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An Abstract of 
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The applications of digital signal processing continue to expand and use in many 

different areas such as signal processing, radar tracking, image processing, medical 

imaging, video broadcasting, and control algorithms for sensor array processing. Most of 

the signal processing applications are intensive and may not achieve the real time 

requirements. However, the Multi-core phenomenon has been embraced by almost all 

processor manufacturers and the road to the future is through parallel processing.  Now 

we have many parallel processing platforms that developed for high performance such as:  

 Multi-Core/Many-Cores 

 Graphic Processing Units (GPU) 

 Field Programmable Gate Arrays (FPGA) 

This research work involves developing optimized parallel architectures of many 

signal processing applications such as Extensive Cancellation Algorithm (ECA), Direct 

Data Domain (D
3
), Block Compressive Sampling Matching Pursuit algorithm 

(BCoSaMP), video processing, Discrete Wavelet Transform (DWT), Particle Filter (PF), 

and Iterative Hard Thresholding (IHT) on different platforms such as Multi-core, FPGA 
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and GPU. This is performed by exploring opportunities of any computation and storage 

that can be eliminated to achieve high performance and meet its real time requirements. 

Different techniques and ideas have also been derived from different advanced fields to 

increase the intelligibility and the usefulness of our research. A new innovative 

generalized method is proposed which can be very helpful for many researchers in 

various areas. Then, the applications have been moved higher ordering through 

implementing interfaces. This makes it adaptable by specifying all the input parameters 

of a certain application and fast prototyping through different performance evaluations.  

We propose and exploit many parallelization methods and optimization techniques in 

order to improve the latency, hardware usage, power consumption, cost, and reliability. 

These parallelization methods predict the data path and the control unit of the application 

processes. Also, the applications examine into numerical algorithms approaches to 

provide a transition from the research theory to the practice and to enhance the 

computational and resource requirements by adapting the certain algorithm for high 

performance applications. We exploit techniques coupled with high level synthesis tools 

by enabling rapid development to generate efficient parallel codes from high-level 

problem descriptions. This will reduce the design time, increase the productivity, improve 

the reliability, and enable exploration of the design space. Approaches will include 

optimizations based on mathematical and/or statistical reasoning, set theory, logic, and 

auto-tuning techniques.  

Hardware software co-design for these applications has been performed that pushes 

performance and energy efficiency while reducing cost, area, and overhead. This has 

been accomplished by developing a tool called Radar Signal Processing Tool (RSPT). 
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RSPT allows the designer to auto-generate fully optimized VHDL representation of any 

of these signal processing algorithms by specifying many user input parameters through 

Graphic User Interface (GUI). This will offer great flexibility in designing signal 

processing applications for a System on Chip (SoC) without having to write a single line 

of VHDL code. RSPT also communicates with Xilinx toolset to check for the available 

FPGA parts installed with the Xilinx toolset and for executing the VHDL synthesis 

command chain. Moreover, it utilizes optimization techniques such as pipelining, code 

in-lining, loop unrolling, loops merging, and dataflow techniques by allowing the 

concurrent execution of operations to improve throughput and latency. Finally, RSPT 

provides the designer a feedback on various performance parameters such as occupied 

slices, maximum frequency, and dynamic range. This offers the designer the ability to 

make any adjustments to the algorithm component until the desired performance of the 

overall SoC is achieved.  

Parallel approach of IR Video processing is also proposed as it widely used in many 

numerous processing applications and not achieve the real time requirements. Analysis 

and assessment of the energy dissipation for heterogeneous Network on Chip (NoC) 

based Multiprocessor System on Chip (MPSoC) platform running a video application are 

performed. It identifies the latency, area, and energy bottlenecks of the entire 

heterogeneous platform including processors, interconnection wires, routers, memory, 

and caches etc. Also, we propose a new modeling and simulation approach regarding the 

channel width and buffer sizing which have a strong impact on the performance and the 

overhead of the chip. This approach monitors the state of each link in the NoC topology. 

Then, based on the congestion spot and the critical path we can optimize the design by 
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changing channel width and buffer size until achieving the desired performance.  
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Chapter 1 

Introduction 
 

  

1.1 Problem Statement 

Semiconductor technology is approaching its limits, and one way to get future 

advances in computing is via parallel processing. There are many application areas that 

can benefit from the parallel computing such as signal processing [1-2], radar tracking [3-

5], image processing [6], medical imaging [7-8], video broadcasting [9-11], control 

algorithms and sensor array processing [12-14]. Most of the signal processing 

applications are computationally and data intensive. So, efficient implementation is 

required to achieve high performance and meet their real time constraints. 

 

Researchers in the literature concentrate either on algorithm implementation or on 

architecture development. Algorithm researchers perform the implementation based on 

their performance parameters such as correctness, efficiency, accuracy etc. while 

assuming the underlying architecture would be adequate. On the other hand, architecture 

researchers' interest in different performance parameters such as speed, hardware 

resources, communication architecture, memory and bus architecture etc. However, it is 
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very difficult to master both the algorithm implementation and the architecture 

development at the same time. So, a unifying framework is required to unify the aspects 

of algorithms, architectures, and software.  

 

Most processing platforms have a complete system [15-17] on the same chip which 

includes multi-cores, Digital Signal Processors (DSP), circuits, memory banks, send and 

receive units etc. These platforms become more complex and powerful since it has many 

heterogeneous components in their design and the tasks they perform. High Performance 

Computing (HPC) research interest to develop a platform that is capable to achieve high 

performance for real time applications by improving all the following elements:  

 Number of processors  

  Processor and memory architecture 

 Bus architecture  

 Communication with I/O modules 

 Energy constrained 

 Resilient programming techniques 

 Parallel processing friendly environment  

Embedded systems come in wide variety of processing elements, memory and other 

peripherals. The complexity of an embedded system varies from single core processors to 

multi-core and even many-core architectures, including a wide variety of possible 

peripherals. Multi-core architectures are relying less on instruction level parallelism as it 
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has reached its limits. Although multi-core solutions offer more parallelism and look 

promising for general purpose processing, they might not be efficient in performance and 

flexible enough for certain specific tasks. However, the implementation of these 

computationally algorithms can be performed using the following parallel processing 

platforms where each platform has different trade-offs in terms of latency, area, power 

consumption, cost, and flexibility: 

 Multi-core through NoC. 

 Field Programmable Gate Arrays (FPGAs). 

 Graphic Processing Units (GPUs). 

There are many parallel processing approaches available in the literature that can be 

applied to a given algorithm. Some of the approaches that can be considered are: 

 Loop level parallelism: it is a technique where different iterations of the 

same loop are executed in parallel on different processors. We can also use 

loop interchanges in the nested loops to maximize parallelism in the 

innermost loop.  

 Data level parallelism can be handled by independently processing data in 

parallel. 

 Function level parallelism can be exploited by dividing functions into 

various stages and executing them either in parallel or pipeline fashion.  
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 Pipelining can improve throughput of the function by allowing the 

concurrent execution of operations within a function. 

 Dataflow technique that enables concurrency at the function level to 

improve throughput and latency. 

 In-lining technique that removes all functions hierarchy to reduce the 

function call overhead. 

 Reusing technique to minimize the area and power consumption. 

Functions and loops will iterate over the same hardware resources each 

time they execute to maximize the sharing. 

 Optimal mapping of arrays on FPGA. FPGA memories have limited 

access capabilities (read ports and write ports). This imposes dependencies 

which prevents applying some parallelization techniques. For example, a 

dual-port RAM, or reconfigured RAM may allow more reads and writes in 

the same clock cycle. 

 Bit-level parallelism where the amount of information of the processor 

that can be processed per cycle (word size) is doubled. This reduces the 

number of instructions to perform an operation on variables whose sizes 

are greater than the length of the available word size. For example, 8-bit 

processor must add two 16-bit integers by first adding the 8 lower-order 

bits from each integer, and then add the 8 higher-order bits. So, 8-bit 

http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/16-bit
http://en.wikipedia.org/wiki/Integer
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processor requires two instructions to complete a single operation whereas 

a single instruction is required to complete the operation of a 16-bit 

processor. 

 Instruction-level parallelism where the instruction of a program can be re-

ordered and combined into groups to be executed in parallel without 

changing the result of the program. Recently, processors have multi-

stage instruction pipelines where each stage has different action on that 

instruction in the stage. For example, processor with an N-stage pipeline 

can have up to N different instructions at different stages of completion. 

For example RISC processor has five stages: instruction fetch, decode, 

execute, memory access, and write back. Moreover, some processors can 

issue more than one instruction at a time which is called superscalar 

processors. However, this technique can be performed by grouping the 

instructions together if there is no data dependency between them. 

 Task parallelism where the parallelization is performed when entirely 

different code sections are executed either on the same or different sets of 

data.  

1.2 Parallel Processing Environment 

There are many algorithms in different applications that require high level of 

parallelization due to their intensive computation requirements. Many parallel processing 

http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Instruction_pipeline
http://en.wikipedia.org/wiki/Reduced_Instruction_Set_Computer
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Data_dependency
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platforms have evolved to achieve higher computational speed such as FPGA 

architecture, multi-core, and GPU. In the past, an algorithm working on standard single 

processor may be too slow; we desired a high performance CPU that will be able to 

execute it in a more efficient way. Despite in the last few years the CPU architecture has 

been increasingly improved with many processors, providing a higher level of parallelism 

where a lot of operations could be executed in a tiny time, especially in research fields 

such as video surveillance [18-19] and for medical image analysis [20]. For this reason, 

parallel implementations of such applications have been developed to achieve high 

computational speed. 

 

In order to use all the resources of the parallel processing platform and get high 

benefit, the application must be parallelized, mapped, and scheduled efficiently to 

achieve the following performance parameters:   

 Minimum run time  

 Minimum code size 

 Minimum memory consumption 

 Meet real time constraints 

 Meet power requirements 

 Maximum system throughput 
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Some of the parallel processing platforms are:   

 Multi-core computing: this platform contains multiple cores on the same chip. 

This can execute multiple instructions from multiple instruction streams. Each 

core can be superscalar processor where multiple instructions can be issued from 

one instruction stream.  

 Symmetric multiprocessing: This platform contains multiple identical 

processors that share memory and connect via a bus. However, the bus has a 

limitation where the contention prevents scaling. The number of processors that 

can be connected to the bus is dependent on electrical characteristics and delays 

due to the bus tolerated by the system. So, this type of architecture is not desirable 

as system needs to meet definite real time constraints. Higher bus bandwidth will 

also be desired. 

 Distributed computing: this type of architecture contains multiple processing 

units. They are connected with a network and may have distributed memory. This 

is highly scalable compared with the symmetric multiprocessing. 

 Cluster computing: this type of architecture contains a group of computers that 

work together closely. These computer clusters are also connected by a network. 

However, the computer in a cluster can be asymmetric where the load balancing 

will be more difficult.  

 Massive parallel processing: this type of architecture contains single computer 
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with many networked processors. It has the same characteristics as clusters where 

the massive parallel processing has specialized interconnect networks. Also, it can 

be larger than clusters. 

 Grid computing: this type is similar to the distributed computing system. It 

makes use of computers communicating over the Internet to work on a given 

problem. These types of computing use middleware software layer with the 

operating system to manage network resources and standardize the software 

interface.  

 Reconfigurable computing with Field-Programmable Gate Arrays (FPGAs): 

FPGAs have large amount of logic, memory, interconnection and other resources 

that can be programmed and re-configured for a given task using Hardware 

Description Languages (HDL) such as VHDL or Verilog. However, HDLs need 

long time for implementation and verification. So, several C to HDL conversion 

tools have been developed that attempt to emulate the syntax and/or semantics of 

the C programming language. 

 Graphics processing units (GPU): GPU has multi-core architecture consisting of 

hundreds of cores. Each core contains a grids and each grid contains threads. 

There are threads, thread blocks, and grids of thread blocks that all differentiate 

themselves based on memory access and kernel execution. A thread block is a 

group of threads that have the ability to cooperate with each other and 

communicate via the per-Block shared memory. This type of architecture is 

http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/C_to_HDL
http://en.wikipedia.org/wiki/C_programming_language
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attractive for offloading numerically intensive computations. The combination of 

high-bandwidth memories and hardware that performs floating point arithmetic at 

significantly higher rates than conventional CPUs makes graphic processors 

attractive targets for computational intensive algorithms. 

In order to implement an algorithm efficiently on any parallel processing platform by 

utilizing all its features, the following steps must be considered: 

 Perform behavioral simulation system using Matlab, C or other languages 

for a given algorithm.   

 Perform detailed analysis and simulation to neglect any unnecessary 

computation task, storage requirement, and area. 

 Implement different methods for a given algorithm on the parallel 

processing platform to reduce the highly required computation modules 

and hardware resources. 

 Develop approaches to identify any inherent parallelism in various 

computational modules. 

 Decompose computational modules into parallel tasks or processes to run 

them in parallel as threads. 

 Explore ways to efficiently map the algorithm on the target machine. 

 Consider the trade-offs between hardware resource utilization, power 
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consumption and execution time.  

 Explore performance measurement based on computation time, code size, 

power consumption, area, and the throughput. 

Nowadays, the researchers widely use FPGAs parallel processing platform [21-27] in 

implementing and parallelizing computational algorithms as it supports parallel and 

pipelined architecture. FPGAs are reconfigurable and provide option of rapid 

prototyping. So, Multi-core, GPU, and FPGA platforms are selected and used extensively 

in this work for implementing and parallelizing different signal processing algorithms. 

We also propose a new software tool called Radar Signal Processing Tool (RSPT) as a 

unifying framework to unify the aspects of algorithms, architectures, and software. It 

bridges the gap between the algorithm and architecture scientific communities. So, 

hardware software co-design has been performed that pushes performance and energy 

efficiency while reducing cost, area, and overhead.  

1.3 Dissertation Outline 

This dissertation is organized as follows: 

 Chapter 2: this chapter provides an overview and background of parallel 

processing platforms such as GPU and FPGA, and extensive review of many 

High Level Synthesis Tools (HLSTs).  

 Chapter 3: Parallel implementations of Extensive Cancellation Algorithm 

(ECA), Direct Data Domain (D
3
), Block Compressive Sampling Matching 
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Pursuit algorithm (BCoSaMP), video processing, Discrete Wavelet Transform 

(DWT), Particle Filter (PF), and Iterative Hard Thresholding (IHT) have been 

performed. It discusses their efficient parallel implementations on FPGA and 

GPU platforms.  

 Chapter 4: this chapter presents a new software tool called Radar Signal 

Processing Tool (RSPT) for VHDL auto-generation for any radar signal 

processing algorithm.  

 Chapter 5: Behavior simulation of selected radar signal processing algorithms 

is provided. It also shows the synthesis and simulation results of their parallel 

computation, storage resources, area, and power consumption on both FPGA 

and GPU.  

 Chapter 6: Conclusions and future work of this research are provided.  
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Chapter 2 

Parallel Processing Platforms and Tools 
 

  

Achieving real time requirements for complex applications require a parallel 

processing platform with multiple processing elements, memories, high bandwidth, 

caches, etc. Multi-core System on Chip (SoC), Field Programmable Gate Arrays 

(FPGAs), and Graphic Processing Units (GPUs) parallel processing platforms have been 

used in our work. They differ in the architecture, number and type of hardware resources, 

and in their programming environment. Following sections will provide an overview and 

background for each one. 

2.1 Parallel Processing on Multiprocessor Systems-on-Chips 

(MPSoC)  

Single processor may be sufficient for low-performance applications that are typical 

of early microcontrollers but the increasing number of extensive applications requires 

multiprocessors to meet their performance goals. Multiprocessor Systems-on-Chips 

(MPSoC) are one of the key applications of VLSI technology today. It is a parallel 

processing platform to build complex integrated system. A certain algorithm can be 
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executed on multiple processors simultaneously through two types of interconnections as 

shown in Figures 2-1 and 2-2: 

 Processors connected via bus. 

 Processors connected via network. 

Single bus

Processor

Cache

Processor

Cache

Processor

Cache

Memory I/O

………...

………...

Figure 2-1: Multiprocessors connected by a single bus. 

Network

Processor

Cache

Processor

Cache

Processor

Cache

………...

………...

Memory Memory Memory

Figure 2-2: Multiprocessors connected by a network 

MPSoC has two general communication modes: 

 Single address: it offers the programmer a single memory address space that all 

processors share. Processors communicate through shared variables in memory 
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where all processors capable of accessing any memory location via load and store 

operations. 

 Message passing: Multiple processors communicate with each other by explicitly 

sending and receiving messages. 

MPSoC requires high bandwidth interconnection between the processors to reduce 

the execution time as the number of processor increases. However, increasing the 

bandwidth by adding more channels improves the performance but also increases the 

total energy dissipation and the chip area. Balancing between reduction in the energy 

dissipation and the performance trade-off is a serious issue in multi-core systems. 

Technology advances in the handheld devices with enormous processing capacity 

required for the multimedia applications impose heavy constraints on the energy 

dissipation. The energy consumption is becoming a limiting factor for future handheld 

devices.  Most of the emerging MPSoC platforms nowadays are heterogeneous in nature. 

In most of the MPSoC research, processors are organized around a shared bus, but 

researchers have launched NoCs communication infrastructure which can be designed to 

deal with growing system complexity [28-31].  

 

Manufacturing network on chip is an expensive process requiring a thorough analysis 

and optimization before actually fabricating and outputting the product to the market. So, 

there is a need for energy analysis for heterogeneous NoC platforms and their memories 

for real time applications. A comprehensive method is essential to know bottlenecks of 

the energy dissipation in the handheld devices while running a multimedia application in 
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real time. Generally, research groups have focused on on-chip communication energy 

consumption for interconnection architecture and homogenous NoC.    

2.2 Parallel Processing on a GPU Platform 

A  Graphic Processing Unit (GPU) is an electronic circuit designed to perform rapid 

mathematical calculations especially for the purpose of rendering images. GPU has many 

usages such as mobile phones, personal computers, and game consoles. GPU is a very 

efficient platform for processing graphics where a high parallel structure of large blocks 

of data can be performed concurrently. The first GPU is introduced by NVIDIA (GeForce 

256) which is capable of processing millions of operations per second.  Intel and AMD 

also provide their own graphic processors. GPUs produced by different manufacturers 

where each one differs in the following features: 

 Streaming Multiprocessor (SM) represents the number and the architecture of 

available cores. 

  Thread global scheduler to manage the context switches between threads 

during execution. 

 Host interface represents the connection between the GPU and the CPU. 

 Memory structure and sizes 

 Cache levels and sizes 

 Clock frequency 

http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Game_console
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/GPU
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 Global memory clock 

 Cooling of chip mechanism 

 Warranties 

 Programming environments and tools 

GPU platforms support massive computational power for applications requiring 

several orders of magnitude higher performance than a conventional CPU. Also, they can 

achieve high throughput of some computations that exhibit high level of data parallelism. 

 

GPU has emerged as a new paradigm which is evolved into a highly parallel 

multiprocessor with high computation power. GPU is a collection of many processors 

with multiple processing units as shown in Figure 2-3. It has high bandwidth memories 

and hardware resources. GPU is capable of performing floating point operations at high 

speed. However, the performance gains in GPU architectures depend on effective 

application parallelization. An efficient implementation on GPU platforms faces two key 

challenges: the first challenge is that parallel tasks must be identified and extracted from 

the sequential algorithm. The second challenge is that there must be an excellent match 

between the extracted tasks and the architecture resources because any mismatch will 

lead in performance loss and a decrease of resource utilization.  

 

NVIDIA GForce GTX 260 [32] GPU was used in our work. It contains eight thread 

blocks with 512 concurrent threads in each block. Each thread has separate access to 
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individual memory, counters, registers, etc. It runs in Single Instruction Multiple Data 

(SIMD) fashion such that all thread blocks execute the same instruction but operate on 

different data.  Threads communicate with each other via the per-block shared memory as 

shown in Figure 2-3. 

 

Figure 2-3: GPU architecture 

The memory hierarchy of GPU consists mainly of five memory levels. Each one has 

different properties and uses. So, they must be used efficiently to achieve high 

performance implementations. The GPU memories are: 

 Constant memory: is a memory that can be accessed from any thread in any 

block and grid of the GPU. It is used for only read operation which usually 

holds the arguments and small data of the kernel functions. It is very limited 

device resource (few kilobytes), very fast, and off-chip location. 

 Global memory: is a memory that can be accessed from any thread in the 

GPU device. This memory is used for both read/write operation. It is used for 

transferring the data between CPU and GPU. So, it can’t transfer data directly 
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from host to shared memory, registers, or local memory. However, the 

location of global memory is off-chip and therefore it is slower than shared 

memory. It has long delays and need a synchronization scheme between 

threads accesses to ensure correct result. 

 Shared memory: is a memory that can be accessed by any thread in the same 

block. This memory is used for both read/write operation where it can’t be 

accessed by the host (CPU). However, it resides on GPU chip and therefore it 

is very fast but it has a limitation regarding its size. 

 Register file: is a memory that can be accessed by only one thread. It’s used 

for both read/write operation where all local variables of a thread reside in 

these registers. However, these registers have a limited resource. Therefore, 

some of the variables and vectors that don’t have enough space in the registers 

will be moved to the local memory. Table 1.1 summarizes the comparison 

between different types of memory hierarchy of GPU device. 

Table 1.1: GPU memories hierarchy comparison 

 Memory Location (on/off chip) Access Scope Lifetime 

Constant Off R Grid Application 

Global Off R/W Grid Application 

Shared On R/W Block Kernel 

Local Off R/W Thread Kernel 

Register On R/W Thread Kernel 

 

CPU and GPU are connected as shown in Figure 2-4. The limitation in the connection 

is the low speed of transferring data between the host (CPU) and the device (GPU).  The 

data transfer inside the GPU device has high speed but still represents a bottleneck for 
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high performance applications. So, placing data at different levels of memory in the GPU 

architecture affects the performance.  

Host (CPU)

Host Memory

Device (GPU)

Device Memory

High speed 

data transfer

Low speed 

data transfer

high speed 

data transfer

 

Figure 2-4: CPU-GPU connection. 
 

After moving the data from the host (CPU) to the device (GPU), it is very beneficial 

to move the data from global memory to shared memory on the GPU part as shared 

memory resides on the GPU chip. This will help in keeping the needed data for each 

block in its own shared memory as shown in the following code: 

Used shared memory for data storing  

__global__ void  Function (int m, float *Mat_d, float *V_d) 

{  __shared__ float Mat_shared [1024];      //Declared shared memory          

   index         Thread index 

   Mat_shared [index] =Mat_d [index];          //Copy from global to shared 

   V_d [index] =Mat_shared [index] /m;}       //Execute the task       

 

 

The shared memory is declared inside the body of the kernel. Then, the data is moved 

from the global memory to the allocated storage on shared memory for further 

processing. This will reduce the latency as the data will be available to all the threads in 

the block inside the GPU chip. This optimization strategy is applied in our 

implementation. 
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NVIDIA supports Compute Unified Device Architecture platform (CUDA) and Open 

Computing Language (OpenCL). CUDA is an Application Programming 

Interfaces (APIs) extension to the C programming language which is developed 

specifically for NVIDIA GPUs. OpenCL is a framework for writing programs that 

execute across heterogeneous platforms such as CPU, GPU, DSPs, and FPGAs. 

However, CUDA and OpenCL allow specified functions from a C program to run on the 

GPU's stream processors. This makes C programs to be executed while taking the 

advantages of GPUs to operate on large matrices in parallel, while still making use of the 

CPU when appropriate.  

 

OpenCL includes a language based on C programming language for writing functions 

that execute on OpenCL devices. It also includes Application Programming 

Interfaces (APIs) that are used to define and control the platforms. Moreover, it 

provides parallel computing using task-based and data-based parallelism. OpenCL has 

been adopted by many companies such as Apple, Qualcomm, Advanced Micro Devices 

(AMD), NVIDIA, Altera, and Samsung. It has many uses where it gives the ability to 

access the GPU for running programs and to automatically compile OpenCL programs 

into application-specific processors running on FPGAs. The following steps must be 

performed to use the OpenCL in different applications:  

 Set up environment: Declare and create the OpenCL context and a command 

queue.  

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/C99
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Nvidia
http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/Samsung
http://en.wikipedia.org/wiki/FPGA
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 Declare buffers & move data: Declare the needed buffers and the transfer 

input data to the device.  

 Run the program: set the kernel arguments and the work group size and then 

enqueue kernel into the command queue to be executed on the device. 

 Get result to host: after the program completes its execution, the result will 

return back from device buffer to the host memory. 

Compute Unified Device Architecture platform (CUDA) [33-35] is a software 

development kit. It consists of a library that allows the programmer to develop programs 

for GPU utilization. It is developed based on the notion of kernel function which can be 

called simultaneously across many threads instances. Each function is identified to be 

executed either using CPU or GPU. The programmer must allocate the amount of 

memory storage area for each variable in a GPU function. The threads in the kernels 

differentiate themselves and work on separate parts of a data set since the kernels have 

special thread identification variables. The execution of any algorithm on GPU consists 

of four basic steps as shown in Figure 2-5: memory storage allocation on the GPU; copies 

the data from the CPU to the GPU, specifies a routine that executes on the GPU 

processing elements, finally, copies the data back to the CPU. 
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Allocation
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call

Copy Result
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Free Memory

Task1 execution

Device

Task2 execution

 

Figure 2-5: Basic steps of the algorithm execution on GPU. 

2.3 Parallel Processing on FPGA Platform 

FPGA is an integrated circuit designed to be configured by the designer where the 

configuration is specified using a Hardware Description Language (HDL). It contains 

large resources of logic gates and RAM blocks to implement complex digital 

computations. It supports very fast I/O and bidirectional data buses. The functions that 

are implemented on the FPGA can be re-configured with low non-recurring costs as 

FPGA contains reconfigurable interconnects that allow the logic blocks to be wired 

together. This makes FPGA platforms suitable for high performance applications. 

 

Field Programmability of FPGA refers to the ability to change the operation at any 

time. This makes FPGA very interesting for hardware implementation. Designers can 

reprogram it after it’s manufactured rather than limited to unchangeable hardware 

http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Logic_gate
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function. FPGAs may be different from each other since they differ in their size and 

internal architecture. However, all FPGAs contain the following basic logic blocks: 

 Logic elements. 

 Lookup table. 

 Memory resources. 

 Routing resources. 

 Clock. 

