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Due to recent recognition that ballast water is playing an important role in the 

spread of invasive species within the Great Lakes, there has been increasing interest in 

implementing management strategies that include a secondary spread component for 

ballast discharge. Using ballast water data for ships visiting U.S. ports in the Great Lakes, 

I created a dynamic spatial model to simulate the spread of invasive species based on 

recent shipping patterns. My goal in producing this model was to provide information to 

natural resource managers, scientists, and policy-makers to help effectively regulate 

invasive species issues. In testing the model, I determined that including the number of 

discharging ship visits that a location receives from previously infested areas and the 

ability of an organism to survive in the ballast tank were important in more accurately 

identifying the past spread of the fish virus, viral hemorrhagic septicemia virus (VHSV), 

zebra mussel (Dreissena polymorpha), and Eurasian Ruffe (Gymnocephalus cernuus), 

than discharge location alone.  I also included and tested a localized spread distance that 

simulated the dispersal of an invasive species upon being discharged at a location. I first 

applied the model to identify if ballast water played a role in the secondary spread of 
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VHSV. Results indicated that ballast water movement has contributed to the spread of 

VHSV in the Great Lakes, albeit it is not the only vector of secondary spread. However, 

ballast water management would be an important part of any plan in preventing the future 

spread of VHSV in an ecosystem. Next, I applied the model to predict the future spread 

of Eurasian Ruffe, which already occurs in the Great Lakes, and two species that do not, 

golden mussel (Limnoperna fortune) and killer shrimp (Dikerogammerus villosus). The 

results of the prediction models are intended to be used to help direct early detection 

monitoring efforts. The Eurasian Ruffe results are currently being used by The Nature 

Conservancy in their eDNA monitoring efforts, and have led to the positive detection of 

ruffe eDNA in a location where ruffe has previously not been detected. Finally, I applied 

the model to identify potentially “safe” ballast water exchange (BWE) sites in Lake 

Michigan. The purpose of this exercise was to locate mid-lake sites where ships could 

exchange and flush their ballast tanks, so as to reduce the probability that species are able 

to survive and establish new populations in the Great Lakes. Potential BWE sites were 

identified by inputting the results of Lake Michigan circulation models into the ballast 

water model to determine which sites led to no or minimal spread throughout the Great 

Lakes. Results of model applications have led to specific predictions for species and 

management scenarios identified by invasive species managers that have previously not 

been made for ballast water management in the Great Lakes before.
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This dissertation is dedicated to my grandmothers, Carleen and Rose. It is for them that I 
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Chapter 1 

Introduction 
 

 

Prior to European settlement in North America, the Laurentian Great Lakes were a one-

way conduit of water to the Atlantic Ocean with upstream travel blocked by natural obstacles. A 

series of rapids and a change in elevation of about 70 m prevented many organisms from 

travelling up the St. Lawrence River and into Lake Ontario. Niagara Falls further prevented 

species from travelling into Lake Erie and the remaining Great Lakes. However, from the time 

Europeans first reached the Great Lakes, they began to devise the means to turn them into the 

seaway they are today. First, the Erie Canal was completed in 1825, connecting the Hudson River 

in New York, and effectively the Atlantic Ocean, to Lake Erie (Finch 1925). Next, the First 

Welland Canal, added in 1829, connected Lake Ontario to the rest of the Great Lakes (The St. 

Lawrence Seaway Management Corporation 2014). This canal underwent several iterations until 

all but today’s largest ships were able to lock through it and gain access to the lakes in the west. 

Beginning in the mid-1800s, the first known aquatic invasive species began to enter the Great 

Lakes, including alewife and sea lamprey, both believed to have entered the portion the Great 

Lakes from Lake Erie west via the canal system (NOAA Undated).  Finally, after 64 years of 

planning and debating, the St. Lawrence Seaway was completed in 1959 (National Research 

Council 2008). The Seaway was the last step in opening up the Great Lakes to the Atlantic Ocean 

and the ports of the world. With the global trade that entered through the St. Lawrence Seaway 
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came numerous species from around the world, some that have led to considerable economic and 

ecologic harm to the Great Lakes region. 

Of the numerous vectors of species introduction to the Great Lakes, ballast water has 

been one of the most important contributers to invasive species introductions. Ship ballast has 

been a contributor to invasive species introductions to the Great Lakes since the mid-1800s 

(NOAA Undated). Ballast is required by ships travelling on large bodies of water to maintain the 

appropriate trim and stress loads (Committee on Ships' Ballast Operations et al. 1996). If a ship is 

ballasted improperly, it can break up due to high stresses on its hull and structure or be sunk 

during rough seas. During the early days of shipping on the Great Lakes, ships were made of 

wood and used solid ballast, usually composed of sand and rock (Transport Canada 2010). 

Despite solid ballast being an important contributor to the spread of invasive plants and some 

invertebrates, it was not a major source of aquatic invasive species introductions to the Great 

Lakes (NOAA Undated). However, by the early 1900s, ships were mostly being built of steel and 

used water as ballast, since it was easier to load and provided greater stability (Transport Canada 

2010). This allowed for increased spread of species within the Great Lakes, which at that point 

were mostly introduced to the Great Lakes by intentional releases (NOAA Undated). However, 

after the opening of the St. Lawrence Seaway in 1959, the number of nonindigenous species 

being introduced into the Great Lakes, especially by ballast, drastically increased (NOAA 

Undated). From 1840 to 1959, the number of species being detected in the Great Lakes per year 

averaged 0.89, with 0.18 species per year identified as having been introduced via ballast 

exclusively (NOAA Undated). Since 1959, the average number of species detected per year has 

been 1.60 with 1.00 species per year due to ballast (NOAA Undated). In fact, since 1959 about 

62% of species detected in the Great Lakes were introduced by ballast, as opposed to 21% prior 

to the opening of the St. Lawrence Seaway (NOAA Undated). The most evident jump in species 

introductions occurred in the mid- to late 1980s (NOAA Undated). 
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With the exception to those species that directly impacted economically important 

commercial and recreational fishers, such as sea lamprey and alewife, few policy makers had 

noticed the influx of invasive species to the Great Lakes. In the 1980s, the increasing number of 

invasive species detections began to raise the interests of scientists, natural resource managers, 

and policy makers; however, it was one small, bivalve introduced in the 1980s that is most well-

known as the “poster child” of aquatic invasive species. The zebra mussel (Dreissena 

polymorpha) is a mollusk from the Ponto-Caspian region introduced via ballast water (NOAA 

Undated) that was first discovered in Lake St. Clair in 1988 (Benson 2014). By 1989, zebra 

mussels were found in all of the Great Lakes, except Lake Huron (Benson 2014). Since then, 

zebra mussels have spread to all Great Lakes, throughout the Mississippi, Ohio, and Hudson 

River basins, and into the western U.S. (Benson 2014). It was later determined that zebra mussels 

had been discovered in Lake Erie in 1986, but this information was recorded only in obscure 

references until published by Carlton in 2008. By the time zebra mussels were widespread in the 

Great Lakes, they had already fouled water intakes of power plants and municipal water 

suppliers. In fact, in 1989, Monroe, Michigan’s water supply on the western end of Lake Erie was 

forced to shut down due to the clogging of its water intake pipes with zebra mussels (Beeton 

2014). Zebra mussels have also had considerable impacts on the Great Lakes ecosystem, due to 

their large population sizes and ability to efficiently filter the water column (Adlerstein et al. 

2007, Higgins 2014, Mayer et al. 2014). Zebra mussels have been identified as decreasing the 

diversity and abundance of native mussels and phyto- and zoo-planktons (Adlerstein et al. 2007, 

Lucy et al. 2014, Ward and Ricciardi 2014) and potentially increasing toxic algal blooms in the 

Great Lakes (Bierman et al. 2005). Because of the rapid expansion of the zebra mussel and the 

resulting economic and ecological loss, both the U.S. and Canada decided to take steps to prevent 

the future invasion of such species. 



4 
 

In order to prevent the introduction of species to the Great Lakes, both Canada and the 

U.S. have put forth ballast water management policies, which have evolved since their first 

inception. Prior to 1993, ballast water management policies involving invasive species were 

voluntary. However, in 1993, the U.S. Coast Guard (USCG) began requiring that all ships 

entering the Great Lakes undergo mandatory ballast water exchange (BWE; Buck 2010). In 2006, 

the Government of Canada were the first to begin requiring that all ships carrying residual ballast 

water and sediment (NOBOB-No Ballast On Board) flush their tanks with seawater prior to 

entering the Great Lakes (Government of Canada 2006). The USCG in 2012 and the U.S. 

Environmental Protection Agency (USEPA) in 2013 released further requirements for the 

management of ballast water in U.S. waters (USCG 2012, USEPA 2013). For the first time, U.S. 

policy listed management practice requirements for “Lakers”, ships that only travel within the 

Great Lakes. These policies address the more recent concern that ballast water is playing a role in 

the “secondary spread” of invasive species within the Great Lakes (Rup et al. 2010, Briski et al. 

2012). Secondary spread is the spread that occurs after the initial introduction of a species to a 

system. The USCG and USEPA further require that all new ships travelling in U.S. waters be 

equipped with approved ballast water management systems and that all ships visiting U.S. ports 

follow best management practices, such as avoiding taking in ballast water while at port when 

possible (USCG 2012, USEPA 2013). 

Even though both the U.S. and Canada have taken steps to prevent the introduction of 

invasive species to the Great Lakes, it is important to also have a control plan in place for those 

species that either manage to slip past prevention efforts or are introduced via other means. 

Prediction and early detection need to be part of any control efforts and are particularly important 

for aquatic species, which are more difficult to detect than terrestrial species (Jerde et al. 2011). 

Detecting a species during the earliest stages of invasion is crucial in eradicating or controlling it, 

as this may be the only time that the reproducing population is small enough to treat at a 
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manageable level (Simberloff et al. 2005, Lodge et al. 2006). Early detection also reduces the 

amount of time and money required to control a species (Lodge et al. 2006). Once a species has 

spread to multiple ports or lakes, it is much more difficult to control its spread. Because it is not 

possible to census the Great Lakes for invasive species using early detection techniques, such as 

eDNA methods, either due to lack of money, resources, or time, it is important to have tools that 

help to focus monitoring on locations that are most likely to be invaded by a species in the future. 

Using models to try to determine where a species may spread is a better option than actually 

introducing the species to a system, especially for a system as large as the Great Lakes. Prediction 

models have been used in the past to identify the potential future locations of species invasion. 

Many of these models have been developed to identify human behavior that would lead to long-

distance spread based on the “attraction” of uninvaded areas to certain segments of the human 

population (Schneider et al. 1998, Bossenbroek et al. 2001, Carrasco et al. 2010, Drake and 

Mandrak 2010, Prasad et al. 2010). None of these models mapped the past pattern of movement 

of the vectors they were studying and instead assumed that human behavior is predictable based 

on the characteristics of the uninvaded location and infrastructure. While this may be a safe 

assumption with certain vectors of spread, such as recreational boaters, the movement of ballast 

water in the Great Lakes can change with the economy. However, because the movement of 

ballast water has been recorded and made available by the U.S. since 2004 (Smithsonian 

Environmental Research Center and USCG 2009), building a prediction model based on past 

behavior can result in fairly accurate predictions of long-distance secondary spread. 

The goal of my dissertation is to build a ballast water model using past discharge data in 

the Great Lakes in order to inform a number of invasive species management questions. The 

model was tested to identify the most important information to include and to determine the best 

fit parameter values for each species studied as part of this dissertation. First, I used the ballast 

water model to identify the role ballast water was playing in spreading an invasive species, so as 
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to ascertain if a ballast water management component would be important to consider in 

controlling the spread of the species. The species I modeled was Viral Hemorrhagic Septicemia 

Virus (VHSV), a fish virus first found in the Great Lakes in 2003. Despite regulations aimed at 

preventing the spread of VHSV via fish stocking and bait fish, it became widespread in the Great 

Lakes, potentially due to a lack of regulation of other vectors of spread. I used the model results 

to determine if ballast water may have led to the further spread of this fish disease. Next, I used 

the model to predict the future spread of invasive species in the Great Lakes to help direct 

monitoring efforts and inform management on how to proceed once a species invades. I tested 

and ran the model for three species, Eurasian Ruffe (Gymnocephalus cernuus), golden mussel 

(Limnoperna fortunei), and killer shrimp (Dikerogammarus villosus). Eurasian Ruffe currently 

already occurs in the Great Lakes, but is not yet widespread. Both golden mussel and killer 

shrimp have not yet been detected in the Great Lakes, but were identified by a collaborative 

group of scientists as at risk for being introduced. The modeling effort not only produced 

predictions for guiding monitoring efforts, but also allowed for the determination of the best 

options for preventing the spread of specific species in the Great Lakes. The results of the 

Eurasian Ruffe predictive model are currently being used by The Nature Conservancy in their 

early detection monitoring efforts. Finally, I input the results of a Lake Michigan circulation 

model devised by scientists at the National Oceanic and Atmospheric Administration (NOAA) 

into the ballast water model to identify potential mid-lake BWE sites within Lake Michigan that 

can reduce the risk of secondary spread of invasive species. By identifying mid-lake BWE sites 

within the Great Lakes, I hope to demonstrate the possibility for effective temporary solutions to 

ballast water spread until ballast water treatment systems have been approved for use in 

freshwater. 
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Chapter 2 

Modeling the Secondary Spread of Viral Hemorrhagic 
Septicemia Virus (VHSV) by Commercial Shipping in 
the Laurentian Great Lakes 

 

 

2.1 Abstract 

Researchers have only begun to study the role of shipping in the spread of invasive 

species in the Laurentian Great Lakes despite a well-documented history of introductions 

in these lakes due to ballast water release. Here, we determine whether ballast water 

discharge was a likely vector of spread of the fish disease, viral hemorrhagic septicemia 

virus genotype IVb (VHSV-IVb), throughout the Great Lakes and St. Lawrence Seaway. 

Three models were developed to assess whether the spread of VHSV was due to 1) 

chance (random model), or 2) ballast water discharge (location model), and whether 3) 

increased propagule pressure, as measured by the number of visitations by ships carrying 

ballast water from VHSV infected areas, increased the likelihood of a discharge location 

becoming infected with VHSV (propagule pressure model). The third model was also 

used to assess the probable point of initial introduction of VHSV. Presence and absence 

accuracies and weighted Cohen’s kappa were calculated to determine which models best 
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predicted observed presences and absences of VHSV. Location models explain the 

patterns of VHSV detections better than random models, and inclusion of “propagule 

pressure” often improved model fit; however, the relationship is weak likely because of a 

long lag time between introduction and detection, a high rate of false negatives in 

reporting, and the possible contribution of other vectors of spread. Montreal was also 

identified as the more likely introduction site of VHSV, rather than Lake St. Clair, the 

site where the virus was first detected. 

2.2 Introduction 

Commercial ship ballast water has been identified as a major component of non-native 

species spread globally (Molnar et al. 2008). For example, in the Laurentian Great Lakes, 

62% of non-native species found are believed to have been introduced by ballast water  

since the opening of the St. Lawrence Seaway in 1959 (NOAA Undated). Commercial 

ships can carry between millions and billions of living organisms (i.e. propagules) in just 

1 L of their ballast water (Drake et al. 2007; Leichsenring and Lawrence 2011; Ruiz et al. 

2000). Even ships defined as carrying “no ballast on board (NOBOB)” may contain 

residual water and sediments harboring microorganisms (Drake et al. 2007). Not only can 

ships bring new species into the Great Lakes, but they have moved these species within 

the Great Lakes basin (Griffiths et al. 1991). “Secondary spread” of an invasive species, 

or the spread that occurs after the introduction of a species to a new region, can be a 

major contributor to dispersal within a region (Rup et al. 2010).  Herein, we examine the 

role of shipping as a vector of secondary spread of viral hemorrhagic septicemia virus 

(VHSV) within the Great Lakes.  
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 VHSV is a fish rhabdovirus that infects a wide range of fish species in North 

America, Europe, and Asia and is believed to have been introduced to the Great Lakes 

either via ballast water or migratory fish (Bain et al. 2010). VHSV has led to large fish 

kills, both in aquaculture and the wild (Kim and Faisal 2011; World Organisation for 

Animal Health 2011) and was first identified in eastern Lake Ontario in 2005 (Lumsden 

et al. 2007). Subsequent review of a rhabdovirus previously isolated from muskellunge in 

2003 places the first verified record of VHSV in Lake St. Clair in 2003 (Elsayed et al. 

2006; Faisal et al. 2012). The Great Lakes genotype of the virus was identified as being 

related to the North American and Japanese genotype (IVa); however, was distinct 

enough to be placed in its own sublineage (IVb) (Elsayed et al. 2006; Faisal et al. 2012). 

Since 2005, VHSV-IVb has  spread rapidly across all five Great Lakes, with detections in 

Lakes Erie and Huron in 2006, Lake Michigan in 2007, and as far west as 

Duluth/Superior harbors in Lake Superior in 2009 (Figure 2-1). Despite a lack of 

detections prior to 2003, recent genetic research suggests that the virus may have been in 

the freshwaters of the Laurentian Great Lakes much earlier (Pierce and Stepien 2012). 

Moreover, there are eleven genetically distinct populations, or isolates, of the IVb strain 

found only in the Great Lakes and a few nearby inland waters (Pierce and Stepien 2012; 

Thompson et al. 2011). One of the isolates, U13653 (or vcG002), was originally found in 

eastern Lake Ontario and is the second most prevalent and widespread isolate as 

compared to the one originally found in Lake St. Clair (MI03GL) in 2003 (Pierce and 

Stepien 2012; Thompson et al. 2011).  The prevalence of the U13653 isolate suggests the 

initial introduction of VHSV to the Great Lakes occurred via the St. Lawrence River. 

Since MI03GL and U13653 only diverge by one mutational step and both have been 
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isolated from fish in eastern Lake Ontario, this hypothesis seems plausible (Pierce and 

Stepien 2012; Thompson et al. 2011). Regardless of genetic sequence, VHSV-IVb has 

become rapidly widespread in the Great Lakes. 

 One of the reasons VHSV-IVb has been successful in invading the Great Lakes is 

because of the presence of environmental conditions that are favorable for the 

transmission of the virus. VHSV-IVb is particularly likely to spread in fish populations 

with high densities that are experiencing stress, which usually occur when fish come 

together during spawning (Kane-Sutton et al. 2010). In the Great Lakes, many fish spawn 

in the spring and early summer, when temperatures are ideal for the transmission of 

VHSV-IVb (Eckerlin et al. 2011; Kane-Sutton et al. 2010; Kim and Faisal 2011). 

Additionally, VHSV has been found to survive in freshwater for up to 14 days at 15°C 

and 20 days at 10°C under controlled conditions (Hawley and Garver 2008; Kim and 

Faisal 2011), indicating that the virus may be carried by water currents for several days in 

the spring and fall. 

 While the actual dispersal capabilities of VHSV are relatively unknown, it is 

unlikely that it was able to invade the full length of the Great Lakes in such a short period 

without a human-mediated, long-distance vector of spread. On the other hand, Bain et al. 

(2010) found no relationship between VHSV occurrences and locations identified as 

“shipping centers”. We thus hypothesize that commercial shipping may have been a 

vector of spread throughout the Great Lakes for VHSV. Ships in the Great Lakes 

generally draw in and discharge ballast water at ports as they unload and load cargo 

(Eames et al. 2008). They may also adjust their ballast mid-lake during bad weather and 

when entering connecting channels and rivers (Cangelosi and Mays 2006). This allows 
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for many opportunities to pick up, move, and discharge invasive species. Moreover, 

because ships travelling exclusively within the Great Lakes make trips that happen over a 

short period of time, survival of invasive species may be greater than in those ships 

coming from outside the Great Lakes (Rup et al. 2010). 

 Here we set out to assess whether shipping played a role in the secondary spread 

of VHSV and whether we could use shipping spread models to identify the most likely 

location of initial VHSV introduction. To assess the role of Great Lakes shipping in the 

secondary spread of VHSV, we developed two primary questions: 1) Are VHSV 

occurrences related to the location and amount of ballast water being discharged 

throughout the Great Lakes?;  2) Is it possible to identify the site of initial introduction of 

VHSV based on ballast water discharge patterns? To answer the first question we 

developed three dynamic spatial models. The first two models, a random model and a 

location model, were built to determine if VHSV is related to ballast water discharge 

locations. The third model, a propagule pressure model, was built to determine if the 

number of visits from possibly infected ships increases the likelihood VHSV will become 

established at a discharge location. To answer the second question, the initial introduction 

location was changed in the propagule pressure model to identify the infection source that 

best fits the observed VHSV occurrences. Lake St. Clair was chosen as an initial 

introduction location, since it is the earliest detection of VHSV-IVb. Montreal was 

selected as a second possibility in order to determine if VHSV may have been introduced 

via the St. Lawrence River instead. By answering these questions, we hope to establish if 

Great Lakes shipping has been responsible for secondary spread of VHSV throughout the 

Great Lakes, and if Lake St. Clair was the first site of introduction in the Great Lakes. 
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2.3 Methods 

2.3.1 Site Description 

The Laurentian Great Lakes and the St. Lawrence Seaway are the areas of interest for the 

study. We defined the St. Lawrence Seaway as being the portion of the St. Lawrence 

River from the western edge of Anticosti Island west to its source at Lake Ontario. 

2.3.2 Spatial Modeling 

We developed three competing models to assess the role that shipping plays in the spread 

of VHSV. Each of the models were run to simulate the spread of the virus from 2003 to 

2009 and had the same basic structure for each year of the model: 1) the number of 

VHSV introductions and their locations were selected using different stochastic 

processes, 2) each new introduction location was converted to an infection area based on 

the assumption that VHSV occurs in an area and not at a given point as identified by the 

presence data, and 3) the area of infection was further increased in each year to simulate 

the spread of the virus via natural means, such as by  currents and fish hosts. The results 

of the models were areas of “predicted” infection, which were compared to the observed 

VHSV presence and absence data to assess model fit.   

 Our three models primarily differed in the way annual infection locations were 

chosen (i.e. Step 1 from above). The “random model” identified annual infection 

locations by randomly selecting locations throughout the entire study area. The number 

of infection locations was randomly drawn from a Poisson distribution with λ, the mean 

and variance of Poisson distributions, equal to the mean number of actual VHSV 
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infections reported for the years 2003 to 2009. The total number of VHSV detections was 

56, so λ=8. For the “location model”, the number of infections per year was selected from 

a Poisson distribution as above; however, the infection locations were selected randomly 

only from known ballast water discharge locations. 

 The third model, the “propagule pressure model”, was more complex and 

included data on VHSV sources, destinations, and number of trips made between source 

and discharge sites. As the first known location of VHSV-IVb was Lake St. Clair in 2003 

(Elsayed et al. 2006), our first models initiated VHSV infection at that location. If a ship 

was identified as picking up ballast water in an area known to have VHSV, that ship was 

identified as carrying infected ballast water. Discharge locations receiving water from 

those infected ships in that year were next selected as possible locations of new VHSV 

infections. The total number of infected ships discharging at each location was calculated 

for each destination location. To determine if the discharge locations receiving at least 

one visit from an infected ship would become infected with VHSV that year we used a 

binomial distribution to determine if, for each ship visit, the discharge location became 

infected with VHSV. The number of binomial trials was equal to the total number of 

infected ships that discharged at the location in that year. The probability of infection for 

each binomial trial was calculated for each port based on a decay curve of virus-like 

particles (VLPs): 

 𝑝(𝑉𝐿𝑃) = 1 − 𝑒−0.11𝑥 

where p(VLP) = proportion of VLPs remaining and x = day of the trip (Lovell and Drake 

2009). Because of the lack of data on niche availability or the probability of 

establishment at each port, p(VLP) served as both the probability of infestation and the 
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probability of establishment. Additional single probability values of 0.50 and 0.01 were 

tested as representing the probabilities of infestation and establishment; however, little 

improvement in model fit was detected and model ranks were unchanged. The number of 

days a trip took was determined by calculating the mode of the number of days for each 

trip between ballast water source and discharge locations. If one or more of the infected 

ship visits at each discharge location resulted in infection (i.e., at least one binomial trial 

= 1), then that location was identified as being infected. 

 The random and location models were built to test the hypothesis that VHSV 

occurrences are related to discharge locations, while the propagule pressure model was 

built to test the hypothesis that infection locations are related to the amount of ballast 

water discharge being released at each location. The propagule pressure model was also 

revised to identify if another location besides Lake St. Clair may have been a likely initial 

source of VHSV. 

 All three models include parameters that simulate the possible area of infection 

due to natural spread once VHSV has been introduced to a particular location (i.e. steps 2 

and 3 above). It has been estimated that at least one strain of VHSV is capable of being 

moved outside of a host in seawater for up to 2-km (Meyers and Winton 1995). This 

distance might be somewhat arbitrary, as it depends on water current and wind which 

vary spatially and temporally; however, it was used as a reasonable estimate for 

identifying how far from a presence location VHSV may actually be found. The area 

created by a 2-km radius from the presence location was identified as the initial area of 

infection. Beyond the initial area of infection, it is unknown how far fish or currents carry 

the virus in any given year, so three distance values were tested to simulate the distance 



15 
 

VHSV would travel per year. Buffers of 10-, 20-, or 30-km radii were added to the 

infection areas every year to simulate the natural spread of the virus. Distances beyond 

30-km were not considered, as VHSV would be predicted to have spread to the entire 

Great Lakes within the 7 years of infection modeled. 

 All models require VHSV occurrence data and all but the random model requires 

ballast water source and/or discharge location data. The VHSV occurrence data was 

collected from a variety of sources, including the Nonindigenous Aquatic Species (NAS) 

database (USGS 2009), Department of Pathobiology and Diagnostic Investigation in the 

College of Veterinary Medicine at Michigan State University (2011), Cornell University 

(2010), and Minnesota and Wisconsin Department of Natural Resources (2010; Figure 2-

1). Other occurrence data were either unattainable or unidentified. Unattainable data 

included more recently published occurrences of VHSV in Diporeia spp. in Lakes 

Michigan and Ontario and in piscicolid leeches (Myzobdella lugubris) collected from 

Lakes St. Clair and Erie (Faisal et al. 2012; Faisal and Winters 2011). Both presences and 

absences were collected for the years 2003 to 2009 and were identified in all five Great 

Lakes, Lake St. Clair and its connecting waterways, and the St. Lawrence River in the 

Thousand Islands area. Ballast water source and discharge locations and number of trips 

were obtained from the National Ballast Information Clearinghouse (NBIC) data for 2004 

to 2009 (Smithsonian Environmental Research Center and USCG 2009; Figure 2-2; 

Appendix A). The NBIC requires the reporting of the last location of ballast water pick-

up (i.e. source information) and the location where that ballast water and potential 

propagules were then discharged for each individual ship. Source and discharge 

information was recorded at the U.S. port of arrival based on the NBIC data. All records 
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containing source and/or discharge locations outside the Great Lakes were deleted. 

Remaining source and discharge locations were mapped using coordinates when 

available and location descriptions. Coordinates were obtained for location descriptions 

that included port and city names where possible. All other discharge and source points 

were located using topographic maps and aerial photographs. Four source locations (27 

ship visits) were excluded from the data due to unclear location descriptions. 

 To identify the possibility of another likely location for the introduction of VHSV 

to the Great Lakes, the propagule pressure model was modified to initiate VHSV 

infection of the Great Lakes from Montreal. Due to recent genetic research by Thompson 

et al. (2011) and Pierce and Stepien (2012), we hypothesized that it was possible that 

VHSV may have initially been introduced to the St. Lawrence River. We chose Montreal 

as a possible introduction location since it is located on a part of the river that receives a 

large amount of ship traffic (National Research Council 2008). In particular, Montreal 

receives a large amount of traffic from the Atlantic coast of Canada, where VHSV-IVc, a 

closely related strain to VHSV-IVb was identified in 2000, 2002, and 2004 (Pierce and 

Stepien 2012).  All strains of VHSV are hypothesized to have originated from a marine 

reservoir in the North Atlantic Ocean (Thompson et al. 2011; Pierce and Stepien 2012), 

and Strain IV appears to have originated specifically in the Northwest Atlantic Ocean 

(Pierce and Stepien 2012). Despite not receiving a large amount of ballast water sourced 

within the Great Lakes from ships visiting U.S. ports (Figure 2-2), Montreal receives 

numerous ship visits from areas where VHSV-IVb potentially could have originated. 

 All models were run for each natural spread distance (10-, 20-, and 30-km). Each 

model was built in the ArcGIS Model Builder and run for 100 iterations. A single 
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iteration was comprised of a seven-year simulation (i.e. 2003 to 2009) with each year 

adding to the spread of the virus identified in the previous year. The predictions of the 

models were compared to the actual VHSV presence/absence locations for 2003 to 2009. 

The models have been exported to Python and included in Appendix B. 

2.3.3 Analyses of Model Performance 

In order to analyze the performance of the models, presence accuracy (i.e., sensitivity), 

absence accuracy (i.e., specificity), and weighted kappa were calculated for each iteration 

of each model. A confusion matrix was built for each iteration to identify the number of 

true positives and negatives and false positives and negatives produced by each model 

and to calculate the above measurements (Fielding and Bell 1997; Manel et al. 2001). 

The models’ abilities to accurately predict presences and absences were calculated for 

each model iteration (Fielding and Bell 1997; Manel et al. 2001). 

 To determine the level of agreement between model predictions and actual VHSV 

presences and absences while correcting for chance we used a weighted Cohen’s kappa 

statistic (Cohen 1968; Warrens 2011). The weighted kappa allows for weights to be 

applied to each cell in a confusion matrix, so that those cells calculated with data that is 

more uncertain than others will have less affect on the kappa statistic. We used a 

weighted kappa, as opposed to other calculations of fit (e.g. Cohen’s kappa and AUC), 

due to the high false negative rate of the cell culture technique most frequently used in 

testing for VHSV. Despite cell culture being useful for identifying VHSV in fish that are 

carrying the active (positive-strand) virus (i.e. most likely to shed the disease), it was 

important that we identify all VHSV locations, even where the virus was inactive. A high 
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false negative rate reduced our confidence in any reported absences. In experiments 

testing human viruses, cell culture was found to have false negative rates of 66 to 76% 

(Covalciuc et al. 1999; Wald et al. 2003). While not all of the VHSV presence/absence 

data were identified using cell culture tests, Hope et al. (2010) found even the more 

sensitive qRT-PCR test that was used on the remaining data did not detect VHSV in all 

fish exhibiting clinical signs of the infection. Because of this, an estimated false negative 

rate of 66% was used for our analysis. 

 Weighted kappa is calculated from the weighted proportions of observed and 

chance data for each cell of the confusion matrix. For our data, w11 = 1.00 (true positives) 

and w22 = 0.33 (true negatives). The weight for true negatives was based on the range of 

cell culture false negative rates. In order to test the sensitivity of the estimated false 

negative rate, weighted kappas were also calculated with w22 = 0.50 and 0.67. A level of 

agreement was assigned to each range of kappa values (Table 2.1; Gilchrist 2009; Landis 

and Koch 1977). 

 Presence accuracy, absence accuracy, and weighted kappa were calculated for 

each iteration, and averaged for comparison. Standard deviations were calculated for all 

means. In total, fifteen models were tested: random, location, Lake St. Clair only 

propagule pressure, Montreal only propagule pressure, and Lake St. Clair and Montreal 

propagule pressure models each run with 10-, 20-, and 30-km spread distances. 

2.4 Results 

The results of the weighted Cohen’s kappa statistics indicate that VHSV spread is not 

random and that VHSV occurrences are related to ballast water discharge locations 
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(Table 2.2) although the strength of inference was slight. The location models tended to 

have higher presence accuracy at each spread distance than the random models (Table 

2.3), indicating that the location models were better able to predict the presence of VHSV 

than the random models. Random models were better at predicting absences (Table 2.4); 

however, the location models were found to perform better overall with weighted kappas 

of 0.03, 0.04, and 0.05 at the 10-, 20-, and 30-km spread distances respectively (Table 

2.2). All random models had weighted kappas between -0.04 and 0.00, suggesting that 

these models performed worse or equal to what would be expected by chance. Sensitivity 

analyses of the weighted w22 parameter only produced slight changes in the weighted 

kappa results with location models still performing better than random models. These 

results indicate that the spread of VHSV is related to ballast water discharge locations. 

 Further, locations that receive ballast water from infected ships were more likely 

to become infected with VHSV (Table 2.2). Most of the propagule pressure models 

performed better than the random and location models (Table 2.2). Sensitivity analyses of 

weighted kappas produced slightly higher measures of fit for most of the propagule 

pressure models, still resulting in better performance than the random and location 

models. Also, even though absence accuracies were generally lower than what was 

calculated for the random and location models (Table 2.4), presence accuracies were 

typically higher (Table 2.3). Additionally, propagule pressure models resulted in less 

variation overall (Tables 2.2, 2.3, and 2.4), since it repeatedly selected those locations 

that received large numbers of ship visits. 

 Not only do the results support the hypothesis that ports receiving more visits by 

infected ships are more likely to become infected, but they also indicate that Montreal is a 
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more likely initial introduction location for VHSV (Table 2.2). The best performing 

model was the Montreal only 20-km model, even when considering the results of the 

weighted kappa sensitivity analysis. Additionally, combining Lake St. Clair and Montreal 

as simultaneous initial introduction locations produced very little change in the weighted 

kappas achieved by the Montreal only models (Table 2.2). 

2.5 Discussion  

The spread of VHSV within the Great Lakes has been aided by the secondary spread of 

ballast water. Though our model fit was only “slight” (based on the kappa scale used), the 

best fit model that we compared included the location, source, and amount of ballast 

water discharged, suggesting that these parameters are important indicators for 

identifying future VHSV infections. Furthermore, the results of our models also reveal 

that Lake St. Clair is a less likely initial location of VHSV to the Great Lakes than 

Montreal. We did not test other locations due to lack of information indicating 

alternatives; however, our results show that it is possible to use the model to identify 

locations that tend to be areas of initial introduction to the Great Lakes. 

 The performance of our models may have been  limited in part by the data used 

for model validation and the quality of the data included in our model. For one, the tests 

that were used to detect VHSV have a high false negative rate (Chico et al. 2006; 

Covalciuc et al. 1999; Hope et al. 2010; Miller et al. 1998; Wald et al. 2003). 

Additionally, many absences that were identified were in areas where VHSV had been 

identified previously, suggesting that the potential to infect existed, but VHSV was not 

detected in the individual fish that was tested. For instance, the Minnesota Department of 
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Natural Resources had no positive tests for VHSV in the St. Louis River estuary between 

2006 and 2010; however, researchers from Cornell University detected the virus in 2009. 

While we attempted to overcome this issue by measuring model fit using a weighted 

kappa statistic, absences that are not actually absences may have still been overly 

considered in the model. Incorrectly identified absences also would have been incorrectly 

identified for all remaining years in the model run. Error propagation would have affected 

both absence accuracy and weighted kappa statistics. The location from which infected 

fish were collected may also have added uncertainty to the presence/absence data. While 

many fish were collected live during monitoring efforts, others were collected during fish 

kills. Fish collected during fish kills would have mostly been found washed up on shore 

and likely far from the location where VHSV was actually contracted. Finally, the lack of 

Canadian ballast water data led to an incomplete dataset. This prevented us from 

establishing the complete pattern of ballast water movement in the Great Lakes. Whereas 

the limitations in the data used may not have been biased towards reducing the fit of any 

particular model over the other, it did prevent the accurate assessment of each model’s 

ability to capture the past spread of VHSV. 

 Despite the limitations of the data used and the “slight” fit of even the best 

performing model, the pattern of secondary spread in the Great Lakes still indicates that 

shipping has played a role in the long-distance dispersal of VHSV. This is indicated by 

the Montreal models’ abilities to capture VHSV presences at a higher rate than all of the 

other models. Further, at the best fit spread distance of 20-km, models that included 

ballast water discharge as a component of spread were able to explain the occurrence of 

VHSV at Duluth/Superior harbor at a much higher rate than the random models. In fact, 
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the Montreal only model was the only model that correctly identified it 100% of the time 

at the 20-km spread distance. The only presences that the Montreal only model fails to 

predict with regularity are located in eastern Lake Ontario, a part of the Great Lakes that 

receives very little ballast discharge. However, if the St. Lawrence River is the actual 

source of VHSV, the virus has potentially persisted in eastern Lake Ontario longer than 

in other parts of the Great Lakes, leading to greater localized spread of the virus due to 

natural vectors.  Other vectors of spread that have been identified are bait fishing and fish 

stocking, which potentially could contribute to long-distance spread along with ballast 

discharge. Nevertheless, we hypothesize that if bait and fish stocking were larger 

contributors to the long-distance spread of VHSV, more inland occurrences of the virus 

would have been detected. To date, only four inland waters that are not connected to the 

Great Lakes have positive occurrences of VHSV. Our conclusion that ballast water is a 

vector of spread for VHSV is contradictory to findings by Bain et al. (2010) who 

suggested there is no relationship between VHSV occurrences and centers of shipping. 

Their research only included shipping harbors as areas of shipping activity, and did not 

include actual ballast water discharge locations. Several locations that were identified as 

recreational boating or open shoreline by Bain et al. (2010) were identified by us as being 

close enough to ballast water discharge locations to become infected by discharged 

VHSV.  

 Even though we were not able to determine how much of a role ballast water 

plays in spreading VHSV, it was still identified as a vector that should be managed so as 

not to undermine other efforts that have been undertaken, such as  through restrictions on 

bait and fish stocking (APHIS 2008). If ships had been required to treat there ballast 
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water prior to entering the Welland Canal, VHSV could have potentially been isolated to 

Lake Ontario and the St. Lawrence River. However, most ballast water management 

systems that are currently being tested for oceangoing ships would be inefficient for use 

by ships in the Great Lakes, since much of the U.S. fleet have larger ballast tanks and 

higher pumping rates (Cangelosi and Mays 2006; USEPA Science Advisory Board 

2011). Ships within the Great Lakes also tend to take shorter trips between ports, which 

may not allow enough time for chemical or physical treatments to sufficiently reduce 

propagule pressure (Cangelosi and Mays 2006). Without available ballast water treatment 

systems, there are a number of voluntary best management practices that ships in the 

Great Lakes may apply, such as drawing in water during the day or avoiding drawing in 

water where sediments are churned up (Shipping Federation of Canada 2000). However, 

these practices may not be effective in preventing the further spread of VHSV if not 

applied in the most suitable locations. 

 Our model can be used to identify the locations where the most promising best 

management practices would effectively be applied. One approach proposed by the 

shipping industry involves moving water uptake offshore, analogous to the requirements 

for ocean BWE outside the 200 nautical mile limit (Shipping Federation of Canada 

2000). It is possible that invasive species may not be able to survive if released in deep 

waters offshore, far from required habitats and food resources. On the other hand, 

releasing invasive species in the deeper, offshore parts of the Great Lakes will only be 

effective if water currents do not carry the invasive species to more favorable habitats 

prior to mortality. Locations and times of year when water currents will not aid in the 

survival of invasive species will need to be identified. For example, our results could be 



24 
 

combined with water circulation models that have been created by Beletsky and Schwab 

(2008) in order to identify those locations and times where and when ballast water may 

be released to reduce the probability of invasive species surviving. Further, our model 

can be used to identify those ports where the pick-up or discharge of ballast water should 

be avoided, or should be followed by ballast water exchange offshore.  

 Natural resource managers may also use our model to identify hotspots for 

invasive species. We expect to further validate our model by backcasting the secondary 

spread of zebra mussels (Dreissena polymorpha), an invasive bivalve, and ruffe 

(Gymnocephalus cernuus), an invasive fish. Both species are believed to have been 

introduced to the Great Lakes via ballast water (Grigorovich et al. 2003; Hebert et al. 

1989; Simon and Vondruska 1991; Stepien et al. 2005). Once we parameterize our model 

for these species, predictions for the future spread of ruffe and other invasive species can 

be made. For example, managers are concerned about the introduction of killer shrimp 

(Dikerogammerus villosus), which has not yet been detected in the Great Lakes, but has 

been identified as a species that is likely to invade if ballast water management proves 

ineffective (Grigorovich et al. 2003). Our model can identify those areas where invasive 

species may occur next or may already occur, but may not be detected using conventional 

methods. Management practices can then be directed to those locations. 

 In summary, commercial ship ballast water movement and discharge patterns are 

likely contributing to the secondary spread of VHSV in the Great Lakes. Discharge 

locations that receive increasing visits from ships carrying ballast water from sources 

infected with VHSV are more likely to become infected with the virus itself. 

Additionally, Montreal is the more likely location of initial VHSV introduction, not Lake 
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St. Clair. Because ballast water is a component of long-distance spread in the Great 

Lakes, it is important that this vector be regulated along with bait and fish stocking. Our 

best fit model may be a tool that can aid managers and policy-makers in identifying 

locations where ballast water may best be managed. 
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Table 2.1 Level of agreement for each range of kappa values (Landis and Koch, 1977, 

Gilchrist, 2009). 

Range of Kappa Value Level of Agreement 

> 0.81 almost perfect 

0.61 – 0.80 substantial 

0.41 – 0.60 moderate 

0.21 – 0.40 fair 

0.00 – 0.20 slight 

< 0.00 none 
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Table 2.2 Weighted Cohen’s kappa for each natural spread distance tested of each model. 

Weighted Cohen’s kappa is the proportion of agreement corrected by chance between the 

model predictions and actual presence/absence data (Cohen 1968; Warrens 2011). 

Numbers in parentheses are standard deviations. 

 Natural Spread Distance 
Model 10-km 20-km 30-km 

random 
-0.04 
(0.12) 

-0.02 
(0.12) 

0.00 
(0.09) 

location 
0.03 

(0.07) 
0.04 

(0.08) 
0.05 

(0.07) 

propagule pressure    

Lake St. Clair only 
-0.14 
(0.01) 

0.03 
(0.00) 

0.11 
(0.00) 

Montreal only 
0.07 

(0.01) 
0.13 

(0.01) 
0.12 

(0.00) 

Lake St. Clair and Montreal 
0.09 

(0.01) 
0.12 

(0.00) 
0.11 

(0.00) 
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Table 2.3 Presence accuracies for each natural spread of each model. Presence accuracies 

were calculated as the total number of actual presences that were accurately identified 

each year. Numbers in parentheses are standard deviations. 

 Natural Spread Distance 
Model 10-km 20-km 30-km 

random 
0.23 

(0.10) 
0.50 

(0.15) 
0.71 

(0.15) 

location 
0.39 

(0.07) 
0.61 

(0.08) 
0.73 

(0.10) 

propagule pressure    

Lake St. Clair only 
0.38 

(0.01) 
0.64 

(0.00) 
0.77 

(0.00) 

Montreal only 
0.65 

(0.00) 
0.73 

(0.00) 
0.79 

(0.00) 

Lake St. Clair and Montreal 
0.65 

(0.00) 
0.72 

(0.00) 
0.77 

(0.00) 
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Table 2.4 Absence accuracies for each natural spread distance of each model. Absence 

accuracies were calculated as the total number of actual absences that were accurately 

identified each year. Numbers in parentheses are standard deviations. 

 Natural Spread Distance 
Model 10-km 20-km 30-km 

random 
0.80 

(0.07) 
0.53 

(0.11) 
0.30 

(0.10) 

location 
0.58 

(0.08) 
0.34 

(0.09) 
0.20 

(0.07) 

propagule pressure    

Lake St. Clair only 
0.72 

(0.00) 
0.28 

(0.00) 
0.02 

(0.00) 

Montreal only 
0.25 

(0.01) 
0.08 

(0.01) 
0.02 

(0.00) 

Lake St. Clair and Montreal 
0.18 

(0.01) 
0.07 

(0.00) 
0.02 

(0.00) 
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Figure 2-1 VHSV presence locations in the Great Lakes for 2003 to 2009. No known 

occurrences of VHSV are found east of the Thousand Islands area until the Atlantic 

coast. Squares, triangles, pentagons, stars, diamonds, and crosses represent VHSV 

occurrences for 2003 and 2005 to 2009 respectively. 
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Figure 2-2  Location and amount of ballast water discharged by ships arriving at U.S. 

ports between 2004 and 2009 (from NBIC). Only discharge events involving ballast 

water picked-up in the Great Lakes are included. Circles of increasing size represent the 

amount of ballast water discharged at a location. Despite only receiving small amounts of 

ballast discharge from within the Great Lakes, the ports and river in and around Montreal 

receive large amounts of ship traffic (National Research Council 2008).  
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Chapter 3 

A Spatial Modeling Approach to Predicting the 
Secondary Spread of Invasive Species Due to Ballast 
Water Discharge 

 

 

3.1 Abstract 

 

Ballast water in ships is an important contributor to the secondary spread of invasive 

species in the Laurentian Great Lakes. Here, we use a model previously created to 

determine the role ballast water management has played in the secondary spread of viral 

hemorrhagic septicemia virus (VHSV) to identify the future spread of one current and 

two potential invasive species in the Great Lakes, the Eurasian Ruffe (Gymnocephalus 

cernuus), killer shrimp (Dikerogammarus villosus), and golden mussel (Limnoperna 

fortunei), respectively. Model predictions for Eurasian Ruffe have been used to direct 

surveillance efforts within the Great Lakes and DNA evidence of ruffe presence was 

recently reported from one of three high risk port localities identified by our model. 

