range bins Number of Doppler bins) and N is the number of Data

Samples [92].

The ECA can be divided mainly into two phases:

1. Building of clutter subspace matrix X, which consists mainly of three steps:

 Building the reference signal vector based on Equations (3.22), and (3.24).

 Building the reference matrix based on Equations (3.24), (3.29), and (3.30). It has

extensive computation steps and requires computation of D
K
.

 Building the clutter subspace matrix X based on Equations (3.26), (3.27), and

(3.28). It requires () times matrix multiplication.

2. Calculation of the multiple matrix product 1()H H

survX X X X s which consists

mainly of four steps:

 Building the Hermitian transpose HX of the complex matrix X.

 The calculation of complex matrix multiplication ()HX X .

 The calculation of complex matrix inversion
1()HX X
.

 Finally, the calculation of complex matrix multiplication 1()H H

survX X X X s .

3.4.4 Analysis and Optimization Techniques

The ECA in Passive Bistatic Radar (PBR) application has proven to be a very

effective way to mitigate the direct signal, multipath and noise. Also, it provides accuracy

for desired target detection. However, it is difficult to achieve the real- time requirements

due to its extensive computation requirement. It is sometimes desirable to increase the

number of range bins in order to increase the surveillance area which also increases

96

computation time. So, our goal is to exploit any possible opportunity to minimize

computation time and storage resources. The ECA has been modified by exploring

opportunities of any computation and storage that could be eliminated. Parallel

processing in both FPGA and GPU has also been used to achieve the real-time

constraints. The following paragraphs describe some of the optimizations that have been

incorporated.

3.4.4.1 Parallel implementation on FPGA.

FPGAs support high flexibility by providing different hardware resources to reduce

the computation time. However, the ECA algorithm involves computation and storage of

large matrices. It is not possible to accommodate all required storage and computation

hardware resources on FPGA. Therefore, use of external memories can provide

additional resources and alleviate the burden of storage requirements. Figure 3-20 shows

the computational steps for implementation of ECA algorithm and its needed memory. It

also shows data dependency between various operations and their computational

sequence. It is proposed that the input should be stored in a DDR3 SDRAM.

97

DDR3 SDRAM

BRAMs

Building Clutter Subspace Matrix

(X)

Data

First Stage

Second Stage

Read

Data

Building Complex Matrix

Multiplication (X
H
X)

Computation of Vector (α) using CG

FPGAData

Computation of ECA Signal after

Cancellation

Building Reference Matrix Signal

(Sref)

()H H

survX X X s

ECA survs s X

Figure 3-20: ECA computational architecture

Firstly, the reference signal from the antenna is digitized and stored in FPGA memory

instead of the external memory since it will be used many times to build the reference

matrix in Equation (3.29). This step removes the communication overhead due to

accessing of external memory and data transfer.

98

Matrices D, B and p have large dimensions of (N+R-1)*(N+R-1). They are

involved in many matrix multiplications and constructions which consume large

computation time and require high storage resources. However, these matrices can be

called sparse matrices since they consist of few 1
’s
 and mostly zeroes that are used for

shifting and construction purposes. Therefore, we have developed an efficient algorithm

by eliminating all these sparse matrices. The new algorithm reduces the computation time

and saves hardware resources.

The building of the reference matrix in Equation (3.29) requires extensive resources

for storage and computation due to the following reasons:

 Building of (N+R-1)*(N+R-1) D matrix requires two for-loops with time

complexity of O (N
2
).

 Storage of D matrix and saving results of the D
K
 matrices.

 Computation of D
K
 power matrices requires time complexity of O

(N
2
+N

3
+2N

3
+3N

3
+…..+ KN

3
).

 Multiplication of matrix D with the reference vector
refS performing K-times

matrix-vector multiplications.

However, the objective of matrix D is to shift the reference vector as shown in the

Figure 3-21. Its sparse structure can be exploited to implement the reference matrix in

Equation (3.29). This novel approach contributes in eliminating the construction of

matrix D, computation of its power matrices and matrix-vector multiplication. Storage

99

areas for storing powers of matrix are also eliminated. Following code is used to

implement the reference matrix.

Reference Matrix Implementation

Declare index=1, j=0, Result [N+R-1] [K]={0};

For i 1 to K {

While (index < (N+R-1)) {

 Result [index][i] = Ref_vector[j];

index = index+1; j=j+1;}

index=i+1;j=0;}

1

2

11 1

3

1

1

1

0

0
n

n nn

N

N KN

sref

sref
d d

sref

sref
d d

sref

srefsref

D
K

Figure 3-21: Reference matrix implementation using the D matrix.

Our code for reference matrix implementation can be performed in parallel since there

is no dependency. Such operations are accomplished by reordering and shifting of the

reference vector. Loop unrolling and loop pipelining are two options that have been

experimented via simulation of only this potentially parallelizable section. Performance

parameters in terms of latency, memory usage and power dissipation are obtained as

shown in Table 3.3. The loop pipelining technique is chosen as a tradeoff since it

performs in parallel with the reuse of the same hardware resources across different stages.

It can be seen from Table 3.3 the tradeoff between use of resources, power consumption

and latency for different processing strategies. Our implementation goal is to achieve

100

high speed with awareness of power, area and cost. Therefore, loop pipelining is selected

to minimize high resource requirement, power and area.

Table 3.3: Latency and resource utilization of reference matrix implementation

 No Optimization Loop Pipelining Fully Parallel

Latency 16551 7940 3325

FF 57 49 206

LUT 56 120 9249

Power 9 15 944

Moreover, the reference matrix is stored in FPGA memory instead of external memory

since it will be used many times to build the clutter subspace X in Equation (3.26). This

will remove the communication overhead due to external memory data transfer.

Clutter subspace X needs the diagonal matrix p based on Equations (3.28) and

(3.26). Matrix p has dimensions of (N+R-1)*(N+R-1) and is required (2P + 1) times.

It needs to build matrices from – P to -1 and from 1 to P. Building of each matrix in

Equation (3.28) requires two for-loops with time complexity of O(N+R-1)
2
. So, the total

time complexity is O((2P+1)* (N+R-1)
2
) and the total number of elements for storage

will be ((2P+1)* (N+R-1)
2
).

However, the matrix p is a diagonal matrix where all non-diagonal elements are

zeroes. Hence, it simply requires the building of diagonal elements for each of its matrix.

The diagonal elements have an exponential term which can be further exploited by

simply changing sign values of its mirror values and eliminating computation of their

101

magnitudes. This property reduces the computation time into half by changing the sign

of the imaginary part of the second part without re-computing it. For example, the result

of 1 and 1 is the same with the difference of only in the sign in its imaginary part.

However, the matrix p is used only for building the clutter subspace matrix X. So

 p can be directly incorporated into the clutter subspace matrix X without building all

these (2P+1) matrices as shown in Figure 3-22. Following code is used to build the

second term of Equation (3.26).

Declare S_Ref [N+R-1][K], Input [N+R-1][M]={0};

For i 0 to P {

int Dopp;

For j 0 to N+R-1 {

For k 0 to N+R-1 {

If (j==k) {

 Input[j][k+i*((N+R-1)+K)] = exp(2πj*Dopp/(k+1);}}}

Dopp++

For j 0 to N+R-1 {

For k 0 to K {

 Input[j][k+i*((N+R-1)+K)+(N+R-1)]=S_Ref[j][k];}}}

11 1 11 1 11 1 11 1 11 1 11 1

1 1 1 1 1 1

n k n k n k

n nn n nk n nn n nk n nn n nk

Sref Sref Sref Sref Sref Sref

Sref Sref Sref Sref Sref Sref

p 1p p

11 1 11 1

1 1

 builded builded builded

 its its its

Eqn. (8) Eqn. (8) Eqn

k k

n nk n nk

Directly Sref Sref Directly Sref Sref Directly

through through through

Sref Sref Sref Sref

11 1

1. (8)

k

n nk

Sref Sref

Sref Sref

p 1p p

Figure 3-22: Second part of clutter subspace matrix (X) implementation.

102

Our code for the second part of Equation (3.26) of clutter subspace X can be

performed in parallel since there is no dependency. However, fully parallelization for

this task causes excessive memory usage and high power dissipation as was seen in the

case of the reference matrix implementation. Therefore, loop pipelining technique is also

adopted.

 Similarly, matrix B has a size of N *(N+R-1). The matrix B consists of few 1’s and

mostly zeroes. It pre-multiplies matrix X based on Equation (3.26). Building of matrix B

and its matrix multiplication can be eliminated by simply using a shifting operation. The

operation allows each column in the second term to be shifted up by (R-1) as shown in

Figure 3-23.

R-1
11 12 13 14 1

21 22 23 24 2 31 32 33 34 3

11 1

31 32 33 34 3

11 12 13 14 11

1

11 12 13 14 1

1 2 3 4

n

n n

n

n

n n n n n

m mn

n n n n n n

n n n n nn

a a a a a

a a a a a a a a a a
B B

a a a a a

a a a a a
B

a a a a a a

a a a a a

1 2 3 4n n n n nna a a a

Figure 3-23: Clutter subspace matrix (X) implementation using shifting operation.

However, building of matrix B and its matrix multiplication is eliminated by accessing

the desired part of the matrix without performing any multiplication or shifting

operations. This can be performed by accessing the array from the row at (R-1) until the

last row of the matrix and ignoring the first R-1 rows as shown in Figure 3-24.

103

R-1

11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

11 12 13 14 1

1 2 3 4

n

n

n

n n n n n n

n n n n nn

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

Figure 3-24: Clutter subspace matrix (X) implementation without multiplication or

shifting operation.

Reorganization of clutter matrix X computation and removal of matrices B, D and p

computation has resulted in reduced computation time, storage, and power dissipation.

ECA also requires trigonometric and other mathematical functions which are not

supported by HLS tool. Therefore, customized functions have been developed. It is well

known that calling of function incurs overhead. Therefore, an in-lining technique is

applied for all functions to minimize the overhead.

The complex matrix multiplication (X
H
X) in the second phase requires the building of

the Hermitian transpose matrix X
H
. However, this can be achieved by only changing the

indices of the matrix X without performing its transpose and conjugate thus reducing the

total computation time and the hardware storage requirements as shown in the following

code:

Function ()HX X

Declare X [] [], Result [] [], Sum;

 For k 0 to M {

For i 0 to M {

For j 0 to N

 {Sum = Sum + X [j] [k] * X [j] [i];}

104

 Result [k] [i] = Sum;

 Sum = 0;}}

The second step of the second phase involves complex matrix multiplication. A loop

pipelining approach is used where the multiplication operation is divided into four stages

as shown in Figure 3-25. This technique allows the operations in the loop to be

overlapped and executed in a concurrent manner instead of the sequential execution.

Done=0; i=0, j=0, k=0

A = a[i][k], B = b[k][j]

P = A*B;

k = N

c[i][j] = Sum

Yes

j = N

Done = 1

No

No

Stage 1

Stage 2

Stage 3

Stage 4
k=0; j++;

Sum=0

k++

i = N

k=0; j=0;i++

Sum=0
No

Yes

Sum = Sum + P

Figure 3-25: Flow chart for pipelined matrix multiplication.

It’s also important to use the memory resources efficiently besides reducing the

number of arithmetic operations. ECA requires large matrix multiplications where FPGA

storage can’t hold such large data. So, storing the matrices row by row or column by

column increases the number of times of loading the data from external memory to the

FPGA. Therefore, only part of the matrix is brought into FPGA which requires replacing

previously stored data. However, this process is accomplished via blocking approach

105

where the matrices are divided into a number of sub-matrices that fit into the size of

FPGA storage as shown in Figure 3-26.

Figure 3-26: Blocking Technique

Also, the code has been modified to access the data efficiently instead of the

traditional accessing. Table 3.4 shows the multiplication of blocks A and B of the first

matrix with the second matrix using both our modified approach and the traditional

approach. Our method loads each block (A & B) only once while the traditional method

loads each block two times. This will be very beneficial when the matrices have large

dimensions as in our case. So, the data in the FPGA storage can be reused before being

replaced which reduces the number of loading times by a factor of N, where N is the

blocking factor.

Table 3.4: Our matrix multiplication method versus traditional method

Traditional Method Our Method

AX AX

BZ AY

AY BZ

BF BF

Following code is used to build the blocking technique:

Blocked Matrix Multiply

 Declare X [] [], Result [] [], Sum;

 For k 0 to M-1 {

 For i 0 to M-1 {

 {read block C(k,i) into FPGA memory}

106

For j 0 to N-1 {

{read block from X into FPGA memory}

C(k,i)=C(k,i)+ X [j] [k] * X [j] [i];} {do a matrix multiply on blocks}

 {write block C(i,j) back to memory}

The computation of vector (α) in Equation (3.31) requires the following computation

and storages:

 Computation of matrix inversion
1()HY X X

 Matrix multiplication ()HZ YX

 Matrix-vector multiplication ()survZs

 Storage for Y and Z

However, the structure of Equation (3.31) can be exploited to perform the computation

of vector (α) in an efficient way using Conjugate Gradient (CG) as in Section 4.1.5. This

eliminates matrix to matrix multiplication and its storage requirements. Computation

process is re-arranged and following operations are performed:

 Matrix-vector multiplication ()H

survz X s

 The conjugate gradient method is used to perform (F z) where

()HF X X

Full parallelization of CG can’t be achieved due to the data dependencies as the next

computational step depends on the result of the current step. However, the CG is divided

107

into five computational regions as shown in Figure 3-27 where each region can be

performed in parallel.

Fpi=F*pi

alpha=rsold/(pi
T
*Fpi)

Converge

Yes

No

αi+1=αi+alpha*pi

ri+1=ri-alpha*Fpi

βi+1=(rT
i+1-*ri+1)/(rsold)

pi+1=ri+1+βi+1/*pi

Initializations:

r =z-Fα;

p=r; rsold=r
T
*r

Final Estimated Value (α)

R1

R2

R3

R4

R5

Figure 3-27: Conjugate Gradient (CG) computation steps.

Moreover, Dataflow technique is applied between the regions as in Section 4.1.5.

Also, matrix-vector multiplication process is used many times in our work where it can

be performed in the same way as in Section 4.1.5 where loop pipelining technique of the

outer loop is chosen.

108

Computation of the surveillance signal after cancellation based on Equation (3.32)

requires two operations:

 Calculation of matrix-vector multiplication (X) and a vector to store its result.

 Calculation of vector-vector subtraction and a vector to store its result.

Equation (3.32) was implemented using two methods where each method has a trade-

off of speed, area, and power consumption. The first method minimizes the latency as

much as possible by performing matrix-vector multiplication and vector-vector

subtraction operations in parallel where a dataflow technique is applied between these

operations. This is because it is not necessary for vector-vector subtraction operation to

wait until matrix-vector multiplication operation completes all its iterations. However,

this method requires additional vector to store its result which increases the area and

power consumption. On the other hand, the second method performs matrix-vector

multiplication in parallel without applying dataflow technique. It reduces the storage and

the power dissipation by removing the additional vector to save the result of matrix-

vector multiplication as shown in the following code:

Function (
ECA surS S X)

For i 0 to N {

For j 0 to M {

 {Sum = Sum + X [j] [i] * α [j];}

 SECA [i] = Ssur[i]-Sum; Sum = 0;}}

The first option is selected to achieve high speed. The loop pipelining is applied to the

outer loop of the matrix-vector multiplication as it’s achieved the minimum latency with

109

awareness of resource requirement, power, and area. The number of clock cycles for

matrix-vector multiplication and vector-vector subtraction for N=M=20 is 219 and 22

clock cycles respectively as shown in Table 3.5. Table 3.5 shows that the latency of

vector-vector subtraction is completely removed using the dataflow technique.

Table 3.5: Latency and resource utilization of second option for m=20 on Artix7

(XA7A100T CSG324) -1q

 No

Optimization

Matrix-

vector Mult.

Only

Vector-

vector Subt.

Only

Pipelining

without

Dataflow

Pipelining

with

Dataflow

Latency

(cycles)

3661 219 22 240 219

Clock period

(ns)

7.19 7.98 7.19 7.98 7.98

FF 224 2878 15 2891 2899

LUT 213 2321 52 2371 2379

DSP48E 4 80 0 80 80

BRAM_18K 1 1 1 1 2

Power 42 527 6 534 532

3.4.4.2 Parallel implementation on GPU.

Extensive Cancellation Algorithm (ECA) is also implemented and parallelized on

GPU architecture to minimize its extensive computation. GPU architecture is massively

parallel since it has hundreds of cores running in a concurrent manner, cheap, and highly

available. Therefore, in this work we design and implement ECA under CUDA

architecture on the GPU.

110

The first step in the algorithm builds the reference signal vector based on Equations

(3.22) and (3.24). Since the samples of the signal from the antennas are received in serial,

so the reference signal vector is built in serial on the CPU part.

Our code for reference matrix implementation in Figure 3-21 can be parallelized since

there is no dependency. Each thread must work on a group of elements because the

creation of the threads adds an overhead more than the task itself as our task is only copy

elements from vector to matrix. This will eliminate the index calculation cost over these

elements. However, the for-loop in the code can be fully parallelized using column wise

where each thread takes one value of counter i. So, each thread is writing its own index to

the corresponding location of index and j indices without changing anything in the code.

However, the number of elements in each column is (N+R-1) whereas K elements in each

row. So, it’s desirable to parallelize using rows wise to get more benefits since each row

has a few elements. However, the number of elements to be assigned for each row is

different. Therefore, our code has been changed to match the threads structure in GPU as

shown in the following code:

Reference Matrix Implementation

int index Thread index; j=0; i=index;

While (i>= 0) {

 Result [index][j] = Ref_vector[i];

i=i-1; j=j+1;}

Figure 3-28 shows the used parallelization technique of the reference matrix. Each

thread copies only a few numbers of elements such that the first thread copies only one

element, second thread copies two elements, and thread N+R-1 copies 32 elements.

