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Radon-222 and its parent Radium-226 are naturally occurring radioactive decay 

products of Uranium-238. The US Environmental Protection Agency (USEPA) attributes 

about 10 percent of lung cancer cases that is ‘around 21,000 deaths per year’ in the 

United States, caused due to indoor radon. The USEPA has categorized Ohio as a Zone 1 

state (i.e. the average indoor radon screening level greater than 4 picocuries per liter). In 

order to implement preventive measures, it is necessary to know radon concentration 

levels in all the zip codes of a geographic area. However, it is not possible to survey all 

the zip codes, owing to reasons such as inapproachability. In such places where radon 

data are unavailable, several interpolation techniques are used to estimate the radon 

concentrations. This thesis presents a comparison between recently developed 

interpolation techniques to new techniques such as Support Vector Regression (SVR), 

and Random Forest Regression (RFR). Recently developed interpolation techniques 

include Artificial Neural Network (ANN), Knowledge Based Neural Networks (KBNN), 

Correction-Based Artificial Neural Networks (CBNN) and the conventional interpolation 

techniques such as Kriging, Local Polynomial Interpolation (LPI), Global Polynomial 

Interpolation (GPI) and Radial Basis Function (RBF) using the K-fold cross validation 

method. 
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Introduction 

1.1 Problem Statement 

 
 
Radon is a colorless, odorless, radioactive gas formed by natural decay of uranium in 

soil, rock and water. Radon migrates through soil and enters home through basement 

walls, cracks in concrete floors or slabs, and openings around utility accesses. Radon 

causes an estimated 21,000 lung cancer deaths in the United States every year [1]. It is 

the second leading cause of lung cancer after active smoking and the leading cause 

among nonsmokers. Radon concentration is measured using radon-monitoring devices in 

the units of Pico-Curie per liter of air (pCi/L). The USEPA, based on indoor radon 

studies, suggests that homes or schools exceeding the radon concentration of 4pCi/L pose 

health risk, and recommend people to take preventive measures for reducing the radon 

level [2]. 

Research carried out by the USEPA and others has shown that it is possible to bring 

down the radon levels in buildings [3]. Since 1989, in order to help mitigators to identify 

the buildings with high radon concentration level and implement a cost effective radon 

mitigation plan, the Ohio Department of Health (ODH) with radon testing laboratories, 
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local health departments, and university researchers has collected radon information for 

more than 200,000 homes and schools across Ohio [4-7]. The data collected by these 

organizations are being managed by different database management systems [8-13]. Most 

of the Ohio indoor radon data are contained in the Ohio Radon Information System 

(ORIS) developed by The University of Toledo in association with Ohio Air Quality 

Development Authority and ODH [11]. 

 

Figure 1-1: Map Depicting the Indoor Radon Concentrations in Ohio 

Radon concentration data are available for 1261 zip codes out of the 1417 zip codes 

across Ohio, but it is not possible to collect the information for all the zip codes in the 

State of Ohio, owing to several reasons like inapproachability.  Places where radon data 

cannot be collected, there is a growing need to estimate the radon concentration of these 

zip codes using various interpolation techniques. Figure 1-1 shows the indoor radon 

concentrations in Ohio [14]. 
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1.2 Research Approach 

 
 
In the process of developing a cost-effective and reliable radon concentration 

prediction model, several research papers have been published by researchers at The 

University of Toledo. Initial research was focused on the conventional interpolation 

techniques such as Kriging, Local Polynomial Interpolation (LPI), Global Polynomial 

Interpolation (GPI) and Radial Basis Function (RBF) to estimate the radon concentrations 

[15-21]. Since these conventional interpolation techniques are highly data-specific and 

are based on complex mathematical models; Artificial Neural Networks (ANN) such as 

3-layer Multi-Mayer Perceptron (MLP3) was introduced for estimation of radon [16]. 

However, MLP3 networks have their own drawbacks such as dependency on the 

adequacy of data and are black-box models whose prediction accuracy is only dependent 

on training data. Later, in order to overcome the drawbacks of ANNs, more advanced 

ANNs such as Knowledge Based Neural Networks (KBNNs) and Correction-Based 

Neural Networks were introduced for estimation of radon. KBNN includes models such 

as Prior Knowledge Input (PKI), Source Difference Method (SDM) and Spatial Mapped 

Neural Networks (SMNN) which enhances the generalization ability and extrapolation 

capability over ANN using the existing knowledge [17]. In this thesis, the uranium 

concentration specific to zip code is the existing knowledge which is obtained from the 

maps published by the Ohio Department of Natural Resources. Correction-Based 

Artificial Neural Networks (CBNN) was introduced as an improvement to KBNN 

overcoming their structural complexity using a sensitivity-based approach [18]. However, 

the present research was limited to split-sample validation on neural networks and the 
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conventional interpolation techniques. Due to the need of improving the generalization 

ability, a Cross-Validation (CV) technique is implemented over split-sample validation. 

Also, this research approach introduces the applicability of two regression techniques 

namely Random Forest Regression (RFR) and Support Vector Regression (SVR) for 

modeling and estimating the radon concentrations. Comparisons between the existing 

conventional interpolation techniques, neural network approaches and the newly 

introduced SVR and RFR techniques are discussed in this thesis. The techniques are 

validated using 7-fold and 10-fold cross-validation data. 

1.3 Organization of Thesis 

 
 
The remaining document is organized as follows. Chapter 2 discusses the literature 

review. Chapter 3 gives an overview of conventional interpolation techniques, data 

preparation and the performance measures to compare the different interpolation 

techniques. Chapter 4 discusses different neural network approaches. Chapter 5 discusses 

the use of newly introduced regression techniques, SVR and RFR. Finally, chapter 6 

concludes the thesis and discusses future work. 
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Literature Review 

2.1 Role of Interpolation 

 
 
Interpolation plays a vital role in estimating values where no actual value can be 

measured. In order to estimate missing values or make interpretations, scientists, and 

environmental managers would need spatially continuous data. Thus, to generate spatially 

continuous data, the values of required attribute at unobserved locations need to be 

estimated. In such cases, where attribute values are not available spatial interpolation 

methods are used [22].  Assumptions followed while using spatial interpolation methods 

are attribute data is continuous over space where estimation at any unobserved location is 

within the data boundary and it is spatially dependent. 

In this thesis, data provided by ODH is used for interpolating a method and creating 

radon concentration maps across Ohio. This work is further used for quantitative research 

like reducing the cancer, which is caused by inhaling the radon. This indicates the 

importance of identifying an accurate interpolation method for predicting the missing 

radon concentrations. 

Spatial interpolation methods are widely used for employing geostatistics in various 

Chapter 2  
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fields such as environmental sciences, civil engineering, soil sciences and mathematics or 

statistical analysis. The working principle, advantages and disadvantages of various 

interpolation techniques are discussed in Table 2.1 [16]. 

Table 2.1: Conventional Interpolation Techniques commonly used in Environmental 
Science 

Interpolation 
Techniques Working Principle Advantages Disadvantages 

Kriging 
Linear combination 

of sample points 
including spatial 
autocorrelation 

Fitting the data into 
a polynomial 

function, no edge-
effects, best linear 

based spatial 
predictor 

Unable to solve 
problems that are 
non- stationary, 
highly complex 

and requires 
sophisticated 
programming 

Trend Surface 
analysis 

Separates data based 
on regional and local 

variations 

Broader trends are 
removed prior to 
further analysis 

Spatial 
autocorrelation 
results in edge 

effects  

Inverse Distance 
Weighting 

Linear combination 
of data points, 

inversely weighted 
as per distance 

Easy to use and 
works well with all 

kinds of data 

Weights are not 
affected by spatial 

arrangement of 
samples 

Polynomial 
Regression 

Variables of interest 
are fitted into linear 

combination  
Easy to model 

Poor prediction of 
data points outside 

the range 
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GPI 

Determines a 
polynomial function 
of whole surface and 
capture coarse-scale 

patterns 

Computationally 
easy to use 

If the data 
complexity 

increases the 
prediction 

accuracy decreases 
exponentially 

LPI 

Similar to GPI but 
determines the 

polynomial 
functions in 
individual 

neighborhoods 

Very advantageous 
to predict data with 

local variations 

Unlike GPI, the 
global trends are 

missing 

RBF 

Linear combination 
of different basis 
functions, fits the 
data reducing the 
total curvature of 

surface 

Doesn’t require huge 
amount of data 

Requires good 
input space, 

doesn’t work fine 
with data having 
local variations 

and not suitable for 
extrapolation 

 

2.2 Prior Art 

 
 
Conventional interpolation techniques such as Kriging, GPI, LPI and RBF have 

already been employed to estimate the missing radon concentrations in Ohio, limited to 

split sample validation [15]. These interpolation techniques are further discussed below. 

Kriging is a stochastic interpolation method which is based on spatial autocorrelation 

of the data.  Spatial autocorrelation determines the statistical relationship between values 

where sample observations are available. Thus obtaining the relationship, it is used to 

predict the attribute values at unsampled locations. Apart from predicting the attribute 
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values, this technique also estimates the accuracy in prediction including prediction 

standard error, probability, and standard error of indicators. Kriging has been previously 

used for mapping the soil parameters [23], temperature [24] and estimation of rainfall 

[25]. 

GPI is an interpolation method which is based on determining a polynomial function 

to input sample points. The prediction of a GPI method is based on polynomial function 

and if it is of higher order then it results in a bad prediction. The advantage of using this 

interpolation technique is determining a global model that evaluates a general trend of the 

surface. However, this global model cannot deal with the extreme high and low data 

values (outliers). 

As GPI fits a polynomial function of the whole surface, LPI is based on polynomial 

functions for individual neighborhoods. LPI is advantageous to predict environmental 

data due to its accountability to local variations. Especially, in the case of environmental 

sciences, the attribute usually has local variations in addition to global variations. As LPI 

is based on neighborhood distance it can effectively predict the local variations in data. 

This technique works effectively with local variations in data but the global variations are 

missing which is a drawback.  LPI and GPI techniques have been previously employed 

for estimating climate data [26] and agricultural water use [27]. 

Unlike Kriging, GPI and LPI, the RBF is not based on a single variant or multi-

variant polynomial function; it is a linear combination of different basis functions. The 

five different basis functions mentioned are multi-quadric function, inverse multi-quadric 

function, spline with tension, thin-plate spline and completely regularized spline. 

Conceptually, RBF is described as fitting a rubber membrane with the given input values 
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in addition to reducing the total curvature of surface. RBF predicts the attribute value 

independent of the direction instead of using a polynomial function. The disadvantage of 

this technique is it predicts the attribute values which are minimum or maximum in 

range, which is not practical in all situations. However, having surface values within a 

short range, this technique is not suitable for interpolation. RBF has been previously 

employed in estimating water content of natural gases [28] and in analyzing air quality 

measurements [29]. 

2.3 Review of Neural Network Techniques 

 
 
In computer aided modeling applications, ANNs play a vital role in estimating the 

missing values due to their efficient generalization capability. Unlike conventional 

interpolation techniques, which are based on complex mathematical functions, ANNs 

proved to be efficient. It is worth mentioning that the efficiency of a neural network 

model is directly proportional to number of training samples used for training the model. 

The disadvantage of ANN model is it lacks extrapolation capability. However, ANNs are 

being widely used for data classification and regression in many fields. 

Recently, a review over multi-layer perceptron for estimating environmental variables 

in atmospheric sciences has been performed [30]. ANNs have been employed for data 

classification to recognize the hand written zip-code provided by the U.S. Postal Service 

[31]. ANNs have been extensively used for predicting air quality [32, 33] and water 

quality [34, 35] measurements using related data from past few years. ANNs have also 

been employed for predicting the ozone concentration levels [36, 37]. In UK, ANNs have 
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been used for prediction of surface ozone concentrations [38]. 

KBNNs are the more advanced ANNs that enhance the generalization and 

extrapolation capabilities of a neural network model [39]. The generalization capability 

allows the neural network model to predict the unknown data within the range, while the 

extrapolation capability allows predicting the data beyond the training range.  

