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According to Moore‘s law, the number of transistors that can be placed on an 

integrated circuit doubles approximately every 18 months. Recent advancements in 

CMOS technology have led to the implementation of new computational designs with 

extremely small size and high device density. However, CMOS technology is reaching its 

limits. Currently, scientists and researchers are exploring various new technologies that 

may replace CMOS when its limit is reached in the future. Quantum-dot Cellular 

Automata (QCA) is one of the novel nanotechnologies that is being considered as a 

possible replacement for CMOS. It has great potential for very dense memory and low 

power logic based on single electron effects in quantum dots and molecules. QCA relies 

on novel design concepts to exploit new physical phenomena such as coulombic 

interactions and implement unique paradigms such as memory-in-motion and processing-

by-wire. This thesis presents a first Altera implementation of Stratix Logic Array Block 

(LAB) architecture using QCA technology along with simulation results. The design is 
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modeled and simulated using QCADesigner software. A novel Logic Array Block in 

QCA is developed by implementing Look-Up Tables (LUTs). In the design of the LUT, 

QCADesigner software is utilized to design and simulate a four-to-sixteen decoder, 16-bit 

memory, and an output circuit to implement a LUT. The LUT design comprises of QCA 

memory cells with low read latency. The proposed LAB includes Look-up Tables, D flip-

flops, multiplexers and various logic gates that are designed and tested using 

QCADesigner. The LAB designed in this work comprises of 25,000 QCA cells 

approximately and has a latency of 17 clock cycles. The LAB design is compared with 

the previous designs of Configurable Logic Blocks. The results show that the proposed 

LAB provides high degree of performance, simplicity, and optimization of design area 

compared to the other designs.   

This thesis also presents an implementation of a novel Programmable Switch 

Matrix using QCA technology. 
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Chapter 1 

 

Introduction 

 

1.1  Introduction to Research 

Moore's law dictates that the number of devices integrated on a single die doubles 

every 18 months, and has, since 1960s, governed the manufacturing of integrated circuits. 

Studies indicate that as early as 2015, the transistor may hit physical scaling limits that 

inhibit this aggressive packing of devices. Although recent advances have given 

significantly more life to this device model, and some in the field contend that molecular 

transistors may be feasible in the near future, other devices may be better suited to the 

computing environment of the future. CMOS (Complementary Metal Oxide 

Semiconductor) technology has managed advancement of microelectronics to provide 

high densities, high speed and low power dissipation. The reduction of size has increased 

speed and density but it reduced the circuit performance. This is because of the 

fundamental physical limits of CMOS and more because of the leakage current. Recent 

advancements in CMOS technology have led to the implementation of new 

computational designs with extremely small size and high device density. However, 

CMOS technology is reaching its limits. Currently, scientists and researchers are 
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exploring various new technologies that may replace CMOS when its limit is reached in 

the future. There has been substantial research in need of an alternative technology to 

overcome the roadblock in the future of scaling of CMOS devices. 

Quantum-dot cellular automata (QCA) is an alternative to silicon/CMOS based 

designs. It was first proposed in 1993 by Lent, and fabricated in 1997. In QCA, the logic 

states are represented depending upon the position of electron rather than in voltage 

levels as in CMOS technology. This characteristic of QCA eliminates the problem of 

leakage current in the CMOS technology. Quantum dots are nanostructures created from 

semi conductive materials. These structures can be fabricated as quantum wells. They 

exhibit energy effects. A dot can be visualized as well. Once electrons are trapped inside 

the dot, the electrons require higher energy to escape from one dot to another. A quantum 

dot cellular automaton is a Novel technology that attempts to create general 

computational functionality at the nanoscale by controlling the position of single electron 

[1], [2]. An idealized QCA cell/device can be viewed as a set of four change containers or 

―dots‖, positioned at the corners of a square [3],[4]. 

Field-programmable gate arrays (FPGAs) [5], [6] has provided a great the trade-

off point between the flexibility and low cost of software and the performance of 

hardware. FPGAs can be programmed by two ways: programmable logic and 

programmable interconnect. FPGAs represent a good application for QCA technology 

[7]. Their homogeneous structure is well suited to fabrication at the nanoscale. Also the 

general-purpose nature of FPGAs could allow many applications to be implemented 

using QCA. An FPGA could be made with programmable interconnect and fixed logic 

blocks. Alternatively, an FPGA could be made with fixed interconnect and configurable 
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logic blocks. In both cases, the fixed/configurable blocks are placed in a two-dimensional 

grid. In the former type (Figure 1-1(a)), the fixed logic blocks are implemented with fixed 

combinational circuits such as NAND-based circuits or special hardware blocks. Vertical 

and horizontal I/O wires are placed between the fixed logic blocks. The inputs and 

outputs of a block (not shown in Figure 1-1) are connected to the wires surrounding the 

block. At intersections of vertical and horizontal wires, the wires can be connected 

together through programmable interconnect to perform the desired functions. In the 

latter type, the configurable logic blocks are implemented with LUT-based circuits or 

other configurable circuits. Figure 1-1(b) shows one example of the FPGA arrangements; 

the input(s) and output(s) on each side of the block are connected between the block and 

the nearest block. The purpose of a LUT is to look-up the corresponding output value 

from user-configured truth table based on address selection (inputs).  Previous work on 

QCA-based FPGAs [7], [8] has focused on programmable interconnect. In contrast, this 

work focuses on programmable logic. The goal of this work is to design and evaluate 

programmable logic using QCA. In particular, this work reviews the design and layout of 

a QCA-based Look-up table. The design has been simulated using QCADesigner [9], 

[10]. Many copies of this LUT can be tiled together to form a complete QCA-based LAB 

which can be used to build FPGA device.  
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Figure 1-1: FPGA Architecture 

 

An overview of Quantum-dot Cellular Automata (QCA) is given in Section 1.1.1.  

1.1.1 Quantum-Dot Cellular Automata 

Quantum-dot cellular automata technology is an emerging technology and 

possibly the replacement for transistor circuits in digital systems. QCA has gained 

significant popularity in recent years. This is mainly due to rising interest in creating 

computing devices at the nanoscale. At such scales, QCA has an inherent advantage over 

conventional integrated circuit technologies (such as CMOS) in that its performance 

increases as feature sizes are reduced, whereas CMOS exhibits decreasing performance 

with decreasing feature sizes. At this time, it is unclear whether or not this technology 

will replace such a firmly embedded technology as CMOS, but investigations into 

modeling and design have demonstrated that QCA has many powerful features some of 

which are not available in CMOS. Unlike complementary metal oxide semiconductor 

(CMOS) technology, QCA uses the positions of electrons in quantum dots to represent 
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binary values '0' and '1'. QCA technology uses the Coulombic interaction to determine the 

positions of electrons, while CMOS uses the current to determine the potential (voltage) 

levels. The advantages of using QCA technology are smaller circuit size, higher clock 

frequency, and less power consumption. The basic building block of a QCA circuit is a 

QCA cell consisting of four quantum dots, containing two mobile electrons. These 

electrons tunnel within the cell and occupy diagonal positions of the cell due to 

coulombic interaction. The basic logic element made using the QCA cell is majority gate. 

This majority gate can be used as an AND gate or an OR gate. QCADesigner is the 

software which is used to design QCA circuits. It allows the QCA circuit designs to be 

implemented and simulated. Despite of the advantages of QCA, there are few limitations 

to this technology. Quantum-dot cellular automata experiments are carried out at 

cryogenic temperatures. For molecular QCA, the material should be in its purest form. 