 Configurable I/O. 

Nowadays, FPGA becomes more complex where these basic logic blocks are 

combined with arithmetic and control structures such as multipliers, microcontrollers  and 

others. Also, some of them contain specialized logic blocks that provide programmable 

input and output capabilities. FPGAs may differ with each other in terms of following 

elements: 

 Logic size 

 Logic structure 

 Speed 

 Memory size 
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 Power consumption 

Recent research interests in a complete system on a programmable chip where the 

logic blocks and interconnects of FPGA are combined with embedded microprocessors. 

This design is accomplished by Xilinx and Altera. Xilinx Inc. integrates ARM and other 

processors into FPGA device which enables system architects and embedded software 

developers to use a combination of serial and parallel processing in their system designs. 

This integration helps to reduce the power consumption with higher reliability since most 

failures in modern electronics occur on Printed Circuit Boards (PCBs) in the connections 

between chips. 

 

There are many techniques used to implement the DSP algorithms in the past such as 

Application Specific Integrated Circuit (ASIC). However, the ASIC has many drawbacks 

including high cost, low flexibility, long time to handle the mapping, routing, placement, 

and timing. However, FPGA based hardware implementation can effectively bridge the 

gap between software programmable systems and application-specific platforms based on 

custom hardware functions. Advances in FPGA lead to implementation of rapid 

hardware-accelerated algorithm. It eliminates the complex and time-consuming process 

of placing, routing, and timing analysis beside its low cost. FPGA are generally slower 

and consume more power than the same applications implemented in custom ASICs. 

However, the lowered risk and cost of development of FPGAs have made them good 

alternatives to custom ICs.  
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FPGA based systems are reconfigurable and provide option of rapid prototyping. It 

includes a large hardware area, memory resources and multiplier blocks surrounded by a 

programmable routing fabric that allows blocks to be programmable interconnected as 

shown in Figure 2-6. It also has programmable input/output blocks to connect the chip to 

the outside world. A large enough collection of gates can be used to implement any 

digital circuit including I/O, communication bus interfaces, and even entire 

microprocessors. 

 
Figure 2-6: Conceptual FPGA architecture [36] 

FPGAs use dedicated hardware for processing logic and do not have an operating 

system. Different operations do not have to compete for the same processing resources as 

the processing paths are parallel. This means speeds can be very fast, and multiple control 

loops can run on a single FPGA device at different rates.  Also, the re-configurability of 
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FPGAs can provide designers with almost limitless flexibility. FPGA-based systems can 

literally rewire their internal circuitry to allow configuration. The implementation using 

FPGAs not only include a larger hardware area, but also embedded processors and 

memory resources. This option offers versatility in running diverse software applications 

on embedded processors, while taking advantage of reconfigurable hardware resources, 

all on the same chip package. Therefore, a hardware chip implementation is more 

desirable than software based implementation. The design flow process of FPGA for any 

application follows five steps as shown in Figure 2-7. 

Design Entry

Technology Mapping

Placement

Routing

Programming Unit

Configured FPGA

 
Figure 2-7: Design flow process diagram 
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FPGA architectures can be classified into two categories: 

 Fuse-based FPGAs: it’s called One Time Programmable (OTP) as it can’t be 

modified once it’s programmed.  

 SRAM technology-based FPGAs: it supports design changes and updates 

throughout the cycle of a product until it’s delivered to the customer.  

In order to achieve high performance and meet real time requirements for complex 

signal processing applications, FPGAs can be interconnected to each other as shown in 

Figure 2-8 to design a complete Multi-FPGA system [37-38]. This may be necessary as 

some applications need very high computational and storage resources.   

FPGA 1

..... .

..... .

..

...

..
.......

FPGA 2

..... .

..... .
..
...
..

.......

Driver Receiver 
Transmission Line

L

 

Figure 2-8: Multiple FPGA interconnection model. 
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VHDL and Verilog are two popular methods of Hardware Description Languages 

(HDLs) for FPGA programming. They are powerful but require high levels of expertise 

to program. One of the major problems with reconfigurable computing platforms is the 

required design time to get the desired efficiency and performance. Increasingly 

sophisticated tools are enabling embedded control system designers to more quickly 

create and more easily adapt FPGA-based applications.  The design time and the VHDL 

programing difficulty can be reduced by the acceptance of High Level Synthesis (HLS) 

[39], a compiler for reconfigurable computing platforms.  

 

Many steps must be considered in the design process of FPGA to achieve the desired 

performance such as: 

 Architectural design: this can be accomplished by writing a pseudo-C code 

of the application, then translates it to Verilog or VHDL.  

 Compiling: this process transfers the data into registers by compiling the 

VHDL or Verilog into Register Transfer Logic (RTL) netlists.   

 Synthesis: this step is required to produce bits to control gates and fill 

registers and memories on an FPGA. This level is called gate-level logic as it 

describes the needed logical gates of the application.  

 Placing and Routing: this step places the synthesized subsystems into FPGA 

locations and makes necessary connections (FPGA routes) between these 

subsystems.  
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 Loading: Finally, after FPGA programs have been compiled, synthesized, 

placed, and routed, it must be embedded in the physical FPGAs. So, the 

programmer downloads the programming file bits into the FPGA hardware to 

implement the gates of the system. 

 Debugging programs: this step uses debuggers, simulators, and emulators in 

FPGA for verification purposes. These tools enable us to go through the 

program execution and observe the effects on flags, register contents, and 

memory locations. 

2.4 High-Level Synthesis Tools 

FPGA technology is an interesting choice to achieve high performance and meet real 

time constraints. However, implementing complex applications using a low-level HDL is 

a discouraging task for regular DSP or microprocessor user. For this reason, high-level 

synthesis tools (HLSTs) [40-43] arise as an alternative to HDLs when using FPGAs.  

 

HLSTs have been evolved since the 1980s. Based on [40], three generations of 

HLSTs can be distinguished. The first one was developed during the 1980s and was 

mainly a research-oriented one with no or little impact in industry [44]. The lack of a real 

need, obscure input languages, and a problematic performance limited the adoption of 

these tools [45]. The second generation started in mid 1990s and was fostered by the 

major Computer Aided Design (CAD) companies present in the market, i.e. Cadence, 

Synopsys, and Mentor Graphics [45]. However, the commercial tools from these 
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companies lack of good performance and reduce learning curve, making it not interesting 

for current designers [45]. Finally, the third generation of HLSTs started at the beginning 

of 2000s. This generation of tools currently offers improved performance and user 

interface leading to a significant reduction in the design times and in the learning process 

[45]. Also, most of them have adopted high level languages such as Matlab or C. There 

are many HLSTs developed during 2000s such as Vivado HLS from Xilinx, Synphony C 

Compiler from Synopsys, Catapult from Mentor Graphics, and CtoS from Cadence. 

 

Raising the abstraction level from low level languages to high level languages such as 

C has enabled software engineers to develop more complex applications with improving 

productivity. This makes the design process easier. High level synthesis tools also known 

as Electronic Design Automation (EDA) tools try to bridge the hardware/software gap by 

supporting automatic transformations from high level programming models to RTL 

hardware descriptions. This is performed by redirecting the time consuming HDL work 

to the compiler instead of the programmer. 

 

HLSTs simplify and accelerate the design process for complex algorithms and ease 

the migration of some designs from DSP to FPGAs [46]. There are many DSP design 

tools such as DSP Builder and System Generator from Altera and Xilinx, respectively, 

which enable the use of Simulink for FPGA design [47]. However, both of them need the 

implementation of the control logic that controls the scheduling of the operations which 

is one of the most time-consuming tasks, and they are limited to the available library 

elements.  
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HLSTs support some directives and constraints defined by the user to optimize the 

design according to performance and/or area criteria. This allows obtaining and 

comparing different implementations in a few minutes. As a consequence, the design 

space exploration is significantly simplified and further optimization can be achieved. 

Moreover, the C-based input can include a test bench to verify the output RTL, therefore 

improving designer productivity by removing the need to create RTL test benches for 

RTL verification. The HLST also creates the required scripts to verify the generated RTL 

through co-simulation with the original test bench and a variety of RTL simulators. 

 

Many HLS tools are developed to raise the abstraction level for designing digital 

logic. A full comparison between twelve tools regarding their capabilities and limitations 

are performed in the following paragraphs [39]. The comparison will be performed based 

on many metrics such as: 

 Source language and ease of implementation regarding the abstraction level. 

 Tool complexity regarding the documentation and the user interface. 

 Support for data types. 

 Design exploration capabilities. 

 Verification and correctness. 

 Generated design regarding the size, latency, and resource usage. 
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1. Xilinx AccelDSP 

AccelDSP is a high level synthesis tool from Xilinx. It provides the designer the 

following capabilities: 

 Transforms Matlab floating-point data to hardware description language that 

can be implemented in Xilinx FPGA.   

 Explores design trade-offs of an algorithm for target FPGA architectures. 

 Creates a synthesizable RTL HDL model. 

 Creates an HDL test bench for verification purposes.  

 Provides automatic conversion from floating-point to fixed-point. 

 Provides automatic calling an HDL simulator to run test bench. 

 Provides automatic calling of ISE tool to place and route the design. 

 A GUI that eases the use of integrated environment with Matlab and Xilinx 

ISE. 

However, AccelDSP has many limitations such as: 

 Works only on streaming functions for image and signal processing 

applications which reduces the domain applications. 

 A limited part of Matlab code is supported. 
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 Based on [39], AccelDSP is a powerful tool for only streaming applications 

and more directives are still needed. 

2.  Agility compiler 

Agility compiler is a tool of electronic system level for SystemC which was acquired 

by Mentor Graphics. It provides the designer the following capabilities: 

 Automatically generates register transfer language from SystemC code. 

 Explores complex algorithms and architectures early in the design. 

 Automatically generates a code which is supported for Actel, Altera and 

Xilinx FPGAs. 

 The generated code is performed by separating the details of the 

communication from the implementation modules. 

 It contains black boxes where HDL IP can be imported.  

 Automatic generations of control and data flow graphs are supported. 

However, Agility compiler has many limitations such as: 

 It requires writing of certain hardware processes manually. 

 A test bench must be implemented manually for verification purposes. 

3. Vivado HLS (AutoPiolt) 

Vivado HLS tool is acquired by Xilinx where it compiles HDL from a variety of C-
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based input languages such as ANSI C, C++ and SystemC. It automatically generates the 

RTL description of FPGA for a given application using a high-level language. It offers 

many advantages: 

 Eliminates use of low-level HDL which is time consuming and prone to 

errors.  

 Provides various directives and constraints that will be useful for an optimized 

design.  

 Simplifies and accelerates the design process and eases the migration of some 

designs from DSP to FPGAs. 

 Allows development of optimized hardware-software co-designs and allows 

easy comparison of different hardware implementations of the same algorithm 

in terms of performance, resources, and estimated power.  

 Increases the productivity, improves the reliability, and enables design 

exploration to achieve the most efficient implementation. 

 Includes a test bench to verify the output RTL through co-simulation with a 

variety of RTL simulators. 

 Automatically generates the data-path and the control unit.  

 Provides a report about clock period, latency, resource estimation, and power 

dissipation. 
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 Allows reuse of c-code test bench for RTL simulation reducing the 

verification time. 

Although HLST gives the user a set of constructs through C/C++ and SystemC to 

design a specific application. However, it has many restrictions and limitations:  

 Dynamic memory allocation is not supported and a fully specified of all 

needed resources is required.  

 It has limitations during synthesis when using pointers as well as the size of 

the structure pointed to must be known. 

4. BlueSpec 

BlueSpec is a tool that was developed by BlueSpec Inc. It is Verilog based language 

where rules called Guarded Atomic Actions (GAA) must be used in order to implement 

the design modules. It offers many advantages: 

 Handles the scheduling and dependencies implicitly. 

 Pragmas can be performed for rule scheduling. 

 Supports a GUI and command line interface for compilation purposes. 

 Provides clear readability and traceability of the generated code since it 

preserves the signal names in the design. 

However, BlueSpec has many restrictions and limitations:  
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 Requires re-implementation of the algorithms where no pre-existing code can 

be used.  

 Needs long port maps and connection lists since all its modules implemented 

separately. 

 Has complex code for basic operation since it uses server-client interfacing 

approach. 

 Difficulty in learning since it uses uncommon rules programming paradigm. 

 Doesn’t support any design exploration capabilities. 

 Needs to write the testbench manually. 

5. Catapult C 

Catapult C is a tool that was acquired by Calypto Design Systems. It provides a large 

subset of C-based languages. It offers many advantages: 

 It’s easy to use as it has a powerful manual and a very clear guide through 

HLS process. 

 Supports options to select target technology, clock rate, area and latency 

constraints, interfaces etc. 

 Supports a GUI and command line interface for compilation purposes. 

 Optimization techniques are supported to enhance the design.  
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 Includes a test bench to verify the output RTL through Modelsim simulator. 

 Provides arbitrary bit width data types. 

 Provides an overview of the performance in terms of area, latency, and 

throughput in the form of tables and plots. 

However, Catapult C has many restrictions and limitations:  

 Memory accesses are not optimized. 

 A modification of the source code must be performed to enable local buffering 

for memory purposes. 

6. Compaan 

Compaan is a tool developed by Compaan Design that uses Eclipse Software 

Development Kit (SDK) tool. It’s not considered as high level synthesis since it doesn’t 

generate the processing elements of the application. This tool is mainly designed for 

streaming application for heterogeneous multi-core platforms. It has following 

advantages: 

 Supports some pragmas for auto-parallelization purposes. 

 Generates the entire communication infrastructure for an application. 

 A FIFO structure is supported for data exchange between different nodes of 

multi-core processors. 
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Compaan has many disadvantages and restriction such as: 

 Doesn’t support a wide range of applications since it is designed mainly for 

streaming applications. 

 The mapping process on the resources must be performed manually by the 

designer. 

 A modification of the source code must be performed by the designer to 

change the number of generated nodes for design exploration. 

 Writing of functional IP using external tools must be performed by the 

designer. 

 Supports only uni-directional FIFO interface. 

7. C-to-Silicon (CtoS) 

CtoS is a tool developed by Cadence where it uses SystemC as a design language. It 

accepts several programming languages such as C, C++, and TLM 1.0. Offering many 

advantages: 

 Supports GUI for compilation and implementation purposes. 

 Provides arbitrary bit width and fixed-point data types. 

 Supports optimization techniques for both memory mapping and loop 

optimization. 
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 Generates RTL models for verification purposes. 

CtoS has many disadvantages and restriction such as: 

 Developed mainly for ASIC design not for FPGA design. 

  Doesn’t support powerful materials and tutorials leaving many questions 

unanswered. 

 Complicated GUI. 

 Difficult to learn since defaults are missing. 

 Difficulty in understanding of some options and constraints for some 

optimizations. 

 The verification process must be performed only through Cadence simulators. 

8. CyberWorkBench (CWB) 

CWB is a high level synthesis tool based on ANSI C. It accepts a variety of input 

languages such as C, SystemC and Behavioral Description Language (BDL). This tool 

provides many advantages: 

 Supports both GUI and command line for parsing and compilation purposes. 

 Supports an interface for both function parameters and global variables. 

 Arbitrary bit width and integer data types are supported. 
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 Supports both automatic and manual scheduling. 

 A number of optimization techniques such as unrolling and folding are 

supported through GUI. 

 Pragmas can be set in the source code for certain loops or variables. 

 Provides an option where the designer can restrict the number of resources 

such as multipliers and adders to balance the design between area and latency. 

 Generates various performance diagrams in terms of area/latency for many 

combinations of settings to obtain the optimal design.  

 Automatically generates test bench with many simulation scenarios for 

verification purposes. 

 Provides features where some external simulators can be called from CWB. 

 The resulting output is written in both VHDL and Verilog languages as well 

as generating scripts for RTL synthesis. 

CyberWorkBench has many disadvantages and restriction such as: 

 Some constructs and functions are non-synthesizable where the designer must 

remove it manually. 

 The input data need to be converted by the user into a separate file for each 

port. 
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 There are some difficulties in understanding the numerous tool options. 

9. DK Design Suite  

DK Design Suite is a high level synthesis tool developed by Mentor Graphics in 

2009. It is appeared before Catapult C tool. This tool accepts Handel-C language as input 

language which is a subset of C language. It offers many advantages: 

 Supports some extensions of interfaces, arbitrary precision data types, and 

parallelism.  

 Supports a straightforward GUI for compilation purposes in addition to a 

command line interface. 

 An excellent Handel-C manual through online help system is supported. 

 Generates the RTL output in both VHDL and Verilog languages. 

DK Design Suite has many drawbacks and restriction such as: 

 Causes difficulties of the designer to explicitly specify parallelism for 

generating efficient code from the Handel-C languages.  

 DK is mainly designed for FPGA which impede the designer to port it on 

different platforms. 

  The designer must perform some modifications on the source code such as 

adding macros and explicitly defining the parallelism for design space 

exploration purposes. 
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 The loops nests must be optimized manually by the designer where the 

correctness of such optimizations must be validated through simulations. 

 Validation of the generated RTL is difficult since DK has limitations to 

expose the data ports on the top level. 

10. Impulse CoDeveloper 

Impulse CoDeveloper is a high level synthesis tool developed by Impulse Accelerated 

Technologies (IAT). It comes with its own IDE where it generates RTL design from C 

languages. This tool offers many advantages: 

 Supports a wide range of FPGA platforms such as Altera, Nallatech, Pico, and 

Xilinx. 

 Supports many tutorials to get started and learn its features easily. 

 The generated RTL can be combined with IP to build a complete system. 

 Provides processor acceleration as the generated hardware accelerators can be 

connected to an embedded FPGA processor.  

 Supports many ways for communication between processes such as streams, 

registers, and signals where the designer can adjust the depth of the streams. 

 Supports several libraries and bus interfaces to create interface between the 

FPGA and the embedded processor. 

 Provides various ways for design optimization to generate an efficient design. 
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 Provides various simulations, verification, and debugging tools such as stage 

master debugger and ModelSim simulator. 

Impulse CoDeveloper has many drawbacks and restrictions such as: 

 Some modifications must be performed by the designer since ImpulseC is 

based on ANSI C language with some extensions.  

 Doesn’t support any IP to the designer through implementation. 

 The generated HDL code files contain large number of lines making 

difficulties in reading and modifications.     

11. ROCCC  

Riverside Optimizing Compiler for Configurable Computing (ROCCC) is a high level 

synthesis tool from Jacquard Computing Inc. It can be run under eclipse environment. It 

offers some advantages such as: 

 Supports arbitrary bit width data type. 

 Allows the designer to select some options and constraints to generate 

powerful design. 

 Supports smart buffers where the fetched data from memory can be re-used in 

a subsequent iteration if they have the same data elements. 

 Supports a powerful design for streaming and sliding window applications. 
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ROCCC has many drawbacks and restriction such as: 

 Accepts a very restrictive subset of C language which restricts the 

implementation of the desired design.  

 Doesn’t support overflow checking such as out of bound memory size. 

 The generated RTL code contains huge file of VHDL making difficulties in 

modifications and reading.  

 The transfer rate is limited to a single word in every two clock cycles. 

 Difficulty in verifying RTL output since the memory interface contains both 

synchronous and asynchronous behaviors concurrently. 

12. Synphony C Compiler  

Synphony C Compiler is a high level synthesis tool from Synopsys which is acquired 

from Synfora in 2010. It accepts ANSI C and C++ as input language. This tool offers 

some advantages such as: 

 Supports many optimization techniques which can be inserted into the source 

code through pragma feature. 

 Supports an excellent manual which illustrate how to write a code for optimal 

design. 

 Provides options to include clock rate and some constraints on the input file to 

generate the desired design for a certain application. 
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 Provides a GUI and a script for compilation purposes. 

 Provides streaming interfaces. 

 Automatically generates the test bench for verification purposes. 

 Various HDL simulators can be called from the tool. 

Synphony C compiler has many drawbacks and restrictions such as: 

 The generated output is huge in terms of area leading to a bad design where 

corrected settings must be properly assigned. 

A summary of the main characteristics and comparisons between the tools is shown 

in Figure 2-9. The comparison is performed in terms of different criteria such as: 

 The ease of implementation. 

 Abstraction level. 

 Learning curve. 

 Documentation. 

 Data types supporting.  

 Exploration. 

 Verification. 
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Figure 2-9: Tools comparisons [39]. 

These HLS tools have been developed to move the design effort to higher abstraction 

levels. This reduces the design time for FPGA based hardware implementation and speed 

up the verification process. Also, it improves the performance and the design exploration 

by adopting many optimization techniques. Based on the evaluation in Fig. 2-9, Vivado 

HLS tool is chosen since it offers the best performance based on their metrics evaluation. 

Moreover Xilinx provided Vivado tool under their university support program. Therefore, 

it made easier for us to use it in this work. However, all tools lack exploitation of any 

available opportunities of data locality and reduction of memory bandwidth requirements. 
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Also, in all HLS tools [39], even the best ones, exploration and optimization options are 

still application specific. It is the responsibility of the designer.  

 

Figure 2-10 shows the Vivado HLST-based implementation procedure. Vivado HLS 

allows the user to automatically generate the hardware description code such as Verilog 

and VHDL from high level languages such as C, C++, and SystemC. This will be highly 

beneficial since the low level language needs strong knowledge of hardware, requires 

long time for coding and validation, and is prone to errors. The generated VHDL code 

from HLS can be easily converted to bitstream files using Xilinx ISE. Moreover, HLS 

provides many optimization options which can help in producing an optimized design 

quickly and efficiently that meets the desired performance. 

 

Figure 2-10: HLST-based implementation procedure [48]. 

Vivado HLS also allows the user to implement the same algorithm in different ways 

by applying different directives, constraints, and offers quick comparisons in terms of 
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performance, hardware resources, and estimated power consumption. It offers many 

advantages and flexibility to the designer such as: 

 Simplifies the design and simulation tasks. 

 Reduces the design time. 

 Increases the productivity. 

 Improves the reliability. 

 Enables exploration of the design space. 

 Includes a test bench for verification of generated RTL. 

 Generates the data-path and the control unit for micro-scheduling operations. 

 Supports arbitrary bit-width operations. 

 Supports automatic array that can be partitioned, mapped, streamed, or 

reshaped to increase the bandwidth.  

Vivado HLS also informs the designer about the limiting factors in the design such as 

multiple BRAM accesses which needs to be spread out across multiple clock cycles due 

to limited resources. Figure 2-11 shows the scheduling graph for a given algorithm as it is 

shown in the Vivado HLS GUI. It shows the design of the control unit of a deep pipelined 

data-path which is a complex problem.  



49 

 

 

 

 

Figure 2-11: Vivado HLS graphical interface (scheduling graph). 

 

Vivado HLS gives the user a set of constructs through C/C++ and SystemC for the 

design of a specific application. However, it has many limitations and results in poor 

performance. Vivado HLS does not support dynamic memory allocations, recursion, and 

has some restrictions on pointers. The program needs to be modified to express arbitrary 

bit-width operations as they are not supported in C/C++ specifications. The support for 

floating point is also dependent on the HLS tool and the target technology.  

 

Moreover, Vivado HLS does not support certain trigonometric and other 

mathematical functions and requires the development of customized functions. It is not 

able to extract all the possible parallelism from the sequential program and requires 
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explicit expression of parallelism. However, the coding style of the input program can 

drastically influence the end result of the generated design. The efficiency of the design is 

also affected by packing the data elements into wider vectors or distributing them across 

multiple storage elements, streaming/interface support, and the use of arbitrary precision 

types. So, the designer still needs to be aware of the underlying hardware and use the 

proper coding style to arrive at an optimized architecture.  

2.5 Conclusion 

An overview and background on parallel processing platforms and high level 

synthesis tools are discussed. Parallel processing platforms such as multi-core, FPGA, 

and GPU can run a complex algorithm in a tiny time as they provide hundreds of cores 

and resources. Xilinx Vivado HLS tool can significantly reduce the design time of 

FPGA-based hardware by avoiding VHDL code. It enables design exploration, and, 

therefore, should be considered as a new paradigm in FPGA design for complex 

applications. 
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Chapter 3 

Parallelization of Signal Processing Algorithms 
 

  

Signal processing algorithms are computationally and data intensive. These 

algorithms will benefit with the availability of parallel processing platforms to meet their 

real-time requirements. Some of the signals processing algorithms that are being 

investigated in this thesis are IR video processing, Direct Data Domain (D
3
), Extensive 

Cancellation Algorithm (ECA), Block Compressive Sampling Matching Pursuit 

algorithm (BCoSaMP), Discrete Wavelet Transform (DWT), Particle Filter (PF), and 

Iterative Hard Thresholding (IHT). They will be first transformed into highly parallel 

algorithms. Then, they will be mapped and scheduled on different platforms such as 

CPUs, multi-cores, MPSoCs, GPUs, and FPGAs. Following sections will describe 

parallelization, mapping and scheduling of these algorithms on various platforms. 

 

A generalized approach for parallelizing a target algorithm has been adopted as 

shown in Figure 3-1. It is accomplished by creating a methodology for various processes 

such as evaluation of data dependencies, exploring parallel processing opportunities, and 

improving the data locality. So, this exploits any opportunity of optimization to minimize 
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computation time, storage resources, area, power dissipation, and cost. 
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 Figure 3-1: Generalized parallel approach for signal processing applications. 
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3.1 Parallelization of IR Video Processing on a GPU 

Video processing is applied in numerous processing applications such as security for 

shopping malls, detection for military targets to detect suspicious activity, and monitoring 

for birds and bats activity to minimize impact of wind turbines on birds and bats [49-51]. 

The IR camera provides excellent night visibility and situational awareness, even in 

absolute darkness. The IR data processing is different from the normal video processing 

techniques as it has some unique features that can be exploited. IR camera usually 

captures video with less background information and highlights objects with higher 

temperature. This helps in subtracting objects from the simple background model. IR 

camera is less sensitive to the changes in illumination and makes its background model 

more stable. However, the IR camera data are only grayscale images (although they are 

recorded in RGB format); the color information is not very useful for identifying 

different objects in details. 

 

There are three essential parts for IR video processing: (1) background subtraction (2) 

noise filtering and (3) connected component labeling. Background subtraction segments 

out image pixels that correspond to moving objects. A statistical background model [52] 

is used which takes the mean of the previous n-frames as shown in Equation (3.1) and 

subtracted from the current frame. The background model is updated every n-frames. At 

the beginning of the video (before the 5th frame), it takes the constant background as 

model. The updating starts from the 6
th

 frame to the end of the video. It is useful when 

number of targets is not very large. A background model is assembled by observing the 
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temporal history of each pixel.  