 

Figure 2-1: Uranium-238 Decay chain and half lives 
 

The knowledge input considered in this application is uranium concentration as radon 

is a decay product of uranium. Figure 2-1 represents the uranium decay chain. In Harrell 

et al. [6], it was mentioned that constructions built above uranium-bearing rocks or 

sediments may have higher indoor radon levels. Figure 2-2 represents map of Ohio 

showing uranium concentration. 
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Figure 2-2: Radiometric map of Ohio showing uranium concentration in soil 

 

The different type of KBNN approaches are Prior Knowledge Input (PKI), Source 

Difference Method (SDM), and Space Mapped Neural Networks (SMNN). 

The PKI method proposed in [40] establishes a functional relationship between the 

inputs and outputs along with an additional knowledge input. A knowledge input could 

be a source variable to the attribute for prediction. A general representation of PKI 
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method is shown in Figure 2-3. 

 

Figure 2-3: General Representation of PKI Method 

The SDM method proposed in [41] is a combination of two different MLP3 models. 

The structure of SDM method is described to be a combination of coarse model and 

difference model, where the coarse model is trained and validated using the original 

inputs while the attribute value is the desired output. The prediction of this MLP3 model 

is used to calculate the estimation error between the predicted and original value. Using 

estimation error as the desired output, the difference model is trained and validated. Final 

output is obtained by adding the predictions from both the models. A general 

representation of SDM method is shown in Figure 2-4. 

 

 

Figure 2-4: General Representation of SDM Method 

The SMNN method proposed in Bandler et al. [42] is used to estimate the attribute 

value with intermediate inputs. The two models used in SMNN method are space 

mapping model and coarse model. The space mapping model uses a space-mapping (SM) 
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technique [40] that maps the fine model input space into a coarse model input space. 

Finally, the coarse model input spaces are used to estimate the attribute value. A general 

representation of SMNN method is shown in Figure 2-5. 

 

Figure 2-5: General Representation of SMNN Method 

Recently, Akkala et al. (2010) has employed ANNs [19] and KBNNs [20] to estimate 

the missing radon concentrations in Ohio and concluded that these models have better 

prediction accuracy over conventional interpolation techniques. 

Correction based ANN’s use different kind of approaches such as Newton’s method 

and steepest-descent method for estimating the attribute values. A sensitivity-based 

approach that has the advantages of Newton’s method and steepest-descent method has 

been employed to model RF/microwave components [44]. Recently, this sensitivity based 

correction ANN approach has also been employed to estimate the missing radon 

concentrations in Ohio [18]. 
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Conventional Interpolation Techniques 

3.1 Data Preparation 

 
 
Initially, the radon concentration data available for 1261 zip codes are partitioned into 

subsets for cross-validation. In this thesis, the K-fold cross-validation technique has been 

employed where the available data is partitioned into ݇ subsamples. The technique used 

in K-fold cross-validation is to use every  ݇௧௛ dataset to validate the model, while the 

remaining ݇ − 1 datasets are used to train the model. The advantage of using this 

technique is that all the samples are used for training and validation, and each sample is 

used exactly once in the validation. The process of partitioning the data is done by using 

a MATLAB function [45] given as 

݂ = ′,݊)݊݋݅ݐ݅ݐݎܽ݌ݒܿ  (3.1) (݇,′݈݀݋݂݇

In eq. (3.1), ݊ is the total number of samples, ݂݈݇݀݋ is the technique used for 

partitioning the data and ݇ is the size of subsets.  

Further, the training and validation data sets are separated using two methods of 

 class given as ݊݋݅ݐ݅ݐݎܽ݌ݒܿ

Chapter 3  
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ݐ = ,݂)݃݊݅݊݅ܽݎݐ ݅) 

ݒ = ,݂)ݐݏ݁ݐ ݅) 
(3.2) 

In eq. (3.2), ݐ and ݒ are vectors of training and validation indices respectively, 

 class ݊݋݅ݐ݅ݐݎܽ݌ݒܿ class, ݂ is an object of ݊݋݅ݐ݅ݐݎܽ݌ݒܿ are methods in ݐݏ݁ݐ and ݃݊݅݊݅ܽݎݐ

and ݅ is the index of respective sample. 

In this thesis, 7-fold cross-validation (݇ = 7 i.e., 7 training and validation data sets 

respectively) and 10-fold cross-validation (݇ = 10 i.e., 10 training and validation data 

sets respectively) have been used. 

To compare all the methods conventional interpolation techniques, ANN, KBNN, 

correction-based ANN, SVR and RFR on a fair basis, we used the same data sets for 

training and validation of these models. The final performance measure in K-fold cross-

validation is taken as the average of performance measures of individual ݇ datasets. 

3.2 Comparative Performance Measures for Evaluating 
Interpolation Techniques 

 
 
It is necessary to assess the performance of an interpolation technique to determine if 

one technique is better than the other. The performance measures are used to estimate the 

difference between the predicted values and the actual values of an attribute. Recently, 

Kumar et al. [15. 46-49] have given important parameters to assess the performance of 

air-quality models. The different type of performance measures mentioned are Mean 

Absolute Error (MAE), Factor of Two (Fa2), Root Mean Square Error (RMSE), 

Fractional Bias (FB), and Normalized Mean Square Error which are described further in 
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this section. Apart from these commonly used performance measures, Eavg is the 

commonly used validation error to measure the performance of an interpolation technique 

that is discussed in Chapter 4.  

3.2.1 Mean Absolute Error 

The MAE is used to measure the average magnitude of errors in a set of predictions 

and is given as 

ܧܣܯ =
∑ −(݅)ݏܾ݋| ேೡ|(݅)݀݁ݎ݌
௜ୀଵ

௩ܰ
 (3.2.1) 

In eq. (3.2.1), ݀݁ݎ݌(݅) is the predicted value from the model for every ݅௧௛ sample in 

validation set, ݏܾ݋(݅) is the actual or observed value of an attribute and ௩ܰ is the total 

number of samples. The optimal value of ܧܣܯ is zero. 

3.2.2 Factor of Two 

The Fa2 is used to define the percentage of predicted value over observed value and 

is given as 

ଶܽܨ =
(݅)ݏܾ݋
 (3.2.2) (݅)݀݁ݎ݌

The ratio of predicted value to actual value lies between 0.5 and 2.0. The optimal 

value of ܽܨଶ is one. 

3.2.3 Root Mean Square Error 

The RMSE is a strictly proper scoring rule that is used to calculate the average 

magnitude of error and is given as 

ܧܵܯܴ = ඨ
∑ −(݅)ݏܾ݋) ଶேೡ((݅)݀݁ݎ݌
௜ୀଵ

௩ܰ
 (3.2.3) 

The performance measure is ideally used to measure the magnitude of extreme errors 
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in prediction. The optimal value of ܴܧܵܯ is zero. 

3.2.4 Fractional Bias 

The fractional bias or normalized bias is used to calculate the fraction of mean 

concentrations and is given as 

ܤܨ =
∑ −(݅)ݏܾ݋) ேೡ((݅)݀݁ݎ݌
௜ୀଵ

1
2∑ (݅)ݏܾ݋) + ேೡ(݅)݀݁ݎ݌

௜ୀଵ

 (3.2.4) 

The fractional bias lies between -2 and +2. The optimal value of ܤܨ is zero. 

3.2.5 Normalized Mean Square Error 

The NMSE is used to assess the scatter in the complete data set and is given as 

ܧܵܯܰ =
∑ −(݅)ݏܾ݋) ଶேೡ((݅)݀݁ݎ݌
௜ୀଵ

1
௩ܰ

(∑ ேೡ(݅)݀݁ݎ݌
௜ୀଵ ∗ ∑ ேೡ((݅)ݏܾ݋

௜ୀଵ

 (3.2.5) 

Normalization is used to assure that this performance measure is not biased in over 

prediction or under prediction of a model. ܰܧܵܯ values are inversely proportional to the 

performance of a model (i.e., the smaller ܰܧܵܯ value indicates better performance of 

model). The optimal value of ܰܧܵܯ is zero. 

3.3 Advantages and Disadvantages of Conventional 
Interpolation Techniques 

 
 
The conventional interpolation techniques implemented in this thesis are Kriging, 

LPI, GPI, and RBF. However, there are certain advantages and disadvantages of these 

conventional interpolation techniques [49]. Kriging is the best linear unbiased spatial 

predictor but doesn’t deal with the data points in real world data sets. LPI is having the 
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advantage of interpolating local or short-range variations but cannot interpolate the long-

range variations and misses the global trends. GPI is computationally easy but with the 

increasing complexity of the model, the estimation error increases exponentially. RBF 

can be used for modeling with few samples but it is not suitable for extrapolation. 

3.4 Results and Discussions 

 
 

In order to utilize the conventional interpolation techniques such as Kriging, LPI, GPI 

and RBF, ArcGIS analyst software [15, 49] is used for estimating the radon 

concentrations. The performance measures of these individual conventional interpolation 

techniques are compared in Table 3.1. 

Table 3.1: Performance Measures of Conventional Interpolation Techniques usin 
different Cross-Validation Methods 

Conventional 
Interpolation 

Technique 
CV Type Eavg MAE Fa2 RMSE FB NMSE 

Kriging 
7-fold CV 4.16 1.60 0.7803 2.97 0.0293 0.765 

10-fold CV 4.12 1.59 0.7922 2.94 0.0280 0.760 

Local 
Polynomial 

Interpolation 

7-fold CV 4.25 1.63 0.7708 2.97 0.0240 0.760 

10-fold CV 4.22 1.62 0.7645 2.93 0.0205 0.745 

Global 
Polynomial 

Interpolation 

7-fold CV 5.13 1.97 0.6558 3.18 0.0107 0.854 

10-fold CV 5.11 1.97 0.6550 3.16 0.0083 0.843 

Radial Basis 
Function 

7-fold CV 4.40 1.69 0.7779 3.09 -0.0027 0.804 

10-fold CV 4.65 1.67 0.7756 3.05 -0.0009 0.781 
 

From Table 3.1, it can be clearly stated that using any type of cross-validation 
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technique, these conventional interpolation techniques did not show much difference in 

the errors. It can be observed that Kriging using 10-fold cross-validation (CV) type has 

shown better performance over other interpolation techniques in case of evaluating Eavg, 

MAE and Fa2. The optimal value for Eavg, MAE, RMSE, FB and NMSE is zero whereas 

for Fa2 it is one. LPI technique using 10-fold CV type is having the least magnitude error 

(RMSE and NMSE) as shown in Table 3.1. The optimal value of RMSE, NMSE, and FB 

is zero. Though GPI and RBF have least values in FB, when these techniques are 

compared with remaining performance measures, it can be concluded that GPI and RBF 

are not suitable to interpolate data having short-range variations. Conventional 

interpolation techniques have the disadvantage of using complex mathematical functions. 

However, neural network techniques can be used to define the functional relationship 

between the inputs and outputs. The different types of neural network approaches are 

discussed in Chapter 4. 
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Neural Network Approaches 

4.1 Artificial Neural Network Approach  

 
ANNs is a multilayer feed forward network. The most widely used ANN is 3-layer 

perceptron network often called MLP3.  The MLP3 network architecture is shown in 

Figure 4.1. In this thesis, ANN is implemented using k-fold cross-validation technique, as 

the existing implementation of ANNs to estimate the missing radon concentrations is 

limited to split-sample validation technique [16].  

 

Figure 4-1: MLP3 Network Architecture to Estimate Radon Concentrations (ANN) 

The main advantage of ANNs over conventional interpolation techniques is defining 

Chapter 4 
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the functional relationship between the inputs and outputs of a model rather than 

estimating the output using complex mathematical models [50]. The neural network 

approaches are trained and validated using a CAD tool named Neuromodeler [51].  

4.1.1 Methodology 

 
 
In Figure 4-1, let ݔ and ݕ be the vectors that contain model inputs and outputs 

respectively, then the relationship between these vectors can be defined as  

ݕ =  (4.1) (ݔ)݂

In eq. (4.1), ݂ represents the functional relationship between ݔ and ݕ, which is 

derived from the training process using a set of sample pairs given by 

{൫ݔ௣,݀௣൯, ݌ = 1, … ,ܰ} (4.2) 

In eq. (4.2), ݀௣ represents the desired output corresponding to ݌ training input vector 

 is simply a sample ݌ ௣, N is the number of data samples available for training, andݔ

index. 