There is a need of technology to implement QCA in molecular form at room 

temperatures. Chapter 2 will give more detailed information about the QCA.  

 

1.2 Motivation 

Quantum-dot cellular automata are novel devices with characteristics that differ 

substantially from CMOS. QCA takes advantage of the characteristics of the device to 

achieve memory densities that exceed the SIA roadmap for CMOS [11]. QCA 

architectures have low power dissipation. QCA takes less area for design than CMOS. 

FPGAs represent a good application for QCA technology [7]. Field-programmable gate 

arrays (FPGAs) have provided a great trade-off point between the flexibility and low cost 

of software and the performance of hardware. Their homogeneous structure is well suited 
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to fabrication at the nanoscale level. Also, the reconfigurable nature of FPGAs could 

allow many applications to be implemented using these nano QCA devices. 

In the past, different QCA architectures based on programmable interconnect and 

programmable logic has been presented in [7], [8], [12], [13], [14]. The goal of this work 

is to design and evaluate programmable logic using QCA. In particular, this research is 

about the design and implementation of a QCA-based Altera Stratix Logic Array Block. 

The design has been simulated using QCADesigner [9]. Previous work on designing 

Configurable Logic Block using QCA was focused on designing Xilinx Virtex family 

FPGAs. This is the first attempt to design a logic array block based on Altera Stratix 

family FPGA.  

 

1.3 Proposed work 

This work presents the design and simulation of a LUT-based Logic Array Block 

(LAB) that uses QCA technology. Each LUT has a 4-to-16 decoder, sixteen-bit memory 

and the output circuit. It has four inputs and one output. QCADesigner [10] is used for 

layout and simulation of the entire design. For simplicity, the focus is on a single LAB 

component rather than the whole FPGA architecture (a cellular array of LABs and 

interconnects together). The design has not been fabricated. However, the simulation 

results show that the LAB is working properly to meet expected results. QCADesigner is 

used to implement Stratix LAB in QCA technology using QCA basic blocks. This 

research presents a first Altera implementation of Stratix Logic Array Block (LAB) 

architecture using QCA technology along with simulation results. The design is modeled 

and simulated using QCADesigner software. This design provides high degree of 
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performance, simplicity, and optimization of design area. The research also presents a 

design of interconnect switch matrix using the QCA technology. 

 

1.4 Previous Work 

Previous work on QCA-based FPGAs has focused on programmable interconnect 

[7], [8]. Design in [7] discusses a development of interconnect with flexible routing. The 

design uses pre-made circuit for all possible routing at interconnects. At the site of 

interconnects, QCA cells in the unclocked zone are assumed to be an open circuit 

between point A and point B. For instance, there is no connection between horizontal and 

vertical wires at interconnects. Similarly, QCA cells in the clocked zone are operating in 

the normal mode (connecting wires). The programmable interconnect in [8] uses a QCA 

4-Diamond circuit which has a similar function to that of a pass transistor in CMOS 

technology. The interconnect design has four diamond-shaped circuits in a two-by-two 

grid. Upper-left, upper-right, and lower-left quadrants have the interconnect circuit, while 

lower-right quadrant has the logic block which consists of one fixed NAND gate. The 

interconnection design mainly uses unidirectional wire routing. This uses similar 

clocking methods (unclocked and clocked zones) to those in [7].  

The authors in these papers mentioned above use programmable interconnect but 

fixed logic, which is the first type of FPGA architecture represented in Figure 1-1(a). In 

contrast, the QCA-based FPGA design presented here is believed to be the first design 

using configurable logic blocks (LUT-Based with memory) with fixed interconnect. This 

design targets the type of FPGA architecture represented in Figure 1-1(b). Notice that [7] 

and [9] do not use memory elements for configuration. There are numerous sources for 
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QCA-based memory designs. Only a few of them are discussed here. The authors in [15] 

present a memory with parallel write and parallel read with Row Select, Input, 

Write/Read, and Output signals. Because QCA is a pipelined technology, it uses an 

internal loop to preserve the value of the memory. An array of four one-bit memory cells 

is constructed to create 1x4 memory with a two-to-four decoder, a top-level shared 

Write/Read signal, a shared Input Signal, and a serial output. This design is shown in 

Figure 1-2. The design is scalable to create a larger array memory or a two-dimensional 

grid memory. This design is good for a small amount of memory. However, it may incur 

a larger delay for a large memory design (e.g., a 16-bit memory). The outputs are 

combined in a serial chain of OR gates, which can produce a long latency at the outputs. 

In contrast, the memory presented in this work uses a tree structure of OR gates. In 

another memory design, a memory with two or more bits can be developed by using a 

longer internal memory loop to hold the contents of the memory. Thus, it has higher 

memory density than [15], which uses a separate loop for each bit. The authors in [16], 

[17], [18], [19] use this memory design as a fundamental memory design, but each of 

them has different memory architecture for read and write operations. The authors in [19] 

use primitive QCA elements, each of which occupies a tile of 5x5 QCA cells. These 

include such primitives as a binary wire, a fan-out element, a majority gate, and an AND 

gate. The primitives are then used to make up logical devices such as a counter, 

comparator, register, latch, and so on. The memory in the design has 16-bit long loop to 

hold the contents of the memory. In order to read or write certain bit of the memory, the 

counter and comparator are used to compare between the current address and the desired 

address. The loop rotates until it has arrived at the desired address. At that point, read or 
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write operation occurs. A long memory loop is good for compact memory design, but at 

the expense of the counter and comparator. Another disadvantage is that the loop takes a 

time to rotate in order to arrive at the desired address. 

 

Figure 1-2: QCA Memory Cell 

 

There is a spiral 12-bit memory loop with different write/read circuitry in [18]. 

The authors presented an H-Memory design with four Memory Macro blocks in a two-

dimensional grid with a central routing node at the center of the design. The design is 

scalable to create bigger memory by using a tree of H-Memory. H-Memory routes a data 

packet (8-bit address, 1-bit op code, and 12-bit data, in that order) to go through a 

sequence of routing nodes until it reaches desired memory location to write or read the 

value of that memory. The data packet technique is very similar to the conventional 

computer architecture for memory accessing. This design is not well adapted for the 

LUT-based design presented here. The output of a LUT must continuously respond to the 
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value at the LUT inputs rather than to arriving packets. The memory design in [17] 

describes tile-based serial memory. It uses three types of tiles: an input tile, an internal 

memory tile and an output tile. A number of internal tiles (variable N) can be stacked 

together vertically to implement M-word by N-bit memory. This memory design is 

almost equivalent to a long memory loop. However, it uses unconventional QCA 

clocking scheme for faster memory accessing. This design is a serial for both reading and 

writing. A LUT requires parallel read. The main disadvantage in [19] and [17] is that, in 

the read mode, it takes time to rotate the memory loop to arrive at the desired address to 

read the value in that memory location. The maximum time for read latency is N-1 

cycles, where N is a memory width in bits. For example, consider a 16-bit memory 

constructed as a single loop with output available only at one end of the loop. Suppose 

that bit 2 is currently available for reading but the desired memory location to be read is 

bit 15. It takes 13 clock cycles to rotate the memory loop in order to reach bit 15. The 

authors in [16] overcome this problem by using parallel read/serial write memory and a 

multiplexer device. The memory architecture is roughly similar to the architecture in [19] 

with an additional device, 2n-to-1 multiplexer at the output. The multiplexer selects one 

bit from the memory loop. Since QCA memory is always shifting in a pipelined wire, the 

use of the counter, adder, and multiplexer components helps to track the current memory 

location. The adder is used to offset the difference between current and desired memory 

locations. The output of the adder controls the select signals at the multiplexer. This 

eliminates the need to wait for the values in the memory loop to rotate into the current 

position. However, each memory address must pass through the adder before it reaches 

the select lines of the multiplexer. This adds to the latency of each read operation. This is 
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a significant concern when using the memory for as a look-up table for an FPGA. In 

addition, the adder contributes to the area of the memory.  