Predictions made for killer shrimp and golden mussel suggest that these two species have 

the potential to become rapidly widespread if introduced to the Great Lakes, reinforcing 

the need for proactive ballast water management. The model used here is flexible enough 

to be applied to any species capable of being spread by ballast water in marine or 

freshwater ecosystems. 
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3.2 Introduction 

 

Invasive species have been identified as one of the major threats to the 

biodiversity of freshwater ecosystems, including the Laurentian Great Lakes (Beeton 

2002, Millenial Ecosystem Assessment 2005). Since the opening of the St. Lawrence 

Seaway in 1959, ballast water has increasingly become the dominant pathway for non-

native species to enter the Great Lakes (Holeck et al. 2004, Ricciardi 2006) and an 

important vector of secondary spread (i.e. spread that occurs upon invading a new 

location) of invasive species and diseases (Rup et al. 2010, Briski et al. 2012, Sieracki et 

al. 2014). However, despite ongoing regulatory efforts to prevent transoceanic 

introductions of species via ballast water, ships are not being regulated within the Great 

Lakes. At the same time, there is renewed interest in establishing basin wide surveillance 

programs to detect introductions early in the invasion process, in part generated by the 

potential of new genomic detection tools (Jerde 2011).  In order to focus detection and 

monitoring efforts and plan prevention, response, and containment, it is important to 

predict locations of potential introduction and patterns of spread within the Great Lakes. 

The purpose of our study was to create a dynamic spatial model that predicts the 

secondary spread of invasive species by ballast water. In particular, we report the results 

of predictions made for one established, but localized, Great Lakes invader (Eurasian 

Ruffe, Gymnocephalus cernuus), and two predicted future invaders (killer shrimp, 

Dikerogammarus villosus, and golden mussel, Limnoperna fortunei). These three species 

were prioritized by Great Lakes resource managers and scientists as species whose spread 
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around the Great Lakes may be enhanced by movement of ballast water. The species 

chosen are representative of probable future invasion management challenges in the 

region, but our approach may be applied to any species that may be moved via ballast 

water and to any ecosystem that may experience invasions due to commercial shipping. 

To date, of the species we considered, only Eurasian Ruffe have been detected in 

the Great Lakes. Ruffe is a species of fish from Eurasia with a Great Lakes distribution 

limited to Lake Superior and the northern portions of Lakes Michigan and Huron 

(Stepien et al. 1998, Stepien et al 2005; Figure 3-1). The potential spread of ruffe is of 

concern because it is capable of competing with yellow perch, a native species of 

commercial importance (Savino and Kolar 1996, Sierszen et al. 1996, Fullerton et al. 

1998). On the other hand, golden mussel and killer shrimp have not been detected in the 

Great Lakes. Golden mussel is a species of bivalve from Southeast Asia that has invaded 

Hong Kong, Japan, and South America (Miller and McClure 1931, Mizuno and Mori 

1970, Brandt and Temcharoen 1971, Morton 1973, Darrigran 1995). Golden mussel is 

very similar to zebra mussel (Dreissena polymorpha), which is already widespread in the 

Great Lakes (Figure 3-2). Like the zebra mussel, it has the potential to generate similar 

economic and ecological costs (Karatayev et al. 2007a). Finally, killer shrimp is a species 

of amphipod from the Ponto-Caspian region that has already invaded parts of Europe via 

the Rhine-Main-Danube canal system (Dick et al 2002, Nesemann et al. 1995, Muskó 

1994, Müller et al. 2002) and more recently the United Kingdom (MacNeil et al. 2010). 

Concern about an invasion by killer shrimp stems from its indiscriminate predation habits 

and ability to outcompete smaller, native amphipods (Dick et al 2002, Dick and Platvoet 

2000, Boets et al. 2010). It has been reported that killer shrimp will at times kill prey as 
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large as larval fish and do not always consume organisms upon killing them (Dick et al. 

2002). 

 Predictive models are increasingly being used to identify how human-mediated 

vectors spread invasive species. For instance, Schneider et al. (1998) and Bossenbroek et 

al. (2007) used gravity models to identify lakes that were most at risk for future invasion 

of zebra mussels. On the other hand, Drake and Mandrak (2010) used least-cost 

transportation networks to identify how anglers may potentially spread invasive species 

throughout Ontario. Predictive models that include a human-mediated vector have also 

been applied to terrestrial invasive species. Prasad et al. (2010) used a spatially explicit 

cell-based model to identify the risk of emerald ash borer (Agrilus planipennis) spread in 

Ohio due to both natural and human-mediated vectors. Outside North America, Carrasco 

et al. (2010) discovered that both domestic and international human-mediated vectors 

were important in explaining the past spread of western corn rootworm (Diabrotica 

virgifera ssp. virgifera) in Austria. Previously, we explained past patterns of spread of the 

fish disease viral hemorrhagic septicemia virus (VHSV) in the Great Lakes, using a 

dynamic spatial model that incorporated the number of ballast water discharge events a 

location receives and species invasion probability. Our model differs from the examples 

listed here in that rather than identifying the pattern of spread by quantifying the 

“attractiveness” or likelihood of an area to become infested based on its characteristics, 

we used recent ballast water discharge data to establish a network of ballast water 

movement in the Great Lakes. 

 Ballast water discharge data has been used before to conduct risk assessments for 

ports in the Great Lakes and throughout North America. For example, Ruiz et al. (2013) 
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used the number of ship trips and amount of ballast water discharged at U.S. ports to 

determine if nonnative species richness is related to shipping activity. Their results found 

no difference in species richness between those areas with high and low shipping activity, 

indicating that such data would not provide for an accurate assessment of risk. 

Nonetheless, Ruiz et al. (2013) suggested that the inclusion of ballast water source data 

may have allowed for the differentiation of species richness between sites. Some risk 

assessments have included source information covering a variety of geographic extents to 

not only identify the probability that a port will be invaded in the future, but to also 

summarize from where that risk is likely to originate (Rup et al. 2010, McGee et al. 2006, 

Bailey et al. 2012, Keller et al. 2011). Unlike the risk assessments described here, we 

sought to create a ballast water spread model that identified the potential path of spread 

that a specific species could travel once it was introduced into the Great Lakes. 

Furthermore, unlike previous studies, our model not only includes site-specific source-

discharge information, but also takes into consideration the results of species risk 

assessments and expert judgments, species biological requirements and behavior, known 

distribution of high risk invaders in source ports, and ballast water trip-specific 

information. 

 For this study, we adapt our dynamic spatial model to predict the future spread of 

Eurasian Ruffe, golden mussel, and killer shrimp. We used backcasting of the historic 

invasion pattern of zebra mussels and ruffe to identify the most important parameters and 

values that predicted their spread. We then predicted localities most at risk of future 

invasion by ruffe using the best parameter values that backcast historic ruffe spread, and 

those parameters that backcast historic zebra mussel dispersal were used to forecast the 
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spread of golden mussel and killer shrimp. Based on the results of our models, we make 

recommendations for the future management of ballast water in the Great Lakes. 

 

3.3 Methods 

 

3.3.1 Site Description 

 

The Great Lakes and St. Lawrence Seaway were the water bodies of interest for 

this study. The St. Lawrence Seaway was defined as the portion of the St. Lawrence 

River from Lake Ontario downstream to the western tip of Anticosti Island. The study 

area included Lake St. Clair and Niagara, Detroit, St. Clair, and St. Marys Rivers, as well. 

Despite water in the St. Lawrence Seaway flowing eastward towards the Atlantic Ocean, 

the trend of ballast water movement is westward, with Duluth-Superior Harbors receiving 

the most ballast water each year (Figure 3-1). As identified by data in the National Ballast 

Information Clearinghouse for the years 2004 to 2010, the top 5 U.S. ballast water 

discharge sources are: Nanticoke, ON (Lake Erie), Indiana Harbor, IN (Lake Michigan), 

Gary, IN (Lake Michigan), St. Clair, MI (St. Clair River), and Detroit, MI (Detroit 

River), top 5 U.S. discharge locations are: Superior, WI (Lake Superior), Two Harbors, 

MN (Lake Superior), Duluth, MN (Lake Superior), Calcite, MI (Lake Huron), and 

Marquette, MI (Lake Superior) (Smithsonian Environmental Research Center & USCG 

2009). 
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3.3.2 Backcasting 

 

We parameterized our models by backcasting the spread of two invasive species 

that already occur in the Great Lakes, zebra mussel and Eurasian Ruffe. Zebra mussel 

was backcast as a surrogate for golden mussel and killer shrimp, because golden mussel 

have life history traits and use habitats similar to zebra mussel (Karatayev et al. 2007, 

Karatayev et al. 2007b), and killer shrimp have similar physical and chemical tolerances 

(Bruijs et al. 2001). The three models based on Sieracki et al. (2014), a “random”, 

“location”, and “propagule pressure”, were developed for each of the two backcast 

species. The models have the same basic structure: (1) new infestation locations are 

selected for each year simulated, (2) an area of infestation is identified around each new 

location, and (3) the invasion front is further expanded given a possible rate of local 

spread that may occur each year. However, the three models differ in how new 

infestations (Step 1) are selected.  

 In order to determine if ballast water was contributing to species spread we 

compared the location model with a random model. The random model acts as the null 

model, and the location model needed to perform better than the random model in order 

to be able attribute spread to ballast water movement. The random model does not take 

into consideration other invasion pathways (e.g. recreational boating, sale of live 

organisms, etc.) that also contribute to spread in the Great Lakes. Both the random and 

location models selected the number of new annual infestations by randomly selecting 

from a Poisson distribution. The means and variances (λ) for the distributions were set 

equal to the mean number of new invasions potentially due to ballast water. For zebra 
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mussel, λ was calculated as the mean number of occurrences per year for 1986 to 1992 as 

identified from records in the Nonindigenous Aquatic Species (NAS) database, thus λ = 4 

(USGS 2009). Unlike zebra mussel, most Eurasian Ruffe occurrences identified in the 

NAS database appear to be due to natural spread by the fish themselves, particularly the 

spread that occurred along the south shore of Lake Superior. However, four independent 

invasion events that were potentially due to human-mediated spread were identified from 

the occurrence data. These independent invasions were determined to be “human-

mediated”, since they were long-distance (>50-km from the nearest infestation) and 

occurred in locations where large amounts of ballast water had been discharged in the 

past (Smithsonian Environmental Research Center and USCG 2009, USGS 2009). 

Therefore mean number of invasions per year for Eurasian Ruffe was calculated as λ = 

0.2. Whereas the number of infestations per year were selected using the same method for 

both models, each model selected the location of each new infestation differently. The 

“random” model identified the location of each of the newly selected infestations 

randomly within the Great Lakes. The “location” model randomly selected infestation 

locations only from known ballast water discharge locations. The results of the models 

allowed us to determine whether or not species infestations were related to ballast water 

locations. 

 Upon determining if past infestations were related to ballast water discharge 

locations, the third model, the “propagule pressure” model, was used to determine if 

infestation locations could better be identified if ship trip information was included. First, 

ballast water source locations that occurred within an infested area were identified. Next, 

locations that received ballast water from those infested locations were selected. To 
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determine if the selected discharge locations actually became infested upon receiving 

ballast water from infested sources, the potential invasion result was selected from a 

binomial distribution. A result of 0 meant a trip did not end in infestation and a result of 1 

meant a trip did lead to infestation. The number of trials, n, was equal to the number of 

trips made to a discharge location that year by ships carrying infested ballast water. The 

probability of infestation for each day of the trip was varied for each species to identify 

the best value for the parameter. Probabilities of 0.000001, 0.0001, and 0.01 were tested 

for Eurasian Ruffe, and 0.05, 0.25, 0.50, and 0.75 for zebra mussels (Table 3.1). A single 

probability of invasion was used as opposed to multiple probabilities representing the 

rates of uptake, trip survival, and establishment in order to create a simple model that can 

be applied to multiple species despite the level of information available on biological and 

physical tolerances and habitat preferences. Probabilities for the two species differed in 

magnitude due to their differences in expected larval survival rates and length of 

reproductive period. Additional probabilities of infestation were tested; however, as these 

did not improve model accuracies, they were not included in this study. The length of the 

trip was determined by calculating the median of the trip lengths recorded between the 

source and discharge location. If at least one of the trips resulted in a binomial value of 1, 

then the discharge location was then considered infested. 

 Once infestation locations were selected for a year, the dispersal of the species 

from the initial invasion point was then identified for all models. First, an infestation area 

was identified from the new invasive species occurrence. Coordinates for ballast water 

discharge and source locations in the NBIC were recorded with a precision no less than 

one one-hundredths of a degree. We calculated that in the Great Lakes, the difference 



41 
 

between two points that were one one-hundredths of a degree apart was approximately 

1.4-km. This was identified as the estimated difference that could occur between the 

actual and recorded discharge locations due to rounding error, and was used as the radius 

of the area of infestation, since the species could have potentially been discharged 

anywhere within that circle. To identify the rate of natural spread that could occur upon 

being introduced to a new location, a second radius was used to expand the area of 

infestation. For ruffe, the natural spread distance was identified from the rate of 

secondary spread along the south shore of Lake Superior that was most likely due to fish 

dispersal. As identified from the occurrences recorded in the NAS database, the dispersal 

distance was most commonly ~25-km along the south shore of Lake Superior (USGS 

2009). In addition to the 25-km distance, a 10-km spread distance was tested to determine 

if shorter dispersals were more common (Table 3.1). On the other hand, zebra mussels 

are not self-propelling even in the larval stages; however, veligers are capable of being 

carried great distances in water currents (Carlton 1993). Natural spread distances of 5-, 

10- and 20-km were tested for the invasive bivalve (Table 3.1). The resulting areas of 

infestation were limited by lake depths identified as being inhabitable by ruffe (≤ 90-m) 

or zebra mussel (≤ 35-m) based on the maximum depth of occurrence locations obtained 

from the NAS Database for each of these species (USGS 2009). 

 Invasive species occurrences were required to run all three models, and ballast 

water data were needed for the “location” and “propagule pressure” models. Zebra 

mussel and Eurasian Ruffe presence locations for 1986 to 1992 and 1986 to 2011 

respectively were obtained from the NAS Database (USGS 2009). The NAS Database is 

mostly compiled from U.S. occurrence records; however, does include some data for 
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Canada, as well. For the years prior to species detection, the species was considered to be 

absent from that location. Ballast water source, discharge, and trip data for the years 2004 

to 2010 were obtained from the NBIC (Smithsonian Environmental Research Center and 

USCG 2009; Appendix A). Commercial ships that visit U.S. ports are required to report 

ballasting operations to the NBIC. Discharges at some Canadian ports are included, as the 

last discharge location prior to arriving at a U.S. port was not necessarily conducted in 

the U.S. The mean number of visits to discharge locations from each source location for 

2004 to 2010 (Figure 3-3) and median number of trip days were calculated from the 

NBIC data. The limited amounts of Canadian data identified in the ANS Database and 

NBIC were included, since Canadian locations potentially served as ballast water sources 

for U.S. discharge locations, and some Canadian species occurrences were captured by 

the natural spread distance. 

 The models were developed in Python to be run in ArcGIS (see Appendix C). 

Scripting the models as opposed to creating them in ArcGIS ModelBuilder, as was done 

for the VHSV study (Sieracki et al. 2014), allowed for flexibility in the number of years 

the model could simulate and allowed for more specific trip information to be included 

for each source-discharge combination. The zebra mussel models were run to simulate 

secondary spread for 1986 to 1992, since they were widespread in the Great Lakes by 

1992. The Eurasian Ruffe models simulated secondary spread for 1986 to 2011, because 

their rate of spread has been slow and their distribution in the Great Lakes is currently 

limited. Each of the models was run 100 iterations. 

 The model results were analyzed by calculating the overall, presence, and absence 

accuracies for each iteration of the model (Fielding and Bell 1997, Manel et al. 2001). 
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The means of each of the accuracies were calculated for each of the 28 models. The best 

fit model was selected as having the highest overall accuracy. Where overall accuracies 

were similar between models, the model with the highest presence accuracy was selected, 

unless absence accuracies were particularly low. Then, the model with the higher absence 

accuracy was used as an alternative model to capture a better range of predictions.  

Additionally, the length of time that would be required to spread the full extent of the 

current area invaded by each species if only natural spread is considered was identified. 

This was done by applying the largest spread distances tested above, 20-km for zebra 

mussel and 25-km for ruffe, to the initial introduction locations detected in 1986 for each 

species. The invasion front was identified for each year and was limited to the areas 

identified as being inhabitable by the species of interest. 

  

3.3.3 Forecasting 

 

Upon identifying the best fit model, the next step was to predict the future secondary 

spread of invasive species that either already occur in the Great Lakes or may occur in the 

Great Lakes in the future. The three species that predictions were simulated for were the 

Eurasian Ruffe, golden mussel, and killer shrimp. 

 Prediction models differed from the backcasting models in that the current Great 

Lakes distribution or possible initial introduction locations were used as the initial 

sources of infestation for each species. Also, instead of comparing the final distributions 

of the model predictions to the actual occurrences of the invasive species, the total 

number of model iterations a port was predicted to be invaded in the future was 
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calculated. For each model iteration, once a port was identified as invaded in a given 

year, it continued to be invaded for all subsequent years. Each model simulated 10 time-

steps of future invasion, and each simulation was run for 100 iterations. Time-steps were 

used in lieu of years, as the lag between a species introduction, establishment and 

potential for spread is uncertain. That uncertainty is also compounded by ballast water 

best management practices that are thought to reduce the likelihood of uptake and 

secondary spread within the basin (USEPA 2013, Shipping Federation of Canada 2000). 

The probability of that location becoming infested was calculated based on the 100 

iterations. 

 The initial introduction locations, natural spread distances, and probability of 

infestation were different for each species. Unlike the other two species being modeled, 

Eurasian Ruffe already occurs in the Great Lakes. The actual occurrences of this species 

were used as the initial starting locations for future secondary spread. The best fit values 

for natural spread distance and probability of infestation were identified from the results 

of the backcasting exercise described above. For golden mussel and killer shrimp, the 

potential initial invasion locations were identified as those Great Lakes ports that 

received ballast water from international ports within the species’ known current 

distribution. International ballast water source-discharge patterns were identified from the 

NBIC for 2004 to 2010 (Table 3.2; Smithsonian Environmental Research Center and 

USCG 2009). Predictions for both species were made using the parameters identified 

from the zebra mussel backcasting results; however, because we were uncertain as to how 

far killer shrimp would travel in the water column, no natural spread distance was used in 

forecasting this species. Further, by not including a natural spread distance, we were able 
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to identify the secondary spread that was entirely due to the linkages between ballast 

water source and discharge locations, and not spread upon being discharged. Also, in the 

absence of a clear lower depth limit, no depth restrictions were placed on the killer 

shrimp models.   

 

3.4 Results 

 

3.4.1 Backcasting 

 

Results of the Eurasian Ruffe backcasting identified the propagule pressure 

models as performing best overall, with mean overall accuracies between 0.69 and 0.72 

(Figure 3-4A).  Despite identifying absences at greater rates than the propagule pressure 

models, the random and location models identified very few ruffe presences, suggesting 

that these models would not be able to adequately predict the future spread of invasive 

species. (Figure 3-4B-C). Among the propagule pressure models, the 25-km models 

produced the highest presence accuracies (Figure 3-4B); however, also had the lowest 

absence accuracies (Figure 3-4C), suggesting that the model was over-predicting the 

spread of ruffe. On the other hand, the 10-km propagule pressure models produced 

presence accuracies that were somewhat lower than those for the 25-km model (Figure 3-

4B), but still much higher than the location and random models. The 10-km propagule 

pressure models also produced higher absence accuracies than the 25-km models (Figure 

3-4C), suggesting that these models are somewhat more conservative. Overall, the 25-km 

0.0001 probability propagule pressure model performed best, but only at a rate of 0.02 
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over the next best performing model, the 10-km 0.01 probability propagule pressure 

model, so both models were identified as best fit. Further, if Eurasian Ruffe had only 

spread naturally at a rate of 25-km per year, it would have taken 55 years to reach the 

furthest extent of current invasion rather than the observed 26 years (Figure 3-1), 

signifying that the chosen models provided the most likely scenario for the secondary 

spread of Eurasian Ruffe. An example of the results of a single interation of the 10-km, 

0.01 propagule pressure model is included in Figure 3-5. Based on the results of that 

model, Alpena was predicted to be invaded in 1993 1% of model runs (first detection was 

in 1995), Little Bay de Noc was predicted in 2000 (1%, first detection in 2002), and 

Green Bay was predicted in 1999 (1%, first detection in 2007).  

 The propagule pressure models were also the best performing in backcasting the 

spread of zebra mussel. Overall, the random and location models performed as well or 

nearly as well as the best performing propagule pressure models (Figure 3-4D); however, 

the addition of ballast water information increased the presence accuracy for each natural 

spread distance tested (Figure 3-4E). Furthermore, the probability of infestation proved to 

be an important parameter in backcasting zebra mussel. At the lower values tested, it 

reduced the ability of the model to predict presences, whereas at the highest value of 0.75 

the presence accuracy was increased at all spread distances tested (Figure 3-4E). Despite 

an increase in presence accuracy generally leading to a decrease in absence accuracy, the 

lowest absence accuracy was still greater than 0.75, indicating that while some models 

may have been under-predicting occurrences, they were not over-predicting them (Figure 

3-4F). Additionally, it would take 83 years (opposed to four) for zebra mussels to 

naturally disperse at a rate of 20-km per year (assuming they could spread upstream 
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unaided – which seems unlikely) to reach the western most edge of their known 1992 

extent (Figure 3-2). This suggests that zebra mussels spread much more rapidly than 

would be expected due to natural dispersal, and that the best fit model explained zebra 

mussel spread better when ballast water information was included. 

 

3.4.2 Forecasting 

 

In order to capture a range of possible outcomes for the future spread of Eurasian 

Ruffe, both models identified by Eurasian Ruffe backcasting above (10-km 0.01 

probability and 25-km 0.001 probability) were used to forecast future secondary spread. 

The predictions made based on the two models depict relatively similar patterns of spread 

(Table 3.3; Figure 3-6A-B). Both models predict that Buffalo, New York, the Chicago, 

Illinois area, and the Saginaw Bay of Lake Huron are the most likely locations to be 

invaded by Eurasian Ruffe next (Table 3.3; Figure 3-6A-B). The ports predicted within 

the Chicago area varied for each model, but potentially include the Ports of Calumet, 

Illinois, Whiting, Indiana, and Chicago, Illinois, among others (Table 3.3). The 

Sandusky, Ohio area is also predicted by both models to have a small chance of 

becoming invaded. Milwaukee, Wisconsin, the Detroit, Michigan area, Cleveland, Ohio, 

and Prescott, Ontario were predicted to become invaded by Eurasian Ruffe in less than 

10% of the model simulations. 

 In order to forecast the secondary spread of golden mussel and killer shrimp, the 

best performing model and parameters identified by backcasting zebra mussel were used. 

Since none of the models were found to over-predict zebra mussel occurrences, the model 



48 
 

with the highest presence accuracy, the 20-km propagule pressure model with a 

probability of infestation of 0.75, was chosen. This model also had one of the highest 

overall accuracies. 

 Our analysis of the NBIC 2004-2010 data indicated seven ports historically 

received shipping from the global range of killer shrimp. Forecasting results predict that 

killer shrimp could become widespread within three to four time-steps of invasion. If the 

species invades Duluth first, it is predicted to most likely spread to Two Harbors (100 out 

of 100 model iterations) and Silver Bay (100), Minnesota, Marquette (98) and Alpena 

(100), Michigan, Indiana Harbor (93), Indiana, and Ashtabula (85), Ohio next (Table 3.3; 

Figure 3-7A). By the second and third time-steps after invasion, it is predicted to have a 

high probability of being widespread in Lakes Michigan, Huron, and Erie, and is 

predicted to invade Prescott, Ontario 74 out of 100 model iterations. By the fourth time-

step killer shrimp is predicted to be widespread throughout the Great Lakes. If the initial 

invasion location for killer shrimp is Toledo, by the first time-step it is predicted to 

invade Duluth (99 out of 100 times), Two Harbors (99) and Silver Bay (99), Minnesota, 

much of the Upper Peninsula of Michigan (21-99), Alpena (99) and the Detroit area (99) 

in Michigan, Sturgeon Bay (87), Wisconsin, the Chicago area (27-99) in Illinois and 

Indiana, and Sarnia (96), Ontario (Table 3.3; Figure 3-7B). By the second time-step, 

killer shrimp is predicted to be widespread in Lakes Superior, Michigan, Huron, and Erie, 

and is predicted to invade Hamilton (53), in Lake Ontario and Prescott (73), in the St. 

Lawrence River. By the third time-step, killer shrimp is predicted to be widespread in the 

Great Lakes. Maps with the results of all predictions for the remaining invasion locations 

and years are included in Appendix D. 
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 Results of golden mussel forecasting indicate that regardless of whether Duluth or 

Bay City (the two US ports receiving ships from invaded international ports) are invaded 

first, this invasive species will spread rapidly throughout the Great Lakes, much as zebra 

mussel did (Figure 3-2). By the first time-step, golden mussel is predicted to be found in 

all of the Great Lakes except Lake Ontario (Figure 3-8A). If golden mussel invades 

Duluth first, it is predicted to spread to Marquette (99 out of 100 model iterations), 

Ludington (99), Alpena (100), Saint Clair (93), and Detroit (100), Michigan, the Chicago 

area (49-100) in Illinois and Indiana, and Conneaut (100) and Ashtabula (84), Ohio 

(Table 3.3; Figure 3-8A). By the second time-step, golden mussel could potentially be 

widespread throughout the Great Lakes with predictions for invading Prescott, Ontario 

(78), and Oswego, New York (54). If golden mussel invades Bay City first, the species 

will become more widespread by the first time-step than if it were to invade Duluth first 

(Figure 3-8B). Locations that were predicted to be invaded by the first time-step include 

Duluth (100) and Two Harbors (99), Minnesota, Superior (100), Wisconsin, Marquette 

(100), Ludington (100), Detroit (100), Michigan, the northern portions of Lakes 

Michigan (91-100) and Huron (99-100) in Michigan, the Chicago area (68-100) in 

Illinois and Indiana, and Toledo (94), Cleveland (93), Conneaut (100), and Sandusky 

(75), Ohio (Table 3.3; Figure 3-8B). By the second time-step, Oswego, New York and 

Prescott, Ontario both are predicted to be invaded 57 and 70 model iterations out of 100, 

respectively. 
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3.5 Discussion 

 

Our ballast water model simulates the potential spread of invasive species once 

they become established in the Great Lakes; whereas, previous assessments have focused 

on identifying the first ports of introduction to the basin. By applying source- and 

species-specific data to generate spread predictions, we were able to attribute ballast 

water as a vector of spread. Ruiz et al. (2013) previously found that there was no 

relationship between nonnative species richness and ballast water volume and number of 

ship arrivals at U.S. ports when data on ballast source locations were not considered. 

However, the risk of invasive species introductions from ballast water discharge varies, 

with the greatest risk posed from environmentally similar sources that also support 

harmful organisms (Ruiz et al. 2013, Keller et al. 2011). Additionally, transit time likely 

affects whether a species will be released alive (Ruiz et al. 2013). Although researchers 

have used broad source categories to assess the risk of invasion for ports in North 

America, few have analyzed the potential invasion risk from specific regions of the world 

(Rup et al. 2010, McGee et al. 2006, Miller et al. 2011). Those researchers that have 

identified risk from more specific source locations have not attempted to simulate the 

potential spread of specific species between source and discharge locations (Bailey et al. 

2012, Keller et al. 2011). For these reasons, our modelling efforts are unique in that they 

not only include source- and species-specific information as a means to reduce the 

limitations of ballast water data as an effective predictor of invasion, but that they also 

may be used to establish the pattern of spread as opposed to identifying a location’s risk 

to becoming invaded by any of a number of species in the future. 
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The inclusion of source information in predicting the spread of invasive species 

was important in identifying ports that may become invaded in the future. For instance, 

despite not being amongst the top 25 ports receiving the most visits by discharging ships 

(Table 3.3), both Saginaw Bay and Buffalo, New York were predicted to become invaded 

next by Eurasian Ruffe, even though their ballast water discharge history differ. Buffalo 

receives a sizeable amount of ballast water with an average of 73 ship visits a year 

(Figure 3.3), whereas Saginaw Bay receives very few ship visits. Nonetheless, the ballast 

water discharged in Saginaw Bay is frequently sourced from areas that are closer and 

identified as infested with Eurasian Ruffe, increasing the likelihood that each ballast 

discharge will contain live ruffe propagules. Another unusual prediction that our model 

made was the potential for Prescott, Ontario, on the St. Lawrence River, to become 

invaded by Eurasian Ruffe three out of 100 model iterations. Even though Prescott is a 

small port that receives few ship visits, during the course of our ballast water discharge 

time series it did receive a single ship visit from Alpena, which was enough for the model 

to predict the location to become invaded three times. Further predictions of invasion of 

killer shrimp and golden mussel for Prescott (73 and 78 iterations, respectively) were also 

driven by the earlier invasion of Alpena. The invasion of Prescott highlights the 

importance of including source information in our ballast water spread model, because if 

we had not, we may have overlooked a number of places within the Great Lakes with the 

potential of being invaded in the future. 

The ability to predict the future spread of invasive species is an important part of 

any biosecurity surveillance and response program. Although prevention of new species 

invasions is expected to be the least expensive option for managing invasive species, 
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early detection, containment, and eradication is the next best option when prevention has 

failed (Simberloff et al. 2005, Lodge et al. 2006). Delimiting the full extent of a recently 

discovered introduction is critical to the success of any incursion response (Panetta and 

Lawes 2005), but can be particularly problematic in aquatic environments where 

detection of rare organisms can be challenging (Jerde et al. 2011). Here we demonstrate 

how a ballast water spread model can be used to predict locations where a newly 

introduced invader is most likely to be spread, enabling what are usually limited 

surveillance resources to be focused onto a subset of high priority locations. Such 

information increases the probability that outlying populations can be identified, 

contained, and potentially eradicated (Collin et al. 2013). 

The importance of prediction as part of a surveillance and response program is 

best illustrated by our predicted spread of Eurasian Ruffe across the remaining parts of 

the Great Lakes basin, namely southern Lakes Michigan and Huron, and Lakes Erie and 

Ontario. Our predictions identified three locations at high risk for invasion, and six 

additional sites with lower invasion risk based on current ballast water movement 

patterns (Figure 3-6A and B). These outputs can and have already been used to inform 

ruffe surveillance efforts across the Great Lakes Basin, and monitoring efforts motivated 

by our research has resulted in the detection of Eurasian Ruffe environmental DNA 

(eDNA) in Calumet Harbor in Chicago (Andrew Tucker, pers. comm.), which was 

predicted 95-97% of the time to be invaded next. Based on the remaining predictions 

modeled, shipping may potentially speed the spread of this invasive fish into regions of 

the Great Lakes that would otherwise not be affected for many years. However, if the 
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shipping vector is managed, the regionally important yellow perch and walleye fisheries 

of Lake Erie could remain unaffected for many years. 

 Unlike Eurasian Ruffe, killer shrimp and golden mussels have not been detected 

in the Great Lakes; however, if they are introduced, they are predicted to spread rapidly. 

Golden mussel has life history traits similar to zebra mussel (Karatayev et al. 2007a), and 

we would expect spread to match that of zebra mussels, indicating that this species could 

become widespread within two years of introduction. Given that killer shrimp produce 

fewer young per individual compared to zebra mussels, the amount of time each time-

step represents is uncertain. However, this species tends to be female-biased and 

reproduce early and frequently throughout the year (Devin et al. 2004), suggesting that it 

could potentially spread as quickly as zebra mussels did. Further limitations on our 

predictions for killer shrimp and golden mussel include increased uncertainty in the zebra 

mussel occurrence data, as opposed to the Eurasian Ruffe data, and rapid speed with 

which zebra mussels spread. Because detection of zebra mussels in the Great Lakes was 

at least two years behind actual invasion and occurred so rapidly, the actual pattern of 

spread is difficult to ascertain. In fact, the species was recorded in all Great Lakes within 

two years of its first detection, suggesting the data that our model is based upon may not 

be a fully accurate picture of how the actual spread occurred (USGS 2009, Benson 2014). 

However, model results were still able to capture a large proportion of past spread for 

zebra mussel, suggesting that it is capable of predicting future spread with enough 

accuracy to inform management decisions. Our results for killer shrimp and golden 

mussel further emphasize the need for protective binational (i.e. the United State and 
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Canada) ballast water treatment measures that minimize the potential for introduction of 

these and other species into the Great Lakes. 

 Shipping is the most important pathway of introduction and spread of invasive 

species in marine, freshwater, and estuarine environments (Ricciardi 2006, Keller et al. 

2011, Karatayev et al. 2007b, Ruiz et al. 1997, Keller et al. 2009, Molnar et al. 2008).  

Globally there is increasing emphasis being placed on establishment of national port 

surveillance programs to detect incipient invasions from this pathway (Campbell et al. 

2007), but these approaches need to be coupled with dynamic spread models because of 

the limitations of detecting species in aquatic environments (Jerde et al. 2011, Buchan 

and Padilla 2000). Additionally, limited resources typically constrain surveillance 

sampling efforts and periodicity, increasing the likelihood that secondary spread will 

have occurred by the time an incipient invasion is detected. The dynamic spatial model 

described here could easily be modified for new geographies. It has been built to run in 

ArcGIS, a commonly used program by government agencies and universities, is 

relatively easy to run, and requires few inputs, including the natural spread distance and 

probability of invasion. Further, other data can be readily added to the model in the 

future, such as habitat information. The model can also be retrofitted to run predictions 

for any aquatic system receiving ballast water discharges, so long as ballast water data 

exists. To date, ships visiting U.S. ports are required to submit ballast water management 

reports; however, many other countries do not collect this information. In fact, the 

predictions presented in this paper are incomplete as Canada does not require the 

reporting of ballast water discharge events for ships that only travel within Canadian 

waters, and any ballast water data that is collected is not readily available (Rup et al. 
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2010). If governing units are to make sound decisions about ballast water management, it 

is important that this information be made available in the future. 

 A further limitation to the model we have described here is the lack of rigorous 

occurrence data for invasive species. There is a tendency for aquatic species occurrence 

records to only be collected in port and marina locations; however, the spread of 

occurrences that we obtained from the NAS database are not limited to these areas, 

though some port bias may exist (USGS 2009; Figures 3.1 and 3.2). However, our goal 

was to identify the spread of invasive species due to ballast water alone. With this in 

mind, we were able to attribute a large portion of species occurrences using ballast water 

as the lone long-distance vector of dispersal. There is potential that other vectors of 

spread may contribute to the infestation of an area; however, ballast water would always 

serve as a potential disperser regardless of how the species was actually introduced to a 

port. We hypothesize that the larger issue with the data is the lack of timely detection, as 

illustrated by the spread of zebra mussel and VHSV (Sieracki et al. 2014), and the trend 

of not reporting absences. Because of these issues, it is difficult to fully capture the 

pattern of spread of an invasive species. We expect that our ballast water model will help 

to improve monitoring of secondary spread within the basin, and improved dispersal 

occurrence data should, in turn, enable model re-calibration and more accurate 

predictions. 

 The creation of a dynamic, spatial model simulating the secondary spread of 

invasive species due to ballast water in the Great Lakes has allowed us to identify the 

links between ballast water source and discharge locations. This information is already 

informing invasive species managers and policy-makers, motivating surveillance efforts, 
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and illustrating the need to proactively manage ballast water to prevent or slow the spread 

of current and future invaders. With the model predictions for Eurasian Ruffe, we were 

able to identify the most likely locations where this invasive fish will invade next. For 

golden mussel and killer shrimp, we show that prevention is still the best policy for these 

species, as they both are expected to spread rapidly upon invasion. Also, given 

surveillance limitations, proactive management of intra-basin movement of ballast water 

is advisable if there is to be any hope that a new invader can be contained and eradicated. 
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TABLE 3.1. Model runs conducted in backcasting the spread of Eurasian Ruffe and 

zebra mussels. 

   Species 

Models Spread 
Distance 

Probability 
of 

Infestation  

Eurasian 
Ruffe 

Zebra 
Mussel 

Random 

5-km 
NA 

 

  X 
10-km X X 
20-km   X 
25-km X   

Location 

5-km 
NA 

 

  X 
10-km X X 
20-km   X 
25-km X   

Propagule 
Pressure 

5-km 

0.05   X 
0.25   X 
0.50   X 
0.75   X 

10-km 

0.000001 X   
0.0001 X   
0.01 X   
0.05   X 
0.25   X 
0.50   X 
0.75   X 

20-km 

0.5   X 
0.25   X 
0.50   X 
0.75   X 

25-km 
0.000001 X   
0.0001 X   
0.01 X   

 Total # of Models: 10 18 
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TABLE 3.2. Ports identified as having received ballast water from killer shrimp and 

golden mussel infested locations. The number of visits made by ships with potentially 

infested ballast water at each Great Lakes port was calculated from the NBIC data for 

2004 to 2010 (Smithsonian Environmental Research Center and USCG, 2009). 

 

 
# Ship 
Visits 

Killer Shrimp   
      Duluth, Minnesota 147 
      Toledo, Ohio 47 
      Superior, Wisconsin 17 
      Ogdensburg, New York 8 
      Green Bay, Wisconsin 7 
      Goderich, Ontario 4 
      Detroit, Michigan 1 
Golden Mussel   
      Bay City, Michigan 9 
      Duluth, Minnesota 3 
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TABLE 3.3. Prediction results for the top 25 ports receiving the most visits by de-ballasting ships. Numbers represent the 

number of iterations out of 100 that were predicted to become invaded in the first year modeled. Ports that were outside of the area 

considered habitable for a species are indicated by NA. 

        
Ruffe:  
10-km 

1% 

Ruffe:  
25-km 
0.01% 

Golden Mussel:  
10-km 75% 

Killer Shrimp:  
75% 

Rank Port State Waterbody Bay City Duluth Duluth Toledo Ogdensburg Green Bay Goderich Detroit 
1 Superior WI Superior -- -- 100 100 100 99 0 99 71 99 
2 Two Harbors MN Superior -- -- 99 100 100 99 0 99 0 99 
3 Calcite MI Huron -- -- 100 25 0 99 0 99 96 100 
4 Marquette MI Superior -- -- 100 99 98 99 0 99 0 100 
5 Duluth MN Superior -- -- 100 -- -- 99 23 64 55 100 
6 Presque Isle MI Superior -- -- 100 99 0 99 0 99 0 99 
7 Toledo OH Erie 0 0 94 15 0 -- 0 0 72 99 
8 Stoneport MI Huron 95 0 100 11 0 99 0 99 64 99 
9 Marblehead OH Erie 0 1 75 15 0 99 50 0 0 100 
10 Silver Bay MN Superior 95 97 NA NA 100 99 0 99 0 99 
11 Sandusky OH Erie 0 1 75 15 0 96 53 0 61 99 
12 Ashtabula OH Erie 0 0 0 84 85 99 98 0 0 100 
13 Port Inland MI Michigan 95 97 100 0 0 97 0 99 0 98 
14 Alpena MI Huron -- -- 99 100 100 99 0 99 79 100 
15 Charlevoix MI Michigan 0 0 0 0 0 0 0 99 0 98 
16 Port Dolomite MI Huron 95 100 100 12 0 99 0 99 0 100 
17 Drummond Island MI Huron 16 2 NA NA 0 99 0 99 62 100 
18 Conneaut OH Erie 0 0 100 100 60 99 0 41 0 100 
19 Escanaba MI Michigan -- -- 91 0 0 21 0 99 0 99 
20 Chicago IL Michigan 0 97 68 49 0 99 0 0 0 29 
21 Cleveland OH Erie 3 0 93 0 0 99 80 0 0 100 
22 Calumet IL Michigan 95 97 100 100 0 27 0 0 0 1 
23 Cedarville MI Huron 95 100 100 12 0 99 0 99 0 98 
24 Whiting IN Michigan 95 97 100 100 0 93 0 85 0 19 
25 Detroit MI Detroit River 4 0 100 100 0 99 0 0 0 -- 
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Figure 3-1. Eurasian Ruffe presences from 1986 to 2011. Ruffe data were obtained 

from the Nonindigenous Aquatic Species (NAS) database (USGS 2009). 
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Figure 3-2. Zebra mussel presences from 1986 to 1992. Zebra mussel data were 

obtained from the Nonindigenous Aquatic Species (NAS) database (USGS 2009). 
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Figure 3-3. Mean number of discharging ship visits per year for each discharge 

location. Means between 0 and 1 were rounded up to 1. Ship visit data were obtained for 

ships visiting U.S. ports between 2004 and 2010 from the National Ballast Information 

Clearinghouse (Smithsonian Environmental Research Center and USCG 2009). 
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Figure 3-4. Backcasting results for Eurasian Ruffe and zebra mussel. Graphs A-C 

illustrate the results for Eurasian Ruffe, and graphs D-E illustrate the results for zebra 
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mussel. Graphs A and D depict the overall accuracy of the models tested. Graphs B and E 

depict the sensitivity, or ability to correctly identify presences correctly. Graphs C and F 

display the specificity, or ability to correctly identify absences correctly. Error bars 

represent standard deviations. 
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Figure 3-5. Results of a single iteration of the Eurasian Ruffe 10-km, 0.01 propagule 

pressure model. Eurasian Ruffe presences as recorded in the Nonindigenous Aquatic 

Species (NAS) database (USGS 2009) are depicted as circles. Model predictions are 

depicted as polygons. Where polygons are darker than circles, the model predicted 

presence earlier than detected. Where polygons are lighter than circles, the model 

predicted presences later than detected. 
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Figure 3-6. Eurasian Ruffe prediction results. The maps illustrate the results of the 

Eurasian Ruffe prediction models with Figure 3-5A dispersal distance = 10-km and 

probability of infestation = 0.01 and Figure 3-5B dispersal distance = 25-km and 

probability of infestation = 0.0001. The maps depict the next likely invaded locations 

from estimated presences. 
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Figure 3-7. Killer shrimp prediction results. The maps illustrate the results of the killer 

shrimp prediction models with probability of infestation = 0.50 and no dispersal distance. 

Invasions were started from Figure 3-6A Duluth, Minnesota and Figure 3-6B Toledo, 

Ohio. The maps depict the next likely invaded locations from current observed presences. 
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Figure 3-8. Golden mussel prediction results. The maps illustrate the results of the 

golden mussel prediction models with dispersal distance = 20-km and probability of 

infestation = 0.50. Invasions were started from Figure 3-7A Duluth, Minnesota and 

Figure 3-7B Bay City, Michigan. The maps depict the next likely invaded locations from 

estimated presences. 
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Chapter 4 

Evaluating the Effectiveness of Mid-Lake Ballast 
Water Exchange at Preventing the Spread of Invasive 
Species in Lake Michigan 

 

 

4.1 Abstract 
 
Due to recent concerns over the role that ballast water has been playing in the secondary 

spread of invasive species in the Great Lakes, new efforts are being made to manage 

ballast water sourced within the Great Lakes. We applied a multi-model approach to 

determine the potential effectiveness of a suggested ballast water management technique, 

ballast water exchange (BWE). We identified 11 test BWE sites in Lake Michigan to 

ascertain the effectiveness of BWE in preventing the spread of Eurasian Ruffe 

(Gymnocephalus cernuus) and golden mussel (Limnoperna fortune). First, the natural 

spread of larvae for each species was simulated from each test BWE site using a 3D 

hydrodynamic model. The resulting distributions of settled larvae were then input into a 

ballast water spread model to determine where the invasive species may next be spread in 

the Great Lakes. The results indicate that BWE may be an effective means for managing 

the spread of ruffe. A single BWE test site also demonstrated to be effective at reducing 

the secondary spread of golden mussel; however, some larval settlement did still occur. 

While BWE shows promise as a temporary ballast water management technique, it is 
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important to continue to pursue the use of ballast water management systems, which are 

safer to implement. 

 

4.2. Introduction 

In response to the rising number of invasive species introduced to the Laurentian Great 

Lakes after the opening of the St. Lawrence Seaway in 1959, both the U.S. and Canada 

have introduced increasingly strict regulations in the management of ballast water. 