During the training process, a model parameter ݓ, called weights, in neural network 

is iteratively adjusted to minimize the error between neural model output ݕ and desired 

output ݀, given by 

(ݓ)ܧ =  
1
2෍෍(ݕ௣௤൫ݔ௣,ݓ൯ −  ݀௣௤)ଶ

௠

௤ୀଵ

ே

௣ୀଵ

 (4.3) 

In eq. (4.3), ݕ௣௤൫ݔ௣,ݓ൯ is the ݍ௧௛ output of the neural network with input ݔ௣ and the 

model parameter ݓ is constantly updated, given by 

௡௘௫௧ݓ = ௡௢௪ݓ +  (4.4) ݃ߟ

In eq. (4.4), η is a positive step-size and ݃ is the update direction. From the above 
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equation, it states that ݓ௡௘௫௧  is the adjusted weight from ݓ௡௢௪ along the update direction 

݃. 

The output at every ݆௧௛  hidden neuron is calculated using the sigmoid activation 

function and is given by 

௝ݖ =
1

1 + exp (−(∑ ௜௝ݑ ∗ ௜ݔ + ଴௝))௡ݑ
௜ୀଵ

 (4.5) 

In eq. (4.5), ݑ଴௝ is the bias parameter for ݆௧௛  hidden neuron and ݑ௜௝  is the weight 

between the ݅௧௛ input neuron and the ݆௧௛  hidden neuron of ݔ௜ input that is latitude or 

longitude in present case. 

Finally, the radon concentration, ݕ, is calculated as 

ݕ = ෍൫ݖ௝ ∗ ௝൯ݒ + ଴ݒ

௛

௝ୀଵ

 (4.6) 

In eq. (4.6), ݒ௝ is the weight between the ݆௧௛  hidden neuron and the output neuron, ℎ 

is the total number of hidden neurons and ݒ଴ is the bias parameter. 

The validation error of Artificial Neural Network (ANN) i.e., ܧ௔௩௚  is given as 

௔௩௚ܧ =
1
௩ܰ
෍ቤ ௔݂௡௡

(ݓ,௜ݔ) − ௜ݕ
௠௔௫ݕ − ௠௜௡ݕ

ቤ
ேೡ

௜ୀଵ

 (4.7) 

In eq. (4.7), ௩ܰ is the number of training samples, ݕ௜ is the actual output and 

௔݂௡௡(ݔ௜,ݓ) is the predicted output to the input vector ݔ௜. 

4.1.2 Results and Discussions 

 
 
In modeling artificial neural network’s, MLP3 network is considered and trained by 

varying number of hidden neurons. The neural network is trained using two supervised 
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learning algorithms namely Backpropagation and Quasi-Newton. The best model in 

neural network is selected based on the validation error ܧ௔௩௚  and the optimal value of 

௔௩௚ܧ  is zero. Tables 4.1 and 4.2 represent the training and validation errors of ANN 

approach using Backpropagation and Quasi-Newton algorithms, respectively. 

Table 4.1: Training and validation errors of ANN models using Backpropagation 
algorithm. 

No. of 
Hidden Neurons CV Type 

Training 
Error 

Validation Error 
Eavg 
(%) 

Eworst 
(%) 

10 7-fold CV 4.67 4.77 61.98 

10-fold CV 4.40 4.52 53.95 

20 7-fold CV 4.57 4.64 61.46 

10-fold CV 4.47 4.53 53.74 

30 7-fold CV 4.77 4.77 62.05 

10-fold CV 4.50 4.58 53.80 

40 7-fold CV 4.46 4.58 61.54 

10-fold CV 4.48 4.63 53.86 

50 7-fold CV 4.92 5.00 60.51 

10-fold CV 4.53 4.55 53.49 

60 7-fold CV 4.59 4.70 60.54 

10-fold CV 4.60 4.67 52.92 

70 7-fold CV 4.79 4.84 59.91 

10-fold CV 4.67 4.72 53.79 

80 7-fold CV 6.41 6.41 64.12 

10-fold CV 5.42 5.52 55.22 

90 

7-fold CV 5.30 5.33 61.12 

10-fold CV 5.08 5.08 53.04 
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Table 4.2: Training and validation Errors of ANN models using the Quasi-Newton 
algorithm. 

No. of 
Hidden Neurons CV Type 

Training 
Error 

Validation Error 
Eavg 
(%) 

Eworst 
(%) 

10 7-fold CV 4.25 4.42 59.56 

10-fold CV 4.25 4.43 52.89 

20 7-fold CV 4.25 4.34 60.02 

10-fold CV 4.21 4.36 52.35 

30 7-fold CV 4.24 4.42 59.13 

10-fold CV 4.21 4.40 52.60 

40 7-fold CV 4.22 4.41 59.83 

10-fold CV 4.29 4.49 52.09 

50 7-fold CV 4.23 4.37 59.47 

10-fold CV 4.22 4.37 52.41 

60 7-fold CV 4.23 4.44 59.59 

10-fold CV 4.21 4.40 51.86 

70 7-fold CV 4.23 4.42 59.58 

10-fold CV 4.20 4.40 52.09 

80 7-fold CV 4.24 4.45 59.50 

10-fold CV 4.22 4.38 52.46 

90 

7-fold CV 4.23 4.40 59.54 

10-fold CV 4.22 4.37 52.21 
 

From Tables 4.1 and 4.2, it can be observed that training by Quasi-Newton 

algorithm has relatively more accurate results compared to Backpropagation. From Table 

4.1, it can be observed that ANN approach using the Backpropagation algorithm and the 

7-fold cross-validation (CV) method has least validation error (ܧ௔௩௚) of 4.58 for 40 

hidden neurons, while using 10-fold cross-validation (CV) method it has least ܧ௔௩௚  of 
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4.52 for 10 hidden neurons. From Table 4.2, it can be observed that ANN approach using 

Quasi-Newton algorithm and the 7-fold CV method has the least ܧ௔௩௚  of 4.34 for 20 

hidden neurons, while using the 10-fold CV method it has least ܧ௔௩௚  of 4.36 for 20 

hidden neurons. Further, the performance of best models in Artificial Neural Network 

(ANN) is compared with conventional interpolation techniques, KBNN, CBNN, SVR 

and RFR in Table 5.4. 

4.2 Knowledge Based Neural Network Approaches 

KBNN are more advanced ANNs that enhances both the generalization and the 

extrapolation capabilities of a neural model [52]. The generalization capability allows a 

neural model to predict unknown data, while the extrapolation capability predicts data 

that is beyond the training range. The existing implementation of KBNNs is limited to a 

split-sample validation technique. A knowledge-based neural network, in simple terms, is 

described as ‘adding a prior knowledge to the existing neural networks’ i.e., adding an 

additional input such as uranium concentration [20] to the conventional ANN. The 

different Knowledge Based Neural Network approaches such as Prior Knowledge Input 

(PKI), Source Difference Method (SDM) and Space-Mapped Neural Networks (SMNN) 

are further discussed. 

4.2.1 Methodology 
 
 

The PKI method, proposed in Watson et al. [40], was used to estimate the radon 

concentration by Akkala et al. [17] but was limited to split-sample validation. This 

method uses the knowledge input as an additional input to the existing neural network, 
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which is MLP3 as shown in Figure 4-2. In this thesis, uranium concentration is used as an 

additional input. The PKI method is trained using latitude, longitude, and uranium 

concentration as inputs and the radon concentration as the desired output. Once the model 

is trained it is used to predict the radon concentration. The limitation in using a PKI 

method is the uranium concentration availability for each individual sample where radon 

concentration needs to be predicted.  

 

Figure 4-2: MLP3 Network Architecture for PKI Method 

The Source Difference Method (SDM) was proposed in Gupta et al. [41] and was 

used to estimate the radon concentration in Akkala et al. [17]. This method consists of 

two MLP3 neural networks that are named as the coarse model and the difference model. 

The coarse model is used to model the functional relationship between the latitude and 

longitude as inputs and radon concentration as desired output. Once the model is trained, 
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it is used to predict the radon concentration. The aim of the method is to add an additional 

knowledge i.e., an estimation error to the predicted output from coarse model. The best 

coarse model is evaluated by changing the number of hidden neurons.  
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Figure 4-3: MLP3 Network Architecture for SDM Method 

Once the best coarse model is evaluated, an estimation error, i.e., the difference 

between the predicted radon concentration from coarse model and the actual radon 

concentration available is calculated. The difference model is used to model the 

functional relationship between latitude and longitude as inputs and the estimation error 
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as desired output. The best difference model is evaluated by changing the number of 

hidden neurons. Once the best difference model is evaluated, it is combined with the 

coarse model to obtain the final radon concentrations. The MLP3 network architecture 

for SDM is shown in Figure 4-3. 

The Space-Mapped Neural Networks (SMNN) was proposed in Devabhaktuni et 

al. [53] and was used to estimate the radon concentration in Akkala et al. [17]. The 

SMNN is used to map the fine model input-space into a coarse model input-space using a 

Space-Mapping (SM) technique. A fine model in this work is assumed to be the radon 

concentration obtained from different commercial testing devices in Ohio. At first, a 

MLP3 network is used to train the model using radon concentration as input where the 

desired outputs are latitude and longitude. The predicted output from this model is used 

to predict the output latitude’ and longitude’. The SM technique is used to map the fine 

model input-space ݔ to a coarse model input-space ݔ௖௢௔௥௦௘. The SM model is trained 

using latitude, longitude and uranium concentration as inputs while latitude’ and 

longitude’ as desired outputs. Thus a space-mapping technique identifies a mathematical 

relationship between the SM network and coarse network. Once, the SM network is 

trained and used for predicting the latitude’ and longitude’, the coarse model is used to 

train the MLP3 network using the predicted latitude’ and longitude’ as inputs where 

radon concentration is the desired output. The MLP3 network architecture for SMNN is 

shown in Figure 4-4. Finally, the coarse model is used for predicting the expected radon 

concentration. 
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Figure 4-4: MLP3 Network Architecture for SMNN Method 

4.2.2 Results and Discussions 

 
 

In modeling PKI approach, MLP3 network is trained with a varying number of 

hidden neurons in the hidden layer. The neural network is trained using two supervised 

learning algorithms namely Back propagation and quasi-Newton. The best model in 

neural network is selected based on the validation error ܧ௔௩௚ . The optimal value of ܧ௔௩௚  

is zero. Table 4.3 represents the training and validation errors of knowledge based neural 

networks PKI approach using Back propagation algorithm and Table 4.4 represents the 

training and validation errors using quasi-Newton algorithm. 
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Table 4.3: Training and validation errors of PKI models using Backpropagation 
Algorithm. 

No. of 
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 7-fold CV 4.49 4.62 61.48 

10-fold CV 4.53 4.63 53.50 

20 7-fold CV 4.78 4.85 62.34 

10-fold CV 4.64 4.71 53.13 

30 7-fold CV 4.43 4.50 61.73 

10-fold CV 4.52 4.64 54.59 

40 7-fold CV 4.57 4.65 60.89 

10-fold CV 4.37 4.48 54.26 

50 7-fold CV 4.68 4.76 60.08 

10-fold CV 4.44 4.49 54.13 

60 7-fold CV 4.59 4.62 59.75 

10-fold CV 4.55 4.70 53.62 

70 7-fold CV 4.96 5.05 59.30 

10-fold CV 4.73 4.85 52.93 

80 7-fold CV 5.49 5.54 67.24 

10-fold CV 4.75 4.86 53.36 

90 7-fold CV 5.37 5.48 60.19 

10-fold CV 4.66 6.67 182.14 
 

From Table 4.3, it can be observed that PKI approach using the Backpropagation 

algorithm and the 7-fold CV method has least ܧ௔௩௚  of 4.50 for 30 hidden neurons, while 

using the 10-fold CV method it has least ܧ௔௩௚  of 4.48 for 40 hidden neurons. 
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Table 4.4: Training and validation errors of PKI models using Quasi-Newton 
Algorithm. 