The memory design presented here uses serial write and parallel read (a similar 

memory interface to that in [16]) but replaces the 16-bit memory loop with sixteen one-

bit memory cells, each of which is a modified version of one-bit memory cell in [15]. The 

new memory cell has two rails: DI (Data Input) rail and RW (Read/Write) rail. During 

write operations, signals flow in one direction on the DI rail, but in the opposite direction 

on the RW rail. This memory configuration allows N cells to be stacked shoulder-to-

shoulder to create N-bit memory. A decoder and an output circuit replace the multiplexer 

and adder of [16]. However, the output circuit does not need counter and adder 

components to track the current memory location because each bit of memory is localized 

to its own loop. Therefore, the location of each bit is known in advance. The desired 

address directly drives the select lines of the decoder. As in [16], write operations are 

performed serially. This is appropriate for a LUT, because write operations are only used 

for configuration. Afterwards, the memory circuit is in read mode. Because of the heavily 

pipelined nature of QCA, each read incurs multiple clock cycles of latency. However, the 

throughput is one read operation per clock cycle. Memory is very important component 

of the LUT design. Various researchers have developed numerous LUT architectures. 

The above work provides a basic understanding for the LUT design. 

 Many researchers have developed Xilinx family architecture CLBs using QCA 

technology. They have used programmable interconnect strategy to develop the 

architecture.  
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1.5 Organization of Thesis 

Chapter 1 provides introduction to research. It outlines the whole thesis. Chapter 2 

provides the QCA background which gives fundamental understanding of the QCA 

Technology. Chapter 3 describes hierarchical levels of the FPGA design. Chapter 4 

describes the design, modeling and implementation of LUT in QCA. Chapter 5 describes 

the implementation of Stratix logic array block. Chapter 6 describes the implementation 

of interconnect switch matrix. Chapter 7 discusses about the analysis of design and 

comparison of the design. Chapter 8 concludes the thesis work and discusses about the 

future research. 
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Chapter 2 

 

Quantum-Dot Cellular Automata 

 

2.1 Background 

This section describes basics of QCA and its components such as a cell, wire, 

majority gate, and inverter. A combination of these components is needed to develop a 

digital circuit at the nanotechnology level. Quantum-dot cellular automata are novel 

devices with characteristics that differ substantially from CMOS. QCA takes advantage 

of the characteristics of the device to achieve memory densities that exceed the SIA 

roadmap for CMOS [11]. QCA architectures have low power dissipation. QCA takes less 

area for design than CMOS. FPGAs represent a good application for QCA technology 

[7]. 

Quantum-dot cellular automata (QCA) are an alternative to CMOS based designs. 

Quantum dots are nanostructures created from semi-conductive materials. These 

structures exhibit energy effects. A dot can be visualized as a quantum well. Once 

electrons are trapped inside the dot, the electrons require higher energy to escape from 

one dot to another. An idealized QCA cell can be viewed as a set of four charge 

containers or dots, positioned at the corners of a square [3], [4]. Each cell contains two 
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electrons which can quantum mechanically tunnel between dots. The dots can be realized 

as electro-statically formed quantum dots in a semiconductor or reduction-oxidation 

centers in a molecule. There is a barrier between dots so that charge can move by 

tunneling. The configuration of charge within the cell is defined by cell polarization, 

which can vary between P = -1, representing a binary ―0‖, and P = +1, representing a 

binary ―1‖. This is illustrated in Figure 2-1.  

 

Figure 2-1: QCA Cell Polarizations 

 

QCA [20] uses the positions of electrons in quantum dots to represent binary 

values ‗0‘ and ‗1‘. Two electrons occupy each cell. Each electron is free to tunnel 

between dots within one cell, but cannot leave the cell. The two electrons within each cell 

repel each other to diagonally opposite corners of the cell. This leaves only two stable 

states for each cell. These two states are used to represent logic values 1 and 0 [4], [21]. 
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2.2  QCA Circuits 

2.2.1 QCA Wire 

The Coulombic interaction is used to determine the positions of electrons in a cell. 

Consider a few QCA cells placed together as in Figure 2-2. Assume that the cell on the 

left hand side is the input cell and the cell on the right hand side is the output cell. The 

Coulombic interaction which is the magnitude of electron repulsion from neighboring 

cells determines the positions of the electrons in the normal cell. In case of logic '0', the 

first cell on the left responds to the input cell and outputs logic '0'. The cell is polarized to 

"-1" because of Coulombic interaction (electron repulsion). The second cell reproduces 

the logical value in the first cell. This process repeats for the remaining cells in the wire 

until it has reached the output cell. In other words, the wire exhibits an effect in which all 

cells adopt the same polarization.  

 

Figure 2-2: QCA Wire 

 

 In Figure 2-2, A is the input to the wire and F is the output from the wire. Figure 

2-3 shows the simulation of a QCA wire. The wire shows the correct output depending 

upon the input to the wire which is shown in Figure 2-3. 
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Figure 2-3: Simulation of a QCA Wire 

 

2.2.2 Clocking in QCA 

QCA technology requires the need of clock mechanism to operate properly. 

Unlike the standard CMOS clock, the QCA clock is not a signal with a high or low phase. 

Rather, the clock changes phases when potential barriers that affect a group of QCA cells 

(a clocking zone) passes through a series of four clock phases [21], [22]. The low level, 

rising edge, high level, and falling edge of a clock waveform represent the four phases 

[23] called hold, release, relax, and latch, respectively. During the switch phase of the 
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clock, the unpolarized QCA cells polarize in accordance with the driver cell. In the hold 

phase, a QCA cell holds the current position of the electrons. During the rising edge, the 

electrons tunnel down to the bottom of the QCA cell and release its state of polarization 

because of the electron‘s attraction to the clock plane (release state). When the clock is 

high, the QCA cell is considered to have null polarization where electrons sit on the 

bottom of the cell (relax state). The net effect of this scheme is that even on a simple 

wire, data is latched as it moves from one clocking zone to the next. It is very much 

important that QCA cells should be pipelined according to clock phases [24]. 

 

Figure 2-4: Clock Phases in QCA 

 

There are two types of switching for the operation in QCA. These are abrupt switching 

and adiabatic switching: 

 Abrupt Switching:  When the inputs to the QCA circuit change suddenly, the circuit 

would be in some randomly excited state which is unpredictable. Therefore, the QCA 

circuit has to be relaxed to ground state by dissipating energy. This inelastic 
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relaxation is uncontrolled and the QCA circuit might enter a meta-stable state that 

may be determined by a ground state. 

 Adiabatic Switching: In this kind of switching, the system is always kept in its 

instantaneous ground state. A clock signal is introduced to ensure adiabatic switching. 

This is the preferred method of switching. 

 

2.2.3 Inversion Chain 

There is another kind of the QCA wire called an inversion chain as shown in 

Figure 2-5. The position of quantum dots in a normal cell is rotated 45º clockwise or 

counterclockwise to become an inverted cell. One quantum dot is placed halfway 

between two corners on each side of the QCA cell. The inversion chain inverts the logical 

value from the previous cell due to Coulombic interaction. If the number of inverted cells 

between the input and output cells is odd, the output cell presents a buffered version of 

the input cell. Similarly, if the number of inverted cells between the input and output cells 

is even, the output cell presents an inverted version of the input cell.  