Although most of these regulations have focused on trans-oceanic vessels, recent research 

has begun to highlight the role that ballast water discharge plays in the “secondary 

spread” of invasive species within an aquatic system (Rup et al. 2010, Briski et al. 2012, 

Sieracki et al. 2014, Sieracki et al. In Review). Secondary spread is the dispersal of an 

invasive species that occurs after its initial introduction to a system. In order to minimize 

invasive species spread within the Great Lakes, the USEPA recently released new 

requirements that include management of ballast water specifically for “Lakers”, or ships 

travelling exclusively within the Great Lakes (USEPA 2013). These requirements 

mandate that all Lakers built after January 1, 2009 must meet specific numeric ballast 

water discharge limits that are generally consistent with those established by the U.S. 

Coast Guard (USCG 2012) and the International Maritime Organization (IMO) D-2 

standards (IMO 2004). However, no ballast water treatment systems have yet received 

type approval by the USCG for use in freshwater or under conditions similar to those in 

the Great Lakes. Further, the best management practices the USEPA is requiring as a 

temporary solution for ships without treatment systems are primarily designed to prevent 
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the uptake of species in ports. However, there still remains the potential for taking up 

organisms in other areas in the Great Lakes, such as when entering locks or rivers. 

Alternatively, mid-lake ballast water exchange and flushing (MLBWE) could 

reduce the spread of invasive species by ensuring that they are released in areas where 

they cannot survive. Mandatory MLBWE conducted in deep ocean waters has been 

evaluated as an effective means to prevent the introduction of new species to the Great 

Lakes (Bailey et al. 2011). Despite a lack of osmotic shock due to high salinity levels 

achieved by BWE performed at sea, MLBWE could still slow secondary spread by 

reducing the number of propagules in the ballast tank. In fact, Ruiz and Reid (2010) 

found that ballast water exchange replaced 88-99% of the original water in ballast tanks 

of several ships tested and removed between 75-99% of coastal plankton species. Due to 

its potential as a means to reduce propagules, the exchange of ballast water in deep 

portions of Lake Superior has been suggested in the past as a means to slow the spread of 

Eurasian Ruffe (Gymnocephalus cernuus) (Canadian Shipowners Association et al. 1996, 

Brown et al. 1998). We suggest that this may be a potential short-term ballast water 

management strategy to continue to slow the further spread of Eurasian Ruffe and other 

invasive species until ballast water treatment systems are approved for use in the Great 

Lakes. 

Due to the recent advances in spatial modeling, it is possible to conduct initial 

assessments of the feasibility for using mid-lake BWE to prevent the spread of invasive 

species. Recent efforts to model long-term circulation in Lakes Michigan and Erie 

(Beletsky and Schwab 2001, Beletsky et al. 2013) have made it possible to identify the 
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distance and direction that particles are likely to disperse if released in the Great Lakes 

The Lake Michigan 3D particle transport model has been applied to model the transport 

and settlement of yellow perch (Perca flavescens) larvae (Beletsky et al. 2007), and may 

be used to identify dispersal from potential MLBWE locations. Further, it is possible to 

identify whether or not organisms that are spread by lake circulation may then be picked-

up and spread by ballast water once again by inputting larval transport model results into 

the ballast water model tested by Sieracki et al. (2014, In Review). The ballast water 

model identifies those locations that are most likely to receive ballast water from infested 

locations; therefore, allows us to determine whether a location may become in invaded in 

the future. Modeled settlement locations can then be assessed as to whether or not they 

can support the invasive species of interest, allowing for the identification of MLBWE 

locations most likely to reduce the risk of future secondary spread. By combining the 

predictions of the circulation and ballast water model, we are able to assess the potential 

effectiveness of MLBWE in Lake Michigan. 

For this study, we identified locations in Lake Michigan that might serve as 

effective MLBWE sites for preventing the spread of one established, but localized 

species, Eurasian Ruffe, and one species that may invade the Great Lakes in the future, 

golden mussel (Limnoperna fortunei). Eurasian Ruffe was selected due to its continued 

spread in the Great Lakes and as being representative of other potential invasive species 

with slow dispersal capabilities and low survival rates in the ballast tank (Sieracki et al. 

In Review). Golden mussel was selected not only out of concern for its potential 

introduction, but also as a representative of invasive species with the ability to spread 
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rapidly and survive in the ballast tank (Sieracki et al. In Review). Additionally, we 

modeled the further spread of ruffe and golden mussel due to ballast water that may occur 

from predicted settlement locations for each potential mid-lake BWE site. 

 

4.3 Methods 

To determine if MLBWE could be an effective management technique for preventing the 

spread of Eurasian Ruffe and golden mussel, we tested 11 potential MLBWE sites in 

Lake Michigan (Fig. 4-1). Lake Michigan was identified as the study area due to the 

existence of a thoroughly validated circulation model for the entire lake (Beletsky et al, 

2006), and the lack of ballast water data for ships visiting Canadian ports in the 

remainder of the Great Lakes. The first species of interest, Eurasian Ruffe, is a Eurasian 

fish that was first detected in the Great Lakes in 1986 in the St. Louis estuary in Duluth, 

Minnesota. This species has since spread along the southern shore of Lake Superior, and 

has been found in the northern portions of Lakes Huron and Michigan (Fig. 4-2). Concern 

for the further spread of ruffe stems from its potential to outcompete yellow perch (Perca 

flavescens), which may negatively impact the popular Lake Erie fishery (Savino and 

Kolar 1996, Fullerton et al. 1998). Because adult ruffe are benthic and generally too large 

to be entrained through sea chest grates, this species is most likely to be spread during the 

larval phase. The other species of interest, golden mussel has not been detected in the 

Great Lakes, but has been identified as a species that could potentially become 

widespread if introduced (Sieracki et al. In Review). Golden mussel is a Southeast Asian 

species of bivalve that has already invaded Hong Kong, Japan, and South America 
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(Miller and McClure 1931, Mizuno and Mori 1970, Brandt and Temcharoen 1971, 

Morton 1973, Darrigran and Pastorino 1995). This species shares many reproductive 

traits and habitat requirements with zebra mussel and is expected to be just as damaging 

to an invaded ecosystem as its Ponto-Caspian counterpart in that it is expected to foul 

infrastructure and disrupt food webs (Karatayev et al. 2007a, Karatayev et al. 2007b). 

Like zebra mussel, the pelagic larval stage of golden mussel is most likely to be spread 

via ballast water. 

 

4.3.1 Larval Transport Model 

The larval transport model that was used as the first step in modeling the spread of larvae 

released at potential MLBWE sites was developed by Beletsky et al. (2007; Fig. 4-3). It 

has been applied for modeling aquatic invasive species from river mouths and ports in 

Lake Michigan by Beletsky et al. (to be submitted), and is briefly described here. We 

used a 3-dimensional particle transport model that predicts the transport and settlement of 

fish and mussel larvae. The model uses 3-hourly climatological currents (1998-2007 

average) produced by the 3D hydrodynamic model of Lake Michigan (Beletsky and 

Schwab, 2008). Larvae are considered to be passive and neutrally buoyant. The 11 

potential MLBWE locations were identified from National Ballast Information 

Clearinghouse (NBIC) data for 2004 to 2010 (Smithsonian Environmental Research 

Center and USCG 2009; Fig. 4-1; Appendix A). Any ship that visits a U.S. port must 

report its discharge activities to the NBIC, including ballast water source location and 

date, amount of water picked up (in metric tons), discharge location and date, and amount 
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of water discharged. All 11 points were previously reported as actual ballast water 

discharge locations and were located with reported coordinates; therefore, have been 

identified as feasible locations for future ballast water discharge. 

 Both ruffe and golden mussel are most likely to be spread by ballast water during 

the larval period; hence, we limited the potential period of spread to the time of year 

when larvae are present. In the St. Louis estuary of Lake Superior, ruffe were found to 

spawn between 5 and 18°C, and larvae remained pelagic for 1-2 weeks (Brown et al. 

1998). Therefore, the potential period of spread was limited from mid-April to late July 

based on nearshore bottom temperatures, and larvae were considered dead 14 days after 

having been discharged (Table 4.1). Additionally, potential spread was limited to only 

those parts of the Great Lakes at a depth of 10 meters or less, as the shallow littoral zone 

is the habitat where larval ruffe are most likely to feed (Bauer et al. 2007). Golden mussel 

has been found to reproduce at temperatures between 16 and 28°C, which corresponds 

with late June to mid-October (Cataldo and Boltovskoy 2000, Xu et al. 2013). This 

species may also survive in the pediveliger stage for up to 20 days at 20°C (Cataldo et al. 

2005) and is expected to be found at depths similar to zebra mussels (T. Nalepa, pers. 

comm.). Because of this, golden mussels were limited to areas of the Great Lakes no 

greater than 50 meters (T. Nalepa, pers. comm.) and were tracked for 20 days until 

assumed dead. 

  A single larvae was released from each MLBWE site on each day during the 

modeled species’ reproductive period. Locations where a larva could settle and survive 

after being discharged (henceforth termed “settlement locations”) were selected by 
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including only those points that fell within the period of survival and maximum depth 

identified for each species modeled. Any larva that was at depths greater than the 

maximum identified for the species at the end of the survival period was considered dead. 

Because larvae may not settle at the first suitable location, we continued to track the path 

each larva travelled until it was dead. 

 

4.3.2 Ballast Water Model 

If a potential MLBWE site resulted in the survival of at least a single larva, we assumed 

that a population could become established at that location. All locations where a larva 

could settle and survive were identified. From those settlement locations, we identified 

further spread that could occur upon being picked-up with ballast water (Fig. 4-3). Based 

on the NBIC data used to identify the pattern of ballast water spread for this model, three 

of the remaining four Great Lakes were identified as being directly connected to ballast 

water sources in Lake Michigan. (Fig. 4-4). The model was previously designed to 

predict the spread of invasive species due to ballast water in the Great Lakes (Sieracki et 

al. 2014, Sieracki et al. In Review). The model was tested by backcasting the past spread 

of Eurasian Ruffe and zebra mussel to identify parameter values that best captured the 

past spread of these two invasive species (Sieracki et al. In Review). The best fit 

parameter values were then used to predict the future spread of Eurasian Ruffe and 

golden mussel. For this study, the parameter values identified in Sieracki et al. (In 

Review) were used to predict the potential spread of each species from each of the 

settlement locations. 
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 The ballast water model was designed to simulate the pattern of ballast water 

movement around the Great Lakes. Ballast water information was obtained from the 

NBIC for the years 2004 to 2010 (Smithsonian Environmental Research Center and 

USCG 2009). We derived ballast water source and discharge locations, mean number of 

trips between locations per year, and the median length of trips in days from the NBIC 

data. First, the model identifies locations invaded by the species of interest and creates an 

area with a 1.4-km radius around the location that may potentially be invaded due to the 

estimated error in mapping the location. Next, an area of potential localized spread is 

identified by applying a species-specific radius that was obtained from the previous 

testing of the model. The local spread distances of 25-km for Eurasian Ruffe and 20-km 

for golden mussel were pinpointed from previous testing and used for this study (Sieracki 

et al. In Review). Once the annual area of infestation has been established, the model then 

selects any ballast water source locations that occur within the infested areas. The model 

then identifies all discharge locations that received ballast water from the infested sources 

and uses a binomial distribution to calculate whether or not any trips between the source 

and discharge locations result in the discharge location becoming invaded. The binomial 

distribution calculated the sum of the trips that resulted in a failed invasion (X = 0) or a 

successful invasion (X = 1) using a species-specific infestation probability, which 

reduced exponentially as the median length of the trip increased. The infestation 

probability for Eurasian Ruffe was 0.0001 and for golden mussel was 0.75 as determined 

from Sieracki et al. (In Review). If at least one trip resulted in a successful invasion, the 

discharge location was considered invaded. 
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 The ballast water model was coded in Python to be run in ArcGIS. Each of the 

models simulated only one time-step of invasion after the settlement of larva and was run 

100 times. The results of the 100 runs were summed to determine the probability that a 

discharge location would next become invaded. 

 

4.4 Results 

For Eurasian Ruffe, six of the 11 ballast water exchange locations were modeled to result 

in settlement. Sites B02, B03, B04, B06, and B07 led to no survival of ruffe larvae upon 

being released (Table 2; Fig. 4-5). Site B11 led to the most larval settlement (78%) and 

highest number of locations that could potentially be settled (294; Table 2; Fig. 4-5), 

presumably due to its proximity to shoreline in multiple directions. The site that led to the 

second largest settlement, B05, led to 37 larvae settling at potentially 116 locations total. 

Additionally, B05 led to the greatest maximum distance of settlement for ruffe at 91.38 

km, suggesting that larvae released at this site could be more widespread than at other 

sites (Table 2).  

 On the other hand, release of golden mussel at all 11 sites led to larger numbers of 

larval settlement, more locations potentially being settled, and locations at greater 

distances from the MLBWE site being settled (Table 2; Fig. 4-6). Both sites B01 and B11 

led to 100% settlement of larvae (Table 2; Fig. 4-6) and the greatest number of locations 

with the potential for being settled (2,613 and 2,570, respectively; Table 2). Sites B05, 

B08, and B09 led to larval settlement greater than 80% (Table 2; Fig. 4-6). Similar to 

Eurasian Ruffe model runs, site B05 led to the greatest maximum distance of settlement 
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at 159.08 km. However, sites B03 and B06 led to the least number of larvae being settled 

(4 and 5, respectively; Table 2; Fig. 4-6) and the least number of locations potentially 

being settled (6 for each release site; Table 2). 

 Overall, sites B03 and B06 led to the least amount of larval settlement and the 

number of potential settlement locations when results for both species were considered 

(Table 2; Fig. 4-4 and 4-5). Further, site B11 led to large numbers of larval settlement 

and potential settlement locations for both species, and site B05 led to the greatest 

distance of spread (Table 2; Fig. 4-5 and 4-6). 

 Among the potential ballast water exchange sites tested, those that led to less 

larval settlement did not necessarily lead to the least potential spread due to ballast water. 

While site B01 led to the most settlement modeled for golden mussel, it ranked only third 

for Eurasian Ruffe. However, B01 led to the invasion of the most ports for both species 

due to ballast water movement. This is most likely owing to B01’s proximity to Chicago 

area ports, which are among the greatest contributors to ballast water discharged in the 

Great Lakes (Table 3; Smithsonian Environmental Research Center and USCG 2009). 

B01 also led to the invasion of four Great Lakes for golden mussel; yet, Eurasian Ruffe 

never left Lake Michigan. Conversely, sites B09 and B11 led to the most Great Lakes 

being invaded (2 each). B11 led to the invasion of Lake Huron due to its proximity to the 

Straits of Mackinac; while site B09 led to a concentration of spread at the downriver 

entrance to the St. Marys River. For golden mussel, a total of 8 MLBWE sites resulted in 

the modeled invasion of four Great Lakes at least 50% of model runs, and another two 

sites led to the invasion of three Great Lakes at least 50% of model runs. In particular, 
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B06 led to the invasion of 25 ports and three Great Lakes at least 50% of model runs, 

despite resulting in such low larval settlement due to lake circulation. Ultimately, site 

B03 led to the least amount of spread due to circulation or ballast water for both species 

tested. An example of ballast water model results is shown in Figure 4-7. 

 

4.5 Discussion 

The results of the larval transport and ballast water models suggest that MLBWE may be 

an effective temporary alternative to ballast water treatment for preventing the spread of 

invasive species if strategically located. For Eurasian Ruffe, multiple sites were identified 

where ballast water may be exchanged in order to prevent the survival of any larvae 

entrained in ballast tanks. Indeed, past calls for the exchange of ballast water in the 

deeper regions of Lake Superior may have led to a reduction in the spread of ruffe from 

Duluth/Superior harbor (Brown et al. 1998). Requiring the implementation of BWE for 

ships leaving areas infested by ruffe will likely reduce the secondary spread of the 

invasive fish in the future. Despite MLBWE being predicted to be less effective at 

preventing the spread of golden mussel, at least one test site, B03, led to reduced spread 

due to lake currents and ballast water movement. Nevertheless, site B03 will only be an 

efficient BWE site for those ships that are passing through that area. If golden mussel 

were to become established in the Chicago area, we suggest that using site B03 to 

conduct BWE will help to reduce the number of propagules that a ship may carry to 

another port. 
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 The results of our multi-model approach also demonstrate the importance of 

considering multiple vectors when trying to identify effective ballast water management 

techniques. When only taking the dispersion by lake currents into consideration, two 

ballast water test sites (B03 and B06) resulted in minimal golden mussel larval settlement 

in Lake Michigan. However, by inputting these results into the ballast water spread 

model, the six sites that were predicted to be settled due to lake circulation led to the 

future invasion of 25 ports and three Great Lakes at least 50% of the model runs. Even if 

a MLBWE site resulted in a small area becoming invaded, it could potentially lead to a 

large amount of spread as long as a population became established in a location that 

serves as a source of ballast water to multiple locations throughout the Great Lakes. In 

the case of site B06, the settled larvae were in close proximity to a major shipping lane 

and the port of Ludington, Michigan.  

 Though MLBWE may be a promising method for slowing the spread of invasive 

species, it is important to highlight that it should only be used temporarily while ballast 

water treatment options are going through the approval and implementation process. 

Despite high compliance to BWE policies by transoceanic ships (Bailey et al. 2011), not 

all individuals are killed or flushed out of the ballast tanks. Further, BWE practiced while 

still in saltwater provides a two-pronged attach by flushing organisms out of a ship’s 

ballast tanks and providing for additional mortality by osmotic shock (Ruiz and Reid 

2010). Currently, it is unknown how effective MLBWE with freshwater may be without 

testing it in the field; however, it is still expected to result in a noted decrease in the 

number of propagules available to establish a new population. Nevertheless, an approved 
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ballast water treatment system will ultimately be more reliable and safer to the operation 

of ships than MLBWE. 

 The methods used in this study can be replicated for the remaining Laurentian 

Great Lakes and other aquatic and marine systems. Identifying MLBWE sites in Lake 

Superior, Huron, Erie, and Ontario will be important in devising an alternative to ballast 

water treatment for the next few years as treatment systems are certified for use in the 

Great Lakes and implemented on ships built after January 1, 2009. Further, MLBWE can 

be an effective best management practice applied by ships built prior to January 1, 2009. 

Considering that in 2012 the average age of the U.S. fleet was 46 years old with only four 

ships having been built since the 1990s (USDOT Maritime Administration 2013), it could 

be some time before the majority of lakers have a certified ballast water treatment system 

on board. 

 Until ballast water treatment systems are installed on all ships carrying ballast 

water in the Great Lakes, best management practices are going to form the backbone of 

invasive species prevention strategies. Our model results suggest that MLBWE is a 

feasible practice for slowing the spread of Eurasian Ruffe, golden mussel, and potentially 

other invasive species; however, it is important to state that preventing species from 

entering the Great Lakes in the first place is the most effective management plan. 

Nonetheless, techniques designed to prevent both the introduction of invasive species into 

the Great Lakes and secondary spread within the Great Lakes will be important in 

devising effective ballast water management policy. 
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Table 4.1. Larval transport model constraints identified for each species. The first and 

last release days represent the range of days that larvae may be found in the water 

column. The survival period represents the amount of time that larvae can survive in the 

water column without suitable habitat. The maximum depth is the depth beyond which 

larvae are not expected to survive.  

 

  
Eurasian 

Ruffe 
Golden 
Mussel 

First release (Julian day) 102 144 
Last release (Julian day) 210 290 
Survival period 14 days 20 days 
Maximum depth 10 meters 50 meters 
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Table 4.2. Larval transport model results. The total number of larvae that settled (ruffe: 

n=109, golden mussel: n=147), total number of settlement locations, and maximum 

distance from each MLBWE site are reported. Settlement locations were identified as 

those locations at or below the maximum depth that larvae had reached prior to the end of 

the survival period. 

  # Larvae 
Settled 

# Settlement 
Locations 

Max Dist from 
MLBWE Site 

(km) 

Eurasian Ruffe 

B01 20 53 23.35 
B02 0 0 NA 
B03 0 0 NA 
B04 0 0 NA 
B05 37 116 91.38 
B06 0 0 NA 
B07 0 0 NA 
B08 9 25 47.92 
B09 11 35 35.66 
B10 5 9 40.06 
B11 85 294 28.67 

Golden Mussel 

B01 147 2613 65.02 
B02 27 144 112.77 
B03 4 6 64.08 
B04 46 102 139.81 
B05 123 898 159.08 
B06 5 6 64.40 
B07 28 77 78.36 
B08 144 558 64.46 
B09 139 1024 66.03 
B10 35 204 40.44 
B11 147 2570 74.58 
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Table 4.3. Ballast water model results for all MLBWE sites that resulted in the settlement 

of at least one larva. The total number of ports and lakes invaded and the total number of 

ports and lakes that were predicted to become invaded at least half the time were counted. 

  
Total 
Ports 

Invaded 

Total 
Lakes 

Invaded 

Total 
Ports  ≥ 

50% 

Total 
Lakes ≥ 

50% 

Eurasian 
Ruffe (n=96) (n=5) (n=96) (n=5) 

B01 14 1 13 1 
B05 0 1 0 1 
B08 2 1 2 1 
B09 6 2 6 2 
B10 1 1 1 1 
B11 6 2 6 2 

Golden 
Mussel (n=93) (n=5) (n=93) (n=5) 

B01 63 4 56 4 
B02 38 3 38 3 
B03 1 1 1 1 
B04 41 4 41 4 
B05 30 4 30 4 
B06 28 3 25 3 
B07 1 4 1 4 
B08 49 4 47 4 
B09 48 4 47 4 
B10 39 4 31 4 
B11 37 4 37 4 
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Figure 4-1. Lake Michigan mid-lake ballast water exchange (MLBWE) sites tested for 
effectiveness. 
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Figure 4-2. Eurasian Ruffe presences for the Great Lakes (USGS 2009). 
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Figure 4-3. Conceptual model for predicting the effectiveness of MLBWE in Lake 

Michigan. Components of the larval transport and ballast water models are broken down 

in boxes to the right.  
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Figure 4-4. Ballast water discharge locations that received ballast water from Lake 

Michigan between 2004 and 2010 as recorded in the NBIC (National Ballast Information 

Clearinghouse 2009). 
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Figure 4-5. Eurasian Ruffe larval transport model results. As part of the simulation, one 

larva was released at each MLBWE site every day from mid-April to early July, resulting 

in 84 total larvae being released. Larvae were tracked for seven days after release and 

considered dead if they did not reach a safe depth of ≥ 10-m in that time. The total 

number of locations where a larva could settle was also calculated. 
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Figure 4-6. Golden mussel larval transport model results. As part of the simulation, one 

larva was released at each MLBWE site every day from mid-May to the end of 

September, resulting in 139 total larvae being released. Larvae were tracked for seventy 

days after release and considered dead if they did not reach a safe depth of ≥ 50-m in that 

time. The total number of locations where a larva could settle was also calculated.  
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Figure 4-7. Golden mussel ballast water model results for Site B05. Ballast water 

predictions are the percentage of model runs that resulted in invasion for each port. 

Golden mussel were entrained from the settlement locations resulting from larvae being 

discharged at Site B05. 
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Chapter 5 

Discussion 
 

 

Ballast water and shipping data have been used in the past to conduct risk 

assessments for North American ports; however, they have not been used to create a 

spread model that can simulate the movement of specific species. Despite the frequent 

use of ballast data as a proxy for propagule pressure, Ruiz et al. (2013) recently found no 

relationship between U.S. ports that receive large amounts of ballast water or numerous 

ship arrivals and richness of nonnative species. Nonetheless, they hypothesized that the 

absence of a relationship may have been to due to the lack of ballast water source 

information considered in their study. Although large volumes of ballast water may be 

able to contain enough propagules to result in population establishment, those propagules 

may not necessarily be invasive if the ballast water was not picked-up in a location where 

nonnative species capable of inhabiting a discharge location are found (Ruiz et al. 2013). 

Further, source ports that are great distances from the discharge port are less likely to 

result in new invasions, since many organisms are likely to die prior to reaching their 

destination (Ruiz et al. 2013). A number of risk assessments have used varying levels of 
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ballast water source information in order to over come these issues (McGee et al. 2006, 

Rup et al. 2010, Miller et al. 2011), but these risk assessments have lumped source data 

into broader categories rather than identifying specific regions. A risk assessment 

conducted by Bailey et al. (2012) identified specific domestic locations that served as 

ballast water sources in the Great Lakes and calculated a species invasion probability; 

however, they did not use a species-specific approach. Keller et al. 2010 also conducted a 

risk assessment for Great Lakes ports by identifying those global ports that have similar 

environmental conditions, but did not consider actual ballast water events. In order to 

overcome the limitations in using ballast water and shipping information, my model 

included specific source/discharge linkages, species-specific probabilities of infestation, 

and median trip lengths. 

In using ballast water source and species-specific data, I was able to devise a 

model that not only explained the majority of secondary spread of at least two species, 

but that has also been useful in providing information to help guide monitoring and 

management of invasive species in the Great Lakes. In particular, the ballast water model 

was better able to capture long-distance spread events than the localized dispersal 

distance alone. Capturing these long-distance dispersal events can be key in controlling 

an invasive species. If those locations that are most likely to become invaded in the future 

are identified prior to invasion, it will allow time for the implementation of rigorous 

prevention methods (e.g. mid-lake BWE, ballast water treatment, etc.) and the 

development of early detection monitoring plans (Lodge et al. 2006). Additionally, the 

model I developed for this study can also be used to identify efficient and effective 



96 

 

 

ballast water management techniques. In fact, there are many uses for the dynamic spatial 

ballast water model that have not been considered in this document. 

 One of the utilities of the ballast water model was in determining whether or not 

ballast water discharge was playing a role in the secondary spread of an invasive species 

in the Great Lakes. It was determined that VHSV occurrences were not simply related to 

the location of ballast water discharges, but they were located near those discharges that 

received numerous visits from ballast water sources that were previously identified as 

invaded. Despite ballast water discharge explaining only a small portion of VHSV 

spread, the model was able to capture long-distance spread and still demonstrated ballast 

water to be a vector of past spread. Because of this, any prevention program would need 

to include a ballast water management component in order to most effectively prevent the 

further spread of VHSV. Even though VHSV is already widespread in the Great Lakes, 

the information provided by the model may be applied to devising management strategies 

for the possible future invasion of other fish diseases. Additionally, the model was able to 

identify the St. Lawrence River as the more likely Great Lakes source of VHSV versus 

Lake St. Clair, as put forth by Thompson et al. (2011). Despite prevention methods being 

implemented in order to prevent the further spread of VHSV, such as prohibiting sale of 

bait across state lines (MDNR 2007, APHIS 2008), it still became widespread throughout 

the Great Lakes. Based on modeling results, lack of early detection, failure to focus 

control efforts on all source populations, and exclusion of ballast water management as 

part of the prevention program may have led to the ultimate pervasiveness of VHSV in 

the Great Lakes. 
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 The ballast water model was also useful in predicting the secondary spread of 

three different invasive species in the Great Lakes. As with VHSV, including ship trip 

detail was important in identifying species occurrences. In addition, including a measure 

of an organism’s ability to survive in the ballast tank during a trip was important in more 

accurately capturing the past spread of the species. Because of the accuracies obtained 

during backcasting, I was able to more reliably predict the future spread of ruffe, golden 

mussel, and killer shrimp based on ballast water movement alone than I would have if I 

had not created my models using past occurrences. Predictions of the future spread of 

these and any other species is important information to have in devising an early 

detection monitoring program (Simberloff et al. 2005, Lodge et al. 2006). Most agencies 

that conduct long-term monitoring do not have the time or money to census the entire 

system under their jurisdiction. For agencies, it is important to eliminate those areas that 

are least likely to be invaded by an invasive species and only focus on those locations that 

are most likely to become invaded in the future. The results of prediction modeling can 

help to guide early detection efforts, including but not limited to eDNA monitoring. Due 

to its current status in the Great Lakes, Eurasian Ruffe became an urgent test subject of 

the three species modeled. Preliminary results of prediction modeling were made 

available to The Nature Conservancy, who have been testing new eDNA methods to 

monitor for invasive species, including ruffe. Guided by my ballast water model results, 

ruffe eDNA was detected in Calumet Harbor in the summer of 2013. The ballast water 

model had predicted that ruffe would next invade Calumet Harbor in 95-97% of all model 
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runs, suggesting that prediction modeling is a useful tool in directing early detection 

monitoring of invasive species. 

 Another application of the ballast water model was to determine its usefulness in 

identifying potential effective ballast water management practices. Using a hydrodynamic 

model to simulate the dispersal of ruffe and golden mussel larvae in combination with the 

ballast water model provided for a more complete picture of how those two species 

would spread upon being discharged at mid-lake locations. Inputting the circulation 

results into the ballast water model proved to be important, since the number of 

infestations due to ballast water spread was not necessarily positively related to the 

amount of circulation settlement. The combined modeling efforts led to the identification 

of potential mid-lake ballast water exchange (MLBWE) sites in Lake Michigan for 

Eurasian Ruffe and golden mussel. Despite not identifying as many effective MLBWE 

sites for golden mussel as for ruffe, MLBWE may still be an effective means of slowing 

the spread of the invasive bivalve depending on where it is first detected in the Great 

Lakes. For instance, if golden mussel were to invade the Chicago area first, it would be 

plausible for ships to conduct MLBWE prior to travelling to other ports. Further, 

MLBWE at even less desirable sites may prove to be effective in minimizing the number 

of larvae transported if combined with other management practices. Not only could the 

ballast water model be used to identify MLBWE locations in other lakes, but it could be 

used to test other management practices and potential locations of ballast water treatment 

in the Great Lakes as well.   
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 Current limitations of the ballast water model lead to an incomplete picture for the 

Great Lakes. The lack of Canadian ballast water data results in the absence of accurate 

predictions for the Canadian shoreline and likely underestimates the total spread of a 

species within the Great Lakes. The mandatory reporting and release of this data would 

greatly enhance the accuracy of the ballast water model’s predictions. It is also important 

to note that as the economy in the Great Lakes changes, the shipping patterns are also 

likely to change. In order to provide information that is timely, it will be important to 

update the discharge data on which the ballast water model relies to make accurate 

predictions. Further, the lack of good species occurrence data also limited our ability to 

identify appropriate parameter values and how well the models are predicting the spread 

of each of the species studied. Many species detections go unreported, either because it is 

assumed the species is already widespread or because it has been detected by a member 

of the public who does not where to report it. Mobile applications and online reporting 

systems have been developed to allow the public to report the locations of invasive plant 

species in the U.S. (e.g. IPAlert, EDDMapS West, What’s Invasive, etc.). Similar 

applications may be developed for aquatic species, as well. In addition to better reporting 

of species occurrences, it is also important to include absence information as part of any 

reporting system. By reporting species absences, it is possible to more accurately 

determine if a lack of species presence is actually due to it not occurring in a location, or 

if it simply has not been looked for yet. Absence data also informs as to the degree of 

monitoring that has been undertaken in detecting a species. 
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 Because the ballast water model has the potential to be a useful tool in making 

invasive species management decisions, it is important that it be made available to 

agencies. For this reason, the model has been coded in Python, a scripting language, to 

run in ESRI’s ArcGIS. ArcGIS is available to and used by many federal, state, and local 

agencies, universities, and organizations to conduct spatial geoprocessing. The next 

stages in developing the ballast water model will include adding functionality to the code 

that allows for easier use by those with limited experience in ArcGIS. Further, a readily 

distributed package containing the model and all that is needed to run it (i.e. input data, 

tutorial, and help documentation) will be produced. Further, those with more advanced 

experience with Python and ArcGIS can readily modify the model’s code to meet their 

own management needs and can create their own input data to run simulations in any 

freshwater or marine system where ballast water discharge data is available. 

 By modifying the ballast water model for use by others, the methods described 

here may be applied to other systems. In particular, the National Ballast Information 

Clearinghouse (Smithsonian Environmental Research Center and USCG 2009) maintains 

data for the entire U.S. Ballast water data for the Atlantic, Pacific, and Gulf Coasts may 

be summarized from the NBIC and used to simulate the pattern of secondary spread for 

each of these marine systems as well as it has been used for the Great Lakes. 

Additionally, the model is not limited to predicting the secondary spread of species, but 

may also be used to identify those ports most likely to be the initial invasion site of a 

specific species of interest. Because the NBIC maintains trans-oceanic as well as 

domestic ballast water source/discharge data, it is possible to simulate the movement of 
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species into the U.S. from all global ports. The ballast water model may also be used in 

other countries and regions of the world so long as similar source/discharge data exists, 

as is the case for trans-oceanic travel in Canada (Rup et al. 2010, Bailey et al. 2011). 

 Further applications of the ballast water model have yet to be tested. The model 

may be used to determine how effective ballast water treatment or management practices 

would have been in preventing the spread of invasive species in the past. For instance, it 

may be used to determine what affect mandatory ballast water management may have 

had on the spread of zebra mussels in the Great Lakes. Model results could indicate the 

degree to which treatment may have slowed the spread of zebra mussels, potentially 

allowing time for control or eradication of the species at the initial infestation sites. The 

model results could also demonstrate when in the invasion process it would have been 

most effective to begin treating or managing ballast water. Furthermore, habitat and 

climate information can be added to the model to further narrow the spread predictions 

made for Eurasian Ruffe, golden mussel, killer shrimp, or any other species of interest. 

For instance, golden mussel tends to inhabit more tropical and subtropical regions. By 

adding habitat and climate constraints collected from both native and invaded golden 

mussel occurrences, it would be possible to determine if the limiting factor in the spread 

of golden mussel may actually be its own inability to survive throughout the Great Lakes. 

Additionally, ballast water model results may be used to inform secondary spread models 

designed to simulate inland invasions. The results of such modeling efforts will not only 

inform as to which inland waters a species is most likely to invade from a given port, but 

it can also inform as to how far a species may spread inland from a given port. 
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Because it is not possible or ethical to introduce a species to an ecosystem to 

study its spread patterns, we must rely on what we know about invasive species dispersal 

from past experiences. Predictive models organize data from the past in a way that allows 

us to infer how species and humans will behave in the future. Despite only being a 

representation of what may occur based on our current knowledge, the ballast water 

model still provides informed possible future scenarios of secondary spread of invasive 

species. By applying the ballast water model to three different management problems, I 

was able to provide more information to invasive species managers, scientists, and policy 

makers than previously available. As more data become available in the Great Lakes and 

beyond, our understanding of how invasive species spread will evolve, and the ballast 

water model will continue to increase in accuracy and applicability.
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Appendix A 

Compiled National Ballast Information Clearinghouse 
(NBIC) Data for 2004-2010 

 

 

The following tables contain the compiled NBIC data that was used to establish the 

pattern of spread for both the location and propagule pressure models. The data is 

recorded here as it was input the models described in Chapters 3 and 4; however, data 

used in Chapter 2 can also be derived from the tables included here.
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
41.55 -82.73 -82.73000000 41.55000000 0 0 0 0 0 6 0 6 1 
41.63 -87.32 -87.32000000 41.63000000 1 0 0 0 0 0 0 1 0 
41.64 -87.14 -87.14000000 41.64000000 0 0 0 0 0 10 0 10 1 
41.68 -87.30 -87.30000000 41.68000000 0 1 0 0 0 0 0 1 0 
41.68 -87.45 -87.45000000 41.68000000 0 6 0 0 0 3 0 9 1 
41.71 -87.54 -87.54000000 41.71000000 1 0 0 0 0 0 0 1 0 
41.75 -81.28 -81.28000000 41.75000000 1 0 0 0 0 0 0 1 0 
41.80 -82.20 -82.20000000 41.80000000 0 28 0 0 0 0 0 28 4 
41.80 -87.40 -87.40000000 41.80000000 0 1 0 0 0 0 0 1 0 
41.82 -82.33 -82.33000000 41.82000000 0 0 2 0 0 0 0 2 0 
41.83 -82.20 -82.20000000 41.83000000 0 34 8 0 0 0 0 42 6 
41.85 -82.12 -82.12000000 41.85000000 8 0 0 0 0 0 0 8 1 
41.89 -87.45 -87.45000000 41.89000000 1 0 0 0 0 0 0 1 0 
41.89 -87.53 -87.53000000 41.89000000 9 6 0 0 0 1 0 16 2 
41.90 -82.88 -82.88000000 41.90000000 0 2 0 0 0 0 0 2 0 
41.97 -80.55 -80.55000000 41.97000000 10 7 0 0 0 0 0 17 2 
42.00 -87.30 -87.30000000 42.00000000 1 0 0 0 0 0 0 1 0 
42.20 -87.20 -87.20000000 42.20000000 0 0 1 0 0 0 0 1 0 
42.20 -87.30 -87.30000000 42.20000000 0 0 0 4 0 0 0 4 1 
42.50 -87.10 -87.10000000 42.50000000 0 0 1 0 0 0 0 1 0 
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
42.59 -87.65 -87.65000000 42.59000000 0 0 12 0 0 0 0 12 2 
42.60 -86.30 -86.30000000 42.60000000 0 1 0 0 0 0 0 1 0 
42.60 -87.13 -87.13000000 42.60000000 0 1 0 0 0 0 0 1 0 
42.79 -86.12 -86.12000000 42.79000000 2 1 0 0 0 8 0 11 2 
42.79 -86.21 -86.21000000 42.79000000 1 0 0 0 0 0 0 1 0 
42.80 -86.30 -86.30000000 42.80000000 0 2 0 0 0 0 0 2 0 
42.80 -86.50 -86.50000000 42.80000000 0 1 0 0 0 0 0 1 0 
42.87 -78.88 -78.88000000 42.87000000 0 2 0 0 0 0 0 2 0 
42.88 -79.25 -79.24733500 42.88038071 0 1 0 0 0 0 0 1 0 
43.00 -87.00 -87.00000000 43.00000000 0 0 0 1 0 1 0 2 0 
43.03 -87.90 -87.89405135 43.03000000 0 0 0 0 0 2 0 2 0 
43.23 -86.35 -86.35000000 43.23000000 0 0 0 0 0 1 0 1 0 
43.27 -86.83 -86.83000000 43.27000000 6 0 0 0 0 0 0 6 1 
43.32 -79.22 -79.22000000 43.32000000 0 1 0 0 0 0 0 1 0 
43.40 -86.80 -86.80000000 43.40000000 0 0 1 0 0 0 0 1 0 
43.50 -86.60 -86.60000000 43.50000000 0 0 1 0 0 0 0 1 0 
43.60 -86.80 -86.80000000 43.60000000 0 1 0 0 0 0 0 1 0 
43.65 -77.83 -77.83000000 43.65000000 0 0 0 0 1 0 0 1 0 
43.70 -86.70 -86.70000000 43.70000000 1 0 0 0 0 0 0 1 0 
43.74 -86.70 -86.70000000 43.70000000 0 0 0 1 0 0 0 1 0 
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
43.90 -87.65 -87.65000000 43.90000000 1 0 0 0 0 0 0 1 0 
43.92 -87.26 -87.26000000 43.92000000 0 0 0 0 1 0 0 1 0 
43.93 -87.24 -87.24000000 43.93000000 0 0 0 0 1 0 0 1 0 
43.94 -87.26 -87.26000000 43.94000000 0 0 0 0 1 0 0 1 0 
43.95 -86.45 -86.45000000 43.95000000 1 0 0 0 0 0 0 1 0 
43.95 -87.26 -87.26000000 43.95000000 0 0 0 0 2 0 0 2 0 
44.10 -87.65 -87.64583594 44.09821540 1 0 0 0 0 0 0 1 0 
44.37 -86.42 -86.42000000 44.37000000 0 0 1 0 0 0 0 1 0 
44.40 -87.30 -87.30000000 44.40000000 0 1 0 0 0 0 0 1 0 
44.465 -75.79833 -75.79833000 44.46500000 0 0 0 0 0 0 4 4 1 
44.50 -86.70 -86.70000000 44.50000000 0 1 0 0 0 0 0 1 0 
44.54 -88.01 -88.01000000 44.54000000 0 0 0 0 0 1 0 1 0 
44.60 -87.30 -87.30000000 44.60000000 0 0 0 1 0 0 0 1 0 
44.80 -87.30 -87.30000000 44.80000000 0 0 0 1 0 0 0 1 0 
45.02 -85.92 -85.92000000 45.02000000 6 0 0 0 0 0 0 6 1 
45.10 -87.60 -87.59900573 45.09758533 2 0 0 0 0 0 0 2 0 
45.20 -83.17 -83.17000000 45.20000000 6 0 0 0 0 0 0 6 1 
45.25 -83.22 -83.22000000 45.25000000 0 0 0 0 0 1 0 1 0 
45.32 -85.32 -85.32000000 45.32000000 17 16 0 0 0 0 0 33 5 
45.35 -86.13 -86.13000000 45.35000000 6 0 0 0 0 0 0 6 1 
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
45.40 -85.50 -85.50000000 45.40000000 0 12 0 1 0 0 0 13 2 
45.41 -83.82 -83.80953037 45.42142141 1 2 0 0 0 1 0 4 1 
45.43 -83.40 -83.40000000 45.43000000 2 0 0 0 0 0 0 2 0 
45.43 -85.50 -85.50000000 45.43000000 4 0 0 0 0 0 0 4 1 
45.45 -85.45 -85.45000000 45.45000000 2 0 0 0 0 0 0 2 0 
45.47 -85.47 -85.47000000 45.47000000 2 0 0 0 0 0 0 2 0 
45.50 -85.42 -85.42000000 45.50000000 2 44 32 0 0 0 0 78 11 
45.51 -83.47 -83.47000000 45.51000000 0 0 0 0 0 0 3 3 0 
45.53 -84.02 -84.02000000 45.53000000 0 0 0 0 0 0 3 3 0 
45.55 -85.38 -85.38000000 45.55000000 2 0 0 0 0 0 0 2 0 
45.57 -85.35 -85.35000000 45.57000000 0 0 0 0 0 2 3 5 1 
45.60 -83.55 -83.55000000 45.60000000 2 0 0 0 0 0 0 2 0 
45.60 -86.10 -86.10000000 45.60000000 0 0 1 0 0 1 0 2 0 
45.63 -86.12 -86.12000000 45.63000000 0 4 0 0 0 0 0 4 1 
45.67 -86.20 -86.20000000 45.67000000 0 2 0 0 0 0 0 2 0 
45.70 -83.70 -83.70000000 45.70000000 0 78 0 0 0 0 0 78 11 
45.70 -86.70 -86.70000000 45.70000000 1 0 0 0 0 0 0 1 0 
45.72 -83.68 -83.68000000 45.72000000 2 0 0 0 0 0 0 2 0 
45.73 -84.53 -84.53000000 45.73000000 1 0 0 0 0 0 0 1 0 
45.80 -84.80 -84.80000000 45.80000000 0 0 0 1 0 0 0 1 0 
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
45.81 -84.21 -84.21000000 45.81000000 1 0 0 0 0 0 0 1 0 
45.83 -84.55 -84.55000000 45.83000000 6 0 0 0 0 0 0 6 1 
45.85 -85.13 -85.13000000 45.85000000 0 0 0 0 7 0 0 7 1 
45.87 -85.30 -85.30000000 45.87000000 6 0 0 0 0 0 0 6 1 
45.92 -83.83 -83.83000000 45.92000000 0 6 0 0 0 0 0 6 1 
45.92 -83.92 -83.92000000 45.92000000 0 3 0 0 0 0 0 3 0 
45.95 -83.88 -83.88000000 45.95000000 8 0 0 0 0 0 0 8 1 
45.96 -85.88 -85.88000000 45.96000000 4 14 0 0 0 26 0 44 6 
45.97 -85.87 -85.87000000 45.97000000 1 0 0 0 0 0 0 1 0 
45.98 -84.21 -84.21000000 45.98000000 3 7 0 0 0 23 0 33 5 
45.98167 -84.20834 -84.20890816 45.97882922 0 0 0 0 0 0 1 1 0 
46.00 -83.90 -83.90000000 46.00000000 2 0 0 0 0 0 0 2 0 
46.07 -84.00 -84.00000000 46.07000000 3 0 0 0 0 0 0 3 0 
46.07 -84.02 -84.02000000 46.07000000 15 0 0 0 0 0 0 15 2 
46.33 -84.18 -84.18000000 46.33000000 0 1 0 0 0 0 0 1 0 
46.5 -84.33334 -84.33334000 46.50000000 0 0 0 0 0 0 1 1 0 
46.52 -84.41 -84.41571071 46.50929243 0 1 0 0 0 0 0 1 0 
46.60 -84.80 -84.80000000 46.60000000 0 0 0 0 0 1 0 1 0 
46.78 -92.09 -92.09000000 46.78000000 0 0 0 0 0 1 0 1 0 
47.00 -91.67 -91.67000000 47.00000000 0 5 0 0 0 0 0 5 1 



120 

 

 