 (     )  
 

 
∑  (       )   
   .                                            (3.1) 

Where,  (     ) is the background model,  (       ) is the image for pixel (x, y). 

 

Noise is the unnecessary information of the data/source signal that needs to be 

removed. The quantity of the noise is a main factor that affects the quality of the outputs. 

By applying morphological operations such as erosion, dilation, closing, and opening, 

most salt and pepper noise can be removed and the object can be reshaped. Noise 

removal is also helpful for the connected component labeling. Connected component 

labeling in IR video processing is used to isolate, measure and identify potential object 

regions in an image by assigning a unique number to all foreground pixels that belong to 

the same connected component of the image [53].  As a result of the labeling, individual 

components can be extracted from the image for further analysis [54-55].   

 

3.1.1 Parallelization of Each Step of Video Processing Method 

In order to effectively take advantage of GPU processing, we must extract all the 

parallel tasks and exploit all the resources on a GPU. So, fine-grained parallelism within 

each video frame must be exploited.  IR video processing algorithm will have following 

structure. 

/* Main program*/ 

- Background subtraction   

- Noise filtering 

- Connected component labeling 

- End 
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Following sections describe parallelization of three essential phases of video 

processing. 

Parallelization of Background Subtraction 

The objective of the background subtraction is to extract pixels corresponding to 

moving objects. In order to estimate the background subtraction, we divide the algorithm 

into three parts: 1) Create the background model which estimates the mean of the 

previous n-frames to serve as the background for the next n-frames. 2) Background 

model is subtracted pixel by pixel from the current frame. 3) Image thresholding is 

performed. Mapping of all three parts of the background subtraction algorithm is 

performed in the following fashion. 

 

An m*m image will have m
2
 pixels. Operations can be performed in parallel on each 

pixel giving us very fine grain parallelism. This work utilizes IR images of size 704*480. 

Each column is then mapped on thread block (512 threads/block, 8 blocks/core). Each 

thread calculates the mean of the corresponding pixel by using pixels from n-frames. If 

there are n-images in a video then each core will receive ten images (five images for 

background model estimation and other five images for background subtraction).  

 

All created threads calculate in parallel the mean value of the pixels in the first 

column for the five frames and store the result as background model as shown in Figure 

3-2. All threads subtract in parallel the value of each pixel in the column from the 

background model and store the result as shown in Figure 3-3. A pseudo code of the 

background subtraction is as follows: 
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Function Background Subtraction                                                                             

For i         0 to Num_Frames 

     { F(i)         Read Frames;} 

Declare host variables (CPU); 

Declare integer k, k1; 

Declare device variables (GPU); 

    k1=0; 

For k        0 to (Num_Frames-5), K+=5 

{If (k=0) 

             {For i         0 to Rows 

                {For j        0 to Cols 

                  {F1=F(k); 

                        F2=F(k+1); 

                        F3=F(k+2); 

                        F4=F(k+3); 

                        F5=F(k+4);}} 

Copy the frames F1, F2, F3, F4, F5 to the device} 

Do in parallel on the device:  

{Call BackgroundModel_Kernel (attributes)} 

/*Execute on host following code */ 

For i        0 to Rows 

                {For j        0 to Cols 

                    {F1=F(k1+5); 

                        F2=F(k1+6); 

                        F3=F(k1+7); 

                        F4=F(k1+8); 

                        F5=F(k1+9);}} 

Copy the frames F1, F2, F3, F4, F5 to the device 

Do in parallel on the device:  

Call BackgroundSub_Kernel (attributes)  

K1+=5;} 
 

/* functions to be executed in parallel */ 

/* code for background model estimation */ 

BackgroundModel_Kernel 

Declare X          index for the thread in x-dimension; 

Declare Y          index for the thread in y-dimension; 

Average= mean value of the five frames 

BackgroundModel [Y*Rows+X] =Average; 

 

/* code for background subtraction*/ 

BackgroundSub_Kernel 

Declare X         index for the thread in x-dimension; 

Declare Y         index for the thread in y-dimension; 

BackgroundSub [Y*Rows+X] =the current five Frame – BackgroundModel 
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Figure 3-2: Parallelization of background model estimation   

 

Figure 3-3: Parallelization of background subtraction using previously created 

background model 

Parallelization of Noise Filtering 

Noise filtering is also mapped similar to the approach shown in Figure 3-2. It also 

uses column-wise parallelism. There is no inter thread dependencies and the operations 

on a pixel are independent of the operations on other pixels in that frame. Following is 

the parallel pseudo code for dilation and erosion algorithms. 

Function Dilation (GPU) 

Declare X         index for the thread in x-dimension; 

Declare Y         index for the thread in y-dimension; 

{For (X, Y) in frame 

         For i         0 to KerX { 

         For j        0 to KerY 
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                    {If (frame[x-i][y-j] =255 &&ker [i][i]=255) 

                                {Value=255; break ;} 

Else {Value= 0 ;}}} 

Output_Dilation [X*Cols+Y]        Value}} 
 

 

Function Erosion (GPU) 

Declare X         index for the thread in x-dimension; 

Declare Y         index for the thread in y-dimension; 

{For (X, Y) in frame 

       For i        0 to KerX { 

       For j         0 to KerY 

            {If (frame[X-i][Y-j] =0 &&ker [i][i]=0) 

                 {Value=0; break ;} 

              Else {value=255 ;}}} 

Output_Erosion [X*Cols+Y]         Value;} 

 

 

Parallelization of Connected Component Labeling 

Connected component labelling involves scanning an image, pixel-by-pixel (from top 

to bottom and left to right) in order to identify connected pixel regions by moving along a 

row until it comes to a point p (pixel to be labelled). When this is foreground object then 

it examines the neighbours of p which have already been encountered in the scan. After 

completing the scan, the equivalent label pairs are sorted into equivalence classes and a 

unique label is assigned to each class. As a final step, a second scan is made through the 

image, during which each label is replaced by the label assigned to its equivalence 

classes. In this work, 8-connected neighbours are used for labelling objects in the image.  

 

In order to perform labelling operation in parallel, image is processed row-wise. Each 

row is divided into four threads as shown in Figure 3-4. This process creates a data 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm
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dependency as the second thread cannot start processing until first one is done. A 

synchronization scheme has been devised and uses a synchronization point in the form of 

a flag. 

 

In order to show the method clearly, suppose there are four threads (Th1 to Th4) and 

the image in this case has 704 rows and 480 columns assuming an IR image of 704*480. 

So we divide the number of row pixels between four threads. First 120 pixels in the first 

row will be labelled by Th1 and the next 120 pixels by Th2. It can be seen that Th2 can’t 

start labelling in the same row as Th1 until Th1 is completed its labelling. But, after Th1 

completed labelling of the first 120 pixels in the first row it will start with the second 

row. Simultaneously Th2 can start labelling the second half of the first row. Threads will 

start executing in parallel.  

 

                         (a)                           (b)                                     (c)                                (d) 

a) Th1 labeling its portion b) Th1 and Th2 are labeling concurrently c) Th1, Th2 and 

Thr3 are labeling concurrently d) The four threads labeling together. 

Figure 3-4: Example of connected component labelling parallelization method 

Following is the pseudo code of the connected component labeling. 

Function Component Labeling (GPU) 

Declare Offset = row/ number of threads; 

For row in data  { 

K= calculate the start index for this thread; 

While (condition of this thread is 0; then wait)  

    For K in row to K+Offset 

      {Label the pixel; 
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         If (all the neighbors = 0), then a new label is assigned 

        Else if (only one neighbor =1), then assign its label to it; 

        Else if (more than one neighbor =1), then assigns one of the label to the pixel and 

make a     note of the equivalence ;} 

         Set the condition of the next thread to 1;} 
 

 

3.2 Parallel Implementation for IR Video Processing on 

MPSoC Platform  

Networks-on-chip has been seen as an interconnect solution for complex system but 

the performance and the energy dissipation still represent limiting factors for Multi-

Processors Systems-on-Chip (MPSoC). The future handheld devices must support 

multimedia applications for long battery life but this type of application imposes heavy 

constraints in terms of energy and forces the designers to optimize all parts of the 

platform to achieve the desirable goals. So, extensive energy analysis for heterogeneous 

NoC platform and a comprehensive method are essential to know bottlenecks of the 

energy dissipation in the handheld devices while running a video application in real time.  

 

Generally, research groups have focused on on-chip communication energy 

consumption for interconnection architecture and homogenous NoC. The objective of this 

work is to analyze and assess the energy dissipation for heterogeneous NoC-based 

MPSoC platform running a video application. It identifies bottlenecks for the entire 

platform. Also, we propose a new modeling and simulation approach regarding the 

channel width and buffer sizing which have a strong impact on the performance and the 

overhead of the chip.  We showed that there are some hot spots in the system regarding 
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the channel width and buffer size must be optimized to get a better performance. 

 

Simulation is performed by running a video processing algorithm. It includes the 

reading of video data into memory and storing it.  The video processing algorithm is then 

partitioned, parallelized, mapped and scheduled on multi-core processors. This video 

chain is mapped on a heterogeneous NoC platform based on mesh topology.  

 

3.2.1 DEVS Formalism 

The Discrete Event System Specification (DEVS) formalism provides a means of 

specifying a system mathematically. DEVS has also been applied in many areas such as 

in computer [56], manufacturing [57], transportation traffic [58], command and control 

[59] and networking [60]. It provides a rich environment in which any phenomena could 

be modeled by producing a mathematical model which in turn can be simulated under the 

DEVS simulation environment [61].  Some input events can occur from users or from 

other running tasks which affect the application behavior. An application running on one 

intellectual property generates output for other interconnected intellectual properties. In 

addition, the application transition from one state to another can be described by some 

functions or algorithms. Hence, an application can be modeled as a discrete event system 

with some specific parameters that needs to be computed by observing the application 

under consideration. DEVS allows variation of different parameters and performance 

evaluation that can be performed by exploring as many NoCs architectures as possible 

until an optimal architecture can be found [61].  
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DEVS modelling and simulation define four variables: desired application, model, 

simulator and the experimental environment as shown in Figure 3-5. A video processing 

application is used to model and optimize the NoC architecture for best bandwidth, low 

power dissipation and low latency. The model has mathematical relations and instructions 

that produce traffic properties observed in the real application. The behavior of a model is 

the set of all possible input/output combinations. The simulator executes the model in 

order to emulate the real system for comparisons, evaluations and analysis. Finally, the 

experimental environment defines the constraints and conditions under which the system 

was observed to collect its output behavior. For example, the application might be 

running on individual processing cores, two levels of caches L1 and L2, and a shared 

memory between different cores.  

 

Model

Desired 

Application
Simulator

Experimental Frame

Observed Traffic Simulation 

Relations
Modeling Relations

 

Figure 3-5:  Basic relations in On-Chip Traffic modeling and simulations. 

3.2.2 Architecture Description 

The proposed heterogeneous NoC-based MPSoC platform is shown in Figure 3-6. It 

uses a 3x3 mesh NoC. The platform employs a 2-D mesh topology which contains a 

Master Processing Element (Master PE) which is placed in the center of the chip. It is 
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responsible for reading of the video and distributing partitioned tasks to other nodes. 

Master PE partitions, parallelizes, maps and schedules on Multi-Core (slave cores). The 

Master PE contains a large memory to store a series of video images. When the execution 

starts, the Master PE allocates a subset of images to the Slave Processing Elements (Slave 

PEs) for processing and remaining frames are stored in the memory. This memory keeps 

all task codes necessary in any instance of the applications execution. During execution, 

tasks are dynamically loaded from the memory of the Master PE to Slave PEs. When the 

Slave PE finishes execution, it returns the result back to the Master PE and requests for 

another job.  

Slave PE 1 Slave PE 2 Slave PE 3

L1

L2

L3

L4

Slave PE 7 Slave PE 8 Slave PE 9

L21

L22

L23

L24

Slave PE 4 Master PE 5 Slave PE 6

L11

L12

L13

L14

L5 L6

L7 L8

L9 L10

L15 L16

L17 L18

L19 L20

 

Figure 3-6: Mesh platform architecture. 

Each Processing Element (PE) in Figure 3-6 has a router that has five bidirectional 

ports: north, west, east, south and local as shown in Figure 3-7. The local port is 

connected to the PE and others are connected to neighboring routers. Each router has a 

buffer to receive data from the PE. A single round-robin arbitration schedules grants 
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access to incoming packets, and a deterministic distributed XY routing algorithm 

determines the path between source and target. 
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Figure 3-7: Structure of a core and the on-chip router. 

 

3.2.3 Energy Modelling 

Energy modelling for NoC architectures became one of the critical issues in NoC. 

There are many energy models that have been proposed [29-30]. Ye et al. [29] proposed a 

model for energy consumption of network routers. The bit energy (    ) metric is defined 

as the dynamic energy consumed when one bit of data is transported through the router: 

                                                                              (3.2) 

Where      ,       and       represent the dynamic energy consumed by the switch, 

buffering and interconnection wires inside the switching fabric, respectively. 

 

Since in Equation (3.2),        is the dynamic energy consumed on wires inside the 

switch fabric for NoC, the dynamic energy consumed on the links between tiles (     ) 
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should also be included. Thus, the average dynamic energy consumed in sending one bit 

of data from a tile to its neighbouring tile can be calculated as: 

                        +                                                 (3.3) 

Let       to be the average energy consumption of transferring one bit of data through a 

router, that is: 

                                                                          (3.4) 

Consequently, the average energy consumption of sending one bit of data from tile ti to 

tile tj is: 

    
     
                 (        )                                                (3.5) 

Where       is the number of routers a given bit needs to pass through; similar energy 

models have also been used extensively in other works in high-level/system-level NoC 

[30-31].  

3.2.4 Analysis and Optimization Techniques  

An IR video processing application is used for simulation purposes since it provides 

excellent night visibility, situational awareness, less sensitive to the changes in 

illumination, and makes the background model more stable. The energy consumption of 

various components was modeled similar to the Ebit model [62] and Noxim simulator 

[63] using DEVS. The configuration and modeling of energy dissipation for memory and 

caches is based on Ayala [64]. Ayala provides in-depth analysis of the energy 

consumption of memory hierarchy. It measures the energy dissipation from the write 

access, read access, input address bus, output address bus, output data bus, pre-charge 

and comparators.  
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There are twenty-four links (unidirectional) in mesh topology as shown in Figure 3-8.  

The packets are routed based on XY routing algorithm. Packets are first routed in the X 

direction, until reaching the Y coordinate. Then they are forwarded in the Y direction. 

Eight links (L2, L3, L5, L9, L16, L20, L22 and L23) have not been used due to mesh 

topology and properties of XY routing algorithm.  Therefore, these links will be removed 

to decrease the static energy dissipation, area cost and the total wire length. Relative 

traffic load for IR video processing on all remaining links (16 Links) of the mesh is 

shown in Figure 3-8.  

 

Figure 3-8: Relative load on mesh links. 

Link 15 has the smallest load in the system and is denoted by one unit. Other links 

loads are measured relative to the load on Link 15.  The highest relative load in the mesh 

topology is on links L12 and L13 as they are directly connected to the Master PE.  Master 

PE distributes frames for nodes 1, 3, 4, 6, 7 and 9 via these two links. It can also be seen 

that links 7 and 18 have relatively moderate load. This is due to that Mater PE receives 

result on Link 7 from PEs 1 to 3. Similarly Link 18 has a moderate load due to return 

results from PEs 7 to 9.  
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Energy dissipation on all remaining links (16 Links) and routers of the mesh is shown 

in Figures 3-9 & 3-10 respectively. The highest energy dissipation in the mesh is on the 

links L12 and L13; because they are directly connected to the Master PE (the utilization 

of these links is very high).  Similarly the router number 5 (Master PE) has the highest 

energy dissipation due to its high utilization. 

 

Figure 3-9: Energy dissipation on the mesh links. 

 
Figure 3-10: Energy dissipation on the mesh routers. 

It can be seen from Figure 3-8 that the physical network model needs different 

bandwidths and different buffer sizes for links and routers. Since there is a lot of 

congestion on the master core links and its router, therefore the bandwidth of the links 

connected to the master core (L12 and L13) is increased by a factor of two by adding 

more virtual channel. The buffer sizes of the router 4, 5 and 6 are increased by a factor of 

two.  A flowchart for these optimizations is shown in Figure 3-11.   
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Figure 3-11: Flow chart of NoC simulation and design. 

 

3.3 Parallelization of Direct Data Domain (D
3
) for Space 

Time Adaptive Processing (STAP) 

3.3.1 Introduction 

Space Time Adaptive Processing (STAP) is a signal processing technique used to 

suppress the effects of co-channel interference, Inter-Symbol Interference (ISI), and 

jammers in communications systems.  STAP algorithms contribute in achieving greater 

capacity and communication quality [65].  Many variations of STAP algorithms have 

been proposed to effectively detect a moving target in the presence of cluttered 

environment [66-70]. 
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The fundamental principle in all STAP algorithms involves the use of multiple 

receive antennas on the receiving platform.  The incoming digitized received signals are 

adaptively weighted using a variety of algorithms in order to steer the antenna gain 

towards the desired signals while nulling the signals from unwanted noise and 

interference.  Figure 3-12 shows the baseline setup for most STAP implementations. 

X X X X

Antenna

Receiver

Adaptive

Weight

d d

 

Figure 3-12:  Baseline STAP receiver configuration. 

Due to the fast-changing clutter scenario, the received data may not be stationary and 

statistically-based methods such as covariance matrix suffer from performance 

degradation and fail if the interference scenario ever becomes heterogeneous [71]. Direct 

Data Domain (D
3
) method does not assume the stationary nature of the data and can also 

deal with heterogeneous interference. It can effectively suppress the clutter [72-75]. 

3.3.2 STAP Algorithms 

Two algorithms for STAP are examined and discussed in this section; interference 

covariance matrix estimation (a statistical method) and Direct Data Domain (D
3
) 

processing approach (a non-statistical method). 

3.3.2.1 Interference Covariance Matrix Estimation 

Interference covariance matrix estimation is a well-known classical approach to 
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STAP implementation. It utilizes tapped delay lines and adaptive weights as shown in 

Figure 3-13. 
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Figure 3-13: N-element antenna array with M taps. 
 

Each of the tapped delay signals is adaptively weighted that minimizes interference 

and noise while preserving or enhancing the desired signal.  The final output signal is the 

sum of all the weighted taps. The classical interference covariance estimation approach 

has been proven to have excellent interference cancellation performance in homogeneous 

correlated interference scenarios.  However, if the interference scenario ever becomes 

heterogeneous, statistical methods will fail [71]. This lends non-statistical methods such 

as D
3
 as the algorithm of choice with inferior homogeneous performance as a tradeoff.   
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3.3.2.2 Direct Data Domain (D
3
) Approach 

The Direct Data Domain (D
3
) approach uses no tapped delay lines following the 

weight on each receiver element; therefore, the voltages are then summed and the output 

( )Y t  is given as shown in Figure 3-14.  
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Figure 3-14:  N-element antenna array. 

The signal arrives at each antenna at different times depending upon the direction of 

arrival of the target and the geometry of the array. Let ( )S t denote the desired signal.  

The received signal voltage on each antenna element is the sum of the desired signal plus 

noise and interference [75-76].  Hence: 

( ) ( ) ( )     1, 2,........X t S t N t k N
k k k

                                      (3.6) 
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Where ( )X t
k

 is the received voltage on an antenna and ( )kS t & ( )kN t  are the desired 

signal and noise contributions on the antenna respectively. If   is the direction of the 

desired signal, then the received signal on each antenna element can be modeled [75-76] 

by: 

( 2 / )sin( ) ( ) k

j kdS t S t e                                                    (3.7) 

 

Where d is the distance between antenna elements and  is the wavelength of the desired 

signal [75-76]. The received signal after weighting then becomes:  

1

( ) ( )
M

k k

k

Y t W X t


                                                        (3.8) 

Or in a matrix form:                  

( ) TY t W X                                                              (3.9) 

 

Where (T) denotes transpose and  

 

 1 2 3   T

MW W W W W                                             (3.10) 

 

 1 2 3   T

MX X X X X                                               (3.11) 

 

Where M is the number of degrees of freedom set by ( 1) / 2M N  . 

 

If the actual received voltages are written as a vector X and the modeled received 

desired signals are written as a vector S, then the difference contains just the noise and 

interference which is desired to be eliminated [75-76].  This can also be written as:  

X S                                                                   (3.12) 

 

1 2 1 2

2 3 1 2 3 1

1 1

M M

M M

M M N M M N

X X X S S S
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Where  is the complex amplitude of the desired signal. 

 

So, the goal of D
3
 is to find an adaptive weighting vector that minimizes this 

interference output and gets the target desired signal without distortion.  Calculating the 

weight vector requires a method to solve the generalized eigenvalue problem as shown in 

Equation (3.13). 

    0X S W                                                        (3.13) 

 

The most time-consuming part of the D
3
 algorithm is the computation of the 

generalized eigenvalue problem. Its computation consists of a sequence of complex 

operations such as matrix multiplication, matrix inversion, division, additions and 

subtractions. Also, the development of solving matrix inversion and finding the 

parameters of linear algebraic equations require a large number of complex computations.  

 

Therefore, in this work, a combination of inexact inverse iteration and Conjugate 

Gradient (CG) methods is proposed for solving the generalized eigenvalue problem 

required in D
3
 algorithm. Transformed algorithms are parallelized and have been 

implemented on both FPGA and GPU. 

3.3.3 Inexact Inverse Iteration for Generalized Eigen Value Problem 

There are many algorithms that are available to solve the generalized eigenvalue 

problem such as subspace iterations, the Lanczos algorithm, Arnoldi algorithm, and 

rational Krylov subspace method [77-78]. Many of these algorithms require inverting and 

factorizing a shift matrix and are limited to problems of moderate size. Inexact inverse 

iteration has been proven to converge linearly if the inner thresholds satisfy certain 
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conditions [79-81]. This method converges linearly at essentially at the same rate as the 

exact case [82]. The standard inverse iteration algorithm to solve the generalized 

eigenvalue problems can be described by the following pseudo code:  

Standard Inverse Iteration Algorithm                                                                  

Given 0x ; 

For k          0 to till convergence 
1

1

1 1 1

;k k

k k k

y X Sw

w y y





  



 
 

End 
 

 

This method uses 1X   which may not be available because of its singularity property. 

Moreover, it can be computationally intensive. So, an iterative method can be used to 

solve 1k kXy Sw  , this is called inner iterations [83]. The inverse iteration method used in 

this work is called the outer iteration. So, for each step of outer iteration, we seek an 

approximate solution 1ky   that satisfies 1k k kXy Sw q   , where kq  is called residual that 

satisfies certain termination criterion in the inner iteration ( 1k k kq y  ) where k

k r  . 

If we use ky  as an initial approximation to 1ky  , we aim at solving: 

k k k kX Sw Xy q     where 1k k ky y                                    (3.14) 

 

So, we consider the following version of inexact inverse iterations [83] to solve the 

generalized eigenvalue problem: 

Inexact Inverse Iteration Algorithm                                                                  

Given 0w ; set 0y =0.   

For k          0 to till convergence 

k k kr Sw Xy  ; 

k k kX r q   (Solved using both CG and LU decomposition) 
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           Stopping criterion with kq satisfying 1k k kq y   

1k k ky y     

1 1max( )k ky    

1 1 1k k kw y      

End 
 

In order to find the weights, we need to find an inverse of matrix   ( k k kX r q   ) 

which requires a complex computation. Therefore, two methods are implemented and 

parallelized for solving the matrix inversion problem; Conjugate Gradient (CG) method 

[84] and LU-Decomposition method [85].  

3.3.4 Analysis and Optimization Techniques 

Parallel processing in both FPGA and GPU has been used to achieve the real-time 

constraints. The following sections describe some of the optimizations that have been 

incorporated. 

3.3.4.1 Parallel implementation on FPGA 

FPGAs are appropriate to provide increased computation time as they provide 

flexibility in allocating needed resources. Figure 3-15 shows the computational steps to 

implement the D
3
 algorithm using Inexact Inverse Iteration Algorithm (IIIA) and 

Conjugate Gradient (CG). It also shows data dependency between various operations and 

their computational sequence. It is proposed that the input should be stored in a DDR3 

SDRAM. Generally, SDRAM is used for performance critical applications where its 

architecture supports high bandwidths, low power dissipation, high densities, and fast 

access times [86-88]. So, it has the ability to transfer the data at high rate while allowing 

greater capacities [87].  
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Xilinx has released a memory interface for DDR3 which handles everything for 

communication between the system and memory [87]. DDR3 provides two burst modes 

for both reading and writing and a prefetch buffer [86]. DDR3 memory has increased the 

bandwidth and the Column Access Strobe (CAS) time is very close to 0 ns [87].  

 

In order to set up the interface between the FPGA and DDR3 SDRAM external 

memory, Memory Interface Generator (MIG) must be used to generate the RTL code of 

the memory interface as shown in Figure 3-16. MIG is a tool under the core generator of 

Xilinx software which supports memory interface for FPGA. Memory interface from 

MIG is composed of many modules which make both communication and testing of the 

memory more easily.  
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Figure 3-15: D
3
 computational steps 
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Figure 3-16: Memory interface RTL code generation using MIG tool. 

The received and desired signals have a vector structure with dimension N based on 

Equations (3.6) and (3.7). However, step one of D
3
 algorithm in Figure 3-15 needs to 

construct and build the matrices X and S based on Equation (3.12). These matrices will 

be used in many steps throughout the algorithm. The building of these matrices requires 

additional resources for storage and computation due to following reasons: 

 Building of X and S matrices each with a size (M*M) requiring two for-loops 

with a time complexity of O (M
2
).  

 2M
2
 registers are required for matrices storage.  

 

However, the rows of matrices X and S are the same with only shifting by one 

element. These matrices are only used through the algorithm by multiplying them with a 

vector. So, this structure can be exploited to implement a new code for matrix-vector 

multiplication.  This new code contributes to the following advantages:  

 Eliminating construction of matrices X and S.  

 Storage areas for these matrices are eliminated.  
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 Accessing the data in the memory is more efficient as we deal with vector 

instead of a matrix where all the data are contiguous. This contributes in 

reducing the miss rate and it will be very helpful for prefetching technique to 

hide memory latency by overlapping the execution with memory access.   