No. of 
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 
7-fold CV 4.33 4.56 58.89 

10-fold CV 4.31 4.58 52.15 

20 
7-fold CV 4.27 4.57 59.73 

10-fold CV 4.26 4.54 52.58 

30 
7-fold CV 4.28 4.56 59.47 

10-fold CV 4.27 4.63 53.01 

40 
7-fold CV 4.27 4.60 60.40 

10-fold CV 4.25 4.62 52.19 

50 
7-fold CV 4.26 4.61 61.33 

10-fold CV 4.25 4.62 52.83 

60 
7-fold CV 4.27 4.60 59.26 

10-fold CV 4.25 4.60 52.98 

70 
7-fold CV 4.28 4.71 59.43 

10-fold CV 4.25 4.58 52.50 

80 
7-fold CV 4.29 4.65 61.65 

10-fold CV 4.25 4.61 52.59 

90 
7-fold CV 4.27 4.62 60.04 

10-fold CV 4.24 4.60 52.27 
 

From Table 4.4, it can be observed that PKI approach using the Quasi-Newton 

algorithm and the 7-fold CV method has least ܧ௔௩௚  of 4.56 for 10 hidden neurons, while 

using 10-fold CV method it has least ܧ௔௩௚  of 4.54 for 20 hidden neurons. 
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In modeling SDM approach, two models, namely the coarse and difference models 

are trained and validated with varying number of hidden neurons. In this thesis, the 

coarse model is considered as the ANN modeling approach, for which the training and 

validation errors are shown in Tables 4.1 and 4.2 using Backpropagation and Quasi-

Newton algorithms, respectively. From Table 4.1, it is evident that coarse model using 

the Backpropagation algorithm and the 7-fold CV method has least ܧ௔௩௚  of 4.58 for 40 

hidden neurons, while using 10-fold CV method it has least ܧ௔௩௚  of 4.52 for 10 hidden 

neurons. From Table 4.2, it is evident that coarse model using Quasi-Newton algorithm 

and the 7-fold CV method has the least ܧ௔௩௚  of 4.34 for 20 hidden neurons, while using 

the 10-fold CV method it has least ܧ௔௩௚  of 4.36 for 20 hidden neurons. Once the best 

coarse model has been identified, the difference model is trained and validated using an 

estimation error (i.e., the difference between the predictions of best coarse model and the 

actual radon values) as the desired output. The training and validation data for the 

difference model are obtained by replacing the radon values with estimation error for 

their respective samples. Further, the difference model is trained and validated with a 

varying number of hidden neurons in the hidden layer. The training and validation errors 

of the difference model are tabulated in Table 4.5 for the one using Backpropagation 

algorithm and in Table 4.6 for the one using quasi-Newton algorithm. 
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Table 4.5: Training and validation errors of difference models in SDM approach 
using Backpropagation algorithm. 

No. of  
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 
7-fold CV 4.48 4.60 59.20 

10-fold CV 4.34 4.40 52.57 

20 
7-fold CV 4.47 4.55 59.05 

10-fold CV 4.31 4.32 52.26 

30 
7-fold CV 4.78 4.95 59.42 

10-fold CV 4.50 4.32 45.47 

40 
7-fold CV 4.72 4.83 58.69 

10-fold CV 4.40 4.43 52.24 

50 
7-fold CV 4.34 4.43 59.70 

10-fold CV 4.49 4.56 52.06 

60 
7-fold CV 4.32 4.38 60.00 

10-fold CV 4.43 4.42 51.77 

70 
7-fold CV 4.40 4.49 58.83 

10-fold CV 4.33 4.39 52.33 

80 
7-fold CV 4.39 4.48 55.75 

10-fold CV 5.28 5.33 54.24 

90 
7-fold CV 5.34 5.38 60.58 

10-fold CV 5.07 5.03 52.95 
 

From Table 4.5, it can be observed that difference model using Backpropagation 

algorithm and the 7-fold CV method has least ܧ௔௩௚  of 4.38 for 60 hidden neurons, while 

using the 10-fold CV method it has least ܧ௔௩௚  of 4.32 for 20 hidden neurons.  
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The best SDM model is obtained by adding the predicted values of the best coarse 

model using the Backpropagation algorithm with 40 hidden neurons and the difference 

model with 60 hidden neurons using the 7-fold CV method, while using the 10-fold CV 

method SDM model is obtained by adding the coarse model using the Backpropagation 

algorithm with 10 hidden neurons and difference model with 20 hidden neurons. Hence, 

by combining the two models where Backpropagation algorithm is used for training, the 

resulting validation error ܧ௔௩௚  of SDM is 4.48 while using the 7-fold CV method and 

4.66 while using the 10-fold CV method. 

Table 4.6: Training and validation errors of difference models in SDM Approach 
using Quasi-Newton algorithm.  

No. of 
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 7-fold CV 4.31 4.45 60.89 

10-fold CV 4.30 4.45 53.56 

20 7-fold CV 4.31 4.46 60.89 

10-fold CV 4.30 4.45 53.57 

30 7-fold CV 4.31 4.46 60.89 

10-fold CV 4.30 4.45 53.57 

40 7-fold CV 4.31 4.48 60.56 

10-fold CV 4.30 4.46 53.60 

50 7-fold CV 4.31 4.46 60.90 

10-fold CV 4.30 4.46 53.54 

60 7-fold CV 4.31 4.46 60.89 

10-fold CV 4.30 4.46 53.62 

70 7-fold CV 4.31 4.48 60.44 

10-fold CV 4.30 4.46 53.73 
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80 7-fold CV 4.31 4.46 60.90 

10-fold CV 4.30 4.46 53.63 

90 7-fold CV 4.31 4.47 60.90 

10-fold CV 4.29 4.47 53.72 
 

From Table 4.6, it can be observed that difference model using Quasi-Newton 

algorithm and the 7-fold CV method has least ܧ௔௩௚  of 4.45 for 10 hidden neurons, while 

using the 10-fold CV method it has least ܧ௔௩௚  of 4.45 for 10 hidden neurons.  

The best SDM model is obtained by adding the predicted values of the best coarse 

model using the Quasi-Newton algorithm with 20 hidden neurons and the difference 

model with 10 hidden neurons, in both the cases of using the 7-fold CV method or the 10-

fold CV method. Hence, by combining the two models using the Quasi-Newton 

algorithm for training, the resulting validation error ܧ௔௩௚  in SDM is 4.34 while using the 

7-fold CV method and 4.35 while using the 10-fold CV method.  

In modeling the SMNN approach, two models namely the SM model and coarse 

model are trained and validated by varying number of hidden neurons. Tables 4.7 and 4.8 

represent the training and validation errors of SM model using Backpropagation and 

Quasi-Newton algorithms, respectively. Once, the SM model is trained and validated, a 

best model is selected based on the validation error criterion ܧ௔௩௚(%). The space mapped 

latitude’ and longitude’ are then used for training the coarse model by varying number of 

hidden neurons. while the radon concentration is the desired output. Tables 4.9 and 4.10 

represent the training and validation errors of coarse model using Backpropagation and 

Quasi-Newton algorithms, respectively. 
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Table 4.7: Training and validation errors of SM models in SMNN Approach using 
Backpropagation algorithm. 

No. of 
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 7-fold CV 9.57 9.85 57.85 

10-fold CV 10.94 11.33 56.80 

20 7-fold CV 9.68 9.89 55.33 

10-fold CV 11.17 11.51 56.80 

30 7-fold CV 9.59 9.76 56.93 

10-fold CV 11.01 11.23 57.26 

40 7-fold CV 9.55 9.78 57.26 

10-fold CV 10.99 11.20 58.01 

50 7-fold CV 9.72 9.94 59.95 

10-fold CV 10.89 11.13 57.44 

60 7-fold CV 9.61 9.81 59.50 

10-fold CV 11.12 11.47 57.51 

70 7-fold CV 9.82 9.97 57.21 

10-fold CV 11.19 11.56 56.43 

80 7-fold CV 9.71 9.75 56.40 

10-fold CV 10.99 11.50 75.02 

90 7-fold CV 13.68 17.44 67.72 

10-fold CV 11.15 11.55 57.64 
 

From Table 4.7, it is evident that SM model using Backpropagation algorithm and the 

7-fold CV method has least ܧ௔௩௚  of 9.75 for 80 hidden neurons, while using the 10-fold 

CV method it has the least ܧ௔௩௚  of 11.13 for 50 hidden neurons. 
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Table 4.8: Training and validation errors of SM Model in SMNN approach using 
Quasi-Newton algorithm. 

No. of 
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 7-fold CV 8.32 8.48 52.64 

10-fold CV 7.37 7.75 54.79 

20 7-fold CV 8.21 8.47 52.97 

10-fold CV 7.27 7.76 55.12 

30 7-fold CV 8.14 8.53 52.47 

10-fold CV 7.24 7.71 55.20 

40 7-fold CV 8.15 8.56 53.13 

10-fold CV 7.24 7.75 54.55 

50 7-fold CV 8.14 8.54 53.88 

10-fold CV 7.20 7.73 53.75 

60 7-fold CV 8.12 8.56 55.04 

10-fold CV 7.22 7.72 54.10 

70 7-fold CV 8.08 8.56 52.52 

10-fold CV 7.21 7.77 53.95 

80 7-fold CV 8.12 8.67 53.22 

10-fold CV 7.20 7.67 53.98 

90 7-fold CV 8.07 8.60 57.20 

10-fold CV 7.20 7.72 53.49 
 

From Table 4.8, it is evident that SM model using Quasi-Newton algorithm and the 7-

fold CV method has least ܧ௔௩௚  of 8.47 for 20 hidden neurons, while using the 10-fold CV 

method it has the least ܧ௔௩௚  of 7.67 for 80 hidden neurons. 
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Table 4.9: Training and validation errors of coarse model in SMNN approach using 
Backpropagation algorithm. 

No. of 
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 7-fold CV 4.40 4.90 61.75 

10-fold CV 4.81 5.02 52.05 

20 7-fold CV 5.15 5.27 59.90 

10-fold CV 4.27 4.41 53.02 

30 7-fold CV 4.45 4.53 60.61 

10-fold CV 4.35 4.53 53.25 

40 7-fold CV 6.90 6.95 59.87 

10-fold CV 4.29 4.42 53.12 

50 7-fold CV 4.34 4.48 61.28 

10-fold CV 4.27 4.44 52.78 

60 7-fold CV 4.31 5.36 59.33 

10-fold CV 4.36 4.55 52.38 

70 7-fold CV 4.42 4.87 55.55 

10-fold CV 4.29 4.44 52.54 

80 7-fold CV 3.72 5.16 62.24 

10-fold CV 4.32 4.49 52.54 

90 7-fold CV 3.75 11.08 78.99 

10-fold CV 4.58 5.63 55.30 
 

From Table 4.9, it is observed that coarse model using Backpropagation algorithm 

and the 7-fold CV method has least validation ܧ௔௩௚  of 4.48 for 50 hidden neurons, while 

using the 10-fold CV method it has the least ܧ௔௩௚  of 4.41 for 20 hidden neurons. 
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Table 4.10: Training and validation errors of coarse models in SMNN approach using 
Quasi-Newton algorithm. 

No. of  
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 7-fold CV 4.11 4.49 60.37 

10-fold CV 4.12 4.39 52.55 

20 7-fold CV 4.12 4.56 60.65 

10-fold CV 4.12 4.41 52.63 

30 7-fold CV 4.30 4.67 60.48 

10-fold CV 4.11 4.39 52.44 

40 7-fold CV 4.11 4.61 63.93 

10-fold CV 4.11 4.46 52.77 

50 7-fold CV 4.12 4.51 60.22 

10-fold CV 4.19 4.39 52.60 

60 7-fold CV 4.11 4.60 63.34 

10-fold CV 4.10 4.38 52.70 

70 7-fold CV 4.11 4.62 63.46 

10-fold CV 4.13 4.40 52.61 

80 7-fold CV 4.13 4.56 61.62 

10-fold CV 4.12 4.41 52.84 

90 7-fold CV 4.12 4.53 60.31 

10-fold CV 4.12 4.37 52.53 
 

From Table 4.10, it is observed that coarse model using Quasi-Newton algorithm and 

the 7-fold CV method has least ܧ௔௩௚  of 4.49 for 10 hidden neurons, while using the 10-

fold CV method it has the least ܧ௔௩௚  of 4.37 for 90 hidden neurons. Further, the 

performance of best models in KBNNs is compared with conventional interpolation 

techniques, ANN, CBNN, SVR and RFR in Table 5.4. 
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4.3 Correction-Based Neural Network Approach 

 
 

The correction model based ANN approach is a more advanced ANN that enhances 

both the generalization and extrapolation capabilities, as well as reduces the structural 

complexity of a neural network model [18]. 