 

Figure 2-5: Inversion chain 

 

The inversion chains are useful for developing bus rails with perpendicularly 

tapped normal wires. This can be done by placing a normal cell below or above the 
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inversion chains and aligning the cell halfway between inverted cells at a certain location 

to obtain a buffered value or inverted value.  

 

2.2.4 Majority Gate 

Now the signals can be passed along wires but the gates need to be constructed to 

compute various digital logic functions. The basic QCA logic device is called the 

majority gate. The majority gate implements the logic function F = AB + BC + AC, 

where A, B, and C are inputs and F is the single output. By fixing a single input to 0, an 

AND gate can be implemented (Figure 2-6 (a)) whereas fixing an input to 1 implements 

an OR gate (Figure 2-6 (b)). Fortunately, creating a fixed cell can be done within the 

manufacturing process and constant signals do not need to be routed within the circuit. 

The sums of Coulombic interaction (signals A, B, and C) determine the value at the output 

where the dominant interaction wins the vote. 

 

Figure 2-6: QCA Devices (a) AND Gate (b) OR Gate 
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Table 2.1: Truth Table for Majority Gate 

Assigned 

Input 

Input 

A 

Input 

B 

Output 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

(a) AND Gate 

Assigned 

Input 

Input 

A 

Input 

B 

Output 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

(b) OR Gate

 

Figure 2-7 shows the simulation of the AND gate in QCA and Figure 2-8 shows 

the simulation of OR gate in QCA. From these figures, Table 2.1 can be verified to 

determine the expected output. In Figure 2-7, output ‗1‘ is marked for AB = ‗11‘ to show 

the expected result. In Figure 2-8, output ‗1‘ is marked for AB = ‗10‘ to show the 

expected result. 
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Figure 2-7: Simulation of AND Gate  
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Figure 2-8: Simulation of OR Gate 
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2.2.5 Inverter Gate 

In an inverter gate, the input wire is constructed like a tuning fork. The left cell of 

the output wire is aligned vertically between the two prongs of the fork and is abutted 

horizontally on the edge sides of the prongs. The logical value in the left cell of the output 

wire is determined by the Coulombic interaction between it and the cells at the ends of the 

prongs. An inverter gate uses either one clock zone or two clock zones. In the former 

arrangement, both input wire and output wire use the same clock zone. In the latter 

arrangement, the input wire is assigned to one clock zone, while the output wire is 

assigned to the next clock zone. 

 

Figure 2-9: QCA Inverter 
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Figure 2-10: Simulation of Inverter Gate 

 

So by arranging these components, we can implement any digital circuit using the 

QCA technology [24]. The aim of this work is to design a potentially implementable 

architecture for the digital logic applications. 
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2.3 Wire Crossings in QCA: 

2.3.1 Coplanar Crossover:  

In a circuit, two wires are crossing each other by physically passing two wires one 

over the other with some insulation in between them. This type of arrangement can also 

be done in QCA using a wire with normal cells and another wire the orientation of cells 

rotated by 45 degrees. This type of arrangement is called coplanar crossover. This is 

based on the fact that regular cells with dots arranged along the diagonal and cells with 

orientation rotated by 45 degrees don‘t interact with each other. Figure 2-11 shows the 

coplanar crossover in QCA. The horizontal and vertical wire in the figure doesn‘t interact 

with each other and signal is carried from one end to the other. However, this wire 

crossing would be sensitive to fabrication issues [25]. Detailed analysis has to be carried 

out to resolve this problem. Hence, the variations in the position of the cells can introduce 

crosstalk between interconnects. For this wire crossing, the cells have to be properly 

aligned. Any misalignment of the cells leads to a non-zero value of kink energy resulting 

in the interaction of the cells in the region of crossover. In Figure 2-11, QCA wire with 

input A and output Z is modeled with the normal QCA cells. QCA wire with input B and 

output Y is modeled with the rotated QCA cells. Figure 2-12 shows the simulation for the 

coplanar crossover. The dotted lines in Figure 2-12 show the corresponding output 

depending upon the input.  
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Figure 2-11: Coplanar Crossovers in QCA 

 

 

Figure 2-12: Simulation of a Coplanar Crossover 
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2.3.2 Multi-layer Crossover  

To implement the digital circuits in QCA, it is required that signals being able to 

cross each other. As we have seen that the coplanar crossing is sensitive to various facts, 

it is essential to find an alternative method for the crossing of signals. Multi-layer QCA is 

the solution for the wire crossings in QCA. This is very efficient method for the crossing 

of signals. This is done by keeping the cells one over the other. In this technique, the cells 

are arranged in layers and after the crossing, the signal travels in a horizontal line. The 

layers created for the crossover can also be used as active components of the circuit [25] 

which gives optimization of area. This technique performs well and it eliminates the 

problem in coplanar crossover. Figure 2-13 shows the multilayer crossover. 

 

 

Figure 2-13: Multi-layer Crossovers in QCA 
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Chapter 3 

 

FPGA Hierarchical Architectures 

This Chapter describes hierarchical architectures for the design presented in this 

work. The design uses bottom to top method for the implementation from three sub-

components of a LUT to a LAB. 

 

3.1  Field Programmable Gate Array (FPGA) 

FPGA presents a good application in QCA technology. In hierarchy of digital 

systems, FPGA is the topmost design entity. Several Logic Array Blocks or Configurable 

Logic Blocks are put together in such a combination to form FPGA architecture. 

Although, FPGA design has not been implemented, but it should be a simple task to put 

together a cellular array of identical copies of the LAB presented in this work to form 

FPGA with some modification in routing wires between LABs. 
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Figure 3-1: FPGA Architecture showing LABs 

 

3.2 Logic Array Block (LAB) 

The proposed LAB implements four LUTs where each of them is placed in such a 

manner to implement the design. Each LUT computes an independent Boolean function 

of four inputs. At the upper most level of the LAB, all corresponding inputs of the four 

LUTs are connected as inputs to LAB. Thus, each output from the LAB can be any 

function of the inputs from its neighbor LUTs. The LUT can be programmed for any 

Boolean function by using an external FPGA programmer to shift values into the LUT 

memories. 

 

3.3  Interconnects 

FPGA architecture contains logic array blocks and programmable interconnects. 

LAB is used to implement the logic in FPGA. A hierarchy of programmable 
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interconnects called programmable switch matrix (PSM) allows logic blocks in FPGA to 

be interconnected. Logic blocks and interconnects can be programmed as per the needs of 

the application. The detailed explanation about interconnects is given in Chapter 6. Also, 

a QCA design of interconnects is modeled and shown in Chapter 6. 

 

3.4  Look-Up Table (LUT) 

Each LUT consists of a four-to-sixteen decoder, a memory, and an output circuit. 

The purpose of the decoder is to enable one of the sixteen lines and to select the memory 

cell at the address specified by the four inputs. The implementation of the decoder uses a 

tree structure of two-to-four decoders. Each output line of the four-to-sixteen decoder 

connects to an enable signal of a QCA memory cell. The outputs of sixteen memory cells 

are combined together to form a single output called the output circuit. Since three-state 

buffers do not exist in QCA technology, a tree structure of OR-gates is used. When an 

enable signal in a memory cell is not enabled, it asserts logic '0' at the output to avoid a 

data collision with an enabled memory cell. The details are given in Chapter 4. 
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Chapter 4 

 

Implementation of Look-Up Table in QCA 

This chapter covers the implementation of a LUT with three sub-components: a 4-

to-16 decoder, a 16-bit memory, and an output circuit. Each component is explained in 

detail in the following sections. 