 

Following code is used to implement the matrix-vector multiplication in steps one and 

six of the algorithm in Figure 3-15.  

Serial Matrix-Vector Multiplication  

Declare          X[N], Res[M], sum=0, index=0;   

Loop1: While (index<M){ 

Loop2:   For i       0 to M     

 {sum=sum+X[index+i]* vector[i];} 

Res[index]=sum; sum=0; index++} 
 

 

Moreover, our new code can be performed in parallel since there is no dependency.  

Loop unrolling and loop pipelining are two effective types of parallelization methods in 

FPGA. In order to choose the best parallelization method, both of them have been 

experimented via simulation. The performance parameters in terms of latency, memory 

usage, and power dissipation are obtained as shown in Table 3.1. One interesting 

observation is that applying loop unrolling to the outer loop doesn’t achieve performance 

enhancement as with the inner loop.  This is because the inner loop performs the 

operation on every element in the array, whereas the outer loop only uses the first 

element of each row.  
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Loop unrolling was the fastest compared with other options when both inner and outer 

loops are fully unrolled. However, it causes excessive memory usage, area, and high 

power dissipation. On the other hand, the performance of the pipelining method for the 

outer loop was found to be approximately the same as the unrolling method for both 

loops in terms of latency. Also, pipelining technique worked better than loop unrolling 

when unrolled one of the loops. So, the Loop pipelining technique of the outer loop is 

chosen as a tradeoff since it performs in parallel with the reuse of the same hardware 

resources across different stages to achieve high speed with awareness of power, area, 

and cost. 

Table 3.1: Latency and resource utilization of matrix-vector multiplication for N=100 and 

m=10 on Artix7 (XA7A100T CSG324) -1q 

 No 

Optimization 

Pipelining 

Outer 

Loop 

Pipelining 

Inner 

Loop 

Pipelining 

both 

Loops 

Unrolling 

Outer 

Loop 

Unrolling 

Inner 

Loop 

Unrolling 

both 

Loops 

Latency 

(cycles) 

9201 513 1012 2001 9100 1701 511 

Clock 

period (ns) 

6.68 8 7.18 8 6.68 8 8 

FF 255 1424 302 264 16370 1421 128018 

LUT 215 1202 306 225 22878 1208 111037 

DSP48E 4 40 5 4 400 40 4000 

Power 46 264 59 46 3964 266 24304 

 

Step two requires the solving of matrix inversion problem. Conjugate Gradient (CG) 

and LU-Decomposition are two methods which can be used for solving this constraint. 

Following sections will explain each method and how they are parallelized. 

LU decomposition 

LU decomposition method is a kind of exact solutions of system of linear algebraic 

equations and to find the inverse of a matrix which was introduced by mathematician 
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Alan Turing [89]. This method attempts to decompose the coefficient matrix into two 

lower and upper triangular matrices. Suppose that A  can be factored into the product of a 

lower triangular Matrix L  and an upper triangular matrix U such that A LU , when this 

is possible, we say that A  has an LU-decomposition (we assume that A  is a nonsingular 

matrix). Then, to solve the system of Ax b , it is enough to solve this problem in two 

stages using Equations (3.15) and (3.16) [85]: 

Lz b  (Solve for z )                                                  (3.15) 

 

Ux z  (Solve for x )                                                 (3.16) 

 

To derive an algorithm for the LU-decomposition of A , we start with the formula for 

matrix multiplication using Equation (3.17) [85]: 

min( , )

1 1

i jn

ij is sj is sj

s s

a l u l u
 

                                               (3.17) 

 

where 0isl  for s i , and 0sju  for s j  is used. 

 

Each step in this process determines one new row of U and one new column in L. At 

step k, it can be assumed that the rows 1,2,......, 1k   have been computed in U and that 

columns 1,2,......, 1k   have been computed in L. Putting i j k  in Equation (3.17), we 

obtain [78]: 

1

1

 
k

kk ks sk kk kk

s

a l u l u




                                           (3.18) 

If kku  or kkl has been specified, then Equation (3.18) can be used to determine the other 

coefficients. Equation (3.17) can be used to compute for the 
thk  row ( i k ) and the 

thk  

column ( j k ), respectively [78]. 

http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/LU_decomposition#cite_note-1
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  ( 1k j n   )                                         (3.19) 

 
1

1

k

ik is sk ik kk

s

a l u l u




  ( 1k j n   )                                       (3.20) 

 

Equation (3.19) can be used to obtain the elements 
kju if 0kkl  . Similarly, Equation 

(3.20) can be used to obtain the elements ikl  if 0kku   [85]. 

 

The pseudo code of the LU-factorization algorithm is presented as:  
 

LU Decomposition for solving           

Given [ ][ ]X M M ; [ ]kr M ; [ ]kq M  

Define N ;  

Define ( 1) / 2M N  ; 

Define [ ] {0};k M   

Define ;k kb r q   

Define [ ][ ] {0}, [ ][ ] {0}, , [ ] {0};l M M u M M sum z M    

For k           1 to M  

   { [ ][ ] 1;u k k   

Loop1: For i       k  to M  

        { 0;sum   

For p          1 to k -1 

[ ][ ]* [ ][ ];sum l i p u p k   

[ ][ ] [ ][ ] ;l i k X i k sum   

        } 

Loop2: For j       k +1 to M  

        { 0;sum   

For p          1 to k -1 

[ ][ ]* [ ][ ];sum l k p u p j   

[ ][ ] ( [ ][ ] ) / [ ][ ];u k j X k j sum l k k   

        } }  

//*FINDING Z; LZ=b by forward substitution */ 

For i           1 to M ;  

 { 0;sum   
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For p          1 to i  

[ ][ ]* [ ];sum l i p z p   

[ ] ( [ ] ) / [ ][ ];z i b i sum l i i   

    } 

//**********FINDING X; UX=Z***********// 

For i        M to 0 ; 0; ;i i   

    { 0;sum   

For p       M to i ; ; ;p i p   

[ ][ ]* [ ]sum u i p p  ; 

[ ] ( [ ] ) / [ ][ ];i z i sum u i i     } 

 

LU-Decomposition must be implemented and parallelized in an efficient way to get 

benefits from the resources of parallel processing platforms. LU decomposition has two 

loops (Loop1 and Loop2) that depend on each other. So, they can’t be executed 

simultaneously due to the dependency between them. Loop2 needs the value of l  to 

complete the computation and Loop1 needs the value of u from Loop2. However, Loop 2 

can begin execution after completion of the first iteration of the Loop1. Loop1 has an 

additional iteration than Loop2. So, the dataflow pipelining optimization techniques 

between these loops are very effective since it takes a sequential loop and creates parallel 

processing architecture. Without dataflow pipelining, Loop1 must execute and complete 

all its iterations before Loop2 can begin execution. Loop2 will then execute and will 

provide the value of u to Loop1. It will reduce the overall throughput and increase the 

latency.  However, with dataflow pipelining, these loops can be allowed to operate in 

parallel in such a way that when Loop1 finishes the first iteration then it forwards the 

value l  to Loop2. Loop2 will supply the value of u to Loop1 after completing its all 

iterations.  
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Dataflow mechanism inserts channels between the loops to insure that the data can 

flow asynchronously from the first Loop to the next one as shown in Figure 3-17. This 

improves both the throughput and the latency.  

Void function() {

……………...

Loop1: for(i=0;i<N;i++) {

………………

}

Loop2: for(i=0;i<M;i++) { 

………………

}

}

Loop_1

Loop_2

LOOP1 LOOP2 LOOP1

LOOP2
 

      (a) Without Dataflow       (b) With Dataflow 

Figure 3-17: Loop dataflow pipelining technique. 

Conjugate Gradient 

The computation of step two requires following computation and storages:  

 Computation of matrix inversion Z  ( )   . 

 Matrix-vector multiplication       where y = rk + qk 

 Storage for Z and F. 

However, the computation of vector (δ) in step two in Figure 3-15 can be performed in 

an efficient way using the CG method. CG is a good option for this type of computation 

due to the following reasons: 

 It can deal with different dimensions where many other inversion algorithms 

require a square matrix. 
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 Eliminates performing the computation of matrix inversion and the matrix-

vector multiplication separately.  

 It eliminates matrix inversion storage requirements (Z).  

 

The pseudo code of the CG method is presented as:  

Serial Conjugate Gradient Method (CG)  

Declare         X[M]; 

For c          1 to M { 

For d         0 to N  

{ sum=sum+X[c][d]* δ[d];} 

r[c]=y[c]-sum; sum=0; } 

 

For d         0 to M { 

          {p[d]=r[d]; rsold=rsold+r[d]*r[d];} 

 

For index         1 to converge { 

 

For c          1 to M { 

       For d         0 to N {         Region 1 

          Sum+=X[c][d]*p[d];}          

Ap[c]=sum;  sum=0;} 

 

   For d        0 to M { 

tem=tem+p[d]*Ap[d];}        Region 2  

alpha=rsold/tem;        

 

   For d        0 to M { 

δ[d]= δ0[d]+alpha*p[d];           Region 3 

r[d]=r[d]-alpha*Ap[d];}                      

 

   For d        0 to M { 

rsnew=rsnew+r[d]*r[d];}      Region 4 

 

   For d         0 to M { 

p[d]=r[d]+(rsnew/rsold)*p[d];}     Region 5   

rsold=rsnew;} 
 

 

While (i<M){ 

For d          0 to N 

{sum+=X[i+d]* δ[d]; 

  r[c]=y[c]-

sum;sum=0;i++ 

While (i<M){ 

For d          0 to N 

{sum+=X[i+d]*p[d]; 

Ap[i]=sum;sum=0;i++ 
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Since we treat X as its original structure (vector), two steps of CG method need to be 

modified to match our new code as shown in its pseudo code. Full parallelization of CG 

can’t be achieved due to data dependencies as the next computational step depends on the 

result of the current step. However, the CG is divided into five computational regions 

where each region can be performed in parallel by applying pipelining technique.  

 

Moreover, it is not necessary for region 2 to wait until region 1 completes all its 

iterations. So, region 2 can start execution after the first iteration of region 1 is 

completed. This can be exploited by applying the dataflow technique between these 

regions where the data can flow asynchronously from the first region to the next one. So, 

regions 1 and 2 execute in a pipelined fashion until all iterations are completed. Region 1 

forwards the value of the current iteration to region 2 and begins with the next iteration at 

the same time region 2 can start execution. Similar approach is applied to regions 3 and 4. 

 

Third and fifth steps of the algorithm in Figure 3-15 require vector-vector addition and 

division respectively. These steps can be fully parallelized by applying loop unrolling 

technique where each step is performed by one clock cycle instead of M clock cycles. 

Step four requires finding the maximum element in a vector which is parallelized by 

applying pipelining technique where the latency is improved as shown in Table 3.2. 
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Table 3.2: Latency and resource utilization of finding the maximum element with vector 

size 100 (N=100) on Artix7 (XA7A100T CSG324) -1q 

 No Optimization Pipelining Optimization 

Latency (cycles) 200 102 

Clock period (ns) 6.24 6.24 

FF 46 49 

LUT 124 131 

Power 15 16 

 

3.3.4.2 Parallel implementation on GPU. 

D
3
 algorithm is also implemented and parallelized on GPU architecture to get benefits 

from the use of parallel processing to achieve real time requirements. Also, the result of 

HLS tool on FPGA implementation can be compared against the outcomes of GPU 

architecture to draw fair comparisons.  

 

Step one of the algorithm in Figure 3-15 requires 2M vector-vector multiplications and 

M vector-vector subtractions. However, these operations can be fully parallelized by 2M 

threads where each thread multiplies one vector-vector multiplication as shown in the 

following code:   

Parallel Matrix-Vector Multiplication  

int index          Thread index;  

Fori         0 to M     

{ Res[index] + =X[index+i]* vector[i];} 
 

 

Also, vector-vector subtraction is accomplished by M threads where each thread 

subtracts one subtraction operation. Following paragraphs describe the parallelization 

method for each region in the CG method as shown in Figure 3-18. 
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Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Conjugate Gradient Regions

Region 1

Region 2

Region 3

Region 4

Region 5

 
Figure 3-18: D

3
 computational steps with Conjugate Gradient (CG) computation regions. 

 

Region 1 of CG is parallelized using the same technique as in step one where each 

thread works on one vector-vector multiplication. Regions 3 and 5 in CG are fully 

parallelized by M threads where each loop is executed by one clock cycle instead of M 

clock cycles as shown in the following pseudo code: 

Parallel Method for Region 3 

int index          Thread index;  

δ[index]  = δ0[index]+alpha* p[index]; 

r[index]  =r[index]-alpha*Ap[index]; 

 

 

Regions 2 and 4 of CG require vector-vector multiplication. So, a synchronization 

scheme is required since the global accumulation variable is shared between all the 

threads of the multiplied vector elements that must be protected to get correct results. Full 

parallelization of these regions by M threads adds an overhead more than the desired 

computation itself because of synchronization scheme. Therefore, we run these regions 

under the GPU platform with different number of threads with a tradeoff with 

synchronization scheme to choose the optimal number of threads where each thread 

multiplies ten elements and save a result into its private variable. A pseudo code of 

parallel vector-vector multiplication for regions 2 and 4 is as follows: 
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Parallel Vector-Vector Multiplication 

int index          Thread index; 

Tile_Size=10;. 

x=index*Tile_Size. 

y=(index+1)*Tile_Size. 

For i         x to y { 

Local_sum+=Vec[i]*Vec[i];} 

__syncthreads(); 

Global_sum+=Local_sum; 

Unlock_suncronization(); 

 

Third and fifth steps of the algorithm in Figure 3-15 require vector-vector addition and 

division respectively. These steps can be fully parallelized where each step is performed 

by M threads that are executed in one clock cycle instead of M clock cycles.  

 

Step four in Figure 3-15 requires finding the maximum element in a vector. In order to 

parallelize this operation efficiently, we have divided the vector by multiple threads 

where each thread finds its local maximum element on its own vector part. Then the 

global maximum element is found by comparing these local maximum elements. 

However, this technique requires a lock and barrier synchronizations to ensure correct 

results since there is a data shared by all the threads. Following code is used to find the 

maximum element in a vector.  

Parallel of Finding the Maximum element in a Vector 

Declare          Y[N], Max; 

Void max (int P){ 

intlocal_max=Y[P*N/M]; 

               For i        P*(N/M) to (P+1)*(N/M)     

                     If(Y[i]>local_max) {local_max=Y[i];} 

Lock_Synchronization ( ); 

If(local_max>Max) {Max=local_max;} 

Unlock_Synchronization ( ); Barrier_Synchronization ( ); 
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3.4 Parallelization of Extensive Cancellation Algorithm 

(ECA) for Passive Bistatic Radar (PBR) 

3.4.1 Introduction 

Bistatic radars have the transmitter and the receiver antennas at separate locations 

[90-91]. On the other hand, conventional monostatic radars have the transmitter and the 

receiver at the same location. Passive radars have only a receiver and they simply listen 

to transmitted data from other radars or electromagnetic emitters. Passive radars are able 

to utilize signals of opportunity available in the environment. These signals may be 

broadcast FM radio, TV signals, mobile phones, and others. They can be very useful in 

detecting targets without emitting any Radio Frequency (RF) of their own. The scattered 

RF signal can be received by one antenna called surveillance antenna and compared with 

the received signal from another antenna which is called a reference antenna. 

 

Recently, Passive Bistatic Radars (PBR) have received great interest among radar 

researchers. PBRs have low cost, reduces electromagnetic pollution and the interference 

with other necessary sources. They also do not need dedicated transmitter and frequency 

allocation. One drawback of PBR is that transmitted signals are not under the control of 

the radar designer. The PBR then deals with unknown transmitted RF signals and has a 

variable structure of the ambiguity function. So, Passive radars do not have luxury of 

having appropriate ambiguity function and narrow peaks in both range and Doppler [92]. 

Therefore, PBR requires the use of two correlated passive antennas to collect RF signals 

in order to detect the desired target. The surveillance antenna steers towards the area that 
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needs to be surveyed and the reference antenna steers towards the transmitter antenna 

[92]. In order to get a good signal to noise ratio, PBR requires a long integration time for 

surveillance since the received RF signals are continuous waveforms [93]. 

 

PBR is based on the promise of use of unknown RF transmitted signal [94-95]. It 

contributes to the following: 

 Strong clutter can mask some targets. 

 A small fraction of the direct signal can mask target echoes.  

 Strong target echo can mask other echoes from other targets. 

 

A number of researchers [96-102] have used different techniques to overcome the 

above concerns. Colone et al. has proposed Extensive Cancellation Algorithm (ECA) 

[92] which is a very effective way to mitigate the direct signal, multipath and clutter 

echoes in PBR. Also, it is able to detect desired target accurately for the strong - clutter 

environment and long-range detection. However, ECA is a computationally intensive 

algorithm and may not be able to provide target information in real-time. ECA will 

benefit from the parallel processing to achieve real-time requirements. Parallel processing 

systems may utilize multi-core, Network on Chip (NOC), Field Programmable Gate 

Arrays (FPGAs), and Graphic Processing Units (GPUs). Parallel hardware should be 

efficient in terms of latency, area, power consumption, cost, and flexibility.  
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3.4.2 Signal Model  and Reference Scenario 

An example of a PBR geometry for detecting and locating the desired target is shown 

in Figure 3-19. ECA needs two separate antennas; the reference antenna steered toward 

the transmitter and the surveillance antenna looking in the direction of the surveyed area. 

Target

Transmitter 

Antenna 

Surveillance 

Antenna

Reference 

Antenna

Direct Signal

Multipath 

Clutter

Multipath 

Clutter

 
Figure 3-19: PCL geometry. 

 

The total received signal in the surveillance antenna [92] is given by 
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                                     (3.21) 

where T0 is the observation time; d(t) is the complex envelope of the direct signal; Asurv 

is the amplitude of the direct signal; am, τm, and fdm are the amplitude, delay, and the 

Doppler frequency respectively of the m
th

 target; 
ic and 

ci  are the amplitude and the 

delay of the i
th

 stationary ground scatter; ( )survn t  is the thermal noise contribution. 

The total received signal in the reference antenna [92] is given by 

( ) ( ) ( )ref ref refs t A d t n t                                               (3.22) 

where Aref is the complex amplitude and ( )refn t is the thermal noise contribution.  
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Collected samples [ ]survs i  at the surveillance antenna are in the following vector form 

[92]: 

[ ] [ [0], [1], [2],....., [ 1]]T

surv surv surv surv survs i s s s s N                            (3.23) 

With 0,......, 1i N  , /i st i f  

Where N is the number of samples to be integrated, 
sf is the sampling frequency which 

satisfies the Nyquist theorem. 

Similarly, the collected samples at the reference antenna are in the following vector form 

[92]: 

[ [ 1],......, [0],......, [ 1]]T

ref ref ref refs s R s s N                             (3.24) 

Where 1R  is the number of additional samples included in integration time in order to 

achieve an acceptable signal to noise ratio. 

3.4.3 Extensive Cancelation Algorithm (ECA) 

ECA for PBR is developed based on the Least Square (LS) technique [102-103]. It 

exploits the signal model and finds the minimum residual signal power after cancellation 

of the direct signal and clutter [92], thus:  

 2min survs X                                                (3.25) 

1 1[ ..... ...... ]p ref ref ref ref p refX B S S S S S                                      (3.26) 

 

where B  is an incidence matrix that selects only the last N rows of the following matrix 

[92]: 

      

 
1,.......,  1,......, 1,        

1      1
 

0      otherwise

ij i N j N R

ij

B b

i j R
b

   


  
 


                                      (3.27) 
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 p  is a diagonal matrix that applies the phase shift corresponding to the pth  Doppler 

bin [92]: 

2

2 /( 1)

1 0 0

0 0
 

0 0

j p

p

j p N R

e

e



  

 
 
  
 
 
 

                                         (3.28) 

 
2 1[     ]K

ref ref ref ref refS s Ds D s D s                                        (3.29) 

 

Where D  is defined as  

 
, 1,......., 1,        

1      1
   

0      otherwise

ij i j N R

ij

D d

i j
d

  


 
 


                                              (3.30) 

Solving Equation (3.25) yields 

1( )H H

survX X X s                                                       (3.31) 

Therefore, the surveillance signal after cancellation becomes [92]: 

1[ ( ) ]H H

ECA surv N survs s X I X X X X s                                            (3.32) 

The two-dimensional Cross Correlation Function (2D-CCF) at the output of the 

cancellation filter becomes [92]: 

 
1

* 2 /

0

, [ ]. [ ].
N

j pi N

ECA ref

i

l p s i s i l e 






                                        (3.33) 

Where l  = 0… 1R  is the time bin representing the time delay respect to the direct signal. 

p is the Doppler bin representing the Doppler frequency of the backscattered echo from a 

target. 

Equation (3.32) shows many complex operations such as complex matrix multiplication, 

Hermitian, inversion etc. The algorithm has a complexity of 
2 2[ log ]O NM M M  where 
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M = (Number of Range bins   Number of Doppler bins) and N is the number of Data 

Samples [92]. 

The ECA can be divided mainly into two phases: 

 

1. Building of clutter subspace matrix X, which consists  mainly of three steps: 

 Building the reference signal vector based on Equations (3.22), and (3.24). 

 Building the reference matrix based on Equations (3.24), (3.29), and (3.30). It has 

extensive computation steps and requires computation of D
K
. 

 Building the clutter subspace matrix X based on Equations (3.26), (3.27), and 

(3.28). It requires (    ) times matrix multiplication. 

 

2. Calculation of the multiple matrix product 1( )H H

survX X X X s which consists  

mainly of four steps: 

 Building the Hermitian transpose HX  of the complex matrix X.  

 The calculation of complex matrix multiplication ( )HX X . 

 The calculation of complex matrix inversion 
1( )HX X 
.  

 Finally, the calculation of complex matrix multiplication 1( )H H

survX X X X s . 

3.4.4 Analysis and Optimization Techniques 

The ECA in Passive Bistatic Radar (PBR) application has proven to be a very 

effective way to mitigate the direct signal, multipath and noise. Also, it provides accuracy 

for desired target detection. However, it is difficult to achieve the real- time requirements 

due to its extensive computation requirement. It is sometimes desirable to increase the 

number of range bins in order to increase the surveillance area which also increases 
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computation time. So, our goal is to exploit any possible opportunity to minimize 

computation time and storage resources. The ECA has been modified by exploring 

opportunities of any computation and storage that could be eliminated. Parallel 

processing in both FPGA and GPU has also been used to achieve the real-time 

constraints. The following paragraphs describe some of the optimizations that have been 

incorporated. 

 

3.4.4.1 Parallel implementation on FPGA. 

FPGAs support high flexibility by providing different hardware resources to reduce 

the computation time. However, the ECA algorithm involves computation and storage of 

large matrices. It is not possible to accommodate all required storage and computation 

hardware resources on FPGA.  Therefore, use of external memories can provide 

additional resources and alleviate the burden of storage requirements. Figure 3-20 shows 

the computational steps for implementation of ECA algorithm and its needed memory. It 

also shows data dependency between various operations and their computational 

sequence. It is proposed that the input should be stored in a DDR3 SDRAM.  
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DDR3 SDRAM

BRAMs

Building Clutter Subspace Matrix 

(X)

Data

First Stage

Second Stage

Read

Data

Building Complex Matrix 

Multiplication  (X
H
X)

Computation of Vector (α) using CG

FPGAData

Computation of ECA Signal after 

Cancellation

Building Reference Matrix Signal 

(Sref)

( )H H

survX X X s 

ECA survs s X 

 

Figure 3-20: ECA computational architecture 

Firstly, the reference signal from the antenna is digitized and stored in FPGA memory 

instead of the external memory since it will be used many times to build the reference 

matrix in Equation (3.29). This step removes the communication overhead due to 

accessing of external memory and data transfer. 
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Matrices D, B and  p  have large dimensions of (N+R-1)*(N+R-1). They are 

involved in many matrix multiplications and constructions which consume large 

computation time and require high storage resources. However, these matrices can be 

called sparse matrices since they consist of few 1
’s
 and mostly zeroes that are used for 

shifting and construction purposes. Therefore, we have developed an efficient algorithm 

by eliminating all these sparse matrices. The new algorithm reduces the computation time 

and saves hardware resources.  

 

The building of the reference matrix in Equation (3.29) requires extensive resources 

for storage and computation due to the following reasons: 

 Building of (N+R-1)*(N+R-1) D matrix requires two for-loops with time 

complexity of O (N
2
).  

 Storage of D matrix and saving results of the D
K
 matrices. 

 Computation of D
K
 power matrices requires time complexity of O 

(N
2
+N

3
+2N

3
+3N

3
+…..+ KN

3
). 

 Multiplication of matrix D with the reference vector
refS performing K-times 

matrix-vector multiplications.  

 

However, the objective of matrix D is to shift the reference vector as shown in the 

Figure 3-21. Its sparse structure can be exploited to implement the reference matrix in 

Equation (3.29). This novel approach contributes in eliminating the construction of 

matrix D, computation of its power matrices and matrix-vector multiplication. Storage 
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areas for storing powers of matrix are also eliminated. Following code is used to 

implement the reference matrix.  

Reference Matrix Implementation  

Declare         index=1, j=0, Result [N+R-1] [K]={0}; 

For i        1 to K { 

While (index < (N+R-1)) { 

                      Result [index][i] = Ref_vector[j]; 

index = index+1; j=j+1;} 

index=i+1;j=0;} 
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Figure 3-21: Reference matrix implementation using the D matrix. 

Our code for reference matrix implementation can be performed in parallel since there 

is no dependency. Such operations are accomplished by reordering and shifting of the 

reference vector. Loop unrolling and loop pipelining are two options that have been 

experimented via simulation of only this potentially parallelizable section. Performance 

parameters in terms of latency, memory usage and power dissipation are obtained as 

shown in Table 3.3. The loop pipelining technique is chosen as a tradeoff since it 

performs in parallel with the reuse of the same hardware resources across different stages.  

It can be seen from Table 3.3 the tradeoff between use of resources, power consumption 

and latency for different processing strategies. Our implementation goal is to achieve 
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high speed with awareness of power, area and cost. Therefore, loop pipelining is selected 

to minimize high resource requirement, power and area. 