4.3.1 Methodology 

This approach includes the conventional neural model ௔݂௡௡  and a set of candidate 

correction models ௔݂௡௡,௝  in order to achieve the condition ܧ௢௕௝ < ௨௦௘௥ܧ  and improve the 

prediction accuracy of ௔݂௡௡[54]. Here, ܧ௨௦௘௥  is a user defined error and ܧ௢௕௝  is the 

validation error of each sample in ௔݂௡௡,௝ given as 

௢௕௝ܧ =
݈ܽ݊݅݃݅ݎ݋ − ݀݁ݐܿ݅݀݁ݎ݌

݈ܽ݊݅݃݅ݎ݋ ∗ 100 (4.8) 

The desired output of candidate correction model is taken as ݆௧௛  element of input 

vector in ௔݂௡௡  and the input is replaced with the ݆௧௛  element of ௔݂௡௡  desired output. The 

structure of a correction models ௔݂௡௡ ,௝  is given as 

ଵ,௖ݔ = ௔݂௡௡,ଵ(ݔ,ݕଶ,ݓଵ), (4.9)  

ଶ,௖ݔ = ௔݂௡௡,ଶ(ݔଵ,ݓ,ݕଶ), (4.10) 

Eqs. (4.9) and (4.10) represent the general structure of correction models in this 

thesis, where ݔଵ,௖ and ݔଶ,௖ represent the desired outputs to latitude and longitude 

respectively, ݕ is the radon concentration, ݔଵ and ݔଶ are latitude and longitude 

respectively, ݓଵ and ݓଶ are the ANN weight vectors of the first candidate correction 

model and second candidate correction model respectively. The MLP3 network 
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architecture for the two candidate correction models is shown in Figure 4-5 and 4-6. 

After training and validating the two candidate correction models, the best candidate 

correction model has to be identified based on the error criterion ܧ௔௩௚ , given in eq. (4.7). 

Once the best candidate correction model out of the two candidate correction models 

is identified, it is combined with the less accurate ௔݂௡௡  and a root finding algorithm is 

iteratively implemented, such that the condition ܧ௢௕௝ <  .௨௦௘௥  is satisfiedܧ

In this thesis, a sensitivity-based root finding algorithm [54] has been implemented, 

which uses the partial derivatives to find the step-size and update direction. The partial 

derivatives of the candidate correction model ௔݂௡௡ ,௝ with respect to output ݕ is obtained 

by applying the chain rule of calculus and is given as 

௝,௖ݔ߲

ݕ߲ = ෍
௝,௖ݔ߲

௞ݖ߲
௞ݖ߲
௞ݕ߲

௞ݕ߲
ݕ߲

௥

௞ୀଵ

 (4.11) 

In eq. (4.11), ݎ is the number of hidden neurons, ݕ௞  is weighted sum of all inputs to 

௔݂௡௡,௝ and ݖ௞ is the sigmoid activation function. Since, the sigmoid activation function is 

computationally better over other functions such as arc tangent or hyperbolic tangent; it is 

employed in ANN training. The sigmoid activation function ݖ௞ is given as 

௞ݖ =
1

1 + ݁ି௬ೖ  

 

(4.12) 

In the initial stages of implementing the root finding algorithm, output  ݕ from ௔݂௡௡  is 

taken as the initial input and applied on “ ௔݂௡௡  and ௔݂௡௡,௝  pair”. The output ݕ is then 

constantly updated using a root finding algorithm until the condition ܧ௢௕௝ < ௨௦௘௥ܧ  is 

satisfied for each subsample in the dataset. Figure 4-7 represents the flowchart of 

Correction-Based Neural Network using sensitivity based root finding algorithm. 
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Figure 4-5: MLP3 Network Architecture for Candidate Correction Model 1 (Latitude 
as desired output) 

 

Figure 4-6: MLP3 Network Architecture for Candidate Correction Model 2 
(Longitude as desired output) 
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Figure 4-7: Flow Chart for Correction-Based Neural Networks using sensitivity based 

root finding algorithm 
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4.3.2 Results and Discussions 

 
 
In modeling CBNN approach, the two candidate correction models are trained and 

validated, one with the latitude as desired output and the other with longitude as the 

desired output. Tables 4.11 and 4.12 represent the training and validation errors of 

candidate correction model 1 (latitude as the desired output) using Backpropagation and 

Quasi-Newton algorithms, respectively. Tables 4.13 and 4.14 represent the training and 

validation errors of candidate correction model 2 (longitude as the desired output) using 

Backpropagation and Quasi-Newton algorithms, respectively. The candidate correction 

model and the ANN model form a mutual supportive pair [18]. Hence, in order to keep 

the structure of both the models the same, a fixed number of hidden neurons are taken for 

both the models. Once the candidate correction model with least validation error is 

identified, it is paired with the less accurate ANN model, and a root finding algorithm is 

iteratively implemented such that the condition ܧ௢௕௝ < ௨௦௘௥ܧ  is satisfied. In the root 

finding algorithm, for each sample the ܧ௢௕௝  is calculated as given in eq. (4.8). 
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Table 4.11: Training and validation errors of candidate correction model 1(latitude as 
desired output) using Backpropagation algorithm. 

No. of  
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 
7-fold CV 18.42 18.63 54.46 

10-fold CV 18.45 18.46 50.11 

20 
7-fold CV 18.57 18.78 54.97 

10-fold CV 18.54 18.56 51.53 

30 
7-fold CV 18.51 18.57 52.98 

10-fold CV 18.51 18.68 50.57 

40 
7-fold CV 18.48 18.64 54.01 

10-fold CV 18.42 18.52 50.63 

50 
7-fold CV 18.51 18.84 61.99 

10-fold CV 18.42 18.65 58.68 

60 
7-fold CV 18.47 19.18 148.02 

10-fold CV 18.75 18.93 58.24 

70 
7-fold CV 18.41 19.14 137.69 

10-fold CV 18.48 18.56 54.24 

80 
7-fold CV 18.40 18.98 104.50 

10-fold CV 18.56 18.78 56.99 

90 
7-fold CV 19.05 19.19 75.05 

10-fold CV 19.03 19.93 144.60 
 

From Table 4.11, it is observed that candidate correction model 1 using the 

Backpropagation algorithm and the 7-fold CV method has least ܧ௔௩௚  of 18.57 for 30 

hidden neurons, while using the 10-fold CV method it has the least ܧ௔௩௚  of 18.46 for 10 

hidden neurons. 
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Table 4.12: Training and validation errors of candidate correction model 1(latitude as 
desired output) using Quasi-Newton algorithm. 

No. of  
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 
7-fold CV 16.50 17.38 87.72 

10-fold CV 16.39 17.10 59.54 

20 
7-fold CV 16.15 16.98 73.46 

10-fold CV 16.22 17.07 77.87 

30 
7-fold CV 16.12 17.03 77.87 

10-fold CV 16.19 17.10 72.49 

40 
7-fold CV 16.18 17.25 107.92 

10-fold CV 16.15 16.87 67.88 

50 
7-fold CV 16.14 17.29 99.70 

10-fold CV 16.17 17.15 90.42 

60 
7-fold CV 16.12 17.18 79.08 

10-fold CV 16.14 16.94 68.07 

70 
7-fold CV 16.14 17.36 114.44 

10-fold CV 16.18 16.93 59.89 

80 
7-fold CV 16.21 17.17 92.44 

10-fold CV 16.22 17.04 74.06 

90 
7-fold CV 16.18 17.25 73.51 

10-fold CV 16.21 16.84 70.45 
 

From Table 4.12, it is observed that candidate correction model 1 using Quasi-

Newton algorithm and the 7-fold CV method has least ܧ௔௩௚  of 16.98 for 20 hidden 

neurons, while using the 10-fold CV method it has the least validation ܧ௔௩௚  of 16.84 for 

90 hidden neurons. 
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Table 4.13: Training and validation errors of candidate correction model 2(longitude 
as desired output) using Backpropagation algorithm. 

No. of  
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 
7-fold CV 24.32 24.69 63.76 

10-fold CV 24.04 24.31 58.89 

20 
7-fold CV 24.18 24.52 58.74 

10-fold CV 24.13 24.30 54.45 

30 
7-fold CV 24.24 24.50 67.99 

10-fold CV 24.14 24.35 58.94 

40 
7-fold CV 24.28 24.71 66.22 

10-fold CV 24.32 24.68 61.40 

50 
7-fold CV 24.04 24.39 84.18 

10-fold CV 24.12 24.26 58.55 

60 
7-fold CV 24.07 24.24 59.61 

10-fold CV 23.76 23.96 60.28 

70 
7-fold CV 24.27 24.35 60.22 

10-fold CV 23.84 24.55 102.46 

80 
7-fold CV 24.10 24.73 73.45 

10-fold CV 23.95 24.31 60.69 

90 
7-fold CV 24.20 24.44 88.80 

10-fold CV 24.11 24.13 61.08 
 

From Table 4.13, it is observed that candidate correction model 2 using 

Backpropagation algorithm and the 7-fold CV method has least ܧ௔௩௚  of 24.24 for 60 

hidden neurons, while using the 10-fold CV method it has the least ܧ௔௩௚  of 23.96 for 60 

hidden neurons. 
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Table 4.14: Training and validation errors of candidate correction model 2 (longitude 
as desired output) using Quasi-Newton algorithm.  

No. of  
Hidden Neurons CV Type 

Training 
Error 

Validation Errors 
Eavg 
(%) 

Eworst 
(%) 

10 
7-fold CV 21.80 22.66 106.80 

10-fold CV 21.72 22.79 71.71 

20 
7-fold CV 21.20 22.88 113.14 

10-fold CV 21.29 22.61 98.87 

30 
7-fold CV 21.17 22.61 129.42 

10-fold CV 21.37 22.80 101.21 

40 
7-fold CV 20.97 22.38 81.58 

10-fold CV 21.20 22.97 127.81 

50 
7-fold CV 21.08 23.19 199.34 

10-fold CV 21.28 22.26 76.77 

60 
7-fold CV 21.31 22.65 114.77 

10-fold CV 21.13 22.78 124.51 

70 
7-fold CV 21.25 22.40 100.63 

10-fold CV 21.19 22.51 88.24 

80 
7-fold CV 21.28 22.98 163.80 

10-fold CV 21.19 22.83 119.81 

90 
7-fold CV 21.28 22.86 168.63 

10-fold CV 21.09 22.88 152.45 
 

From Table 4.14, it is observed that candidate correction model 2 using Quasi-

Newton algorithm and the 7-fold CV method has least validation ܧ௔௩௚  of 22.38 for 40 

hidden neurons, while using the 10-fold CV method it has the least ܧ௔௩௚  of 22.26 for 50 

hidden neurons. 