 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
47.40 -87.33 -87.33000000 47.40000000 0 0 0 1 0 0 0 1 0 
47.5 -88.4 -88.40000000 47.50000000 0 0 0 0 0 0 1 1 0 
47.65 -87.88 -87.88000000 47.65000000 0 0 0 0 5 0 0 5 1 
Alpena -83.42248041 45.05617658 297 903 819 903 705 552 755 4934 705 
Ashtabula -80.79284082 41.92097164 321 927 829 855 1279 632 771 5614 802 
Bay City -83.89436423 43.59458002 0 1 29 2 8 5 0 45 6 
Brevort -85.00525546 46.00228847 99 214 225 172 143 93 138 1084 155 
Bruce Mines -83.61040038 46.22432871 0 0 0 7 2 4 0 13 2 
Buffalo -78.89352308 42.87302286 6 57 62 70 154 62 93 504 72 
Buffington -87.41681132 41.64609891 18 9 0 0 0 0 8 35 5 
Burns Harbour -87.15627276 41.64309038 34 63 93 64 49 57 88 448 64 
Calcite -83.78375307 45.41256739 945 2328 2127 2125 1972 1472 1513 12482 1783 
Calumet -87.59000000 41.68000000 200 529 273 270 305 189 51 1817 260 
Cedarville -84.35573909 45.99432933 70 250 253 388 153 129 236 1479 211 
Charlevoix -85.26665891 45.32060596 281 788 802 813 678 328 467 4157 594 
Chicago -87.61117156 41.88766995 83 254 222 276 338 370 649 2192 313 
Cleveland -81.69326296 41.51123219 162 398 272 194 209 207 430 1872 267 
Conneaut -80.54845446 41.96742176 311 737 685 598 238 2 225 2796 399 
Dearborn (USA, MI) -83.15466718 42.29710166 0 0 9 0 0 12 31 52 7 
Detroit -83.11071510 42.26993213 104 177 167 184 186 229 157 1204 172 
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
Drummond Island -83.88710041 45.99347694 197 512 525 530 422 352 352 2890 413 
Duluth -92.09559323 46.77757890 382 1629 1389 1964 1494 1081 1403 9342 1335 
Ecorse -83.13897379 42.24038919 9 48 13 11 10 18 11 120 17 
Erie -80.06813164 42.15154000 0 12 36 20 26 31 37 162 23 
Escanaba -87.02521064 45.73393228 91 278 371 382 544 202 387 2255 322 
Essexville -83.84551468 43.61709960 0 0 7 9 0 0 0 16 2 
Fairport (USA, OH) -81.29216737 41.76733212 0 29 66 33 18 74 84 304 43 
Fairport Harbor -81.29216737 41.76733212 33 77 58 61 75 115 136 555 79 
Ferrysburg -86.26650485 43.10245213 0 0 1 1 1 0 6 9 1 
Gary -87.32625606 41.61279472 20 15 18 12 18 36 269 388 55 
Gladstone (USA, MI) -86.99229658 45.85194417 0 0 0 0 0 0 1 1 0 
Goderich -81.72245295 43.74750157 0 0 6 0 6 0 0 12 2 
Grand Haven -86.23588202 43.06723122 22 63 26 96 34 52 25 318 45 
Green Bay -88.01915727 44.51623062 10 37 33 24 27 2 79 212 30 
Hamilton (Canada) -79.85843165 43.28144106 0 1 15 6 0 0 8 30 4 
Harbor Beach -82.64308647 43.84544313 8 0 0 0 0 0 0 8 1 
Holland -86.21816734 42.77769307 0 0 11 1 10 0 28 50 7 
Huron -82.55901593 41.41169036 15 0 2 0 1 0 1 19 3 
Indiana Harbor -87.44565848 41.67603000 116 100 60 42 16 13 171 518 74 
Kelleys Island -82.72822529 41.61511955 43 352 404 308 88 0 0 1195 171 
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
Kingsville -82.66864816 42.01795767 0 0 0 4 0 0 0 4 1 
Lorain -82.19633670 41.48326690 13 31 26 6 37 14 144 271 39 
Ludington -86.45153054 43.95140843 43 155 178 149 146 31 71 773 110 
Mackinaw City -84.72777778 45.78867507 0 0 18 0 0 0 0 18 3 
Manistee -86.34252995 44.24989629 4 10 7 0 0 7 80 108 15 
Manitowoc -87.64732600 44.09402244 0 0 1 1 2 0 16 20 3 
Marblehead -82.70903179 41.52939236 454 1236 1220 1337 1106 759 1128 7240 1034 
Marine City -82.49429312 42.70757559 0 3 14 0 0 0 9 26 4 
Marinette -87.60021134 45.09407405 0 0 8 1 1 20 6 36 5 
Marquette -87.38781613 46.53254391 489 1727 1722 1451 1629 1112 1952 10082 1440 
Marysville -82.48166352 42.82705600 8 10 9 2 7 0 1 37 5 
Meldrum Bay -83.09738910 45.94401979 0 35 17 1 6 9 19 87 12 
Menominee -87.60105220 45.09754051 0 0 0 16 0 30 16 62 9 
Milwaukee -87.89178675 43.02572009 19 51 97 91 36 51 75 420 60 
Monroe -83.35105572 41.87523576 19 4 0 10 0 7 3 43 6 
Montreal -73.54699411 45.50183563 0 0 1 1 0 0 0 2 0 
Munising -86.64650415 46.42047134 0 0 0 0 0 0 8 8 1 
Muskegon -86.35028973 43.19498154 1 7 12 2 15 0 1 38 5 
Nanticoke -80.04217491 42.79599297 0 16 7 0 5 0 5 33 5 
Ontonagon -89.31749707 46.88971051 0 0 2 0 0 0 0 2 0 
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
Oswego -76.50826842 43.47142499 0 0 3 8 0 0 4 15 2 
Owen Sound -80.94082864 44.58165727 0 0 0 0 2 0 0 2 0 
Port Arthur -89.12874868 48.41386870 0 0 0 10 0 0 0 10 1 
Port Colborne -80.19576040 42.78104103 0 11 0 0 1 0 0 12 2 
Port Dolomite -84.31318454 45.99126085 155 710 454 437 556 426 549 3287 470 
Port Gypsum -82.87557503 41.48920047 22 97 124 76 66 31 12 428 61 
Port Inland -85.86311644 45.95479905 209 1005 1166 821 978 617 702 5498 785 
Prescott -75.51131288 44.70595909 0 0 0 0 0 0 1 1 0 
Presque Isle -87.38546026 46.57723878 647 1587 1479 1448 1195 955 1006 8317 1188 
River Rouge -83.11753054 42.27423857 10 10 7 2 7 15 118 169 24 
Rogers City -83.81228929 45.42400641 0 0 0 0 0 0 7 7 1 
Saginaw -83.94945883 43.42000938 0 7 11 1 0 0 10 29 4 
Saint Clair -82.48365223 42.82030872 8 2 0 0 8 0 38 56 8 
Saint Joseph -86.49758743 42.09997281 14 0 15 8 6 0 11 54 8 
Saint Marys River (USA, 
Great Lakes) -84.17254652 46.24113045 7 0 0 0 0 0 0 7 1 
Sandusky -82.71433826 41.47022000 363 1198 1072 927 945 544 806 5855 836 
Sarnia -82.38542117 42.96761211 0 41 29 5 11 7 9 102 15 
Sault Ste. Marie (Canada) -84.33910563 46.50623582 0 0 0 0 4 0 5 9 1 
Sault Ste. Marie (Unknown) -84.36187160 46.50619995 1 0 0 0 0 0 0 1 0 



124 

 

 

 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
Sault Ste. Marie (USA, MI) -84.34547400 46.49697400 0 14 6 57 2 14 0 93 13 
Silver Bay -91.26094919 47.28134631 260 1052 967 1210 1401 519 1308 6717 960 
Soo Locks (Sault Ste. Marie, 
MI) -84.34850000 46.50250000 0 0 0 0 2 0 0 2 0 
South Chicago -87.53339626 41.76514493 0 51 66 84 104 64 126 495 71 
Stoneport -83.41958130 45.29548266 354 855 1340 1340 1511 870 1056 7326 1047 
Sturgeon Bay -87.39444444 44.85416667 34 145 68 84 98 138 121 688 98 
Superior -92.09088501 46.74762037 1710 5248 5277 5387 5242 3104 4285 30253 4322 
Taconite Harbor -90.91119577 47.52896843 7 0 0 9 12 0 1 29 4 
Tawas City -83.51796162 44.26569244 0 5 0 0 0 0 6 11 2 
Thessalon -83.55487011 46.21785730 0 0 8 0 7 0 0 15 2 
Thunder Bay -89.20142133 48.39932926 13 27 0 0 2 15 22 79 11 
Toledo (USA) -83.47027097 41.69149353 473 1355 1236 1323 1115 1185 1390 8077 1154 
Toronto -79.28754265 43.59849232 0 0 0 0 0 1 0 1 0 
Traverse City -85.61232349 44.77196180 0 1 0 0 0 0 0 1 0 
Two Harbors -91.66378092 47.00456203 581 2049 2400 2468 2365 1024 2473 13360 1909 
Waukegan -87.80620035 42.37250000 1 3 0 0 9 4 10 27 4 
Whitefish Point -84.94140188 46.77351513 10 0 0 0 0 0 0 10 1 
Whiting -87.48350532 41.68859648 85 194 138 162 353 256 187 1375 196 
Windsor -83.07957510 42.30398452 0 7 9 0 0 0 5 21 3 
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 Table A.1. Ballast water discharge location information 
  
  

Number of Discharging Ship Visits 

NBIC Discharge Location Longitude Latitude 2004 2005 2006 2007 2008 2009 2010 Total Mean 
Wyandotte -83.14414366 42.20734516 0 0 2 0 0 0 0 2 0 
Zug Island (USA, MI) -83.10734880 42.28139564 0 0 0 0 1 1 0 2 0 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

41.46 -71.37 -82.16000000 41.46000000 2 
41.46 -82.16 -82.16000000 41.46000000 3 
41.52 -81.71 -81.71000000 41.52000000 1 
41.62 -87.30 -87.30000000 41.62000000 2 
41.63 -87.14 -87.14000000 41.63000000 1 
41.67 -87.16 -87.16000000 41.67000000 4 
41.67 -87.43 -87.43000000 41.67000000 1 
41.68 -82.17 -82.17000000 41.68000000 12 
41.69 -87.55 -87.55000000 41.69000000 1 
41.75 -81.28 -81.28000000 41.75000000 1 
41.78 -87.45 -87.45000000 41.78000000 1 
41.80 -82.43 -82.43000000 41.80000000 12 
41.87 -82.60 -82.60000000 41.87000000 2 
41.89 -87.53 -87.53000000 41.89000000 12 
41.90 -82.87 -82.87000000 41.90000000 1 
41.90 -87.10 -87.10000000 41.90000000 1 
41.90 -87.40 -87.40000000 41.90000000 2 
41.90 -87.60 -87.60000000 41.90000000 1 
41.92 -80.80 -80.80000000 41.92000000 3 
41.92 -81.33 -81.33000000 41.92000000 1 
41.95 -82.00 -82.00000000 41.95000000 1 
41.95 -87.15 -87.15000000 41.95000000 2 
41.97 -80.55 -80.55000000 41.97000000 2 
41.97 -81.77 -81.77000000 41.97000000 1 
42.00 -87.50 -87.50000000 42.00000000 1 
42.10 -87.32 -87.32000000 42.10000000 1 
42.11 -87.47 -87.47000000 42.11000000 3 
42.21 -83.14 -83.14000000 42.21000000 3 
42.22 -81.05 -81.05000000 42.22000000 2 
42.28 -83.11 -83.11000000 42.28000000 1 
42.31 -80.72 -80.72000000 42.31000000 2 
42.33 -83.02 -83.02000000 42.33000000 4 
42.36 -86.53 -86.53000000 42.36000000 4 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

42.36 -87.72 -87.72000000 42.36000000 7 
42.37 -87.78 -87.78000000 42.37000000 7 
42.40 -82.40 -82.41408641 42.39847715 2 
42.42 -81.63 -81.63000000 42.42000000 1 
42.45 -87.15 -87.15000000 42.45000000 2 
42.47 -87.08 -87.08000000 42.47000000 12 
42.47 -87.71 -87.71000000 42.47000000 7 
42.59 -87.65 -87.65000000 42.59000000 12 
42.60 -87.15 -87.15000000 42.60000000 1 
42.62 -80.03 -80.03000000 42.62000000 2 
42.66 -79.70 -79.70000000 42.66000000 1 
42.68 -80.03 -80.03000000 42.68000000 6 
42.73 -79.51 -79.51000000 42.73000000 4 
42.79 -86.12 -86.12000000 42.79000000 16 
42.82 -79.33 -79.33000000 42.82000000 3 
42.88 -79.25 -79.24733500 42.88038071 18 
42.90 -87.00 -87.00000000 42.90000000 1 
43 -87.86667 -87.86667000 43.00000000 1 
43.00 -86.50 -86.50000000 43.00000000 1 
43.00 -87.00 -87.00000000 43.00000000 1 
43.00 -87.60 -87.60000000 43.00000000 1 
43.02 -87.87 -87.87000000 43.02000000 7 
43.03 -87.90 -87.89405135 43.03000000 6 
43.05 -86.25 -86.25000000 43.05000000 1 
43.07 -86.23 -86.23000000 43.07000000 36 
43.08 -82.40 -82.40000000 43.08000000 7 
43.10 -82.40 -82.40000000 43.10000000 75 
43.10 -82.42 -82.42000000 43.10000000 4 
43.10 -87.87 -87.87000000 43.10000000 5 
43.17 -82.42 -82.42000000 43.17000000 6 
43.20 -82.42 -82.42000000 43.20000000 2 
43.23 -86.35 -86.35000000 43.23000000 11 
43.23 -86.79 -86.79000000 43.23000000 1 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

43.28 -79.56 -79.56000000 43.28000000 1 
43.28 -79.67 -79.67000000 43.28000000 6 
43.28 -79.83 -79.83000000 43.28000000 6 
43.30 -79.30 -79.30000000 43.30000000 3 
43.30 -79.77 -79.77000000 43.30000000 3 
43.33 -79.83 -79.81380124 43.31056149 6 
43.35 -86.55 -86.55000000 43.35000000 1 
43.39 -86.65 -86.65000000 43.39000000 8 
43.40 -83.96 -83.96484639 43.39976359 1 
43.43 -87.19 -87.19000000 43.43000000 1 
43.48 -78.57 -78.57000000 43.48000000 2 
43.48 -82.47 -82.47000000 43.48000000 6 
43.50 -86.70 -86.70000000 43.50000000 2 
43.50 -86.80 -86.80000000 43.50000000 1 
43.50 -86.82 -86.82000000 43.50000000 1 
43.52 -78.42 -78.42000000 43.52000000 2 
43.55 -87.37 -87.37000000 43.55000000 1 
43.60 -78.08 -78.08000000 43.60000000 2 
43.63 -77.95 -77.95000000 43.63000000 1 
43.64 -83.86 -83.84929243 43.64666249 6 
43.68 -77.75 -77.75000000 43.68000000 1 
43.71 -77.54 -77.54000000 43.71000000 1 
43.73 -86.72 -86.72000000 43.73000000 1 
43.77 -77.26 -77.26000000 43.77000000 4 
43.80 -77.14 -77.14000000 43.80000000 1 
43.94 -76.67 -76.67000000 43.94000000 6 
43.94667 -86.44833 -86.44833000 43.94667000 1 
43.95 -86.45 -86.45000000 43.95000000 21 
43.97 -82.58 -82.58000000 43.97000000 2 
43.98 -86.98 -86.98000000 43.98000000 1 
44.0 -87.4 -87.40000000 44.00000000 2 
44.05 -82.62 -82.62000000 44.05000000 10 
44.10 -82.48 -82.48000000 44.10000000 1 



129 

 

 

Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

44.10 -87.48 -87.48000000 44.10000000 12 
44.16 -76.32 -76.32000000 44.16000000 1 
44.25 -82.72 -82.72000000 44.25000000 3 
44.25 -86.30 -86.30000000 44.25000000 1 
44.26 -86.79 -86.79000000 44.26000000 1 
44.30 -86.50 -86.50000000 44.30000000 1 
44.33 -87.08 -87.08000000 44.33000000 1 
44.40 -82.78 -82.78000000 44.40000000 6 
44.40 -86.50 -86.50000000 44.40000000 1 
44.465 -75.79833 -75.79833000 44.46500000 4 
44.52 -86.50 -86.50000000 44.52000000 1 
44.52 -86.57 -86.57000000 44.52000000 3 
44.54 -88.01 -88.01000000 44.54000000 1 
44.55 -82.85 -82.85000000 44.55000000 1 
44.62 -80.92 -80.92000000 44.62000000 4 
44.67 -82.83 -82.83000000 44.67000000 1 
44.70 -82.95 -82.95000000 44.70000000 10 
44.70 -86.40 -86.40000000 44.70000000 2 
44.90 -87.40 -87.40000000 44.90000000 2 
44.90 -87.43 -87.43000000 44.90000000 1 
45.00 -86.75 -86.75000000 45.00000000 1 
45.10 -87.60 -87.59900573 45.09758533 11 
45.20 -86.20 -86.20000000 45.20000000 1 
45.20 -86.40 -86.40000000 45.20000000 1 
45.20 -87.50 -87.50000000 45.20000000 2 
45.23 -86.28 -86.28000000 45.23000000 2 
45.26 -85.18 -85.18000000 45.26000000 4 
45.30 -83.32 -83.32000000 45.30000000 1 
45.30 -86.10 -86.10000000 45.30000000 1 
45.32 -85.32 -85.32000000 45.32000000 1 
45.32 -86.10 -86.10000000 45.32000000 1 
45.40 -85.60 -85.60000000 45.40000000 1 
45.40 -86.10 -86.10000000 45.40000000 3 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

45.43 -86.73 -86.73000000 45.43000000 1 
45.47 -86.96 -86.96000000 45.47000000 9 
45.50 -86.10 -86.10000000 45.50000000 6 
45.50 -86.37 -86.37000000 45.50000000 1 
45.50 -86.60 -86.60000000 45.50000000 5 
45.6 -86.3 -86.30000000 45.60000000 2 
45.60 -85.10 -85.10000000 45.60000000 3 
45.60 -86.10 -86.10000000 45.60000000 43 
45.67 -86.20 -86.20000000 45.67000000 1 
45.68 -83.65 -83.65000000 45.68000000 7 
45.70 -83.70 -83.70000000 45.70000000 3 
45.70 -84.30 -84.30000000 45.70000000 1 
45.70 -86.00 -86.00000000 45.70000000 1 
45.70 -86.30 -86.30000000 45.70000000 1 
45.80 -85.82 -85.82000000 45.80000000 1 
45.80 -86.10 -86.10000000 45.80000000 2 
45.85 -86.13 -86.13000000 45.85000000 6 
45.87 -85.18 -85.18000000 45.87000000 1 
45.90 -84.00 -84.00000000 45.90000000 2 
46.03 -73.03 -73.04142141 46.06319348 1 
46.08 -82.40 -82.40000000 46.08000000 8 
46.13 -72.96 -72.96000000 46.13000000 3 
46.20 -84.11 -84.11000000 46.20000000 6 
46.20 -84.20 -84.20000000 46.20000000 26 
46.30 -84.20 -84.20000000 46.30000000 176 
46.33 -84.18 -84.18000000 46.33000000 71 
46.37 -84.20 -84.20000000 46.37000000 4 
46.38 -84.22 -84.22000000 46.38000000 85 
46.40 -84.23 -84.23535379 46.39892924 3 
46.47 -84.30 -84.29801145 46.47085224 2 
46.47 -84.57 -84.57000000 46.47000000 6 
46.5 -84.33334 -84.33334000 46.50000000 2 
46.50 -84.60 -84.60000000 46.50000000 39 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

46.50 -84.61 -84.61000000 46.50000000 5 
46.50 -86.70 -86.70000000 46.50000000 1 
46.51 -84.62 -84.62000000 46.51000000 9 
46.52 -84.41 -84.41571071 46.50929243 3 
46.52 -84.62 -84.62000000 46.52000000 5 
46.53 -84.67 -84.67000000 46.53000000 16 
46.53 -84.70 -84.70000000 46.53000000 5 
46.57 -72.05 -72.05000000 46.57000000 1 
46.57 -84.73 -84.73000000 46.57000000 6 
46.65 -84.95 -84.95000000 46.65000000 4 
46.66 -71.64 -71.64000000 46.66000000 1 
46.80 -85.10 -85.10000000 46.80000000 1 
46.80 -85.20 -85.20000000 46.80000000 1 
46.83 -71.07 -71.07000000 46.83000000 1 
46.83 -85.17 -85.17000000 46.83000000 40 
46.88 -85.30 -85.30000000 46.88000000 6 
47.00 -85.08 -85.08000000 47.00000000 1 
47.00 -85.60 -85.60000000 47.00000000 10 
47.00 -85.70 -85.70000000 47.00000000 1 
47.15 -90.73 -90.73000000 47.15000000 32 
47.16667 -90.43333 -90.43333000 47.16667000 144 
47.17 -90.42 -90.42000000 47.17000000 191 
47.17 -90.43 -90.43000000 47.17000000 757 
47.18 -86.48 -86.48000000 47.18000000 10 
47.18 -90.38 -90.38000000 47.18000000 10 
47.20 -86.51 -86.51000000 47.20000000 1 
47.20 -90.40 -90.40000000 47.20000000 112 
47.20 -90.60 -90.60000000 47.20000000 28 
47.28 -89.57 -89.57000000 47.28000000 1 
47.37 -89.33 -89.33000000 47.37000000 190 
47.40 -70.45 -70.45000000 47.40000000 1 
47.42 -87.33 -87.33000000 47.42000000 5 
47.45 -87.45 -87.45000000 47.45000000 1 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

47.45 -88.63 -88.63000000 47.45000000 11 
47.52 -87.83 -87.83000000 47.52000000 6 
47.57 -87.92 -87.92000000 47.57000000 6 
47.62 -70.03 -70.03000000 47.62000000 1 
47.77 -69.87 -69.87000000 47.77000000 1 
48.20 -69.88 -69.88000000 48.20000000 1 
48.50 -88.35 -88.35000000 48.50000000 1 
49.20 -64.62 -64.62000000 49.20000000 1 
49.40 -64.63 -64.63000000 49.40000000 2 
49.40 -64.93 -64.93000000 49.40000000 1 
49.52 -65.78 -65.78000000 49.52000000 1 
Algoma (Sault Ste. Marie, 
Canada) -84.33361492 46.50466286 40 
Alpena -83.42248041 45.05617658 1044 
Ashland (USA, WI) -90.93552749 46.59105680 62 
Ashtabula -80.79284082 41.92097164 4316 
Baie Comeau -68.13973134 49.19135042 130 
Bath (Canada) -76.68894110 44.17367638 59 
Bay City -83.89436423 43.59458002 1492 
Bay of Quinte -77.05079839 44.11765182 5 
Becancour -72.53506616 46.30870794 86 
Benton Harbor -86.48558983 42.12544394 19 
Blind River (Canada) -83.07691993 46.16530079 16 
Bowmanville (Ontario) -78.68750000 43.82904512 222 
Brevort -85.00525546 46.00228847 106 
Bruce Mines -83.61040038 46.22432871 1 
Buffalo -78.89352308 42.87302286 1743 
Buffington -87.41681132 41.64609891 2169 
Burns Harbour -87.15627276 41.64309038 5652 
Calcite -83.78375307 45.41256739 190 
Calumet -87.59000000 41.68000000 630 
Cardinal -75.46528268 44.73883423 9 
Cedarville -84.35573909 45.99432933 23 
Charlevoix -85.26665891 45.32060596 515 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

Cheboygan -84.46585477 45.65776119 655 
Chicago -87.61117156 41.88766995 2589 
Clarkson -79.61190320 43.49132751 317 
Cleveland -81.69326296 41.51123219 12241 
Conneaut -80.54845446 41.96742176 4352 
Contrecoeur -73.28247989 45.83320316 142 
Corunna (Canada) -82.41464676 42.82488741 9 
Cote-Sainte-Catherine -73.56843367 45.40850618 95 
Courtright -82.41496672 42.81714631 1670 
Dearborn (USA, MI) -83.15466718 42.29710166 1330 
Detroit -83.11071510 42.26993213 9961 
Detroit River -83.11765426 42.27439197 3 
Drummond Island -83.88710041 45.99347694 47 
Duluth -92.09559323 46.77757890 1456 
Ecorse -83.13897379 42.24038919 1045 
Erie -80.06813164 42.15154000 1481 
Escanaba -87.02521064 45.73393228 748 
Essexville -83.84551468 43.61709960 2391 
Fairport (USA, OH) -81.29216737 41.76733212 1048 
Fairport Harbor -81.29216737 41.76733212 1526 
Ferrysburg -86.26650485 43.10245213 486 
Fisher Harbour (Canada) -81.73722000 45.99611000 159 
Gary -87.32625606 41.61279472 7173 
Georgean Bay -80.87397041 45.39087031 2 
Gladstone (USA, MI) -86.99229658 45.85194417 287 
Goderich -81.72245295 43.74750157 189 
Grand Haven -86.23588202 43.06723122 1491 
Green Bay -88.01915727 44.51623062 5469 
Hamilton (Canada) -79.85843165 43.28144106 6693 
Harbor Beach -82.64308647 43.84544313 313 
Harsens Island -82.55138889 42.59000000 7 
Heron Bay -86.39017448 48.67459505 105 
Holland -86.21816734 42.77769307 865 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

Huron -82.55901593 41.41169036 1452 
Indiana Harbor -87.44565848 41.67603000 7581 
Kelleys Island -82.72822529 41.61511955 4 
Kingston (Canada) -76.49714465 44.21905448 1 
Kingsville -82.66864816 42.01795767 536 
Lac Saint Louis -73.81513042 45.39436709 2 
Lackawanna -78.86207808 42.83423693 114 
Lambton -82.47920461 42.64038857 413 
Little Current (Canada) -81.89984218 45.96757995 16 
Lorain -82.19633670 41.48326690 3158 
Ludington -86.45153054 43.95140843 206 
Manistee -86.34252995 44.24989629 1462 
Manitowoc -87.64732600 44.09402244 834 
Marblehead -82.70903179 41.52939236 221 
Marine City -82.49429312 42.70757559 1238 
Marinette -87.60021134 45.09407405 67 
Marquette -87.38781613 46.53254391 2532 
Marysville -82.48166352 42.82705600 1606 
Meldrum Bay -83.09738910 45.94401979 40 
Menominee -87.60105220 45.09754051 157 
Midland -79.85555482 44.75078016 162 
Milwaukee -87.89178675 43.02572009 4391 
Mississauga -79.50937666 43.51726883 9 
Monroe -83.35105572 41.87523576 2541 
Montreal -73.54690197 45.50176771 276 
Morrisburg -75.23956040 44.86924119 43 
Munising -86.64650415 46.42047134 154 
Muskegon -86.35028973 43.19498154 2187 
Nanticoke -80.04217491 42.79599297 10321 
Oak Creek -87.84038218 42.88414701 18 
Ogdensburg -75.47261276 44.71526377 17 
Ontonagon -89.31749707 46.88971051 296 
Oshawa -78.84528071 43.81505268 181 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

Oswego -76.50826842 43.47142499 106 
Owen Sound -80.94082864 44.58165727 90 
Parry Sound -80.03333333 45.33333333 25 
Picton (Canada) -77.12696413 44.02759104 106 
Pointe Noire (Canada) -66.78607740 50.01145496 1 
Port Alfred -70.86699147 48.33498894 53 
Port Arthur -89.12874868 48.41386870 2 
Port Cartier -66.86699147 50.01599900 139 
Port Colborne -80.19576040 42.78104103 588 
Port Credit -79.57873374 43.54908909 27 
Port Dolomite -84.31318454 45.99126085 125 
Port Gypsum -82.87557503 41.48920047 20 
Port Huron -82.42587631 42.99383875 1 
Port Inland -85.86311644 45.95479905 211 
Port St. Joseph -86.49758743 42.09997281 1 
Port Stanley (Canada) -81.27399400 42.60804952 20 
Port Washington (USA, WI) -87.86289882 43.39226202 3 
Port Weller -79.21805556 43.22138889 51 
Prescott -75.51131288 44.70595909 60 
Presque Isle -87.38546026 46.57723878 354 
Quebec City -71.20563303 46.82496808 373 
River Rouge -83.11753054 42.27423857 2689 
Saginaw -83.94945883 43.42000938 3406 
Saint Clair -82.48365223 42.82030872 6211 
Saint Joseph -86.49758743 42.09997281 1372 
Saint Marys River (USA, 
Great Lakes) -84.17254652 46.24113045 261 
Sandusky -82.71433826 41.47022000 117 
Sarnia -82.38542117 42.96761211 746 
Sault Ste. Marie (Canada) -84.33910563 46.50623582 7728 
Sault Ste. Marie (Unknown) -84.36187160 46.50619995 437 
Sault Ste. Marie (USA, MI) -84.34547400 46.49697400 459 
Sept-Iles -66.38542117 50.20000100 29 
Serpent Harbor -82.65322423 46.15486084 135 
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Table A.2. Ballast Water Source Locations 
  

Location Longitude Lattitude Number of Visits 
Made 

Silver Bay -91.26094919 47.28134631 177 
Sombra -82.43720344 42.69949068 173 
Soo Locks (Sault Ste. Marie, 
MI) -84.34850000 46.50250000 14 
Sorel -73.11640454 46.04971699 298 
South Chicago -87.53339626 41.76514493 339 
Stoneport -83.41958130 45.29548266 150 
Sturgeon Bay -87.39444444 44.85416667 744 
Sun Oil (Sarnia, Canada) -82.38542117 42.96761211 6 
Superior -92.09088501 46.74762037 1334 
Taconite Harbor -90.91119577 47.52896843 179 
Thessalon -83.55487011 46.21785730 3 
Thorold -79.19116996 43.12935985 203 
Three Rivers -72.54203874 46.32313076 38 
Thunder Bay -89.20142133 48.39932926 306 
Toledo (USA) -83.47027097 41.69149353 4821 
Tonawanda -78.89255812 43.02062150 153 
Toronto -79.28754265 43.59849232 387 
Tracy -73.09968855 46.05076174 122 
Traverse City -85.61232349 44.77196180 378 
Trenton (USA, MI) -83.17405164 42.13844715 112 
Trois Rivieres -72.54203874 46.32313076 52 
Two Harbors -91.66378092 47.00456203 435 
Valleyfield -74.08333300 45.21666700 193 
Waukegan -87.80620035 42.37250000 1193 
Welland -79.21953640 42.98278146 10 
Whitefish Falls, Ontario -81.74939033 46.07802524 254 
Whitefish River -81.75000000 46.06666700 7 
Whiting -87.48350532 41.68859648 27 
Windsor -83.07957510 42.30398452 2159 
Wyandotte -83.14414366 42.20734516 357 
Zilwaukee -83.91263584 43.47877068 86 
Zug Island (USA, MI) -83.10734880 42.28139564 5 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
41.46 -82.16 41.75 -81.28 1 0 1 
41.46 -82.16 42.87 -78.88 1 1 1 
41.46 -82.16 45.81 -84.21 1 2 1 
41.52 -81.71 41.97 -80.55 1 1 1 
41.62 -87.30 41.89 -87.53 1 1 1 
41.62 -87.30 45.98 -84.21 1 2 1 
41.63 -87.14 45.10 -87.60 1 2 1 
41.67 -87.16 Duluth 4 4 1 
41.67 -87.43 45.97 -85.87 1 2 1 
41.68 -82.17 Charlevoix 12 1 2 
41.69 -87.55 42.79 -86.21 1 1 1 
41.69 -87.87 41.69 -87.87 1 0 1 
41.73 -81.28 Burns Harbour 1 0 1 
41.75 -81.28 41.71 -87.54 1 1 1 
41.78 -87.45 Traverse City 1 2 1 
41.80 -82.43 Charlevoix 12 2 2 
41.87 -82.60 Duluth 2 6 1 
41.89 -87.53 41.64 -87.14 3 0 1 
41.89 -87.53 41.68 -87.45 1 0 1 
41.89 -87.53 42.79 -86.12 1 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
41.89 -87.53 43.30 -83.42 1 1 1 
41.89 -87.53 45.96 -85.88 6 2 1 
41.90 -82.87 Superior 1 2 1 
41.90 -87.10 Port Inland 1 1 1 
41.90 -87.40 43.70 -86.70 1 1 1 
41.90 -87.40 46.00 -83.90 1 1 1 
41.90 -87.60 45.60 -86.10 1 1 1 
41.92 -80.80 Superior 3 2 1 
41.92 -81.33 Toledo (USA) 1 1 1 
41.95 -82.00 Superior 1 7 1 
41.95 -87.15 Duluth 2 5 1 
41.97 -80.55 41.55 -82.73 1 1 1 
41.97 -80.55 42.88 -79.25 1 1 1 
41.97 -81.77 River Rouge 1 5 1 
42.00 -87.50 Port Inland 1 1 1 
42.08 -82.83 41.55 -82.73 4 0 1 
42.08 -82.83 45.96 -85.88 1 2 1 
42.08 -82.83 45.98 -84.21 1 2 1 
42.10 -87.32 Duluth 1 3 1 
42.11 -87.47 41.64 -87.14 1 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
42.11 -87.47 41.68 -87.45 2 0 1 
42.21 -83.14 41.55 -82.73 1 1 1 
42.21 -83.14 45.98 -84.21 2 2 1 
42.22 -81.05 Toledo (USA) 2 0 1 
42.28 -83.11 41.97 -80.55 1 1 1 
42.31 -80.72 Toledo (USA) 2 0 1 
42.33 -83.02 45.32 -85.32 4 12 1 
42.35 -64.00 Sturgeon Bay 1 8 1 
42.36 -86.53 Alpena 4 1 1 
42.36 -87.72 Alpena 7 1 1 
42.37 -87.78 Alpena 7 1 1 
42.40 -82.40 Duluth 1 3 1 
42.40 -82.40 Superior 1 5 1 
42.42 -81.63 Superior 1 3 1 
42.45 -87.15 Duluth 2 5 1 
42.47 -87.08 Superior 6 3 1 
42.47 -87.08 Two Harbors 6 3 1 
42.47 -87.71 Alpena 7 2 1 
42.57 -83.74 Toledo (USA) 2 6 1 
42.57 -84.53 River Rouge 1 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
42.59 -87.65 42.59 -87.65 12 0 2 
42.60 -87.15 Port Inland 1 0 1 
42.62 -80.03 Cleveland 2 1 1 
42.66 -79.70 Superior 1 3 1 
42.68 -80.03 Superior 6 3 1 
42.73 -79.51 Superior 4 2 1 
42.79 -86.12 41.68 -87.45 2 1 1 
42.79 -86.12 41.89 -87.45 1 1 1 
42.79 -86.12 41.89 -87.53 7 1 1 
42.79 -86.12 44.10 -87.65 1 1 1 
42.79 -86.12 45.96 -85.88 3 1 1 
42.79 -86.12 45.98 -84.21 2 1 1 
42.79 -87.90 46.52 -84.41 1 1 1 
42.82 -79.33 Conneaut 3 0 1 
42.87 -82.33 46.07 -84.00 3 0 1 
42.88 -79.25 41.97 -80.11 2 0 1 
42.88 -79.25 41.97 -80.55 14 1 2 
42.88 -79.25 42.87 -78.88 1 0 1 
42.88 -79.25 45.98 -84.21 1 2 1 
42.90 -87.00 45.80 -84.80 1 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
43 -87.86667 46.5 -84.33334 1 27 1 
43.00 -82.00 Two Harbors 1 2 1 
43.00 -86.50 44.50 -86.70 1 1 1 
43.00 -87.00 Port Inland 1 1 1 
43.00 -87.60 Port Inland 1 0 1 
43.02 -87.87 Charlevoix 7 2 1 
43.03 -87.90 41.89 -87.53 1 1 1 
43.03 -87.90 45.32 -85.32 4 87 1 
43.03 -87.90 45.98 -84.21 1 1 1 
43.05 -86.22 45.32 -85.32 8 0 1 
43.05 -86.25 43.90 -87.65 1 1 1 
43.07 -86.23 41.64 -87.14 2 0 1 
43.07 -86.23 41.68 -87.30 1 1 1 
43.07 -86.23 41.68 -87.45 3 1 1 
43.07 -86.23 41.89 -87.53 3 1 1 
43.07 -86.23 42.79 -86.12 7 1 1 
43.07 -86.23 43.03 -87.90 1 1 1 
43.07 -86.23 43.23 -86.35 1 0 1 
43.07 -86.23 43.30 -83.42 1 1 1 
43.07 -86.23 45.96 -85.88 8 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
43.07 -86.23 45.98 -84.21 9 1 1 
43.08 -82.40 Duluth 7 2 1 
43.08 -84.40 Duluth 1 2 1 
43.10 -82.40 45.70 -83.70 42 0 6 
43.10 -82.40 Duluth 16 2 2 
43.10 -82.40 Sturgeon Bay 1 2 1 
43.10 -82.40 Superior 4 2 1 
43.10 -82.40 Two Harbors 12 2 2 
43.10 -82.42 Sturgeon Bay 4 39 1 
43.10 -87.87 Charlevoix 5 1 1 
43.17 -82.42 41.82 -82.33 2 1 1 
43.17 -82.42 45.60 -83.55 2 1 1 
43.17 -82.42 Superior 2 2 1 
43.18 -82.92 45.43 -83.40 2 0 1 
43.20 -82.42 45.72 -83.68 2 1 1 
43.23 -86.35 41.64 -87.14 2 1 1 
43.23 -86.35 42.79 -86.12 2 1 1 
43.23 -86.35 45.10 -87.60 1 1 1 
43.23 -86.35 45.41 -83.82 1 1 1 
43.23 -86.35 45.96 -85.88 2 1 1 



143 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
43.23 -86.35 45.98 -84.21 2 1 1 
43.23 -86.35 46.78 -92.09 1 2 1 
43.23 -86.79 Superior 1 3 1 
43.28 -79.56 Sandusky 1 1 1 
43.28 -79.67 Conneaut 3 1 1 
43.28 -79.67 Superior 3 3 1 
43.28 -79.83 Conneaut 3 1 1 
43.28 -79.83 Superior 3 3 1 
43.30 -79.30 Duluth 3 4 1 
43.30 -79.77 Duluth 3 9 1 
43.33 -79.83 Conneaut 6 1 1 
43.33 -84.50 Superior 2 1 1 
43.35 -86.55 Escanaba 1 1 1 
43.39 -86.65 Charlevoix 8 1 1 
43.40 -83.96 45.98 -84.21 1 1 1 
43.43 -87.19 Port Inland 1 1 1 
43.48 -78.57 Toledo (USA) 2 1 1 
43.48 -82.47 Two Harbors 6 2 1 
43.50 -86.70 Port Inland 2 0 1 
43.50 -86.80 41.70 -87.70 1 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
43.50 -86.82 Port Inland 1 0 1 
43.52 -78.42 Duluth 2 55 1 
43.55 -87.37 Duluth 1 2 1 
43.60 -78.08 Duluth 2 4 1 
43.63 -77.95 Burns Harbour 1 4 1 
43.64 -83.86 41.97 -80.55 1 1 1 
43.64 -83.86 45.96 -85.88 3 2 1 
43.64 -83.86 45.98 -84.21 2 1 1 
43.64 -83.96 45.41 -83.82 1 1 1 
43.68 -77.75 Superior 1 40 1 
43.71 -77.54 Toledo (USA) 1 1 1 
43.77 -77.26 Toledo (USA) 4 6 1 
43.80 -77.14 Superior 1 7 1 
43.94 -76.67 Toledo (USA) 6 6 1 
43.94667 -86.44833 45.98167 -84.20834 1 1 1 
43.95 -86.45 41.64 -87.14 2 1 1 
43.95 -86.45 41.68 -87.45 1 1 1 
43.95 -86.45 41.89 -87.53 1 1 1 
43.95 -86.45 42.79 -86.12 1 1 1 
43.95 -86.45 43.03 -87.90 1 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
43.95 -86.45 45.41 -83.82 1 1 1 
43.95 -86.45 45.96 -85.88 11 1 2 
43.95 -86.45 45.98 -84.21 3 2 1 
43.97 -82.58 Silver Bay 2 2 1 
43.98 -86.98 Duluth 1 2 1 
44.0 -87.4 Port Dolomite 2 1 1 
44.05 -82.62 43.00 -83.42 10 0 1 
44.10 -82.48 45.32 -85.32 1 2 1 
44.10 -87.48 45.32 -85.32 12 1 2 
44.16 -76.32 Toledo (USA) 1 1 1 
44.25 -82.72 Silver Bay 3 2 1 
44.25 -86.30 45.96 -85.88 1 1 1 
44.26 -86.79 Escanaba 1 0 1 
44.30 -86.50 Port Inland 1 1 1 
44.33 -87.08 Escanaba 1 0 1 
44.40 -82.78 45.20 -83.17 6 0 1 
44.40 -86.50 Port Inland 1 0 1 
44.465 -75.79833 44.465 -75.79833 4 0 1 
44.52 -86.50 Marinette 1 6 1 
44.52 -86.57 Marinette 3 6 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
44.54 -88.01 45.96 -85.88 1 1 1 
44.55 -82.85 Silver Bay 1 2 1 
44.62 -80.92 45.32 -85.32 4 2 1 
44.67 -82.83 Whiting 1 1 1 
44.70 -82.95 Duluth 10 2 1 
44.70 -86.40 Port Inland 2 1 1 
44.90 -87.40 44.40 -87.30 1 0 1 
44.90 -87.40 Port Inland 1 1 1 
44.90 -87.43 Escanaba 1 1 1 
44.98 -61.02 47.50 -60.22 1 6 1 
45.00 -86.75 Escanaba 1 1 1 
45.10 -87.60 41.89 -87.53 3 1 1 
45.10 -87.60 43.95 -86.45 1 3 1 
45.10 -87.60 45.96 -85.88 5 1 1 
45.10 -87.60 45.98 -84.21 2 1 1 
45.20 -86.20 Port Inland 1 0 1 
45.20 -86.40 Port Inland 1 0 1 
45.20 -87.50 44.60 -87.30 1 1 1 
45.20 -87.50 44.80 -87.30 1 1 1 
45.23 -86.28 Marinette 2 6 1 