 

4.1 Decoder  

The basic 4-to-16 decoder block diagram is shown in Figure 4-1. There are five 

two-to-four decoders in a tree structure configuration. However, while designing a 

decoder using QCA circuits, we need to take care of wire crossings within the circuit.  

So, the five two-to-four decoders are arranged in a tree structure configuration to build a 

4-to-16 decoder as shown.  

A two stage method is used to design this decoder which makes the design simple 

to model it in QCA. A combination of 2-to-4 decoders is used to design a 4-to-16 

decoder. This is shown in Figure 4-1. It is possible to design a four-to-sixteen decoder in 

a single stage. However, this configuration is not effective in QCA technology due to the 

increased number of inputs in a single clock zone and complicated coplanar wire 

crossings and timing issues. For instance, the inputs (signal A, B, C, and D) are located 

on the left side of a single-stage decoder. Assume that it takes one clock cycle from one 
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bit to the next bit in the input rails. It takes one clock cycle from the inputs to output bit 

F, while it takes sixteen clock cycles from the inputs to output bit 0. This results in an 

unequal delay between inputs and outputs. One can compensate for the unequal delay by 

adding a delay at each output (15 clock cycles for bit 15, 14 clock cycles for bit 14 and so 

on). However, this is not a good solution because of lengthy delay-compensated wires. In 

addition, four signal rails with coplanar interconnects in the same clock zone do not 

provide reliable signals due to cross-talk interference from perpendicular tapped wires.  

 

Figure 4-1: Block Diagram of 4-to-16 Decoder using Two-stage Decoder Approach 

 

Each of four primary input signals (A, B, C, D) must fan-out to four different 

locations to connect to the 4 decoders. C and D are distributed to the first-stage decoder. 

Inputs A and B are distributed to the four decoders in the second stage. However, there is 
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a technical issue with the fan-out in QCA technology. The fan-out has complicated 

coplanar wire crossings. Different signals are flowing in different directions all in a small 

space. It is difficult to set tracks for direction because in QCA clock zones are used to 

control the direction of information flow. Therefore a symmetrical fan-out gives the 

solution to the problem where there are no wire crossings. So, we have approached this 

problem using B = B0 = B1, C = C0 = C1, and D = D0 = D1. A secondary fan-out (after 

the primary fan-out) uses the elbow fan-out with a few coplanar wire crossings. Now 

these 7 variables are the inputs to the decoder. The outputs of decoder shown in Figure 4-

1 are labeled with enable lines. Memory cells are enabled by these enable lines from the 

decoder. A tree structure is beneficial because its symmetry for QCA pipelined circuits 

where input to output has the same delay. The decoder is designed in two stages. In the 

first stage, there are four 2-input AND gates. The inputs of AND gates are connected to 

the input wire C (C = C0 = C1) and the input wire D (D = D0 = D1) through inverters 

where needed. In the second stage, each decoder has eight 2-input AND gates. Four of 

these AND gates controls the enabling or disabling the output. The circuit configuration 

is the same as in the first-stage decoder with three additional A, B, and EN rails and four 

additional 2-input AND gates. If the enable rail (EN) is high (logic ‗1‘), it activates the 

two-to-four decoder and the decoder perform its normal operation; otherwise, it 

deactivates the decoder and forces all outputs to logic ‗0‘. A combination of one first-

stage decoder and four two-stage decoder results the 4-to-16 decoder. Figure 4-2 shows 

the basic 2-to-4 decoder QCA layout.  
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Figure 4-2: QCA Layout of 2-to-4 Decoder  

 

 

Figure 4-3: Simulation of 2-to-4 Decoder 
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Four second-stage decoders are placed in such a way to implement sixteen enable 

lines. The first-stage decoder is placed above the second-stage decoders. The second-

stage decoders receive input signals A and B, while the first-stage decoder receives input 

signals C and D, as in Figure 4-1. It takes five clock cycles to travel from the inputs to the 

outputs. Figure 4-4 shows the QCA layout of 4-to-16 decoder. 
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4.2 Memory Architecture 

The QCA memory is at its best use over the standard CMOS RAM when memory 

accesses are entering the memory at very high rate, i.e. as soon as one access fully enters 

the memory; another access is ready to be processed. In today‘s von Neumann type 

architectures, processors are much faster than memories and they generate requests at a 

rate that cannot be satisfied by the memory. However, memory cells are the essential 

components in any digital circuit. They are needed to store programmed values to 

perform Boolean functions based on address lines. Memory cells presented here are the 

modified version of the memory architecture from [15], [12]. The original design has five 

AND gates, one OR gate, and two inverters with Row Select, Write/Read, Input, and 

Output signals. Decoder selects a memory cell to accept a new value during the write 

mode using a parallel configuration. Similarly, during the read mode, an enabled memory 

gives the stored value [15]. The memory cells in this design have a serial Read/Write 

(RW) signal, a serial Data Input (DI) signal, a parallel Enable (EN) signal, and a parallel 

Output signal. Compared to the memory cell from [15], the design presented here 

eliminates a Row Select signal, two AND gates and one inverter. The RW and DI rails in 

the modified memory cells use inversion chains. The memory cells are stacked side-by-

side with RW and DI rails connected in series to create an N-bit memory. This allows the 

entire memory to be configured as a shift register for writing. The enable line in each 

memory cell is connected to an output of the four-to-sixteen decoder. This allows random 

access for parallel reading. Figure 4-5 shows the diagram of a 1-bit memory cell 

presented in this work. 
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Figure 4-5: Gate Level Representation for Memory 

 

During the write mode (RW = '1'), the left AND gate outputs the new value from 

DI. At the same time, the middle AND gate erases the stored value by outputting '0'. 

After 1/4
th

 of a clock, the OR gate gives the output with inputs as the outputs of left and 

middle AND gates. Similarly, during the read mode (RW = '0'), the output of the left 

AND gate is forced to output '0' where it rejects the value from the DI. The lower input of 

the middle AND gate is always '1'. Thus, the gate outputs the current value in the 

memory loop. Because the output of left AND is '0', the OR gate transports from right 

input to the output. The output of the OR gate is looped back to the upper input of the 

middle AND gate. In a QCA system, this allows the stored value to be preserved in the 

loop until the write mode occurs. The right AND gate is called an enable gate and 

operates independently from the rest of the circuit. Regardless of whether one is in the 
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read or write mode, the enable gate outputs the stored value when EN is '1'. This shows 

that the memory cell is selected to be read. Otherwise, when EN is '0', the output is '0' 

which means that the memory cell is not selected to be read. The summary of the 

memory operation for read and write modes is shown in Table 4.1. The RW and DI rails 

in each memory cell are connected back-to-back to create the sixteen-bit memory. The 

RW and DI input ports are at the left side of the RW rail and the right side of the DI rail, 

respectively. Since QCA is a micro pipelined system, the memory design presented here 

employs two important rules for writing to an N-bit memory. First, the RW (left to right) 

and DI (right to left) signals must propagate in opposite directions. Second, during the 

write mode, the RW signal must use a one-cycle pulse and pass it down from bit F (the 

leftmost bit) to bit 0 (the rightmost bit). During clock cycle 0, the memory is initialized. 