111

1,1

2,1 2,2

3,1 3,2 3,3

1,1 1,2 1,32

0 0 0 0

0 0 0

0 0

N R N R N R

a

a a

a a a

a a a

Thread 1

Thread

N+R-1

Thread 2

Thread 3

Figure 3-28: Parallelization method of the reference matrix.

Building the second term of Equation (3.26) requires copying of and reference

matrices (2P+1) times. matrix has large dimensions of (N+R-1) (N+R-1). Therefore,

performing parallelization using row wise or column wise is not the optimal

parallelization method. Each thread needs to copy large number of elements while

leaving other threads idle. Therefore, this process is parallelized via blocking technique

where the matrix is divided into a number of blocks where each thread copies a few

elements (block) of the matrix each with size 16*16 elements as shown in Figure 3-29.

11 1 11 1

1 1

11 1 11 1

1 1

n n

m mn m mn

n n

m mn m mn

a a a a

a a a a

a a a a

a a a a

Block 00 Block 0N

Block N0 Block NN

Figure 3-29: Parallelization method via blocking technique.

112

The pseudo code of copying matrix is shown below:

Copy Matrix Parallelization Method

int c = blockDim.x * blockId.x + threadIdx.x;

int r = blockDim.y * blockId.y + threadIdx.y;

x= c*Tile_Size;

y= r*Tile_Size;

For i 0 to Tile_Size {

For j 0 to Tile_Size {

If (i==j) { Input[x+i] [y+j]=exp(2π(x+i)*Dopp/(y+j +1);}}}

Copying of reference matrix is accomplished row by row since each row has a few

elements (K elements). So, each thread copies few elements of reference matrix such that

the index calculation cost is amortized over these elements.

The complex matrix multiplication (X
H
X) requires O(NM

2
) operations. The

multiplication can be performed in parallel since there is no data dependency. However,

this requires huge matrices multiplication which is parallelized by combining row wise

technique with blocking technique. The number of rows of Hermitian matrix (X
H
) is

more than the number of cores in the GPU. So, the rows are divided evenly on the

number of cores by the following relation:

() ()

 (3.34)

So each core works on a group of rows as shown in Figure 3-30.

113

Task

11 1

1 11 1 1() 1

()1 () 1 ()

1

n

m mn m k m k

n m n m n n nm n k m nk

n nn

a a

a a a a a a

a a a a a a

a a

Core1

Figure 3-30: Core task of matrix multiplication

Blocking technique is also used since each core has eight blocks and each block has

512 threads. So, each thread will multiply one row from the first matrix with a group of

columns in the second matrix as shown in Figure 3-31 based on the following relation:

[(()) ()]

 (3.35)

Task
11 1

1 11 1 1() 1

()1 () 1 ()

1

n

m mn m k m k

n m n m n n nm n k m nk

n nn

a a

a a a a a a

a a a a a a

a a

Thread 1

Figure 3-31: Thread task of matrix multiplication

Following paragraphs describe the parallelization method for each region in CG

method. Region 1 requires matrix-vector multiplication where the row wise technique has

been used since the number of rows of the matrix more than the number of the available

threads. So, the rows are divided evenly on the number of cores and each thread

multiplies one row by the vector as shown in Figure 3-32 based on the following code:

114

Matrix-Vector Parallelization Method

int index Thread index;

Tile_Size=Matrix_Size/# of threads.

x=index*Tile_Size.

y=(index+1)*Tile_Size.

For i x to y {

Vec[i]=0;

For j 0 to M {

Vec[i] + = F[i][j]*p[j];}}

Figure 3-32: Parallelization technique of matrix-vector multiplication

Computation of the surveillance signal after cancellation based on Equation (3.31)

requires also matrix-vector multiplication (X) which is performed in the same way.

Regions 3 and 5 require vector-vector addition. The same parallelization method of

matrix-vector is applied where the vectors are divided into blocks. Each thread performs

vector-vector addition to its own block as shown in Figure 3-33. The same method is

applied in Equation (3.31) that requires vector-vector subtraction (ECA survs s X).

115

Vector-Vector Addition Parallelization Method

int index Thread index;

Tile_Size=Vector_Size/# of threads.

x=index*Tile_Size.

y =(index+1)*Tile_Size.

For i x to y {

Vec[i] = V1[i]+V2[i];}

0 0

k k

m m

n n

a b

a b

a b

a b

Task 1

Thread 1

Task N

Thread N

Figure 3-33: Vectors addition via blocking technique.

Regions 2 and 4 require vector-vector multiplication. Since these vectors have large

dimension. The vector is divided into the available threads as:

Tile_Size = Vector_Size/# of threads (3.36)

Each thread multiplies a group of elements and save a result into a private variable.

However, synchronization scheme is required since an accumulation of these private

variables must be performed for all threads results in the final step.

116

3.5 Parallelization of Block Compressive Sampling Matching

Pursuit Algorithm (BCoSaMP)

3.5.1 Introduction

With the advance technology nowadays, most of the systems contain a large number

of sensors to increase the measurement accuracy and resolution. However, this large

deployment of sensors increases the number of received samples which needs high

computation time and memory to store it. It will be practically impossible to store the

entire signal into a processing buffer at a time as encountered in streaming applications.

For example, sampling at a GHz with 16 bits per sample requires 16 billion samples per

second, which needs a lot of computing and storage resources to process these large

numbers of samples. However, most of these signals are sparse since they consist of few

coefficients and mostly zeroes. So, an efficient method is required to reduce storage and

simply keeps only the largest coefficients.

Compressive sensing techniques allow sampling of signal at lower than the Nyquist

rate [104-105] and storage of small number of samples. Compressive sensing techniques

keep only the largest coefficient while the small coefficients are discarded to reduce the

amount of data required to be stored, processed, and transmitted. Compressive sensing

techniques proved that the sparse signal can be reconstructed from few incoherent

measurements [106].

117

The major challenge in the compressive sensing strategies is the way to approximate

the signal accurately and efficiently from noisy samples. Many algorithms have been

developed for that purpose. These algorithms can be divided into three categories [107]:

 Greedy pursuit algorithms: these techniques approximate the signal by

applying an iterative method. It’s based on the selection of the optimal choice

at each step in their process where the approximation of the signal performs

one step at a time. Some of the greedy methods are Orthogonal Matching

Pursuit (OMP) [108], stagewise OMP (StOMP) [109] and Regularized OMP

(ROMP) [110].

 Convex relaxation algorithms: these techniques are developed based on

convex method. It’s a subfield of the optimization methods to approximate the

target signal. It has a wide range of applications in different fields. Some of

the convex relaxation methods are interior-point methods [111], projected

gradient methods [112], and iterative thresholding [113].

 Combinatorial algorithms: these techniques require acquiring of a large

number of samples of the signal. Acquired samples must be structured in a

way that supports fast reconstruction via group testing [100]. Some of these

techniques are Fourier sampling [114], and the chaining pursuit [115].

Many of the combinatorial techniques require a large number of unusual samples

which are difficult to acquire [107]. Convex relaxation techniques are computationally

intensive. On the other hand, greedy pursuits techniques are intermediate in their

running time and sampling efficiency. The accuracy of these algorithms depends on

118

the approximation of the collected samples and the sparsity of the original signal. The

accuracy of the reconstruction is validated by comparing the signal sparse

approximation with largest coefficients in the sparsity basis.

The signals in reality have some sort of noise. Many methods [116-121] have been

developed to reconstruct the noisy sparse signal accurately. However, some of these

techniques don’t give a good performance and some of them assume that the noise is

either bounded or Gaussian with known variance. Block Compressive Sampling

Matching Pursuit algorithm (BCoSaMP) [107, 122, 123-126] is one of these

algorithms that has been chosen in our research since it proves high robustness across

many applications. BCoSaMP algorithm can represent the entire signal efficiently

from only small number of noisy measurements. It uses information about the noise

magnitude for stopping criterion rather than assuming that the noise is Gaussian or

bounded. Also, it proves that the approximation error decays exponentially at every

iteration. Therefore a terminating criterion is needed when an appropriate threshold

has been achieved [122]. BCoSaMP algorithm reduces the number of measurements

by exploiting the sparsity and compressibility features without sacrificing the

robustness. It offers the following advantages:

 It reduces the computational complexity.

 It achieves good accuracy with minimum number of samples even in the

presence of noise.

 It supports small error for every target signal.

 It supports efficient resource usage.

119

3.5.2 Block Compressive Sampling Matching Pursuit algorithm

(BCoSaMP)

The collected samples are arranged in a matrix called sampling matrix ().

BCoSaMP requires that the signal must have the sparsity structure which can be

preserved by applying Restricted Isometry Property (RIP) [127]. For a large number of

samples N, there is only m samples have nonzero such that m<<N which needs to be

stored or transmitted. So, the sampling matrix has a dimensions of (m x N) and the

observed signal can be represented as:

y x (3.37)

Where Nx R is the signal to be recoveond,
my R is the observation at the current

state (the vector of samples), is the sampling matrix with dimensions m N .

The set of indices of all nonzero entries called the support of x (sup(x)). It can be

represented by the following relation [107]:

 sup() : 0jx j x (3.38)

There are two critical conditions that must be preserved to recover the signal

accurately: the signal must be sparse signal and the sampling matrix must satisfy the RIP.

The Restricted Isometry Property (RIP) of is given as:

2 2 2

2 2 2
(1) (1)r rx x x (3.39)

where r is the least number of the sampling matrix that satisfies the RIP property.

BCoSaMP algorithm recovers and reconstructs the signal by applying pseudo inverse

where the signal reconstruction is based on how accurate the signal is approximated from

120

the available samples [128-129]. Exploiting the dependencies between values and

locations of the signal coefficients is very important beside the sparsity and

compressibility advantages. This is performed by partitioning the signal into multiple

blocks. So, BCoSaMP divides the signal X into K blocks and each block has n elements

as shown in Equation (3.40). This substantially decreases the number of measurements

without sacrificing robustness. Exploiting both these properties will help in compressing

the signal to the lowest possible level instead of dealing with every large coefficient

independently.

1 1 2 (1){ ; ; ; }n n n k n knX x x x x x x (3.40)

To divide the signal into blocks, we assume a signal vector X ∈ R
nK

, with n and K

integers. This signal can be re-shaped into a n × K matrix X. Each column of X will be

considered as a part of the signal. That is, signals X in a block-sparse model have entire

columns as zeros or nonzeros. The measure of sparsity for X is the number of nonzero

columns [130]. Common assumptions in the compressive sampling algorithms are:

 The sparsity level s is fixed.

 Sampling matrix obey Restricted Isometry Property (RIP).

 The vector of samples .

Following is the summary of the BCoSaMP algorithms:

Input: Sampling matrix (), noisy sample vector , K is the number of recovered

samples.

Output: K-sparse approximation for recovering signal Error! Bookmark not

defined.from original signal x .

121

 Initialize: 0
ˆ 0x , r =

 Compute the residual signal by creating the state of proxy as
Te r .

 Find the largest components of the proxy and store its index ().

 Merge Ω with kx to obtain ((x̂)).

 Perform pseudo inverse (()*)Tb Pseudo inv y .

 Obtain the estimated value x̂ = (,)b K .

 Update the residue value as ˆr y x .

 Repeat Steps 2 to 7 until the required criteria of the residue is obtained.

 Return x̂ .

3.5.3 Analysis and Optimization Techniques

BCoSaMP has proven to be an effective method to reconstruct the sparse signal from

small noisy measurements. However, it may not achieve the real time requirements due

to extensive computations. So, our goal is to exploit any opportunity of parallelism to

minimize the computation time and storage resources to achieve the real time constraints.

3.5.3.1 Parallel implementation on FPGA.

Figure 3-34 shows the computational steps for implementation of BCoSaMP

algorithm and its needed memory. It also shows data dependency between various

operations and their computational sequence. It is proposed that the input should be

stored in a DDR3 SDRAM.

122

Step 1

Step 2

Step 3

Step 4

Step 5

Input:

Sampling Matrix

Measurement y, K

Initializations: r=y,

Identify the indices of the

largest components.

Merge supports

Apply pseudo inverse and

get the estimated value

Update residue value

Halting criteria

Yes

No

0
ˆ 0x

Estimate residual:
Te r

Output: Final estimation

BRAMs

Data

First Stage

Second Stage

DDR3 SDRAM

Read

Data

FPGA

Data

Step 6

Figure 3-34: BCoSaMP computational architecture

A. Transformation and optimization of step two (residual estimation)

Step two creates the proxy which requires the cost of matrix Hermitian (
H) and

matrix-vector multiplication (
Te r). However, the multiplication of this step can be

accomplished without performing Hermitian by changing only the indices reducing the

123

total computation time and the hardware storage since the building of Hermitian requires

additional matrix to store the result as shown in the following pseudo code:

Function ()HX r

Declare X [] [], Result [], Sum;

For i 0 to N {

 For j 0 to M {

 Sum = Sum + X [j] [i] * r [j];}

 Result [i] = Sum; Sum = 0;}

Moreover, matrix-vector multiplication can be performed in parallel by applying the

pipelining technique to the outer loop as it’s demonstrated in Section 4.1. Step three

requires locating the largest values of a vector and stores the indices of those values.

There are a number of sorting algorithms such as quick sort, merge sort, bubble sort etc.

available in the literature [131]. They can be used to sort entries of the signal in

decreasing order of magnitude and then selects the largest values of them. However,

these sorting algorithms have many drawbacks and require:

 Allocation of a new array of size (N).

 Copy of the original array to the new one with a cost of O(N).

 Sorting the new array with a cost of (N logN).k

 Iterating over the original array and searching for the largest elements with a

cost of (N logN).

Also, the sorting algorithm must be stable [107]. However, the objective of this task

is to find only the indices of the largest elements without sorting the array. So, it’s

desirable to implement a new efficient code for this task as follows:

124

Largest K indices of a Vector

Declare Input [N], indices [K], value [K];

For i 0 to N {

For j 0 to K {

if (indices[j] == 0 && value[j]==0)

 {indices[j]=i; value[j]=Input[i]; break;}

else if(value[j] < Input[i]){

 For k K-1 to j

 {indices[k]=indices[k-1]; value[k]=value[k-1];}

 indices[j]=i; value[j]=Input[i]; break;}}}

Our new code allocates two small arrays, each with size K instead of one large array

with size N. It also eliminates the copying of the original array. However, it requires

O(K
2
N) in the worst case. It uses break statements whenever any condition fails then it

will terminate the execution of the inner loop. This mechanism contributes in faster

computations of this part. This approach will be more efficient as K is a small value and

it is the same as used in the BCoSaMP algorithm. K represents only the largest values in

the input sparse signal.

B. Transformation and optimization of step four (merging support)

Step four requires merging of two sets of data which can be performed by creating

following new efficient code:

Declare c[N+M], flag; k=M;

%M number of elements in vector a

%N number of elements in vector b

Loop1: For i 0 to M

 {c[i]=a[i]; }

Loop2: For i 0 to N

 {flag=0;

 For j 0 to M

 {if(b[i]==c[j]) { flag=1; break; }}

 if(flag==0) {c[k]=b[i]; k++; } }

125

The code consists of two major loops; Loop1 and Loop2. Loop1 can be fully

parallelized by applying fully loop unrolling technique which will be executed in one

clock cycle instead of M clock cycles. However, Loop2 can’t be executed in parallel

since there is a dependency between store (write) operation (c[k]=b[i]) and load (read)

operation (b[i]==c[j]). The load operation needs to wait until the store operation is

completed. However, pipelining technique is an effective method for elimination of this

type of dependency. Pipelining inherently inserts delays and there will be no conflict in

getting the correct value. So, pipelining technique is applied and the latency is improved

as shown in Table 3.6.

Table 3.6: Latency and resource utilization of merging operation for N=50 and m=25

on Artix7 (XA7A100T CSG324 -1q)

 No

Optimization

Optimization with both unrolling

and pipelining techniques

Latency (cycles) 4002 1315

Clock period (ns) 4.87 4.87

FF 83 87

LUT 139 314

Power 21 39

C. Transformation and optimization of step five (pseudo inverse)

The computation of step five requires following computation and storages:

 Computation of matrix inversion X () .

 Matrix-vector multiplication .

 Storage for X and b.

126

However, the computation of vector (b) can be performed in an efficient way using

the conjugate gradient method as it can deal with different dimensions as sampling matrix

() has different dimensions where many other inversion algorithms require a square

matrix. It also eliminates storing of an inverted matrix (X). CG is divided into five

computational regions and the parallelization methods are applied as demonstrated in

Section 4.1.

D. Transformation and optimization of step six (residual update)

Step six updates the residue value for the next round which requires two operations;

calculation of matrix-vector multiplication (x̂) and storage of a resulting vector, and

calculation of vector-vector subtraction and storage of the resulting vector. This step was

implemented using two methods as demonstrated in Section 4.2 where the pipelining

technique with the dataflow approach is applied.

3.5.3.2 Parallel implementation on GPU.

Step two in Figure 3-34 can be fully parallelized where each thread must work on a

group of elements because the creation of the threads adds an overhead more than the

task itself. This will eliminate the index calculation cost over these elements. However,

the number of elements (N) in each row is higher than the number of elements (M) in

each column (M<<N). So, it’s desirable to parallelize it using column wise. This

approach will create a higher number of threads (N) that will operate on fewer elements

(M) as can be seen in the following code:

127

Parallel Matrix-Vector Multiplication

int index Thread index;

For j 0 to M

{ Res[index] + =X[j][index]* r[j];}

Step four requires merging of two sets of data which consists of two major loops;

Loop1 and Loop2. Loop1 can be fully parallelized using M threads that are executed in

one clock cycle instead of M clock cycles. However, a synchronization scheme is

required after the statement of Loop1 to insure that all the elements of vector a is copied

to the vector c before executing Loop2. Loop2 is parallelized where each thread only

compares one element value in vector b with the element values in vector c instead of

comparing all the values in vector b. This will improve the performance by a factor of P,

where P is the number of elements in vector b. However, Loop2 requires a

synchronization scheme since the merged output vector is shared between all the threads

to get correct results as follows:

Declare c[k], flag; k=M;

int index Thread index;

Loop1: c[index]=a[index];

__syncthreads();

flag=0;

For j 0 to M

{ if(b[index]==c[j]) { flag=1; break; }}

if(flag==0) {

__syncthreads();

c[k]=b[index]; k++;

Unlock_suncronization();}

The parallelization method for each region in CG method is accomplished using the

same way in Section 4.2. Step six updates the residue value for the next round which

128

requires two operations: matrix-vector multiplication (x̂) and vector-vector subtraction.