147 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
45.26 -85.18 44.54 -88.01 1 1 1 
45.26 -85.18 45.96 -85.88 2 0 1 
45.26 -85.18 45.98 -84.21 1 1 1 
45.30 -83.32 Brevort 1 0 1 
45.30 -86.10 Port Inland 1 1 1 
45.32 -85.32 43.05 -86.22 1 1 1 
45.32 -86.10 Port Inland 1 0 1 
45.33 -60.37 47.45 -59.83 1 6 1 
45.40 -85.60 Indiana Harbor 1 1 1 
45.40 -86.10 44.60 -86.10 1 0 1 
45.40 -86.10 Port Inland 2 0 1 
45.41 -83.82 Duluth 1 2 1 
45.43 -86.73 45.73 -84.53 1 9 1 
45.43 -88.73 Monroe 1 12 1 
45.47 -86.96 Escanaba 9 0 1 
45.50 -86.10 41.80 -87.40 1 0 1 
45.50 -86.10 42.60 -86.30 1 0 1 
45.50 -86.10 42.80 -86.30 2 0 1 
45.50 -86.10 42.80 -86.50 1 0 1 
45.50 -86.10 Port Inland 1 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
45.50 -86.37 Port Inland 1 1 1 
45.50 -86.60 Port Inland 5 0 1 
45.6 -86.1 Port Dolomite 1 0 1 
45.6 -86.3 Port Dolomite 2 0 1 
45.60 -85.10 42.20 -87.30 1 1 1 
45.60 -85.10 Escanaba 1 0 1 
45.60 -85.10 Port Inland 1 0 1 
45.60 -86.10 42.20 -87.20 1 1 1 
45.60 -86.10 42.20 -87.30 3 0 1 
45.60 -86.10 42.50 -87.10 1 2 1 
45.60 -86.10 43.50 -86.60 1 0 1 
45.60 -86.10 43.70 -86.40 1 0 1 
45.60 -86.10 Port Dolomite 5 1 1 
45.60 -86.10 Port Inland 31 0 4 
45.60 -86.20 Port Inland 1 0 1 
45.60 -86.30 Port Dolomite 2 5 1 
45.67 -86.20 46.33 -84.18 1 0 1 
45.68 -83.65 Drummond Island 7 1 1 
45.70 -83.70 Sturgeon Bay 3 3 1 
45.70 -84.30 Calcite 1 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
45.70 -86.00 43.60 -86.80 1 1 1 
45.70 -86.10 Port Inland 1 1 1 
45.70 -86.30 Port Inland 1 0 1 
45.80 -85.82 Duluth 1 6 1 
45.80 -86.10 Port Inland 2 0 1 
45.85 -86.13 Superior 6 2 1 
45.87 -85.18 Duluth 1 6 1 
45.9 -84.0 47.5 -88.4 1 1 1 
45.90 -84.00 46.60 -84.80 1 0 1 
46.03 -73.03 Toledo (USA) 1 2 1 
46.08 -82.40 45.95 -83.88 8 0 1 
46.13 -72.96 Toledo (USA) 3 2 1 
46.2 -84.2 Two Harbors 2 1 1 
46.20 -84.11 45.51 -83.47 3 0 1 
46.20 -84.11 45.53 -84.02 3 0 1 
46.20 -84.20 Duluth 4 2 1 
46.20 -84.20 Two Harbors 20 1 3 
46.3 -84.2 Superior 4 2 1 
46.3 -84.2 Two Harbors 56 1 8 
46.3 -84.4 Duluth 20 2 3 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
46.3 -84.4 Two Harbors 13 0 2 
46.30 -84.20 Duluth 32 0 5 
46.30 -84.20 Superior 12 0 2 
46.30 -84.20 Two Harbors 72 0 10 
46.30 -84.40 Conneaut 4 5 1 
46.30 -84.40 Duluth 135 1 19 
46.30 -84.40 Superior 54 0 8 
46.30 -84.40 Two Harbors 354 1 51 
46.33 -84.18 41.83 -82.20 4 31 1 
46.33 -84.18 45.57 -85.35 3 0 1 
46.33 -84.18 Duluth 6 1 1 
46.33 -84.18 Superior 6 2 1 
46.33 -84.18 Two Harbors 52 1 7 
46.33 -84.33 Superior 138 1 20 
46.33 -84.50 Superior 1 1 1 
46.37 -84.20 Two Harbors 4 1 1 
46.38 -84.22 45.50 -85.42 28 0 4 
46.38 -84.22 Duluth 2 2 1 
46.38 -84.22 Superior 15 2 2 
46.38 -84.22 Two Harbors 40 1 6 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
46.40 -84.23 Superior 3 1 1 
46.40 -84.40 Two Harbors 1 3 1 
46.40 -84.50 Duluth 14 1 2 
46.40 -84.50 Superior 24 1 3 
46.40 -84.50 Two Harbors 26 1 4 
46.47 -84.30 Superior 2 2 1 
46.47 -84.57 Superior 6 1 1 
46.5 -84.33334 Duluth 2 2 1 
46.50 -83.60 Two Harbors 1 1 1 
46.50 -84.60 Superior 39 1 6 
46.50 -84.61 Marquette 5 1 1 
46.50 -86.70 Duluth 1 1 1 
46.51 -84.62 Duluth 9 1 1 
46.52 -84.41 45.41 -83.82 1 1 1 
46.52 -84.41 45.96 -85.88 1 0 1 
46.52 -84.41 Duluth 1 31 1 
46.52 -84.62 47.65 -87.88 5 1 1 
46.53 -84.67 Superior 6 1 1 
46.53 -84.67 Two Harbors 10 1 1 
46.53 -84.70 Duluth 5 4 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
46.56 -83.92 45.98 -84.21 1 1 1 
46.57 -84.50 Duluth 1 1 1 
46.57 -84.73 Superior 6 1 1 
46.65 -84.95 Superior 4 1 1 
46.66 -71.64 Toledo (USA) 1 3 1 
46.67 -86.67 Marquette 15 0 2 
46.80 -85.10 Two Harbors 1 1 1 
46.80 -85.20 Two Harbors 1 1 1 
46.83 -85.17 Duluth 5 2 1 
46.83 -85.17 Two Harbors 35 1 5 
46.88 -85.30 Superior 6 1 1 
47.00 -85.08 Two Harbors 1 1 1 
47.00 -85.60 Two Harbors 10 1 1 
47.00 -85.70 Two Harbors 1 1 1 
47.15 -90.73 Duluth 4 0 1 
47.15 -90.73 Two Harbors 28 1 4 
47.16667 -90.43333 Superior 36 1 5 
47.16667 -90.43333 Two Harbors 108 1 15 
47.17 -90.42 Duluth 10 0 1 
47.17 -90.42 Superior 5 362 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
47.17 -90.42 Two Harbors 176 1 25 
47.17 -90.43 Duluth 120 0 17 
47.17 -90.43 Superior 24 0 3 
47.17 -90.43 Two Harbors 613 0 88 
47.18 -86.48 Superior 10 2 1 
47.18 -90.38 Two Harbors 10 1 1 
47.20 -86.51 Duluth 1 1 1 
47.20 -90.40 Duluth 40 0 6 
47.20 -90.40 Sturgeon Bay 4 2 1 
47.20 -90.40 Superior 12 0 2 
47.20 -90.40 Two Harbors 56 0 8 
47.20 -90.60 Superior 8 1 1 
47.20 -90.60 Two Harbors 20 0 3 
47.28 -89.57 45.25 -83.22 1 14 1 
47.37 -89.33 Duluth 5 0 1 
47.37 -89.33 Sturgeon Bay 5 1 1 
47.37 -89.33 Two Harbors 180 0 26 
47.42 -87.33 Silver Bay 5 0 1 
47.45 -87.45 Duluth 1 3 1 
47.45 -88.63 Two Harbors 11 1 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
47.52 -87.83 Two Harbors 6 1 1 
47.57 -87.92 Two Harbors 6 1 1 
48.50 -88.35 Bay City 1 2 1 
49.38 -64.42 Duluth 2 9 1 
49.40 -64.63 Duluth 2 9 1 
49.40 -64.93 Duluth 1 9 1 
Algoma (Sault Ste. Marie, Canada) Marquette 40 2 6 
Alpena Alpena 23 2 3 
Alpena Brevort 23 1 3 
Alpena Calcite 287 0 41 
Alpena Calumet 1 2 1 
Alpena Cedarville 69 1 10 
Alpena Chicago 7 2 1 
Alpena Drummond Island 92 1 13 
Alpena Marquette 25 2 4 
Alpena Milwaukee 8 1 1 
Alpena Port Dolomite 69 0 10 
Alpena Port Gypsum 45 1 6 
Alpena Port Inland 28 1 4 
Alpena Prescott 1 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Alpena Presque Isle 132 1 19 
Alpena Silver Bay 49 2 7 
Alpena South Chicago 2 0 1 
Alpena Stoneport 148 0 21 
Alpena Superior 13 2 2 
Alpena Taconite Harbor 5 2 1 
Alpena Thunder Bay 7 2 1 
Alpena Two Harbors 10 2 1 
Ashland (USA, WI) Duluth 16 1 2 
Ashland (USA, WI) Presque Isle 7 1 1 
Ashland (USA, WI) Silver Bay 14 1 2 
Ashland (USA, WI) Two Harbors 25 1 4 
Ashtabula Ashtabula 47 0 7 
Ashtabula Calcite 647 2 92 
Ashtabula Cedarville 23 2 3 
Ashtabula Chicago 21 3 3 
Ashtabula Cleveland 129 1 18 
Ashtabula Conneaut 29 0 4 
Ashtabula Detroit 14 1 2 
Ashtabula Drummond Island 45 1 6 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Ashtabula Duluth 237 4 34 
Ashtabula Erie 6 0 1 
Ashtabula Escanaba 59 2 8 
Ashtabula Fairport (USA, OH) 18 0 3 
Ashtabula Fairport Harbor 23 0 3 
Ashtabula Grand Haven 1 2 1 
Ashtabula Lorain 42 1 6 
Ashtabula Marblehead 245 1 35 
Ashtabula Marine City 8 0 1 
Ashtabula Marquette 161 3 23 
Ashtabula Milwaukee 8 4 1 
Ashtabula Port Dolomite 59 2 8 
Ashtabula Port Gypsum 15 2 2 
Ashtabula Port Inland 21 2 3 
Ashtabula Presque Isle 233 2 33 
Ashtabula Saint Joseph 6 3 1 
Ashtabula Sandusky 455 0 65 
Ashtabula Silver Bay 606 3 87 
Ashtabula Stoneport 96 1 14 
Ashtabula Superior 423 3 60 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Ashtabula Toledo (USA) 456 1 65 
Ashtabula Two Harbors 183 3 26 
Baie Comeau Ashtabula 16 4 2 
Baie Comeau Burns Harbour 9 6 1 
Baie Comeau Chicago 31 7 4 
Baie Comeau Duluth 3 9 1 
Baie Comeau Milwaukee 9 7 1 
Baie Comeau Superior 19 7 3 
Baie Comeau Toledo (USA) 43 5 6 
Bath (Canada) Alpena 1 4 1 
Bath (Canada) Ashtabula 23 2 3 
Bath (Canada) Conneaut 6 2 1 
Bath (Canada) Ludington 15 5 2 
Bath (Canada) Oswego 2 12 1 
Bath (Canada) Sandusky 6 2 1 
Bath (Canada) Silver Bay 6 5 1 
Bay City Calcite 232 1 33 
Bay City Cedarville 65 1 9 
Bay City Cleveland 5 3 1 
Bay City Conneaut 1 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Bay City Detroit 20 4 3 
Bay City Drummond Island 57 1 8 
Bay City Duluth 8 2 1 
Bay City Ecorse 2 1 1 
Bay City Indiana Harbor 1 5 1 
Bay City Ludington 80 2 11 
Bay City Marquette 44 2 6 
Bay City Meldrum Bay 2 2 1 
Bay City Port Dolomite 142 1 20 
Bay City Port Gypsum 5 1 1 
Bay City Port Inland 85 2 12 
Bay City Presque Isle 38 2 5 
Bay City River Rouge 5 1 1 
Bay City Silver Bay 35 2 5 
Bay City Stoneport 518 1 74 
Bay City Sturgeon Bay 2 2 1 
Bay City Superior 8 2 1 
Bay City Toledo (USA) 22 2 3 
Bay City Two Harbors 7 2 1 
Bay City Whiting 108 3 15 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Bay of Quinte Chicago 5 5 1 
Becancour Calumet 6 8 1 
Becancour Duluth 51 7 7 
Becancour Erie 6 12 1 
Becancour Milwaukee 6 12 1 
Becancour Superior 10 6 1 
Becancour Toledo (USA) 7 7 1 
Belledune Duluth 8 12 1 
Belledune Superior 15 8 2 
Belledune Toledo (USA) 32 6 5 
Benton Harbor Brevort 5 2 1 
Benton Harbor Port Inland 8 1 1 
Benton Harbor South Chicago 6 0 1 
Blind River (Canada) Port Dolomite 15 1 2 
Blind River (Canada) Stoneport 1 1 1 
Bowmanville (Ontario) Ashtabula 86 1 12 
Bowmanville (Ontario) Buffalo 6 0 1 
Bowmanville (Ontario) Conneaut 14 1 2 
Bowmanville (Ontario) Duluth 13 4 2 
Bowmanville (Ontario) Fairport (USA, OH) 7 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Bowmanville (Ontario) Fairport Harbor 13 1 2 
Bowmanville (Ontario) Ferrysburg 1 4 1 
Bowmanville (Ontario) Sandusky 44 2 6 
Bowmanville (Ontario) Silver Bay 6 4 1 
Bowmanville (Ontario) Superior 31 4 4 
Bowmanville (Ontario) Toledo (USA) 1 2 1 
Brevort Buffalo 54 3 8 
Brevort Cleveland 52 2 7 
Britt Toledo (USA) 6 2 1 
Bruce Mines Toledo (USA) 1 1 1 
Buffalo Alpena 32 2 5 
Buffalo Ashtabula 76 1 11 
Buffalo Buffalo 4 0 1 
Buffalo Calcite 298 2 43 
Buffalo Cedarville 7 1 1 
Buffalo Cleveland 87 1 12 
Buffalo Conneaut 50 1 7 
Buffalo Duluth 27 3 4 
Buffalo Fairport (USA, OH) 18 0 3 
Buffalo Fairport Harbor 44 1 6 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Buffalo Lorain 7 1 1 
Buffalo Marblehead 140 1 20 
Buffalo Owen Sound 2 2 1 
Buffalo Port Dolomite 18 60 3 
Buffalo Port Inland 1 3 1 
Buffalo Presque Isle 10 2 1 
Buffalo River Rouge 1 34 1 
Buffalo Sandusky 273 1 39 
Buffalo Silver Bay 58 3 8 
Buffalo Stoneport 27 2 4 
Buffalo Superior 291 4 42 
Buffalo Thunder Bay 2 2 1 
Buffalo Toledo (USA) 239 1 34 
Buffalo Two Harbors 31 3 4 
Buffington Burns Harbour 27 0 4 
Buffington Calcite 589 1 84 
Buffington Calumet 160 1 23 
Buffington Cedarville 7 2 1 
Buffington Chicago 67 1 10 
Buffington Drummond Island 105 2 15 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Buffington Duluth 9 3 1 
Buffington Escanaba 31 2 4 
Buffington Gary 4 2 1 
Buffington Marquette 9 2 1 
Buffington Menominee 8 2 1 
Buffington Port Dolomite 134 1 19 
Buffington Port Inland 103 1 15 
Buffington Presque Isle 533 1 76 
Buffington Silver Bay 8 3 1 
Buffington South Chicago 18 0 3 
Buffington Stoneport 339 1 48 
Buffington Sturgeon Bay 9 1 1 
Buffington Two Harbors 9 3 1 
Burns Harbour 44.10 -86.60 1 1 1 
Burns Harbour Brevort 31 1 4 
Burns Harbour Bruce Mines 5 2 1 
Burns Harbour Burns Harbour 39 0 6 
Burns Harbour Calcite 238 2 34 
Burns Harbour Calumet 267 0 38 
Burns Harbour Cedarville 39 1 6 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Burns Harbour Chicago 286 1 41 
Burns Harbour Cleveland 3 2 1 
Burns Harbour Drummond Island 34 1 5 
Burns Harbour Duluth 242 4 35 
Burns Harbour Escanaba 133 1 19 
Burns Harbour Gary 33 1 5 
Burns Harbour Grand Haven 16 3 2 
Burns Harbour Indiana Harbor 1 1 1 
Burns Harbour Lorain 14 3 2 
Burns Harbour Ludington 60 2 9 
Burns Harbour Marquette 30 2 4 
Burns Harbour Milwaukee 78 1 11 
Burns Harbour Port Dolomite 55 2 8 
Burns Harbour Port Inland 221 1 32 
Burns Harbour Presque Isle 72 2 10 
Burns Harbour Silver Bay 189 3 27 
Burns Harbour South Chicago 60 0 9 
Burns Harbour Stoneport 32 2 5 
Burns Harbour Sturgeon Bay 33 1 5 
Burns Harbour Superior 3287 3 470 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Burns Harbour Toledo (USA) 42 3 6 
Burns Harbour Two Harbors 83 3 12 
Burns Harbour Whiting 28 2 4 
Calcite Ashtabula 9 55 1 
Calcite Bay City 2 4 1 
Calcite Buffalo 1 0 1 
Calcite Buffington 18 1 3 
Calcite Burns Harbour 18 7 3 
Calcite Calcite 21 3 3 
Calcite Cedarville 4 2 1 
Calcite Chicago 13 2 2 
Calcite Cleveland 11 1 2 
Calcite Conneaut 12 3 2 
Calcite Detroit 12 1 2 
Calcite Duluth 4 2 1 
Calcite Gary 1 1 1 
Calcite Marblehead 3 2 1 
Calcite Marine City 9 1 1 
Calcite Marysville 9 1 1 
Calcite Port Dolomite 2 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Calcite Saginaw 1 0 1 
Calcite Sandusky 2 2 1 
Calcite Sarnia 11 2 2 
Calcite Silver Bay 12 3 2 
Calcite South Chicago 1 2 1 
Calcite Superior 10 3 1 
Calcite Toledo (USA) 4 2 1 
Calumet Alpena 95 2 14 
Calumet Burns Harbour 7 0 1 
Calumet Calcite 42 1 6 
Calumet Calumet 25 0 4 
Calumet Charlevoix 32 1 5 
Calumet Detroit 10 12 1 
Calumet Drummond Island 24 2 3 
Calumet Duluth 28 3 4 
Calumet Escanaba 23 1 3 
Calumet Green Bay 21 2 3 
Calumet Holland 19 0 3 
Calumet Mackinaw City 9 1 1 
Calumet Manistee 14 1 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Calumet Manitowoc 1 1 1 
Calumet Marquette 51 2 7 
Calumet Muskegon 1 0 1 
Calumet Port Inland 51 2 7 
Calumet Presque Isle 112 2 16 
Calumet Stoneport 9 2 1 
Calumet Superior 47 3 7 
Calumet Two Harbors 1 2 1 
Calumet Waukegan 1 731 1 
Calumet Whiting 5 1 1 
Calumet Wyandotte 2 2 1 
Cardinal Cleveland 2 2 1 
Cardinal Sandusky 7 3 1 
Cedarville Calcite 3 2 1 
Cedarville Duluth 2 2 1 
Cedarville Indiana Harbor 1 1 1 
Cedarville Marblehead 1 2 1 
Cedarville Muskegon 1 3 1 
Cedarville Port Inland 9 1 1 
Cedarville Silver Bay 1 4 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Cedarville Superior 5 1 1 
Charlevoix Brevort 17 2 2 
Charlevoix Calcite 46 1 7 
Charlevoix Calumet 3 2 1 
Charlevoix Cedarville 16 1 2 
Charlevoix Charlevoix 6 3 1 
Charlevoix Chicago 24 2 3 
Charlevoix Conneaut 1 2 1 
Charlevoix Drummond Island 8 0 1 
Charlevoix Duluth 8 3 1 
Charlevoix Ferrysburg 7 1 1 
Charlevoix Green Bay 30 1 4 
Charlevoix Indiana Harbor 1 1 1 
Charlevoix Manitowoc 10 1 1 
Charlevoix Marquette 8 2 1 
Charlevoix Milwaukee 11 1 2 
Charlevoix Port Dolomite 22 1 3 
Charlevoix Port Gypsum 1 1 1 
Charlevoix Port Inland 168 1 24 
Charlevoix Presque Isle 43 2 6 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Charlevoix Silver Bay 29 2 4 
Charlevoix South Chicago 1 2 1 
Charlevoix Stoneport 19 1 3 
Charlevoix Sturgeon Bay 7 1 1 
Charlevoix Superior 5 3 1 
Charlevoix Two Harbors 23 2 3 
Charlevoix Waukegan 1 18 1 
Cheboygan Brevort 7 1 1 
Cheboygan Cedarville 8 0 1 
Cheboygan Chicago 10 17 1 
Cheboygan Presque Isle 8 0 1 
Cheboygan Sarnia 9 1 1 
Cheboygan Stoneport 7 0 1 
Cheboygan Sturgeon Bay 3 6 1 
Cheboygan Toledo (USA) 187 3 27 
Cheboygan Whiting 416 2 59 
Chicago Alpena 45 3 6 
Chicago Brevort 38 1 5 
Chicago Burns Harbour 18 1 3 
Chicago Calcite 79 2 11 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Chicago Cedarville 1 1 1 
Chicago Charlevoix 1542 2 220 
Chicago Chicago 120 1 17 
Chicago Detroit 6 3 1 
Chicago Drummond Island 25 2 4 
Chicago Duluth 131 4 19 
Chicago Escanaba 9 1 1 
Chicago Gary 36 1 5 
Chicago Grand Haven 27 1 4 
Chicago Green Bay 18 1 3 
Chicago Holland 26 1 4 
Chicago Indiana Harbor 36 1 5 
Chicago Ludington 36 4 5 
Chicago Manistee 55 1 8 
Chicago Marquette 14 2 2 
Chicago Port Dolomite 53 1 8 
Chicago Port Inland 42 1 6 
Chicago Presque Isle 22 2 3 
Chicago Sandusky 6 2 1 
Chicago Sarnia 10 14 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Chicago Silver Bay 18 3 3 
Chicago Stoneport 73 2 10 
Chicago Sturgeon Bay 5 1 1 
Chicago Superior 58 3 8 
Chicago Toledo (USA) 12 7 2 
Chicago Two Harbors 14 2 2 
Chicago Waukegan 1 0 1 
Chicago Whiting 13 2 2 
Clarkson Ashtabula 79 1 11 
Clarkson Conneaut 27 1 4 
Clarkson Duluth 4 4 1 
Clarkson Erie 12 4 2 
Clarkson Fairport Harbor 36 1 5 
Clarkson Marblehead 15 2 2 
Clarkson Sandusky 56 2 8 
Clarkson Stoneport 7 2 1 
Clarkson Superior 44 4 6 
Clarkson Toledo (USA) 37 1 5 
Cleveland 41.80 -82.20 6 0 1 
Cleveland 45.70 -83.70 6 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Cleveland Alpena 399 2 57 
Cleveland Ashtabula 258 0 37 
Cleveland Burns Harbour 36 3 5 
Cleveland Calcite 1166 1 167 
Cleveland Cedarville 74 2 11 
Cleveland Charlevoix 36 2 5 
Cleveland Chicago 65 3 9 
Cleveland Cleveland 187 0 27 
Cleveland Conneaut 133 1 19 
Cleveland Detroit 90 1 13 
Cleveland Drummond Island 102 1 15 
Cleveland Duluth 312 5 45 
Cleveland Escanaba 18 2 3 
Cleveland Fairport (USA, OH) 38 0 5 
Cleveland Fairport Harbor 100 0 14 
Cleveland Green Bay 37 2 5 
Cleveland Hamilton (Canada) 8 3 1 
Cleveland Huron 8 1 1 
Cleveland Indiana Harbor 8 4 1 
Cleveland Kelleys Island 958 1 137 



172 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Cleveland Lorain 41 0 6 
Cleveland Ludington 21 4 3 
Cleveland Marblehead 3010 1 430 
Cleveland Marinette 5 8 1 
Cleveland Marquette 145 2 21 
Cleveland Marysville 8 2 1 
Cleveland Meldrum Bay 15 2 2 
Cleveland Milwaukee 47 3 7 
Cleveland Monroe 10 0 1 
Cleveland Nanticoke 20 2 3 
Cleveland Port Dolomite 133 2 19 
Cleveland Port Gypsum 184 1 26 
Cleveland Port Inland 16 2 2 
Cleveland Presque Isle 368 1 53 
Cleveland River Rouge 41 1 6 
Cleveland Sandusky 626 0 89 
Cleveland Sarnia 26 2 4 
Cleveland Silver Bay 1453 3 208 
Cleveland Stoneport 301 2 43 
Cleveland Sturgeon Bay 10 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Cleveland Superior 302 3 43 
Cleveland Taconite Harbor 7 3 1 
Cleveland Tawas City 6 2 1 
Cleveland Thunder Bay 3 9 1 
Cleveland Toledo (USA) 1091 1 156 
Cleveland Two Harbors 262 3 37 
Cleveland Waukegan 5 2 1 
Cleveland Whiting 26 3 4 
Cleveland Windsor 14 1 2 
Conneaut 41.83 -82.20 38 1 5 
Conneaut 41.85 -82.12 8 0 1 
Conneaut 41.90 -82.88 2 1 1 
Conneaut 46.50 -84.50 10 2 1 
Conneaut Alpena 4 1 1 
Conneaut Ashtabula 146 0 21 
Conneaut Calcite 401 2 57 
Conneaut Cedarville 9 2 1 
Conneaut Cleveland 35 0 5 
Conneaut Conneaut 1 2 1 
Conneaut Detroit 36 1 5 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Conneaut Drummond Island 17 1 2 
Conneaut Duluth 392 3 56 
Conneaut Ecorse 45 1 6 
Conneaut Erie 63 1 9 
Conneaut Escanaba 9 51 1 
Conneaut Grand Haven 1 3 1 
Conneaut Lorain 9 1 1 
Conneaut Manistee 9 2 1 
Conneaut Marblehead 97 0 14 
Conneaut Marquette 4 3 1 
Conneaut Meldrum Bay 2 1 1 
Conneaut Muskegon 2 3 1 
Conneaut Port Dolomite 89 2 13 
Conneaut Port Gypsum 4 0 1 
Conneaut Port Inland 2 4 1 
Conneaut Presque Isle 101 1 14 

Conneaut 
Saint Marys River (USA, Great 
Lakes) 1 6 1 

Conneaut Sandusky 310 1 44 
Conneaut Silver Bay 101 3 14 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Conneaut Stoneport 163 2 23 
Conneaut Sturgeon Bay 12 2 2 
Conneaut Superior 280 3 40 
Conneaut Toledo (USA) 306 1 44 
Conneaut Two Harbors 1643 3 235 
Contrecoeur Ashtabula 6 2 1 
Contrecoeur Duluth 23 5 3 
Contrecoeur Escanaba 6 5 1 
Contrecoeur Lorain 1 5 1 
Contrecoeur Marquette 12 5 2 
Contrecoeur Sandusky 6 3 1 
Contrecoeur Silver Bay 25 5 4 
Contrecoeur Superior 29 5 4 
Contrecoeur Thunder Bay 6 12 1 
Contrecoeur Toledo (USA) 14 5 2 
Contrecoeur Two Harbors 14 5 2 
Corunna (Canada) Escanaba 9 1 1 
Cote-Sainte-Catherine Ashtabula 46 2 7 
Cote-Sainte-Catherine Duluth 17 11 2 
Cote-Sainte-Catherine Marblehead 6 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Cote-Sainte-Catherine Superior 17 4 2 
Cote-Sainte-Catherine Toledo (USA) 9 4 1 
Courtright Ashtabula 56 1 8 
Courtright Calcite 28 1 4 
Courtright Cedarville 1 1 1 
Courtright Chicago 21 2 3 
Courtright Cleveland 7 1 1 
Courtright Conneaut 30 1 4 
Courtright Drummond Island 58 1 8 
Courtright Duluth 104 3 15 
Courtright Escanaba 8 0 1 
Courtright Goderich 2 4 1 
Courtright Marquette 27 2 4 
Courtright Port Dolomite 10 2 1 
Courtright Port Inland 12 1 2 
Courtright Presque Isle 115 1 16 
Courtright Sandusky 21 1 3 
Courtright Silver Bay 11 3 2 
Courtright Stoneport 18 1 3 
Courtright Sturgeon Bay 26 2 4 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Courtright Superior 1092 3 156 
Courtright Toledo (USA) 7 1 1 
Courtright Two Harbors 16 2 2 
Dearborn (USA, MI) Calcite 57 1 8 
Dearborn (USA, MI) Dearborn (USA, MI) 12 0 2 
Dearborn (USA, MI) Detroit 9 0 1 
Dearborn (USA, MI) Drummond Island 59 1 8 
Dearborn (USA, MI) Duluth 32 2 5 
Dearborn (USA, MI) Escanaba 12 1 2 
Dearborn (USA, MI) Marblehead 93 1 13 
Dearborn (USA, MI) Marquette 170 2 24 
Dearborn (USA, MI) Presque Isle 289 2 41 
Dearborn (USA, MI) Sandusky 166 1 24 
Dearborn (USA, MI) Silver Bay 13 5 2 
Dearborn (USA, MI) Stoneport 154 1 22 
Dearborn (USA, MI) Sturgeon Bay 12 2 2 
Dearborn (USA, MI) Superior 135 3 19 
Dearborn (USA, MI) Toledo (USA) 116 0 17 
Dearborn (USA, MI) Zug Island (USA, MI) 1 1 1 
Detroit Alpena 322 2 46 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Detroit Ashtabula 63 1 9 
Detroit Brevort 6 1 1 
Detroit Bruce Mines 2 1 1 
Detroit Burns Harbour 2 4 1 
Detroit Calcite 1194 1 171 
Detroit Cedarville 165 1 24 
Detroit Charlevoix 85 1 12 
Detroit Chicago 4 5 1 
Detroit Cleveland 102 1 15 
Detroit Conneaut 48 1 7 
Detroit Detroit 33 1 5 
Detroit Drummond Island 207 1 30 
Detroit Duluth 556 3 79 
Detroit Escanaba 46 2 7 
Detroit Fairport (USA, OH) 12 1 2 
Detroit Fairport Harbor 19 1 3 
Detroit Goderich 6 1 1 
Detroit Green Bay 8 0 1 
Detroit Lorain 22 0 3 
Detroit Ludington 20 2 3 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Detroit Marblehead 508 1 73 
Detroit Marquette 767 2 110 
Detroit Marysville 10 1 1 
Detroit Meldrum Bay 13 1 2 
Detroit Milwaukee 6 4 1 
Detroit Port Dolomite 296 1 42 
Detroit Port Gypsum 25 1 4 
Detroit Port Inland 33 2 5 
Detroit Presque Isle 771 1 110 
Detroit Sandusky 602 1 86 
Detroit Sault Ste. Marie (Canada) 9 3 1 
Detroit Sault Ste. Marie (USA, MI) 8 2 1 
Detroit Silver Bay 476 2 68 
Detroit Stoneport 683 1 98 
Detroit Sturgeon Bay 37 2 5 
Detroit Superior 1406 3 201 
Detroit Thunder Bay 8 7 1 
Detroit Toledo (USA) 690 1 99 
Detroit Two Harbors 686 3 98 
Detroit Whiting 5 5 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Detroit River Two Harbors 3 12 1 
Drummond Island Bay City 1 2 1 
Drummond Island Buffington 9 3 1 
Drummond Island Detroit 1 1 1 
Drummond Island Escanaba 7 1 1 
Drummond Island Fairport Harbor 9 1 1 
Drummond Island Presque Isle 3 2 1 
Drummond Island Saginaw 9 1 1 
Drummond Island Stoneport 8 0 1 
Duluth 47.00 -91.67 5 2 1 
Duluth Alpena 107 2 15 
Duluth Ashtabula 18 3 3 
Duluth Brevort 3 4 1 
Duluth Burns Harbour 2 3 1 
Duluth Conneaut 13 3 2 
Duluth Duluth 63 1 9 
Duluth Ecorse 1 2 1 
Duluth Indiana Harbor 35 3 5 
Duluth Ludington 12 4 2 
Duluth Marquette 18 1 3 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 

Duluth 
Saint Marys River (USA, Great 
Lakes) 1 2 1 

Duluth Silver Bay 259 0 37 
Duluth Superior 268 0 38 
Duluth Two Harbors 651 0 93 
Ecorse 41.80 -82.20 2 0 1 
Ecorse 45.70 -83.70 10 1 1 
Ecorse Calcite 102 1 15 
Ecorse Drummond Island 28 1 4 
Ecorse Duluth 43 3 6 
Ecorse Fairport Harbor 7 0 1 
Ecorse Gary 2 3 1 
Ecorse Lorain 18 1 3 
Ecorse Marblehead 16 1 2 
Ecorse Marquette 60 2 9 
Ecorse Port Dolomite 39 1 6 
Ecorse Presque Isle 122 1 17 
Ecorse Sandusky 63 1 9 
Ecorse Stoneport 66 1 9 
Ecorse Sturgeon Bay 29 3 4 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Ecorse Superior 86 3 12 
Ecorse Toledo (USA) 27 1 4 
Ecorse Two Harbors 325 2 46 
Erie Ashtabula 64 0 9 
Erie Calcite 363 2 52 
Erie Cedarville 32 2 5 
Erie Cleveland 127 1 18 
Erie Conneaut 77 0 11 
Erie Detroit 7 1 1 
Erie Drummond Island 34 2 5 
Erie Duluth 58 3 8 
Erie Erie 5 3 1 
Erie Escanaba 8 1 1 
Erie Fairport Harbor 27 0 4 
Erie Kelleys Island 4 1 1 
Erie Marblehead 152 1 22 
Erie Marinette 8 2 1 
Erie Marquette 7 2 1 
Erie Port Dolomite 26 2 4 
Erie Port Gypsum 5 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Erie Port Inland 1 19 1 
Erie Presque Isle 19 2 3 
Erie Sandusky 122 1 17 
Erie Silver Bay 43 3 6 
Erie Stoneport 39 2 6 
Erie Superior 44 3 6 
Erie Toledo (USA) 176 1 25 
Erie Two Harbors 33 3 5 
Escanaba Ashtabula 1 2 1 
Escanaba Calcite 151 1 22 
Escanaba Cedarville 1 1 1 
Escanaba Dearborn (USA, MI) 19 1 3 
Escanaba Drummond Island 36 1 5 
Escanaba Duluth 16 3 2 
Escanaba Escanaba 11 1 2 
Escanaba Indiana Harbor 11 1 2 
Escanaba Marquette 17 2 2 
Escanaba Meldrum Bay 9 1 1 
Escanaba Port Dolomite 28 1 4 
Escanaba Port Inland 99 0 14 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Escanaba Presque Isle 142 1 20 
Escanaba Silver Bay 29 2 4 
Escanaba Stoneport 121 1 17 
Escanaba Sturgeon Bay 18 0 3 
Escanaba Superior 30 2 4 
Escanaba Two Harbors 9 2 1 
Essexville Brevort 7 1 1 
Essexville Calcite 183 1 26 
Essexville Cedarville 19 1 3 
Essexville Cleveland 10 2 1 
Essexville Drummond Island 79 1 11 
Essexville Duluth 133 3 19 
Essexville Escanaba 8 1 1 
Essexville Indiana Harbor 35 3 5 
Essexville Marquette 70 1 10 
Essexville Port Dolomite 94 1 13 
Essexville Port Inland 1 1 1 
Essexville Presque Isle 112 1 16 
Essexville Silver Bay 28 2 4 
Essexville Stoneport 113 1 16 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Essexville Superior 1388 2 198 
Essexville Toledo (USA) 10 1 1 
Essexville Two Harbors 89 2 13 
Essexville Whiting 12 3 2 
Fairport (USA, OH) Ashtabula 14 0 2 
Fairport (USA, OH) Calcite 56 2 8 
Fairport (USA, OH) Cedarville 7 2 1 
Fairport (USA, OH) Cleveland 117 0 17 
Fairport (USA, OH) Conneaut 27 0 4 
Fairport (USA, OH) Detroit 55 1 8 
Fairport (USA, OH) Drummond Island 84 2 12 
Fairport (USA, OH) Erie 9 0 1 
Fairport (USA, OH) Escanaba 8 10 1 
Fairport (USA, OH) Kelleys Island 90 0 13 
Fairport (USA, OH) Kingsville 4 1 1 
Fairport (USA, OH) Lorain 6 1 1 
Fairport (USA, OH) Marblehead 252 1 36 
Fairport (USA, OH) Marquette 7 4 1 
Fairport (USA, OH) Port Dolomite 5 1 1 
Fairport (USA, OH) Port Inland 7 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Fairport (USA, OH) Presque Isle 7 2 1 
Fairport (USA, OH) Rogers City 7 1 1 
Fairport (USA, OH) Sandusky 28 0 4 
Fairport (USA, OH) Silver Bay 1 2 1 
Fairport (USA, OH) Stoneport 154 2 22 
Fairport (USA, OH) Superior 8 3 1 
Fairport (USA, OH) Toledo (USA) 95 1 14 
Fairport Harbor Ashtabula 35 0 5 
Fairport Harbor Calcite 126 2 18 
Fairport Harbor Cedarville 6 7 1 
Fairport Harbor Cleveland 274 0 39 
Fairport Harbor Conneaut 25 1 4 
Fairport Harbor Detroit 35 1 5 
Fairport Harbor Drummond Island 25 1 4 
Fairport Harbor Erie 27 1 4 
Fairport Harbor Fairport Harbor 9 1 1 
Fairport Harbor Green Bay 1 2 1 
Fairport Harbor Kelleys Island 12 1 2 
Fairport Harbor Lorain 2 1 1 
Fairport Harbor Marblehead 559 1 80 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Fairport Harbor Port Dolomite 18 2 3 
Fairport Harbor Port Gypsum 5 1 1 
Fairport Harbor Presque Isle 58 2 8 
Fairport Harbor Saginaw 9 1 1 
Fairport Harbor Sandusky 123 0 18 
Fairport Harbor Silver Bay 8 2 1 
Fairport Harbor Stoneport 48 2 7 
Fairport Harbor Superior 9 4 1 
Fairport Harbor Toledo (USA) 112 1 16 
Ferrysburg Brevort 5 1 1 
Ferrysburg Calcite 8 2 1 
Ferrysburg Cedarville 10 1 1 
Ferrysburg Charlevoix 398 1 57 
Ferrysburg Drummond Island 8 2 1 
Ferrysburg Duluth 6 2 1 
Ferrysburg Ferrysburg 1 9 1 
Ferrysburg Milwaukee 1 1 1 
Ferrysburg Port Inland 49 1 7 
Fisher Harbour (Canada) Brevort 8 3 1 
Fisher Harbour (Canada) Calcite 14 3 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Fisher Harbour (Canada) Cedarville 11 1 2 
Fisher Harbour (Canada) Drummond Island 37 1 5 
Fisher Harbour (Canada) Duluth 7 2 1 
Fisher Harbour (Canada) Port Dolomite 7 1 1 
Fisher Harbour (Canada) Port Inland 1 1 1 
Fisher Harbour (Canada) Presque Isle 14 0 2 
Fisher Harbour (Canada) Silver Bay 6 2 1 
Fisher Harbour (Canada) Stoneport 25 1 4 
Fisher Harbour (Canada) Superior 24 2 3 
Fisher Harbour (Canada) Toledo (USA) 5 1 1 
Gary 41.63 -87.32 1 3 1 
Gary 43.27 -86.83 6 1 1 
Gary 45.02 -85.92 6 1 1 
Gary 45.35 -86.13 6 1 1 
Gary 45.40 -85.50 12 1 2 
Gary 45.43 -85.50 4 0 1 
Gary 45.45 -85.45 2 2 1 
Gary 45.47 -85.47 2 0 1 
Gary 45.50 -85.42 50 1 7 
Gary 45.55 -85.38 2 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Gary 45.57 -85.35 2 1 1 
Gary 45.63 -86.12 4 1 1 
Gary 45.67 -86.20 2 1 1 
Gary 45.83 -84.55 6 2 1 
Gary 45.85 -85.13 7 1 1 
Gary 45.87 -85.30 6 1 1 
Gary Brevort 32 1 5 
Gary Burns Harbour 28 1 4 
Gary Calcite 556 1 79 
Gary Calumet 165 1 24 
Gary Cedarville 12 4 2 
Gary Charlevoix 9 1 1 
Gary Chicago 236 0 34 
Gary Cleveland 9 4 1 
Gary Conneaut 6 6 1 
Gary Drummond Island 18 1 3 
Gary Duluth 824 3 118 
Gary Ecorse 18 2 3 
Gary Escanaba 90 1 13 
Gary Grand Haven 1 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Gary Indiana Harbor 1 1 1 
Gary Marquette 46 2 7 
Gary Milwaukee 25 3 4 
Gary Muskegon 1 0 1 
Gary Port Dolomite 159 2 23 
Gary Port Inland 40 1 6 
Gary Presque Isle 383 1 55 

Gary 
Saint Marys River (USA, Great 
Lakes) 5 3 1 

Gary Silver Bay 39 2 6 
Gary South Chicago 72 0 10 
Gary Stoneport 440 1 63 
Gary Sturgeon Bay 110 1 16 
Gary Superior 650 3 93 
Gary Two Harbors 3070 3 439 
Gary Whitefish Point 10 1 1 
Georgean Bay Conneaut 2 4 1 
Gladstone (USA, MI) Ashtabula 9 2 1 
Gladstone (USA, MI) Brevort 36 0 5 
Gladstone (USA, MI) Calcite 66 1 9 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Gladstone (USA, MI) Cedarville 18 1 3 
Gladstone (USA, MI) Drummond Island 16 1 2 
Gladstone (USA, MI) Port Dolomite 19 1 3 
Gladstone (USA, MI) Port Inland 37 1 5 
Gladstone (USA, MI) Presque Isle 27 1 4 
Gladstone (USA, MI) Stoneport 32 1 5 
Gladstone (USA, MI) Sturgeon Bay 9 1 1 
Gladstone (USA, MI) Whiting 18 2 3 
Goderich Alpena 1 1 1 
Goderich Brevort 1 2 1 
Goderich Calcite 14 1 2 
Goderich Drummond Island 2 2 1 
Goderich Duluth 8 2 1 
Goderich Gladstone (USA, MI) 1 1 1 
Goderich Ludington 115 2 16 
Goderich Manistee 1 2 1 
Goderich Marinette 6 1 1 
Goderich Milwaukee 7 2 1 
Goderich Saint Joseph 2 2 1 
Goderich Sandusky 13 4 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Goderich Stoneport 2 2 1 
Goderich Superior 15 3 2 
Goderich Toledo (USA) 1 1 1 
Grand Haven 45.40 -85.50 1 2 1 
Grand Haven Brevort 105 1 15 
Grand Haven Burns Harbour 27 0 4 
Grand Haven Calcite 73 1 10 
Grand Haven Calumet 138 1 20 
Grand Haven Cedarville 33 1 5 
Grand Haven Charlevoix 30 1 4 
Grand Haven Chicago 242 1 35 
Grand Haven Drummond Island 93 1 13 
Grand Haven Escanaba 11 1 2 
Grand Haven Gary 5 0 1 
Grand Haven Grand Haven 7 0 1 
Grand Haven Holland 1 0 1 
Grand Haven Indiana Harbor 18 1 3 
Grand Haven Marinette 1 1 1 
Grand Haven Marquette 8 2 1 
Grand Haven Meldrum Bay 2 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Grand Haven Milwaukee 1 0 1 
Grand Haven Muskegon 1 0 1 
Grand Haven Port Dolomite 41 1 6 
Grand Haven Port Inland 420 1 60 
Grand Haven Presque Isle 56 1 8 
Grand Haven Sault Ste. Marie (USA, MI) 1 2 1 
Grand Haven Silver Bay 8 3 1 
Grand Haven South Chicago 86 1 12 
Grand Haven Stoneport 59 1 8 
Grand Haven Sturgeon Bay 8 1 1 
Grand Haven Superior 8 2 1 
Grand Haven Thunder Bay 7 2 1 
Green Bay Alpena 777 1 111 
Green Bay Bay City 20 2 3 
Green Bay Brevort 154 1 22 
Green Bay Calcite 877 1 125 
Green Bay Cedarville 82 1 12 
Green Bay Charlevoix 52 2 7 
Green Bay Conneaut 9 4 1 
Green Bay Drummond Island 134 1 19 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Green Bay Duluth 12 3 2 
Green Bay Escanaba 107 1 15 
Green Bay Green Bay 13 1 2 
Green Bay Indiana Harbor 5 1 1 
Green Bay Ludington 5 2 1 
Green Bay Manitowoc 9 1 1 
Green Bay Marquette 91 2 13 
Green Bay Meldrum Bay 9 1 1 
Green Bay Menominee 16 1 2 
Green Bay Milwaukee 19 1 3 
Green Bay Nanticoke 7 2 1 
Green Bay Port Dolomite 338 1 48 
Green Bay Port Gypsum 5 0 1 
Green Bay Port Inland 1051 1 150 
Green Bay Presque Isle 973 1 139 
Green Bay Saint Joseph 7 1 1 
Green Bay Silver Bay 91 2 13 
Green Bay South Chicago 16 2 2 
Green Bay Stoneport 367 1 52 
Green Bay Sturgeon Bay 38 1 5 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Green Bay Superior 43 2 6 
Green Bay Two Harbors 109 3 16 
Green Bay Waukegan 3 1 1 
Green Bay Whiting 30 3 4 
Hamilton (Canada) Ashtabula 1230 1 176 
Hamilton (Canada) Buffalo 150 1 21 
Hamilton (Canada) Burns Harbour 37 5 5 
Hamilton (Canada) Calcite 14 3 2 
Hamilton (Canada) Calumet 15 5 2 
Hamilton (Canada) Cedarville 7 2 1 
Hamilton (Canada) Chicago 19 4 3 
Hamilton (Canada) Cleveland 6 1 1 
Hamilton (Canada) Conneaut 349 1 50 
Hamilton (Canada) Detroit 38 3 5 
Hamilton (Canada) Duluth 896 4 128 
Hamilton (Canada) Escanaba 7 4 1 
Hamilton (Canada) Fairport (USA, OH) 67 1 10 
Hamilton (Canada) Fairport Harbor 41 1 6 
Hamilton (Canada) Gary 7 3 1 
Hamilton (Canada) Green Bay 13 5 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Hamilton (Canada) Hamilton (Canada) 12 2 2 
Hamilton (Canada) Indiana Harbor 1 5 1 
Hamilton (Canada) Lorain 11 2 2 
Hamilton (Canada) Marblehead 268 1 38 
Hamilton (Canada) Marquette 126 3 18 
Hamilton (Canada) Milwaukee 60 4 9 
Hamilton (Canada) Oswego 7 1 1 
Hamilton (Canada) River Rouge 5 3 1 
Hamilton (Canada) Sandusky 599 1 86 
Hamilton (Canada) Silver Bay 177 4 25 
Hamilton (Canada) Sturgeon Bay 1 13 1 
Hamilton (Canada) Superior 1266 4 181 
Hamilton (Canada) Toledo (USA) 1038 2 148 
Hamilton (Canada) Two Harbors 139 4 20 
Hamilton (Canada) Whiting 77 5 11 
Hamilton (Unknown) Duluth 5 4 1 
Hamilton (Unknown) Superior 5 4 1 
Harbor Beach Calcite 117 1 17 
Harbor Beach Cedarville 6 0 1 
Harbor Beach Drummond Island 22 1 3 