In the next cycle, the DI port starts receiving the binary string 0101 with the rightmost bit 

first. At the same time, bit 3 of the memory is in write mode because there is a one-cycle 

pulse on the RW rail at that memory bit. The logic '1' is loaded at the DI input in bit 3. 

During clock cycle 2, the one-cycle pulse is shifted to bit 2. The rightmost bit of the value 

is also shifted to bit 2. The previous memory cell (bit 3) updates the logic '1' in the 

memory loop and changes to in the read mode. The process repeats for remaining 

memory cells. 

Table 4.1: Truth Table for the Memory Cell Operation 

Mode RW EN DI Memory Loop OUT 

Read 0 0 X No change 0 

Read 0 1 X No change Stored value 

Write 1 X 0 0 Don‘t care 

Write 1 X 1 1 Don‘t care 
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Figure 4-6: QCA Layout of 1-bit Memory Cell  

 

4.3 Output Circuit of LUT 

The purpose of the output circuit is to give a final output by using a tree structure 

of OR gates by narrowing down the outputs from memory cells. Because QCA cannot 

take three inputs at a time in case of an OR gate, that is why the shared busses must be 

handled with logic. The order of values that appear at the output corresponds to the order 

in which the memory cells are enabled. The disabled memory cells are forced to output 

logic '0' to avoid a data collision with an enabled memory cell. Each memory cell takes a 

turn (one per clock cycle) depending on the address selection. 
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Figure 4-7: QCA Layout of Output Circuit of LUT 

 

4.4 Entire Assembly of LUT 

 The entire LUT block diagram is shown in Figure 4-8. The figure shows three 

components of LUT: a four-to-sixteen decoder, a sixteen-bit memory, and an output 

circuit. They are combined to implement a look-up table. The enable line of a memory 

cell is connected to the corresponding enable line in the decoder. Similarly, the output of 

a memory cell is connected to the corresponding input of the output circuit (the tree 

structure of OR gates).  
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Figure 4-8: Block Diagram of LUT 

 

The QCA layout of the LUT is shown in Figure 4-9. The latency is eleven clock 

cycles long between the inputs of the decoder and the final output. We will compare the 

LUT design with other LUTs in Chapter 7. LUT functions according to the truth table. 

Appropriate memory cell is enabled by the decoder and the output of the LUT shows 

correct result. 
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 We have implemented this LUT design in QCADesigner. Depending upon the 

input to the decoder, appropriate memory cell is enabled and the output is obtained. The 

following table shows memory cell is enabled according to the input to the decoder. 

 

Table 4.2: Table showing Enabled Memory Cell depending upon the Input to Decoder 

Input Enabled Memory Cell 

A B C D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 1                

0 0 0 1  1               

0 0 1 0   1              

0 0 1 1    1             

0 1 0 0     1            

0 1 0 1      1           

0 1 1 0       1          

0 1 1 1        1         

1 0 0 0         1        

1 0 0 1          1       

1 0 1 0           1      

1 0 1 1            1     

1 1 0 0             1    

1 1 0 1              1   

1 1 1 0               1  

1 1 1 1                1 
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Thus, we have successfully completed the main block of the design. The latency 

is eleven clock cycles long between the inputs of the decoder and the final output. The 

LUT used here gives an advantage to the LUT design in [13] in that it uses less number 

of QCA cells. 
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Chapter 5 

 

Design and Implementation of Altera Stratix Logic Array 

Block in QCA 

 

5.1 Introduction to Altera Stratix LAB 

The main aim of our research is to design the Altera Stratix LAB and implement it 

in QCADesigner. Logic Array Block (LAB) is the basic logic structure in Altera Stratix 

architecture and is shown in Figure 5-1. The LAB consists of combinational logic block, 

adders, multiplexers and registers. A carry chain is used to connect multiple LABs in the 

structure. The Altera Stratix architecture in QCA uses less number of QCA cells and 

provides more functionality as compared to other implementations [12], [13], [14]. There 

are various modes in which the Stratix LAB can be operated [26]. These are as follows: 

 Normal mode: It is suitable for general logic applications and combinational 

functions. In this mode, up to eight data inputs from the LAB local interconnect are 

inputs to the combinational logic. The normal mode allows two functions to be 

implemented in one Stratix LAB, or LAB to implement a single function of up to six 

inputs. The LAB can support certain combinations of completely independent 

functions and various combinations of functions which have common inputs. The 
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normal mode provides complete backward compatibility with four input LUT 

architectures. Two independent functions of four inputs or less can be implemented in 

one Stratix LAB. In addition, a five-input function and an independent three-input 

function can be implemented without sharing inputs. 

 Extended LUT mode: It is used to implement a specific set of seven-input functions. 

 Arithmetic mode: It is ideal for implementing adders, counters, accumulators, wide 

parity functions, and comparators. A LAB in arithmetic mode uses two sets of two 

four-input LUTs along with two dedicated full adders. The dedicated adders allow the 

LUTs to be available to perform pre-adder logic; therefore, each adder can add the 

output of two four-input functions. The four LUTs share the inputs. As shown in 

Figure 5-1, the carry-in signal feeds to adder0, and the carry-out from adder0 feeds to 

carry-in of adder1. The carry-out from adder1 drives to adder0 of the next LAB in 

arithmetic mode. While operating in arithmetic mode, the LAB can support 

simultaneous use of the adder's carry output along with combinational logic outputs. 

In this operation, the adder output is ignored. This usage of the adder with the 

combinational logic output provides resource savings of up to 50% for functions that 

can use this ability. The carry chain provides a fast carry function between the 

dedicated adders in arithmetic or shared arithmetic mode. Carry chains can begin in 

either the first LAB or the fifth LAB. 

 Shared arithmetic mode: It is an enhanced version of arithmetic mode. It is used for 

addition of numbers having more bits. 
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In our research we are going to implement a LAB in arithmetic mode as this mode 

gives more functionality than other modes. Figure 5-1 shows the block diagram of the 

LAB in the arithmetic mode. The details of this diagram can be found in [26].  

 

Figure 5-1: Block Diagram of Altera Stratix LAB in Arithmetic Mode 

 

Briefly, an LAB in arithmetic mode uses two sets of two four-input LUTs along 

with two dedicated full adders. The four LUTs share the inputs. The carry-in signal feeds 

to adder0, and the carry-out from adder0 feeds to carry-in of adder1. This usage of the 

adder with the combinational logic output provides resource savings of up to 50% for 
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functions that can use this ability [26]. The Altera Stratix LAB in arithmetic mode is 

discussed in detail in Section 5.3. 

 Before going ahead with the design of Stratix LAB, we need to model the basic 

components required for the implementation. As we can see that the LAB requires 2 

adders i.e. full adders and 2 flip-flops. This is shown in Figure 5-1. We will have to 

implement these circuits in QCA to complete the design of Stratix LAB.  

 

5.2 Components used in Design of Stratix LAB 

5.2.1 Full Adder 

 There are various ways for adding three bits in the digital systems. For addition of 

three bits, it requires a full adder circuit. Full adder is a digital circuit which is used for 

addition of three bits (Inputs). We are familiar with the design of full adder using basic 

CMOS logic gates. In the CMOS technology, it requires more gates to model a full adder 

circuit. While in QCA the full adder circuit only requires three majority gates. This is one 

example where the QCA technology has advantage over the CMOS technology. In QCA, 

full adder is designed in a different manner. We have seen in Section 2.2.3, majority gate 

has three inputs. We set one of the input to either 0 or 1 to implement it as AND or OR 

gate respectively. While designing the full adder, we take the advantage of property of 

QCA to select the majority of inputs when the cells are arranged in majority function. 