Table 3.3: Latency and resource utilization of reference matrix implementation 

 No Optimization Loop Pipelining  Fully Parallel 

Latency 16551 7940 3325 

FF 57 49 206 

LUT 56 120 9249 

Power 9 15 944 

 

Moreover, the reference matrix is stored in FPGA memory instead of external memory 

since it will be used many times to build the clutter subspace X in Equation (3.26). This 

will remove the communication overhead due to external memory data transfer. 

 

Clutter subspace X needs the diagonal matrix  p  based on Equations (3.28) and 

(3.26). Matrix  p  has dimensions of (N+R-1)*(N+R-1) and is required (2P + 1) times. 

It needs to build matrices from – P to -1 and from 1 to P. Building of each matrix in 

Equation (3.28) requires two for-loops with time complexity of O(N+R-1)
2
. So, the total 

time complexity is O((2P+1)* (N+R-1)
2
) and the total number of elements for storage 

will be ((2P+1)* (N+R-1)
2
). 

 

However, the matrix  p  is a diagonal matrix where all non-diagonal elements are 

zeroes. Hence, it simply requires the building of diagonal elements for each of its matrix. 

The diagonal elements have an exponential term which can be further exploited by 

simply changing sign values of its mirror values and eliminating computation of their 
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magnitudes.  This property reduces the computation time into half by changing the sign 

of the imaginary part of the second part without re-computing it. For example, the result 

of 1   and 1   is the same with the difference of only in the sign in its imaginary part.  

 

However, the matrix  p  is used only for building the clutter subspace matrix X. So 

 p can be directly incorporated into the clutter subspace matrix X without building all 

these (2P+1) matrices as shown in Figure 3-22. Following code is used to build the 

second term of Equation (3.26).  

 

 

Declare          S_Ref [N+R-1][K], Input [N+R-1][M]={0}; 

For i       0 to P { 

int Dopp;      

For j         0 to N+R-1 { 

For k         0 to N+R-1 { 

If (j==k) {   

            Input[j][k+i*((N+R-1)+K)] = exp(2πj*Dopp/(k+1);}}}  

Dopp++ 

For j        0 to N+R-1 { 

For k        0 to K { 

             Input[j][k+i*((N+R-1)+K)+(N+R-1)]=S_Ref[j][k];}}} 
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Figure 3-22: Second part of clutter subspace matrix (X) implementation. 



102 

 

 

 

Our code for the second part of Equation (3.26) of clutter subspace X can be 

performed in parallel since there is no dependency.  However, fully parallelization for 

this task causes excessive memory usage and high power dissipation as was seen in the 

case of the reference matrix implementation. Therefore, loop pipelining technique is also 

adopted.  

 

 Similarly, matrix B has a size of N *(N+R-1). The matrix B consists of few 1’s and 

mostly zeroes. It pre-multiplies matrix X based on Equation (3.26). Building of matrix B 

and its matrix multiplication can be eliminated by simply using a shifting operation. The 

operation allows each column in the second term to be shifted up by (R-1) as shown in 

Figure 3-23. 

R-1
11 12 13 14 1

21 22 23 24 2 31 32 33 34 3

11 1

31 32 33 34 3

11 12 13 14 11

1

11 12 13 14 1

1 2 3 4

       

n

n n

n

n

n n n n n

m mn

n n n n n n

n n n n nn

a a a a a

a a a a a a a a a a
B B

a a a a a

a a a a a
B

a a a a a a

a a a a a


    

    

 
 
  
  

  
  

   
  
 

1 2 3 4n n n n nna a a a

 
 

  
  
  
  
  
  

  

 

Figure 3-23: Clutter subspace matrix (X) implementation using shifting operation. 

 

However, building of matrix B and its matrix multiplication is eliminated by accessing 

the desired part of the matrix without performing any multiplication or shifting 

operations. This can be performed by accessing the array from the row at (R-1) until the 

last row of the matrix and ignoring the first R-1 rows as shown in Figure 3-24.  
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Figure 3-24: Clutter subspace matrix (X) implementation without multiplication or 

shifting operation. 

Reorganization of clutter matrix X computation and removal of matrices B, D and  p

computation has resulted in reduced computation time, storage, and power dissipation.  

 

ECA also requires trigonometric and other mathematical functions which are not 

supported by HLS tool. Therefore, customized functions have been developed. It is well 

known that calling of function incurs overhead. Therefore, an in-lining technique is 

applied for all functions to minimize the overhead.   

 

The complex matrix multiplication (X
H
X) in the second phase requires the building of 

the Hermitian transpose matrix X
H
. However, this can be achieved by only changing the 

indices of the matrix X without performing its transpose and conjugate thus reducing the 

total computation time and the hardware storage requirements as shown in the following 

code:  

Function ( )HX X  

Declare          X [] [], Result [] [], Sum; 

 For k       0 to M { 

For i        0 to M { 

For j       0 to N 

                    {Sum = Sum + X [j] [k] * X [j] [i];} 
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       Result [k] [i] = Sum; 

       Sum = 0;}} 
 

 

The second step of the second phase involves complex matrix multiplication. A loop 

pipelining approach is used where the multiplication operation is divided into four stages 

as shown in Figure 3-25. This technique allows the operations in the loop to be 

overlapped and executed in a concurrent manner instead of the sequential execution. 

Done=0; i=0, j=0, k=0

A = a[i][k], B = b[k][j]

P = A*B;

k = N

c[i][j] = Sum

Yes

j = N

Done = 1

No

No

Stage 1

Stage 2

Stage 3

Stage 4
k=0; j++; 

Sum=0

k++

i = N

k=0; j=0;i++

Sum=0
No

Yes

Sum = Sum + P

 

Figure 3-25: Flow chart for pipelined matrix multiplication. 

It’s also important to use the memory resources efficiently besides reducing the 

number of arithmetic operations. ECA requires large matrix multiplications where FPGA 

storage can’t hold such large data. So, storing the matrices row by row or column by 

column increases the number of times of loading the data from external memory to the 

FPGA. Therefore, only part of the matrix is brought into FPGA which requires replacing 

previously stored data. However, this process is accomplished via blocking approach 
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where the matrices are divided into a number of sub-matrices that fit into the size of 

FPGA storage as shown in Figure 3-26.   

 

Figure 3-26: Blocking Technique 

Also, the code has been modified to access the data efficiently instead of the 

traditional accessing. Table 3.4 shows the multiplication of blocks A and B of the first 

matrix with the second matrix using both our modified approach and the traditional 

approach. Our method loads each block (A & B) only once while the traditional method 

loads each block two times. This will be very beneficial when the matrices have large 

dimensions as in our case. So, the data in the FPGA storage can be reused before being 

replaced which reduces the number of loading times by a factor of N, where N is the 

blocking factor.   

 

Table 3.4: Our matrix multiplication method versus traditional method 

Traditional Method Our Method 

AX AX 

BZ AY 

AY BZ 

BF BF 

 

Following code is used to build the blocking technique:  

Blocked Matrix Multiply 

 Declare         X [] [], Result [] [], Sum; 

 For k       0 to M-1 { 

       For i          0 to M-1 { 

 {read block C(k,i) into FPGA memory} 
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For j       0 to N-1 { 

{read block from  X into FPGA memory} 

C(k,i)=C(k,i)+ X [j] [k] * X [j] [i];} {do a matrix multiply on blocks} 

        {write block C(i,j) back to memory} 

 

 

The computation of vector (α) in Equation (3.31) requires the following computation 

and storages:  

 Computation of matrix inversion 
1( )HY X X   

 Matrix multiplication ( )HZ YX  

 Matrix-vector multiplication ( )survZs   

 Storage for Y and Z  

 

However, the structure of Equation (3.31) can be exploited to perform the computation 

of vector (α) in an efficient way using Conjugate Gradient (CG) as in Section 4.1.5. This 

eliminates matrix to matrix multiplication and its storage requirements. Computation 

process is re-arranged and following operations are performed: 

 Matrix-vector multiplication ( )H

survz X s  

 The conjugate gradient method is used to perform ( F z  ) where 

( )HF X X  

 

Full parallelization of CG can’t be achieved due to the data dependencies as the next 

computational step depends on the result of the current step. However, the CG is divided 
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into five computational regions as shown in Figure 3-27 where each region can be 

performed in parallel. 

Fpi=F*pi

alpha=rsold/(pi
T
*Fpi)

Converge

Yes

No

αi+1=αi+alpha*pi

ri+1=ri-alpha*Fpi

βi+1=(rT
i+1-*ri+1)/(rsold)

pi+1=ri+1+βi+1/*pi

Initializations: 

r =z-Fα;

p=r; rsold=r
T
*r

Final Estimated Value (α)

R1

R2

R3

R4

R5

 

Figure 3-27: Conjugate Gradient (CG) computation steps. 

 

Moreover, Dataflow technique is applied between the regions as in Section 4.1.5. 

Also, matrix-vector multiplication process is used many times in our work where it can 

be performed in the same way as in Section 4.1.5 where loop pipelining technique of the 

outer loop is chosen. 
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Computation of the surveillance signal after cancellation based on Equation (3.32) 

requires two operations: 

 Calculation of matrix-vector multiplication ( X ) and a vector to store its result. 

 Calculation of vector-vector subtraction and a vector to store its result. 

 

Equation (3.32) was implemented using two methods where each method has a trade-

off of speed, area, and power consumption. The first method minimizes the latency as 

much as possible by performing matrix-vector multiplication and vector-vector 

subtraction operations in parallel where a dataflow technique is applied between these 

operations. This is because it is not necessary for vector-vector subtraction operation to 

wait until matrix-vector multiplication operation completes all its iterations. However, 

this method requires additional vector to store its result which increases the area and 

power consumption. On the other hand, the second method performs matrix-vector 

multiplication in parallel without applying dataflow technique. It reduces the storage and 

the power dissipation by removing the additional vector to save the result of matrix-

vector multiplication as shown in the following code:  

Function (
ECA surS S X  ) 

For i        0 to N { 

For j        0 to M {                 

                    {Sum = Sum + X [j] [i] * α [j];} 

       SECA [i] = Ssur[i]-Sum; Sum = 0;}} 
 

 

The first option is selected to achieve high speed. The loop pipelining is applied to the 

outer loop of the matrix-vector multiplication as it’s achieved the minimum latency with 
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awareness of resource requirement, power, and area. The number of clock cycles for 

matrix-vector multiplication and vector-vector subtraction for N=M=20 is 219 and 22 

clock cycles respectively as shown in Table 3.5. Table 3.5 shows that the latency of 

vector-vector subtraction is completely removed using the dataflow technique.  

Table 3.5: Latency and resource utilization of second option for m=20 on Artix7 

(XA7A100T CSG324) -1q 

 No 

Optimization 

Matrix-

vector Mult. 

Only 

Vector-

vector Subt. 

Only 

Pipelining 

without 

Dataflow 

Pipelining 

with 

Dataflow 

Latency 

(cycles) 

3661 219 22 240 219 

Clock period 

(ns) 

7.19 7.98 7.19 7.98 7.98 

FF 224 2878 15 2891 2899 

LUT 213 2321 52 2371 2379 

DSP48E 4 80 0 80 80 

BRAM_18K 1 1 1 1 2 

Power 42 527 6 534 532 

 

3.4.4.2 Parallel implementation on GPU. 

Extensive Cancellation Algorithm (ECA) is also implemented and parallelized on 

GPU architecture to minimize its extensive computation. GPU architecture is massively 

parallel since it has hundreds of cores running in a concurrent manner, cheap, and highly 

available. Therefore, in this work we design and implement ECA under CUDA 

architecture on the GPU.  
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The first step in the algorithm builds the reference signal vector based on Equations 

(3.22) and (3.24). Since the samples of the signal from the antennas are received in serial, 

so the reference signal vector is built in serial on the CPU part.  

 

Our code for reference matrix implementation in Figure 3-21 can be parallelized since 

there is no dependency. Each thread must work on a group of elements because the 

creation of the threads adds an overhead more than the task itself as our task is only copy 

elements from vector to matrix. This will eliminate the index calculation cost over these 

elements. However, the for-loop in the code can be fully parallelized using column wise 

where each thread takes one value of counter i. So, each thread is writing its own index to 

the corresponding location of index and j indices without changing anything in the code. 

However, the number of elements in each column is (N+R-1) whereas K elements in each 

row. So, it’s desirable to parallelize using rows wise to get more benefits since each row 

has a few elements. However, the number of elements to be assigned for each row is 

different. Therefore, our code has been changed to match the threads structure in GPU as 

shown in the following code: 

Reference Matrix Implementation  

int index        Thread index; j=0; i=index; 

While (i>= 0) { 

         Result [index][j] = Ref_vector[i]; 

i=i-1; j=j+1;} 
 

 

Figure 3-28 shows the used parallelization technique of the reference matrix. Each 

thread copies only a few numbers of elements such that the first thread copies only one 

element, second thread copies two elements, and thread N+R-1 copies 32 elements. 
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Figure 3-28: Parallelization method of the reference matrix. 

Building the second term of Equation (3.26) requires copying of    and reference 

matrices (2P+1) times.    matrix has large dimensions of (N+R-1) (N+R-1).  Therefore, 

performing parallelization using row wise or column wise is not the optimal 

parallelization method. Each thread needs to copy large number of elements while 

leaving other threads idle. Therefore, this process is parallelized via blocking technique 

where the matrix is divided into a number of blocks where each thread copies a few 

elements (block) of the matrix each with size 16*16 elements as shown in Figure 3-29. 
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Figure 3-29: Parallelization method via blocking technique. 
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The pseudo code of copying    matrix is shown below: 

Copy    Matrix Parallelization Method 

int c = blockDim.x * blockId.x + threadIdx.x; 

int r = blockDim.y * blockId.y + threadIdx.y; 

x= c*Tile_Size; 

y= r*Tile_Size; 

For i         0 to Tile_Size { 

For j         0 to Tile_Size { 

If (i==j) {  Input[x+i] [y+j]=exp(2π(x+i)*Dopp/( y+j +1);}}} 
 

Copying of reference matrix is accomplished row by row since each row has a few 

elements (K elements). So, each thread copies few elements of reference matrix such that 

the index calculation cost is amortized over these elements. 

 

The complex matrix multiplication (X
H
X) requires O(NM

2
) operations. The 

multiplication can be performed in parallel since there is no data dependency. However, 

this requires huge matrices multiplication which is parallelized by combining row wise 

technique with blocking technique. The number of rows of Hermitian matrix (X
H
) is 

more than the number of cores in the GPU. So, the rows are divided evenly on the 

number of cores by the following relation: 

                             
(     )    ( )   

               
                        (3.34) 

 

So each core works on a group of rows as shown in Figure 3-30.  
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Figure 3-30: Core task of matrix multiplication 

 

Blocking technique is also used since each core has eight blocks and each block has 

512 threads. So, each thread will multiply one row from the first matrix with a group of 

columns in the second matrix as shown in Figure 3-31 based on the following relation: 

 

                                  
[((     )  ) (  )]

 

                                    
        (3.35) 
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Figure 3-31: Thread task of matrix multiplication 

 

Following paragraphs describe the parallelization method for each region in CG 

method. Region 1 requires matrix-vector multiplication where the row wise technique has 

been used since the number of rows of the matrix more than the number of the available 

threads. So, the rows are divided evenly on the number of cores and each thread 

multiplies one row by the vector as shown in Figure 3-32 based on the following code:  
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Matrix-Vector Parallelization Method 

int index          Thread index; 

Tile_Size=Matrix_Size/# of threads. 

x=index*Tile_Size. 

y=(index+1)*Tile_Size. 

For i         x to y { 

Vec[i]=0; 

For j         0 to M { 

Vec[i] + = F[i][j]*p[j];}} 
 

 

 

Figure 3-32: Parallelization technique of matrix-vector multiplication 

 

Computation of the surveillance signal after cancellation based on Equation (3.31) 

requires also matrix-vector multiplication ( X ) which is performed in the same way. 

 

Regions 3 and 5 require vector-vector addition. The same parallelization method of 

matrix-vector is applied where the vectors are divided into blocks. Each thread performs 

vector-vector addition to its own block as shown in Figure 3-33. The same method is 

applied in Equation (3.31) that requires vector-vector subtraction ( ECA survs s X  ). 
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Vector-Vector Addition Parallelization Method 

int index          Thread index; 

Tile_Size=Vector_Size/# of threads. 

x=index*Tile_Size. 

y =(index+1)*Tile_Size. 

For i         x to y { 

Vec[i] = V1[i]+V2[i];} 
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Figure 3-33: Vectors addition via blocking technique.  

 

Regions 2 and 4 require vector-vector multiplication. Since these vectors have large 

dimension. The vector is divided into the available threads as: 

Tile_Size = Vector_Size/# of threads                                      (3.36) 

Each thread multiplies a group of elements and save a result into a private variable. 

However, synchronization scheme is required since an accumulation of these private 

variables must be performed for all threads results in the final step.  
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3.5 Parallelization of Block Compressive Sampling Matching 

Pursuit Algorithm (BCoSaMP) 

3.5.1 Introduction  

 

With the advance technology nowadays, most of the systems contain a large number 

of sensors to increase the measurement accuracy and resolution. However, this large 

deployment of sensors increases the number of received samples which needs high 

computation time and memory to store it. It will be practically impossible to store the 

entire signal into a processing buffer at a time as encountered in streaming applications. 

For example, sampling at a GHz with 16 bits per sample requires 16 billion samples per 

second, which needs a lot of computing and storage resources to process these large 

numbers of samples. However, most of these signals are sparse since they consist of few 

coefficients and mostly zeroes. So, an efficient method is required to reduce storage and 

simply keeps only the largest coefficients.  

 

Compressive sensing techniques allow sampling of signal at lower than the Nyquist 

rate [104-105] and storage of small number of samples. Compressive sensing techniques 

keep only the largest coefficient while the small coefficients are discarded to reduce the 

amount of data required to be stored, processed, and transmitted. Compressive sensing 

techniques proved that the sparse signal can be reconstructed from few incoherent 

measurements [106].  
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The major challenge in the compressive sensing strategies is the way to approximate 

the signal accurately and efficiently from noisy samples. Many algorithms have been 

developed for that purpose. These algorithms can be divided into three categories [107]: 

 Greedy pursuit algorithms: these techniques approximate the signal by 

applying an iterative method. It’s based on the selection of the optimal choice 

at each step in their process where the approximation of the signal performs 

one step at a time. Some of the greedy methods are Orthogonal Matching 

Pursuit (OMP) [108], stagewise OMP (StOMP) [109] and Regularized OMP 

(ROMP) [110]. 

 Convex relaxation algorithms: these techniques are developed based on 

convex method. It’s a subfield of the optimization methods to approximate the 

target signal. It has a wide range of applications in different fields. Some of 

the convex relaxation methods are interior-point methods [111], projected 

gradient methods [112], and iterative thresholding [113]. 

 Combinatorial algorithms: these techniques require acquiring of a large 

number of samples of the signal. Acquired samples must be structured in a 

way that supports fast reconstruction via group testing [100]. Some of these 

techniques are Fourier sampling [114], and the chaining pursuit [115]. 

 

Many of the combinatorial techniques require a large number of unusual samples 

which are difficult to acquire [107]. Convex relaxation techniques are computationally 

intensive. On the other hand, greedy pursuits techniques are intermediate in their 

running time and sampling efficiency. The accuracy of these algorithms depends on 
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the approximation of the collected samples and the sparsity of the original signal. The 

accuracy of the reconstruction is validated by comparing the signal sparse 

approximation with largest coefficients in the sparsity basis. 

 

The signals in reality have some sort of noise. Many methods [116-121] have been 

developed to reconstruct the noisy sparse signal accurately. However, some of these 

techniques don’t give a good performance and some of them assume that the noise is 

either bounded or Gaussian with known variance. Block Compressive Sampling 

Matching Pursuit algorithm (BCoSaMP) [107, 122, 123-126] is one of these 

algorithms that has been chosen in our research since it proves high robustness across 

many applications. BCoSaMP algorithm can represent the entire signal efficiently 

from only small number of noisy measurements. It uses information about the noise 

magnitude for stopping criterion rather than assuming that the noise is Gaussian or 

bounded. Also, it proves that the approximation error decays exponentially at every 

iteration. Therefore a terminating criterion is needed when an appropriate threshold 

has been achieved [122]. BCoSaMP algorithm reduces the number of measurements 

by exploiting the sparsity and compressibility features without sacrificing the 

robustness. It offers the following advantages:  

 It reduces the computational complexity.  

 It achieves good accuracy with minimum number of samples even in the 

presence of noise. 

 It supports small error for every target signal. 

 It supports efficient resource usage. 
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3.5.2 Block Compressive Sampling Matching Pursuit algorithm 

(BCoSaMP)  

The collected samples are arranged in a matrix called sampling matrix ( ). 

BCoSaMP requires that the signal must have the sparsity structure which can be 

preserved by applying Restricted Isometry Property (RIP) [127]. For a large number of 

samples N, there is only m samples have nonzero such that m<<N which needs to be 

stored or transmitted. So, the sampling matrix has a dimensions of (m x N) and the 

observed signal can be represented as: 

y x                                                  (3.37) 

Where Nx R is the signal to be recoveond, 
my R is the observation at the current 

state (the vector of samples),  is the sampling matrix with dimensions m N . 

 

The set of indices of all nonzero entries called the support of x (sup(x)). It can be 

represented by the following relation [107]: 

 sup( ) : 0jx j x                                                  (3.38) 

There are two critical conditions that must be preserved to recover the signal 

accurately: the signal must be sparse signal and the sampling matrix must satisfy the RIP.   

The Restricted Isometry Property (RIP) of   is given as: 

2 2 2

2 2 2
(1 ) (1 )r rx x x                                             (3.39) 

where r  is the least number of the sampling matrix that satisfies the RIP property.  

 

BCoSaMP algorithm recovers and reconstructs the signal by applying pseudo inverse 

where the signal reconstruction is based on how accurate the signal is approximated from 
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the available samples [128-129]. Exploiting the dependencies between values and 

locations of the signal coefficients is very important beside the sparsity and 

compressibility advantages. This is performed by partitioning the signal into multiple 

blocks. So, BCoSaMP divides the signal X into K blocks and each block has n elements 

as shown in Equation (3.40). This substantially decreases the number of measurements 

without sacrificing robustness. Exploiting both these properties will help in compressing 

the signal to the lowest possible level instead of dealing with every large coefficient 

independently. 

1 1 2 ( 1){ ; ; ; }n n n k n knX x x x x x x                                  (3.40)                                 

To divide the signal into blocks, we assume a signal vector X ∈ R
nK

, with n and K 

integers. This signal can be re-shaped into a n × K matrix X. Each column of X will be 

considered as a part of the signal. That is, signals X in a block-sparse model have entire 

columns as zeros or nonzeros. The measure of sparsity for X is the number of nonzero 

columns [130]. Common assumptions in the compressive sampling algorithms are: 

 The sparsity level s is fixed. 

 Sampling matrix obey Restricted Isometry Property (RIP). 

 The vector of samples       . 

 

Following is the summary of the BCoSaMP algorithms: 

Input: Sampling matrix ( ), noisy sample vector  , K is the number of recovered 

samples. 

Output: K-sparse approximation for recovering signal Error! Bookmark not 

defined.from original signal x . 
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 Initialize: 0
ˆ 0x  , r =  

 Compute the residual signal by creating the state of proxy as 
Te r .  

 Find the largest components of the proxy and store its index        (   ). 

 Merge  Ω with kx  to obtain    (        ( x̂ )). 

 Perform pseudo inverse (  ( )* )Tb Pseudo inv y . 

 Obtain the estimated value x̂ = ( , )b K . 

 Update the residue value as  ˆr y x  . 

 Repeat Steps 2 to 7 until the required criteria of the residue is obtained.  

 Return x̂ . 

3.5.3 Analysis and Optimization Techniques 

 

BCoSaMP has proven to be an effective method to reconstruct the sparse signal from 

small noisy measurements. However, it may not achieve the real time requirements due 

to extensive computations. So, our goal is to exploit any opportunity of parallelism to 

minimize the computation time and storage resources to achieve the real time constraints.  

 

3.5.3.1 Parallel implementation on FPGA. 

Figure 3-34 shows the computational steps for implementation of BCoSaMP 

algorithm and its needed memory. It also shows data dependency between various 

operations and their computational sequence. It is proposed that the input should be 

stored in a DDR3 SDRAM.  
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Figure 3-34: BCoSaMP computational architecture 

 

A. Transformation and optimization of step two (residual estimation)  

 

Step two creates the proxy which requires the cost of matrix Hermitian (
H ) and 

matrix-vector multiplication (
Te r ). However, the multiplication of this step can be 

accomplished without performing Hermitian by changing only the indices reducing the 
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total computation time and the hardware storage since the building of Hermitian requires 

additional matrix to store the result as shown in the following pseudo code: 

Function ( )HX r  

Declare        X [] [], Result [], Sum; 

For i        0 to N {       

       For j       0 to M {                 

               Sum = Sum + X [j] [i] * r [j];} 

       Result [i] = Sum; Sum = 0;} 
 

 

Moreover, matrix-vector multiplication can be performed in parallel by applying the 

pipelining technique to the outer loop as it’s demonstrated in Section 4.1. Step three 

requires locating the largest values of a vector and stores the indices of those values. 

There are a number of sorting algorithms such as quick sort, merge sort, bubble sort etc. 

available in the literature [131]. They can be used to sort entries of the signal in 

decreasing order of magnitude and then selects the largest values of them. However, 

these sorting algorithms have many drawbacks and require:  

 Allocation of a new array of size (N). 

 Copy of the original array to the new one with a cost of O(N). 

 Sorting the new array with a cost of (N logN).k 

 Iterating over the original array and searching for the largest elements with a 

cost of (N logN).  

Also, the sorting algorithm must be stable [107]. However, the objective of this task 

is to find only the indices of the largest elements without sorting the array. So, it’s 

desirable to implement a new efficient code for this task as follows: 
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Largest K indices of a Vector  

Declare         Input [N], indices [K], value [K]; 

For i        0 to N { 

For j         0 to K { 

if (indices[j] == 0 && value[j]==0) 

            {indices[j]=i; value[j]=Input[i]; break;}      

else if(value[j] < Input[i]){ 

              For k        K-1 to j  

         {indices[k]=indices[k-1]; value[k]=value[k-1];} 

 indices[j]=i; value[j]=Input[i]; break;}}} 
 

 

Our new code allocates two small arrays, each with size K instead of one large array 

with size N. It also eliminates the copying of the original array. However, it requires 

O(K
2
N) in the worst case. It uses break statements whenever any condition fails then it 

will terminate the execution of the inner loop. This mechanism contributes in faster 

computations of this part. This approach will be more efficient as K is a small value and 

it is the same as used in the BCoSaMP algorithm. K represents only the largest values in 

the input sparse signal.  