197 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Harbor Beach Duluth 16 2 2 
Harbor Beach Marquette 9 2 1 
Harbor Beach Presque Isle 24 1 3 
Harbor Beach Silver Bay 29 2 4 
Harbor Beach Stoneport 27 1 4 
Harbor Beach Superior 28 2 4 
Harbor Beach Toledo (USA) 9 1 1 
Harbor Beach Two Harbors 26 2 4 
Harsens Island Calcite 7 1 1 
Heron Bay Alpena 105 1 15 
Holland Brevort 40 1 6 
Holland Burns Harbour 17 1 2 
Holland Calcite 23 1 3 
Holland Calumet 68 0 10 
Holland Cedarville 45 1 6 
Holland Chicago 219 0 31 
Holland Drummond Island 24 1 3 
Holland Escanaba 1 0 1 
Holland Gary 9 0 1 
Holland Grand Haven 18 0 3 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Holland Indiana Harbor 41 1 6 
Holland Milwaukee 2 0 1 
Holland Port Dolomite 26 1 4 
Holland Port Inland 217 1 31 
Holland Presque Isle 20 1 3 
Holland South Chicago 57 1 8 
Holland Stoneport 25 3 4 
Holland Sturgeon Bay 1 2 1 
Holland Superior 12 3 2 
Huron Alpena 2 3 1 
Huron Ashtabula 44 0 6 
Huron Calcite 149 1 21 
Huron Conneaut 18 0 3 
Huron Detroit 57 0 8 
Huron Drummond Island 137 2 20 
Huron Duluth 38 4 5 
Huron Ecorse 18 1 3 
Huron Erie 7 1 1 
Huron Escanaba 15 2 2 
Huron Huron 1 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Huron Lorain 9 0 1 
Huron Mackinaw City 9 2 1 
Huron Marblehead 134 0 19 
Huron Marquette 38 3 5 
Huron Port Dolomite 59 1 8 
Huron Port Inland 7 2 1 
Huron Presque Isle 321 1 46 
Huron Sandusky 54 1 8 
Huron Silver Bay 21 2 3 
Huron Stoneport 156 1 22 
Huron Superior 43 3 6 
Huron Toledo (USA) 93 0 13 
Huron Two Harbors 22 4 3 
Indiana Harbor 41.60 -87.40 1 1 1 
Indiana Harbor 41.73 -81.28 1 1 1 
Indiana Harbor 42.00 -87.30 1 0 1 
Indiana Harbor 42.60 -87.13 1 0 1 
Indiana Harbor 43.00 -87.00 2 0 1 
Indiana Harbor 43.40 -86.80 1 1 1 
Indiana Harbor 43.74 -86.70 1 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Indiana Harbor 44.37 -86.42 1 1 1 
Indiana Harbor 45.60 -86.10 1 0 1 
Indiana Harbor 46.00 -83.90 1 2 1 
Indiana Harbor Ashtabula 12 5 2 
Indiana Harbor Brevort 15 1 2 
Indiana Harbor Burns Harbour 60 1 9 
Indiana Harbor Calcite 131 2 19 
Indiana Harbor Calumet 262 0 37 
Indiana Harbor Cedarville 11 1 2 
Indiana Harbor Chicago 115 1 16 
Indiana Harbor Drummond Island 38 2 5 
Indiana Harbor Duluth 733 3 105 
Indiana Harbor Escanaba 1211 1 173 
Indiana Harbor Gary 18 1 3 
Indiana Harbor Green Bay 10 1 1 
Indiana Harbor Indiana Harbor 20 2 3 
Indiana Harbor Ludington 1 2 1 
Indiana Harbor Marquette 340 2 49 
Indiana Harbor Menominee 7 2 1 
Indiana Harbor Milwaukee 42 1 6 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Indiana Harbor Port Dolomite 77 1 11 
Indiana Harbor Port Inland 630 1 90 
Indiana Harbor Presque Isle 168 2 24 
Indiana Harbor Saint Clair 8 4 1 
Indiana Harbor Sault Ste. Marie (USA, MI) 1 1 1 
Indiana Harbor Silver Bay 473 3 68 
Indiana Harbor South Chicago 64 0 9 
Indiana Harbor Stoneport 85 2 12 
Indiana Harbor Sturgeon Bay 121 1 17 
Indiana Harbor Superior 1770 3 253 
Indiana Harbor Toledo (USA) 33 3 5 
Indiana Harbor Two Harbors 1114 3 159 
Kelleys Island Cleveland 4 0 1 
Kingston (Canada) Marblehead 1 0 1 
Kingsville Ashtabula 8 0 1 
Kingsville Calcite 14 1 2 
Kingsville Cedarville 12 1 2 
Kingsville Cleveland 23 1 3 
Kingsville Detroit 11 1 2 
Kingsville Drummond Island 16 1 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Kingsville Fairport (USA, OH) 8 0 1 
Kingsville Huron 1 0 1 
Kingsville Kelleys Island 39 0 6 
Kingsville Marblehead 226 0 32 
Kingsville Sandusky 16 0 2 
Kingsville Stoneport 7 1 1 
Kingsville Toledo (USA) 151 0 22 
Kingsville Windsor 4 1 1 
Lac Saint Louis Duluth 2 6 1 
Lackawanna Ashtabula 8 1 1 
Lackawanna Calcite 16 2 2 
Lackawanna Cedarville 8 2 1 
Lackawanna Lorain 7 1 1 
Lackawanna Marblehead 5 2 1 
Lackawanna Sandusky 20 0 3 
Lackawanna Silver Bay 16 4 2 
Lackawanna Superior 7 3 1 
Lackawanna Toledo (USA) 27 1 4 
Lake Huron Drummond Island 2 1 1 
Lake Michigan Alpena 12 1 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Lambton Ashtabula 6 1 1 
Lambton Calcite 6 1 1 
Lambton Chicago 1 3 1 
Lambton Conneaut 7 1 1 
Lambton Duluth 5 11 1 
Lambton Marblehead 9 1 1 
Lambton Marquette 13 1 2 
Lambton Sandusky 6 1 1 
Lambton Silver Bay 6 2 1 
Lambton Stoneport 24 1 3 
Lambton Superior 330 3 47 
Lemont Ludington 158 3 23 
Lemont South Chicago 3 21 1 
Little Current (Canada) Ludington 16 2 2 
Lorain Ashtabula 58 1 8 
Lorain Buffalo 1 1 1 
Lorain Calcite 426 1 61 
Lorain Cedarville 31 1 4 
Lorain Cleveland 71 1 10 
Lorain Conneaut 46 1 7 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Lorain Detroit 53 1 8 
Lorain Drummond Island 90 1 13 
Lorain Duluth 87 3 12 
Lorain Ecorse 1 0 1 
Lorain Escanaba 1 3 1 
Lorain Fairport (USA, OH) 13 1 2 
Lorain Fairport Harbor 1 1 1 
Lorain Huron 7 0 1 
Lorain Kelleys Island 80 0 11 
Lorain Lorain 14 1 2 
Lorain Marblehead 624 0 89 
Lorain Marquette 49 2 7 
Lorain Port Dolomite 59 1 8 
Lorain Port Gypsum 35 1 5 
Lorain Port Inland 8 2 1 
Lorain Presque Isle 137 2 20 
Lorain Sandusky 259 0 37 
Lorain Silver Bay 207 3 30 
Lorain Stoneport 124 1 18 
Lorain Superior 218 3 31 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Lorain Toledo (USA) 296 1 42 
Lorain Two Harbors 162 3 23 
Ludington Bay City 1 2 1 
Ludington Brevort 37 1 5 
Ludington Burns Harbour 2 5 1 
Ludington Calcite 29 1 4 
Ludington Cedarville 8 1 1 
Ludington Chicago 7 1 1 
Ludington Drummond Island 7 0 1 
Ludington Escanaba 1 0 1 
Ludington Indiana Harbor 2 1 1 
Ludington Milwaukee 1 0 1 
Ludington Muskegon 2 1 1 
Ludington Port Dolomite 26 1 4 
Ludington Port Inland 72 1 10 
Ludington Presque Isle 9 1 1 
Ludington South Chicago 2 1 1 
Manistee Brevort 217 1 31 
Manistee Calcite 182 1 26 
Manistee Calumet 7 1 1 



206 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Manistee Cedarville 24 1 3 
Manistee Chicago 38 1 5 
Manistee Cleveland 1 2 1 
Manistee Drummond Island 104 1 15 
Manistee Escanaba 7 0 1 
Manistee Grand Haven 9 1 1 
Manistee Marquette 21 1 3 
Manistee Port Dolomite 67 1 10 
Manistee Port Inland 478 1 68 
Manistee Presque Isle 142 1 20 
Manistee Silver Bay 15 2 2 
Manistee South Chicago 7 1 1 
Manistee Stoneport 143 1 20 
Manitowoc Brevort 7 1 1 
Manitowoc Calcite 22 2 3 
Manitowoc Calumet 19 0 3 
Manitowoc Cedarville 22 1 3 
Manitowoc Charlevoix 577 1 82 
Manitowoc Chicago 7 1 1 
Manitowoc Drummond Island 38 1 5 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Manitowoc Escanaba 9 1 1 
Manitowoc Green Bay 5 0 1 
Manitowoc Marquette 7 21 1 
Manitowoc Port Dolomite 17 1 2 
Manitowoc Port Inland 38 1 5 
Manitowoc Presque Isle 31 2 4 
Manitowoc Stoneport 9 1 1 
Manitowoc Sturgeon Bay 8 3 1 
Manitowoc Superior 9 2 1 
Manitowoc Waukegan 9 1 1 
Marblehead Ashtabula 36 0 5 
Marblehead Calcite 4 2 1 
Marblehead Cleveland 48 0 7 
Marblehead Fairport (USA, OH) 18 0 3 
Marblehead Fairport Harbor 91 0 13 
Marblehead Port Dolomite 1 1 1 
Marblehead Sandusky 6 1 1 
Marblehead Silver Bay 5 33 1 
Marblehead Stoneport 9 2 1 
Marblehead Toledo (USA) 3 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Marine City 45.98 -84.21 4 1 1 
Marine City Brevort 7 0 1 
Marine City Calcite 202 1 29 
Marine City Cedarville 75 1 11 
Marine City Detroit 9 1 1 
Marine City Drummond Island 118 1 17 
Marine City Ecorse 7 0 1 
Marine City Goderich 2 8 1 
Marine City Indiana Harbor 1 3 1 
Marine City Marblehead 54 0 8 
Marine City Marquette 206 2 29 
Marine City Port Dolomite 80 1 11 
Marine City Port Inland 8 1 1 
Marine City Presque Isle 179 1 26 
Marine City Silver Bay 30 2 4 
Marine City Stoneport 229 1 33 
Marine City Toledo (USA) 27 1 4 
Marinette Burns Harbour 1 1 1 
Marinette Calcite 6 0 1 
Marinette Chicago 12 1 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Marinette Duluth 3 8 1 
Marinette Holland 2 1 1 
Marinette Milwaukee 2 1 1 
Marinette Port Dolomite 19 1 3 
Marinette Port Inland 7 1 1 
Marinette South Chicago 1 0 1 
Marinette Superior 14 2 2 
Marquette Calcite 1 5 1 
Marquette Cleveland 1 61 1 
Marquette Dearborn (USA, MI) 21 2 3 
Marquette Detroit 10 2 1 
Marquette Duluth 489 1 70 
Marquette Escanaba 1 0 1 
Marquette Indiana Harbor 1 1 1 
Marquette Marblehead 1 1 1 
Marquette Marquette 63 0 9 
Marquette Presque Isle 143 0 20 
Marquette River Rouge 77 2 11 
Marquette Silver Bay 304 1 43 
Marquette Sturgeon Bay 3 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Marquette Superior 1052 1 150 
Marquette Toledo (USA) 28 2 4 
Marquette Two Harbors 337 1 48 
Marysville Brevort 13 2 2 
Marysville Calcite 404 1 58 
Marysville Cedarville 5 1 1 
Marysville Detroit 15 1 2 
Marysville Drummond Island 146 1 21 
Marysville Duluth 7 2 1 
Marysville Ecorse 7 1 1 
Marysville Escanaba 8 2 1 
Marysville Fairport (USA, OH) 7 3 1 
Marysville Marblehead 9 1 1 
Marysville Marquette 63 2 9 
Marysville Port Dolomite 82 1 12 
Marysville Port Inland 20 1 3 
Marysville Presque Isle 254 1 36 
Marysville Sandusky 7 0 1 
Marysville Silver Bay 27 3 4 
Marysville Stoneport 408 1 58 



211 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Marysville Superior 66 3 9 
Marysville Thessalon 7 1 1 
Marysville Toledo (USA) 25 1 4 
Marysville Two Harbors 26 2 4 
Meldrum Bay Buffington 8 1 1 
Meldrum Bay Calcite 2 2 1 
Meldrum Bay Cleveland 2 2 1 
Meldrum Bay Ecorse 1 2 1 
Meldrum Bay Marysville 1 1 1 
Meldrum Bay Port Dolomite 1 2 1 
Meldrum Bay Presque Isle 17 1 2 
Meldrum Bay Stoneport 8 0 1 
Menominee Brevort 7 4 1 
Menominee Calcite 47 1 7 
Menominee Drummond Island 5 1 1 
Menominee Duluth 27 2 4 
Menominee Port Dolomite 23 2 3 
Menominee Port Inland 17 1 2 
Menominee Presque Isle 16 2 2 
Menominee Stoneport 15 4 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Midland Brevort 1 1 1 
Midland Calcite 19 1 3 
Midland Cleveland 7 2 1 
Midland Conneaut 5 4 1 
Midland Drummond Island 30 1 4 
Midland Duluth 20 2 3 
Midland Port Inland 6 2 1 
Midland Stoneport 18 1 3 
Midland Superior 49 2 7 
Midland Toledo (USA) 7 2 1 
Milwaukee Alpena 461 2 66 
Milwaukee Brevort 66 1 9 
Milwaukee Burns Harbour 5 1 1 
Milwaukee Calcite 129 1 18 
Milwaukee Calumet 298 1 43 
Milwaukee Cedarville 55 1 8 
Milwaukee Charlevoix 1233 1 176 
Milwaukee Chicago 109 1 16 
Milwaukee Conneaut 11 5 2 
Milwaukee Detroit 19 3 3 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Milwaukee Drummond Island 45 1 6 
Milwaukee Duluth 199 3 28 
Milwaukee Escanaba 125 1 18 
Milwaukee Gary 6 2 1 
Milwaukee Grand Haven 41 0 6 
Milwaukee Indiana Harbor 109 1 16 
Milwaukee Ludington 6 3 1 
Milwaukee Marinette 6 2 1 
Milwaukee Marquette 89 2 13 
Milwaukee Milwaukee 26 1 4 
Milwaukee Muskegon 3 1 1 
Milwaukee Port Dolomite 52 1 7 
Milwaukee Port Inland 428 1 61 
Milwaukee Presque Isle 80 2 11 
Milwaukee Saint Joseph 7 0 1 
Milwaukee Silver Bay 122 3 17 
Milwaukee South Chicago 25 1 4 
Milwaukee Stoneport 93 2 13 
Milwaukee Sturgeon Bay 18 0 3 
Milwaukee Superior 244 2 35 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Milwaukee Thunder Bay 2 5 1 
Milwaukee Toledo (USA) 26 5 4 
Milwaukee Two Harbors 54 3 8 
Milwaukee Whiting 199 1 28 
Monroe Ashtabula 30 1 4 
Monroe Calcite 111 1 16 
Monroe Cedarville 5 1 1 
Monroe Cleveland 16 0 2 
Monroe Conneaut 9 1 1 
Monroe Detroit 14 0 2 
Monroe Duluth 42 3 6 
Monroe Erie 9 1 1 
Monroe Harbor Beach 8 1 1 
Monroe Indiana Harbor 5 3 1 
Monroe Marblehead 18 0 3 
Monroe Marquette 93 2 13 
Monroe Monroe 16 0 2 
Monroe Port Dolomite 27 1 4 
Monroe port gypsum 3 1 1 
Monroe Port Gypsum 2 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Monroe Presque Isle 37 1 5 
Monroe Sandusky 21 31 3 
Monroe Silver Bay 76 3 11 
Monroe Stoneport 16 1 2 
Monroe Sturgeon Bay 8 2 1 
Monroe Superior 1765 3 252 
Monroe Toledo (USA) 37 0 5 
Monroe Two Harbors 153 3 22 
Monroe Whiting 20 3 3 
Montreal 47.40 -87.33 1 4 1 
Montreal Ashtabula 19 3 3 
Montreal Buffalo 28 3 4 
Montreal Chicago 1 9 1 
Montreal Cleveland 2 3 1 
Montreal Detroit 11 4 2 
Montreal Duluth 67 10 10 
Montreal Marblehead 1 3 1 
Montreal Sault Ste. Marie (USA, MI) 8 7 1 
Montreal Superior 50 6 7 
Montreal Thunder Bay 4 10 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Montreal Toledo (USA) 74 4 11 
Montreal Whiting 10 8 1 
Morrisburg Ashtabula 6 2 1 
Morrisburg Conneaut 12 2 2 
Morrisburg Marblehead 12 2 2 
Morrisburg Sandusky 13 2 2 
Munising Duluth 8 1 1 
Munising Marquette 16 0 2 
Munising Silver Bay 97 1 14 
Munising Superior 16 1 2 
Munising Toledo (USA) 8 1 1 
Munising Two Harbors 9 1 1 
Muskegon Alpena 230 2 33 
Muskegon Brevort 49 1 7 
Muskegon Burns Harbour 5 1 1 
Muskegon Calcite 54 1 8 
Muskegon Calumet 57 1 8 
Muskegon Cedarville 33 1 5 
Muskegon Chicago 72 1 10 
Muskegon Drummond Island 18 1 3 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Muskegon Duluth 21 3 3 
Muskegon Escanaba 104 1 15 
Muskegon Gary 15 1 2 
Muskegon Grand Haven 41 0 6 
Muskegon Holland 2 1 1 
Muskegon Indiana Harbor 13 1 2 
Muskegon Marquette 64 2 9 
Muskegon Meldrum Bay 5 1 1 
Muskegon Milwaukee 7 4 1 
Muskegon Muskegon 2 0 1 
Muskegon Port Dolomite 70 1 10 
Muskegon Port Inland 450 1 64 
Muskegon Presque Isle 111 2 16 
Muskegon Silver Bay 42 2 6 
Muskegon South Chicago 19 1 3 
Muskegon Stoneport 66 1 9 
Muskegon Sturgeon Bay 7 1 1 
Muskegon Superior 545 2 78 
Muskegon Two Harbors 70 2 10 
Muskegon Whiting 15 2 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Nanticoke 41.80 -82.20 20 1 3 
Nanticoke 45.70 -83.70 20 2 3 
Nanticoke Ashtabula 2406 1 344 
Nanticoke Buffalo 181 1 26 
Nanticoke Calcite 40 2 6 
Nanticoke Cleveland 31 1 4 
Nanticoke Conneaut 1145 1 164 
Nanticoke Detroit 47 1 7 
Nanticoke Duluth 752 3 107 
Nanticoke Erie 7 1 1 
Nanticoke Escanaba 9 2 1 
Nanticoke Fairport (USA, OH) 37 1 5 
Nanticoke Fairport Harbor 38 1 5 
Nanticoke Green Bay 9 2 1 
Nanticoke Hamilton (Canada) 10 0 1 
Nanticoke Lorain 21 1 3 
Nanticoke Marblehead 17 0 2 
Nanticoke Marquette 30 3 4 
Nanticoke Milwaukee 7 4 1 
Nanticoke Nanticoke 1 4 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Nanticoke Port Dolomite 18 2 3 
Nanticoke Sandusky 1052 1 150 
Nanticoke Silver Bay 41 3 6 
Nanticoke Stoneport 15 4 2 
Nanticoke Sturgeon Bay 17 3 2 
Nanticoke Superior 3198 3 457 
Nanticoke Toledo (USA) 709 1 101 
Nanticoke Two Harbors 443 3 63 
Oak Creek Milwaukee 5 0 1 
Oak Creek Port Dolomite 2 1 1 
Oak Creek Port Inland 11 1 2 
Ogdensburg 43.65 -77.83 1 1 1 
Ogdensburg Ashtabula 7 2 1 
Ogdensburg Duluth 7 4 1 
Ogdensburg Marblehead 2 2 1 
Ontonagon Duluth 32 1 5 
Ontonagon Silver Bay 37 1 5 
Ontonagon Superior 47 1 7 
Ontonagon Two Harbors 180 0 26 
Oshawa Ashtabula 5 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Oshawa Cleveland 4 1 1 
Oshawa Detroit 57 6 8 
Oshawa Duluth 8 6 1 
Oshawa Ludington 45 5 6 
Oshawa Marblehead 7 1 1 
Oshawa Milwaukee 5 4 1 
Oshawa Superior 1 1 1 
Oshawa Toledo (USA) 34 5 5 
Oshawa Whiting 15 4 2 
Oswego Cleveland 38 2 5 
Oswego Detroit 34 4 5 
Oswego Duluth 1 7 1 
Oswego Ludington 22 6 3 
Oswego Manistee 4 8 1 
Oswego Sarnia 5 4 1 
Oswego Toledo (USA) 2 4 1 
Owen Sound Brevort 1 1 1 
Owen Sound Cedarville 33 1 5 
Owen Sound Drummond Island 36 1 5 
Owen Sound Marquette 7 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Owen Sound Sandusky 7 2 1 
Owen Sound Stoneport 5 1 1 
Owen Sound Sturgeon Bay 1 1 1 
Parry Sound Calcite 8 1 1 
Parry Sound Cedarville 1 0 1 
Parry Sound Drummond Island 14 1 2 
Parry Sound Port Dolomite 1 1 1 
Parry Sound Stoneport 1 1 1 
Picton (Canada) Ashtabula 54 1 8 
Picton (Canada) Buffalo 6 2 1 
Picton (Canada) Conneaut 22 2 3 
Picton (Canada) Detroit 6 0 1 
Picton (Canada) Sandusky 6 2 1 
Picton (Canada) Superior 5 5 1 
Picton (Canada) Toledo (USA) 7 2 1 
Point Tupper Montreal 1 4 1 
Port Alfred Duluth 46 10 7 
Port Alfred Toledo (USA) 7 11 1 
Port Cartier Ashtabula 6 4 1 
Port Cartier Burns Harbour 6 7 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Port Cartier Duluth 13 8 2 
Port Cartier Gary 6 21 1 
Port Cartier Silver Bay 7 6 1 
Port Cartier Superior 51 7 7 
Port Cartier Toledo (USA) 50 4 7 
Port Colborne Ashtabula 91 1 13 
Port Colborne Calcite 1 2 1 
Port Colborne Cedarville 6 1 1 
Port Colborne Cleveland 69 1 10 
Port Colborne Conneaut 120 1 17 
Port Colborne Detroit 2 1 1 
Port Colborne Drummond Island 1 2 1 
Port Colborne Duluth 37 6 5 
Port Colborne Ecorse 3 1 1 
Port Colborne Fairport Harbor 12 1 2 
Port Colborne Lorain 13 1 2 
Port Colborne Marblehead 33 1 5 
Port Colborne Montreal 1 1 1 
Port Colborne Port Colborne 11 0 2 
Port Colborne Port Inland 1 3 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Port Colborne River Rouge 1 1 1 
Port Colborne Sandusky 64 2 9 
Port Colborne Sarnia 1 62 1 
Port Colborne Silver Bay 7 4 1 
Port Colborne Superior 44 4 6 
Port Colborne Toledo (USA) 70 2 10 
Port Credit Ashtabula 21 1 3 
Port Credit Conneaut 6 2 1 
Port Dolomite Burns Harbour 1 1 1 
Port Dolomite Calcite 3 2 1 
Port Dolomite Cleveland 32 2 5 
Port Dolomite Duluth 12 2 2 
Port Dolomite Erie 9 3 1 
Port Dolomite Indiana Harbor 3 3 1 
Port Dolomite Meldrum Bay 1 3 1 
Port Dolomite Port Inland 44 1 6 
Port Dolomite Stoneport 18 0 3 
Port Dolomite Superior 1 3 1 
Port Dolomite Toledo (USA) 1 3 1 
Port Gypsum Calcite 6 0 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Port Gypsum Chicago 2 2 1 
Port Gypsum Cleveland 5 1 1 
Port Gypsum Waukegan 7 2 1 
Port Huron Green Bay 1 1 1 
Port Inland Burns Harbour 9 1 1 
Port Inland Calcite 10 1 1 
Port Inland Cedarville 4 0 1 
Port Inland Cleveland 15 2 2 
Port Inland Detroit 8 2 1 
Port Inland Escanaba 3 1 1 
Port Inland Essexville 9 1 1 
Port Inland Green Bay 7 2 1 
Port Inland Indiana Harbor 37 1 5 
Port Inland Ludington 9 0 1 
Port Inland Manistee 9 32 1 
Port Inland Marblehead 1 4 1 
Port Inland Marquette 7 2 1 
Port Inland Muskegon 13 14 2 
Port Inland Port Dolomite 26 2 4 
Port Inland Port Inland 34 0 5 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Port Inland River Rouge 1 1 1 
Port Inland Stoneport 7 1 1 
Port Inland Superior 2 2 1 
Port Stanley (Canada) Detroit 20 3 3 
Port Washington (USA, WI) Valleyfield 3 8 1 
Port Weller Ashtabula 11 1 2 
Port Weller Conneaut 11 6 2 
Port Weller Duluth 15 4 2 
Port Weller Escanaba 7 4 1 
Port Weller Superior 6 3 1 
Port Weller Toledo (USA) 1 4 1 
Prescott Ashtabula 25 2 4 
Prescott Cleveland 4 1 1 
Prescott Duluth 5 5 1 
Prescott Fairport Harbor 5 1 1 
Prescott Marblehead 8 2 1 
Prescott Sandusky 6 2 1 
Prescott Two Harbors 7 49 1 
Presque Isle Chicago 1 2 1 
Presque Isle Cleveland 3 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Presque Isle Detroit 1 1 1 
Presque Isle Duluth 28 1 4 
Presque Isle Fairport Harbor 9 1 1 
Presque Isle Grand Haven 1 1 1 
Presque Isle Huron 1 1 1 
Presque Isle Marquette 7 1 1 
Presque Isle Port Dolomite 1 2 1 
Presque Isle Presque Isle 1 2 1 
Presque Isle River Rouge 14 2 2 
Presque Isle Saginaw 7 0 1 
Presque Isle Superior 257 1 37 
Presque Isle Toledo (USA) 1 3 1 
Presque Isle Two Harbors 22 0 3 
Quebec City Ashtabula 38 3 5 
Quebec City Burns Harbour 26 6 4 
Quebec City Chicago 18 6 3 
Quebec City Detroit 2 11 1 
Quebec City Duluth 27 7 4 
Quebec City Gary 5 7 1 
Quebec City Indiana Harbor 7 6 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Quebec City Lorain 14 4 2 
Quebec City Milwaukee 2 0 1 
Quebec City Silver Bay 79 6 11 
Quebec City Sturgeon Bay 5 5 1 
Quebec City Superior 77 6 11 
Quebec City Toledo (USA) 73 4 10 
River Rouge Alpena 3 0 1 
River Rouge Ashtabula 9 0 1 
River Rouge Calcite 124 1 18 
River Rouge Cleveland 33 0 5 
River Rouge Conneaut 8 0 1 
River Rouge Drummond Island 15 2 2 
River Rouge Duluth 216 3 31 
River Rouge Escanaba 24 2 3 
River Rouge Marblehead 43 1 6 
River Rouge Marquette 537 2 77 
River Rouge Port Dolomite 29 1 4 
River Rouge Port Gypsum 10 1 1 
River Rouge Presque Isle 495 1 71 
River Rouge River Rouge 2 10 1 



228 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
River Rouge Sandusky 186 1 27 
River Rouge Sarnia 1 8 1 
River Rouge Silver Bay 123 3 18 
River Rouge Stoneport 83 1 12 
River Rouge Sturgeon Bay 7 1 1 
River Rouge Superior 305 3 44 
River Rouge Toledo (USA) 197 1 28 
River Rouge Two Harbors 239 2 34 
Saginaw Alpena 112 1 16 
Saginaw Brevort 46 1 7 
Saginaw Bruce Mines 2 1 1 
Saginaw Calcite 644 1 92 
Saginaw Cedarville 107 1 15 
Saginaw Cleveland 4 1 1 
Saginaw Conneaut 1 0 1 
Saginaw Detroit 11 2 2 
Saginaw Drummond Island 261 1 37 
Saginaw Duluth 23 2 3 
Saginaw Ecorse 1 2 1 
Saginaw Escanaba 8 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Saginaw Marquette 12 2 2 
Saginaw Meldrum Bay 5 2 1 
Saginaw Menominee 8 2 1 
Saginaw Port Dolomite 227 1 32 
Saginaw Port Inland 96 2 14 
Saginaw Presque Isle 701 1 100 
Saginaw Saginaw 1 1 1 
Saginaw Sault Ste. Marie (USA, MI) 14 62 2 
Saginaw Silver Bay 38 2 5 
Saginaw South Chicago 2 1 1 
Saginaw Stoneport 1008 1 144 
Saginaw Superior 59 2 8 
Saginaw Taconite Harbor 7 3 1 
Saginaw Thessalon 8 1 1 
Saint Clair 45.92 -83.83 6 1 1 
Saint Clair 45.92 -83.92 3 1 1 
Saint Clair 46.07 -84.02 15 1 2 
Saint Clair Duluth 316 2 45 
Saint Clair Escanaba 10 2 1 
Saint Clair Marquette 19 2 3 



230 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Saint Clair Monroe 13 1 2 
Saint Clair Saint Clair 8 0 1 
Saint Clair Silver Bay 133 2 19 
Saint Clair Sturgeon Bay 48 2 7 
Saint Clair Superior 5315 3 759 
Saint Clair Toledo (USA) 8 2 1 
Saint Clair Two Harbors 317 2 45 
Saint Joseph Alpena 500 2 71 
Saint Joseph Brevort 27 1 4 
Saint Joseph Burns Harbour 26 0 4 
Saint Joseph Calcite 28 1 4 
Saint Joseph Calumet 165 1 24 
Saint Joseph Cedarville 6 1 1 
Saint Joseph Chicago 240 1 34 
Saint Joseph Drummond Island 3 2 1 
Saint Joseph Escanaba 5 1 1 
Saint Joseph Gary 8 0 1 
Saint Joseph Grand Haven 147 0 21 
Saint Joseph Indiana Harbor 18 0 3 
Saint Joseph Muskegon 4 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Saint Joseph Port Dolomite 22 1 3 
Saint Joseph Port Inland 116 1 17 
Saint Joseph Saint Joseph 7 1 1 
Saint Joseph Silver Bay 5 4 1 
Saint Joseph South Chicago 36 1 5 
Saint Joseph Stoneport 8 1 1 
Saint Joseph Sturgeon Bay 1 1 1 
Saint Marys River (USA, Great 
Lakes) Duluth 52 1 7 
Saint Marys River (USA, Great 
Lakes) Superior 6 2 1 
Saint Marys River (USA, Great 
Lakes) Two Harbors 203 1 29 
Sandusky Calcite 6 2 1 
Sandusky Chicago 3 3 1 
Sandusky Cleveland 9 0 1 
Sandusky Duluth 2 19 1 
Sandusky Green Bay 19 2 3 
Sandusky Marblehead 28 0 4 
Sandusky Marquette 12 2 2 
Sandusky Ontonagon 2 3 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Sandusky Sault Ste. Marie (USA, MI) 18 5 3 
Sandusky Silver Bay 5 3 1 
Sandusky Stoneport 1 1 1 
Sandusky Superior 11 3 2 
Sandusky Toledo (USA) 1 2 1 
Sarnia Ashtabula 1 0 1 
Sarnia Bay City 4 4 1 
Sarnia Brevort 18 1 3 
Sarnia Buffalo 15 4 2 
Sarnia Calcite 119 1 17 
Sarnia Cedarville 23 1 3 
Sarnia Chicago 6 2 1 
Sarnia Conneaut 6 1 1 
Sarnia Detroit 74 1 11 
Sarnia Drummond Island 50 1 7 
Sarnia Duluth 29 6 4 
Sarnia Goderich 2 5 1 
Sarnia Huron 1 1 1 
Sarnia Indiana Harbor 5 4 1 
Sarnia Marblehead 3 1 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Sarnia Marysville 2 1 1 
Sarnia Meldrum Bay 4 1 1 
Sarnia Monroe 2 1 1 
Sarnia Port Colborne 1 5 1 
Sarnia Port Dolomite 31 1 4 
Sarnia Port Inland 8 1 1 
Sarnia Presque Isle 7 2 1 
Sarnia River Rouge 1 6 1 
Sarnia Sandusky 25 1 4 
Sarnia Sarnia 5 0 1 
Sarnia Sault Ste. Marie (USA, MI) 3 2 1 
Sarnia Silver Bay 20 2 3 
Sarnia Soo Locks (Sault Ste. Marie, MI) 2 1 1 
Sarnia Stoneport 36 1 5 
Sarnia Superior 160 3 23 
Sarnia Toledo (USA) 78 1 11 
Sarnia Whiting 5 3 1 
Sault Ste. Marie (Canada) Ashtabula 8 2 1 
Sault Ste. Marie (Canada) Bay City 6 1 1 
Sault Ste. Marie (Canada) Brevort 14 0 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Sault Ste. Marie (Canada) Calcite 216 1 31 
Sault Ste. Marie (Canada) Calumet 7 2 1 
Sault Ste. Marie (Canada) Cedarville 108 1 15 
Sault Ste. Marie (Canada) Chicago 6 2 1 
Sault Ste. Marie (Canada) Cleveland 16 3 2 
Sault Ste. Marie (Canada) Conneaut 30 2 4 
Sault Ste. Marie (Canada) Detroit 7 2 1 
Sault Ste. Marie (Canada) Drummond Island 73 1 10 
Sault Ste. Marie (Canada) Duluth 194 2 28 
Sault Ste. Marie (Canada) Ludington 7 2 1 
Sault Ste. Marie (Canada) Marquette 5689 1 813 
Sault Ste. Marie (Canada) Port Dolomite 34 1 5 
Sault Ste. Marie (Canada) Port Inland 66 1 9 
Sault Ste. Marie (Canada) Presque Isle 257 1 37 
Sault Ste. Marie (Canada) Saginaw 1 1 1 
Sault Ste. Marie (Canada) Sandusky 15 134 2 
Sault Ste. Marie (Canada) Sarnia 6 2 1 
Sault Ste. Marie (Canada) Silver Bay 135 1 19 
Sault Ste. Marie (Canada) Stoneport 38 1 5 
Sault Ste. Marie (Canada) Sturgeon Bay 7 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Sault Ste. Marie (Canada) Superior 693 1 99 
Sault Ste. Marie (Canada) Toledo (USA) 13 2 2 
Sault Ste. Marie (Canada) Two Harbors 82 2 12 
Sault Ste. Marie (Unknown) Calcite 5 1 1 
Sault Ste. Marie (Unknown) Duluth 27 1 4 
Sault Ste. Marie (Unknown) Marquette 253 1 36 
Sault Ste. Marie (Unknown) Port Dolomite 7 1 1 
Sault Ste. Marie (Unknown) Presque Isle 3 1 1 
Sault Ste. Marie (Unknown) Sarnia 15 6 2 
Sault Ste. Marie (Unknown) Silver Bay 25 2 4 
Sault Ste. Marie (Unknown) Superior 72 2 10 
Sault Ste. Marie (Unknown) Two Harbors 30 1 4 
Sault Ste. Marie (USA, MI) Ashtabula 7 2 1 
Sault Ste. Marie (USA, MI) Calcite 8 1 1 
Sault Ste. Marie (USA, MI) Duluth 64 2 9 
Sault Ste. Marie (USA, MI) Marquette 61 1 9 
Sault Ste. Marie (USA, MI) Nanticoke 5 3 1 
Sault Ste. Marie (USA, MI) Presque Isle 26 0 4 
Sault Ste. Marie (USA, MI) Sault Ste. Marie (USA, MI) 2 0 1 
Sault Ste. Marie (USA, MI) Silver Bay 7 28 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Sault Ste. Marie (USA, MI) Stoneport 8 1 1 
Sault Ste. Marie (USA, MI) Superior 253 1 36 
Sault Ste. Marie (USA, MI) Two Harbors 18 1 3 
Sept-Iles Detroit 4 11 1 
Sept-Iles Duluth 4 12 1 
Sept-Iles Ludington 17 10 2 
Sept-Iles Sandusky 1 6 1 
Sept-Iles Toledo (USA) 3 6 1 
Serpent Harbor Brevort 6 2 1 
Serpent Harbor Calcite 35 1 5 
Serpent Harbor Calumet 3 2 1 
Serpent Harbor Duluth 12 2 2 
Serpent Harbor Port Dolomite 14 0 2 
Serpent Harbor Presque Isle 18 0 3 
Serpent Harbor Silver Bay 13 1 2 
Serpent Harbor Superior 27 2 4 
Serpent Harbor Two Harbors 7 2 1 
Silver Bay 45.70 -86.70 1 1 1 
Silver Bay Ashtabula 33 2 5 
Silver Bay Calcite 1 5 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Silver Bay Cleveland 13 3 2 
Silver Bay Duluth 10 1 1 
Silver Bay Gary 11 3 2 
Silver Bay Marquette 6 1 1 
Silver Bay Port Gypsum 2 4 1 
Silver Bay Silver Bay 2 5 1 
Silver Bay Sturgeon Bay 1 3 1 
Silver Bay Superior 73 1 10 
Silver Bay Two Harbors 24 1 3 
Sombra Calcite 54 1 8 
Sombra Cedarville 1 1 1 
Sombra Drummond Island 10 2 1 
Sombra Duluth 12 2 2 
Sombra Marquette 7 2 1 
Sombra Port Dolomite 26 1 4 
Sombra Port Inland 2 1 1 
Sombra Stoneport 30 1 4 
Sombra Superior 17 2 2 
Sombra Toledo (USA) 8 3 1 
Sombra Two Harbors 6 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Soo Locks (Sault Ste. Marie, MI) Duluth 14 1 2 
Sorel Burns Harbour 10 7 1 
Sorel Chicago 7 5 1 
Sorel Duluth 43 6 6 
Sorel Marquette 13 4 2 
Sorel Menominee 14 6 2 
Sorel Milwaukee 10 8 1 
Sorel Silver Bay 51 5 7 
Sorel Superior 97 6 14 
Sorel Toledo (USA) 53 4 8 
South Chicago Alpena 71 3 10 
South Chicago Brevort 9 2 1 
South Chicago Burns Harbour 2 0 1 
South Chicago Calcite 17 2 2 
South Chicago Charlevoix 12 1 2 
South Chicago Drummond Island 51 2 7 
South Chicago Escanaba 7 1 1 
South Chicago Grand Haven 7 1 1 
South Chicago Green Bay 10 2 1 
South Chicago Indiana Harbor 19 0 3 



239 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
South Chicago Ludington 3 1 1 
South Chicago Manistee 9 1 1 
South Chicago Marinette 1 1 1 
South Chicago Milwaukee 1 1 1 
South Chicago Muskegon 1 0 1 
South Chicago Port Inland 31 2 4 
South Chicago Presque Isle 72 2 10 
South Chicago South Chicago 1 0 1 
South Chicago Stoneport 7 2 1 
South Chicago Superior 8 3 1 
Stoneport Burns Harbour 1 1 1 
Stoneport Calcite 19 0 3 
Stoneport Cleveland 10 2 1 
Stoneport Detroit 10 2 1 
Stoneport Essexville 7 1 1 
Stoneport Fairport Harbor 27 2 4 
Stoneport Grand Haven 1 1 1 
Stoneport Manistee 7 0 1 
Stoneport Marine City 9 1 1 
Stoneport Marquette 18 2 3 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Stoneport Marysville 7 1 1 
Stoneport Monroe 1 1 1 
Stoneport Port Dolomite 1 3 1 
Stoneport Saginaw 1 1 1 
Stoneport Saint Joseph 25 2 4 
Stoneport Silver Bay 1 3 1 
Stoneport Stoneport 4 1 1 
Stoneport Toledo (USA) 1 3 1 
Sturgeon Bay Alpena 23 1 3 
Sturgeon Bay Brevort 1 1 1 
Sturgeon Bay Calcite 15 1 2 
Sturgeon Bay Calumet 32 1 5 
Sturgeon Bay Cedarville 6 3 1 
Sturgeon Bay Charlevoix 12 1 2 
Sturgeon Bay Chicago 32 1 5 
Sturgeon Bay Duluth 83 2 12 
Sturgeon Bay Escanaba 45 1 6 
Sturgeon Bay Lorain 9 4 1 
Sturgeon Bay Ludington 6 22 1 
Sturgeon Bay Marquette 39 2 6 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Sturgeon Bay Port Dolomite 19 2 3 
Sturgeon Bay Port Inland 19 1 3 
Sturgeon Bay Presque Isle 36 1 5 
Sturgeon Bay Silver Bay 46 3 7 
Sturgeon Bay Stoneport 25 1 4 
Sturgeon Bay Sturgeon Bay 3 353 1 
Sturgeon Bay Superior 177 2 25 
Sturgeon Bay Toledo (USA) 2 4 1 
Sturgeon Bay Two Harbors 108 3 15 
Sturgeon Bay Whiting 6 2 1 
Sun Oil (Sarnia, Canada) Port Dolomite 6 1 1 
Superior Alpena 338 2 48 
Superior Ashtabula 1 6 1 
Superior Brevort 6 2 1 
Superior Buffalo 11 4 2 
Superior Burns Harbour 9 2 1 
Superior Calcite 12 7 2 
Superior Conneaut 55 3 8 
Superior Detroit 2 0 1 
Superior Duluth 135 0 19 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Superior Ecorse 9 3 1 
Superior Gary 11 2 2 
Superior Indiana Harbor 33 3 5 
Superior Ludington 62 4 9 
Superior Marblehead 2 6 1 
Superior Marquette 39 1 6 
Superior Port Dolomite 1 7 1 
Superior Presque Isle 15 1 2 
Superior Saint Clair 40 3 6 
Superior Silver Bay 265 1 38 
Superior South Chicago 3 3 1 
Superior Stoneport 1 7 1 
Superior Sturgeon Bay 9 3 1 
Superior Superior 124 1 18 
Superior Taconite Harbor 10 0 1 
Superior Toledo (USA) 6 6 1 
Superior Two Harbors 135 0 19 
Taconite Harbor Duluth 36 0 5 
Taconite Harbor Silver Bay 9 0 1 
Taconite Harbor Superior 116 1 17 