49 
 

To implement root finding algorithm the best candidate correction model of the two 

models need to be selected. From Tables 4.11 and 4.13, it is evident that candidate 

correction model 1 (i.e., latitude as the desired output), using a Backpropagation 

algorithm and the 7-fold CV method has least ܧ௔௩௚  of 18.57 for 30 hidden neurons, while 

using the 10-fold CV method it has the least ܧ௔௩௚  of 18.46 for 10 hidden neurons. From 

Table 4.12 and 4.14, it is evident that candidate correction model 1 (i.e., latitude as the 

desired output) using the Quasi-Newton algorithm and the 7-fold CV method has least 

௔௩௚ܧ  of 16.98 for 20 hidden neurons, while using the 10-fold CV method it has the least 

௔௩௚ܧ  of 16.84 for 90 hidden neurons. Once the best model of the two candidate correction 

models is selected, to keep the structure of both candidate correction model 1 and ANN 

the same, the model is fixed at 30 hidden neurons using the 7-fold CV method and the 

Backpropagation algorithm, while for the 10-fold CV method it is fixed at 10 hidden 

neurons. Similarly, the structure of models using the Quasi-Newton algorithm is kept 

same; the model is fixed at 20 hidden neurons using the 7-fold CV method, while for the 

10-fold CV method it is fixed at 90 hidden neurons. After implementing the sensitivity 

based root finding algorithm where Backpropagation algorithm is used for training, the 

resulting validation error ܧ௔௩௚  of CBNN is 2.71 while using the 7-fold CV method and 

2.56 while using the 10-fold CV method. Similarly, root finding algorithm implemented 

where the Quasi-Newton algorithm is used for training, the resulting validation error 

௔௩௚ܧ  of CBNN is 3.58 while using the 7-fold CV method and 3.62 while using the 10-

fold CV method. Further, the performance of best models in CBNN is compared with 

conventional interpolation techniques, ANN, KBNN, SVR and RFR in Tables 5.3 and 

5.4.  
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Support Vector Regression and Random 
Forest Regression 

5.1 Support Vector Regression  

5.1.1 Review of Support Vector Machines 

 
 
Support Vector Machines (SVM’s) are widely used for data classification and 

regression in various researches. Unlike neural network techniques which are based on 

Empirical Risk Minimization Principle, SVM’s prediction are based on Structural 

Minimization principle that overcomes the problem of local minimization and over-

fitting. To overcome the drawbacks of the existing neural network techniques an 

enhanced SVM based error model namely nu-SVR technique [55] has been developed. 

The most commonly used versions of SVM regression are ‘epsilon-SVR’ and ‘nu-SVR’. 

Previously, Support Vector Regression (SVR) applicability was based on the penalty 

parameters C [0, inf) and epsilon [0, inf) to optimize the individual samples which were 

not correctly predicted. Hence, to improvise the applicability of SVR with a slightly 

different penalty, epsilon parameter was replaced by nu (0, 1]. The motivation of nu 

Chapter 5 
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version in SVM is it represents an upper bound on the badly predicted errors and lower 

bound on the support vectors. Though the optimization problem solved in both the 

versions of SVR is the same; the penalty parameters epsilon and nu are slightly different. 

SVM’s are used for classification in research areas of bioinformatics [56], intrusion 

detection [57], credit rating analysis [58], and for drug/non drug classification in [59]. 

SVMs are used for regression in evaporation estimation [60], and estimation of soil 

moisture [61]. Recently, a work done by Bhatt et al. [62] has shown that nu-SVR 

performed better than ANN for modeling and estimation of the MEMS sensor errors. 

5.1.2 Methodology 

The SVM type employed in this thesis is a nu-SVR modeling technique [62] which 

aims to approximate the nonlinear regression function given in eq. (5.1). 

(ݔ)݂ = ்ݓ (ݔ)∅. + ܾ (5.1) 

In eq. (5.1), ்ݓ is the weight vector to the corresponding ∅(ݔ),  is a nonlinear (ݔ)∅

mapping function which maps the input space to a higher dimensional space, and ܾ is the 

bias. In order to approximate the nonlinear regression function, the parameters ݓ and ܾ 

need to be estimated, such that the function ݂(ݔ) should be as close as possible to desired 

output ݕ and should be as flat as possible in order to hold back the problem of overfitting. 

To achieve the above two objectives of closeness and flatness, the primal problem of Nu-

SVR given in eq. (5.1) has to be minimized 

1
2 ଶ||ݓ|| + ܥ ൝ߛ. ߝ +

1
݊෍

ߦ) + (∗ߦ
௡

௜ୀଵ

ൡ (5.2) 

having constraints to: 

௜ݕ − ்ݓ〉 〈(ݔ)∅. − ܾ ≤ ߝ +  ௜∗, (5.3)ߦ
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்ݓ〉 〈(ݔ)∅. + ܾ − ௜ݕ ≤ ߝ +  ,௜ߦ

,∗௜ߦ ௜ߦ ≥ 0. 

In eq. (5.2), ߝ is an insensitive loss function that is used to find absolute error between 

actual and predicted value, ߦ௜∗ܽ݊݀ ߦ௜ are slack variables introduced by Vapnik and Cortes 

 is a ܥ ,that is used to measure the flatness (ݔ)݂ ଶ is a parameter norm of||ݓ|| .[63]

regularized parameter that determines the tradeoff between tolerance of error above ߝ and 

parameter norm, 0)ߛ ≤ ߛ ≤ 1) is an upper bound on the fraction of margin errors in the 

training set and a lower bound on the fraction of support vectors. In cases where ߛ equals 

to both fractions, the dual problem of Nu-SVR is solved by constructing a Lagrange 

function (L), given as, 

L(α,α ∗,β, η, η ∗)

=  
1
2 ||w||ଶ + ܥ ൝ߛ. ߝ +

1
݊෍

ߦ) + (∗ߦ
௡

௜ୀଵ

ൡ −
1
݊෍

.ߟ) ߦ + .∗ߟ (∗ߦ
௡

௜ୀଵ

−
1
݊෍

ߝ) + ௜ߦ + ௜ݕ − −(ݔ)∅.௧ݓ ܾ)
௡

௜ୀଵ

−
1
݊෍

(߳ + ௜ߦ − ௜ݕ + ௧ݓ (ݔ)∅. + ܾ)
௡

௜ୀଵ

− .ߚ ߳ 

(5.4) 

In eq. (5.4), the Lagrange multipliers are ߙ,ߙ ߟ,ߟ,∗  Thus, optimizing the dual .ߚ,∗

problem of Nu-SVR using partial derivatives of  L with respect to variables such as 

,ݓ ,ߝ ܾ,  yields to ݅ߦ

݉ݑ݉݅ݔܽ݉ −
1
2 ෍ ௜ߙ) − .(∗௜ߙ ൫ߙ௝ − ௝∗൯ߙ

௡

௜,௝ୀଵ

௝൯ݔ,௜ݔ൫ܭ. + ෍ݕ௜ . ௜ߙ) − (∗௜ߙ
௡

௜ୀଵ

 (5.5) 

having constraints to: 
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∑ ௜ߙ) − ௜∗)௡ߙ
௜ୀଵ = 0, 

∑ ௜ߙ) + ௜∗)௡ߙ
௜ୀଵ ≤  ,ߛܥ

௜ߙ ∗௜ߙ, ∈ ቂ0, ஼
௡
ቃ. 

(5.6) 

In eq. (5.5), ݇(ݔ௜,ݔ௝) is a kernel function given as ݇൫ݔ௜,ݔ௝൯ =  .(௝ݔ)∅.ݐ(௜ݔ)∅

Precisely, optimization of the dual problem of Nu-SVR yields to Lagrange multipliers 

and weight parameter w as 

ݓ = ෍(ߙ௜ − (∗௜ߙ
௡

௜ୀଵ

 (5.6) (௜ݔ)∅.

Hence substituting w in eq. (5.1) gives the approximated prediction function as 

(ݔ)݂ = ෍(ߙ௜ − (∗௜ߙ
௡

௜ୀଵ

௝൯ݔ,௜ݔ൫ܭ. + ܾ (5.7) 

In eq. (5.7), b is a bias parameter that is identified using Kuhn, Tucker and Karush 

conditions given in [64, 65]. ݇(ݔ௜,ݔ௝) is a kernel function, whose selection plays an 

important role in SVM, as it is a key point in increasing the prediction accuracy of the 

model. The different types of kernel functions that are frequently used in SVM are 

Polynomial Function (PF), Radial Basis Function (RBF), Sigmoid Function (SF) and 

Linear Function (LF). In this article, RBF kernel function is used, as it has better 

prediction accuracy and a relatively less complex model for implementation [66]. 

Identifying the Lagrange multipliers ߙ,ߙ∗,ܾ using Nu-SVR approach and selecting an 

appropriate kernel function, the approximated function in eq. (5.7) can be used to predict 

the desired output.  

5.1.3 Results and Discussions 

In modeling support vector regression, the Nu-SVR technique has been implemented 
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using LibSVM software [37]. As the radial basis kernel function is easy to implement and 

produces accurate models it has been chosen as the kernel function in this work. Kernel 

function controls the shape of the separating hyper plane, and the associated parameter 

that does this is the gamma value. It is noted that as the gamma value increases, the 

number of support vectors increases hence improvising the prediction accuracy. Hence, 

the support vector regression is implemented by varying the gamma value in the kernel 

function. Table 5.1 represents the error criterion Eavg value with varying gamma value in 

the kernel. The equation for error criterion Eavg is the same as given in eq. (4.7). 

Table 5.1: Validation Error of Support Vector Regression with varying Gamma Value 

Gamma 
Value 

CV  
Type Eavg 

0.01 
7-fold 4.892964 

10-fold 4.798435 

0.1 
7-fold 4.25935 

10-fold 4.242329 

1 
7-fold 4.057695 

10-fold 4.045169 

10 
7-fold 4.002825 

10-fold 4.000835 
 

From Table 5.1, it can be observed that as the gamma value increases the validation 

error decreases in SVR. It is evident that there is no significant change in the validation 

error when the gamma value is changed from 1 to 10. Further, the best model i.e., the 

SVR model using the RBF kernel function and gamma value as 10 is compared with 

other interpolation techniques in Table 5.4. 
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5.2 Random Forest Regression 

5.2.1 Review of Random Forest Regression 

 
 
Random Forest (RF) [68] is an ensemble learning technique used for data 

classification and regression applications. In random forests a forest of trees are grown 

from a bootstrap sample taken from the training data and the final output is taken as the 

average of individual tree outputs. RF gained popularity due to robustness and flexibility 

in handling complex input-output relationships. Random Forests are capable of 

generalizing high dimensional data effectively, and the inbuilt cross-validation capability 

improves the prediction accuracy, thus making it suitable for real-time implementation. 

RFR has been used in language modeling application to predict the next word based on 

words already seen before [69]. RF has also been used for classifying microarray data in 

bioinformatics [70, 71]. The application of RF as a classifier has also been used in 

ecology, for classifying data on invasive plant species presence in Lava Beds National 

Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, 

and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA [72]. Recently, 

application of RF is used for integrating Global Positioning System (GPS) and Inertial 

Navigation System (INS) for reliable, accurate and continuous navigation solution [73]. 

The current application of predicting Radon concentration with latitude and longitude as 

inputs, require spatial interpolation and thus the applicability of RFR on environmental 

data. The application of RFs to environmental data is for predicting seabed mud content 

based on samples extracted from Geoscience Australia’s Marine Samples Database [74]. 
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5.2.2 Methodology 

Random Forest Regression (RFR) is a non-parametric regression approach that 

gained popularity for its robustness and flexibility in modeling the input-output 

functional relationship appropriately [72]. In RFR, a collection of regression trees are 

trained using different bootstrap samples from training data. While choosing the boot 

strap samples, some of the training data may be left out of the sample and some may be 

repeated in the sample. These left out data sample constitute the out-of-bag samples, 

which are used to calculate the learning error given in eq. (5.8), thus tests the training 

accuracy. This built-in cross-validation capability works with the help of out-of-bag 

samples and provides a realistic prediction error estimates during the training process 

thus, improving the generalization capability of the random forests. The final output is 

taken as the average of the individual tree outputs. 

Given a input-output dataset i.e., {(ݔଵ,ݕଵ), . . , ݅ ,௜ݔ where ,{(௡ݕ,௡ݔ) = 1, . . ,݊ is an 

input vector containing latitude and longitude and ݕ௜ is the radon concentration, the 

training procedure is followed as: 

1. A randomly selected sample with replacement or a bootstrap sample is collected 

from the available dataset. 