Matrix vector multiplication can be parallelized using the same technique in step two and

vector-vector subtraction is accomplished by N threads where each thread subtracts one

subtraction operation.

3.5.4 Model-Based Iterative Hard Thresholding (MB-IHT) Method

Iterative Hard Thresholding (IHT) method has also proven to be an effective method

to reconstruct the sparse signal from noisy measurements and small number of samples

beside its high robustness. So, efficient implementation of MB-IHT on FPGA has been

proposed for high performance applications.

Iterative Hard Thresholding (IHT) method is one of the methods that can represent the

entire signal efficiently from only a small number of received samples. It reduces the

number of measurements by exploiting the sparsity and compressibility features without

sacrificing the robustness. It offers the following advantages [132-134]:

 Guarantees very small error.

 Proves robustness to the observation noise.

 Achieves good accuracy with a minimum number of observations.

 Supports many sampling operators.

 Supports efficiency in the hardware resources usage.

 Achieves good signal to noise ratio using fixed number of iterations.

In order to represent the concept in a mathematical relation, the observed signal can be

represented as:

129

y x e (3.41)

Where Nx R is the signal to be recoveond,
my R is the observation at the current

state (the vector of samples), is the sampling matrix with dimensions m N , and e is

observation noise.

The IHT algorithm uses an iterative method to recover x signal from the given

observed signal ()y and sampling matrix () based on the following relation:

1 (()n n T n

Kx L x y x (3.42)

where
KL represents the largest K elements of a vector.

Moreover, Richard in [130] made some improvements of IHT method to provide more

accuracy and call it Model-Based Iterative Hard Thresholding (MB-IHT) which can be

summarized by the following steps:

Input: Sampling matrix (), measurement , K

Output: K-sparse approximation x̂ to signal x .

1. Initialization:
0

ˆ 0x , r =

2. Form the signal estimation as ˆ Tb x r .

3. Find the largest K components and store the index of that. ˆ sup(,)x b K .

4. Update the residue value for the next round as ˆr y x .

5. Repeat step 2 to 4 until the required criteria of the residue is obtained.

6. Return x̂ .

130

3.5.4.1 Parallel implementation on FPGA

Figure 3-35 shows the computational steps of MB-IHT implementation and its needed

memory. It also shows data dependency between various operations and their

computational sequence.

Input:

Sampling Matrix

Measurement y, K

Initializations: r=y,

 Identify indices of largest

components.

Update residue value

Halting criteria

Yes

No

0
ˆ 0x

Signal estimate:

Output: Final estimation

BRAMs

Data

First Stage

Second Stage

DDR3 SDRAM

Read

Data

FPGA Data

ˆ Tb x r

ˆ sup(,)x b K

ˆr y x

x̂

No

Step 1

Step 2

Step 3

Figure 3-35: MB-IHT computational architecture

131

Each step of the MB - IHT method is analyzed and parallelized to exploit the

advantages of both the parallel processing platform and the inherent parallelism of the

MB - IHT method. Step one forms the signal estimation requiring the following three

operations:

 Calculation of matrix Hermitian (H) which needs to do conjugate and

transpose and additional matrix to store the result.

 Calculation of matrix-vector multiplication (T r) and requires additional

vector to store its result.

 Calculation of vector-vector addition and requires additional vector to store its

result.

The efficient implementation of this step can be accomplished by combining the

optimization techniques in Steps two and six in Section 3.5.3. It exploits the advantages

of removing Hermitian operation by changing only in the indices as in Step two and

pipelining technique with dataflow technique for matrix-vector multiplication and vector-

vector addition operations as in Step six. So, both methods with and without dataflow

techniques are applied and simulated for large dimensions to show the obtained

advantages of dataflow optimization as shown in Table 3.7. Table 3.7 shows that the

latency of vector-vector subtraction is completely removed using the dataflow technique.

132

Table 3.7: Latency and resource utilization of the first step on Artix7

(XA7A100TCSG324) -1q for both options for M=10 and N=256

 No

Optimization

Parallel

matrix-

vector Mult.

Only

Parallel

vector-

vector Add.

Only

Pipelining

without

Dataflow

Pipelining

with

Dataflow

Latency

(cycles)

23809 1293 258 1550 1295

Clock

period

(ns)

7.19 8 7.19 8 8

FF 243 1434 22 1454 1466

LUT 234 1248 59 1313 1280

DSP48E 4 40 0 40 40

Power 45 271 7 280 277

Step two and three require locating the largest values of a vector and update the

residue value for next round respectively. The same optimization techniques in steps

three and six of section 3.5.3 are applied.

3.5.4.2 Parallel implementation on GPU

Steps one, two, and three of the MB-IHT algorithm have been parallelized using the

same techniques in steps two, three, and six of the BCoSaMP algorithm, respectively.

133

3.6 Parallelization of Discrete Wavelet Transformation

Method

3.6.1 Introduction

Discrete Wavelet Transformation (DWT) is an effective signal processing method

used in many applications [135-137] such as image processing, video compression, signal

analysis, and computer vision. Signal processing in frequency-domain provides the

spectral content of the signal. On the other hand, signal processing in time-domain

doesn’t support wide outlook of the signal as most of the information is hidden in the

frequency content. Wavelet transform provides time-frequency representation which

gives a multi - resolution outlook of the signal. It is also a powerful technique to remove

the noise from the signals without distorting the quality of the processed signal.

Moreover, the process of DWT reconstruction is considered lossless which is very

attractive for signal de-noising.

Several VLSI based hardware implementations [138-139] have been proposed to

implement DWT where many large resources and complex routing are used. VLSI based

implementations lack of flexibility and can’t be easily reconfigured for other operations

even within the same domain. It also imposes a lack of adaptability as the device is in use

within a system for purposes such as correcting faults. Moreover, the development is

costly and time consuming, and thus they are not an attractive option for implementing

the wavelet transforms [140].

134

A survey of existing implementations and architectures are demonstrated by the

limited contributions in [141-142]. In [143], a pipelined architecture for real-time DWT

was proposed and implemented on FPGA. It shows the advantage of the operating

frequency, but with highly increasing the number of resources (three times the direct one)

which consequently increase the area and the power consumption. In [144-145], a design

and implementation of 3-D Haar Wavelet Transform (HWT) using dynamic partial

reconfiguration was proposed which presents advantage of speed. However, it requires

high resources utilization (more than 20,000 slices) and high power consumption (more

than 1600 mW) because it implemented the array as registers causing a lot of memory

space is wasted. Moreover, the design is complex and large due to use of large numbers

of multiplexers which consequently increasing the power consumption and complexity of

the design.

In [146], FPGA implementation was proposed of 3-D wavelet for video segmentation.

The 3-D DWT also widely applied for medical applications as it provides perfect

reconstruction property. However, it involves several computational steps to calculate

DWT coefficients. The design has a slice utilization of 63% and the maximum frequency

allows a 100 MHz system clock.

The decomposition and reconstruction computation of the DWT is a computationally

intensive process, especially for 3-D and may fall short in meeting real time applications.

Therefore, efficient design of DWT is required to achieve the desirable goals. The

135

following sections show an efficient design of the DWT method for all dimensions (1-D,

2-D, and 3-D) for both forward and backward types.

3.6.2 Discrete Wavelet Transformation (DWT) Method

DWT performs the transform and reconstruction of signals using filter banks and

wavelet filters. DWT analyses the input signal at different time periods. The signal is

decomposed into an approximation and detail information and required variable number

of steps depending upon the length of the transform. In this work, Haar wavelet

transform (HWT) [147] has been chosen as it offers fast, memory efficient, reversible

without the edge effects, and is appropriate for hardware implementation. Each step of

DWT will provide a set of approximation and detailed values that is half of the original

signal size. This procedure proceeds until reaches one coefficient value as shown in

Figure 3-36. Approximation corresponds to a Low Pass Filter (LPF) that keeps only the

low frequencies of the data. The detail process corresponds to a High Pass Filter (HPF)

that keeps only the higher frequencies of the data. Low and high pass filters are defined

by the following relations:

LPF (

 ()

) (3.43)

HPF (

 ()

) (3.44)

Where, i is the sample number and n is the total number of samples.

136

Signal

X[n]

HPF

LPF

HPF

LPF

Level L-1 Level L-2

Down

Sampling

HPF

LPF

Level L-n

Vector

Output
HPF

Down

Sampling

Figure 3-36: Haar Wavelet Transform (HWT).

The Haar function can be described as a step function ()t :

1, 0 0.5

() 1, 0.5 1

0,

t

t t

otherwise

 (3.45)

()t is called mother wavelet and its scaling function ()t can be described as:

0, 0 1
()

, 1

t
t

Otherwise

 (3.46)

In order to perform wavelet transform, Haar wavelet uses translations and dilations of

the function using the following formula:

 ab(t) =

√
 (

) with a,b∈R , a ≠ 0 . (3.47)

In Haar transform, 2
n
 data length uses n levels. Averaging and differencing

coefficients are computed for the next level from the previous level. The process is called

Fast Haar Transform (FHT). An example of FHT with sixteen samples and four levels is

shown in Figure 3-37. Its sample data is as follows:

F= [4 5 3 6 12 7 8 0 14 3 3 4 5 2 8 0]

137

4.54

4.5

9.5

4

8.5

3.5

3.5

4

5

3

6
12

7

8

0

14

3

3

4

5

2

8

0

-0.5

-1.5

2.5

4

5.5

-0.5

1.5

4

4.5

6.75

6

3.75

0

2.75

2.5

-0.25

5.625

4.875

-1.125

1.125

5.25

0.75

LEVEL 4 LEVEL 3 LEVEL 2 LEVEL 1 LEVEL 0

Data

Averaging Coefficient

Differencing Coefficient

Differencing (x-y)/2

Averaging (x+y)/2

Figure 3-37: Fast Haar Transform (FHT) operations.

3.6.3 Analysis and Optimization Techniques

1-D forward DWT is shown in Figure 3-38 to illustrate how DWT will be optimized.

Function DWT 1-Dimension Forward

HDWT(Input[N])

Loop1: {For count N to 1, count/=2

 Loop2: {For i 0 to count/2

 {OP1: avg[i]= (Input[2*i]+Input[2*i+1])/2;

 OP2: diff[i] = Input[2*i]-Input[2*i+1])/2;}

 Loop3: For i 0 to count/2

 {Input[i]= avg[i];

 Input[i + count/2]= diff[i];}}}

Figure 3-38: 1-D DWT Implementation

DWT has one main loop (Loop 1) and two inner loops (Loop 2 and Loop 3) as shown

in Figure 3-38. Full parallelization of DWT can’t be achieved due to data dependencies

between the inner loops (Loop 2 and Loop 3). However, Loop 2 can be executed in

138

parallel. This parallelization can be prevented due to the resource contention because

both the statements share the same resource array “Input array”. Thus, multi read and

write ports are applied to the input array to overcome this dependency. Also, Loop 3 can

be executed in parallel after Loop 2 is completed its iteration.

Loop unrolling and loop pipelining for Loop 2 have been experimented via simulation

and their performance parameters are shown in Table 3.8 to determine which approach

will provide superior results. Loop unrolling achieves better speed, but it causes

excessive memory usage in terms of Look Up Tables (LUTs), Flip-Flops (FFs) usage and

high power dissipation. On the other hand, the performance of the pipelining was found

to be slightly less than unrolling in terms of latency but it achieves approximately 43

times less power dissipation. Hardware resources in terms of LUTs and FFs are also

reduced 41 and 44 times respectively. So, pipelining technique is chosen in our work as

our goal is to achieve low latency with awareness of hardware resources and power

dissipation.

Table 3.8: Latency and Resources Utilization of Vector Size 1000

 No

Optimization

Pipelining

Method

Unrolling

Method

Latency (cycles) 5428 2747 2701

Clock period (ns) 8.03 8.03 7.83

FF 158 180 7992

LUT 347 361 14963

Power (mW) 49 53 2295

Moreover, it is not necessary for Loop 3 to wait until Loop 2 completes all its

iterations. So, Loop 3 can start execution after the first iteration of Loop 2 is completed.

This can be exploited by applying the dataflow technique between these loops where the

139

data can flow asynchronously from the first loop to the next one. So, Loops 2 and 3

execute in a pipelined fashion until all iterations are completed as shown in Figure 3-39.

LOOP2 LOOP3

LOOP2

LOOP3

A) Without Dataflow (B) With Dataflow

Figure 3-39: Loop dataflow pipelining technique.

In the case of 2-D and 3-D, we can achieve better performance as the computations in

other dimensions are independent of each other. Therefore, previous 1-D parallelization

of the filter bank is applied to other dimension in cases of 2-D (x and y) and 3-D (x, y and

z).

This parallelization approach provides shorter computation time. However, this will

be prevented due to the resource contention because all the computations share the same

resource array “Input array”. Thus, in order to overcome this dependency we can

implement the array using LUT based memory. This approach requires excessive usage

of LUTs and FFs due to use a lot of multiplexers. It then results in higher power

consumption as shown in Table 3.9. However, our implementation goal is to achieve high

speed with awareness of power, area and cost. Therefore, we neglect this high resource

requirement and storage overhead to minimize the area, cost, power consumption and

design complexities.

140

Table 3.9: Resource Utilization of 2-D DWT of Vector Size 128

 Block Memory LUT Based Memory

Latency (cycles) 43952 29683

Clock period (ns) 4.76 4.76

Occupied slices 2654 13827

Power (mw) 249 1492

3.7 Parallelization of Particle Filter for Tracking

Applications

Particle filter has been proven to be a very effective method for identifying targets in

non-linear and non-Gaussian environment. However, particle filter is computationally

intensive and may not achieve the real time requirements. So, it’s desirable to implement

particle filter on FPGA by exploiting parallel and pipelining architecture to achieve its

real time requirements.

3.7.1 Introduction

Target tracking [148-149] can be defined as a sequential estimation of a variable or

target of interest based on some observations over a period of time. Target tracking is

performed by obtaining the position of the target. It is accomplished by performing

position predictions and estimating the target positions in consecutive time scans.

Different factors play important role in the efficiency of tracking process such as target

parameters (position, velocity), target motion, and algorithm selection. However, the

objective of the tracking process is to provide sequential prediction of the target using

some observations. So, the tracking process can be divided into two stages; state stage

which represents the values of target interest (prediction); and observation stage which

141

represents some specified probabilistic relationship between observation and state

(feature extraction).

Tracking applications are very important for both military and civilian applications.

Different versions of Kalman filters and particle filters are available in the literature

[150]. Kalman filters are used when the system is linear and Gaussian whereas particle

filters are popular when the system is non-linear and non-Gaussian. However, most of

tracking methods are computationally intensive, especially in Multi Target Tracking

(MTT) radar systems. This leads to a heavy computation burden which prevents tracking

to be performed in real-time. So, efficient hardware implementation will be required with

the use of the parallel processing platform. Hardware implementation should be efficient

in terms of latency, area, power consumption, cost, and flexibility.

3.7.2 Particle Filter Operation

Particle filter [150-153] offers the following advantages:

 It is very effective in identifying the targets in an efficient and accurate

manner.

 It can be useful in radar tracking applications with high cluttered environment.

 It is appropriate for tracking targets where the system is nonlinear and non-

Gaussian.

Moreover, in the presence of multiple targets, tracking becomes difficult as the

discrimination of target is inaccurate. Particle filters calculate the posterior density for

different values of the targets which is converted to likelihood functions and helps to

142

detect the number of targets. This approach can simultaneously handle processing, data

association and target tracking. Particle filter consists mainly of four steps as follows:

1. Prediction and measurement step.

2. Importance step.

3. Resampling step.

4. Output estimation.

Figure 3-40 shows the computational steps to implement the particle filter. It shows

data dependencies between various operations and their computational sequence.

Initializations

N- Number of particles

W- Particle weights

Estimate the measurement

Update particle weights- W

Resampling

Output estimation

Weights calculation

Estimate the prediction

Figure 3-40: Particle filter computational steps

143

The first step will initialize a nonlinear system prediction for assumed number of

particles. Then the prediction and measurement of the new state of the target will be

performed through the particles by considering a nonlinear system as follows:

1 1()k k kx f x w (3.48)

()k k kz h x v (3.49)

Where 1kx is the input target position, 1kw and kv are the process and measurement

noise, f and h are nonlinear functions of process and observation vector, and kz is the

current observed measurement.

In order to show the robustness and effectiveness of particle filter for tracking

purposes, a complex system with difficult state estimation is used in both the processes

and measurements. It is expressed as [150]:

1
1 2

1

251
8cos[1.2(1)]

2 1

k
k k k

k

x
x x k w

x

 (3.50)

21

20
k k ky x v (3.51)

This highly nonlinear system is widely used for state estimation and comparison of

efficiency and performance of new algorithms [154-155].

The second step will involve the estimation and normalization of the particle weights

[150] based on Equations (3.52) and (3.53). This identifies the particles that have the

highest probability to represent the desired target. The weights of few particles will have

large values as time progresses while the remaining weights of other particles will

decrease in their values.

144

* 1 *
, ,

1/2/2

[()] [()]1
exp()

2(2)

T
k i k i

i m

z h x R z h x
w

R

 (3.52)

1

/ , for m=1,...,M.