243 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Taconite Harbor Two Harbors 18 0 3 
Tawas City Chicago 3 2 1 
Thessalon Calcite 1 14 1 
Thessalon Erie 2 2 1 
Thorold Ashtabula 29 1 4 
Thorold Calcite 5 3 1 
Thorold Cedarville 1 3 1 
Thorold Cleveland 28 1 4 
Thorold Conneaut 20 1 3 
Thorold Detroit 7 41 1 
Thorold Drummond Island 1 3 1 
Thorold Fairport (USA, OH) 3 1 1 
Thorold Marblehead 64 1 9 
Thorold Presque Isle 7 21 1 
Thorold River Rouge 7 3 1 
Thorold Sandusky 14 1 2 
Thorold Toledo (USA) 17 1 2 
Three Rivers Burns Harbour 1 7 1 
Three Rivers Duluth 20 7 3 
Three Rivers Ludington 5 7 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Three Rivers Sturgeon Bay 9 97 1 
Three Rivers Superior 3 11 1 
Thunder Bay 43.92 -87.26 1 4 1 
Thunder Bay 43.93 -87.24 1 4 1 
Thunder Bay 43.94 -87.26 1 4 1 
Thunder Bay 43.95 -87.26 2 3 1 
Thunder Bay 43.96 -87.26 1 3 1 
Thunder Bay Bay City 5 2 1 
Thunder Bay Buffalo 5 3 1 
Thunder Bay Detroit 6 0 1 
Thunder Bay Duluth 86 2 12 
Thunder Bay Ludington 11 5 2 
Thunder Bay Silver Bay 6 2 1 
Thunder Bay Superior 153 1 22 
Thunder Bay Thunder Bay 13 1 2 
Thunder Bay Toledo (USA) 15 4 2 
Toledo (USA) Alpena 240 2 34 
Toledo (USA) Ashtabula 249 1 36 
Toledo (USA) Brevort 18 2 3 
Toledo (USA) Bruce Mines 4 2 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Toledo (USA) Buffalo 32 1 5 
Toledo (USA) Calcite 346 1 49 
Toledo (USA) Calumet 7 4 1 
Toledo (USA) Cedarville 47 2 7 
Toledo (USA) Chicago 72 3 10 
Toledo (USA) Cleveland 139 1 20 
Toledo (USA) Conneaut 135 1 19 
Toledo (USA) Detroit 74 1 11 
Toledo (USA) Drummond Island 67 1 10 
Toledo (USA) Duluth 258 3 37 
Toledo (USA) Ecorse 7 0 1 
Toledo (USA) Escanaba 8 6 1 
Toledo (USA) Fairport (USA, OH) 44 1 6 
Toledo (USA) Fairport Harbor 17 1 2 
Toledo (USA) Green Bay 9 2 1 
Toledo (USA) Kelleys Island 4 0 1 
Toledo (USA) Lorain 6 0 1 
Toledo (USA) Marblehead 334 0 48 
Toledo (USA) Marquette 160 2 23 
Toledo (USA) Meldrum Bay 12 1 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Toledo (USA) Menominee 9 3 1 
Toledo (USA) Milwaukee 11 4 2 
Toledo (USA) Munising 8 2 1 
Toledo (USA) Muskegon 1 3 1 
Toledo (USA) Port Dolomite 60 1 9 
Toledo (USA) Port Gypsum 25 1 4 
Toledo (USA) Port Inland 19 1 3 
Toledo (USA) Presque Isle 166 2 24 
Toledo (USA) Sandusky 442 1 63 
Toledo (USA) Sarnia 12 1 2 
Toledo (USA) Sault Ste. Marie (Unknown) 1 1 1 
Toledo (USA) Sault Ste. Marie (USA, MI) 8 1 1 
Toledo (USA) Silver Bay 270 3 39 
Toledo (USA) Stoneport 268 1 38 
Toledo (USA) Sturgeon Bay 18 2 3 
Toledo (USA) Superior 710 3 101 
Toledo (USA) Thunder Bay 25 9 4 
Toledo (USA) Toledo (USA) 276 1 39 
Toledo (USA) Two Harbors 141 3 20 
Toledo (USA) Whiting 61 4 9 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Toledo (USA) Zug Island (USA, MI) 1 244 1 
Tonawanda Cleveland 28 1 4 
Tonawanda Conneaut 70 0 10 
Tonawanda Detroit 25 2 4 
Tonawanda Fairport (USA, OH) 7 1 1 
Tonawanda River Rouge 2 17 1 
Tonawanda Sarnia 1 1 1 
Tonawanda Toledo (USA) 15 1 2 
Tonawanda Whiting 5 5 1 
Toronto 43.32 -79.22 1 1 1 
Toronto Ashtabula 76 1 11 
Toronto Chicago 8 4 1 
Toronto Cleveland 24 1 3 
Toronto Conneaut 8 2 1 
Toronto Detroit 14 2 2 
Toronto Duluth 43 5 6 
Toronto Fairport (USA, OH) 7 2 1 
Toronto Fairport Harbor 17 1 2 
Toronto Marblehead 24 1 3 
Toronto Sandusky 30 2 4 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Toronto Sault Ste. Marie (USA, MI) 19 4 3 
Toronto Superior 43 4 6 
Toronto Toledo (USA) 66 4 9 
Toronto Toronto 1 1 1 
Toronto Two Harbors 6 4 1 
Tracy Bay City 5 5 1 
Tracy Cleveland 5 3 1 
Tracy Detroit 41 4 6 
Tracy River Rouge 10 8 1 
Tracy Toledo (USA) 20 4 3 
Tracy Whiting 41 8 6 
Traverse City Sturgeon Bay 4 4 1 
Traverse City Toledo (USA) 131 3 19 
Traverse City Whiting 243 3 35 
Trenton (USA, MI) Calcite 60 1 9 
Trenton (USA, MI) Drummond Island 8 1 1 
Trenton (USA, MI) Port Gypsum 5 1 1 
Trenton (USA, MI) Presque Isle 8 1 1 
Trenton (USA, MI) Sandusky 7 1 1 
Trenton (USA, MI) Silver Bay 24 2 3 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Trois Rivieres Ashtabula 6 3 1 
Trois Rivieres Duluth 6 9 1 
Trois Rivieres Ludington 35 7 5 
Trois Rivieres Superior 5 5 1 
Troy (USA, NY) Oswego 4 2 1 
Two Harbors Conneaut 163 3 23 
Two Harbors Detroit 2 2 1 
Two Harbors Escanaba 1 4 1 
Two Harbors Gary 211 3 30 
Two Harbors Indiana Harbor 49 2 7 
Two Harbors Lorain 5 2 1 
Two Harbors Silver Bay 2 8 1 
Two Harbors Two Harbors 2 0 1 
Valleyfield Cleveland 5 2 1 
Valleyfield Detroit 121 3 17 
Valleyfield Duluth 28 6 4 
Valleyfield Fairport Harbor 6 2 1 
Valleyfield Marinette 3 11 1 
Valleyfield Milwaukee 6 7 1 
Valleyfield Sault Ste. Marie (USA, MI) 11 5 2 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Valleyfield Toledo (USA) 3 8 1 
Valleyfield Whiting 10 6 1 
Waukegan Alpena 731 2 104 
Waukegan Burns Harbour 5 0 1 
Waukegan Calcite 20 1 3 
Waukegan Calumet 112 1 16 
Waukegan Cedarville 5 1 1 
Waukegan Charlevoix 101 1 14 
Waukegan Chicago 31 0 4 
Waukegan Escanaba 10 1 1 
Waukegan Milwaukee 6 1 1 
Waukegan Muskegon 5 1 1 
Waukegan Port Dolomite 30 1 4 
Waukegan Port Gypsum 5 2 1 
Waukegan Port Inland 79 1 11 
Waukegan Presque Isle 5 2 1 
Waukegan Silver Bay 30 2 4 
Waukegan South Chicago 13 1 2 
Waukegan Sturgeon Bay 5 1 1 
Welland Duluth 3 4 1 



251 

 

 

Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Welland Sandusky 5 1 1 
Welland Toledo (USA) 2 18 1 
Whitefish bay Alpena 7 1 1 
Whitefish Falls, Ontario Alpena 253 1 36 
Whitefish Falls, Ontario Superior 1 3 1 
Whitefish River Alpena 7 1 1 
Whiting Toledo (USA) 26 4 4 
Whiting Whiting 1 1 1 
Windsor Alpena 8 2 1 
Windsor Ashtabula 21 1 3 
Windsor Buffalo 10 1 1 
Windsor Burns Harbour 10 2 1 
Windsor Calcite 482 1 69 
Windsor Cedarville 58 1 8 
Windsor Chicago 11 5 2 
Windsor Cleveland 17 1 2 
Windsor Conneaut 9 1 1 
Windsor Detroit 64 1 9 
Windsor Drummond Island 8 1 1 
Windsor Duluth 94 3 13 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Windsor Fairport Harbor 4 1 1 
Windsor Green Bay 1 2 1 
Windsor Kelleys Island 8 1 1 
Windsor Ludington 6 6 1 
Windsor Marblehead 215 1 31 
Windsor Marquette 87 2 12 
Windsor Meldrum Bay 8 2 1 
Windsor Milwaukee 1 14 1 
Windsor Muskegon 1 2 1 
Windsor Oswego 2 2 1 
Windsor Port Dolomite 111 1 16 
Windsor Port Gypsum 50 1 7 
Windsor Port Inland 16 2 2 
Windsor Presque Isle 24 1 3 
Windsor Sandusky 55 1 8 
Windsor Silver Bay 45 2 6 
Windsor Stoneport 173 1 25 
Windsor Superior 62 3 9 
Windsor Tawas City 5 1 1 
Windsor Thunder Bay 2 4 1 
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Table A.3. Trip Data 

Source Location Discharge Location Number 
of Trips 

Median 
Trip 

Length 

Mean 
Trips per 

Year 
Windsor Toledo (USA) 466 1 67 
Windsor Two Harbors 17 2 2 
Windsor Whiting 5 4 1 
Windsor Windsor 3 1 1 
Wyandotte Calcite 149 1 21 
Wyandotte Cedarville 7 1 1 
Wyandotte Marquette 31 2 4 
Wyandotte Port Dolomite 26 2 4 
Wyandotte Presque Isle 17 1 2 
Wyandotte Sandusky 9 1 1 
Wyandotte Silver Bay 11 2 2 
Wyandotte Stoneport 27 1 4 
Wyandotte Superior 14 2 2 
Wyandotte Toledo (USA) 58 1 8 
Wyandotte Two Harbors 8 4 1 
Zilwaukee Calcite 15 1 2 
Zilwaukee Drummond Island 18 1 3 
Zilwaukee Port Dolomite 26 1 4 
Zilwaukee Stoneport 27 1 4 
Zug Island (USA, MI) Stoneport 5 1 1 
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Appendix B 

Chapter 2 Model Code 
 

 

All models were built in ArcGIS 10 ModelBuilder. We have exported the models to 

Python and included the code in this appendix. The code has been modified to remove 

file paths and eliminate repetition. The random selection tool used in the Location Model 

(RandomSelection.tbx) was downloaded from the ESRI website: 

http://arcscripts.esri.com/details.asp?dbid=15441 (last accessed: 3/29/2011). It was 

modified to select from a Poisson distribution.  

http://arcscripts.esri.com/details.asp?dbid=15441
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Random Model 

# --------------------------------------------------------------------------- 

# vhs_rand_model.py 

# Created on: 2013-06-28 14:30:05.00000 

#   (generated by ArcGIS/ModelBuilder) 

# Usage: vhs_rand_model <Distance__value_or_field_> <final_layer>  

# Description:  

# --------------------------------------------------------------------------- 

 

# Set the necessary product code 

# import arcinfo 

 

 

# Import arcpy module 

import arcpy 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = "\\base" 

 

# Script arguments 

 

# Input natural spread distance and units 

Distance__value_or_field_ = arcpy.GetParameterAsText(0) 

if Distance__value_or_field_ == '#' or not Distance__value_or_field_: 

    Distance__value_or_field_ = "20 Kilometers" # provide a default value if unspecified 

 

# Input final layer that will contain model results  

final_layer = arcpy.GetParameterAsText(1) 

if final_layer == '#' or not final_layer: 

    final_layer = "\\final_layer" # provide a default value if unspecified 

 

# Local variables: 
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# List of variables defined by ArcGIS removed for publication 

# Variables used in following code may include the following: 

#    CY = 2-digit Current Year 

#    PY = 2-digit Previous Year 

#    YYYY = 4-digit Current Year  

 

### CALCULATE THE NUMBER OF NEW INFECTIONS FOR EACH YEAR SIMULATED ### 

 

# Process: Calculate Field 

# Calculate the number of new infections to be selected for 2003 

arcpy.CalculateField_management(gl_sls_boundary__9_, "randct03", "numpy.random.poisson(lam=8)", 

"PYTHON_9.3", "import numpy.random\\nfrom numpy.random import poisson\\n") 

 

# Process: Calculate Field 

# Calculate the number of new infections to be selected for 2004 

arcpy.CalculateField_management(gl_sls_boundary__8_, "randct04", "numpy.random.poisson(lam=8)", 

"PYTHON_9.3", "import numpy.random\\nfrom numpy.random import poisson\\n") 

 

# Process: Calculate Field 

# Calculate the number of new infections to be selected for 2005 

arcpy.CalculateField_management(gl_sls_boundary, "randct05", "numpy.random.poisson(lam=8)", "PYTHON_9.3", 

"import numpy.random\\nfrom numpy.random import poisson") 

 

# Process: Calculate Field 

# Calculate the number of new infections to be selected for 2006 

arcpy.CalculateField_management(gl_sls_boundary__2_, "randct06", "numpy.random.poisson(lam=8)", 

"PYTHON_9.3", "import numpy.random\\nfrom numpy.random import poisson\\n") 

 

# Process: Calculate Field 

# Calculate the number of new infections to be selected for 2007 

arcpy.CalculateField_management(gl_sls_boundary__5_, "randct07", "numpy.random.poisson(lam=8)", 

"PYTHON_9.3", "import numpy.random\\nfrom numpy.random import poisson\\n") 

 

# Process: Calculate Field 
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# Calculate the number of new infections to be selected for 2008 

arcpy.CalculateField_management(gl_sls_boundary__3_, "randct08", "numpy.random.poisson(lam=8)", 

"PYTHON_9.3", "import numpy.random\\nfrom numpy.random import poisson\\n\\n") 

 

# Process: Calculate Field 

# Calculate the number of new infections to be selected for 2009 

arcpy.CalculateField_management(gl_sls_boundary__7_, "randct09", "numpy.random.poisson(lam=8)", 

"PYTHON_9.3", "import numpy.random\\nfrom numpy.random import poisson\\n") 

 

 

### 2003: INDENTIFY NEW INFECTIONS ### 

 

# Process: Create Random Points 

# Create random points within the Great Lakes boundary using number of infections identified for 2003 

arcpy.CreateRandomPoints_management(scratch_data__2_, "rand_pt_03", gl_sls_boundary__4_, "0 0 250 250", 

"randct03", "0 Unknown", "POINT", "0") 

 

# Process: Buffer 

# Apply the 2-km spread distance to each new infection point 

arcpy.Buffer_analysis(rand_pt_03, rand_py_03, "2 Kilometers", "FULL", "ROUND", "ALL", "") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(rand_py_03, spread1_03, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_03, "pred", "SHORT", "", "", "1", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_03__2_, "pred", "1", "VB", "") 
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### 2003: COMPARE PREDICTIONS TO ACTUAL OCCURRENCES ### 

 

# Process: Identity 

# Overlay the actual 2003 VHSV presence/absence data with the predicted data 

# Resulting feature class contains the actual status of the location and predicted status 

arcpy.Identity_analysis(vhs_pasites_2003, spread1_03__3_, detection_03, "ALL", "", "NO_RELATIONSHIPS") 

 

# Process: Add Field 

# Add a field to hold the model iteration count 

arcpy.AddField_management(detection_03, "iter", "LONG", "", "", "1", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the iteration field with the iteration count 

arcpy.CalculateField_management(detection_03__4_, "iter", "%n%", "VB", "") 

 

# Process: Append 

# Append the data resulting from Identity to the final layer 

arcpy.Append_management("\\detection_03", final_layer, "NO_TEST", "", "") 

 

 

### 2003: REMOVE INFECTED LOCATIONS FROM POSSIBILITY OF BEING SELECTED AGAIN ### 

 

# Process: Buffer 

# Add a small buffer to the newly infected locations 

arcpy.Buffer_analysis(rand_pt_03, rand_erase_2003, "1 Feet", "FULL", "ROUND", "NONE", "") 

 

# Process: Erase 

# Erase the newly infected locations from the Great Lakes boundary to prevent being used again 

arcpy.Erase_analysis(gl_sls_boundary__9_, rand_erase_2003, gl_sls_boundary_2004, "") 

 

 

### 2004-2009: IDENTIFY NEW AND CONTINUING INFECTIONS ### 

 

# Process: Create Random Points 
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# Create random points in the Great Lakes boundary using number of infections identified for current year 

arcpy.CreateRandomPoints_management(scratch_data__2_, "rand_pt_CY", gl_sls_boundary_YEAR, "0 0 250 250", 

"randctCY", "0 Unknown", "POINT", "0") 

 

# Process: Buffer 

# Apply the 2-km spread distance to each new infection point 

arcpy.Buffer_analysis(rand_pt_CY, rand_py_CY, "2 Kilometers", "FULL", "ROUND", "ALL", "") 

 

# Process: Union 

# Combine the current year’s newly infected areas to the previous year’s infected areas 

arcpy.Union_analysis("\\spread1_PY #;\\rand_py_CY #", spread1_CY, "ALL", "", "GAPS") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(spread1_CY, spread2_CY, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread2_CY, "pred", "SHORT", "", "", "1", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread2_CY__4_, "pred", "1", "VB", "") 

 

 

### 2004-2009: REMOVE INFECTED LOCATIONS FROM POSSIBILITY OF BEING SELECTED AGAIN ### 

 

# Process: Buffer 

# Add a small buffer to the newly infected locations 

arcpy.Buffer_analysis(rand_pt_CY, rand_erase_YYYY, "1 Feet", "FULL", "ROUND", "NONE", "") 

 

# Process: Erase 

# Erase the newly infected locations from the Great Lakes boundary to prevent being used again 

arcpy.Erase_analysis(gl_sls_boundary_YYYY, rand_erase_YYYY, gl_sls_boundary_YYYY, "") 
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### 2004-2009: COMPARE PREDICTIONS TO ACTUAL OCCURRENCES ### 

 

# Process: Identity 

# Overlay the actual current year’s VHSV presence/absence data with the predicted data 

# Resulting feature class contains the actual status of the location and predicted status 

arcpy.Identity_analysis(vhs_pasites_YYYY, spread2_CY__3_, detection_CY, "ALL", "", "NO_RELATIONSHIPS") 

 

# Process: Add Field 

# Add a field to hold the model iteration count 

arcpy.AddField_management(detection_CY, "iter", "LONG", "", "", "1", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the iteration field with the iteration count 

arcpy.CalculateField_management(detection_CY__4_, "iter", "%n%", "VB", "") 

 

# Process: Append 

# Append the data resulting from Identity to the final layer 

arcpy.Append_management("\\detection_CY", final_layer, "NO_TEST", "", "") 
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Location Model 

# --------------------------------------------------------------------------- 

# vhs_loc_model.py 

# Created on: 2013-06-28 14:30:24.00000 

#   (generated by ArcGIS/ModelBuilder) 

# Usage: vhs_loc_model <Distance__value_or_field_> <final_layer>  

# Description:  

# --------------------------------------------------------------------------- 

 

# Set the necessary product code 

# import arcinfo 

 

 

# Import arcpy module 

import arcpy 

 

# Load required toolboxes 

arcpy.ImportToolbox("/RandomSelection.tbx") 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = "\\base" 

 

# Script arguments 

 

# Input natural spread distance and units 

Distance__value_or_field_ = arcpy.GetParameterAsText(0) 

if Distance__value_or_field_ == '#' or not Distance__value_or_field_: 

    Distance__value_or_field_ = "10 Kilometers" # provide a default value if unspecified 

 

# Input final layer that will contain model results  

final_layer = arcpy.GetParameterAsText(1) 

if final_layer == '#' or not final_layer: 
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    final_layer = "\\final_layer" # provide a default value if unspecified 

 

# Local variables: 

# Local variables: 

# List of variables defined by ArcGIS removed for publication 

# Variables used in following code may include the following: 

#    CY = 2-digit Current Year 

#    PY = 2-digit Previous Year 

#    YYYY = 4-digit Current Year 

#    NEXT = 4-digit Next Year  

 

 

### 2003: IDENTIFY NEW INFECTIONS 

 

# Process: Random selection 

# Randomly select the number of infections for 2003 from a Poisson distribution 

# Select locations from the feature class containing discharge locations 

arcpy.gp.toolbox = "/RandomSelection.tbx"; 

arcpy.gp.RandomSelection(gl_discharge_loc_red, ship_dis_03_lyr) 

 

# Process: Buffer 

# Apply the 2-km spread distance to each new infection point  

arcpy.Buffer_analysis(ship_dis_03_lyr, rand_ship_py_03, "2 Kilometers", "FULL", "ROUND", "ALL", "") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(rand_ship_py_03, spread1_03, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_03, "pred", "SHORT", "", "", "1", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 
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arcpy.CalculateField_management(spread1_03__2_, "pred", "1", "VB", "") 

 

 

### 2003: COMPARE PREDICTIONS TO ACTUAL OCCURRENCES ### 

 

# Process: Identity 

# Overlay the actual 2003 VHSV presence/absence data with the predicted data 

# Resulting feature class contains the actual status of the location and predicted status 

arcpy.Identity_analysis(vhs_pasites_2003, spread1_03__3_, detection_03, "ALL", "", "NO_RELATIONSHIPS") 

 

# Process: Add Field 

# Add a field to hold the model iteration count 

arcpy.AddField_management(detection_03, "iter", "LONG", "", "", "1", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the iteration field with the iteration count 

arcpy.CalculateField_management(detection_03__4_, "iter", "%n%", "VB", "") 

 

# Process: Append 

# Append the data resulting from Identity to the final layer 

arcpy.Append_management("\\detection_03", final_layer, "NO_TEST", "", "") 

 

 

### 2003: REMOVE INFECTED LOCATIONS FROM POSSIBILITY OF BEING SELECTED AGAIN ### 

 

# Process: Join Field 

# Join the 2003 infected locations layer created under Random Selection (8) to the discharge feature class 

arcpy.JoinField_management(gl_discharge_loc_red, "Location", ship_dis_03_lyr, "Location", "Location") 

 

# Process: Select 

# Create a new feature class of those locations that have not already been infected 

arcpy.Select_analysis(gl_discharge_loc_red__3_, gl_discharge_loc_2004, "\"Location_1\" IS NULL") 

 

# Process: Delete Field 
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# Delete the field added to the discharge feature class during Join Field 

arcpy.DeleteField_management(gl_discharge_loc_2004, "Location_1") 

 

 

### 2004-2009: IDENTIFY NEW AND CONTINUING INFECTIONS ### 

 

# Process: Random selection 

# Randomly select the number of infections for the current year from a Poisson distribution 

# Select locations from the feature class containing discharge locations with previous infections removed 

arcpy.gp.toolbox = " /RandomSelection.tbx"; 

arcpy.gp.RandomSelection(gl_discharge_loc_YYYY__2_, ship_dis_CY_lyr) 

 

# Process: Buffer 

# Apply the 2-km spread distance to each new infection point  

arcpy.Buffer_analysis(ship_dis_CY_lyr, rand_ship_py_CY, "2 Kilometers", "FULL", "ROUND", "ALL", "") 

 

# Process: Union 

# Combine the current year’s newly infected areas to the previous year’s infected areas 

arcpy.Union_analysis("\\spread1_PY #;\\rand_ship_py_CY #", spread1_CY, "ALL", "", "GAPS") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(spread1_CY, spread2_CY, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread2_CY, "pred", "SHORT", "", "", "1", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread2_CY__3_, "pred", "1", "VB", "") 

 

 

### 2004-2009: COMPARE PREDICTIONS TO ACTUAL OCCURRENCES ### 
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# Process: Identity 

# Overlay the actual VHSV presence/absence data with the predicted data 

# Resulting feature class contains the actual status of the location and predicted status 

arcpy.Identity_analysis(vhs_pasites_2004, spread2_04__2_, detection_04, "ALL", "", "NO_RELATIONSHIPS") 

 

# Process: Add Field 

# Add a field to hold the model iteration count 

arcpy.AddField_management(detection_04, "iter", "LONG", "", "", "1", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the iteration field with the iteration count 

arcpy.CalculateField_management(detection_04__5_, "iter", "%n%", "VB", "") 

 

# Process: Append 

# Append the data resulting from Identity to the final layer 

arcpy.Append_management("\\detection_04", final_layer, "NO_TEST", "", "") 

 

 

### 2004-2009: REMOVE INFECTED LOCATIONS FROM POSSIBILITY OF BEING SELECTED AGAIN ### 

 

# Process: Join Field 

# Join the current year’s infected locations identified by Random Selection to the discharge feature class 

arcpy.JoinField_management(gl_discharge_loc_YYYY__2_, "Location", ship_dis_CY_lyr, "Location", "Location") 

 

# Process: Select 

# Create a new feature class of those locations that have not already been infected 

arcpy.Select_analysis(gl_discharge_loc_YYYY__3_, gl_discharge_loc_NEXT, "\"Location_1\" IS NULL") 

 

# Process: Delete Field 

# Delete the field added to the discharge feature class during Join Field 

arcpy.DeleteField_management(gl_discharge_loc_NEXT, "Location_1")  
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Propagule Pressure Model: Lake St. Clair Only 

# --------------------------------------------------------------------------- 

# vhs_pplsc_model.py 

# Created on: 2013-07-08 09:47:27.00000 

#   (generated by ArcGIS/ModelBuilder) 

# Usage: vhs_pplsc_model <Distance__value_or_field_> <final_layer>  

# Description:  

# --------------------------------------------------------------------------- 

 

# Set the necessary product code 

# import arcinfo 

 

 

# Import arcpy module 

import arcpy 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = "\\base" 

 

# Script arguments 

 

# Input natural spread distance and units 

Distance__value_or_field_ = arcpy.GetParameterAsText(0) 

if Distance__value_or_field_ == '#' or not Distance__value_or_field_: 

    Distance__value_or_field_ = "20 Kilometers" # provide a default value if unspecified 

 

# Input final layer that will contain model results  

final_layer = arcpy.GetParameterAsText(1) 

if final_layer == '#' or not final_layer: 

    final_layer = " \\final_layer" # provide a default value if unspecified 

 

# Local variables: 
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# List of variables defined by ArcGIS removed for publication 

# Variables used in following code may include the following: 

#    CY = 2-digit Current Year 

#    PY = 2-digit Previous Year 

#    YYYY = 4-digit Current Year 

#    PREV = 4-digit Previous Year  

 

### 2003: BEGIN INVASION FROM 1ST LAKE ST. CLAIR OCCURRENCE ### 

 

# Process: Select 

# Create feature class with Lake St. Clair as the initial invasion locations 

arcpy.Select_analysis(vhs_pasites_2003, vhs_possites_2003, "\"actual\" = 1") 

 

# Process: Buffer 

# Apply the 2-km spread distance to each new infection point  

arcpy.Buffer_analysis(vhs_possites_2003, ship_py_03, "2 Kilometers", "FULL", "ROUND", "ALL", "") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(ship_py_03, spread1_03, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_03, "pred", "SHORT", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_03__2_, "pred", "1", "VB", "") 

 

 

### 2004: IDENTIFY NEW AND CONTINUING INFECTIONS ### 

 

# Process: Identity 

# Identify source locations that fall within the infected boundary 
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arcpy.Identity_analysis(gl_discharge_source_red, spread1_03__3_, source_inf_03, "ALL", "", 

"NO_RELATIONSHIPS") 

 

# Process: Join Field 

# Join infected sources with table containing source-to-discharge trip information 

arcpy.JoinField_management(sourcedis_freq_2003, "Source_Location", source_inf_03, "Location", "pred") 

 

# Process: Table Select 

# Select discharge locations that have received ballast water from an infected source 

arcpy.TableSelect_analysis(sourcedis_freq_2003__2_, sourcedis_inf_2003, "\"pred\" = 1") 

 

# Process: Delete Field 

# Delete prediction files from tables that contain source-to-discharge trip information 

arcpy.DeleteField_management(sourcedis_freq_2003__2_, "pred;pred") 

 

# Process: Summary Statistics 

# Calculate the number of visits discharge locations received from infected sources 

arcpy.Statistics_analysis(sourcedis_inf_2003, dis_inf_2003, "FREQUENCY SUM", "Discharge_Location") 

 

# Process: Join Field 

# Join the table from Summary Statistics to the discharge feature class 

arcpy.JoinField_management(gl_discharge_loc_red__10_, "Location", dis_inf_2003, "Discharge_Location", 

"SUM_FREQUENCY") 

 

# Process: Add Field 

# Create a field to hold the number of visits each location received from an infected source 

arcpy.AddField_management(gl_discharge_loc_red, "inf_visits", "LONG", "", "", "", "", "NULLABLE", 

"NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the field with the number of visits each location received from an infected source 

arcpy.CalculateField_management(gl_discharge_loc_red__3_, "inf_visits", "[SUM_FREQUENCY]", "VB", "") 

 

# Process: Delete Field 
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# Delete the field added to the discharge feature class from Join Field 

arcpy.DeleteField_management(gl_discharge_loc_red__4_, "SUM_FREQUENCY") 

 

# Process: Calculate Field 

# Calculate the number of visits that resulted in infection for 2004 by drawing from binomial distribution 

# n = number of visits, p = p(VLP) 

arcpy.CalculateField_management(gl_discharge_loc_red__5_, "inf03", "numpy.random.binomial(n= !inf_visits!, 

p= !decay_per!  )", "PYTHON_9.3", "import numpy.random\\nfrom numpy.random import binomial") 

 

# Process: Buffer 

# Apply the 2-km spread distance to discharge locations 

arcpy.Buffer_analysis(gl_discharge_loc_red__14_, dis_inf_py_04, "2 Kilometers", "FULL", "ROUND", "LIST", 

"inf03") 

 

# Process: Select 

# Select areas that were newly infected for 2004 

arcpy.Select_analysis(dis_inf_py_04, dis_inf_yes_04, "inf03 >= 1") 

 

# Process: Union 

# Combine the 2004 newly infected areas to the previous years infected areas  

arcpy.Union_analysis("\\spread1_03 #;\\dis_inf_yes_04 #", ship_py_04, "ALL", "", "GAPS") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(ship_py_04, spread1_04, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_04, "pred", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_04__2_, "pred", "1", "VB", "") 
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### 2005-2009: IDENTIFY NEW AND CONTINUING INFECTIONS ### 

 

# Process: Identity 

# Identify source locations that fall within the infected boundary 

arcpy.Identity_analysis(gl_discharge_source_red, spread1_PY__3_, source_inf_PY, "ALL", "", 

"NO_RELATIONSHIPS") 

 

# Process: Join Field 

# Join infected sources with table containing source-to-discharge trip information 

arcpy.JoinField_management(sourcedis_freq_PREV__4_, "Source_Location", source_inf_PY, "Location", "pred") 

 

# Process: Table Select 

# Select discharge locations that have received ballast water from an infected source 

arcpy.TableSelect_analysis(sourcedis_freq_PREV, sourcedis_inf_PREV, "\"pred\" = 1") 

 

# Process: Delete Field 

# Delete prediction files from tables that contain source-to-discharge trip information 

arcpy.DeleteField_management(sourcedis_freq_PREV__2_, "pred;pred") 

 

# Process: Summary Statistics 

# Calculate the number of visits discharge locations received from infected sources 

arcpy.Statistics_analysis(sourcedis_inf_PREV, dis_inf_PREV, "FREQUENCY SUM", "Discharge_Location") 

 

# Process: Join Field 

# Join the table from Summary Statistics to the discharge feature class 

arcpy.JoinField_management(gl_discharge_loc_red__14_, "Location", dis_inf_PREV, "Discharge_Location", 

"SUM_FREQUENCY") 

 

# Process: Calculate Field 

# Attribute the field with the number of visits each location received from an infected source 

arcpy.CalculateField_management(gl_discharge_loc_red__7_, "inf_visits", "[SUM_FREQUENCY]", "VB", "") 
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# Process: Delete Field 

# Delete the field added to the discharge feature class from Join Field (4) 

arcpy.DeleteField_management(gl_discharge_loc_red__8_, "SUM_FREQUENCY") 

 

# Process: Calculate Field 

# Calculate number of visits that resulted in infection for the year by drawing from binomial distribution 

# n = number of visits, p = p(VLP) 

arcpy.CalculateField_management(gl_discharge_loc_red__18_, "infPY", "numpy.random.binomial(n= !inf_visits!, 

p= !decay_per! )", "PYTHON_9.3", "import numpy.random\\nfrom numpy.random import binomial") 

 

# Process: Buffer 

# Apply the 2-km spread distance to discharge locations 

arcpy.Buffer_analysis(gl_discharge_loc_red__2_, dis_inf_py_CY, "2 Kilometers", "FULL", "ROUND", "LIST", 

"inf04") 

 

# Process: Select 

# Select areas that were newly infected for the year 

arcpy.Select_analysis(dis_inf_py_CY, dis_inf_yes_CY, "infPY >= 1") 

 

# Process: Union 

# Combine the current year’s newly infected areas to the previous year’s infected areas  

arcpy.Union_analysis("\\spread1_PY #;\\dis_inf_yes_CY #", ship_py_CY, "ALL", "", "GAPS") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(ship_py_CY, spread1_CY, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_CY, "pred", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_CY__2_, "pred", "1", "VB", "") 
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### 2005-2009: COMPARE PREDICTIONS TO ACTUAL OCCURRENCES ### 

 

# Process: Select 

# Create feature class with all presence/absence locations except Lake St. Clair 

arcpy.Select_analysis(vhs_pasites_YYYY, vhs_pasites_ship_YYYY, "\"Location\" <> 'Lake St. Clair-1'") 

 

# Process: Identity 

# Overlay the actual VHSV presence/absence data with the predicted data 

# Resulting feature class contains the actual status of the location and predicted status 

arcpy.Identity_analysis(vhs_pasites_ship_YYYY, spread1_YY__3_, ship_pred_CY, "ALL", "", "NO_RELATIONSHIPS") 

 

# Process: Add Field 

# Add a field to hold the model iteration count 

arcpy.AddField_management(ship_pred_CY, "iter", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the iteration field with the iteration count 

arcpy.CalculateField_management(ship_pred_CY__2_, "iter", "%n%", "VB", "") 

 

# Process: Append 

# Append the data resulting from Identity to the final layer 

arcpy.Append_management("\\ship_pred_CY", final_layer, "NO_TEST", "", "")  
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Propagule Pressure Model: Montreal Only 

# --------------------------------------------------------------------------- 

# vhs_ppmon_model.py 

# Created on: 2013-07-03 14:48:04.00000 

#   (generated by ArcGIS/ModelBuilder) 

# Usage: vhs_ppmon_model <Distance__value_or_field_> <final_layer>  

# Description:  

# --------------------------------------------------------------------------- 

 

# Set the necessary product code 

# import arcinfo 

 

 

# Import arcpy module 

import arcpy 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = "\\base" 

 

# Script arguments 

 

# Input natural spread distance and units 

Distance__value_or_field_ = arcpy.GetParameterAsText(0) 

if Distance__value_or_field_ == '#' or not Distance__value_or_field_: 

    Distance__value_or_field_ = "20 Kilometers" # provide a default value if unspecified 

 

# Input final layer that will contain model results  

final_layer = arcpy.GetParameterAsText(1) 

if final_layer == '#' or not final_layer: 

    final_layer = "\\final_layer" # provide a default value if unspecified 

 

# Local variables: 
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# List of variables defined by ArcGIS removed for publication 

# Variables used in following code may include the following: 

#    CY = 2-digit Current Year 

#    PY = 2-digit Previous Year 

#    YYYY = 4-digit Current Year 

#    PREV = 4-digit Previous Year 

 

 

### PRE-2003: BEGIN INVASION FROM MONTREAL ### 

 

# Process: Buffer 

# Apply the 2-km spread distance to discharge locations 

arcpy.Buffer_analysis(montreal_testsite__2_, ship_py_g0, "2 Kilometers", "FULL", "ROUND", "ALL", "") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(ship_py_g0, spread1_g0, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_g0, "pred", "SHORT", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_g0__2_, "pred", "1", "VB", "") 

 

 

### 2003-2009: IDENTIFY NEW AND CONTINUING INFECTIONS ### 

 

# Process: Identity 

# Identify source locations that fall within the infected boundary 

arcpy.Identity_analysis(gl_discharge_source_red, spread1_PY__3_, source_inf_PY, "ALL", "", 

"NO_RELATIONSHIPS") 
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# Process: Join Field 

# Join infected sources with table containing source-to-discharge trip information 

arcpy.JoinField_management(sourcedis_freq_PREV, "Source_Location", source_inf_PY, "Location", "pred") 

 

# Process: Table Select 

# Select discharge locations that have received ballast water from an infected source 

arcpy.TableSelect_analysis(sourcedis_freq_PREV__4_, sourcedis_inf_PY, "\"pred\" = 1") 

 

# Process: Summary Statistics 

# Calculate the number of visits discharge locations received from infected sources 

arcpy.Statistics_analysis(sourcedis_inf_PY, dis_inf_PY, "FREQUENCY SUM", "Discharge_Location") 

 

# Process: Join Field 

# Join the table from Summary Statistics to the discharge feature class 

arcpy.JoinField_management(gl_discharge_loc_red__28_, "Location", dis_inf_PY, "Discharge_Location", 

"SUM_FREQUENCY") 

 

# Process: Add Field 

# Create a field to hold the number of visits each location received from an infected source 

arcpy.AddField_management(gl_discharge_loc_red__2_, "inf_visits", "LONG", "", "", "", "", "NULLABLE", 

"NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the field with the number of visits each location received from an infected source 

arcpy.CalculateField_management(gl_discharge_loc_red__29_, "inf_visits", "[SUM_FREQUENCY]", "VB", "") 

 

# Process: Delete Field 

# Delete the field added to the discharge feature class from Join Field (14) 

arcpy.DeleteField_management(gl_discharge_loc_red__30_, "SUM_FREQUENCY") 

 

# Process: Add Field 

# Add a field to calculate the number of visits resulting in infection 

arcpy.AddField_management(gl_discharge_loc_red__31_, "infPY", "DOUBLE", "", "", "", "", "NULLABLE", 

"NON_REQUIRED", "") 
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# Process: Calculate Field (27) 

# Calculate the number of visits that resulted in infection by drawing from a binomial distribution 

# n = number of visits, p = p(VLP) 

arcpy.CalculateField_management(gl_discharge_loc_red__32_, "infPY", "numpy.random.binomial(n= !inf_visits!, 

p= !decay_per! )", "PYTHON_9.3", "import numpy.random\\nfrom numpy.random import binomial") 

 

# Process: Buffer 

# Apply the 2-km spread distance to discharge locations 

arcpy.Buffer_analysis(gl_discharge_loc_red__33_, dis_inf_py_CY, "2 Kilometers", "FULL", "ROUND", "LIST", 

"infg0") 

 

# Process: Select 

# Select areas that were newly infected 

arcpy.Select_analysis(dis_inf_py_CY, dis_inf_yes_CY, "infg0 >= 1") 

 

# Process: Union 

# Combine the current year’s newly infected areas to the previous year’s infected areas 

arcpy.Union_analysis("\\spread1_PY #;\\dis_inf_yes_CY #", ship_py_CY, "ALL", "", "GAPS") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(ship_py_CY, spread1_CY, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_CY, "pred", "SHORT", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_CY__2_, "pred", "1", "VB", "") 

 

# Process: Delete Field 

# Delete prediction files from tables that contain source-to-discharge trip information 
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arcpy.DeleteField_management(sourcedis_freq_YYYY__4_, "pred;pred") 

 

 

### 2003-2009: COMPARE PREDICTIONS TO ACTUAL OCCURRENCES ### 

 

# Process: Identity 

# Overlay the actual VHSV presence/absence data with the predicted data 

# Resulting feature class contains the actual status of the location and predicted status 

arcpy.Identity_analysis(vhs_pasites_YYYY, spread1_CY__3_, ship_pred_CY, "ALL", "", "NO_RELATIONSHIPS") 

 

# Process: Add Field 

# Add a field to hold the model iteration count 

arcpy.AddField_management(ship_pred_CY, "iter", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the iteration field with the iteration count 

arcpy.CalculateField_management(ship_pred_CY__2_, "iter", "%n%", "VB", "") 

 

# Process: Append 

# Append the data resulting from Identity to the final layer 

arcpy.Append_management("\\ship_pred_CY", final_layer, "NO_TEST", "Location \"Location\" true true false 

100 Text 0 0 ,First,#,\\ship_pred_CY,Location,-1,-1;Year \"Year\" true true false 2 Short 0 0 

,First,#,\\ship_pred_CY,Year,-1,-1;actual \"actual\" true true false 2 Short 0 0 

,First,#,\\ship_pred_CY,actual,-1,-1;pred \"pred\" true true false 2 Short 0 0 

,First,#,\\ship_pred_CY,pred,-1,-1;iter \"iter\" true true false 4 Long 0 0 ,First,#,\\ship_pred_CY,iter,-

1,-1;a \"a\" true true false 4 Long 0 0 ,First,#;b \"b\" true true false 4 Long 0 0 ,First,#;c \"c\" true 

true false 4 Long 0 0 ,First,#;d \"d\" true true false 4 Long 0 0 ,First,#", "")  
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Propagule Pressure Model: Lake St. Clair and Montreal 

# --------------------------------------------------------------------------- 

# vhs_pplscmon_model.py 

# Created on: 2013-07-03 14:47:41.00000 

#   (generated by ArcGIS/ModelBuilder) 

# Usage: vhs_pplscmon_model <Distance__value_or_field_> <final_layer>  

# Description:  

# --------------------------------------------------------------------------- 

 

# Set the necessary product code 

# import arcinfo 

 

 

# Import arcpy module 

import arcpy 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = "\\base" 

 

# Script arguments 

 

# Input natural spread distance and units 

Distance__value_or_field_ = arcpy.GetParameterAsText(0) 

if Distance__value_or_field_ == '#' or not Distance__value_or_field_: 

    Distance__value_or_field_ = "10 Kilometers" # provide a default value if unspecified 

 

# Input final layer that will contain model results  

final_layer = arcpy.GetParameterAsText(1) 

if final_layer == '#' or not final_layer: 

    final_layer = "\\final_layer" # provide a default value if unspecified 

 

# Local variables: 
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# List of variables defined by ArcGIS removed for publication 

# Variables used in following code may include the following: 

#    CY = 2-digit Current Year 

#    PY = 2-digit Previous Year 

#    YYYY = 4-digit Current Year 

#    PREV = 4-digit Previous Year 

 

 

 

### 2003: BEGIN INVASION FROM 1st LAKE ST. CLAIR OCCURRENCE AND MONTREAL ### 

 

# Process: Merge 

# Merge 2003 presence/absence feature class and Montreal initial infection location into one feature class 

arcpy.Merge_management("\\vhs_pasites_2003;\\montreal_testsite", vhs_pasites_2003_lscmon, "Location 

\"Location\" true true false 100 Text 0 0 ,First,#,\\vhs_pasites_2003,Location,-1,-1;Year \"Year\" true 

true false 2 Short 0 0 ,First,#,\\vhs_pasites_2003,Year,-1,-1;Source \"Source\" true true false 250 Text 0 

0 ,First,#,\\vhs_pasites_2003,Source,-1,-1;actual \"actual\" true true false 2 Short 0 0 

,First,#,\\vhs_pasites_2003,actual,-1,-1;RECTYPE \"RECTYPE\" true true false 1 Text 0 0 

,First,#,\\montreal_testsite,RECTYPE,-1,-1;VERSION \"VERSION\" true true false 2 Text 0 0 

,First,#,\\montreal_testsite,VERSION,-1,-1;REVISION \"REVISION\" true true false 2 Text 0 0 

,First,#,\\montreal_testsite,REVISION,-1,-1;MODDATE \"MODDATE\" true true false 4 Long 0 0 

,First,#,\\montreal_testsite,MODDATE,-1,-1;POINTID \"POINTID\" true true false 8 Double 0 0 

,First,#,\\montreal_testsite,POINTID,-1,-1;FEATUREID \"FEATUREID\" true true false 10 Text 0 0 

,First,#,\\montreal_testsite,FEATUREID,-1,-1;LONGITUDE \"LONGITUDE\" true true false 8 Double 0 0 

,First,#,\\montreal_testsite,LONGITUDE,-1,-1;LATITUDE \"LATITUDE\" true true false 8 Double 0 0 

,First,#,\\montreal_testsite,LATITUDE,-1,-1;DESCRIP \"DESCRIP\" true true false 35 Text 0 0 

,First,#,\\montreal_testsite,DESCRIP,-1,-1;STFIPS \"STFIPS\" true true false 2 Short 0 0 

,First,#,\\montreal_testsite,STFIPS,-1,-1") 

 

# Process: Select 

# Select Lake St. Clair and Montreal presence locations to create initial infection feature class 

arcpy.Select_analysis(vhs_pasites_2003_lscmon, vhs_possites_2003, "\"actual\" = 1") 

 

# Process: Buffer 
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# Apply the 2-km spread distance to discharge locations 

arcpy.Buffer_analysis(vhs_possites_2003, ship_py_03, "2 Kilometers", "FULL", "ROUND", "ALL", "") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(ship_py_03, spread1_03, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_03, "pred", "SHORT", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_03__2_, "pred", "1", "VB", "") 

 

 

### 2004: IDENTIFY NEW AND CONTINUING INFECTIONS ### 

 

# Process: Identity 

# Identify source locations that fall within the infected boundary 

arcpy.Identity_analysis(gl_discharge_source_red, spread1_03__3_, source_inf_03, "ALL", "", 

"NO_RELATIONSHIPS") 

 

# Process: Join Field 

# Join infected sources with table containing source-to-discharge trip information 

arcpy.JoinField_management(sourcedis_freq_2003, "Source_Location", source_inf_03, "Location", "pred") 

 