 

B. Transformation and optimization of step four (merging support)  

Step four requires merging of two sets of data which can be performed by creating 

following new efficient code: 

 

Declare       c[N+M], flag; k=M;     

%M number of elements in vector a 

%N number of elements in vector b 

Loop1: For i        0 to M  

  {c[i]=a[i]; }  

Loop2: For i       0 to N  

                  {flag=0; 

                      For j        0 to M    

 {if(b[i]==c[j]) { flag=1; break; }} 

  if(flag==0) {c[k]=b[i]; k++; } } 
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The code consists of two major loops; Loop1 and Loop2. Loop1 can be fully 

parallelized by applying fully loop unrolling technique which will be executed in one 

clock cycle instead of M clock cycles. However, Loop2 can’t be executed in parallel 

since there is a dependency between store (write) operation (c[k]=b[i]) and load (read) 

operation (b[i]==c[j]). The load operation needs to wait until the store operation is 

completed. However, pipelining technique is an effective method for elimination of this 

type of dependency. Pipelining inherently inserts delays and there will be no conflict in 

getting the correct value. So, pipelining technique is applied and the latency is improved 

as shown in Table 3.6. 

 

Table 3.6: Latency and resource utilization of merging operation for N=50 and m=25 

on Artix7 (XA7A100T CSG324 -1q) 

 No 

Optimization 

Optimization with both unrolling 

and pipelining techniques 

Latency (cycles) 4002 1315 

Clock period (ns) 4.87 4.87 

FF 83 87 

LUT 139 314 

Power 21 39 

 

 

 

C. Transformation and optimization of step five (pseudo inverse)  

The computation of step five requires following computation and storages:  

 Computation of matrix inversion X  ( )   . 

 Matrix-vector multiplication      . 

 Storage for X and b. 
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However, the computation of vector (b) can be performed in an efficient way using 

the conjugate gradient method as it can deal with different dimensions as sampling matrix 

( ) has different dimensions where many other inversion algorithms require a square 

matrix. It also eliminates storing of an inverted matrix (X). CG is divided into five 

computational regions and the parallelization methods are applied as demonstrated in 

Section 4.1.  

 

D. Transformation and optimization of step six (residual update)  

Step six updates the residue value for the next round which requires two operations; 

calculation of matrix-vector multiplication ( x̂ ) and storage of a resulting vector, and 

calculation of vector-vector subtraction and storage of the resulting vector. This step was 

implemented using two methods as demonstrated in Section 4.2 where the pipelining 

technique with the dataflow approach is applied. 

3.5.3.2 Parallel implementation on GPU. 

Step two in Figure 3-34 can be fully parallelized where each thread must work on a 

group of elements because the creation of the threads adds an overhead more than the 

task itself. This will eliminate the index calculation cost over these elements. However, 

the number of elements (N) in each row is higher than the number of elements (M) in 

each column (M<<N). So, it’s desirable to parallelize it using column wise. This 

approach will create a higher number of threads (N) that will operate on fewer elements 

(M) as can be seen in the following code: 
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Parallel Matrix-Vector Multiplication  

int index       Thread index;  

For j       0 to M     

{ Res[index] + =X[j][index]* r[j];} 
 

 

Step four requires merging of two sets of data which consists of two major loops; 

Loop1 and Loop2. Loop1 can be fully parallelized using M threads that are executed in 

one clock cycle instead of M clock cycles. However, a synchronization scheme is 

required after the statement of Loop1 to insure that all the elements of vector a is copied 

to the vector c before executing Loop2. Loop2 is parallelized where each thread only 

compares one element value in vector b with the element values in vector c instead of 

comparing all the values in vector b. This will improve the performance by a factor of P, 

where P is the number of elements in vector b. However, Loop2 requires a 

synchronization scheme since the merged output vector is shared between all the threads 

to get correct results as follows: 

 

Declare        c[k], flag; k=M;     

int index       Thread index;  

Loop1: c[index]=a[index];     

__syncthreads(); 

flag=0; 

For j        0 to M    

{ if(b[index]==c[j]) { flag=1; break; }} 

if(flag==0) { 

__syncthreads(); 

c[k]=b[index]; k++;  

Unlock_suncronization();} 

 

The parallelization method for each region in CG method is accomplished using the 

same way in Section 4.2. Step six updates the residue value for the next round which 
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requires two operations: matrix-vector multiplication ( x̂ ) and vector-vector subtraction. 

Matrix vector multiplication can be parallelized using the same technique in step two and 

vector-vector subtraction is accomplished by N threads where each thread subtracts one 

subtraction operation.  

3.5.4 Model-Based Iterative Hard Thresholding (MB-IHT) Method 

Iterative Hard Thresholding (IHT) method has also proven to be an effective method 

to reconstruct the sparse signal from noisy measurements and small number of samples 

beside its high robustness. So, efficient implementation of MB-IHT on FPGA has been 

proposed for high performance applications.  

 

Iterative Hard Thresholding (IHT) method is one of the methods that can represent the 

entire signal efficiently from only a small number of received samples. It reduces the 

number of measurements by exploiting the sparsity and compressibility features without 

sacrificing the robustness. It offers the following advantages [132-134]:  

 Guarantees very small error.  

 Proves robustness to the observation noise. 

 Achieves good accuracy with a minimum number of observations. 

 Supports many sampling operators. 

 Supports efficiency in the hardware resources usage. 

 Achieves good signal to noise ratio using fixed number of iterations. 

In order to represent the concept in a mathematical relation, the observed signal can be 

represented as: 
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y x e                                                  (3.41) 

Where Nx R is the signal to be recoveond, 
my R is the observation at the current 

state (the vector of samples),  is the sampling matrix with dimensions m N , and e is 

observation noise. 

  

The IHT algorithm uses an iterative method to recover x  signal from the given 

observed signal ( )y and sampling matrix ( ) based on the following relation: 

1 ( ( )n n T n

Kx L x y x                                        (3.42) 

where 
KL  represents the largest K elements of a vector. 

Moreover, Richard in [130] made some improvements of IHT method to provide more 

accuracy and call it Model-Based Iterative Hard Thresholding (MB-IHT) which can be 

summarized by the following steps: 

Input: Sampling matrix ( ), measurement  , K 

Output: K-sparse approximation x̂ to signal x . 

1. Initialization: 
0

ˆ 0x  , r =  

2. Form the signal estimation as ˆ Tb x r  .  

3. Find the largest K components and store the index of that. ˆ sup( , )x b K . 

4. Update the residue value for the next round as ˆr y x  . 

5. Repeat step 2 to 4 until the required criteria of the residue is obtained.  

6. Return x̂ . 
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3.5.4.1 Parallel implementation on FPGA 

Figure 3-35 shows the computational steps of MB-IHT implementation and its needed 

memory. It also shows data dependency between various operations and their 

computational sequence.  

Input: 

Sampling Matrix

Measurement y, K 

Initializations: r=y,

  Identify indices of largest    

components.

Update residue value

Halting criteria

Yes

No

0
ˆ 0x 

Signal estimate: 

Output: Final estimation

BRAMs

Data

First Stage

Second Stage

DDR3 SDRAM

Read

Data

FPGA Data

ˆ Tb x r 

ˆ sup( , )x b K

ˆr y x 

x̂

No

Step 1

Step 2

Step 3

 

Figure 3-35: MB-IHT computational architecture 
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Each step of the MB - IHT method is analyzed and parallelized to exploit the 

advantages of both the parallel processing platform and the inherent parallelism of the 

MB - IHT method. Step one forms the signal estimation requiring the following three 

operations:  

 Calculation of matrix Hermitian ( H ) which needs to do conjugate and 

transpose and additional matrix to store the result. 

 Calculation of matrix-vector multiplication ( T r ) and requires additional 

vector to store its result. 

 Calculation of vector-vector addition and requires additional vector to store its 

result. 

 

The efficient implementation of this step can be accomplished by combining the 

optimization techniques in Steps two and six in Section 3.5.3. It exploits the advantages 

of removing Hermitian operation by changing only in the indices as in Step two and 

pipelining technique with dataflow technique for matrix-vector multiplication and vector-

vector addition operations as in Step six. So, both methods with and without dataflow 

techniques are applied and simulated for large dimensions to show the obtained 

advantages of dataflow optimization as shown in Table 3.7. Table 3.7 shows that the 

latency of vector-vector subtraction is completely removed using the dataflow technique.  
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Table 3.7: Latency and resource utilization of the first step on Artix7 

(XA7A100TCSG324) -1q for both options for M=10 and N=256 

 No 

Optimization 

Parallel 

matrix-

vector Mult. 

Only 

Parallel 

vector-

vector Add. 

Only 

Pipelining 

without 

Dataflow 

Pipelining 

with 

Dataflow 

Latency 

(cycles) 

23809 1293 258 1550 1295 

Clock 

period 

(ns) 

7.19 8 7.19 8 8 

FF 243 1434 22 1454 1466 

LUT 234 1248 59 1313 1280 

DSP48E 4 40 0 40 40 

Power 45 271 7 280 277 

 

Step two and three require locating the largest values of a vector and update the 

residue value for next round respectively. The same optimization techniques in steps 

three and six of section 3.5.3 are applied.  

 

3.5.4.2 Parallel implementation on GPU 

Steps one, two, and three of the MB-IHT algorithm have been parallelized using the 

same techniques in steps two, three, and six of the BCoSaMP algorithm, respectively.  
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3.6  Parallelization of Discrete Wavelet Transformation 

Method  

3.6.1 Introduction  

Discrete Wavelet Transformation (DWT) is an effective signal processing method 

used in many applications [135-137] such as image processing, video compression, signal 

analysis, and computer vision. Signal processing in frequency-domain provides the 

spectral content of the signal. On the other hand, signal processing in time-domain 

doesn’t support wide outlook of the signal as most of the information is hidden in the 

frequency content. Wavelet transform provides time-frequency representation which 

gives a multi - resolution outlook of the signal. It is also a powerful technique to remove 

the noise from the signals without distorting the quality of the processed signal. 

Moreover, the process of DWT reconstruction is considered lossless which is very 

attractive for signal de-noising. 

 

Several VLSI based hardware implementations [138-139] have been proposed to 

implement DWT where many large resources and complex routing are used. VLSI based 

implementations lack of flexibility and can’t be easily reconfigured for other operations 

even within the same domain. It also imposes a lack of adaptability as the device is in use 

within a system for purposes such as correcting faults. Moreover, the development is 

costly and time consuming, and thus they are not an attractive option for implementing 

the wavelet transforms [140].  
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A survey of existing implementations and architectures are demonstrated by the 

limited contributions in [141-142]. In [143], a pipelined architecture for real-time DWT 

was proposed and implemented on FPGA. It shows the advantage of the operating 

frequency, but with highly increasing the number of resources (three times the direct one) 

which consequently increase the area and the power consumption. In [144-145], a design 

and implementation of 3-D Haar Wavelet Transform (HWT) using dynamic partial 

reconfiguration was proposed which presents advantage of speed. However, it requires 

high resources utilization (more than 20,000 slices) and high power consumption (more 

than 1600 mW) because it implemented the array as registers causing a lot of memory 

space is wasted. Moreover, the design is complex and large due to use of large numbers 

of multiplexers which consequently increasing the power consumption and complexity of 

the design.  

 

In [146], FPGA implementation was proposed of 3-D wavelet for video segmentation. 

The 3-D DWT also widely applied for medical applications as it provides perfect 

reconstruction property. However, it involves several computational steps to calculate 

DWT coefficients. The design has a slice utilization of 63% and the maximum frequency 

allows a 100 MHz system clock.  

 

The decomposition and reconstruction computation of the DWT is a computationally 

intensive process, especially for 3-D and may fall short in meeting real time applications. 

Therefore, efficient design of DWT is required to achieve the desirable goals. The 
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following sections show an efficient design of the DWT method for all dimensions (1-D, 

2-D, and 3-D) for both forward and backward types.  

3.6.2 Discrete Wavelet Transformation (DWT) Method 

DWT performs the transform and reconstruction of signals using filter banks and 

wavelet filters. DWT analyses the input signal at different time periods. The signal is 

decomposed into an approximation and detail information and required variable number 

of steps depending upon the length of the transform.  In this work, Haar wavelet 

transform (HWT) [147] has been chosen as it offers fast, memory efficient, reversible 

without the edge effects, and is appropriate for hardware implementation. Each step of 

DWT will provide a set of approximation and detailed values that is half of the original 

signal size. This procedure proceeds until reaches one coefficient value as shown in 

Figure 3-36. Approximation corresponds to a Low Pass Filter (LPF) that keeps only the 

low frequencies of the data. The detail process corresponds to a High Pass Filter (HPF) 

that keeps only the higher frequencies of the data. Low and high pass filters are defined 

by the following relations: 

LPF   ( 
       

 
 
         

 
       

   (   )     

 
)                   (3.43) 

HPF  ( 
       

 
 
         

 
       

   (   )     

 
)                   (3.44) 

Where, i is the sample number and n is the total number of samples. 
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Figure 3-36: Haar Wavelet Transform (HWT). 

The Haar function can be described as a step function ( )t :  

1,        0 0.5

( ) 1,      0.5 1

0,        

t

t t

otherwise



 


   



                                             (3.45) 

( )t  is called mother wavelet and its scaling function ( )t  can be described as: 

    

0,  0 1
( )

,  1

t
t

Otherwise


 
 


                                           (3.46) 

In order to perform wavelet transform, Haar wavelet uses translations and dilations of 

the function using the following formula: 

 ab(t) = 
 

√   
   (

   

 
)   with a,b∈R , a ≠ 0 .                         (3.47) 

In Haar transform, 2
n
 data length uses n levels. Averaging and differencing 

coefficients are computed for the next level from the previous level. The process is called 

Fast Haar Transform (FHT). An example of FHT with sixteen samples and four levels is 

shown in Figure 3-37.  Its sample data is as follows: 

F= [4  5  3  6  12  7  8  0  14  3  3  4  5  2  8  0] 
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Figure 3-37: Fast Haar Transform (FHT) operations. 

3.6.3 Analysis and Optimization Techniques 

 

1-D forward DWT is shown in Figure 3-38 to illustrate how DWT will be optimized. 

Function DWT 1-Dimension Forward 

HDWT(Input[N]) 

Loop1: {For count        N to 1, count/=2 

     Loop2: {For i         0 to count/2 

           {OP1: avg[i]= (Input[2*i]+Input[2*i+1])/2; 

            OP2: diff[i] = Input[2*i]-Input[2*i+1])/2;} 

     Loop3: For i         0 to count/2 

          {Input[i]= avg[i]; 

          Input[i + count/2]= diff[i];}}} 

 

Figure 3-38: 1-D DWT Implementation 

DWT has one main loop (Loop 1) and two inner loops (Loop 2 and Loop 3) as shown 

in Figure 3-38. Full parallelization of DWT can’t be achieved due to data dependencies 

between the inner loops (Loop 2 and Loop 3). However, Loop 2 can be executed in 
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parallel. This parallelization can be prevented due to the resource contention because 

both the statements share the same resource array “Input array”. Thus, multi read and 

write ports are applied to the input array to overcome this dependency.  Also, Loop 3 can 

be executed in parallel after Loop 2 is completed its iteration. 

 

Loop unrolling and loop pipelining for Loop 2 have been experimented via simulation 

and their performance parameters are shown in Table 3.8 to determine which approach 

will provide superior results. Loop unrolling achieves better speed, but it causes 

excessive memory usage in terms of Look Up Tables (LUTs), Flip-Flops (FFs) usage and 

high power dissipation. On the other hand, the performance of the pipelining was found 

to be slightly less than unrolling in terms of latency but it achieves approximately 43 

times less power dissipation. Hardware resources in terms of LUTs and FFs are also 

reduced 41 and 44 times respectively. So, pipelining technique is chosen in our work as 

our goal is to achieve low latency with awareness of hardware resources and power 

dissipation. 

Table 3.8: Latency and Resources Utilization of Vector Size 1000 

 No 

Optimization 

Pipelining 

Method 

Unrolling 

Method 

Latency (cycles) 5428 2747 2701 

Clock period (ns) 8.03 8.03 7.83 

FF 158 180 7992 

LUT 347 361 14963 

Power (mW) 49 53 2295 

Moreover, it is not necessary for Loop 3 to wait until Loop 2 completes all its 

iterations. So, Loop 3 can start execution after the first iteration of Loop 2 is completed. 

This can be exploited by applying the dataflow technique between these loops where the 
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data can flow asynchronously from the first loop to the next one. So, Loops 2 and 3 

execute in a pipelined fashion until all iterations are completed as shown in Figure 3-39.  

LOOP2 LOOP3

LOOP2

LOOP3

 

A) Without Dataflow             (B) With Dataflow 

Figure 3-39: Loop dataflow pipelining technique. 

In the case of 2-D and 3-D, we can achieve better performance as the computations in 

other dimensions are independent of each other. Therefore, previous 1-D parallelization 

of the filter bank is applied to other dimension in cases of 2-D (x and y) and 3-D (x, y and 

z). 

This parallelization approach provides shorter computation time. However, this will 

be prevented due to the resource contention because all the computations share the same 

resource array “Input array”. Thus, in order to overcome this dependency we can 

implement the array using LUT based memory. This approach requires excessive usage 

of LUTs and FFs due to use a lot of multiplexers. It then results in higher power 

consumption as shown in Table 3.9. However, our implementation goal is to achieve high 

speed with awareness of power, area and cost. Therefore, we neglect this high resource 

requirement and storage overhead to minimize the area, cost, power consumption and 

design complexities.  
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Table 3.9: Resource Utilization of 2-D DWT of Vector Size 128 

 Block Memory LUT Based Memory 

Latency (cycles) 43952 29683 

Clock period (ns) 4.76 4.76 

Occupied slices 2654 13827 

Power (mw) 249 1492 

 

3.7    Parallelization of Particle Filter for Tracking 

Applications 

Particle filter has been proven to be a very effective method for identifying targets in 

non-linear and non-Gaussian environment. However, particle filter is computationally 

intensive and may not achieve the real time requirements. So, it’s desirable to implement 

particle filter on FPGA by exploiting parallel and pipelining architecture to achieve its 

real time requirements. 

3.7.1 Introduction  

Target tracking [148-149] can be defined as a sequential estimation of a variable or 

target of interest based on some observations over a period of time. Target tracking is 

performed by obtaining the position of the target. It is accomplished by performing 

position predictions and estimating the target positions in consecutive time scans. 

Different factors play important role in the efficiency of tracking process such as target 

parameters (position, velocity), target motion, and algorithm selection. However, the 

objective of the tracking process is to provide sequential prediction of the target using 

some observations. So, the tracking process can be divided into two stages; state stage 

which represents the values of target interest (prediction); and observation stage which 
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represents some specified probabilistic relationship between observation and state 

(feature extraction). 

 

Tracking applications are very important for both military and civilian applications. 

Different versions of Kalman filters and particle filters are available in the literature 

[150]. Kalman filters are used when the system is linear and Gaussian whereas particle 

filters are popular when the system is non-linear and non-Gaussian.  However, most of 

tracking methods are computationally intensive, especially in Multi Target Tracking 

(MTT) radar systems. This leads to a heavy computation burden which prevents tracking 

to be performed in real-time. So, efficient hardware implementation will be required with 

the use of the parallel processing platform. Hardware implementation should be efficient 

in terms of latency, area, power consumption, cost, and flexibility.  

3.7.2 Particle Filter Operation  

Particle filter [150-153] offers the following advantages: 

 It is very effective in identifying the targets in an efficient and accurate 

manner.  

 It can be useful in radar tracking applications with high cluttered environment. 

 It is appropriate for tracking targets where the system is nonlinear and non-

Gaussian.  

Moreover, in the presence of multiple targets, tracking becomes difficult as the 

discrimination of target is inaccurate. Particle filters calculate the posterior density for 

different values of the targets which is converted to likelihood functions and helps to 
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detect the number of targets. This approach can simultaneously handle processing, data 

association and target tracking. Particle filter consists mainly of four steps as follows: 

1. Prediction and measurement step. 

2. Importance step. 

3. Resampling step. 

4. Output estimation. 

Figure 3-40 shows the computational steps to implement the particle filter. It shows 

data dependencies between various operations and their computational sequence. 

Initializations

N- Number of particles

W- Particle weights

Estimate the measurement 

Update particle weights- W

Resampling

Output estimation

Weights calculation

Estimate the prediction 

 

Figure 3-40: Particle filter computational steps 
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The first step will initialize a nonlinear system prediction for assumed number of 

particles. Then the prediction and measurement of the new state of the target will be 

performed through the particles by considering a nonlinear system as follows: 

1 1( )k k kx f x w                                                     (3.48) 

( )k k kz h x v                                                        (3.49) 

Where 1kx   is the input target position, 1kw  and kv are the process and measurement 

noise, f and h are nonlinear functions of process and observation vector, and kz  is the 

current observed measurement. 

In order to show the robustness and effectiveness of particle filter for tracking 

purposes, a complex system with difficult state estimation is used in both the processes 

and measurements. It is expressed as [150]: 

1
1 2

1

251
8cos[1.2( 1)]

2 1
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k k k

k

x
x x k w
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                                 (3.50) 

21

20
k k ky x v                                                    (3.51) 

This highly nonlinear system is widely used for state estimation and comparison of 

efficiency and performance of new algorithms [154-155]. 

 

The second step will involve the estimation and normalization of the particle weights 

[150] based on Equations (3.52) and (3.53). This identifies the particles that have the 

highest probability to represent the desired target. The weights of few particles will have 

large values as time progresses while the remaining weights of other particles will 

decrease in their values.  
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Resampling process in third step will remove small negligible weights particles and 

keep the largest one. This will improve the estimation of the future state by considering 

particles of higher posterior probability. This can be accomplished in different ways. One 

straightforward way can be performed in the following two steps: 

 Generate a random number r [0,1]. 

 Accumulated the likelihoods m
nw  into a sum until the total sum is greater than r 

(
1

j

m

m

w r



 ). Then the new particle will be set to the old particle. 

The final step will perform output calculations by multiplying the normalized weight 

by the predicted measurement of the particle as follows: 

1:

1

( ) *

Ns
i

k k ik k

i

p x z W x



                                         (3.54) 

3.7.3 Analysis and Optimization Techniques 

 

 

3.7.3.1 Parallel implementation on FPGA 

Particle filter is broken into set of regions as shown in Figure 3-41 in order to exploit 

the parallel architecture of FPGA platform and the inherent parallelism of particle filter.  

However, full parallelization of particle filter can’t be achieved as particle filter is an 

iterative algorithm where the new particle prediction can’t be performed until the 

resampled step is completed. Also, there is a data dependency as the next computational 
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step depends on the result of the current step. So, we need a way to arrange the operations 

of the algorithm to be performed in parallel without affecting its functionality. The 

implementation of particle filter can be improved by applying two optimization 

techniques: 

 Merging technique: consecutive loops will be merged to reduce overall 

latency, increase sharing and optimization. 

 Dataflow technique: allows sequential loops to be performed in a pipeline 

fashion to improve throughput and latency. 

The merging technique allows the operations to be performed in one operation to 

reduce the additional overhead. For example, prediction step, measurement step, and 

weight calculation can be performed in one loop. This reduces the overhead from the 

unnecessary loops as additional N iteration loops for each step is removed. Also, weight 

normalization can be merged with resampling step to remove the N iteration loops of the 

normalization with little modification of resampling. The modified particle filter 

algorithm is as follows: 

Merged Particle Filter 

For i         0 to N { 

  Prediction step  

  Measurement step  

  Weight calculation} 

For j        0 to N { 

  Normalization step  

  Resampling step based on 
1

j

m

m

w r



  

 

 

So, the operations of the particle filter in this approach are merged instead of 

specifying a separate loop of N iterations for each particle filter operation.  
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Estimate the measurement 

Resampling

Output estimation

Weights calculation & update

Estimate the prediction Region 1

Region 2

Region 3

Region 4

Region 5

 

Figure 3-41: Computational regions of particle filter 

Moreover, it is not necessary for region 2 to wait until region 1 completes all its 

iterations. So, region 2 can start execution after the first iteration of region 1 is 

completed. This can be exploited by applying the dataflow technique between these 

regions where the data can flow asynchronously from the first region to the next one as 

shown in Figure 3-42. 

Particle measurement 

Resampling

Output estimation

Weights calculation & 

update

Particle prediction 

Particle measurement 

Resampling

Output estimation

Weights calculation & 

update

Particle prediction 

N iteration

Figure 3-42: Timing diagram for overlapping particle filter operations 

So, regions 1 and 2 execute in a pipelined fashion until all iterations are completed. 

Region 1 forwards the value from current iteration to region 2 and begins with the next 
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iteration at the same time region 2 can start execution. Similar approach is applied to 

other regions and is shown in the following pseudo code. 

Parallelization Method                                                                 

For each blip:  

For k          1 to N 

1 1( )k k kx f x w           This Loop can be executed in parallel. 

End                                  

Applying Loop Dataflow Pipelining  

For k          1 to Ns 

*( )k k kz h x v             This Loop can be executed in parallel. 

End 

            Applying Loop Dataflow Pipelining                   

For k          1 to Ns 

Wight calculation         This Loop can be executed in parallel. 

End           

           Applying Loop Dataflow Pipelining 

For k          1 to Ns 

1:

1

( ) *

Ns
i

k k ik k

i

p x z W x



     This Loop can be executed in parallel. 

End 

           Applying Loop Dataflow Pipelining 

For k          1 to Ns 

Resampling based on 
1

j

m

m

w r



   . 

End 

 

 

Moreover, all these operations of particle filter are for only x-dimension. We need to 

implement the same operations for y-dimension. Fortunately, they are independent of 

each other and can be executed in parallel. Moreover, the steps of x-dimension and y-
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dimension can also be merged together to reduce overall latency, increase sharing and 

optimization. 