M
m m m
n n n

m

w w w

 (3.53)

Resampling process in third step will remove small negligible weights particles and

keep the largest one. This will improve the estimation of the future state by considering

particles of higher posterior probability. This can be accomplished in different ways. One

straightforward way can be performed in the following two steps:

 Generate a random number r [0,1].

 Accumulated the likelihoods m
nw into a sum until the total sum is greater than r

(
1

j

m

m

w r

). Then the new particle will be set to the old particle.

The final step will perform output calculations by multiplying the normalized weight

by the predicted measurement of the particle as follows:

1:

1

() *

Ns
i

k k ik k

i

p x z W x

 (3.54)

3.7.3 Analysis and Optimization Techniques

3.7.3.1 Parallel implementation on FPGA

Particle filter is broken into set of regions as shown in Figure 3-41 in order to exploit

the parallel architecture of FPGA platform and the inherent parallelism of particle filter.

However, full parallelization of particle filter can’t be achieved as particle filter is an

iterative algorithm where the new particle prediction can’t be performed until the

resampled step is completed. Also, there is a data dependency as the next computational

145

step depends on the result of the current step. So, we need a way to arrange the operations

of the algorithm to be performed in parallel without affecting its functionality. The

implementation of particle filter can be improved by applying two optimization

techniques:

 Merging technique: consecutive loops will be merged to reduce overall

latency, increase sharing and optimization.

 Dataflow technique: allows sequential loops to be performed in a pipeline

fashion to improve throughput and latency.

The merging technique allows the operations to be performed in one operation to

reduce the additional overhead. For example, prediction step, measurement step, and

weight calculation can be performed in one loop. This reduces the overhead from the

unnecessary loops as additional N iteration loops for each step is removed. Also, weight

normalization can be merged with resampling step to remove the N iteration loops of the

normalization with little modification of resampling. The modified particle filter

algorithm is as follows:

Merged Particle Filter

For i 0 to N {

 Prediction step

 Measurement step

 Weight calculation}

For j 0 to N {

 Normalization step

 Resampling step based on
1

j

m

m

w r

So, the operations of the particle filter in this approach are merged instead of

specifying a separate loop of N iterations for each particle filter operation.

146

Estimate the measurement

Resampling

Output estimation

Weights calculation & update

Estimate the prediction Region 1

Region 2

Region 3

Region 4

Region 5

Figure 3-41: Computational regions of particle filter

Moreover, it is not necessary for region 2 to wait until region 1 completes all its

iterations. So, region 2 can start execution after the first iteration of region 1 is

completed. This can be exploited by applying the dataflow technique between these

regions where the data can flow asynchronously from the first region to the next one as

shown in Figure 3-42.

Particle measurement

Resampling

Output estimation

Weights calculation &

update

Particle prediction

Particle measurement

Resampling

Output estimation

Weights calculation &

update

Particle prediction

N iteration

Figure 3-42: Timing diagram for overlapping particle filter operations

So, regions 1 and 2 execute in a pipelined fashion until all iterations are completed.

Region 1 forwards the value from current iteration to region 2 and begins with the next

147

iteration at the same time region 2 can start execution. Similar approach is applied to

other regions and is shown in the following pseudo code.

Parallelization Method

For each blip:

For k 1 to N

1 1()k k kx f x w This Loop can be executed in parallel.

End

Applying Loop Dataflow Pipelining

For k 1 to Ns

*()k k kz h x v This Loop can be executed in parallel.

End

 Applying Loop Dataflow Pipelining

For k 1 to Ns

Wight calculation This Loop can be executed in parallel.

End

 Applying Loop Dataflow Pipelining

For k 1 to Ns

1:

1

() *

Ns
i

k k ik k

i

p x z W x

 This Loop can be executed in parallel.

End

 Applying Loop Dataflow Pipelining

For k 1 to Ns

Resampling based on
1

j

m

m

w r

 .

End

Moreover, all these operations of particle filter are for only x-dimension. We need to

implement the same operations for y-dimension. Fortunately, they are independent of

each other and can be executed in parallel. Moreover, the steps of x-dimension and y-

148

dimension can also be merged together to reduce overall latency, increase sharing and

optimization.

3.7.3.2 Parallel implementation on GPU

Step one of particle filter is the position initialization of each particle. This step can

be fully parallelized by N threads where each thread is assigned for each particle as

shown in the following code:

Parallel Particle Positions Initialization

int i Thread index;

 {Xpart[i] = x + sqrt (Q) * random(); //Q is process noise covariance

 Ypart[i] = y + sqrt (Q) * random();}

Step two is the prediction and measurement state of each particle. This step can be

fully parallelized by N threads where each thread is assigned for each particle as shown

in the following code:

Parallelization of Particle Prediction State

int i Thread index;

 {Xpartminus[i] = Xpart[i]+sqrt (Q) * random();

 Ypartminus[i] = Ypart[i] + sqrt (Q) * random();}

Parallelization of Particle Measurement State

int i Thread index;

 {XXpart[i] = H * Xpartminus[i]; //H is the measurement transition matrix

 YYpart [i]= H * Ypartminus[i];}

Moreover, particle filter requires repeating the basic calculation of random function

generator for all the particles in each iteration. This basic computation typically involves

a significant amount of calculation which represents a small fraction of the total

149

computational effort. So, random number generation is also parallelized where each

thread generates one random value instead of a large number of values.

 Step three is the weight calculations of each particle. This step can be fully

parallelized by N threads as shown in the following code:

Parallelization of Particle Prediction State

int i Thread index;

{Vhat = xmeasured[k] - XXpart[i];

 yyhat = ymeasured[k] - YYpart[i];

 q[i] = (1 / sqrt (r) / sqrt (π) * exp(-vhat^2 / 2 / R); //R is measurement noise covariance

 qy[i] = (1 / sqrt (r) / sqrt (π) * exp(-yyhat^2 / 2 / R);}

Step four requires the normalization of the particle weights which needs summing all

the particle weights. In order to parallelize this operation efficiently, we have divided the

particle weights by multiple threads where each thread sums a group of weights elements

into its local variable. Then the global summation will be performed by adding these

local variables. However, this technique requires a lock and barrier synchronizations to

ensure correct results since the global summation variable is shared by all the threads.

Following code is used to find the summation value of particle weights.

Parallelization of Particle Weights Summation

int index Thread index;

Tile_Size=Weights_Vector/# of threads.

x=index*Tile_Size, y =(index+1)*Tile_Size.

For i x to y {

Local_sum_X= Local_sum_X + W_x[i];

Local_sum_Y= Local_sum_Y + W_y[i];}

__syncthreads();

Global_sum_X+=Local_sum_X;

Global_sum_Y+=Local_sum_Y;

Unlock_suncronization();

150

Normalization step which divided each particle weight by the total weights

summation can be fully parallelized by N threads as shown in the following code:

Parallelization of Particle Weights Normalization

int i Thread index;

 {q[i] = q[i] / Global_sum_X;

 qy[i] = qy[i] / Global_sum_Y;}

3.8 Conclusion

A parallel algorithm is developed for IR video processing which includes background

subtraction, noise filtering and connected component labeling algorithms on the GPU.

The video processing algorithm was also partitioned, parallelized, mapped and scheduled

on multi-core. We have analyzed and estimated the energy consumption for all the

components of the NoC platform for processing elements, memory, caches, routers and

communication architecture to find the bottlenecks in the platform for IR video

processing. Also, a new modeling and simulation approach regarding the channel width

and buffer sizing is proposed to get a better performance. D
3
, ECA, BCoSaMP, particle

filter, IHT, and DWT algorithms have been also transformed for optimal execution,

implemented and parallelized on both FPGA and GPU architectures. An extensive

analysis and demonstration of various parallel strategies are performed. The developed

parallel implementation uses different methods and approaches to design a parallel

strategy of these algorithms efficiently.

151

Chapter 4

Radar Signal Processing Tool for Parallel Architectures

4.1 Radar Signal Processing Tool (RSPT)

A new software tool called Radar Signal Processing Tool (RSPT) has been

developed. RSPT is a framework tool unifying the aspects of algorithms, architectures,

and software. It bridges the gap between the algorithm and architecture scientific

communities. So, hardware software co-design has been performed that pushes

performance and energy efficiency while reducing cost, area, and overhead. RSPT allows

the designer to auto-generate a fully optimized VHDL representation for selected radar

signal processing algorithms. This work focusses on development of FPGA based

hardware for real-time execution of the selected signal processing algorithms.

The RSPT allows the designer to specify user input parameters for a specified

algorithm through a Graphical User Interface (GUI). This offers great flexibility in

designing a radar signal processing applications for a SoC without having to write a

single line of VHDL code. Moreover, RSPT provides the designer a feedback on various

performance parameters. So, the system designer will have an ability to make any

152

adjustments to the radar signal processing until the desired performance of the overall

System on Chip (SoC) is satisfied. The tool will utilize optimization techniques such as

pipelining, code in-lining, loop unrolling, loop merging, and dataflow techniques by

allowing the concurrent execution of operations to improve throughput and latency. The

tool will provide FPGA implementation to achieve high speed with awareness of power,

area and cost.

Our developed Radar Signal Processing Tool (RSPT) for FPGA consists of two main

parts, VHDL Library, and a Java Graphical User Interface (GUI). The High-Level

Synthesis Tool (HLST) is used to generate the VHDL Library for a certain algorithm.

The VHDL library contains various functions and entities to construct the VHDL files

based on user specified parameters. The GUI communicates with Xilinx and VHDL

library to synthesize and generate the optimized VHDL code for the specified component

as shown in Figure 4-1. It communicates using a standard worker thread process and

redirected input/output streams. The worker thread checks for the available FPGA parts

installed with the Xilinx toolset. They are also responsible for executing the VHDL

synthesis command chain.

Xilinx Java GUI VHDL Library

Synthesis

Stream

Redirect S
y
n

th
e

s
is

R
e

s
u

lt

G
e

n
e

ra
te

d

V
H

D
L

VHDL Code

Vivado HLST

Figure 4-1: Overview of software package components

153

RSPT works as follows: the user specifies all input parameters of a certain algorithm

and the desired FPGA part. Then, RSPT communicates with Xilinx toolset to check for

the available FPGA parts. The RSPT then generates VHDL files for the specified

parameters. RSPT tests the generated VHDL file through all the design process steps

such as synthesis, translation, mapping, placing and routing, timing, and generating the

bitstream file. Finally, RSPT provides the designer a feedback on occupied slices,

maximum frequency, and dynamic range. It allows the designer to make any necessary

changes to the component to achieve the desired goal.

The RSPT uses the procedure as shown in Figure 4-2. It auto-generates the top level

VHDL for selected radar signal processing algorithm. The generation of VHDL

implementation of a certain algorithm consists mainly of five steps as shown in Figure 4-

2. The first step creates CADWORK folder to save the VHDL representation file. Then,

it determines the algorithm location in the library and copies the VHDL library file that

contains the main source code of the algorithm. It determines all the specified input

parameters of the algorithm. Finally, it generates the VHDL file and ends the process.

The generated VHDL file includes a full optimization representation that is ready to be

synthesized by the Xilinx ISE.

154

Determine all the specified input

parameters of the algorithm

END

Create CADWORK

Copy VHDL library files

Create VHDL file

Close VHDL file

BEGIN

Figure 4-2: GUI flowgraph for VHDL auto-generation.

The GUI of D
3
 algorithm for the RSPT is shown in Figure 4-3. One can see the

redirected Xilinx output stream in the Log window, the Xilinx synthesis results, and the

D
3
 parameters selected for VHDL auto-generation. The functionality of the RSPT tool is

driven by the user input and relies on flow graphs plus logic to auto-generate VHDL D
3

for a SoC. This offers great flexibility in designing a D
3
 component for a SoC without

having to write a single line of VHDL code. The D
3
 parameters accepted by the tool are:

 Number of sensors.

 Precision option: Uses fixed point implementation with high and medium

precisions. The high precision consists of ten integer bits and twenty fraction

bits. The medium precision consists of eight integer bits and twelve fraction

bits.

 Direction of the desired signal (0º to 90º).

155

 The wavelength of the signal (0.01-0.5 m) which corresponds to a frequency

between 600MHz to 30GHz. The distance between antennas is at least half the

wavelength.

Figure 4-3: Graphical user interface for Radar Signal Processing Tool (RSPT) of D
3
.

The GUI for ECA of RSPT is shown in Figure 4-4. One can see that the redirected

Xilinx output stream in the Log window, the Xilinx synthesis results, and the ECA

parameters selected for VHDL auto-generation. The ECA parameters accepted by the

tool are:

 Number of samples.

156

 Precision option: Uses fixed point implementation with high and medium

precisions. The high precision consists of ten integer bits and twenty fraction

bits. The medium precision consists of ten integer bits and ten fraction bits.

 Range bins (from 1 to 100).

Figure 4-4: Graphical user interface for Radar Signal Processing Tool (RSPT) of ECA.

The GUI for BCoSaMP of RSPT is shown in Figure 4-5. The BCoSaMP parameters

accepted by the tool are:

 K Factor: this parameter identifies the largest components of the signal vector

to get the final approximation.

157

 Number of Blocks: this identifies the number of divisions of the signal vector.

 Precision option: Uses fixed point implementation with high and medium

precisions. The high precision consists of ten integer bits and twenty fraction

bits. The medium precision consists of eight integer bits and twelve fraction

bits.

Figure 4-5: Graphical user interface for Radar Signal Processing Tool (RSPT) of

BCoSaMP.

The GUI for DWT of RSPT is shown in Figure 4-6. The DWT parameters accepted

by the tool are:

 Dimension (1-D, 2-D, and 3-D).

 Input size (4, 16, 32, 64, 128, 256, 512, and 1024).

 Type (Forward or Backward).

158

Figure 4-6: Graphical user interface for Radar Signal Processing Tool (RSPT) of

DWT.

The GUI for MB-IHT method of RSPT is shown in Figure 4-7. The MB-IHT

parameters accepted by the tool are:

 K Factor: this parameter identifies the largest components of the signal vector

to get the final approximation.

 Number of Signal Samples: this identifies the number of samples of the signal

vector.

 Precision Option: Uses fixed point implementation with high and medium

precisions. The high precision consists of ten integer bits and twenty fraction

159

bits. The medium precision consists of eight integer bits and twelve fraction

bits.

Figure 4-7: Graphical user interface for Radar Signal Processing Tool (RSPT) of MB-

IHT.

4.2 Conclusion

A new software tool called Radar Signal Processing Tool (RSPT) has been

developed. It unifies the aspects of algorithms, architectures, and software which bridges

the gap between the algorithm and architecture scientific communities. This helps in

performing hardware software co-design that pushes performance and energy efficiency

while reducing cost, area, and overhead. It will allow the designer to auto-generate fully

160

optimized VHDL representation for any radar signal processing algorithm. This work

focusses on development of FPGA based hardware for real-time execution of D
3
, ECA,

particle filter, DWT, IHT, and BCoSaMP algorithms. The RSPT allows the designer to

specify user input parameters of any of these algorithms through a Graphical User

Interface (GUI). This offers great flexibility in designing these algorithms for a SoC

without having to write a single line of VHDL code. Moreover, RSPT provides the

designer a feedback on various performance parameters such as occupied slices,

maximum frequency, estimated power consumption and dynamic range. This offers the

designer an ability to make any adjustments to the algorithm component until the desired

performance of the overall System on Chip (SoC) is satisfied. RSPT also uses many

optimization techniques to improve throughput and latency.

161

Chapter 5

Simulation Results

5.1 Simulation of Parallel IR Video Processing

Algorithm on GPU

 A bird and bat monitoring system has been developed that uses IR camera to monitor

birds and bats activity. This will be useful in developing mitigation techniques to

minimize the impact of wind turbines on birds and bats. Data from IR was recorded

during migratory periods near Ottawa National Wildlife Refuge. Collected IR data need

to be processed in order to track the targets of interest. However, IR video processing is

computationally intensive and may not achieve the real time requirements. So, the IR

video processing algorithm is parallelized for implementation on a GPU. It was

implemented in C and CUDA. The algorithm was tested on the Intel Nehalem Quad Core

processor with GPU. The average computation time of a single frame for each step in

video processing in NVIDIA GeForce GTX 260 GPU and computation for serial

implementation (Single Core) is shown in Table 5.1. We considered the communication

overhead factor in our implementation which includes the data exchange between CPU

162

and GPU. Our implementation minimizes communication overhead by not returning the

result back from GPU to CPU in every phase.

Table 5.1: Average Computation Time in Milliseconds

 Single Core GPU Speedup

Background subtraction 16.58 5.81 2.853

Dilation 13.74 0.9 15.26

Erosion 13.71 0.9 15.233

Labeling 36.69 14.55 2.521

Total 80.72 22.16 3.642

Figure 5-1 shows the average execution time to process a frame for a single core is

80.72 ms giving a frame rate of 12.388 fps. So, it doesn’t achieve the real time

requirement of 25-30 fps. On the other hand, the average execution time to process a

frame on GPU is 22.16 ms giving a frame rate of 45.126 fps that satisfies the real time

requirement of 30 frames per second (fps).

Figure 5-1: Execution time for each algorithm of video processing

Figure 5-2 shows the speedup for various parts of this algorithm. It shows that

labelling part has smaller speedup as compared to other modules. This is due to data

dependencies and overhead caused by synchronization of the threads. Background

subtraction part includes data transfer to and from CPU to GPU. The parallel algorithm

163

minimizes data transfer overhead by not returning the result back from GPU to CPU in

every phase.

Figure 5-2: Speedup for each algorithm of video processing

5.2 Simulation of IR Video Processing Algorithm on

MPSoC

An IR video processing data is used from our bird and bat monitoring system for

simulation purposes. Simulation is performed by running a video processing application

on a heterogeneous NoC platform based on mesh topology. A master processing element

is responsible for reading the video frames and distributing partitioned tasks to other

slave processing nodes. The memory hierarchy for IR video processing on MPSoC

consists of a main memory in the Master PE, and a cache in each Slave PE (storage of the

subtask). It was observed from the simulation that the memory and caches consume a

large amount of the energy. This is compared to the energy dissipation in the

communication architectures which consume much lower energy as shown in Figure 5-3.