# Process: Table Select 

# Select discharge locations that have received ballast water from an infected source 

arcpy.TableSelect_analysis(sourcedis_freq_2003__2_, sourcedis_inf_2003, "\"pred\" = 1") 

 

# Process: Summary Statistics 

# Calculate the number of visits discharge locations received from infected sources 

arcpy.Statistics_analysis(sourcedis_inf_2003, dis_inf_2003, "FREQUENCY SUM", "Discharge_Location") 
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# Process: Join Field 

# Join the table from Summary Statistics to the discharge feature class 

arcpy.JoinField_management(gl_discharge_loc_red__18_, "Location", dis_inf_2003, "Discharge_Location", 

"SUM_FREQUENCY") 

 

# Process: Add Field 

# Create a field to hold the number of visits each location received from an infected source 

arcpy.AddField_management(gl_discharge_loc_red, "inf_visits", "LONG", "", "", "", "", "NULLABLE", 

"NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute the field with the number of visits each location received from an infected source 

arcpy.CalculateField_management(gl_discharge_loc_red__3_, "inf_visits", "[SUM_FREQUENCY]", "VB", "") 

 

# Process: Delete Field 

# Delete the field added to the discharge feature class from Join Field (2) 

arcpy.DeleteField_management(gl_discharge_loc_red__4_, "SUM_FREQUENCY") 

 

# Process: Calculate Field 

# Calculate the number of visits that resulted in infection for 2004 by drawing from binomial distribution 

# n = number of visits, p = p(VLP) 

arcpy.CalculateField_management(gl_discharge_loc_red__5_, "inf03", "numpy.random.binomial(n= !inf_visits!, 

p= !decay_per!  )", "PYTHON_9.3", "import numpy.random\\nfrom numpy.random import binomial") 

 

# Process: Buffer 

# Apply the 2-km spread distance to discharge locations 

arcpy.Buffer_analysis(gl_discharge_loc_red__14_, dis_inf_py_04, "2 Kilometers", "FULL", "ROUND", "LIST", 

"inf03") 

 

# Process: Select 

# Select areas that were newly infected for 2004 

arcpy.Select_analysis(dis_inf_py_04, dis_inf_yes_04, "inf03 >= 1") 
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# Process: Union 

# Combine the 2004 newly infected areas to the previous years infected areas 

arcpy.Union_analysis("\\spread1_03 #;\\dis_inf_yes_04 #", ship_py_04, "ALL", "", "GAPS") 

 

# Process: Buffer 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(ship_py_04, spread1_04, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_04, "pred", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_04__2_, "pred", "1", "VB", "") 

 

 

### 2005-2009: IDENTIFY NEW AND CONTINUING INFECTIONS ### 

 

# Process: Identity 

# Identify source locations that fall within the infected boundary 

arcpy.Identity_analysis(gl_discharge_source_red, spread1_PY__3_, source_inf_PY, "ALL", "", 

"NO_RELATIONSHIPS") 

 

# Process: Join Field 

# Join infected sources with table containing source-to-discharge trip information 

arcpy.JoinField_management(sourcedis_freq_PREV__2_, "Source_Location", source_inf_PY, "Location", "pred") 

 

# Process: Table Select 

# Select discharge locations that have received ballast water from an infected source 

arcpy.TableSelect_analysis(sourcedis_freq_PREV, sourcedis_inf_PREV, "\"pred\" = 1") 

 

# Process: Summary Statistics (2) 

# Calculate the number of visits discharge locations received from infected sources 
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arcpy.Statistics_analysis(sourcedis_inf_PREV, dis_inf_PREV, "FREQUENCY SUM", "Discharge_Location") 

 

# Process: Join Field (4) 

# Join the table from Summary Statistics to the discharge feature class 

arcpy.JoinField_management(gl_discharge_loc_red__14_, "Location", dis_inf_PREV, "Discharge_Location", 

"SUM_FREQUENCY") 

 

# Process: Calculate Field (5) 

# Attribute the field with the number of visits each location received from an infected source 

arcpy.CalculateField_management(gl_discharge_loc_red__7_, "inf_visits", "[SUM_FREQUENCY]", "VB", "") 

 

# Process: Delete Field (2) 

# Delete the field added to the discharge feature class from Join Field (4) 

arcpy.DeleteField_management(gl_discharge_loc_red__8_, "SUM_FREQUENCY") 

 

# Process: Calculate Field (6) 

# Calculate the number of visits that resulted in infection for 2005 by drawing from binomial distribution 

# n = number of visits, p = p(VLP) 

arcpy.CalculateField_management(gl_discharge_loc_red__27_, "inf0PY", "numpy.random.binomial(n= 

!inf_visits!, p= !decay_per! )", "PYTHON_9.3", "import numpy.random\\nfrom numpy.random import binomial") 

 

# Process: Buffer (5) 

# Apply the 2-km spread distance to discharge locations 

arcpy.Buffer_analysis(gl_discharge_loc_red__2_, dis_inf_py_CY, "2 Kilometers", "FULL", "ROUND", "LIST", 

"infPY") 

 

# Process: Select (3) 

# Select areas that were newly infected for 2005 

arcpy.Select_analysis(dis_inf_py_CY, dis_inf_yes_CY, "infPY >= 1") 

 

# Process: Union (2) 

# Combine the 2005 newly infected areas to the previous years infected areas 

arcpy.Union_analysis("\\spread1_PY #;\\dis_inf_yes_CY #", ship_py_CY, "ALL", "", "GAPS") 
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# Process: Buffer (6) 

# Apply the natural spread distance to infected areas 

arcpy.Buffer_analysis(ship_py_CY, spread1_CY, Distance__value_or_field_, "FULL", "ROUND", "ALL", "") 

 

# Process: Add Field (4) 

# Add a “prediction” field to the attribute table to identify infected areas 

arcpy.AddField_management(spread1_CY, "pred", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field (7) 

# Attribute “prediction” filed to identify infected areas 

arcpy.CalculateField_management(spread1_CY__2_, "pred", "1", "VB", "") 

 

 

### 2005-2009: COMPARE PREDICTIONS TO ACTUAL OCCURRENCES ### 

 

# Process: Select (4) 

# Create feature class with all presence/absence locations except Lake St. Clair 

arcpy.Select_analysis(vhs_pasites_YYYY, vhs_pasites_ship_YYYY, "\"Location\" <> 'Lake St. Clair-1'") 

 

# Process: Identity (3) 

# Overlay the actual 2005 VHSV presence/absence data with the predicted data 

# Resulting feature class contains the actual status of the location and predicted status 

arcpy.Identity_analysis(vhs_pasites_ship_YYYY, spread1_CY__3_, ship_pred_CY, "ALL", "", "NO_RELATIONSHIPS") 

 

# Process: Add Field (5) 

# Add a field to hold the model iteration count 

arcpy.AddField_management(ship_pred_CY, "iter", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Calculate Field (8) 

# Attribute the iteration field with the iteration count 

arcpy.CalculateField_management(ship_pred_CY__2_, "iter", "%n%", "VB", "") 

 

# Process: Append 

# Append the data resulting from Identity (3) to the final layer 
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arcpy.Append_management("\\ship_pred_CY", final_layer, "NO_TEST", "", "") 
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Appendix C 

Chapter 3 Model Code 
 

 

Following is the Python code for the models used to backcast the spread of Eurasian 

Ruffe and zebra mussel and to forecast the spread of Eurasian Ruffe, killer shrimp, and 

golden mussel. The code has been modified so as to include generic file names. The 

random and location models both include code from a random selection tool 

(RandomSelection.tbx) that was downloaded from the ESRI website: 

http://arcscripts.esri.com/details.asp?dbid=15441 (last accessed: 3/29/2011) and 

modified. 
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BACKCASTING MODELS 
 
Random Model 
 
# Import the arcpy module 

import arcpy, os, sys, traceback, subprocess 

import random 

import numpy.random 

from numpy.random import poisson 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = "in_memory" 

arcpy.env.overwriteOutput = True 

 

# Script arguments 

Spreaddistance = arcpy.GetParameterAsText(0) 

Spreadunits = arcpy.GetParameterAsText(1) 

stStartyear = arcpy.GetParameterAsText(2) 

stEndyear = arcpy.GetParameterAsText(3) 

Finallayer = arcpy.GetParameterAsText(4) 

 

#Local Variables 

v_scratchworkspace = "%scratchworkspace%" 

randinfpoints = "\\rand_inf_points" 

speciesboundary = "\\species_boundary" 

iStartyear = int(stStartyear) 

iEndyear = int(stEndyear) 

global iyear 

iyear = iStartyear 

global styear 

styear = str(iyear) 

global inewyear 

inewyear = iyear + 1 

global stnewyear 

stnewyear = str(inewyear) 

global iyear2 

iyear2 = int(stStartyear) 

global styear2 
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styear2 = str(iyear2) 

global iPreviousyear 

iPreviousyear = iyear2 - 1 

global stPreviousyear 

stPreviousyear = str(iPreviousyear) 

Bufdist = Spreaddistance + " " + Spreadunits 

 

 

#Process: Clip--clip randomly generated points to species boundary 

arcpy.Clip_analysis(randinfpoints, speciesboundary, "in_memory\memSpeciesRand_" + styear) 

 

#Create a layer of random points that have not been previously selected for next year 

while int(iyear) <= int(iEndyear): 

 

    #Block of code that selects and maps random points. 

    #Created from RandomSelection.py by Leah Saunders, ESRI Inc. 

    #With major modification by Stephen Lead. 

    ranct = numpy.random.poisson(lam=4) 

    desc = arcpy.Describe("in_memory\memSpeciesRand_" + styear) 

    recct = int(arcpy.GetCount_management("in_memory\memSpeciesRand_" + styear).getOutput(0)) 

    if ranct <= recct: 

        numValues = (ranct) 

    else: 

        numValues = (recct) 

    arcpy.AddMessage("Selecting " + str(numValues) + " random features") 

 

    if numValues > 0: 

 

        inList = [] 

        randomList = [] 

        fldname = desc.OIDFieldName 

        rows = arcpy.SearchCursor("in_memory\memSpeciesRand_" + styear) 

        row = rows.next() 

        arcpy.AddMessage ("Loading all IDs into a list") 

        while row: 

            id = row.getValue(fldname) 

            inList.append(id) 

            row = rows.next() 

 

        selpnts = 0 
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        arcpy.AddMessage("Creating the list of randomly selected features") 

        while len(randomList) < numValues: 

            selpnts += 1 

            selItem = random.choice(inList) 

            randomList.append(selItem) 

            inList.remove(selItem) 

 

        theLen = len(str(randomList)) 

        sqlexp = '"' + fldname + '"' + " in " + "(" + str(randomList)[1:theLen - 1] + ")" 

        arcpy.MakeFeatureLayer_management("in_memory\memSpeciesRand_" + styear, "\\SpeciesRand_" + 

styear  

        + "_selection.lyr", sqlexp) 

        arcpy.SaveToLayerFile_management("\\SpeciesRand_" + styear + "_selection.lyr", 

"\\SpeciesInf_"  

        + styear + ".lyr") 

    else: 

        arcpy.MakeFeatureLayer_management("\\false_point", "\\SpeciesInf_" + styear + ".lyr") 

     

    #Process: Merge--merge layer of randomly selected points with fake point in case of empty layer 

    arcpy.Merge_management(["\\SpeciesInf_" + styear + ".lyr", "\\false_point"], 

"in_memory\memSpeciesInf_"  

    + styear) 

 

    #Process: Add field--add prediction field 

    arcpy.AddField_management("in_memory\memSpeciesInf_" + styear, "pred", "SHORT") 

 

    #Process: Calculate field--calculate prediction field 

    arcpy.CalculateField_management("in_memory\memSpeciesInf_" + styear, "pred", "1") 

 

    #Process: Select--select predicted points 

    arcpy.Select_analysis("in_memory\memSpeciesInf_" + styear, "in_memory\memSpeciesInf_" + styear + 

"_2",  

    "\"pred\" = 1") 

 

    #Process: Buffer--Buffer infested locations so they will not be re-selected 

    arcpy.Buffer_analysis("in_memory\memSpeciesInf_" + styear + "_2", "in_memory\memSpeciesInf_" + 

styear +  

    "_3", "1 Feet", "FULL", "ROUND", "ALL") 

 

    #Process: Erase--Erase infested areas from random points layer to prevent re-selection 
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    arcpy.Erase_analysis("in_memory\memSpeciesRand_" + styear, "in_memory\memSpeciesInf_" + styear + 

"_3",  

    "in_memory\memSpeciesRand_" + stnewyear) 

 

    #Process: Delete prediction field 

    arcpy.DeleteField_management("in_memory\memSpeciesRand_" + stnewyear, "pred") 

 

    global iyear 

    iyear += 1 

 

    global styear 

    styear = str(iyear) 

 

    global inewyear 

    inewyear = int(iyear + 1) 

 

    global stnewyear 

    stnewyear = str(inewyear) 

 

fc_list = arcpy.ListFeatureClasses("memSpeciesRand*") 

 

arcpy.AddMessage("List of Feature Classes:" + str(fc_list)) 

 

for fc in fc_list: 

                  

    #Process: Merge--merge infested points with random point in case of empty layer 

    arcpy.Merge_management(["in_memory\memSpeciesInf_" + styear2 + "_2", "\\false_point"],  

    "in_memory\memSpeciesInfPtAll_" + styear2) 

 

    #Process: Buffer--buffer to create infested area 

    arcpy.Buffer_analysis("in_memory\memSpeciesInfPtAll_" + styear2, "in_memory\memSpeciesPy_" + 

styear2,  

    "1.4 Kilometers", "FULL", "ROUND", "ALL") 

 

    if iyear2 > iStartyear: 

 

        #Process: Union--union previous years' infestations 

        arcpy.Union_analysis(["in_memory\memSpeciesPy_" + styear2, "in_memory\memSpeciesInfYes_" +  

        stPreviousyear], "in_memory\memSpeciesPyAll_" + styear2, "All", "", "GAPS") 
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    else: 

 

        #Process: Copy Features--create feature class to be buffered when iyear = iStartyear 

        arcpy.CopyFeatures_management("in_memory\memSpeciesPy_" + styear2, 

"in_memory\memSpeciesPyAll_" +  

        styear2) 

 

    #Process: Buffer--buffer to simulate natural spread 

    arcpy.Buffer_analysis("in_memory\memSpeciesPyAll_" + styear2, "in_memory\memSpeciesInf_" + 

styear2,  

    Bufdist, "FULL", "ROUND", "ALL") 

 

    #Process: Clip--clip to species boundary 

    arcpy.Clip_analysis("in_memory\memSpeciesInf_" + styear2, speciesboundary,  

    "in_memory\memSpeciesInfYes_" + styear2) 

 

    #Process: Add field--Add prediction field 

    arcpy.AddField_management("in_memory\memSpeciesInfYes_" + styear2, "pred", "SHORT") 

 

    #Process: Calculate field--Calculate prediction field 

    arcpy.CalculateField_management("in_memory\memSpeciesInfYes_" + styear2, "pred", "1") 

 

    #Process: Identity--Combine prediction results and actual data 

    arcpy.Identity_analysis("\\species_" + styear2, "in_memory\memSpeciesInfYes_" + styear2,  

    "in_memory\memSpeciesPred_" + styear2, "ALL") 

 

    #Process: Add field--Add iteration count field 

    arcpy.AddField_management("in_memory\memSpeciesPred_" + styear2, "Iter", "LONG") 

 

    #Process: Calculate field--Calculate iteration count 

    arcpy.CalculateField_management("in_memory\memSpeciesPred_" + styear2, "Iter", "%n%") 

 

    #Process: Append--Append results to final layer 

    arcpy.Append_management("in_memory\memSpeciesPred_" + styear2, Finallayer, "NO_TEST") 

 

    global iyear2 

    iyear2 += 1 

    iyear2 = int(iyear2) 

 

    global styear2 
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    styear2 = str(iyear2) 

 

    global iPreviousyear 

    iPreviousyear = int(iyear2 - 1) 

 

    global stPreviousyear 

    stPreviousyear = str(iPreviousyear) 
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Location Model 
 

# Import the arcpy module 

import arcpy, os, sys, traceback, subprocess 

import random 

import numpy.random 

from numpy.random import poisson 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = "in_memory" 

arcpy.env.overwriteOutput = True 

 

# Script arguments 

Spreaddistance = arcpy.GetParameterAsText(0) 

Spreadunits = arcpy.GetParameterAsText(1) 

stStartyear = arcpy.GetParameterAsText(2) 

stEndyear = arcpy.GetParameterAsText(3) 

Finallayer = arcpy.GetParameterAsText(4) 

 

# Local Variables 

gldischarge = "\\gl_discharge" 

speciesboundary = "\\species_boundary" 

iStartyear = int(stStartyear) 

iEndyear = int(stEndyear) 

global iyear 

iyear = iStartyear 

global styear 

styear = str(iyear) 

global inewyear 

inewyear = iyear + 1 

global stnewyear 

stnewyear = str(inewyear) 

global iyear2 

iyear2 = int(stStartyear) 

global styear2 

styear2 = str(iyear2) 

rand_point = "\\rand_point" 

global iPreviousyear 

iPreviousyear = iyear2 - 1 
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global stPreviousyear 

stPreviousyear = str(iPreviousyear) 

Bufdist = Spreaddistance + " " + Spreadunits 

 

#Process: Clip--clip discharge data to species boundary 

arcpy.Clip_analysis(gldischarge, speciesboundary, "in_memory\memSpeciesDischarge_" + styear) 

 

#Create a discharge location of points that have not been previously selected for next year 

while int(iyear) <= int(iEndyear): 

 

    #Block of code that selects and maps random points. 

    #Created from RandomSelection.py by Leah Saunders, ESRI Inc. 

    #With major modification by Stephen Lead. 

    ranct = numpy.random.poisson(lam=4) 

    desc = arcpy.Describe("in_memory\memSpeciesDischarge_" + styear) 

    recct = int(arcpy.GetCount_management("in_memory\memSpeciesDischarge_" + styear).getOutput(0)) 

    if ranct <= recct: 

        numValues = (ranct) 

    else: 

        numValues = (recct) 

    arcpy.AddMessage("Selecting " + str(numValues) + " random features") 

 

    if numValues > 0: 

 

        inList = [] 

        randomList = [] 

        fldname = desc.OIDFieldName 

        rows = arcpy.SearchCursor("in_memory\memSpeciesDischarge_" + styear) 

        row = rows.next() 

        arcpy.AddMessage ("Loading all IDs into a list") 

        while row: 

            id = row.getValue(fldname) 

            inList.append(id) 

            row = rows.next() 

 

        selpnts = 0 

        arcpy.AddMessage("Creating the list of randomly selected features") 

        while len(randomList) < numValues: 

            selpnts += 1 

            selItem = random.choice(inList) 
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            randomList.append(selItem) 

            inList.remove(selItem) 

 

        theLen = len(str(randomList)) 

        sqlexp = '"' + fldname + '"' + " in " + "(" + str(randomList)[1:theLen - 1] + ")" 

        arcpy.MakeFeatureLayer_management("in_memory\memSpeciesDischarge_" + styear,  

        "\\species_discharge_" + styear + "_selection.lyr", sqlexp) 

        arcpy.SaveToLayerFile_management("\\species_discharge_" + styear + "_selection.lyr",  

  "\\species_inf_" + styear + ".lyr") 

    else: 

        arcpy.MakeFeatureLayer_management("\\false_point", "\\species_inf_" + styear + ".lyr") 

     

    #Process: Merge--merge with fake point in case of empty layer 

    arcpy.Merge_management(["\\species_inf_" + styear + ".lyr", "\\false_point.lyr"], 

    "in_memory\memSpeciesInf_" + styear) 

 

    #Process: Add field--add prediction field 

    arcpy.AddField_management("in_memory\memSpeciesInf_" + styear, "pred", "SHORT") 

 

    #Process: Calculate field--calculate prediction field 

    arcpy.CalculateField_management("in_memory\memSpeciesInf_" + styear, "pred", "1") 

 

    #Process: Join field--Join infected locations with the discharge locations 

    arcpy.JoinField_management("in_memory\memSpeciesDischarge_" + styear, "Location",  

    "in_memory\memSpeciesInf_" + styear, "Location", "pred") 

 

    #Process: Select--Select locations that have not been infested yet 

    arcpy.Select_analysis("in_memory\memSpeciesDischarge_" + styear, "in_memory\memSpeciesDischarge_" 

+     

    stnewyear, "\"pred\" IS NULL") 

 

    #Process: Delete prediction field 

    arcpy.DeleteField_management("in_memory\memSpeciesDischarge_" + styear, "pred") 

    arcpy.DeleteField_management("in_memory\memSpeciesDischarge_" + stnewyear, "pred") 

 

    global iyear 

    iyear += 1 

 

    global styear 

    styear = str(iyear) 
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    global inewyear 

    inewyear = int(iyear + 1) 

 

    global stnewyear 

    stnewyear = str(inewyear) 

 

 fc_list = arcpy.ListFeatureClasses("memSpeciesDischarge*") 

 

 arcpy.AddMessage("List of Feature Classes:" + str(fc_list)) 

 

 for fc in fc_list: 

                  

    #Process: Merge--merge with random point in case of empty layer 

    arcpy.Merge_management(["in_memory\memSpeciesInf_" + styear2, "\\false_point"],  

    "in_memory\memSpeciesInfPtAll_" + styear2) 

 

    #Process: Buffer--buffer to create infestation area 

    arcpy.Buffer_analysis("in_memory\memSpeciesInfPtAll_" + styear2, "in_memory\memSpeciesPy_" +  

    styear2, "1.4 Kilometers", "FULL", "ROUND", "ALL") 

 

    if iyear2 > iStartyear: 

 

        #Process: Union--union previous years' infestations 

        arcpy.Union_analysis(["in_memory\memSpeciesPy_" + styear2, "in_memory\memSpeciesInfYes_" +  

        stPreviousyear], "in_memory\memSpeciesPyAll_" + styear2, "All", "", "GAPS") 

 

    else: 

 

        #Process: Copy Features--create feature class to be buffered when iyear = iStartyear 

        arcpy.CopyFeatures_management("in_memory\memSpeciesPy_" + styear2, 

"in_memory\memSpeciesPyAll_"  

        + styear2) 

 

    #Process: Buffer--buffer to simulate natural spread 

    arcpy.Buffer_analysis("in_memory\memSpeciesPyAll_" + styear2, "in_memory\memSpeciesInf_" + 

styear2,  

    Bufdist, "FULL", "ROUND", "ALL") 

 

    #Process: Clip--clip to species boundary 
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    arcpy.Clip_analysis("in_memory\memSpeciesInf_" + styear2, 

speciesboundary,"in_memory\memSpeciesInfYes_"  

    + styear2) 

 

    #Process: Add field--Add prediction field 

    arcpy.AddField_management("in_memory\memSpeciesInfYes_" + styear2, "pred", "SHORT") 

 

    #Process: Calculate field--Calculate prediction field 

    arcpy.CalculateField_management("in_memory\memSpeciesInfYes_" + styear2, "pred", "1") 

 

    #Process: Identity--Combine prediction and actual data 

    arcpy.Identity_analysis("\\species_" + styear2, "in_memory\memSpeciesInfYes_" + styear2,  

    "in_memory\memSpeciesPred_" + styear2, "ALL") 

 

    #Process: Add field--Add iteration count field 

    arcpy.AddField_management("in_memory\memSpeciesPred_" + styear2, "Iter", "LONG") 

 

    #Process: Calculate field--Calculate iteration count 

    arcpy.CalculateField_management("in_memory\memSpeciesPred_" + styear2, "Iter", "%n%") 

 

    #Process: Append--Append results to final layer 

    arcpy.Append_management("in_memory\memSpeciesPred_" + styear2, Finallayer, "NO_TEST") 

 

    global iyear2 

    iyear2 += 1 

    iyear2 = int(iyear2) 

 

    global styear2 

    styear2 = str(iyear2) 

 

    global iPreviousyear 

    iPreviousyear = int(iyear2 - 1) 

 

    global stPreviousyear 

    stPreviousyear = str(iPreviousyear) 
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Propagule Pressure Model 
 
# Import the arcpy module 

import arcpy, os, sys, traceback 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = “in_memory" 

arcpy.env.overwriteOutput = True 

 

# Script arguments 

Spread_distance = arcpy.GetParameterAsText(0) 

Spread_units = arcpy.GetParameterAsText(1) 

stStart_year = arcpy.GetParameterAsText(2) 

stEnd_year = arcpy.GetParameterAsText(3) 

Survival = arcpy.GetParameterAsText(4) 

Final_layer = arcpy.GetParameterAsText(5) 

 

#Local Variables 

v_scratchworkspace = "%scratchworkspace%" 

istartyear = int(stStart_year) 

iendyear = int(stEnd_year) 

fsurvival = float(Survival) 

discharge = "\\gl_discharge" 

speciesboundary = "\\species_boundary" 

speciesdischarge = "\\species_discharge" 

Bufdist = Spread_distance + " " + Spread_units 

speciesstartyear = "\\species_" + stStart_year 

global iyear 

iyear = istartyear 

global styear 

styear = str(iyear) 

pred = "Pred" 

glsource = "\\gl_discharge_source" 

sourcedischargetrips= "\\source_discharge_trips" 

falsepoint = "\\tb_ppfalse_point" 

infvisits = "inf_visits" 

global iyear 

inewyear = iyear + 1 
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global stnewyear 

stnewyear = str(inewyear) 

itera = "iter" 

 

     

#Process: Copy Features--Copy feature classes into memory 

arcpy.CopyFeatures_management(discharge, "in_memory\memDischarge") 

arcpy.CopyFeatures_management(speciesboundary, "in_memory\memSpeciesBoundary") 

 

#Process: Clip--Clip discharge locations to species boundary 

arcpy.Clip_analysis("in_memory\memDischarge", "in_memory\memSpeciesBoundary", 

"in_memory\memSpeciesDischarge") 

 

#Process: Select--Select initial species locations 

arcpy.Select_analysis(speciesstartyear, "in_memory\memSpeciesInitial", "\"Actual\" = 1") 

 

#Process: Buffer--Buffer initial infestation area 

arcpy.Buffer_analysis("in_memory\memSpeciesInitial", "in_memory\memSpeciesInit_" + styear, "1.4 

Kilometers", "FULL", "ROUND", "ALL") 

 

#Process: Buffer--Buffer to simulate natural spread 

arcpy.Buffer_analysis("in_memory\memSpeciesInit_" + styear, "in_memory\memSpeciesPy_" + styear, 

Bufdist, "FULL", "ROUND", "ALL") 

 

#Process: Clip--Clip to species boundary 

arcpy.Clip_analysis("in_memory\memSpeciesPy_" + styear, speciesboundary, "in_memory\memSpeciesInf_" + 

styear) 

 

#Process: Add field--Add prediction field 

arcpy.AddField_management("in_memory\memSpeciesInf_" + styear, "Pred", "SHORT") 

 

#Process: Calculate field--Calculate prediction field 

arcpy.CalculateField_management("in_memory\memSpeciesInf_" + styear, "Pred", "1") 

 

global iyear 

iyear = istartyear 

     

while iyear <= iendyear: 

 

    #Process: Identity—Identify source locations within infestation areas 
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    arcpy.Identity_analysis(glsource, "in_memory\memSpeciesInf_" + styear, "in_memory\memSourceInf_" 

+  

    styear) 

 

    #Process: Merge--Merge false point in case of empty feature class 

    arcpy.Merge_management(["in_memory\memSourceInf_" + styear, "\\false_point"],  

    "in_memory\memSourceInf2_" + styear)         

 

    #Process: Select--Select infested sources 

    arcpy.Select_analysis("in_memory\memSourceInf2_" + styear, "in_memory\memSourceYes_" + styear,  

    '\"Pred\" = 1') 

 

    #Process: Join field--Join frequency fields 

    arcpy.JoinField_management(sourcedischargetrips, "Source_Location", "in_memory\memSourceYes_" + 

styear,  

    "Location", ["Location", "Pred"]) 

 

    #Process: Table Select--Select source locations that are infested 

    arcpy.TableSelect_analysis(sourcedischargetrips, "in_memory\memSpeciesInfSource_" + styear,  

    '\"Location\" Is Not NULL') 

 

    #Process: Delete Field--Delete prediction field 

    arcpy.DeleteField_management(sourcedischargetrips, ["Location", "Pred"]) 

 

    #Process: Add field--Add survival field 

    arcpy.AddField_management("in_memory\memSpeciesInfSource_" + styear, "surv_rate", "DOUBLE") 

 

    #Process: Calculate field--Calculate survival field 

    arcpy.CalculateField_management("in_memory\memSpeciesInfSource_" + styear, "surv_rate", 

fsurvival) 

 

    #Process: Add field--Add trip survival field 

    arcpy.AddField_management("in_memory\memSpeciesInfSource_" + styear, "trip_surv", "DOUBLE") 

 

    #Process: Calculate field--Calculate trip survival 

    arcpy.CalculateField_management("in_memory\memSpeciesInfSource_" + styear, "trip_surv",  

    "[surv_rate]^[trip_med]") 

                                         

    #Process: Add field--Add infestation field to discharge locations 

    arcpy.AddField_management("in_memory\memSpeciesInfSource_" + styear, "inf_discharge", "LONG") 



Backcasting 
Propagule Pressure 

301 
 

 

    #Process: Table Select--Select discharge locations that received visits 

    arcpy.TableSelect_analysis("in_memory\memSpeciesInfSource_" + styear,  

    "in_memory\memSpeciesInfDischarge_" + styear, '"trip_countperyear" > 0') 

 

    #Process: Calculate field--Determine infestation status for each trip 

    arcpy.CalculateField_management("in_memory\memSpeciesInfDischarge_" + styear, "inf_discharge",  

    "numpy.random.binomial(n=!trip_countperyear!, p=!trip_surv!)", "PYTHON_9.3", 

    "import numpy.random\nfrom numpy.random import binomial") 

 

    #Process: Table Select--Select infested discharge locations 

    arcpy.TableSelect_analysis("in_memory\memSpeciesInfDischarge_" + styear,  

    "in_memory\memSpeciesInfNewDis_" + styear, '"inf_discharge" > 0') 

 

    #Process: Add field--Add prediction field 

    arcpy.AddField_management("in_memory\memSpeciesInfNewDis_" + styear, "Pred", "SHORT") 

 

    #Process: Calculate field--Calculate prediction field 

    arcpy.CalculateField_management("in_memory\memSpeciesInfNewDis_" + styear, "Pred", "1") 

 

    #Process: Join field--Join source and discharge locations 

    arcpy.JoinField_management("in_memory\memSpeciesDischarge", "Location",  

    "in_memory\memSpeciesInfNewDis_" + styear, "Discharge_Location", ["Discharge_Location", "Pred"]) 

 

    #Process: Select--Select infested points 

    arcpy.Select_analysis("in_memory\memSpeciesDischarge", "in_memory\memSpeciesDischargeYes_" + 

styear,  

    '\"Discharge_Location\" Is Not NULL') 

         

    #Process: Delete field--Delete fields from join above 

    arcpy.DeleteField_management("in_memory\memSpeciesDischarge", ["Discharge_Location", "Pred"]) 

 

    #Process: Buffer--Buffer to create infestation area 

    arcpy.Buffer_analysis("in_memory\memSpeciesDischargeYes_" + styear, "in_memory\memSpeciesInit_" +  

    stnewyear, "1.4 Kilometers", "FULL", "ROUND", "LIST", "Pred") 

 

    #Process: Select--Select infested areas 

    arcpy.Select_analysis("in_memory\memSpeciesInit_" + stnewyear, "in_memory\memSpeciesPred_" + 

stnewyear,  

    '\"Pred\" = 1') 
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    #Process: Union--Union to previous year of infestation 

    arcpy.Union_analysis(["in_memory\memSpeciesPred_" + stnewyear, "in_memory\memSpeciesInf_" + 

styear],  

    "in_memory\memSpeciesPredYes_" + stnewyear, "ALL", "", "GAPS") 

 

    #Process: Buffer--Buffer with spread distance 

    arcpy.Buffer_analysis("in_memory\memSpeciesPredYes_" + stnewyear, "in_memory\memSpeciesPy_" +  

    stnewyear, Bufdist, "FULL", "ROUND", "ALL") 

 

    #Process: Clip--Clip to species boundary 

    arcpy.Clip_analysis("in_memory\memSpeciesPy_" + stnewyear, "in_memory\memSpeciesBoundary",  

    "in_memory\memSpeciesInf_" + stnewyear) 

 

    #Process: Add field--Add prediction field 

    arcpy.AddField_management("in_memory\memSpeciesInf_" + stnewyear, "Pred", "SHORT") 

 

    #Process: Calculate field--Calculate prediction field 

    arcpy.CalculateField_management("in_memory\memSpeciesInf_" + stnewyear, "Pred", "1") 

 

    #Process: Identity--Combine prediction results with actual data 

    arcpy.Identity_analysis("\\species_" + stnewyear, "in_memory\memSpeciesInf_" + stnewyear,  

    "in_memory\memSpeciesPred_" + stnewyear) 

 

    #Process: Add field--Add iteration count field 

    arcpy.AddField_management("in_memory\memSpeciesPred_" + stnewyear, itera, "LONG") 

 

    #Process: Calculate field--Calculate iteration count 

    arcpy.CalculateField_management("in_memory\memSpeciesPred_" + stnewyear, itera, "%n% + 99") 

 

    #Process: Append--Append to final layer 

    arcpy.Append_management("in_memory\memSpeciesPred_" + stnewyear, Final_layer, "NO_TEST") 

 

    global iyear 

    iyear += 1 

 

    global styear 

    styear = str(iyear) 

 

    global inewyear 
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    inewyear = iyear + 1 

 

    global stnewyear 

    stnewyear = str(inewyear) 
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FORECASTING MODEL 
 
Prediction Model 
 
# Import the arcpy module 

import arcpy, os, sys, traceback 

 

# Set Geoprocessing environments 

arcpy.env.scratchWorkspace = "\\scratch_data" 

arcpy.env.workspace = "in_memory" 

 

# Script arguments 

Spread_distance = arcpy.GetParameterAsText(0) 

Spread_units = arcpy.GetParameterAsText(1) 

stStart_year = arcpy.GetParameterAsText(2) 

stEnd_year = arcpy.GetParameterAsText(3) 

Survival = arcpy.GetParameterAsText(4) 

Final_layer = arcpy.GetParameterAsText(5) 

 

#Local Variables 

v_scratchworkspace = "%scratchworkspace%" 

istartyear = int(stStart_year) 

iendyear = int(stEnd_year) 

fsurvival = float(Survival) 

speciesinitial = "\\species_initial" 

discharge = "\\gl_discharge" 

speciesboundary = "\\species_boundary" 

speciesdischarge = "\\species_discharge" 

Bufdist = Spread_distance + " " + Spread_units 

global iyear 

iyear = istartyear 

global styear 

styear = str(iyear) 

pred = "Pred" 

glsource = "\\gl_discharge_source" 

sourcedischargetrips= "\\source_discharge_trips" 
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falsepoint = "\\tb_ppfalse_point" 

infvisits = "inf_visits" 

global iyear 

inewyear = iyear + 1 

global stnewyear 

stnewyear = str(inewyear) 

itera = "iter" 

predyear = "predyear" 

 

 

#Process: Copy Features--Copy feature classes into memory 

arcpy.CopyFeatures_management(discharge, "in_memory\memDischarge") 

arcpy.CopyFeatures_management(speciesboundary, "in_memory\memSpeciesBoundary") 

 

#Process: Clip--Clip discharge locations to species boundary 

arcpy.Clip_analysis("in_memory\memDischarge", "in_memory\memSpeciesBoundary", 

"in_memory\memSpeciesDischarge") 

 

#Process: Buffer--Buffer initial infestation area 

arcpy.Buffer_analysis(speciesinitial, "in_memory\memSpeciesInit_" + styear, "1.4 Kilometers", "FULL", 

"ROUND", "ALL") 

 

#Process: Buffer--Buffer to simulate natural spread 

arcpy.Buffer_analysis("in_memory\memSpeciesInit_" + styear, "in_memory\memSpeciesPy_" + styear, Bufdist, 

"FULL", "ROUND", "ALL") 

 

#Process: Clip--Clip to species boundary 

arcpy.Clip_analysis("in_memory\memSpeciesPy_" + styear, "in_memory\memSpeciesBoundary", 

"in_memory\memSpeciesInf_" + styear) 

 

#Process: Add field--Add prediction field 

arcpy.AddField_management("in_memory\memSpeciesInf_" + styear, "Pred", "SHORT") 

 

#Process: Calculate field--Calculate prediction field 

arcpy.CalculateField_management("in_memory\memSpeciesInf_" + styear, "Pred", "1") 

 

global iyear 
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iyear = istartyear 

     

while iyear <= iendyear: 

 

    #Process: Identity--Combine infestation area with ballast sources 

    arcpy.Identity_analysis(glsource, "in_memory\memSpeciesInf_" + styear, "in_memory\memSourceInf_" +  

    styear) 

 

    #Process: Merge--Merge false point in case of empty feature class 

    arcpy.Merge_management(["in_memory\memSourceInf_" + styear, "\\false_point"],  

    "in_memory\memSourceInf2_" + styear)         

 

    #Process: Select--Select infested sources 

    arcpy.Select_analysis("in_memory\memSourceInf2_" + styear, "in_memory\memSourceYes_" + styear,  

    '\"Pred\" = 1') 

 

    #Process: Join field--Join frequency fields 

    arcpy.JoinField_management(sourcedischargetrips, "Source_Location", "in_memory\memSourceYes_" + styear,  

    "Location", ["Location", "Pred"]) 

 

    #Process: Table Select--Select source locations that are infested 

    arcpy.TableSelect_analysis(sourcedischargetrips, "in_memory\memSpeciesInfSource_" + styear,  

    '\"Location\" Is Not NULL') 

 

    #Process: Delete Field--Delete prediction field 

    arcpy.DeleteField_management(sourcedischargetrips, ["Location", "Pred"]) 

 

    #Process: Add field--Add survival field 

    arcpy.AddField_management("in_memory\memSpeciesInfSource_" + styear, "surv_rate", "DOUBLE") 

 

    #Process: Calculate field--Calculate trip survival field 

    arcpy.CalculateField_management("in_memory\memSpeciesInfSource_" + styear, "surv_rate", fsurvival) 

 

    #Process: Add field--Add survival field 

    arcpy.AddField_management("in_memory\memSpeciesInfSource_" + styear, "trip_surv", "DOUBLE") 

 

    #Process: Calculate field--Calculate trip survival 
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    arcpy.CalculateField_management("in_memory\memSpeciesInfSource_" + styear, "trip_surv",  

    "[surv_rate]^[trip_med]") 

                                         

    #Process: Add field--Add discharge infestation field 

    arcpy.AddField_management("in_memory\memSpeciesInfSource_" + styear, "inf_discharge", "LONG") 

 

    #Process: Table Select--Select discharge locations that received visits 

    arcpy.TableSelect_analysis("in_memory\memSpeciesInfSource_" + styear,  

    "in_memory\memSpeciesInfDischarge_" + styear, '"trip_countperyear" > 0') 

 

    #Process: Calculate field--Calculate infestation status for each trip 

    arcpy.CalculateField_management("in_memory\memSpeciesInfDischarge_" + styear, "inf_discharge",  

    "numpy.random.binomial(n=!trip_countperyear!, p=!trip_surv!)", "PYTHON_9.3",  

    "import numpy.random\nfrom numpy.random import binomial") 

 

    #Process: Table Select--Select infested discharge locations 

    arcpy.TableSelect_analysis("in_memory\memSpeciesInfDischarge_" + styear,  

    "in_memory\memSpeciesInfNewDis_" + styear, '"inf_discharge" > 0') 

 

    #Process: Add field--Add prediction field 

    arcpy.AddField_management("in_memory\memSpeciesInfNewDis_" + styear, "Pred", "SHORT") 

 

    #Process: Calculate field--Calculate prediction field 

    arcpy.CalculateField_management("in_memory\memSpeciesInfNewDis_" + styear, "Pred", "1") 

 

    #Process: Join field--Join source and discharge locations 

    arcpy.JoinField_management("in_memory\memSpeciesDischarge", "Location",  

    "in_memory\memSpeciesInfNewDis_" + styear, "Discharge_Location", ["Discharge_Location", "Pred"]) 

 

    #Process: Select--Select infested points 

    arcpy.Select_analysis("in_memory\memSpeciesDischarge", "in_memory\memSpeciesDischargeYes_" + styear,  

    '\"Discharge_Location\" Is Not NULL') 

         

    #Process: Delete field--Delete fields from above 

    arcpy.DeleteField_management("in_memory\memSpeciesDischarge", ["Discharge_Location", "Pred"]) 

 

    #Process: Buffer--Buffer to create infestation area 
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    arcpy.Buffer_analysis("in_memory\memSpeciesDischargeYes_" + styear, "in_memory\memSpeciesInit_" +  

    stnewyear, "1.4 Kilometers", "FULL", "ROUND", "LIST", "Pred") 

 

    #Process: Select--Select infected areas 

    arcpy.Select_analysis("in_memory\memSpeciesInit_" + stnewyear, "in_memory\memSpeciesPred_" + stnewyear,  

    '\"Pred\" = 1') 

                                

    #Process: Union--Union to previous year of infestation 

    arcpy.Union_analysis(["in_memory\memSpeciesPred_" + stnewyear, "in_memory\memSpeciesInf_" + styear],  

    "in_memory\memSpeciesPredYes_" + stnewyear, "ALL", "", "GAPS") 

 

    #Process: Buffer--Buffer with spread distance 

    arcpy.Buffer_analysis("in_memory\memSpeciesPredYes_" + stnewyear, "in_memory\memSpeciesPy_" +  

    stnewyear, Bufdist, "FULL", "ROUND", "ALL") 

 

    #Process: Clip--Clip to species boundary 

    arcpy.Clip_analysis("in_memory\memSpeciesPy_" + stnewyear, "in_memory\memSpeciesBoundary",  

    "in_memory\memSpeciesInf_" + stnewyear) 

 

    #Process: Add field--Add prediction field 

    arcpy.AddField_management("in_memory\memSpeciesInf_" + stnewyear, "Pred", "SHORT") 

 

    #Process: Calculate field--Calculate prediction field 

    arcpy.CalculateField_management("in_memory\memSpeciesInf_" + stnewyear, "Pred", "1") 

 

    #Process: Identity--Combine with prediction results with actual data 

    arcpy.Identity_analysis("in_memory\memSpeciesDischarge", "in_memory\memSpeciesInf_" + stnewyear,  

    "in_memory\memSpeciesPred_" + stnewyear) 

 

    #Process: Add field--Add iteration count field 

    arcpy.AddField_management("in_memory\memSpeciesPred_" + stnewyear, itera, "LONG") 

 

    #Process: Calculate field--Calculate iteration count 

    arcpy.CalculateField_management("in_memory\memSpeciesPred_" + stnewyear, itera, "%n%") 

 

    #Process: Add field--Add year field 

    arcpy.AddField_management ("in_memory\memSpeciesPred_" + stnewyear, predyear, "LONG") 
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    #Process: Calculate field--Calculate year 

    arcpy.CalculateField_management ("in_memory\memSpeciesPred_" + stnewyear, predyear, iyear) 

 

    #Process: Append--Append to final layer 

    arcpy.Append_management("in_memory\memSpeciesPred_" + stnewyear, Final_layer, "NO_TEST") 

 

    global iyear 

    iyear += 1 

 

    global styear 

    styear = str(iyear) 

 

    global inewyear 

    inewyear = iyear + 1 

 

    global stnewyear 

    stnewyear = str(inewyear) 

 

else: 

 

    print iendyear 
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Appendix D 

Chapter 3 Prediction Maps 

 
Following are the resulting predictions modeled for Eurasian Ruffe, killer shrimp, and 

golden mussel. Ten time-steps were modeled from each of the invasion start locations for 

each species. Results are also included for both sets of parameter values used to predict 

the future spread of Eurasian Ruffe. Killer shrimp spread predictions were not modeled 

from Superior, Wisconsin due to its proximity to Duluth, Minnesota. 
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Eurasian Ruffe 
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Time-step 1 
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Killer Shrimp 
Duluth, Minnesota 
Dispersal Distance = 0-km and Probability of Infestation = 0.75 
 
Time-step 1 
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Killer Shrimp 
Toledo, Ohio 
Dispersal Distance = 0-km and Probability of Infestation = 0.75 
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Killer Shrimp 
Ogdensburg, New York 
Dispersal Distance = 0-km and Probability of Infestation = 0.75 
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Killer Shrimp 
Green Bay, Wisconsin 
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Killer Shrimp 
Goderich, Ontario 
Dispersal Distance = 0-km and Probability of Infestation = 0.75 
 
Time-step 1 
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Killer Shrimp 
Detroit, Michigan 
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