2. Using the bootstrap sample, grow a tree to maximum size without pruning. 

3. Repeat Step 2 until user defined number of trees are grown. 

The above procedure results in a set of M trees { ଵܶ(ܺ), ଶܶ(ܺ), … , ெܶ(ܺ)}, where 

ܺ = ,ଶݔ,ଵݔ} … ,  dimension input vector that forms a forest. The ensemble-݌ ௣}, is aݔ

produces ܯ outputs corresponding to each tree ݕොଵ = ଵܶ(ܺ), … ො௠ݕ, = ெܶ(ܺ) , where 

ො௠ݕ ,݉ = 1, …  .is the ݉௧௛ tree output ,ܯ,
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Figure 5-1: Random Forests Work Flow 

The RFR workflow is shown in Figure 5-1, where input training samples ݔଵ, ,ଶݔ 

. . ,  ௡ shown on left is used to grow the user defined number of trees. The testing samplesݔ

i.e., the inputs for prediction are passed along the trees and the final output is the average 

of individual tree estimates. To determine how efficient the random forest prediction 

would be when it is exposed to testing samples, the out-of-bag error estimate is calculated 

using eq. (5.8).  

ܧܵܯ ≈ ைை஻ܧܵܯ = ݊ିଵ෍[ݕො(ݔ௜)− ௜]ଶݕ
௡

௜ୀଵ

 (5.8) 

In eq. (5.8), ݕො(ݔ௜) is the predicted output corresponding to a given input sample, ݕ௜ is 

the observed output and ݊ represents the total number of out of bag samples. 

5.2.3 Results and Discussions 

 

In random forest regression, the model is trained and validated using an integrated 

development environment (IDE) software named R [40]. The R computing structure is 
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organized in packages which are a combination of respective codes, data and 

documentation. In this work, the RFR is implemented using the 'randomForest' package. 

The applicability of RFR in this application is trained and validated by varying the 

number of trees. Table 5.2 represents the validation error criterion Eavg by varying 

number of trees. The equation for error criterion Eavg is the same as given in eq. (4.7). 

Table 5.2: Performance of RFR Based on Validation Error (Eavg) by Varying the 
Number of Trees 

No. of Trees CV Type Eavg 

500 
7-fold CV 4.50 

10-fold CV 4.45 

1000 
7-fold CV 4.51 

10-fold CV 4.45 

2000 
7-fold CV 4.52 

10-fold CV 4.45 

 

From Table 5.2, it can be observed that the performance of the RFR did not 

improvise with varying number of trees. 

Finally, the best models in all the interpolation techniques are compared with 

various performance measures as given in chapter 3.2. Table 5.3 represents the 

performance measure of various interpolation techniques discussed where neural network 

techniques are trained using Backpropagation algorithm. Table 5.4 represents the 

performance measure of various interpolation techniques discussed where neural network 

techniques are trained using Quasi-Newton algorithm. 
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Table 5.3: Comparison of Conventional Interpolation Techniques, Neural Network 
Techniques using Backpropagation Algorithm in Training, Support Vector Regression 

and Random Forest Regression 

Techniques for 
interpolating radon 
concentration 

CV Type Eavg MAE Fa2 RMSE FB NMSE 

Kriging 
7-fold CV 4.16 1.60 0.780 2.97 0.029 0.765 

10-fold CV 4.12 1.59 0.792 2.94 0.028 0.760 

Local Polynomial 
Interpolation 

7-fold CV 4.25 1.63 0.771 2.97 0.024 0.760 

10-fold CV 4.22 1.62 0.764 2.93 0.021 0.745 

Global Polynomial 
Interpolation 

7-fold CV 5.13 1.97 0.656 3.18 0.011 0.854 

10-fold CV 5.11 1.97 0.655 3.16 0.008 0.843 

Radial Basis 
Function 

7-fold CV 4.40 1.69 0.778 3.09 -0.003 0.804 

10-fold CV 4.65 1.67 0.776 3.05 -0.001 0.781 

Artificial Neural 
Networks 

7-fold CV 4.58 1.76 0.722 3.08 0.059 0.838 

10-fold CV 4.52 1.74 0.720 3.07 0.089 0.874 

Prior Knowledge 
Input 

7-fold CV 4.50 1.73 0.737 3.12 0.117 0.931 

10-fold CV 4.48 1.72 0.730 3.07 0.128 0.962 

Source Difference 
Model 

7-fold CV 4.48 1.72 0.741 3.06 0.075 0.864 

10-fold CV 4.66 1.79 0.699 3.10 0.134 0.967 

Space-Mapped 
Neural Networks 

7-fold CV 4.48 1.72 0.738 3.09 0.088 0.885 

10-fold CV 4.41 1.68 0.742 2.99 0.062 0.787 

Correction Model 
7-fold CV 2.71 1.03 0.790 1.83 -0.165 0.245 

10-fold CV 2.57 0.99 0.818 2.20 -0.141 0.488 

Support vector 
Regression 

7-fold CV 4.00 1.53 0.785 2.98 0.139 0.861 

10-fold CV 4.00 1.54 0.787 2.95 0.137 0.850 

Random Forest 
regression 

7-fold CV 4.50 1.73 0.767 3.09 -0.007 0.802 

10-fold CV 4.45 1.71 0.772 3.08 -0.008 0.790 
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Table 5.4: Comparison of Conventional Interpolation Techniques, Neural Network 
Techniques using Quasi-Newton Algorithm in Training, Support Vector Regression and 

Random Forest Regression 

Techniques for 
interpolating radon 

concentration 
CVType Eavg MAE Fa2 RMSE FB NMSE 

Kriging 
7-fold CV 4.16 1.60 0.780 2.97 0.029 0.765 

10-fold CV 4.12 1.59 0.792 2.94 0.028 0.760 

Local Polynomial 
Interpolation 

7-fold CV 4.25 1.63 0.771 2.97 0.024 0.760 
10-fold CV 4.22 1.62 0.764 2.93 0.021 0.745 

Global Polynomial 
Interpolation 

7-fold CV 5.13 1.97 0.656 3.18 0.011 0.854 
10-fold CV 5.11 1.97 0.655 3.16 0.008 0.843 

Radial Basis 
Function 

7-fold CV 4.40 1.69 0.778 3.09 -0.003 0.804 
10-fold CV 4.65 1.67 0.776 3.05 -0.001 0.781 

Artificial Neural 
Networks 

7-fold CV 4.34 1.66 0.761 3.00 0.003 0.767 
10-fold CV 4.36 1.67 0.763 2.96 -0.003 0.745 

Prior Knowledge 
Input 

7-fold CV 4.56 1.75 0.748 3.06 0.004 0.792 
10-fold CV 4.54 1.74 0.736 3.03 -0.005 0.780 

Source Difference 
Model 

7-fold CV 4.34 1.67 0.764 3.00 0.003 0.768 
10-fold CV 4.35 1.67 0.763 2.96 -0.003 0.745 

Space-Mapped 
Neural Networks 

7-fold CV 4.49 1.72 0.753 3.07 0.001 0.795 
10-fold CV 4.37 1.68 0.759 2.96 0.004 0.753 

Correction Model 
7-fold CV 3.58 1.37 0.795 2.71 -0.076 0.579 

10-fold CV 3.63 1.40 0.784 2.63 -0.087 0.547 

Support vector 
Regression 

7-fold CV 4.00 1.53 0.785 2.98 0.139 0.861 
10-fold CV 4.00 1.54 0.787 2.95 0.137 0.850 

Random Forest 
regression 

7-fold CV 4.50 1.73 0.767 3.09 -0.007 0.802 

10-fold CV 
4.45 1.71 0.772 3.08 -0.008 0.790 
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From Tables 5.3 and 5.4, it can be observed that correction-based ANN model has 

better performance compared to other interpolation techniques. The Ideal Values (IV) of 

performance measures Eavg, MAE, RMSE and NMSE are zero, whereas for Fa2, it is one. 

The FB lies between -2 and +2 and the ideal value of this evaluation parameter is zero. 

 In neural network approaches, it is observed that training by Quasi-Newton 

algorithm have accurate models than neural networks trained by Backpropagation 

algorithm.  

In PKI approach, neural network trained using Backpropagation algorithm has 

slightly better validation error Eavg compared to neural network trained using Quasi-

Newton algorithm. Such a behavior in neural networks can be attributed to over learning 

for the neural network trained using Quasi-Newton algorithm.  

In correction-Based neural network approach, initially, it was observed that the 

Quasi-Newton algorithm performed better than the Backpropagation algorithm while 

training and validating the candidate correction models as evident from Tables 4.11 and 

4.12. Hence, it can be concluded that Quasi-Newton predictions are more accurate than 

Backpropagation. It is also noted that, in CBNN the required attribute value (i.e., radon 

concentration in this case) prediction is based on a sensitivity based root finding 

algorithm, where the required attribute value is repetitively updated to predict the desired 

output in the candidate correction model such that the Eobj (as given in eq. (4.8)) is within 

the user defined threshold. In CBNN, implementation of the sensitivity-based root 

finding algorithm has lead to deviation of optimized Quasi-Newton predictions. While 

using the Back propagation, the predictions which are struck at the local minima are 

being optimized using the sensitivity approach and thus outperforming Quasi-Newton. 
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Further, considering neural networks using the Quasi-Newton algorithm have better 

results over Backpropagation, the best models in neural networks using the Quasi-

Newton algorithm are compared with other interpolation techniques in Table 5.4. From 

Table 5.4, it can be concluded that Kriging and LPI have better results over GPI and 

RBF. From Table 5.4, it can be concluded that GPI and RBF did not perform better for 

data having short-range variations. In neural network techniques, ANN performance can 

be explained from the fact that CV requires averaging of performance measures from ݇ 

distinct models, resulting in the deteriorated performance of ANN compared to 

conventional interpolation techniques, like Kriging and LPI. The performance of ANN 

modeling depends on training data and the number of hidden neurons, as cross-validation 

method requires averaging the performance of  ݇ distinct models for a fixed number of 

hidden neurons, it can be concluded that ANN did not perform better over conventional 

interpolation techniques using the CV methods. Though KBNNs did not perform better 

over conventional interpolation techniques like ANN using the cross-validation methods, 

the performance of KBNN’s especially in the case of SDM and SMNN using the 10-fold 

CV method is slightly better over ANN’s. The Correction-based ANN model has shown 

better performance in evaluating five of the six performance measures of all the 

interpolation techniques discussed. SVMs have proved to be better than ANNs [62], 

which is true in this application as evident from Table 5.4. Unlike ANNs and KBNNs, in 

the CBNN where the required attribute value is optimized using a sensitivity-based root 

finding algorithm, rather estimating the output based on MLP3 network thus, shows that 

the CBNN could perform better than SVR. Among the newly introduced regression 

techniques for this application, SVR has shown better performance over RFR. RF may be 
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better than SVM for interpolating environmental variables as in  Li et al. [74], but in our 

application, unlike other SVM methods, nu-SVR methodology  models  the error bounds 

into the intervals of [0,1] (i.e., similar to scaling), thus leading to better performance of 

nu-SVR modeling over RFR. In general, RF predictions are more accurate for 

extrapolation than interpolation [73, 74], but the performance of RFR for interpolation in 

geo-statistical applications can be improved by using secondary variables as in [74]. 

However, the correction based ANN approach having better performance of all the 

interpolation techniques, SVR can be equally considered for various reasons such as 

requirement of less number of training samples, overcoming the problem of local 

minimization and over-fitting, as well as employing Structural Risk Minimization (SRM) 

unlike ANN’s Empirical Risk Minimization (ERM) principle. 
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Conclusions and Future Work 

6.1 Conclusions 

 
 
This thesis presents the comparison between various conventional interpolation 

techniques, neural network approaches, SVR and RFR for modeling and predicting the 

radon concentrations in Ohio. Observing the results, it can be concluded that the 

Correction-Based ANN approach and SVR have delivered better performance compared 

to other techniques in predicting the radon concentrations, as shown in Table 5.4. 

Furthermore, the Correction-Based ANN model outperforms in five of the six evaluation 

parameters among all the interpolation techniques, while the SVR has given better 

performance of all the interpolation techniques except the Correction-Based ANN 

modeling, using both the K-fold cross-validation methods. Though Correction-Based 

ANN model outperforms SVR, owing to the advantage of SVR in solving the problem of 

over-fitting, this technique can be equally considered with Correction-Based ANN 

modeling. 