164

Figure 5-3: Energy analysis for the embedded platform.

Table 5.2 clearly shows that the energy consumption of the Master PE memory and

Slave PEs caches are dominant. Therefore, some kind of optimization is needed for

reduction of this energy bottleneck. So, the designer may reduce the energy dissipation in

these bottlenecks by adopting techniques such as Data Transfer and Storage Exploration

(DTSE), code transformation [156], circuit level [157-158] or other techniques.

Table 5.2: Energy dissipation and analysis of MPSoC platform

Architecture Component Energy Dissipation (mj)

Master PE Memory 429.96

Slave PEs Caches 381.055

Routers (total) 37.95837

Links (total) 31.66011

This energy analysis shows contrary to the common belief that the global network

interconnection is the bottleneck for the energy dissipation in handheld devices for

multimedia applications.

The physical network model needs different bandwidths, different buffer sizes for

links, and different routers sizes as there is a lot of congestion on the master core links

165

and its router. So, the bandwidth of the links connected to the master core is increased by

a factor of two by adding more virtual channel to improve the performance. The IR video

processing algorithm was implemented in C on the Intel Nehalem Quad Core processor

for comparison purposes. The average computation time of a single frame for single core,

multi-cores with and without optimization are shown in Table 5.3. The results show the

average execution time to process a frame for a single core is 80.72 ms giving a frame

rate of 12.388 fps. On the other hand, the average execution time to process a frame on

Multi-Core (without Optimization) is 42.48 ms giving a frame rate of 23.54 fps while

with optimization giving a frame rate of 27.255 fps.

Table 5.3: Average Computation Time in Milliseconds

Method Latency Speedup

Single core 80.72 1

Multi-core (without Optimization) 42.48 1.9

Multi-core (with Optimization) 36.69 2.2

5.3 Simulation of Parallel Direct Data Domain (D
3
)

Algorithm

The parallelized Direct Data Domain (D
3
) algorithm was tested using a single signal

with jammer and additive white Gaussian noise as shown in Figure 5-4. Then the weights

have been calculated based on a combination of inexact inverse iteration algorithm and

conjugate gradient method to nulls the noise and interference while maintaining the

desired signal as shown in Figure 5-5. It can be seen that the filtered signal has high

amplitude and jammer were completely attenuated giving a very small amplitude for the

166

jammer. The program uses following test signal and jammers.

where,

As = 1.0; fs= 1 MHz; s = 0.25π rad

J1= 1.25; fj1= 1 MHz;
1j = 0.4167π rad

J2= 2.00; fj2= 1 MHz;
2j = 0.3333π rad

J3= 1.25; fj3= 1 MHz;
3j = 0.00π rad

Where A and J represent amplitude of signal and jammers respectively, f represents

frequency, and represents the angle from the broadside of the arrays. The separation

between the array elements (d) is equal to λ/2. The results obtained for three antennas are

as follows:

Signal

 ()S t

Received Signal

 ()X t

Interference before filter

 () ()X t S t

Interference after filter

 () ()X t S t W

-0.5982 + 0.7859i -1.7585 + 0.9105i -1.1603 + 0.1246i (0.3331 + 0.7216i)*10
-15

-0.2630 - 0.9520i -2.0783 - 0.1391i -1.8153 + 0.8130i (-0.4441 - 0.3331i)*10
-15

The weight vector for this single signal example is 1W = 0.4795 + 0.2771i; 2W = -0.1716 -

0.8440i; = 1.0823 - 0.8565i.

() sin()S t A wt

167

Figure 5-4: The received noisy signal and jammer before filtration.

Figure 5-5: The received noisy signal and jammer after filtration.

The software tool (RSPT) automatically generates the VHDL D
3
 component and

synthesizes with the Xilinx ISE [159]. XA7A100T CSG324 -2I FPGA device is used in

this work. Table 5.4 lists the overall performance results in terms of area, power

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

A
m

p
lit

u
d
e

Signal with Noise

Jammer

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

A
m

p
lit

u
d
e

Filtered Signal

Jammer

168

consumption, and the maximum frequency for both high and medium precisions. The

performance is measured with respect to following evaluation metrics:

 The throughput given in terms of the frequency.

 Hardware utilization given in terms of occupied slices, Flip Flop (FF),

Lookup table (LUT), BRAM_18K, and DSP48E.

 The power dissipation.

It can be seen from the Table 5.4 that the hardware resources are higher for high

precision than for medium which is expected. However, when the number of sensors

equals two, the hardware usage such as FFs, LUTs, Slices is more than that of three

sensors. It is due to the fact that some parameters and arrays depend on the number of

sensors that is implemented on distribution memory of FPGA from logic elements. In the

case of three sensors, more memory from FPGA (BRAM) is used instead of logic

elements.

169

Table 5.4: Resources utilizations and overall implementation performance on Artix7 -2I

(XA7A100T CSG324 -2I).

Parameters

Medium Precision High Precision

Number of Sensors Number of Sensors

2 3 4 2 3 4

Max. Freq. (MHz) 14.0 14.0 14.0 8.45 8.45 8.45

Occupied Slices 7001 6192 7181 12468 11719 12268

Slice LUTs 18463 18402 19096 40992 41497 42572

Slices of FF 11182 9914 12325 16526 14623 18251

LUT FF Pairs 24486 22419 25504 47403 44953 47269

DSP48E1s 18 18 18 64 64 64

BRAM_18K 6 14 14 6 14 14

Power (mW) 2395 2331 2529 4087 3999 4284

The design of the control unit of a deep pipelined data-path that controls the

scheduling for medium and high precision is 49 and 71 stages respectively. The number

of clock cycles, throughput, clock period and the execution time from the start of

execution until the final output is written for medium precision and high precision for

different number of sensors are shown in Table 5.5 and Table 5.6.

Table 5.5: Simulation time for different number of sensors for medium precision.

Parameter Number of Sensors

2 3 4

Clock Frequency (MHz) 14 14 14

Clock Period (ns) 71.42 71.42 71.42

Throughput (cycles) 15206 25330 36052

Execution Time (ms) 1.086 1.809 2.574

170

Table 5.6: Simulation time for different number of sensors for high precision.

Parameter Number of Sensors

2 3 4

Clock Frequency (MHz) 8.456 8.456 8.456

Clock Period (ns) 118.26 118.26 118.26

Throughput (cycles) 20680 35208 50734

Execution Time (ms) 2.445 4.163 6.00

D
3
 is coded in C for its quick performance evaluation. Programs have been executed

on a conventional PC powered by a 2.6 GHz i7-3720QM CPU with 8 GB RAM. The

results of the execution times for i7 processor, our optimized FPGA, and GPU

implementations are summarized in Table 5.7. Execution time is plotted in Figure 5-6 to

show the effect of varying the number of sensors on the performance. The results show

that the FPGA implementation performs better than other implementations. The superior

performance of the FPGA-based implementations is attributed to the highly parallel and

pipelined architecture.

Table 5.7: Execution time on different platform implementations

Implementation Number of Sensors

2 3 4

i7-3720QM CPU (ms) 20.458 45.76 71.84

FPGA (ms) 2.445 4.163 6.00

GPU (ms) 3.22 5.89 7.58

171

Figure 5-6: Effect of changing the number of sensors on execution time for different

implementations.

5.4 Simulation of Parallel Extensive Cancellation Algorithm

(ECA)

A real data is used to examine and verify ECA algorithm. The data were obtained

from Radar Sensing Group of Electro-Science Laboratory, Department of Electrical

Engineering, Ohio State University, USA [160]. The experimental FM PBR system

focused on the use of TV station signals. However, the ECA based PBR approach can be

applied to any other transmission sources such as cell-phone transmissions, radio

waveforms, navigation satellites, and others.

The data were collected on long integration time in order to get an acceptable signal to

noise ratio. The antennas were wideband hybrid log-periodic and bowtie antennas from

ETS Lindgren (one for the reference and the other for surveillance). They were mounted

0

10

20

30

40

50

60

70

80

2 3 4

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Number of Sensors

GPU FPGA CPU

172

on tripods on the roof of the Electro-Science Laboratory [160], at a height above ground

of approximately 10 m.

 The incoming digital television waveform was amplified and bandpass filtered. The

spectrum for the real-sampled signal at 100 MHz represents frequencies from 500-550

MHz. The primary channel of interest is DTV ch 24, WSFJ-TV, from 530 to 536 MHz

(DTV broadcasts have a 6 MHz bandwidth.)

The collected passive radar data were digitized for one second as there was no way of

verifying whether the detections were spurious noise or actual target. The processing was

segmented by independently processing the first half second of the data and the last half

second of the data. Between these two data collections, if a target is present at the same

range and Doppler, we can expect that the detection was successful.

Figure 5-7 shows the processing of the first half and the second half of the data in (a)

and (b) respectively, whereas (c) represents the common detections between the two

portions of the data (only the true target is shown).

173

Figure 5-7: 2D-CCF after cancellation with ECA.

(a) Sketch of reference scenario. (b) Sketch of surveillance scenario.

(c) 2D-CCF after the cancellation with ECA.

Figure 5-8 shows the 2D-CCF between the reference and surveillance waveforms

when the direct signal and all echoes from stationary scatters are cancelled. A target is

detected at 22 m/s bistatic range rate and 4 km bistatic range where it is clearly visible

since there are no sidelobes in either range or velocity dimension. It proves the validity of

the modified ECA algorithm and shows the detection of a moving target.

Bistatic Range (km)

M
o
n
o
 s

p
e
e
d
 (

m
/s

)

First Detection Map

0 5 10 15

-80

-60

-40

-20

0

20

40

60

80

Bistatic Range (km)

M
o
n
o
 s

p
e
e
d
 (

m
/s

)

Second Detection Map

0 5 10 15

-80

-60

-40

-20

0

20

40

60

80

Bistatic Range (km)

M
o
n
o
 s

p
e
e
d
 (

m
/s

)

Combined

0 5 10 15

-80

-60

-40

-20

0

20

40

60

80

174

Figure 5-8: Target (circled) at (4,22) detected in ECA processing.

The software tool (RSPT) automatically generates the VHDL ECA component and

synthesizes with the Xilinx ISE [159]. Xc6vlx760-2ff1760 FPGA device is used in this

work. Table 5.8 lists the overall results in terms of hardware resources, and power

consumption. The hardware utilization given in terms of occupied slices, Flip Flop (FF),

Lookup table (LUT), BRAM_18K, IOBs, LUT FF pairs, DSP48E, and the power

dissipation.

Bistatic Range (km)

M
o
n
o
 s

p
e
e
d
 (

m
/s

)

First half of a second

0 5 10 15

-80

-60

-40

-20

0

20

40

60

80

P
o
w

e
r

(d
B

)

-50

-45

-40

-35

-30

-25

-20

Bistatic Range (km)

M
o
n
o
 s

p
e
e
d
 (

m
/s

)

Second half of a second

0 5 10 15

-80

-60

-40

-20

0

20

40

60

80

P
o
w

e
r

(d
B

)

-50

-45

-40

-35

-30

-25

-20

175

Table 5.8: Resource utilization ON Xc6vlx760-2ff1760 FOR N=1000 & K=32

Parameters Resource Utilization

Number of Slice Register 422,311

Number of Slice LUTs 193,781

Number of Occupied Slices 104,148

Number of LUT FF pairs used 445,760

Number of IOBs 1186

Number of DSP48E1s 113

Power Consumption (mW) 4122

Tables 5.9 and 5.10 summarize the ECA major processes involved in ECA and

illustrate the time complexity and memory usage before and after the optimization for

each step.

Table 5.9: Time complexity of the major steps in ECA before and after optimization

Process Before Optimization After Optimization

Matrix D Building O() Removed

D
K
 O(KN

3
) Removed

D
K
sref O(KN

2
) Removed

Sref Matrix Building O() O()
Matrix Building O() Removed

Matrix B Building O() Removed

Matrix Hermitian Building () Removed

Second part of Matrix X (()) (()
Matrix X Building O() Removed

Complex matrix multiplication F=(X
H
X) O() O()

Complex matrix inverse Z=(X
H
X)

-1
 Varies by used

method

O()

 ()

 ()

Complex matrix multiplication D=Z*X
H

Matrix-vector multiplication
survDs ()

Matrix-vector multiplication X () ()
Vector-vector subtraction

survs X () O(1)

176

Table 5.10: Storage complexity for the major steps in ECA before and after

optimization

Process Before Optimization After Optimization

Ssurv vector building N N

sref vector building N+R-1 N+R-1

Matrix D Building (N+R-1)
2
 0

Sref Matrix Building (N+R-1)K (N+R-1)K

Matrix Building (2P+1) (N+R-1)
2
 0

Matrix B Building N(N+R-1) 0

Matrix X Building NM NM

Matrix Hermitian Building MN 0

Complex matrix multiplication (X
H
X) MM MM

Complex matrix inverse (X
H
X)

-1
 MM

 Complex matrix multiplication (XH
X)

-1
*X

H MN

Matrix-vector multiplication 1()H H

survX X X s M M

Matrix-vector multiplication X N N

Vector-vector subtraction
survs X N N

The design of the control unit of a deep pipelined data-path that controls the

scheduling for FPGA has 73 stages. The number of clock cycles, throughput, clock

period, and the execution time from the start of execution until the final output is written

for different number of range bins are shown in Table 5.11.

Table 5.11: Simulation time for different number of range bins

Parameter Range bins (K)

32 48 64

Clock Frequency (MHz) 123 123 123

Clock period(ns) 8.12 8.12 8.12

Throughput (cycles) 5,788,1773 12,931,0344 24,0147783

Execution Time (s) 0.47 1.05 1.95

ECA is coded in C for its quick performance evaluation. Programs have been executed

on a conventional PC powered by a 2.6 GHz i7-3720QM CPU with 8 GB RAM. The

177

results of the execution times for i7 processor, our optimized FPGA, and GPU

implementations are summarized in Table 5.12. Execution time is plotted in Figure 5-9 to

show the effect of varying the number of range bins on the performance. The results

show that the FPGA implementation performs better than other implementations. The

superior performance of the FPGA-based implementations is attributed to the highly

parallel and pipelined architecture, and the flexibility in allocating the needed resources.

Table 5.12: Execution time of different platforms of ECA

Implementation Range bins (K)

32 48 64

CPU before Optimization (s) 32.34 45.2 60.21

CPU After Optimization (s) 8.52 13.05 20.8

GPU (s) 0.98 1.457 2.377

FPGA (s) 0.47 1.05 1.95

Figure 5-9: Effect of changing range bins (K) on execution time for different

implementations.

0

10

20

30

40

50

60

70

32 48 64

E
x
ec

u
ti

o
n

 t
im

e
(s

)

Range bins (K)

CPU Before Optimization

CPU After Optimization

FPGA with Optimization

GPU with Optimization

178

5.5 Simulation of Parallel Block Compressive Sampling

Matching Pursuit (BCoSaMP) algorithm

A numerical experiment is performed in order to examine and verify BCoSaMP

algorithm. The experiment is accomplished using a signal with length N=4096 from

noise-free random Gaussian numbers. The block size is 32 and numbers of active blocks

are 16. The setup of our experiment is important for microphone applications where

sparse acoustic signal frequencies have different amplitudes and delays. The recorded

signals from the microphone are digitized and re-constructed in a way to match the

structure of blocking technique for BCoSaMP algorithm. However, the BCoSaMP

algorithm can be applied to any other sources such as image processing applications.

Figures 5-10 and 5-11 show the original block sparse signal and the result of

recovering the signal from BCoSaMP algorithm, respectively. We observe that

BCoSaMP algorithm can recover the original sparse signal accurately.

179

Figure 5-10: Original block-sparse signal

Figure 5-11: BCoSaMP-based recovery signal.

0 200 400 600 800 1000 1200
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Original

0 200 400 600 800 1000 1200
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Reconstruction

180

RSPT tool automatically generates the VHDL BCoSaMP component and

synthesizes with the Xilinx ISE [159]. XC7A100TCSG324-3 FPGA device is used in this

work. Table 5.13 lists the overall results in terms of hardware resources and power

consumption. The hardware utilization is given in terms of slices of BRAM_18K,

DSP48E, Flip Flop (FF), Lookup table (LUT), IOBs, and the power dissipation.

Table 5.13: Resource utilization and overall implementation performance of

BCoSaMP ON Artix7 xc7a100tcsg324-3

Parameters Resource Utilization

BRAM_18K 14

DSP48E 42

FFs 8753

LUTs 10884

Number of IOBs 140

Power Consumption (mW) 1960

The design of the control unit of a deep pipelined data-path that controls the

scheduling is 57 stages. The number of clock cycles, throughput, clock period, and the

execution time from the start of execution until the final output is written for different

number of vector size are shown in Table 5.14.

181

Table 5.14: Simulation time comparison of different number of vector size with K=50

and Number of blocks =5

Parameter Density (Number of samples)

256 512 1024

Clock Frequency (MHz) 117.64 117.64 117.64

Clock Period(ns) 8.5 8.5 8.5

Throughput (cycles) 41025 71793 116304

Execution Time (ms) 0.3487 0.61 0.988

The execution times of BCoSaMP algorithm for the sequential, FPGA, and GPU

implementations are summarized in Table 5.15. The results show that the FPGA and

GPU implementations perform much better than the alternative sequential

implementation. The superior performance of the FPGA-based implementations is

attributed to the highly parallel and pipelined architecture. The result also shows the

effect of changing the vector size on the performance. It can also be seen that our

optimized implementations achieves more speed-up with increasing vector size which is

attributed to the high parallelism and pipelining exploited in the array architecture as

opposed to the sequential behavior implementation.