Figure 5-2 shows the gate level diagram of full adder. 

 



 

50 

 

 

Figure 5-2: Majority Gate Level Logic Diagram of Full Adder  

 

Figure 5-3 shows the QCA design of full adder using the design shown in Figure 

5-2. The majority voter concept in QCA is very useful for the design of full adder. It is 

not required to model the basic gates like AND, OR. This concept simplifies the circuits 

and gives correct Sum and Cout values. The simulated output of the full adder circuit 

implemented here is shown in Figure 5-4. It is observed that full adder circuit becomes 

very simple with the QCA technology. Correct output can be observed in Figure 5-4. 

Thus, full adder circuit is implemented in QCA. The dotted lines in Figure 5-4 shows that 

for A, B, Cin = ‗1‘, ‗0‘, ‗1‘ respectively, the Sum of outputs is ‗0‘ and the Carry Out 

output is ‗1‘. 
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Figure 5-3: QCA Layout of Full Adder 
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Figure 5-4: Simulation of Full Adder Circuit 

 

5.2.2 D Flip-Flop 

The next component required for the design of LAB is the D flip-flop. D flip-flop 

is used to store the output of LAB. Then this output is routed to interconnect for 

connection to the other LABs. Figure 5-5 shows the design of D flip-flop in QCA. The 

design for D flip is very simple. It is designed using some modification in SR flip-flop 

design. D flip-flop is the simplest of al flip-flops, which is why it is used in the design of 

LAB to reduce the complexity of design. Figure 5-6 shows the simulation of D flip-flop. 
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Figure 5-5: QCA Design of D Flip-flop 

 

 

Figure 5-6: Simulation of D Flip-flop in QCA 
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5.3 Altera Stratix Logic Array Block in QCA  

The basic building block of logic in the Stratix architecture, the logic array block 

(LAB), provides advanced features with efficient logic utilization. Each LAB contains a 

variety of look-up table (LUT)-based resources that can be divided between LUTs. With 

up to eight inputs to the LUTs, one LAB can implement various combinations of two 

functions. This adaptability allows the LAB to be completely backward-compatible with 

four-input LUT architectures. One LAB can also implement any function of up to six 

inputs and certain seven-input functions. In addition to the LUT-based resources, each 

LAB contains two programmable registers, two dedicated full adders, a carry chain, a 

shared arithmetic chain, and a register chain. Through these dedicated resources, the LAB 

can efficiently implement various arithmetic functions and shift registers. Each LAB 

drives all types of interconnects: local, carry chain, shared arithmetic chain, register 

chain, and direct link interconnects. Figure 5-7 shows a high-level block diagram of the 

Stratix LAB. One LAB contains two programmable registers. For combinational 

functions, the register is bypassed and the output of the LUT drives directly to the outputs 

of the LAB. The LUT, adder, or register output can drive these output drivers 

independently. This allows the LUT or adder to drive one output while the register drives 

another output. This feature, called register packing, improves device utilization because 

the device can use the register and the combinational logic for unrelated functions. 

Another special packing mode allows the register output to feed back into the 

LUT of the same LAB so that the register is packed with its own fan-out LUT. This 

provides another mechanism for improved fitting. The LAB can also drive out registered 

and unregistered versions of the LUT or adder output.  
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Figure 5-7: High Level Block Diagram of Stratix LAB [26] 

 

 Logic Array Block (LAB) is the basic logic structure in Altera Stratix architecture 

and is shown in Figure 5-7. The LAB consists of combinational logic block, adders, 

multiplexers and registers. A carry chain is used to connect multiple LABs in the 

structure. The Altera Stratix architecture in QCA uses less number of QCA cells and 

provides more functionality as compared to other implementations [12], [13], [14]. There 

are various modes in which the Stratix LAB can be operated including normal mode, 

extended LUT mode, arithmetic mode and shared arithmetic mode [26]. Figure 5-1 shows 

the block diagram of the LAB in the arithmetic mode. The details of this diagram can be 

found in reference [26]. In our research, we have implemented a logic array block in 

arithmetic mode. We have modeled all the necessary components required for the 
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complete design of Altera Stratix LAB. This research presents a first Altera 

implementation of Stratix Logic Array Block (LAB) architecture using QCA technology 

along with simulation results. Briefly, an LAB in arithmetic mode uses two sets of two 

four-input LUTs along with two dedicated full adders. The four LUTs share the inputs. 

The carry-in signal feeds to adder0, and the carry-out from adder0 feeds to carry-in of 

adder1. This usage of the adder with the combinational logic output provides resource 

savings of up to 50% for functions that can use this ability [26]. 

The QCA model presented in this research is designed to operate the Altera 

Stratix LAB in the arithmetic mode. The arithmetic mode is ideal for implementing 

adders, counters, accumulators, and comparators. The arithmetic mode operation is not 

available in QCA designs presented in [12] and [14]. The combinational logic block in 

the LAB can be implemented using various combinations of LUTs [14]. This makes this 

design significantly more flexible and, as a result, more area efficient. This feature gives 

this design an advantage over the previous designs [12], [14]. In the CLB design shown 

in [14], the decoder output signals are used to decide which memory cell is active. It has 

two 2-to-4 decoders: a row decoder and a column decoder. These decoders generate the 

row and columns enable lines. This approach is similar to that used in typical CMOS 

memories. In QCA, each of the four decoder outputs has a different latency relative to the 

address inputs. The difference in latency between adjacent outputs is one clock cycle. 

Note that this matches the delay that a row or column line incurs traveling through a 

memory cell. The unit memory cells are arranged in a 4x4 array to form a sixteen-bit 

memory as shown in Figure 5-8. In Figure 5-8, the horizontal arrows are shorthand for 

the row decoder rails, the data input rails, the read/write enable rails and the OR chain 
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rails. The vertical arrows represent the column decoder rails (except in the extreme right 

column, where they represent the vertical OR chain outputs). The clock cycle information 

on the arrows indicates the number of clock cycles required by an address input to reach 

the specified memory cell. As indicated in Figure 5-8, irrespective of the path adopted by 

the signal, the delay remains the same. This ensures throughput of one read per cycle. 

The total latency from when the decoded address arrives to when the output appears is 

nine clock cycles. At the bottom right of the LUT, there is the output of the LUT. It is the 

OR of the enabled outputs of all sixteen memory cells. The decoder ensures that only one 

memory cell is enabled. Thus, the output of the entire LUT is equal to the value stored in 

the enabled cell. The memory cell is designed to be used with separate row and column 

decoders as mentioned above. When ROW_IN and COLUMN_IN are both high, then 

only the memory cell is enabled. Note that each of these lines traverses four clock zones 

as it travels across the cell. This creates one clock cycle of latency traversing the cell in 

either direction. The memory presented in [14] is a modified version of the memory in 

[12]. This memory uses a serial Read/Write (RW) signal, a serial Data Input (DI) signal, 

a parallel Enable (EN) signal, and a parallel output (OUT) signal. The cell is designed 

such that multiple cells can be tiled side-by-side. Each row of cells then forms a shift 

register for writing. The QCA implementation of the LAB in arithmetic mode using 

QCADesigner is shown in Figure 5-9. The design basically consists of two sections: 

Combination of LUTs and Combination of Adders and Flip-Flops. The proposed design 

provides more functionality than [12], [14] with respect to the number of inputs used, 

logical operations, and arithmetic operations. The proposed LAB supports applications 

like addition, logic operations, and combinational logic operations which are not 
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available in the hypothetical designs presented in [12], [14]. It should be noted that CLB 

in [14] is optimized version of CLB in [12]. CLB in [14] has used a set of row and 

column decoders to enable each of the 16 memory cells while in our design we are using 

only one decoder to enable the same number of memory cells. In addition, we have 

minimized the number of gates on the decoder and memory cell and have used a simple 

output circuit for the LUT as compared to [12], [14]. We have modeled the LUT using 

both coplanar and multi-layer crossover. 