 

Chapter 6 
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6.2 Future Work 

 
 
In this work, it is found that Correction-Based ANN modeling approach using local 

optimization algorithms such as Backpropagation and Quasi-Newton for training in the 

MLP3 network leads to the problem of deviations in predictions due to local minima. 

Hence, to overcome the problem of local minimization in CBNN, sensitivity-based root 

finding algorithm can be used to optimize the radon concentration predictions using 

global optimization algorithms such as Particle Swarm Optimization (PSO) or Genetic 

Algorithms (GA) in MLP3 network. In RFR, it was found that lack of secondary 

variables might decrease the performance of the model. Hence, identifying the secondary 

variables and modeling RFR could lead to better predictions. 
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Appendix-A 

Source Code 

A.1 Source code for K-fold Cross-Validation Data Preparation 

clc; 

clear; 

filename = uigetfile('*.csv', 'select file for input'); 

x = load(filename); 

folds = input('Enter the number of folds:\n'); 

fname = input('Enter the file name to save the sets:\n','s'); 

[row,columns]=size(x); 

rows=row; 

cols=columns; 

sh=0; 

c = cvpartition(rows,'kfold',folds); 

for i=1:folds 

    tr = training(c,i); 

    x=cat(2,x,tr); 

end 

t=cols+1; 

for se=1:folds 

    p=0;q=0; 

for i=1:rows 
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    if x(i,t)==0 

        q=q+1; 

    else 

        p=p+1; 

    end 

end 

y=zeros(p,cols); 

z=zeros(q,cols); 

j=1;l=1;m=1;r=1;s=1; 

for i=1:rows 

    if x(i,t)==1 

        for j=1:cols; 

       y(l,m)=x(i,j); 

       m=m+1; 

        end 

               m=1; l=l+1; 

    else 

        for k=1:cols 

            z(r,s)=x(i,k); 

            s=s+1; 

        end 

                s=1; r=r+1; 

            end 

  end 

    sh=sh+1; 

  xlswrite(fname,y,sh) 

  sh=sh+1; 

  xlswrite(fname,z,sh) 

    t=t+1; 

end  
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A.2 Source code for Correction-Based ANN modeling 
approach 

clc; 

clear all; 

close all; 

n = 1;  

p = 0; 

q=3; 

train=input('enter the number of training samples'); 

test=input('enter the number of testing samples'); 

total=test+train; 

h=input('enter the number of hidden neurons'); 

for k=1:test 

file1 = fopen('data.dat'); 

input = fscanf(file1, '%g',train); 

input1 = input(n); % Latitude 

input2 = input(n+1); %Longitude 

outputp = input(n+2); % Radon 

inputv = [input1 input2]; 

fclose(file1); 

%Initial radon predictions 

x=fopen('plot.dat'); 

y=fscanf(x, '%g',total); 

yout=y(q); 

file2 = fopen('trad.txt','a'); 

fprintf(file2, '%f\n',yout); 

fclose(file2); 

input1c = yout; % Radon 

input2c = input2; % Longitude 

inputc = [input1c input2c]; 
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outputpc = model(inputc); 

file3 = fopen('mod.txt','a'); 

fprintf(file3, '%f\n',outputpc); 

fclose(file3); 

% Difference between original and predicted latitude values 

Diff = outputpc-input1; 

file4 = fopen('error.txt','a'); 

fprintf(file4, '%f\n',Diff); 

fclose(file4); 

%input scaling 

x(1)=-1.0+(2.0)*(input1c-(0.1)) / ((39.0) - (0.1)); 

x(2)=-1.0+(2.0)*(input2c-(-84.7905)) / ((-80.53069) - (-84.7905)); 

%calculating hidden neurons 

z(1) = 1.0 / ( 1.0 + exp(-1.0 * (-0.444642+x(1)*(2.31087)+x(2)*(-0.345894)))); 

z(2) = 1.0 / ( 1.0 + exp(-1.0 * (-0.556844+x(1)*(-1.39897)+x(2)*(-1.63432)))); 

z(3) = 1.0 / ( 1.0 + exp(-1.0 * (5.903+x(1)*(8.59608)+x(2)*(6.28252)))); 

z(4) = 1.0 / ( 1.0 + exp(-1.0 * (-2.78883+x(1)*(-1.57637)+x(2)*(-1.48526)))); 

z(5) = 1.0 / ( 1.0 + exp(-1.0 * (-3.72274+x(1)*(-8.03895)+x(2)*(6.36265)))); 

z(6) = 1.0 / ( 1.0 + exp(-1.0 * (-1.74254+x(1)*(-3.49334)+x(2)*(-10.7203)))); 

z(7) = 1.0 / ( 1.0 + exp(-1.0 * (1.76763+x(1)*(2.7054)+x(2)*(4.72469)))); 

z(8) = 1.0 / ( 1.0 + exp(-1.0 * (0.433244+x(1)*(-2.72137)+x(2)*(-4.34913)))); 

z(9) = 1.0 / ( 1.0 + exp(-1.0 * (-0.267094+x(1)*(2.03351)+x(2)*(-4.69041)))); 

z(10) = 1.0 / ( 1.0 + exp(-1.0 * (0.818484+x(1)*(1.06151)+x(2)*(4.12581)))); 

z(11) = 1.0 / ( 1.0 + exp(-1.0 * (0.64654+x(1)*(3.00522)+x(2)*(-0.971178)))); 

z(12) = 1.0 / ( 1.0 + exp(-1.0 * (6.5286+x(1)*(0.85773)+x(2)*(-4.79507)))); 

z(13) = 1.0 / ( 1.0 + exp(-1.0 * (3.48275+x(1)*(7.69355)+x(2)*(-2.0921)))); 

z(14) = 1.0 / ( 1.0 + exp(-1.0 * (3.43261+x(1)*(1.9282)+x(2)*(8.24004)))); 

z(15) = 1.0 / ( 1.0 + exp(-1.0 * (0.245269+x(1)*(2.45342)+x(2)*(-3.30095)))); 

z(16) = 1.0 / ( 1.0 + exp(-1.0 * (-5.60611+x(1)*(-7.74941)+x(2)*(-6.42479)))); 

z(17) = 1.0 / ( 1.0 + exp(-1.0 * (3.83942+x(1)*(-0.6754)+x(2)*(1.81926)))); 

z(18) = 1.0 / ( 1.0 + exp(-1.0 * (-1.6599+x(1)*(-2.58227)+x(2)*(2.06372)))); 



80 
 

z(19) = 1.0 / ( 1.0 + exp(-1.0 * (-3.40633+x(1)*(-0.376907)+x(2)*(-4.09953)))); 

z(20) = 1.0 / ( 1.0 + exp(-1.0 * (3.53675+x(1)*(8.10244)+x(2)*(-5.87667)))); 

  

%calculating output neurons 

y(1) = 0.882239+z(1)*(0.261229)+z(2)*(0.688574)+z(3)*(-3.8392)+z(4)*(-

0.0172129)+z(5)*(3.49482)+z(6)*(1.83517)+z(7)*(5.56405)+z(8)*(1.42946)+z(9)*(-

0.153877)+z(10)*(-0.0956302)+z(11)*(0.853805)+z(12)*(-2.67437)+z(13)*(-

0.42149)+z(14)*(-2.82694)+z(15)*(-3.05137)+z(16)*(-

3.63576)+z(17)*(0.893393)+z(18)*(-1.86511)+z(19)*(0.800741)+z(20)*(3.48717); 

%output scaling 

output(1) = 38.438617+(y(1)-(0.0))*((41.934916) - (38.438617))/((1.0)-(0.0)); 

  

bw = [2.31087   -1.39897    8.59608 -1.57637    -8.03895    -3.49334    2.7054  -2.72137    

2.03351 1.06151 3.00522 0.85773 7.69355 1.9282  2.45342 -7.74941    -0.6754 -2.58227    

-0.376907   8.10244]; 

dw = [0.261229  0.688574    -3.8392 -0.0172129  3.49482 1.83517 5.56405 1.42946 -

0.153877   -0.0956302  0.853805    -2.67437    -0.42149    -2.82694    -3.05137    -

3.63576    0.893393    -1.86511    0.800741    3.48717]; 

ew= 0.882239; 

sensitivity_in = 0.0;  

 

% Calculating sensitivity based on chain rule 

for i = 1:h 

sensitivity_in = sensitivity_in + dw(i)*z(i)*(1-z(i))*bw(i); 

end 

sensitivity_in2 = sensitivity_in * (((39.0) - (0.1))/2.0); 

sensitivity_final = sensitivity_in2 * ((41.934916) - (38.438617)); 

S = sensitivity_final; 

alpha = 0.1; 

Euser = 0.1;iteration = 0; yout1 = yout; 
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% Defining error 

Eobj = ((input1-outputpc)/input1)*100; 

while(abs(Eobj)>Euser) 

delta_out = abs(-Diff/S); 

% Updating the Radon value using sensitivity value 

if(yout<outputp)  

yout = yout1 + (alpha * delta_out); 

elseif(yout>outputp) 

yout = yout1 - (alpha * delta_out); 

end 

yout1 = yout; 

if(yout>outputp) 

break; 

end 

input = [yout input2]; 

outputpc2 = model(input); 

Eobj = ((input1-outputpc2)/input1)*100; 

R = outputpc2 -input1; 

iteration = iteration + 1; 

if (iteration > 1000) 

p= p+1; 

break; 

end 

end 

yout; 

file5 = fopen('pred.txt','a'); 

fprintf(file5, '%f\n',yout); 

fclose(file5); 

n = n+3; 

q=q+4; 

end  
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A.3 Source code for nu-SVR using LIBSVM package 

clear all; 

close all;  

clc 

SPECTF = csvread('training.csv'); 

labels1 = SPECTF(:, 5); 

features = SPECTF(:, 2:3); 

features_sparse = sparse(features); 

libsvmwrite('rad_train', labels1, features_sparse); 

[label_vector4, instance_matrix4] = libsvmread('rad_train'); 

model_rad = svmtrain(label_vector4, instance_matrix4, '-h 0 -s 4 -t 2 -g 10'); 

SPECTF = csvread('testing.csv'); 

labels = SPECTF(:, 5); 

features = SPECTF(:, 2:3); 

features_sparse = sparse(features); 

libsvmwrite('rad_test', labels, features_sparse); 

[label_vector, instance_matrix] = libsvmread('rad_test'); 

output = svmpredict(label_vector, instance_matrix, model_rad); 

x=[output labels];  

csvwrite('pred.csv', x); 
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A.4 R Software commands for executing ‘randomForest’ 
package 

training_data<-read.table("training.csv", header=TRUE,sep=",") 

testing_data<-read.table("testing.csv", header=TRUE,sep=",") 

train_inp<-subset(training_data,select=c(y2,y3)) 

train_out<-subset(training_data,select=c(y5)) 

test_inp<-subset(testing_data,select=c(y2,y3)) 

test_out<-subset(testing_data,select=c(y5)) 

rf<-

randomForest(train_inp,train_out[,1],test_inp,test_out[,1],keep.forest=TRUE,ntree=500) 

pred<-predict(rf,test_inp) 

y<-data.frame(pred,test_out) 

write.table(y,file="pred.csv",sep=",",row.names=pred) 
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Appendix-B 

Screenshots of the Neuromodeler Software 

B.1 Neuromodeler software Main Window 

 

 

Figure B-1: Screenshot of the main window of the Neuromodeler software 
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B.2 New Model Window in the Neuromodeler Software 

 

 

Figure B-2: Screenshot of the new neural model creation window in the 
Neuromodeler software 
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B.3 Training Window of the Neuromodeler software 

 

 

Figure B-3: Screenshot of the training window of the Neuromodeler software 
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B.4 Window for modifying hidden neurons in the 
Neuromodeler software 

 

 

Figure B-4: Screenshot for modifying hidden neurons in the Neuromodeler software 
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B.5 Testing Window of the Neuromodeler Software 

 

 
 

Figure B-5: Screenshot of the testing window of the Neuromodeler software 
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B.6 Export model to different platforms in the Neuromodeler 
Software 

 

 

Figure B-6: Screen shot to export model from Neuromodeler software 