Table 5.15: Execution time of different implementations for BCoSaMP

Implementation Density (Number of blips)

256 512 1024

Before Optimization (ms) 3.1 6.39 14.1

Optimization with FPGA (ms) 0.3487 0.61 0.988

Optimization with GPU (ms) 0.442 0.76 1.32

182

5.6 Simulation of Parallel Discrete Wavelet Transform

(DWT)

The generated VHDL DWT file from our software tool is evaluated and synthesized

with the Xilinx tool ISE [159]. XA7A100T CSG324 -2I FPGA part is used in our work.

The hardware resources in terms of occupied slices, performance in terms of maximum

frequency, and power dissipation of our generated VHDL file for all dimensions for size

N=128 are shown in Table 5.16. Our implementation provides significant improvement

with respect to the maximum frequency whereas a slight increase in number of slices and

the power consumption.

Table 5.16: Hardware Utilization and Overall Performance for N=64.

1-D

Parameters

Forward Type Backward Type

Non-

Optimized

Optimized Non-

Optimized

Optimized

Slices 1646 2247 1022 1110

Power (mW) 96 101 83 83

Max. Fr.(MHz) 116.12 214.6 118.55 226.55

2-D

Slices 2525 2654 1250 1353

Power (mW) 218 249 189 203

Max. Fr.(MHz) 113 210 113.66 218

3-D

Slices 2890 3159 1896 2064

Power (mW) 361 404 294 328

Max. Fr.(MHz) 106.17 203 104 204.45

183

The DWT performance is compared with other implementations and platforms. The

achieved throughput of Pentium III processor, DSP, and the optimized FPGA

implementation are shown in Table 5.17. The result shows that FPGA implementation

achieves high performance compared with other implementations and platforms. This is

due to the highly parallel and pipelined architecture provided by the FPGA

implementation of DWT and the efficiency of our developed software processing tool.

Table 5.17: Throughput of Different Implementations for 2-D for N =128.

Platform Forward (MHz) Backward (MHz)

Pentium III 0.00781 0.00673

TMS320C6711 DSP 6.530 3.620

Conventional one 113 113.66

Our Method 210 218

To underline the influence of different transform size on area, power consumption

and maximum frequency, we have implemented the optimized design that generated from

our tool on Xilinx FPGA devices, Xa7a100t-2icsg324. Figures 5-12, 5-13, and 5-14

illustrate the relationship for each performance indicator for backward type for 1-D, 2-D,

and 3-D. The results obtained are clearly shown that the 3-D consumes more area and

power than 1-D and 2-D due to its high computation and complexities.

184

Figure 5-12: Influence of transform size on area (slices).

Figure 5-13: Influence of transform size on power consumption (mW).

0

1000

2000

3000

4000

5000

6000

7000

A
re

a
 (

S
li

ce
s)

 16 32 64 128 256 512

Transform Size (N)

1D

2D

3D

0

50

100

150

200

250

300

350

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
W

)

 16 32 64 128 256 512

Transform Size (N)

1D

2D

3D

185

Figure 5-14: Influence of transform size on maximum frequency (MHz).

5.7 Simulation of Parallel Particle Filter

In order to examine and verify particle filter method, it must be tested against highly

non-linear and non-Gaussian data. So, complex system with difficult state estimation is

considered in our work in both the process and measurements based on Equations (3.50)

and (3.51). Figures 5-15 and 5-16 show the particle filter estimation performance and the

error rate over the true state respectively. It shows that the estimating state is close to the

true states which validate the efficiency of particle filter operation.

0

50

100

150

200

250

300

350

400

M
a

x
im

u
m

 f
re

q
u

en
cy

 (
M

H
z)

16 32 64 128 256 512

Transform Size (N)

1D

2D

3D

186

Figure 5-15: Particle filter estimation performance

Figure 5-16: Error rates of 100 particles over 50 time step

0 10 20 30 40 50
-20

-15

-10

-5

0

5

10

15

20

time step

st
a

te

True state

Particle filter estimate

0 5 10 15 20 25 30 35 40 45 50
-10

-5

0

5

10

15

20

Step

E
rr

o
r

187

The particle filter component is synthesized with the Xilinx ISE [159].

XA7A100TCSG324-1q FPGA device is used in this work. Table 5.18 lists the overall

results in terms of hardware resources and power consumption.

Table 5.18: Resource utilization and overall implementation performance

Parameters Resource Utilization

BRAM_18K 8

FFs 8724

LUTs 15644

Number of IOBs 230

Power Consumption (mW) 2434

The design of the control unit of a deep pipelined data-path that controls the

scheduling has 101 stages. The number of clock cycles, throughput, clock period, and the

execution time from the start of execution until the final output is written for different

number of vector size are shown in Table 5.19.

Table 5.19: Simulation time comparison of different number of particles

Parameter Number of particles

250 500 1000

CLK Freq. (MHz) 145.34 145.34 145.34

Clock Period(ns) 6.88 6.88 6.88

Throughput (cycles) 410325 710773 1100800

Execution Time (ms) 2.823 4.89 7.57

The execution times of particle filter implementation for the sequential, FPGA, and

GPU implementations are summarized in Table 5.20. The results show that the optimized

188

FPGA and GPU implementations perform much better than un-optimized one. The

superior performance of the optimized implementation is attributed to the exploitation of

parallel architecture of the FPGA and the parallelization of the particle filter. The result

also shows that the optimized implementation achieves more speed-up with increasing

number of particle which is attributed to the high parallelism and pipelining exploited in

the array architecture.

Table 5.20: Execution time of different implementation

Implementation Number of particles

250 500 1000

Before Optimization (ms) 21.93 43.94 87.5

Optimization with FPGA (ms) 2.823 4.89 7.57

Optimization with GPU (ms) 3.07 6.48 11.86

5.8 Simulation of Parallel Model Based- Iterative Hard

Thresholding (MB-IHT)

A numerical experiment is performed in order to examine and verify MB-IHT

method. The experiment is accomplished of a signal with length N=1024 from noise-free

random Gaussian. The number of measurements is 240 and the number of active blocks

is 40. Figures 5-17 and 5-18 show the original block sparse signal and the result of

recovering the signal using the MB - IHT method. Figure 5-19 shows the error rate of

reconstruction the sparse compressed signal. It shows that the MB-IHT method can

recover the original sparse signal accurately which validate the efficiency of the

algorithm.

189

Figure 5-17: Original block-sparse signal

Figure 5-18: MB-IHT based recovery.

0 200 400 600 800 1000 1200
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Original

0 200 400 600 800 1000 1200
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Reconstruction

190

Figure 5-19: Error rates of recovering compressed sparse signal using MB-IHT.

The MB - IHT method has been implemented and synthesized on xc7a100tcsg324-3

FPGA device. Table 5.21 lists the overall results in terms of hardware resources and

power consumption. The hardware utilization is given in terms of slices of BRAM_18K,

DSP48E, Flip Flop (FF), Lookup table (LUT), IOBs, and the power dissipation.

0 200 400 600 800 1000 1200
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Error

191

Table 5.21: Resource utilization and overall implementation performance on Artix7

xc7a100tcsg324-3

Parameters Resource Utilization

BRAM_18K 4

DSP48E 8

FFs 593

LUTs 805

Number of IOBs 140

Power Consumption (mW) 138

The design of the control unit of a deep pipelined data-path that controls the

scheduling is 57 stages. The number of clock cycles, throughput, clock period, and the

execution time from the start of execution until the final output is written for different

number of vector size are shown in Table 5.22.

Table 5.22: Simulation time comparison of different number of vector size with K=25

Parameter Density (Number of samples)

256 512 1024

CLK Freq. (MHz) 125 125 125

Clock Period(ns) 8.0 8.0 8.0

Throughput (cycles) 27861 55501 110700

Execution Time (µs) 222 441 885

The execution times of the MB - IHT method for the sequential, FPGA, and GPU

implementations are summarized in Table 5.23. The results show that the optimization

with FPGA achieves much better than the alternative implementations. The superior

performance of the FPGA-based implementations is attributed to the highly parallel and

pipelined architecture. The result also shows the effect of changing the vector size on the

192

performance; which shows that our optimized implementations is achieved more speed-

up with increasing vector size which is attributed to the high parallelism and pipelining

exploited in the array architecture as opposed to the sequential behaviour implementation.

Table 5.23: Execution time of different implementations on Artix7 -3 (XC7A100T

CSG324 -3)

Implementation Density (Number of blips)

256 512 1024

Before Optimization (µs) 437 856 1693

Optimization with FPGA (µs) 222 441 885

Optimization with GPU (µs) 301 535 1050

5.9 Data Storage Location Analysis and Optimization

Placing data at different storage resources on FPGA devices such as look-up tables,

internal block RAM, and external memory will highly affect the overall performance

such as latency, power dissipation, hardware resources, and the total area. So, a careful

consideration must be taken in the way of storing and implementing the array and

matrices. For example, if the data elements in the vector or matrices need to be accessed

only one time, then the efficient implementation is to store these data in a block RAM to

take the advantages of the efficiency of memory architecture. On the other hand, when

the data elements need to be accessed simultaneously to support some optimization

techniques to improve the performance, then these elements must be stored through

internal configurable logic blocks. This will help in improving the performance but it

loses the efficient architecture of RAM and increases power dissipation, hardware

193

resources, and the area. So, it will consume large logic resources that FPGA uses for

other logical and mathematical operations.

Also, the size of data elements that need to be stored has a critical factor in placing

them at different places. In order to store the data through configurable logic blocks, the

logic blocks such as Look-Up Table (LUT) and Flip Flop (FF) need to be configured and

wired together. So, with large number of data elements, the implementation will be not

efficient as it causes high wiring delays and uses a large number of multiplexers. So, in

this case, the Block RAM will be utilized to reduce the latency, hardware resources, and

power dissipation. On the other hand, with a small number of elements, the configurable

logic block will be an appropriate option as the block RAMs has fixed modules in terms

of size. So, if you map small number of elements on the block RAM, then it will waste

the rest of the space in RAM.

 Moreover, both distributed memory through configurable logic blocks and block

RAMs are different in the way they are operated. Obviously the memory has two ports;

write and read. Both of them are synchronous in writing operation whereas distributed

memory is asynchronous and the block RAMs are synchronous in the reading operation.

The advantage of the asynchronous feature of the configurable logic blocks in reading

operations is the possibility of reading the data from memory as soon as the address is

given without waiting for the clock edge. However, the synchronous operations can only

happen at the clock edge.

194

In summary, the distributed reconfigurable logic blocks are used in the following

cases:

 Requiring multiple accesses to the data elements in the same clock cycle by

applying optimization techniques to improve the performance. This will help

in executing some operations concurrently.

 The amount of data required to be stored is smaller.

 Not enough free embedded block RAM on the FPGA for storage.

However, the blocks RAMs of FPGA are used in the following cases:

 Requiring only one access of the data in the same clock cycle.

 The amount of data required to be stored is large.

 Not enough free reconfigurable logic blocks available on the FPGA.

In order to explore the performance of placing data at various memory location and

architecture, we take 2-D discrete wavelet transform method as a case study with

dimension N=128. So, its matrix (128x128) is implemented through both reconfigurable

logic blocks and block RAM. Reconfigurable logic blocks based implementation avoids

any contention on the matrix resource where many elements can be accessed

simultaneously. It was also implemented as dual ports block RAM for comparing

purposes. Table 5.24 shows the overall performance of running 2-D Forward type DWT

for size N=128 in terms of Flip Flop (FF), Look Up Table (LUT), and the power

consumption for both implementations. Xa7a100tfgg484-2i FPGA device is also used for

both of them. Table 5.24 shows that reconfigurable logic blocks based implementation

requires a lot of hardware resources that used and the design will be large due to use a lot

195

of multiplexers; consequently the power consumption, area, and design complexities are

increased dramatically. This is because the matrix has a large data element that is not

appropriate for reconfigurable logic blocks.

Table 5.24: Hardware resources and power consumption of placing data at various

memory locations for 2-D DWT

Hardware resource Dual port block

RAM

Reconfigurable logic

blocks as LUT

Percentage of

increased

Throughput (MHz) 113 210 86%

LUT 1642 10778 556%

FF 835 9548 1043%

Power dissipation (mW) 246 2031 725%

Also, we take another large example to show the impact of each option of storing the

data. BCoSaMP algorithm is fully explored of placing data at both look up tables and

block RAM. In this algorithm, we consider four vectors each with size 50 elements, one

vector with size 256, two vectors each with size 30, and matrix with size 10x10. Using

reconfigurable logic blocks option, Xilinx tool gives warning for the vectors with size 50,

vector with size 256, and the matrix one. Sizes of these vectors were too large for

implementation with LUTs. If warning is ignored then it requires long runtime and

suboptimal Quality of Results (QoR). It is due to use of large numbers of multiplexers.

Table 5.25 shows how much the hardware resources and power dissipation is increased

with the option of reconfigurable logic blocks as opposed to block RAM option for only

the vector with size 256 and the two vectors with size 30.

196

Table 5.25: Hardware resources and power consumption of placing data at various

memory locations for BCoSaMP algorithm

Hardware resource Dual port

block RAM

Reconfigurable

logic blocks as LUT

Percentage of increased

or decreased

Latency (ms) 3.1 0.3487 Decreased 88%

Block RAM 14 10 Decreased 28%

LUT 12763 23202 Increased 82%

FF 11516 31798 Increased 176%

Power dissipation (mW) 2438 5505 Increased 126%

Our goal is to achieve low latency without increasing other critical performance

parameters dramatically such as power dissipation, hardware resources, area, and

complexity. So, a careful implementation and decision for each vector and matrix in all

our algorithms (D
3
, ECA, particle filter, DWT, IHT, and BCoSaMP) are made based on

above mentioned cases. Sometimes when a parallel operation is performed on a large

matrix such as in the case of DWT, multi ports RAM is used instead of reconfigurable

logic blocks. This helps in neglecting high resource requirement and storage overhead to

minimize the area, cost, power consumption, and design complexities.

Also, the implementation of some algorithms on FPGA devices such as ECA

algorithm requires an external memory to store the data where the capacity of internal

FPGA memory is not enough. This is very critical as it dictates the overall performance

of the system which deals with I/O ports that have high latency. The interface must

provide high bandwidth for both read and write operations to keep up with the flow of the

data. So, to minimize the low performance and the overhead of the interface, it is only

used with the following cases:

 Not enough space to store the data on FPGA internal memory.

197

 At the first time where the input data need to be fetched from external

memory to be stored on FPGA internal memory.

 At the last time where the result data need to be stored back to the external

memory.

5.10 Vivado HLS Tool versus VHDL Programming

The most limitations with FPGA platform is the requirements of large design time

and high development of the algorithm. However, this limitation is removed by using

Vivado HLS tool. In order to show the effectiveness of HLS tool, an extensive analysis

of matrix vector multiplication task is performed since it is used mostly in all the

algorithms. The matrix vector multiplication task was written in standard VHDL and

synthesized. It was then compared with results from HLS tool. Both implementations are

synthesized and simulated on the same device and FPGA part (Vertix7 XC7VX330T

FFG1157-2). Table 5.26 shows the performance in terms of the achieved throughput,

LUT, FF, IOBs, and the power dissipation. The result shows that VHDL implementation

based on HLS tool achieves better throughput and IOBs than manual implementation. On

the other hand, LUTs and FFs are slightly increased where the power dissipation almost

the same. However, our objective is to achieve high throughput without increasing other

performance parameters dramatically. So, HLS tool is used since it achieves high

performance in terms of throughput, simplifies the design and simulation tasks, reduces

the design time, increases the productivity, improves the reliability, and enables

exploration of the design space. It also enables the designer to build the most efficient

implementation in terms of performance with given design constraints. Therefore, the

198

HLS tool should be considered as a new paradigm in FPGA design especially for high

performance applications.

Table 5.26: HLS tool based implementation vs manual implementation of matrix

vector multiplication task

Performance parameters HLS tool VHDL

Throughput (MHz) 418 176

IOBs 100 242

FF 225 113

LUT 227 202

Power dissipation (mW) 148 143

5.11 Conclusions

A parallel algorithm has been developed for IR video processing on GPU with all its

steps; background subtraction, noise filtering and connected component labelling. It

provides a frame processing rate of 45.126 frames per second meeting the real time

requirement of 30 fps. Complete analysis and estimation of energy consumption for all

the MPSoC platform components such as processing elements, memory, caches, routers

and communication architecture were performed to find the bottlenecks in the platform

for video processing application. The video processing algorithm was also partitioned,

parallelized, mapped and scheduled on multi-core. We showed that the energy dissipation

appears to be the most critical factor for memory and caches not for the communication

architecture as per common belief. Also, a better performance is obtained by proposing a

new modelling and simulation approach regarding the channel width and buffer sizing.

D
3
, ECA, particle filter, DWT, IHT, and BCoSaMP algorithms are firstly simulated and

experimented for verification purposes. Then, all the algorithms implemented and

199

parallelized on FPGA and GPU based architecture. Experimental results show that our

FPGA and GPU architectures of these algorithms can significantly outperform an

equivalent sequential implementation. The results also show that our FPGA

implementation provides better performance than the GPU implementation.

200

Chapter 6

Conclusion and Future Work

A parallel processing approach using GPU platform is used to process IR video data

that will meet real time requirements. The IR video processing algorithm including all its

tasks; background subtraction, noise filtering and connected component labeling; were

partitioned, parallelized, mapped and scheduled. We achieved the real time requirements

and the necessary performance for analyzing the IR image of size 704x480.

We have analyzed and assessed the energy dissipation for heterogeneous NoC-

based MPSoC platform running a video application. We have estimated the energy

consumption for all the components of heterogeneous NoC platform including processing

elements, memory, caches, routers and communication architecture. The video

processing algorithm was partitioned, parallelized, mapped and scheduled on Multi-Core

(slave cores). We showed that the energy dissipation appears to be the most critical factor

for memory and caches not for the communication architecture as per common belief.

Also, a new modeling and simulation approach regarding the channel width and buffer

sizing is proposed to get a better performance. We showed that there are some hot spots

201

in the system regarding the channel width and buffer size. They have been optimized to

get a better performance.