3.7.3.2 Parallel implementation on GPU 

Step one of particle filter is the position initialization of each particle. This step can 

be fully parallelized by N threads where each thread is assigned for each particle as 

shown in the following code:   

Parallel Particle Positions Initialization   

int i         Thread index;  

     {Xpart[i] = x + sqrt (Q) * random();  //Q is process noise covariance 

      Ypart[i] = y + sqrt (Q) * random();} 
 

 

Step two is the prediction and measurement state of each particle. This step can be 

fully parallelized by N threads where each thread is assigned for each particle as shown 

in the following code:   

Parallelization of Particle Prediction State   

int i        Thread index;  

     {Xpartminus[i] = Xpart[i]+sqrt (Q) * random();  

      Ypartminus[i] =  Ypart[i] + sqrt (Q) * random();}        
 

 

Parallelization of Particle Measurement State   

int i        Thread index;  

     {XXpart[i] = H * Xpartminus[i]; //H is the measurement transition matrix 

     YYpart [i]= H * Ypartminus[i];}          
 

 

Moreover, particle filter requires repeating the basic calculation of random function 

generator for all the particles in each iteration. This basic computation typically involves 

a significant amount of calculation which represents a small fraction of the total 
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computational effort. So, random number generation is also parallelized where each 

thread generates one random value instead of a large number of values.  

 

  Step three is the weight calculations of each particle. This step can be fully 

parallelized by N threads as shown in the following code:   

Parallelization of Particle Prediction State   

int i        Thread index;  

{Vhat = xmeasured[k] - XXpart[i]; 

 yyhat = ymeasured[k] - YYpart[i]; 

 q[i] = (1 / sqrt (r) / sqrt (π) * exp(-vhat^2 / 2 / R);  //R is measurement noise covariance 

 qy[i] = (1 / sqrt (r) / sqrt (π) * exp(-yyhat^2 / 2 / R);}  

 

 

 

Step four requires the normalization of the particle weights which needs summing all 

the particle weights. In order to parallelize this operation efficiently, we have divided the 

particle weights by multiple threads where each thread sums a group of weights elements 

into its local variable. Then the global summation will be performed by adding these 

local variables. However, this technique requires a lock and barrier synchronizations to 

ensure correct results since the global summation variable is shared by all the threads. 

Following code is used to find the summation value of particle weights.  

Parallelization of Particle Weights Summation  

int index          Thread index; 

Tile_Size=Weights_Vector/# of threads. 

x=index*Tile_Size, y =(index+1)*Tile_Size. 

For i         x to y { 

Local_sum_X= Local_sum_X + W_x[i]; 

Local_sum_Y= Local_sum_Y + W_y[i];} 

__syncthreads(); 

Global_sum_X+=Local_sum_X; 

Global_sum_Y+=Local_sum_Y; 

Unlock_suncronization(); 
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Normalization step which divided each particle weight by the total weights 

summation can be fully parallelized by N threads as shown in the following code:   

Parallelization of Particle Weights Normalization   

int i       Thread index; 

  {q[i] = q[i] / Global_sum_X; 

  qy[i] = qy[i] / Global_sum_Y;} 
 

 

3.8 Conclusion 

A parallel algorithm is developed for IR video processing which includes background 

subtraction, noise filtering and connected component labeling algorithms on the GPU. 

The video processing algorithm was also partitioned, parallelized, mapped and scheduled 

on multi-core. We have analyzed and estimated the energy consumption for all the 

components of the NoC platform for processing elements, memory, caches, routers and 

communication architecture to find the bottlenecks in the platform for IR video 

processing. Also, a new modeling and simulation approach regarding the channel width 

and buffer sizing is proposed to get a better performance. D
3
, ECA, BCoSaMP, particle 

filter, IHT, and DWT algorithms have been also transformed for optimal execution, 

implemented and parallelized on both FPGA and GPU architectures. An extensive 

analysis and demonstration of various parallel strategies are performed. The developed 

parallel implementation uses different methods and approaches to design a parallel 

strategy of these algorithms efficiently.  
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Chapter 4 

Radar Signal Processing Tool for Parallel Architectures 
 

  

4.1 Radar Signal Processing Tool (RSPT) 

A new software tool called Radar Signal Processing Tool (RSPT) has been 

developed. RSPT is a framework tool unifying the aspects of algorithms, architectures, 

and software. It bridges the gap between the algorithm and architecture scientific 

communities. So, hardware software co-design has been performed that pushes 

performance and energy efficiency while reducing cost, area, and overhead. RSPT allows 

the designer to auto-generate a fully optimized VHDL representation for selected radar 

signal processing algorithms. This work focusses on development of FPGA based 

hardware for real-time execution of the selected signal processing algorithms.  

 

The RSPT allows the designer to specify user input parameters for a specified 

algorithm through a Graphical User Interface (GUI). This offers great flexibility in 

designing a radar signal processing applications for a SoC without having to write a 

single line of VHDL code. Moreover, RSPT provides the designer a feedback on various 

performance parameters. So, the system designer will have an ability to make any 
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adjustments to the radar signal processing until the desired performance of the overall 

System on Chip (SoC) is satisfied. The tool will utilize optimization techniques such as 

pipelining, code in-lining, loop unrolling, loop merging, and dataflow techniques by 

allowing the concurrent execution of operations to improve throughput and latency. The 

tool will provide FPGA implementation to achieve high speed with awareness of power, 

area and cost. 

 

Our developed Radar Signal Processing Tool (RSPT) for FPGA consists of two main 

parts, VHDL Library, and a Java Graphical User Interface (GUI). The High-Level 

Synthesis Tool (HLST) is used to generate the VHDL Library for a certain algorithm. 

The VHDL library contains various functions and entities to construct the VHDL files 

based on user specified parameters. The GUI communicates with Xilinx and VHDL 

library to synthesize and generate the optimized VHDL code for the specified component 

as shown in Figure 4-1. It communicates using a standard worker thread process and 

redirected input/output streams. The worker thread checks for the available FPGA parts 

installed with the Xilinx toolset. They are also responsible for executing the VHDL 

synthesis command chain. 

Xilinx Java GUI VHDL Library
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Figure 4-1: Overview of software package components 
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RSPT works as follows: the user specifies all input parameters of a certain algorithm 

and the desired FPGA part. Then, RSPT communicates with Xilinx toolset to check for 

the available FPGA parts. The RSPT then generates VHDL files for the specified 

parameters. RSPT tests the generated VHDL file through all the design process steps 

such as synthesis, translation, mapping, placing and routing, timing, and generating the 

bitstream file. Finally, RSPT provides the designer a feedback on occupied slices, 

maximum frequency, and dynamic range. It allows the designer to make any necessary 

changes to the component to achieve the desired goal.   

 

The RSPT uses the procedure as shown in Figure 4-2. It  auto-generates the top level 

VHDL for selected radar signal processing algorithm. The generation of VHDL 

implementation of a certain algorithm consists mainly of five steps as shown in Figure 4-

2. The first step creates CADWORK folder to save the VHDL representation file. Then, 

it determines the algorithm location in the library and copies the VHDL library file that 

contains the main source code of the algorithm. It determines all the specified input 

parameters of the algorithm. Finally, it generates the VHDL file and ends the process. 

The generated VHDL file includes a full optimization representation that is ready to be 

synthesized by the Xilinx ISE.  
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Determine all the specified input 

parameters of the algorithm

END

Create CADWORK 

Copy VHDL library files

Create VHDL file

Close VHDL file

BEGIN

 
Figure 4-2: GUI flowgraph for VHDL auto-generation. 

The GUI of D
3
 algorithm for the RSPT is shown in Figure 4-3. One can see the 

redirected Xilinx output stream in the Log window, the Xilinx synthesis results, and the 

D
3
 parameters selected for VHDL auto-generation. The functionality of the RSPT tool is 

driven by the user input and relies on flow graphs plus logic to auto-generate VHDL D
3
 

for a SoC. This offers great flexibility in designing a D
3
 component for a SoC without 

having to write a single line of VHDL code. The D
3
 parameters accepted by the tool are: 

 Number of sensors. 

 Precision option: Uses fixed point implementation with high and medium 

precisions. The high precision consists of ten integer bits and twenty fraction 

bits. The medium precision consists of eight integer bits and twelve fraction 

bits. 

 Direction of the desired signal (0º to 90º). 
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 The wavelength of the signal (0.01-0.5 m) which corresponds to a frequency 

between 600MHz to 30GHz. The distance between antennas is at least half the 

wavelength. 

 

Figure 4-3: Graphical user interface for Radar Signal Processing Tool (RSPT) of D
3
. 

 

The GUI for ECA of RSPT is shown in Figure 4-4. One can see that the redirected 

Xilinx output stream in the Log window, the Xilinx synthesis results, and the ECA 

parameters selected for VHDL auto-generation. The ECA parameters accepted by the 

tool are: 

 Number of samples. 
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 Precision option: Uses fixed point implementation with high and medium 

precisions. The high precision consists of ten integer bits and twenty fraction 

bits. The medium precision consists of ten integer bits and ten fraction bits. 

 Range bins (from 1 to 100). 

 

 
Figure 4-4: Graphical user interface for Radar Signal Processing Tool (RSPT) of ECA. 

 

The GUI for BCoSaMP of RSPT is shown in Figure 4-5. The BCoSaMP parameters 

accepted by the tool are: 

 K Factor: this parameter identifies the largest components of the signal vector 

to get the final approximation. 
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 Number of Blocks: this identifies the number of divisions of the signal vector.  

 Precision option: Uses fixed point implementation with high and medium 

precisions. The high precision consists of ten integer bits and twenty fraction 

bits. The medium precision consists of eight integer bits and twelve fraction 

bits. 

 
Figure 4-5: Graphical user interface for Radar Signal Processing Tool (RSPT) of 

BCoSaMP. 

 

The GUI for DWT of RSPT is shown in Figure 4-6. The DWT parameters accepted 

by the tool are: 

 Dimension (1-D, 2-D, and 3-D). 

 Input size (4, 16, 32, 64, 128, 256, 512, and 1024). 

 Type (Forward or Backward). 
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Figure 4-6: Graphical user interface for Radar Signal Processing Tool (RSPT) of 

DWT. 

 

The GUI for MB-IHT method of RSPT is shown in Figure 4-7. The MB-IHT 

parameters accepted by the tool are: 

 K Factor: this parameter identifies the largest components of the signal vector 

to get the final approximation. 

 Number of Signal Samples: this identifies the number of samples of the signal 

vector.  

 Precision Option: Uses fixed point implementation with high and medium 

precisions. The high precision consists of ten integer bits and twenty fraction 
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bits. The medium precision consists of eight integer bits and twelve fraction 

bits. 

 

Figure 4-7: Graphical user interface for Radar Signal Processing Tool (RSPT) of MB-

IHT. 

 

4.2 Conclusion  

A new software tool called Radar Signal Processing Tool (RSPT) has been 

developed. It unifies the aspects of algorithms, architectures, and software which bridges 

the gap between the algorithm and architecture scientific communities. This helps in 

performing hardware software co-design that pushes performance and energy efficiency 

while reducing cost, area, and overhead. It will allow the designer to auto-generate fully 
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optimized VHDL representation for any radar signal processing algorithm. This work 

focusses on development of FPGA based hardware for real-time execution of D
3
, ECA, 

particle filter, DWT, IHT, and BCoSaMP algorithms. The RSPT allows the designer to 

specify user input parameters of any of these algorithms through a Graphical User 

Interface (GUI). This offers great flexibility in designing these algorithms for a SoC 

without having to write a single line of VHDL code. Moreover, RSPT provides the 

designer a feedback on various performance parameters such as occupied slices, 

maximum frequency, estimated power consumption and dynamic range. This offers the 

designer an ability to make any adjustments to the algorithm component until the desired 

performance of the overall System on Chip (SoC) is satisfied. RSPT also uses many 

optimization techniques to improve throughput and latency.  
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Chapter 5 

Simulation Results 
 

 

5.1 Simulation of Parallel IR Video Processing 

Algorithm  on GPU 

 A bird and bat monitoring system has been developed that uses IR camera to monitor 

birds and bats activity. This will be useful in developing mitigation techniques to 

minimize the impact of wind turbines on birds and bats. Data from IR was recorded 

during migratory periods near Ottawa National Wildlife Refuge. Collected IR data need 

to be processed in order to track the targets of interest. However, IR video processing is 

computationally intensive and may not achieve the real time requirements. So, the IR 

video processing algorithm is parallelized for implementation on a GPU. It was 

implemented in C and CUDA. The algorithm was tested on the Intel Nehalem Quad Core 

processor with GPU. The average computation time of a single frame for each step in 

video processing in NVIDIA GeForce GTX 260 GPU and computation for serial 

implementation (Single Core) is shown in Table 5.1. We considered the communication 

overhead factor in our implementation which includes the data exchange between CPU 
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and GPU. Our implementation minimizes communication overhead by not returning the 

result back from GPU to CPU in every phase.   

Table 5.1: Average Computation Time in Milliseconds 

 Single Core GPU Speedup 

Background subtraction  16.58 5.81 2.853 

Dilation 13.74 0.9 15.26 

Erosion 13.71 0.9 15.233 

Labeling 36.69 14.55 2.521 

Total 80.72 22.16 3.642 
 

 

Figure 5-1 shows the average execution time to process a frame for a single core is 

80.72 ms giving a frame rate of 12.388 fps. So, it doesn’t achieve the real time 

requirement of 25-30 fps. On the other hand, the average execution time to process a 

frame on GPU is 22.16 ms giving a frame rate of 45.126 fps that satisfies the real time 

requirement of 30 frames per second (fps).  

 
Figure 5-1: Execution time for each algorithm of video processing 

Figure 5-2 shows the speedup for various parts of this algorithm. It shows that 

labelling part has smaller speedup as compared to other modules. This is due to data 

dependencies and overhead caused by synchronization of the threads. Background 

subtraction part includes data transfer to and from CPU to GPU.  The parallel algorithm 
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minimizes data transfer overhead by not returning the result back from GPU to CPU in 

every phase.   

 
Figure 5-2: Speedup for each algorithm of video processing 

5.2 Simulation of IR Video Processing Algorithm  on 

MPSoC 

An IR video processing data is used from our bird and bat monitoring system for 

simulation purposes. Simulation is performed by running a video processing application 

on a heterogeneous NoC platform based on mesh topology. A master processing element 

is responsible for reading the video frames and distributing partitioned tasks to other 

slave processing nodes. The memory hierarchy for IR video processing on MPSoC 

consists of a main memory in the Master PE, and a cache in each Slave PE (storage of the 

subtask). It was observed from the simulation that the memory and caches consume a 

large amount of the energy. This is compared to the energy dissipation in the 

communication architectures which consume much lower energy as shown in Figure 5-3.  
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Figure 5-3: Energy analysis for the embedded platform. 

Table 5.2 clearly shows that the energy consumption of the Master PE memory and 

Slave PEs caches are dominant.  Therefore, some kind of optimization is needed for 

reduction of this energy bottleneck. So, the designer may reduce the energy dissipation in 

these bottlenecks by adopting techniques such as Data Transfer and Storage Exploration 

(DTSE), code transformation [156], circuit level [157-158] or other techniques. 

Table 5.2:  Energy dissipation and analysis of MPSoC platform 

Architecture Component Energy Dissipation (mj) 

Master PE Memory 429.96 

Slave PEs Caches  381.055 

Routers (total) 37.95837 

Links (total) 31.66011 

 

 

This energy analysis shows contrary to the common belief that the global network 

interconnection is the bottleneck for the energy dissipation in handheld devices for 

multimedia applications.  

 

The physical network model needs different bandwidths, different buffer sizes for 

links, and different routers sizes as there is a lot of congestion on the master core links 
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and its router. So, the bandwidth of the links connected to the master core is increased by 

a factor of two by adding more virtual channel to improve the performance. The IR video 

processing algorithm was implemented in C on the Intel Nehalem Quad Core processor 

for comparison purposes. The average computation time of a single frame for single core, 

multi-cores with and without optimization are shown in Table 5.3. The results show the 

average execution time to process a frame for a single core is 80.72 ms giving a frame 

rate of 12.388 fps. On the other hand, the average execution time to process a frame on 

Multi-Core (without Optimization) is 42.48 ms giving a frame rate of 23.54 fps while 

with optimization giving a frame rate of 27.255 fps.  

Table 5.3: Average Computation Time in Milliseconds 

Method Latency Speedup 

Single core 80.72 1 

Multi-core (without Optimization) 42.48 1.9 

Multi-core (with Optimization) 36.69 2.2 

 

5.3 Simulation of Parallel Direct Data Domain (D
3
) 

Algorithm 

The parallelized Direct Data Domain (D
3
) algorithm was tested using a single signal 

with jammer and additive white Gaussian noise as shown in Figure 5-4. Then the weights 

have been calculated based on a combination of inexact inverse iteration algorithm and 

conjugate gradient method to nulls the noise and interference while maintaining the 

desired signal as shown in Figure 5-5.  It can be seen that the filtered signal has high 

amplitude and jammer were completely attenuated giving a very small amplitude for the 
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jammer. The program uses following test signal and jammers. 

 

where, 

As = 1.0; fs= 1 MHz; s = 0.25π rad 

J1= 1.25; fj1= 1 MHz; 
1j = 0.4167π rad 

J2= 2.00; fj2= 1 MHz; 
2j = 0.3333π rad 

J3= 1.25; fj3= 1 MHz; 
3j = 0.00π rad 

Where A and J represent amplitude of signal and jammers respectively, f represents 

frequency, and  represents the angle from the broadside of the arrays. The separation 

between the array elements (d) is equal to λ/2. The results obtained for three antennas are 

as follows: 

Signal 

 ( )S t  

Received Signal  

 ( )X t  

Interference before filter 

 ( ) ( )X t S t  

Interference after filter 

 ( ) ( )X t S t W     

-0.5982 + 0.7859i -1.7585 + 0.9105i -1.1603 + 0.1246i (0.3331 + 0.7216i)*10
-15 

-0.2630 - 0.9520i -2.0783 - 0.1391i -1.8153 + 0.8130i (-0.4441 - 0.3331i)*10
-15

 

 

The weight vector for this single signal example is 1W = 0.4795 + 0.2771i; 2W = -0.1716 - 

0.8440i;  = 1.0823 - 0.8565i. 

( ) sin( )S t A wt   



167 

 

 

 

 
Figure 5-4: The received noisy signal and jammer before filtration. 

 
Figure 5-5: The received noisy signal and jammer after filtration. 

 

The software tool (RSPT) automatically generates the VHDL D
3
 component and 

synthesizes with the Xilinx ISE [159]. XA7A100T CSG324 -2I FPGA device is used in 

this work. Table 5.4 lists the overall performance results in terms of area, power 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

Signal with Noise

Jammer

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

Filtered Signal

Jammer



168 

 

 

 

consumption, and the maximum frequency for both high and medium precisions. The 

performance is measured with respect to following evaluation metrics: 

 The throughput given in terms of the frequency. 

 Hardware utilization given in terms of occupied slices, Flip Flop (FF), 

Lookup table (LUT), BRAM_18K, and DSP48E. 

 The power dissipation.  

It can be seen from the Table 5.4 that the hardware resources are higher for high 

precision than for medium which is expected. However, when the number of sensors 

equals two, the hardware usage such as FFs, LUTs, Slices is more than that of three 

sensors. It is due to the fact that some parameters and arrays depend on the number of 

sensors that is implemented on distribution memory of FPGA from logic elements. In the 

case of three sensors, more memory from FPGA (BRAM) is used instead of logic 

elements. 
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Table 5.4: Resources utilizations and overall implementation performance on Artix7 -2I 

(XA7A100T CSG324 -2I). 

 

Parameters 

Medium Precision High Precision 

Number of Sensors Number of Sensors 

2 3 4 2 3 4 

Max. Freq. (MHz) 14.0 14.0 14.0 8.45 8.45 8.45 

Occupied Slices 7001 6192 7181 12468 11719 12268 

Slice LUTs 18463 18402 19096 40992 41497 42572 

Slices of FF 11182 9914 12325 16526 14623 18251 

LUT FF Pairs 24486 22419 25504 47403 44953 47269 

DSP48E1s 18 18 18 64 64 64 

BRAM_18K 6 14 14 6 14 14 

Power (mW) 2395 2331 2529 4087 3999 4284 

 

The design of the control unit of a deep pipelined data-path that controls the 

scheduling for medium and high precision is 49 and 71 stages respectively. The number 

of clock cycles, throughput, clock period and the execution time from the start of 

execution until the final output is written for medium precision and high precision for 

different number of sensors are shown in Table 5.5 and Table 5.6. 

Table 5.5: Simulation time for different number of sensors for medium precision. 

Parameter Number of Sensors 

2 3 4 

Clock Frequency (MHz) 14 14 14 

Clock Period (ns) 71.42 71.42 71.42 

Throughput (cycles) 15206 25330 36052 

Execution Time (ms) 1.086 1.809 2.574 
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Table 5.6: Simulation time for different number of sensors for high precision. 

Parameter Number of Sensors 

2 3 4 

Clock Frequency (MHz) 8.456 8.456 8.456 

Clock Period (ns) 118.26 118.26 118.26 

Throughput (cycles) 20680 35208 50734 

Execution Time (ms) 2.445 4.163 6.00 

 

D
3
 is coded in C for its quick performance evaluation. Programs have been executed 

on a conventional PC powered by a 2.6 GHz i7-3720QM CPU with 8 GB RAM. The 

results of the execution times for i7 processor, our optimized FPGA, and GPU 

implementations are summarized in Table 5.7. Execution time is plotted in Figure 5-6 to 

show the effect of varying the number of sensors on the performance. The results show 

that the FPGA implementation performs better than other implementations. The superior 

performance of the FPGA-based implementations is attributed to the highly parallel and 

pipelined architecture.   

Table 5.7: Execution time on different platform implementations 

Implementation Number of Sensors 

2 3 4 

i7-3720QM CPU (ms) 20.458 45.76 71.84 

FPGA  (ms) 2.445 4.163 6.00 

GPU (ms) 3.22 5.89 7.58 
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Figure 5-6: Effect of changing the number of sensors on execution time for different 

implementations. 

 

5.4 Simulation of Parallel Extensive Cancellation Algorithm 

(ECA)  

A real data is used to examine and verify ECA algorithm. The data were obtained 

from Radar Sensing Group of Electro-Science Laboratory, Department of Electrical 

Engineering, Ohio State University, USA [160]. The experimental FM PBR system 

focused on the use of TV station signals. However, the ECA based PBR approach can be 

applied to any other transmission sources such as cell-phone transmissions, radio 

waveforms, navigation satellites, and others.  

 

The data were collected on long integration time in order to get an acceptable signal to 

noise ratio. The antennas were wideband hybrid log-periodic and bowtie antennas from 

ETS Lindgren (one for the reference and the other for surveillance).  They were mounted 
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on tripods on the roof of the Electro-Science Laboratory [160], at a height above ground 

of approximately 10 m. 

 

 The incoming digital television waveform was amplified and bandpass filtered. The 

spectrum for the real-sampled signal at 100 MHz represents frequencies from 500-550 

MHz. The primary channel of interest is DTV ch 24, WSFJ-TV, from 530 to 536 MHz 

(DTV broadcasts have a 6 MHz bandwidth.) 

 

The collected passive radar data were digitized for one second as there was no way of 

verifying whether the detections were spurious noise or actual target. The processing was 

segmented by independently processing the first half second of the data and the last half 

second of the data. Between these two data collections, if a target is present at the same 

range and Doppler, we can expect that the detection was successful.   

 

Figure 5-7 shows the processing of the first half and the second half of the data in (a) 

and (b) respectively, whereas (c) represents the common detections between the two 

portions of the data (only the true target is shown). 
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Figure 5-7: 2D-CCF after cancellation with ECA.  

(a) Sketch of reference scenario. (b) Sketch of surveillance scenario.  

(c)  2D-CCF after the cancellation with ECA. 

 

Figure 5-8 shows the 2D-CCF between the reference and surveillance waveforms 

when the direct signal and all echoes from stationary scatters are cancelled. A target is 

detected at 22 m/s bistatic range rate and 4 km bistatic range where it is clearly visible 

since there are no sidelobes in either range or velocity dimension. It proves the validity of 

the modified ECA algorithm and shows the detection of a moving target. 
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Figure 5-8: Target (circled) at (4,22) detected in ECA processing.  

 

The software tool (RSPT) automatically generates the VHDL ECA component and 

synthesizes with the Xilinx ISE [159]. Xc6vlx760-2ff1760 FPGA device is used in this 

work. Table 5.8 lists the overall results in terms of hardware resources, and power 

consumption. The hardware utilization given in terms of occupied slices, Flip Flop (FF), 

Lookup table (LUT), BRAM_18K, IOBs, LUT FF pairs, DSP48E, and the power 

dissipation. 
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Table 5.8: Resource utilization ON Xc6vlx760-2ff1760 FOR N=1000 & K=32 

Parameters Resource Utilization  

Number of Slice Register 422,311 

Number of Slice LUTs 193,781 

Number of Occupied Slices 104,148 

Number of LUT FF pairs used 445,760 

Number of IOBs 1186 

Number of DSP48E1s 113 

Power Consumption (mW) 4122 

 

Tables 5.9 and 5.10 summarize the ECA major processes involved in ECA and 

illustrate the time complexity and memory usage before and after the optimization for 

each step.  

Table 5.9: Time complexity of the major steps in ECA before and after optimization 

Process Before Optimization After Optimization 

Matrix D Building   O(  ) Removed 

D
K
 O(KN

3
) Removed 

D
K
sref O(KN

2
) Removed 

Sref Matrix Building   O(  ) O(  ) 
Matrix  Building   O(    ) Removed 

Matrix B Building  O(  ) Removed 

Matrix Hermitian Building   (  ) Removed 

Second part of Matrix X   (  (     ))  ( (   ) 
Matrix X Building  O(    ) Removed 

Complex matrix multiplication F=(X
H
X)  O(   )  O(  ) 

Complex matrix inverse  Z=(X
H
X)

-1
 Varies by used 

method 

 

O(   ) 

 (  ) 

 

 (  ) 
 

Complex matrix multiplication D=Z*X
H 

 

Matrix-vector multiplication 
survDs   ( ) 

Matrix-vector multiplication X   (  )  ( ) 
Vector-vector subtraction 

survs X   ( )  O(1) 
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Table 5.10: Storage complexity for the major steps in ECA before and after 

optimization 

Process Before Optimization After Optimization 

Ssurv vector building N N 

sref vector building  N+R-1 N+R-1 

Matrix D Building (N+R-1)
2
 0 

Sref Matrix Building  (N+R-1)K (N+R-1)K 

Matrix    Building (2P+1) (N+R-1)
2
 0 

Matrix B Building N(N+R-1) 0 

Matrix X Building  NM NM 

Matrix Hermitian Building MN 0 

Complex matrix multiplication (X
H
X)  MM MM 

Complex matrix inverse  (X
H
X)

-1
 MM  

  Complex matrix multiplication  (XH
X)

-1
*X

H MN 

Matrix-vector multiplication 1( )H H

survX X X s  M M 

Matrix-vector multiplication X  N N 

Vector-vector subtraction 
survs X  N N 

 

The design of the control unit of a deep pipelined data-path that controls the 

scheduling for FPGA has 73 stages. The number of clock cycles, throughput, clock 

period, and the execution time from the start of execution until the final output is written 

for different number of range bins are shown in Table 5.11. 