D
3
, ECA, particle filter, DWT, IHT, and BCoSaMP algorithms have been transformed

into parallel architectures. They have been implemented on both FPGA and GPU

platforms. A generalized approach for parallelizing a target algorithm has been

developed. It is accomplished by creating a methodology for various processes such as

evaluation of data dependencies and exploring parallel processing opportunities. The

performance evaluation of placing data at various memories such as cache, look up

tables, SRAMs, and external memories has been explored. It shows high impact on the

overall performance such as latency, power dissipation, hardware resources, and the total

area. So, a careful consideration was taken in the way of array and matrices

implementation of a certain algorithm which depends on many factors such as:

 Number of required access of data elements in the same clock cycle.

 The size of the vector and the matrix need to be stored.

 The available storage area on embedded block RAM on the FPGA.

High Level Synthesis Tool (HLST) has been exploited with our techniques by

enabling rapid development to generate efficient parallel codes from high-level problem

descriptions. The HLST automatically generate the pipelined data-path and the control

unit which significantly simplifies the design and simulation process. It significantly

reduces the design time of FPGA-based hardware, enables design exploration, and

therefore, should be considered as an alternative in FPGA design for complex

applications.

202

A new software tool called Radar Signal Processing Tool (RSPT) has been developed.

It unifies the aspects of algorithms, architectures, and software which bridges the gap

between the algorithm and architecture scientific communities. This helps in performing

hardware software co-design that pushes performance and energy efficiency while

reducing cost, area, and overhead. It is capable of auto-generating a fully optimized

VHDL representation of each processing approach with different parameters through a

Graphic User Interface (GUI). It provides the designer a feedback on different

performance parameters such as the number of occupied slices, maximum frequency, and

dynamic range performance. Using this feedback, the designer can focus on the overall

SoC performance and make adjustments to any of these components as necessary until

the desired performance of the overall SoC is achieved. This provides great flexibility in

designing signal processing applications such as D
3
, ECA, particle filter, DWT, IHT, and

BCoSaMP algorithms for a SoC without having to write a single line of VHDL code.

RSPT also utilizes optimization techniques such as pipelining, code in-lining, loop

unrolling, loops merging, and dataflow techniques by allowing the concurrent execution

of operations to improve throughput and latency.

Following are several issues which need to be considered in order to improve and

expand our work:

203

 Although our selected algorithms for radar and compressive sensing are the

interesting topic of many researchers in recent years, there are many other

algorithms that are still needs to be developed of different fields.

 The results of the selected algorithms are obtained through simulations.

However, it is more complementary if these algorithms are implemented and

simulated on real hardware. This will be interesting for researchers in different

fields.

 Our selected algorithms are implemented based on different programming

languages such as C, C++, Vivado Syntax, Matlab. However, the development

of these algorithms in a deeper level based on circuit level based on VLSI

research will be very helpful. This takes a long time for designing,

developing, testing, and verification, but it will improve the performance in

terms of latency, power dissipation, and storage area.

 Although many algorithms are implemented efficiently on different parallel

processing platforms to reach the real time requirements, it is more desirable

to develop and implement these algorithms based on system level not on

component level. This will include a complete system consisting of

transmitter phase with its antenna, RF oscillator, modulator etc, receiver phase

with its local oscillator, amplifier, limiter, detector, Analog to Digital

Converter (ADC) etc, input stage design, storage phase, signal processing

design with its filter, integration, compression etc, and output stage design.

This will help in linking all the application requirements resources and

204

therefore more optimization will be achieved since several optimization

techniques will be applied for all its parts not just for the computational part.

205

References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.

Englewood Cliffs, NJ: Prentice-Hall, 1998.

2. M. A. Richards, Fundamentals of Radar Signal Processing. New York: McGraw-

Hill, 2005.

3. J. P. Costas, “A study of a class of detection waveforms having nearly ideal

range-Doppler ambiguity properties,” Proc. IEEE, vol. 72, pp. 996–1009, Aug.

1984.

4. L. Xu, J. Li, and P. Stoica, “Target detection and parameter estimation for MIMO

radar systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3, pp. 927–939,

Jul. 2008.

5. Q. He, R. Blum, H. Godrich, and A. Haimovich, “Target velocity estimation and

antenna placement for MIMO radar with widely separated antennas,” IEEE J. Sel.

Topics Signal Process., vol. 4, no. 1, pp. 79–100, Feb. 2010.

6. D. W. Bliss and K. W. Forsythe, “Multiple-input multiple-output (MIMO) radar

and imaging: Degrees of freedom and resolution,” in Proc. 37th IEEE Asilomar

Conf. Signals, Systems, Computers, Nov. 2003, vol. 1, pp. 54–59.

206

7. Amira, A., Chandrasekarana, S., Montgomery, D.W. & Uzunb, I.S. (2008) A

segmentation concept for positron emission tomography imaging using

multiresolution analysis. Neurocomputing , vol.71 (2008), pp. 1954– 1965.

8. Bernard, O. & Friboulet, D. (2009) Fast medical image segmentation through an

approximation of narrow-band B-spline level-set and multiresolution. IEEE

International Symposium on Biomedical Imaging: From Nano to Macro, pp. 45 –

48.

9. European Telecommunications Standards Institute. Digital broadcasting system

for television, sound, and data services. ETS 200 421, 1994.

10. European Telecommunications Standards Institute. Digital video broadcasting

(DVB); interaction channel for satellite distribution systems; ETSI EN 301 790

V1.2.2 (2000-12), 2000.

11. European Telecommunications Standards Institute. Digital video broadcasting

(DVB) second generation framing structure, channel coding and modulation

systems for broadcasting, interactive services, news gathering and other

broadband satellite applications. DRAFT EN 302 307 DVBS2-74r15, 2003.

12. Johnson, D. H.; Dudgeon, D. E. (1993). Array Signal Processing. Prentice Hall.

13. Krim, H.; Viberg, M. (July 1996). "Two Decades of Array Signal Processing

Research". IEEE Signal Processing Magazine: 67–94. Retrieved 8 December

2010.

14. S. Haykin and K.J.R. Liu (Editors), "Handbook on Array Processing and Sensor

Networks", Adaptive and Learning Systems for Signal Processing,

Communications, and Control Series, 2010.

http://www.vissta.ncsu.edu/publications/ahk/spm1996.pdf
http://www.vissta.ncsu.edu/publications/ahk/spm1996.pdf

207

15. Ibm, cell broadband processor, http://www.ibm.com/developerworks/power.

16. Intel 80 core chip, http://techresearch.intel.com/articles/Tera-Scale/1449.htm.

17. L. Benini, G. D. Micheli, Networks on chips: a new soc paradigm, IEEE

Computer 35 (1) (2002) 70{78}.

18. C. Spampinato et.al. “Automatic Fish Classification for Underwater Species

Behavior Understanding”, Proc. of the ACM Int. Workshop Anal. and Retrieval

of Tracked Events and Motion in Imagery Streams (ARTEMIS), October 29th,

2010, Florence, Italy.

19. K. Devrari, K.Vinay Kumar, “Fast Face Detection Using Graphics processor”,

International Journal of Computer Science and Information Technologies, Vol. 2

(3), 2011,1082-1086.

20. A. Faro, C. Spampinato, G. Scarciofalo, R. Leonardi, An Automatic System for

Skeletal Bone Age Measurement by Robust Processing of Carpal and

Epiphysial/Metaphysial Bones, IEEE Transactions on Instrumentation and

Measurement , Vol. 59, pp. 2539-2553, 2010.

21. Qingyi Gu, Takeshi Takaki, and Idaku Ishii, "a fast multi-object extraction

algorithm based on cell-based connected components label-ing", IEICE

Transactions on Information and Systems, vol. E95-D, no. 2, pp. 636-645, 2012.

22. Paulo S. B. Nascimento, Helber E. P. de Souza, Francisco A. S. Neves, Member,

IEEE, and Leonardo R. Limongi, “FPGA Implementation of the Generalized

Delayed Signal Cancelation—Phase Locked Loop Method for Detecting

Harmonic Sequence Components in Three-Phase Signals", IEEE Transactions on

ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 2, FEBRUARY 2013.

208

23. Mrs. S. Allin Christe, Mr.M.Vignesh, and Dr.A.Kandaswamy “AN EFFICIENT

FPGA IMPLEMENTATION OF MRI IMAGE FILTERING AND TUMOUR

CHARACTERIZATION USING XILINX SYSTEM GENERATOR”

International Journal of VLSI design & Communication Systems (VLSICS)

Vol.2, No.4, December 2011.

24. Trang Hoang, Van Loi Nguyen, “An Efficient FPGA Implementation of the

Advanced Encryption Standard Algorithm” International Conference on

Computing and Communication Technologies, Research, Innovation, and Vision

for the Future (RIVF), Feb. 27 2012-March 1 2012.

25. Carlos González, Daniel Mozos, Javier Resano, and Antonio Plaza, “FPGA

Implementation of the N-FINDR Algorithm for Remotely Sensed Hyperspectral

Image Analysis” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING, VOL. 50, NO. 2, FEBRUARY 2012.

26. Nonel Thirer, “FPGA Implementation of a Genetic Algorithm for solving Sudoku

Puzzles”, IEEE 27th Convention of Electrical and Electronics Engineers, 2012.

27. Mahdizadeh, H. ; Islamshahr Azad Univ., Tehran, Iran ; Masoumi, M., “Novel

Architecture for Efficient FPGA Implementation of Elliptic Curve Cryptographic

Processor Over GF(2163)” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Vol. 21 (12), Dec. 2013.

28. W. Dally and B. Towles, “Route Packets, Not Wires: Interconnect, Woes Through

Communication-Based Design”, Proc. of the 38th Design Automation

Conference, June 2001.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Trang%20Hoang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Van%20Loi%20Nguyen.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6168956
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6168956
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mahdizadeh,%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92

209

29. T. Ye, L. Benini, and G. De Micheli, “Analysis of power consumption on switch

fabrics in network routers”. In Proc. Design Automatin Conf. (DAC), June 2002.

30. N. Eisley and L. Peh. “High-level power analysis for on-chip networks”. In

Proc.Intl. Conf. on Compilers, Architectures and Synthesis for Embedded

Systems (CASES), Sept. 2004.

31. T. T. Ye, L. Benini, and G. De Micheli. “Packetization and routing analysis of on-

chip multiprocessor networks”. Jounal of Systems Architecture, pp.81-104, Feb

2004.

32. Nvidia Corporation Geforce GTX 260

http://www.nvidia.com/object/product_geforce_gtx_260_us.html.

33. Jason Sanders, Edward Kandrot “CUDA by Example An Introduction to General-

Purpose GPU Programming”, Addison Wesley 2010.

34. David B. Kirk and Wen-mei W. Hwu “Programming Massively Parallel

Processors: A Hands-on Approach” Morgun Kaufman Publisher is an imprint of

Elsevier 2010

35. NVIDIA CUDA: “Compute Unified Device Architecture”, NVIDIA Corp.

36. http://www.eecg.toronto.edu/~jayar/pubs/kuon/foundtrend08.pdf

37. A. I. Kayssi and K. A. Sakallah, “Delay Macromodels for Point-to-Point MCM

Interconnections,” in Proc. IEEE Multi-chip Module Conference, 1992, pp. 79-82.

38. Kalapi Roy-Neogi and Carl Sechen, “Multiple FPGA Partitioning with

Performance Optimization” Proceeding FPGA '95 Proceedings of the 1995 ACM

third international symposium on Field-programmable gate arrays. Pages 146-

152.

http://www.nvidia.com/object/product_geforce_gtx_260_us.html
http://www.eecg.toronto.edu/~jayar/pubs/kuon/foundtrend08.pdf

210

39. Wim Meeus, Kristof Van Beeck, Toon Goedemé , Jan Meel, and Dirk Stroobandt;

“An overview of today’s high-level synthesis tools”; Springer Science+Business

Media; 12 August 2012.

40. E. Monmasson and M. N. Cirstea, "FPGA design methodology for industrial

control systems: a review," IEEE Transactions on Industrial Electronics, vol. 54,

no. 4, pp. 1824-1842, August 2007.

41. G. Martin and G. Smith, "High-level synthesis: Past, present, and future," IEEE

Design & Test of Computers, vol. 26, no. 4, pp. 18-25, 2009.

42. J. Cong, L. Bin, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhiru, "High-

level synthesis for FPGAs: From prototyping to deployment," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4, pp.

473-491, 2011.

43. D. Varma, D. Mackay, and P. Thiruchelvam, "Easing the verification bottleneck

using high level synthesis," in 28th VLSI Test Symposium, 2010, pp. 253-254.

44. P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral

synthesis of ASICs. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 8(6), pp.661-679, 1989.

45. Navarro, D. Lucia Gil, O.; Barragan, L.; Urriza, I.; Jimenez, O. High-Level

Synthesis for Accelerating the FPGA Implementation of Computationally-

Demanding Control Algorithms for Power Converters. IEEE Transactions on

Industrial Informatics, 9(99), 2013.

46. J. Cong, "A new generation of C-base synthesis tool and domain specific

computing," in IEEE International SOC Conference, 2008, pp. 386-386.

211

47. C. Economakos and G. Economakos, "FPGA implementation of PLC programs

using automated high-level synthesis tools," in Industrial Electronics, 2008. ISIE

2008. IEEE International Symposium on, 2008, pp. 1908-1913.

48. http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug902-

vivado-high-level-synthesis.pdf

49. M. M. Jamali, Brett Snyder, John Williams, Ryan Kindred, Gavin St. John, M.

W. Majid, J. Ross, J. Frizado, P. V. Gorsevski, V. Bingman, “Remote Avian

Monitoring System for Wind Turbines, Paper presented at the 2011 IEEE

International Conference on Electro/Information Technology, May 2011.

50. S. Bastas, G. Mirzaei, M. W. Majid, J. Ross, M. M. Jamali, J. Frizado, P. V.

Gorsevski, V. Bingman, “A Novel Classification System for Flight Calls,” The

2012 IEEE International Symposium on Circuits and Systems, Seoul, Korea, May

2012.

51. Golrokh Mirzaei, Mohammad Wadood Majid, Selin Bastas, Jeremy Ross, Mohsin

M. Jamali, Peter V. Gorsevski, Joseph Frizado,Verner P. Bingman, “Acoustic

Monitoring Techniques for Avian Detection and Classification,” The Asilomar

Conference on Signals, Systems, and Computers,” November 2012.

52. James W. Davis and Vinay Sharma.”Fusion-based background-subtraction using

contour saliency”. In IEEE International Workshop on Object Tracking and

Classification Beyond the Visible Spectrum, IEEE OTCBVS WS Series Bench,

2005.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug902-vivado-high-level-synthesis.pdf

212

53. Mariusz Jankowski, Jens-Peer Kuska. “Connected components labeling -

algorithms in Mathematica, Java, C++ and C#”. 2004 International Mathematica

Symposium.

54. R. D. Yapa, K. Harada, “ Connected Component Labeling Algorithms for Gray-

Scale Images and Evaluation of Performance using Digital Mammograms,”

IJCSNS International Journal of Computer Science and Network Security, 8(6),

pp. 33–41, 2008.

55. K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component labeling

based on sequential local operations,” Comput. Vis. Image Underst. 89(1), pp. 1–

23, 2003.

56. B. Zeigler, “DEVS formalism: A framework for hierarchical model

development”, IEEE Transactions on Software Engineering 14 (2) pp. 228-241,

Feb 1988.

57. Choi, B. Park, J. Park, A formal model conversion approach to developing a

DEVS-based factory simulator, Simulation 79 (8) pp. 440-461, 2003.

58. J. Lee, Y. Lim, S. Chi, “Hierarchical modeling and simulation environment for

intelligent transportation systems”, 80 (2) pp. 61-76, 2004.

59. P. Zeigler, S. Mittal, X. Hu, “Towards a formal standard for interoperability in

M&S/ system of systems integration”, GMU-AFCEA Symposium on Critical

Issues in C4I, 2008.

60. T. Kim, C. Seo, B. P. Zeigler, “Web-based distributed network analyzer using a

system entity structure over a service-oriented architecture”, 86 (3) pp. 155-180,

2010.

213

61. B. Zeigler, “Today: Recent advances in discrete event-based information

technology” In Proc. of the 11th IEEE/ACM International Symposium on

Modeling, Analysis and Simulation of Computer Telecommunications Systems

(MASCOTS), 2003, Orlando, FL, USA.

62. J. Hu and R. Marculescu,“Energy and Performance Aware Mapping for Regular

NoC Architecture”, IEEE Tran. on CAD, April 2005.

63. Noxim Simulator: http://noxim.sourceforge.net/.

64. J. L. Ayala, M. L´opez-Vallejo, and C. L. Barrio, “A case study on power

dissipation in the memory hierarchy of embedded systems” in Design of Circuits

and Integrated Systems Conference, November 2003.

65. K. Yang, Y. Zhang, and Y. Mizuguchi. A Signal Subspace-Based Subband

Approach to Space-Time Adaptive Processing for Mobile Communications. IEEE

Trans. Signal Processing, 49(2), pp.401-413, 2001.

66. J. R. Guerci, “Space-Time Adaptive Processing for Radar”. Norwood, MA:

Artech House, 2003.

67. R. Klemm, “Principles of Space-Time Adaptive Processing”, IEE, London, 2006.

68. R. Klemm, “The applications of space-time adaptive processing”, IEE, London,

2004.

69. W.L. Melvin. A STAP overview. IEEE Aerospace and Electronic Systems

Magazine, 19(1), pp.19-35, 2004.

70. X. Lin and R.S. Blum. Robust STAP algorithms using prior knowledge for

airborne radar applications. Signal Processing, 79(3), pp. 273-287, 1999.

214

71. R. S. Adve. A Two Stage Hybrid Space-Time Adaptive Processing Algorithm.

Radar Conference, The Record of the 1999 IEEE, pp. 279-284, 1999.

72. X. Wen, A. Wang, L. Li, and C. Han. Direct data domain approach to space-time

adaptive signal processing. Control, Automation, Robotics and Vision

Conference, ICARCV, pp. 2070-2075, Dec 2004.

73. D. Cristallini and W. Bürger. A Robust Direct Data Domain Approach for STAP.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, 60(3), MARCH 2012.

74. X. Wen, C. Han. Direct data domain approach to space-time adaptive processing.

Journal of Systems Engineering and Electronics. 17(3), pp. 59-64, March 2006.

75. S. Park. Prevention of signal cancellation in an adaptive nulling problem.

Antennas and Propagation Society International Symposium. Pp. 1040-1043,

1997.

76. Richard Klemm . Principles of Space-Time Adaptive Processing, 3rd Edition,

Germany, 2006.

77. G.H. Golub, C.F. Van Loan, “Matrix Computation”, The Johns Hopkins

University Press, Baltimore, 1983.

78. Y. Saad, “Numerical Methods for Large Eigenvalue Problems”, Manchester

University Press, Manchester, UK, 1992.

79. G.H. Golub, Z. Zhang and H. Zha, “Large sparse symmetric eigenvalue problems

with homogeneous linear constraints: the Lanczos process with inner-outer

iterations”, 1996.

80. R. Lehoucq and K. Meerbergen. (1997). The inexact Krylov sequence method.

[Online], Avaliable: http://ftp.mcs.anl.gov/pub/tech_reports/reports/P612.pdf.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaoqin%20Wen.QT.&searchWithin=p_Author_Ids:37271516900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Anhong%20Wang.QT.&searchWithin=p_Author_Ids:38183436900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Linsheng%20Li.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chongzhao%20Han.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9908
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9908
http://www.sciencedirect.com/science/article/pii/S100441320660011X
http://www.sciencedirect.com/science/article/pii/S100441320660011X
http://www.sciencedirect.com/science/journal/10044132
http://digital-library.theiet.org/search;jsessionid=4tpcfn96ce6c5.x-iet-live-01?value1=&option1=all&value2=Richard+Klemm&option2=author

215

81. R. Morgan and D. Scott. Preconditioning the Lanczos algorithm for sparse

symmetric eigenvalue problems, SIAM J. Sci. Stat. Comput, 14(3), pp. 585-593,

1993.

82. Y. Lai, K. Lin and W. Lin., An Inexact Inverse Iteration for Large Sparse

Eigenvalue Problems, Numerical Linear Algebra Applications, 4(5), pp. 425-437,

1997.

83. Gene H. Golub and Qiang Ye. In-exact Inverse Iteration for Generalized

Eigenvalue Problems. BIT Numerical Mathematics. 40(4), pp. 671-684, 2000.

84. Atkinson, Kendell A. (1988). "Section 8.9". An introduction to numerical

analysis (2nd ed.). John Wiley and Sons. ISBN 0-471-50023-2.

85. http://my.safaribooksonline.com/book/-/9780521872652/6dot2-matrix-

multiplication-and-inversion/622_the_lu_decomposition.

86. http://www.xilinx.com/support/documentation/ip_documentation/ug406.pdf

87. Laura Fischer, Yura Pyatnychko; FPGA Design for DDR3 Memory, March, 2012.

88. Virtex-6 FPGA Memory Interface Solutions User Guide," 1 March 2011.

[Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/ug406.pdf.

89. Bunch, James R.; Hopcroft, John (1974), "Triangular factorization and inversion

by fast matrix multiplication", Mathematics of Computation 28: 231–236,

ISSN 0025-5718.

90. F. S. Heunis, “Passive Coherent Location Radar using Software-Defined Radio

Techniques,” Master’s thesis, University of Cape Town, Private Bag,

Rondebosch, 7701, South Africa, May 2010.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-471-50023-2
http://my.safaribooksonline.com/book/-/9780521872652/6dot2-matrix-multiplication-and-inversion/622_the_lu_decomposition
http://my.safaribooksonline.com/book/-/9780521872652/6dot2-matrix-multiplication-and-inversion/622_the_lu_decomposition
http://www.xilinx.com/support/documentation/ip_documentation/ug406.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug406.pdf
http://en.wikipedia.org/wiki/John_Hopcroft
http://en.wikipedia.org/wiki/Mathematics_of_Computation
http://en.wikipedia.org/wiki/International_Standard_Serial_Number
http://www.worldcat.org/issn/0025-5718

216

91. C. Tong, M. R. Inggs, and G. E. Lange, “Processing design of a networked

passive coherent location system,” in Proceedings of the 2011 IEEE Radar

Conference, May 2011.

92. F. COLONE, D. W. O’HAGAN, P. LOMBARDO and C. J. BAKER “ A

Multistage Processing Algorithm for Disturbance Removal and Target Detection

in Passive Bistatic Radar” . IEEE Transaction on Aerospace and Electronic

Systems, April, 2009, 698-722.

93. Griffiths, H. D., and Baker, C. J. Passive coherent location radar systems. Part 1:

Performance prediction. IEE Proceedings on Radar, Sonar and Navigation, 152, 3

(June 2005), 153—159.

94. Baker, C. J., Griffiths, H. D., and Papoutsis, I. Passive coherent location radar

systems. Part 2: Waveform properties. IEE Proceedings on Radar, Sonar and

Navigation, 152, 3 (June 2005), 160—168.

95. Lauri, A., Colone, F., Cardinali, R., and Lombardo, P., “Analysis and emulation

of FM radio signals for passive radar,” . Presented at the 2007 IEEE Aerospace

Conference, Big Sky, MT, Mar. 3—10, 2007.

96. Howland, P. E., Maksimiuk, D., and Reitsma, G. FM radio based bistatic radar.

IEE Proceedings on Radar, Sonar and Navigation, 152, 3 (June 2005), 107—115.

97. Kulpa, K. S., and Czekala, Z. Ground clutter suppression in noise radar. Presented

at the International Conference on Radar Systems (Radar 2004), Oct. 2004.

98. Axelsson, S. R. J. Improved clutter suppression in random noise radar. Presented

at the URSI 2005 Commission F Symposium on microwave Remote Sensing of

the Earth, Oceans, Ice, and Atmosphere, Apr. 2005.

217

99. Gunner, A., Temple, M. A., and Claypoole, R. J., Jr. Direct-path filtering of DAB

waveform from PCL receiver target channel. Electronics Letters, 39, 1 (2003),

1005—1007.

100. Kulpa, K. S., and Czekala, Z. Masking effect and its removal in PCL radar. IEE

Proceedings on Radar, Sonar and Navigation, 152, 3 (June 2005), 174—178.

101. Cardinali, R., Colone, F., Ferretti, C., and Lombardo, P. Comparison of clutter

and multipath cancellation techniques for passive radar. Presented at the IEEE

2007 Radar Conference, Boston, MA, Mar. 2007.

102. Colone, F., Cardinali, R., and Lombardo, P. Cancellation of clutter and multipath

in passive radar using a sequential approach. In IEEE 2006 Radar Conference,

Verona, NY, Apr. 24—27, 2006, 393—399.

103. Haykin, S. Adaptive Filter Theory (4th ed.). Upper Saddle River, NJ: Prentice-

Hall, 2002.

104. D. L. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory, vol. 52, no. 4,

pp. 1289–1306, September 2006.

105. E. J. Cand`es, “Compressive sampling,” in Proc. Int. Congress of Mathematicians,

Madrid, Spain, Aug. 2006, vol. 3, pp. 1433–1452.

106. Petros Boufounos, Marco F. Duarte, Richard G. Baraniuk, SPARSE SIGNAL

RECONSTRUCTION FROM NOISY COMPRESSIVE MEASUREMENTS

USING CROSS VALIDATION.

107. D. Needell and J.A. Tropp, CoSaMP: Iterative Signal Recovery from Incomplete

and Inaccurate Samples, Information theory and Applications, July 2008, from:

http://users.cms.caltech.edu/~jtropp/papers/NT08-CoSaMP-Iterative-preprint.pdf

http://users.cms.caltech.edu/~jtropp/papers/NT08-CoSaMP-Iterative-preprint.pdf

218

108. J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via

orthogonal matching pursuit.IEEE Trans. Info. Theory, 53(12):4655–4666, 2007

109. D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck. Sparse solution of

underdetermined linear equations by stagewise Orthogonal Matching Pursuit

(StOMP). 2007.

110. D. Needell and R. Vershynin. Signal recovery from incomplete and inaccurate

measurements via regularized orthogonal matching pursuit. October 2007.

111. E. Cand`es, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal

reconstruction from highly incomplete Fourier information. IEEE Trans. Info.

Theory, 52(2):489–509, Feb. 2006.

112. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for

sparse reconstruction: Applicationto compressed sensing and other inverse

problems. IEEE J. Selected Topics in Signal Processing: Special Issueon Convex

Optimization Methods for Signal Processing, 1(4):586–598, 2007.

113. I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for

linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math.,

57:1413–1457, 2004.

114. A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. J. Strauss. Near-

optimal sparse Fourier representations via sampling. In Proc. of the 2002 ACM

Symposium on Theory of Computing STOC, pages 152–161, 2002.

115. A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin. Algorithmic linear dimension

reduction in the ℓ1 norm for sparse vectors. Submitted for publication, August

2006.

219

116. E. J. Cand`es, J. Romberg, and T. Tao, “Stable signal recovery from incomplete

and inaccurate measurements,” Comm. Pure Appl. Math., vol. 59, no. 8, pp.

1207–1223, Aug. 2006.

117. J. Tropp and A. C. Gilbert, “Signal recovery from partial information via

orthogonal matching pursuit,” Apr. 2005.

118. E. J. Cand`es and T. Tao, “The Dantzig selector: Statistical estimation when p is

much larger than n,” Ann. Statistics, 2006.

119. J. Haupt and R. Nowak, “Signal reconstruction from noisy random projections,”

IEEE Trans. Info. Theory, vol. 52, no. 9, pp. 4036–4048, Sept. 2006.

120. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projections for

sparse reconstruction: Application to compressed sensing and other inverse

problems,” 2007.

121. S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-

scale "1-regularized least squares problems with applications in signal processing

and statistics,” 2007.

122. http://www.ece.rice.edu/~vc3/elec633/CoSaMP.pdf

123. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C. Model-Based Compressive

Sensing, IEEE Transactions on Information Theory, Vol (56) Issue (4), April

2010.

124. Reshma .M, Shiwani Hariraman, Swathi .P; Video Compressed Sensing using

CoSaMP Recovery Algorithm , IJEDR Conference Proceeding (NCETSE), 2014.

125. http://publications.lib.chalmers.se/records/fulltext/146656.pdf

http://www.ece.rice.edu/~vc3/elec633/CoSaMP.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cevher,%20V..QT.&searchWithin=p_Author_Ids:37284959100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Duarte,%20M.F..QT.&searchWithin=p_Author_Ids:37286099800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hegde,%20C..QT.&searchWithin=p_Author_Ids:37319703900&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18
http://publications.lib.chalmers.se/records/fulltext/146656.pdf

220

126. M. Davenport, D. Needell, and M. Wakin, “Signal Space CoSaMP for sparse

recovery with redundant dictionaries,” IEEE Transactions on Information

Theory, 2013.

127. Emmanuel J. Candes , “The Restricted Isometry Property and Its Implications for

Compressed Sensing “, Applied & Computational Mathematics, California

Institute of Technology, Pasadena, CA 91125-5000.

128. Petros Boufounos, Marco F. Duarte and Richard G. Baraniuk, Sparse Signal

Reconstruction from Noisy Compressive Measurements using Cross Validation,

from:http://dsp.rice.edu/sites/dsp.rice.edu/files/publications/conference-

paper/2007/sparse-ssp-2007.pdf

129. Irina F. Gorodnitsky, Bhaskar D. Rao, Sparse Signal Reconstruction from Limited

Data Using FOCUSS: A Re-weighted Minimum Norm Algorithm, IEEE

proceedings on signal processing, March 1997, Vol. 45(3):p. 600-616.

130. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C. Model-Based Compressive

Sensing, IEEE Transactions on Information Theory, Vol (56) Issue (4), April

2010.

131. T. Cormen, C. Lesierson, L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, Cambridge, MA, 2nd edition, 2001.

132. Thomas Blumensath, Mike E. Davies, Iterative Hard Thresholding for

Compressed Sensing; http://www.see.ed.ac.uk/~tblumens/papers/BDIHT.pdf.

133. T. Blumensath, M. Davies, Iterative thresholding for sparse approximations,

Journal of Fourier Analysis and Applications 14 (5) (2008) 629–654.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18
http://dsp.rice.edu/sites/dsp.rice.edu/files/publications/conference-paper/2007/sparse-ssp-2007.pdf
http://dsp.rice.edu/sites/dsp.rice.edu/files/publications/conference-paper/2007/sparse-ssp-2007.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cevher,%20V..QT.&searchWithin=p_Author_Ids:37284959100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Duarte,%20M.F..QT.&searchWithin=p_Author_Ids:37286099800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hegde,%20C..QT.&searchWithin=p_Author_Ids:37319703900&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18
http://www.see.ed.ac.uk/~tblumens/papers/BDIHT.pdf

221

134. I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for

linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math.,

57:1413–1457, 2004.

135. Riol, O., and Vetterli, M.: ‘Wavelets and signal processing’, IEEE Signal

Processing Magazine, 1991, 8, pp. 14-38.

136. Field, D. J.: ‘Wavelets, vision and the statistics of natural scenes’, Philosophical

Transactions of the Royal Society: Mathematical, Physical and Engineering

Sciences, 1999, pp. 2527-2542.

137. Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I.: ‘Image coding using

wavelet transform’, IEEE Transactions on Image Processing, 1992, 2, pp. 205-

220.

138. Knowles, G. 1990. VLSI architecture for the discrete wavelet transform. Electron

Letters, 26, 15: 1184-1185.

139. Chakabarti, C. and Vishwanath, M. 1995. Efficient realizations of the discrete and

continuous wavelet transforms: from single chip implementations to mappings on

SIMD array computers. IEEE Transactions on Signal Processing, 43, 3: 759-771.

140. Ali Al-Haj. Fast Discrete Wavelet Transformation Using FPGAs and Distributed

Arithmetic. International Journal of Applied Science and Engineering, 2003. 1, 2:

160-171.

141. D. Crookes, “Architectures for high performance image processing: The future”,

J. of Systems Architecture, 45(10), Apr. 1999, p.739;

222

142. A. Benkrid, K. Benkrid, D. Crookes, “Design and implementation of a generic 2D

orthogonal discrete wavelet transform on FPGA”, 11th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines, 9-11 April 2003, p.162;

143. Bahoura M. and Ezzaidi H. “Pipelined Architecture for Discrete Wavelet

Transform Implementation on FPGA”, 22nd International Conference on

Microelectronics (ICM 2010).

144. Afandi et. Al. “3D Haar Wavelet Transform with Dynamic Partial

Reconfiguration for 3D Medical Image Compression” Biomedical Circuits and

Systems Conference, 2009. BioCAS 2009. IEEE

145. A. Ahmad, B. Krill, A. Amira, and H. Rabah, “Efficient architectures for 3D

HWT using dynamic partial reconfiguration,” Journal of Syst. Arch., vol. 56(8),

pp. 305–316, 2010.

146. M.-M. Salem, M. Appel, F. Winkler, B. Meffert, FPGA-based smart camera for

3D wavelet-based image segmentation, in: Proceedings of the Second ACM/IEEE

International Conference on Distributed Smart Cameras (ICDSC 2008),

California, USA, 2008, pp. 1–8.

147. Gerald, K.: ‘A Friendly Guide To Wavelets’, 1994.

148. Y. Bar-Shalom and W. D. Blair, Multitarget-Multisensor Tracking: Applications

and Advances, vol. III, Archtech House, Norwood, MS, 2000.

149. S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems,

Artech House, Norwood, MA, 1999.

150. http://pskla.kpi.ua/lib/2009/Simon.pdf

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5361057
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5361057
http://pskla.kpi.ua/lib/2009/Simon.pdf

223

151. Y. Boers and J.N. Driesses, Multitarget Particle Filter Track Before Detect

Application, IEEE Proceedings Radar, Sonar and Navigation, 2003, Vol. 151: p.

351-357.

152. M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon and Tim Clapp, A

Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian

Tracking, IEEE Transactios on Signal Processing, Feb. 2002, Vol. 50(2): p.174-

188.

153. Niclas Bergman, Recursive Bayesian Estimation: Navigation and Tracking

Applications, 1999,

http://www.control.isy.liu.se/research/reports/Ph.D.Thesis/PhD579.pdf

154. G. Kitagawa, “Non-Gaussian state-space modelling of non-stationary time series

(with discussion),” Journal of the American Statastical Association, 82(400), pp.

1032-1063 (December 1987).

155. N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation,” IEEE Proceedings-F, 140(2), pp. 107-113

(April 1993).

156. D. Moolenaar, L. Nachtergaele, F. Catthoor, and H. De Man, “System level power

exploration for MPEG-2 decoder on embedded cores: a systematic approach”

Proc. IEEE Wsh. on Signal Processing Systems, Nov. 1997.

157. K. Flautner, NS. Kim, D. Blaauw, and T. Mudge, “Drowsy Caches: Simple

Techniques for Reducing Leakage Power”, IEEE Symposium on Computer

Architecture, May, 2002.

http://www.control.isy.liu.se/research/reports/Ph.D.Thesis/PhD579.pdf

224

158. N. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Circuit and micro-architectural

techniques for reducing cache leakage power”, IEEE Trans on VLSI, pp.167-184,

Feb 2004.

159. Artix7 FPGAs from Xilinx, Inc. (www.xilinx.com).

160. http://electroscience.osu.edu/9219.cfm

http://www.xilinx.com/
http://electroscience.osu.edu/9219.cfm