 

Table 5.11: Simulation time for different number of range bins 

Parameter Range bins (K) 

32 48 64 

Clock Frequency (MHz) 123 123 123 

Clock period(ns) 8.12 8.12 8.12 

Throughput (cycles) 5,788,1773 12,931,0344 24,0147783 

Execution Time (s) 0.47 1.05 1.95 

 

ECA is coded in C for its quick performance evaluation. Programs have been executed 

on a conventional PC powered by a 2.6 GHz i7-3720QM CPU with 8 GB RAM. The 
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results of the execution times for i7 processor, our optimized FPGA, and GPU 

implementations are summarized in Table 5.12. Execution time is plotted in Figure 5-9 to 

show the effect of varying the number of range bins on the performance. The results 

show that the FPGA implementation performs better than other implementations. The 

superior performance of the FPGA-based implementations is attributed to the highly 

parallel and pipelined architecture, and the flexibility in allocating the needed resources.   

Table 5.12: Execution time of different platforms of ECA 

Implementation Range bins (K) 

32 48 64 

CPU before Optimization (s) 32.34 45.2 60.21 

CPU After Optimization (s) 8.52 13.05 20.8 

GPU (s) 0.98 1.457 2.377 

FPGA (s) 0.47 1.05 1.95 

 

 

Figure 5-9: Effect of changing range bins (K) on execution time for different 

implementations. 
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5.5 Simulation of Parallel Block Compressive Sampling 

Matching Pursuit (BCoSaMP) algorithm 

A numerical experiment is performed in order to examine and verify BCoSaMP 

algorithm. The experiment is accomplished using a signal with length N=4096 from 

noise-free random Gaussian numbers. The block size is 32 and numbers of active blocks 

are 16. The setup of our experiment is important for microphone applications where 

sparse acoustic signal frequencies have different amplitudes and delays. The recorded 

signals from the microphone are digitized and re-constructed in a way to match the 

structure of blocking technique for BCoSaMP algorithm. However, the BCoSaMP 

algorithm can be applied to any other sources such as image processing applications.  

Figures 5-10 and 5-11 show the original block sparse signal and the result of 

recovering the signal from BCoSaMP algorithm, respectively. We observe that 

BCoSaMP algorithm can recover the original sparse signal accurately. 
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Figure 5-10: Original block-sparse signal 

 

Figure 5-11: BCoSaMP-based recovery signal. 
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RSPT tool automatically generates the VHDL BCoSaMP component and 

synthesizes with the Xilinx ISE [159]. XC7A100TCSG324-3 FPGA device is used in this 

work. Table 5.13 lists the overall results in terms of hardware resources and power 

consumption. The hardware utilization is given in terms of slices of BRAM_18K, 

DSP48E, Flip Flop (FF), Lookup table (LUT), IOBs, and the power dissipation. 

Table 5.13: Resource utilization and overall implementation performance of 

BCoSaMP ON Artix7 xc7a100tcsg324-3 

Parameters Resource Utilization 

BRAM_18K 14 

DSP48E    42 

FFs 8753 

LUTs 10884 

Number of IOBs 140 

Power Consumption (mW) 1960 

 

 

The design of the control unit of a deep pipelined data-path that controls the 

scheduling is 57 stages. The number of clock cycles, throughput, clock period, and the 

execution time from the start of execution until the final output is written for different 

number of vector size are shown in Table 5.14. 
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Table 5.14: Simulation time comparison of different number of vector size with K=50 

and Number of blocks =5 

Parameter Density (Number of samples) 

256 512 1024 

Clock Frequency (MHz) 117.64 117.64 117.64 

Clock Period(ns) 8.5 8.5 8.5 

Throughput (cycles) 41025 71793 116304 

Execution Time (ms) 0.3487 0.61 0.988 

 

The execution times of BCoSaMP algorithm for the sequential, FPGA, and GPU 

implementations are summarized in Table 5.15. The results show that the FPGA and 

GPU implementations perform much better than the alternative sequential 

implementation. The superior performance of the FPGA-based implementations is 

attributed to the highly parallel and pipelined architecture. The result also shows the 

effect of changing the vector size on the performance. It can also be seen that our 

optimized implementations achieves more speed-up with increasing vector size which is 

attributed to the high parallelism and pipelining exploited in the array architecture as 

opposed to the sequential behavior implementation. 

Table 5.15: Execution time of different implementations for BCoSaMP  

Implementation Density (Number of blips) 

256 512 1024 

Before Optimization (ms) 3.1 6.39 14.1 

Optimization with FPGA (ms) 0.3487 0.61 0.988 

Optimization with GPU (ms) 0.442 0.76 1.32 
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5.6 Simulation of Parallel Discrete Wavelet Transform 

(DWT)  

The generated VHDL DWT file from our software tool is evaluated and synthesized 

with the Xilinx tool ISE [159]. XA7A100T CSG324 -2I FPGA part is used in our work. 

The hardware resources in terms of occupied slices, performance in terms of maximum 

frequency, and power dissipation of our generated VHDL file for all dimensions for size 

N=128 are shown in Table 5.16. Our implementation provides significant improvement 

with respect to the maximum frequency whereas a slight increase in number of slices and 

the power consumption.  

Table 5.16: Hardware Utilization and Overall Performance for N=64. 

1-D 

 

Parameters 

Forward Type Backward Type 

Non-

Optimized 

Optimized Non-

Optimized 

Optimized 

Slices 1646 2247 1022 1110 

Power (mW) 96 101 83 83 

Max. Fr.(MHz) 116.12 214.6 118.55 226.55 

2-D 

Slices 2525 2654 1250 1353 

Power (mW) 218 249 189 203 

Max. Fr.(MHz) 113 210 113.66 218 

3-D 

Slices 2890 3159 1896 2064 

Power (mW) 361 404 294 328 

Max. Fr.(MHz) 106.17 203 104 204.45 
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The DWT performance is compared with other implementations and platforms. The 

achieved throughput of Pentium III processor, DSP, and the optimized FPGA 

implementation are shown in Table 5.17. The result shows that FPGA implementation 

achieves high performance compared with other implementations and platforms. This is 

due to the highly parallel and pipelined architecture provided by the FPGA 

implementation of DWT and the efficiency of our developed software processing tool. 

Table 5.17: Throughput of Different Implementations for 2-D for N =128. 

Platform Forward (MHz) Backward (MHz) 

Pentium III 0.00781 0.00673 

TMS320C6711 DSP 6.530 3.620 

Conventional one  113 113.66 

Our Method  210 218 

 

To underline the influence of different transform size on area, power consumption 

and maximum frequency, we have implemented the optimized design that generated from 

our tool on Xilinx FPGA devices, Xa7a100t-2icsg324. Figures 5-12, 5-13, and 5-14 

illustrate the relationship for each performance indicator for backward type for 1-D, 2-D, 

and 3-D. The results obtained are clearly shown that the 3-D consumes more area and 

power than 1-D and 2-D due to its high computation and complexities. 
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Figure 5-12: Influence of transform size on area (slices). 

 

 

Figure 5-13: Influence of transform size on power consumption (mW). 
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Figure 5-14: Influence of transform size on maximum frequency (MHz). 

 

5.7 Simulation of Parallel Particle Filter  

In order to examine and verify particle filter method, it must be tested against highly 

non-linear and non-Gaussian data. So, complex system with difficult state estimation is 

considered in our work in both the process and measurements based on Equations (3.50) 

and (3.51). Figures 5-15 and 5-16 show the particle filter estimation performance and the 

error rate over the true state respectively. It shows that the estimating state is close to the 

true states which validate the efficiency of particle filter operation.  
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Figure 5-15: Particle filter estimation performance 

 

Figure 5-16: Error rates of 100 particles over 50 time step 
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The particle filter component is synthesized with the Xilinx ISE [159]. 

XA7A100TCSG324-1q FPGA device is used in this work. Table 5.18 lists the overall 

results in terms of hardware resources and power consumption.  

Table 5.18: Resource utilization and overall implementation performance 

Parameters Resource Utilization 

BRAM_18K 8 

FFs 8724 

LUTs 15644 

Number of IOBs 230 

Power Consumption (mW) 2434 

 

The design of the control unit of a deep pipelined data-path that controls the 

scheduling has 101 stages. The number of clock cycles, throughput, clock period, and the 

execution time from the start of execution until the final output is written for different 

number of vector size are shown in Table 5.19. 

Table 5.19: Simulation time comparison of different number of particles 

Parameter Number of particles 

250 500 1000 

CLK Freq. (MHz) 145.34 145.34 145.34 

Clock Period(ns) 6.88 6.88 6.88 

Throughput (cycles) 410325 710773 1100800 

Execution Time (ms) 2.823 4.89 7.57 

 

The execution times of particle filter implementation for the sequential, FPGA, and 

GPU implementations are summarized in Table 5.20. The results show that the optimized 
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FPGA and GPU implementations perform much better than un-optimized one. The 

superior performance of the optimized implementation is attributed to the exploitation of 

parallel architecture of the FPGA and the parallelization of the particle filter. The result 

also shows that the optimized implementation achieves more speed-up with increasing 

number of particle which is attributed to the high parallelism and pipelining exploited in 

the array architecture. 

Table 5.20: Execution time of different implementation 

Implementation Number of particles 

250 500 1000 

Before Optimization (ms) 21.93 43.94 87.5 

Optimization with FPGA (ms) 2.823 4.89 7.57 

Optimization with GPU (ms) 3.07 6.48 11.86 

 

5.8 Simulation of Parallel Model Based- Iterative Hard 

Thresholding (MB-IHT)  

A numerical experiment is performed in order to examine and verify MB-IHT 

method. The experiment is accomplished of a signal with length N=1024 from noise-free 

random Gaussian. The number of measurements is 240 and the number of active blocks 

is 40. Figures 5-17 and 5-18 show the original block sparse signal and the result of 

recovering the signal using the MB - IHT method. Figure 5-19 shows the error rate of 

reconstruction the sparse compressed signal. It shows that the MB-IHT method can 

recover the original sparse signal accurately which validate the efficiency of the 

algorithm.  
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Figure 5-17: Original block-sparse signal 

 

Figure 5-18: MB-IHT based recovery. 
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Figure 5-19: Error rates of recovering compressed sparse signal using MB-IHT. 
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Table 5.21: Resource utilization and overall implementation performance on Artix7 

xc7a100tcsg324-3 

Parameters Resource Utilization 

BRAM_18K 4 

DSP48E    8 

FFs 593 

LUTs 805 

Number of IOBs 140 

Power Consumption (mW) 138 

 

The design of the control unit of a deep pipelined data-path that controls the 

scheduling is 57 stages. The number of clock cycles, throughput, clock period, and the 

execution time from the start of execution until the final output is written for different 

number of vector size are shown in Table 5.22. 

Table 5.22: Simulation time comparison of different number of vector size with K=25 

Parameter Density (Number of samples) 

256 512 1024 

CLK Freq. (MHz) 125 125 125 

Clock Period(ns) 8.0 8.0 8.0 

Throughput (cycles) 27861 55501 110700 

Execution Time (µs) 222 441 885 

 

The execution times of the MB - IHT method for the sequential, FPGA, and GPU 

implementations are summarized in Table 5.23. The results show that the optimization 

with FPGA achieves much better than the alternative implementations. The superior 

performance of the FPGA-based implementations is attributed to the highly parallel and 

pipelined architecture. The result also shows the effect of changing the vector size on the 
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performance; which shows that our optimized implementations is achieved more speed-

up with increasing vector size which is attributed to the high parallelism and pipelining 

exploited in the array architecture as opposed to the sequential behaviour implementation. 

Table 5.23: Execution time of different implementations on Artix7 -3 (XC7A100T 

CSG324 -3) 

Implementation Density (Number of blips) 

256 512 1024 

Before Optimization (µs) 437 856 1693 

Optimization with FPGA (µs) 222 441 885 

Optimization with GPU (µs) 301 535 1050 

 

5.9 Data Storage Location Analysis and Optimization 

Placing data at different storage resources on FPGA devices such as look-up tables, 

internal block RAM, and external memory will highly affect the overall performance 

such as latency, power dissipation, hardware resources, and the total area. So, a careful 

consideration must be taken in the way of storing and implementing the array and 

matrices. For example, if the data elements in the vector or matrices need to be accessed 

only one time, then the efficient implementation is to store these data in a block RAM to 

take the advantages of the efficiency of memory architecture. On the other hand, when 

the data elements need to be accessed simultaneously to support some optimization 

techniques to improve the performance, then these elements must be stored through 

internal configurable logic blocks. This will help in improving the performance but it 

loses the efficient architecture of RAM and increases power dissipation, hardware 
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resources, and the area. So, it will consume large logic resources that FPGA uses for 

other logical and mathematical operations.  

 

Also, the size of data elements that need to be stored has a critical factor in placing 

them at different places. In order to store the data through configurable logic blocks, the 

logic blocks such as Look-Up Table (LUT) and Flip Flop (FF) need to be configured and 

wired together. So, with large number of data elements, the implementation will be not 

efficient as it causes high wiring delays and uses a large number of multiplexers. So, in 

this case, the Block RAM will be utilized to reduce the latency, hardware resources, and 

power dissipation. On the other hand, with a small number of elements, the configurable 

logic block will be an appropriate option as the block RAMs has fixed modules in terms 

of size. So, if you map small number of elements on the block RAM, then it will waste 

the rest of the space in RAM.  

 

   Moreover, both distributed memory through configurable logic blocks and block 

RAMs are different in the way they are operated. Obviously the memory has two ports; 

write and read. Both of them are synchronous in writing operation whereas distributed 

memory is asynchronous and the block RAMs are synchronous in the reading operation. 

The advantage of the asynchronous feature of the configurable logic blocks in reading 

operations is the possibility of reading the data from memory as soon as the address is 

given without waiting for the clock edge. However, the synchronous operations can only 

happen at the clock edge.  
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In summary, the distributed reconfigurable logic blocks are used in the following 

cases: 

 Requiring multiple accesses to the data elements in the same clock cycle by 

applying optimization techniques to improve the performance. This will help 

in executing some operations concurrently. 

 The amount of data required to be stored is smaller. 

 Not enough free embedded block RAM on the FPGA for storage. 

 

However, the blocks RAMs of FPGA are used in the following cases: 

 Requiring only one access of the data in the same clock cycle. 

 The amount of data required to be stored is large. 

 Not enough free reconfigurable logic blocks available on the FPGA. 

In order to explore the performance of placing data at various memory location and 

architecture, we take 2-D discrete wavelet transform method as a case study with 

dimension N=128. So, its matrix (128x128) is implemented through both reconfigurable 

logic blocks and block RAM. Reconfigurable logic blocks based implementation avoids 

any contention on the matrix resource where many elements can be accessed 

simultaneously. It was also implemented as dual ports block RAM for comparing 

purposes. Table 5.24 shows the overall performance of running 2-D Forward type DWT 

for size N=128 in terms of Flip Flop (FF), Look Up Table (LUT), and the power 

consumption for both implementations. Xa7a100tfgg484-2i FPGA device is also used for 

both of them. Table 5.24 shows that reconfigurable logic blocks based implementation 

requires a lot of hardware resources that used and the design will be large due to use a lot 
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of multiplexers; consequently the power consumption, area, and design complexities are 

increased dramatically. This is because the matrix has a large data element that is not 

appropriate for reconfigurable logic blocks.   

Table 5.24: Hardware resources and power consumption of placing data at various 

memory locations for 2-D DWT 

Hardware resource  Dual port block 

RAM 

Reconfigurable logic 

blocks as LUT 

Percentage of 

increased 

Throughput (MHz) 113 210 86% 

LUT 1642 10778 556% 

FF 835 9548 1043% 

Power dissipation (mW) 246 2031 725% 

 

Also, we take another large example to show the impact of each option of storing the 

data. BCoSaMP algorithm is fully explored of placing data at both look up tables and 

block RAM. In this algorithm, we consider four vectors each with size 50 elements, one 

vector with size 256, two vectors each with size 30, and matrix with size 10x10. Using 

reconfigurable logic blocks option, Xilinx tool gives warning for the vectors with size 50, 

vector with size 256, and the matrix one.  Sizes of these vectors were too large for 

implementation with LUTs. If warning is ignored then it requires long runtime and 

suboptimal Quality of Results (QoR). It is due to use of large numbers of multiplexers. 

Table 5.25 shows how much the hardware resources and power dissipation is increased 

with the option of reconfigurable logic blocks as opposed to block RAM option for only 

the vector with size 256 and the two vectors with size 30.  
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Table 5.25: Hardware resources and power consumption of placing data at various 

memory locations for BCoSaMP algorithm 

Hardware resource  Dual port 

block RAM 

Reconfigurable 

logic blocks as LUT 

Percentage of increased 

or decreased 

Latency (ms) 3.1 0.3487 Decreased 88% 

Block RAM 14 10 Decreased 28% 

LUT 12763 23202 Increased 82% 

FF 11516 31798 Increased 176% 

Power dissipation (mW) 2438 5505 Increased 126% 

 

Our goal is to achieve low latency without increasing other critical performance 

parameters dramatically such as power dissipation, hardware resources, area, and 

complexity. So, a careful implementation and decision for each vector and matrix in all 

our algorithms (D
3
, ECA, particle filter, DWT, IHT, and BCoSaMP) are made based on 

above mentioned cases. Sometimes when a parallel operation is performed on a large 

matrix such as in the case of  DWT, multi ports RAM is used instead of reconfigurable 

logic blocks. This helps in neglecting high resource requirement and storage overhead to 

minimize the area, cost, power consumption, and design complexities. 

 

Also, the implementation of some algorithms on FPGA devices such as ECA 

algorithm requires an external memory to store the data where the capacity of internal 

FPGA memory is not enough. This is very critical as it dictates the overall performance 

of the system which deals with I/O ports that have high latency. The interface must 

provide high bandwidth for both read and write operations to keep up with the flow of the 

data. So, to minimize the low performance and the overhead of the interface, it is only 

used with the following cases: 

 Not enough space to store the data on FPGA internal memory. 
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 At the first time where the input data need to be fetched from external 

memory to be stored on FPGA internal memory. 

 At the last time where the result data need to be stored back to the external 

memory. 

5.10 Vivado HLS Tool versus VHDL Programming  

The most limitations with FPGA platform is the requirements of large design time 

and high development of the algorithm. However, this limitation is removed by using 

Vivado HLS tool.  In order to show the effectiveness of HLS tool, an extensive analysis 

of matrix vector multiplication task is performed since it is used mostly in all the 

algorithms. The matrix vector multiplication task was written in standard VHDL and 

synthesized. It was then compared with results from HLS tool. Both implementations are 

synthesized and simulated on the same device and FPGA part (Vertix7 XC7VX330T 

FFG1157-2). Table 5.26 shows the performance in terms of the achieved throughput, 

LUT, FF, IOBs, and the power dissipation. The result shows that VHDL implementation 

based on HLS tool achieves better throughput and IOBs than manual implementation. On 

the other hand, LUTs and FFs are slightly increased where the power dissipation almost 

the same. However, our objective is to achieve high throughput without increasing other 

performance parameters dramatically. So, HLS tool is used since it achieves high 

performance in terms of throughput, simplifies the design and simulation tasks, reduces 

the design time, increases the productivity, improves the reliability, and enables 

exploration of the design space. It also enables the designer to build the most efficient 

implementation in terms of performance with given design constraints. Therefore, the 
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HLS tool should be considered as a new paradigm in FPGA design especially for high 

performance applications. 

Table 5.26: HLS tool based implementation vs manual implementation of matrix 

vector multiplication task 

Performance parameters HLS tool VHDL 

Throughput (MHz) 418 176 

IOBs 100 242 

FF 225 113 

LUT 227 202 

Power dissipation (mW) 148 143 
 

 

5.11 Conclusions 

A parallel algorithm has been developed for IR video processing on GPU with all its 

steps; background subtraction, noise filtering and connected component labelling. It 

provides a frame processing rate of 45.126 frames per second meeting the real time 

requirement of 30 fps. Complete analysis and estimation of energy consumption for all 

the MPSoC platform components such as processing elements, memory, caches, routers 

and communication architecture were performed to find the bottlenecks in the platform 

for video processing application. The video processing algorithm was also partitioned, 

parallelized, mapped and scheduled on multi-core. We showed that the energy dissipation 

appears to be the most critical factor for memory and caches not for the communication 

architecture as per common belief.  Also, a better performance is obtained by proposing a 

new modelling and simulation approach regarding the channel width and buffer sizing. 

D
3
, ECA, particle filter, DWT, IHT, and BCoSaMP algorithms are firstly simulated and 

experimented for verification purposes. Then, all the algorithms implemented and 
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parallelized on FPGA and GPU based architecture. Experimental results show that our 

FPGA and GPU architectures of these algorithms can significantly outperform an 

equivalent sequential implementation. The results also show that our FPGA 

implementation provides better performance than the GPU implementation.  
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Chapter 6 

Conclusion and Future Work 
 

 

A parallel processing approach using GPU platform is used to process IR video data 

that will meet real time requirements. The IR video processing algorithm including all its 

tasks; background subtraction, noise filtering and connected component labeling; were 

partitioned, parallelized, mapped and scheduled. We achieved the real time requirements 

and the necessary performance for analyzing the IR image of size 704x480. 

 

We have analyzed and assessed the energy dissipation for heterogeneous NoC-

based MPSoC platform running a video application. We have estimated the energy 

consumption for all the components of heterogeneous NoC platform including processing 

elements, memory, caches, routers and communication architecture. The video 

processing algorithm was partitioned, parallelized, mapped and scheduled on Multi-Core 

(slave cores). We showed that the energy dissipation appears to be the most critical factor 

for memory and caches not for the communication architecture as per common belief.  

Also, a new modeling and simulation approach regarding the channel width and buffer 

sizing is proposed to get a better performance. We showed that there are some hot spots 
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in the system regarding the channel width and buffer size. They have been optimized to 

get a better performance. 

D
3
, ECA, particle filter, DWT, IHT, and BCoSaMP algorithms have been transformed 

into parallel architectures. They have been implemented on both FPGA and GPU 

platforms. A generalized approach for parallelizing a target algorithm has been 

developed. It is accomplished by creating a methodology for various processes such as 

evaluation of data dependencies and exploring parallel processing opportunities. The 

performance evaluation of placing data at various memories such as cache, look up 

tables, SRAMs, and external memories has been explored. It shows high impact on the 

overall performance such as latency, power dissipation, hardware resources, and the total 

area. So, a careful consideration was taken in the way of array and matrices 

implementation of a certain algorithm which depends on many factors such as:  

 Number of required access of data elements in the same clock cycle.  

 The size of the vector and the matrix need to be stored. 

 The available storage area on embedded block RAM on the FPGA. 

 

High Level Synthesis Tool (HLST) has been exploited with our techniques by 

enabling rapid development to generate efficient parallel codes from high-level problem 

descriptions. The HLST automatically generate the pipelined data-path and the control 

unit which significantly simplifies the design and simulation process. It significantly 

reduces the design time of FPGA-based hardware, enables design exploration, and 

therefore, should be considered as an alternative in FPGA design for complex 

applications.  
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A new software tool called Radar Signal Processing Tool (RSPT) has been developed. 

It unifies the aspects of algorithms, architectures, and software which bridges the gap 

between the algorithm and architecture scientific communities. This helps in performing 

hardware software co-design that pushes performance and energy efficiency while 

reducing cost, area, and overhead. It is capable of auto-generating a fully optimized 

VHDL representation of each processing approach with different parameters through a 

Graphic User Interface (GUI). It provides the designer a feedback on different 

performance parameters such as the number of occupied slices, maximum frequency, and 

dynamic range performance. Using this feedback, the designer can focus on the overall 

SoC performance and make adjustments to any of these components as necessary until 

the desired performance of the overall SoC is achieved. This provides great flexibility in 

designing signal processing applications such as D
3
, ECA, particle filter, DWT, IHT, and 

BCoSaMP algorithms for a SoC without having to write a single line of VHDL code. 

RSPT also utilizes optimization techniques such as pipelining, code in-lining, loop 

unrolling, loops merging, and dataflow techniques by allowing the concurrent execution 

of operations to improve throughput and latency. 

 

Following are several issues which need to be considered in order to improve and 

expand our work: 
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 Although our selected algorithms for radar and compressive sensing are the 

interesting topic of many researchers in recent years, there are many other 

algorithms that are still needs to be developed of different fields.  

 The results of the selected algorithms are obtained through simulations. 

However, it is more complementary if these algorithms are implemented and 

simulated on real hardware. This will be interesting for researchers in different 

fields. 

 Our selected algorithms are implemented based on different programming 

languages such as C, C++, Vivado Syntax, Matlab. However, the development 

of these algorithms in a deeper level based on circuit level based on VLSI 

research will be very helpful. This takes a long time for designing, 

developing, testing, and verification, but it will improve the performance in 

terms of latency, power dissipation, and storage area. 

 Although many algorithms are implemented efficiently on different parallel 

processing platforms to reach the real time requirements, it is more desirable 

to develop and implement these algorithms based on system level not on 

component level. This will include a complete system consisting of 

transmitter phase with its antenna, RF oscillator, modulator etc, receiver phase 

with its local oscillator, amplifier, limiter, detector, Analog to Digital 

Converter (ADC) etc, input stage design, storage phase, signal processing 

design with its filter, integration, compression etc, and output stage design. 

This will help in linking all the application requirements resources and 
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therefore more optimization will be achieved since several optimization 

techniques will be applied for all its parts not just for the computational part. 
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