 

Figure 5-8: Block Diagram of Look-up Table with Memory Cells [14] 

 

 



 

59 

 

 

F
ig

u
re

 5
-9

: 
Q

C
A

 I
m

p
le

m
en

ta
ti

o
n
 o

f 
A

lt
er

a 
S

tr
at

ix
 L

A
B

 



 

60 

 

 

Figure 5-10: Partial Layout of QCA LAB showing Full Adder and D Flip-flop  

 

 Figure 5-10 is shown to visualize the full adder and D flip-flop components which 

are not clearly visible in Figure 5-9. 
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Figure 5-11: Simulation of Stratix LAB in QCA 
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Table 5.1: Truth Table for the LAB Operation 

A B C D 
Carry_In 

1 

LUT 1 

Output 

LUT 2 

Output 

LAB 1 

Output 

Carry_Out 

1 

0 0 0 0 0 1 0 1 0 

0 0 0 1 1 1 1 1 1 

0 0 1 0 0 1 1 0 1 

0 0 1 1 1 1 0 0 1 

0 1 0 0 0 1 0 1 0 

0 1 0 1 1 0 0 1 0 

0 1 1 0 0 0 1 1 0 

0 1 1 1 1 0 0 1 0 

1 0 0 0 0 0 1 1 0 

1 0 0 1 1 0 1 0 1 

1 0 1 0 0 1 1 0 1 

1 0 1 1 1 0 1 0 1 

1 1 0 0 0 1 1 0 1 

1 1 0 1 1 0 0 1 0 

1 1 1 0 0 1 0 1 0 

1 1 1 1 1 0 0 1 0 

 

 The QCA design of Altera Stratix LAB architecture is modeled and simulated 

using QCADesigner.  For functional verification of the design, the proposed QCA 

implementation in Figure 5-9 has successfully been simulated to implement various 

equations in the LUT. The simulation shown in Figure 5-11 represents the following 

functions implemented in LUT 1 and LUT 2: 

F (LUT1) = A'B' + BC'D' + ACD' 

F (LUT2) = AC'D' + AB' + B'C'D + B'CD' + A'BCD 
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In the simulation results shown in Figure 5-11, we have verified the expected output of 

LAB for the addition of the outputs of LUT 1, LUT 2 and Carry_In1 as shown is Table 

5.1. The detailed analysis of the design and comparison of this design to other designs is 

provided in Chapter 7. 
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Chapter 6 

 

Design of Programmable Switch Matrix for QCA Applications 

 

As discussed in Chapter 3, an FPGA is the topmost entity. Multiple logic array 

blocks are connected together to form an FPGA. FPGA consists of an array of identical 

configurable (programmable) logic array blocks (LABs), programmable I/O blocks 

(IOBs) and programmable interconnect structures. The interconnection between LABs is 

achieved using programmable interconnects. This chapter explains the design of a 

programmable interconnects. Section 6.1 gives a brief introduction in programmable 

interconnects. Section 6.2 describes the modeling of programmable interconnects in 

QCA.  

 

6.1 Introduction to Programmable Interconnects 

 For an FPGA design, interconnects are very important as they bring connectivity 

between modules. Also interconnects are important because routing takes almost half of 

the design area. Programmable interconnects are also called programmable switches or 

programmable switch matrices. Figure 6-1 shows the representation of programmable 

switch matrix in an FPGA. There are mainly three types of switches: Basic 

programmable switches, Cross-point switches, and multiplexer switches [27]. A basic 
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programmable switch consists of a transmission gate and a SRAM cell. The opening and 

closing of a transmission gate is dependent upon the truth table stored in the SRAM cell. 

The SRAM cell can be reprogrammed depending upon the need of application.  

 

Figure 6-1: Representation of Programmable Switch Matrix in an FPGA 

 

In electronics, a cross-point switch is also known as a crossbar switch, or matrix 

switch. It is a switch connecting multiple inputs to multiple outputs in a matrix manner. 

Originally the term was used literally, for a matrix switch controlled by a grid of crossing 

metal bars, and later was broadened to matrix switches in general. A Cross-point switch 

consists of basic programmable switches arranged in such a way that they form a network 

in which four LABs can be connected to each other located at North, South, East, and 

West directions. Figure 6-1 shows the Cross-point switch with connections for LAB in 

four directions. This type of programmable interconnect switch has been implemented in 

QCA technology for the QCA applications [13]. The author has modeled 4 X 4 cross-
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point switch in QCA using basic AND gate as a transmission gate. The operation of logic 

gates is controlled by programmable input to the gate. This design is very simple and 

easy to implement.  

Multiplexer switches use multiplexer to switch the connections. A multiplexer is a 

device which selects one of several digital input signals and forwards the selected input 

into a single line. The interconnectivity between the LABs or CLBs is dependent upon 

the multiplexer select line. A truth table is programmed into the switch for selection of 

SELECT inputs. Thus, the multiplexer size can be selected depending upon the 

requirement of switch matrix.  

 

6.2 Programmable Switch Matrix 

To continue our research in designing an FPGA, there is a need of a 

programmable interconnect switch to connect LABs together to form an FPGA. Here we 

propose a interconnect switch designed in QCA technology using the basic gates 

designed earlier. The interconnect switch can be modeled as unidirectional or 

bidirectional switch.  

6.2.1 Programming Grid 

 In modeling the programming grid, it is assumed that the input and output end 

points are placed at the grid in horizontal or vertical direction. Here, an assumption is 

made that the grid is a square [28].   

 As shown in Figure 6-2, four ports North, South, East, and West are placed in 

direction of net. A one to one connection is to be set between each of the end points. The 

programmable interconnect switch has been modeled by one to one mapping of a CMOS 
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switch matrix in [29]. The designer in [29] has used one to one mapping technique to 

convert a CMOS programmable switch matrix into QCA technology.   

 

Figure 6-2 Programmable Switch Matrix 

 

 The mode of the grid is denoted by the pair of ports to which all the inputs and 

outputs are connected. The operation of logic gates is controlled by the programmable 

inputs to the gates. P1, P2, P3, P4, P5, and P6 are the programmable inputs to the gate. 

This design is very simple and it has limitations. For every programmable switch matrix 

(PSM), there are six programmable inputs. One PSM in [29] can connect 4 LABs only. 

The programming of the inputs is done by using AND gates. One of the input to the AND 
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gate is programmable. If logic ‗1‘ is fed to the gate, then it passes the other input value to 

through the gate. 

 

6.2.2 Proposed Programmable Switch Matrix 

 The model shown in [29] has limitations such as limited routing of LABs. 

Therefore, we here propose a new design of programmable switch matrix.  

 

 

Figure 6-3: Proposed Design of the Programmable Switch Matrix 
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 Figure 6-3 shows the block diagram of the proposed design for the programmable 

switch matrix. Figure 6-4 shows the gate level representation of programmable switch 

matrix. I1, I2, I3, I4, I5, and I6 are the interconnect lines. These lines provide input to the 

A1, A2, A3, A4, A5, and A6 AND gates. There is also a SELECT line which can select if 

we want the PSMs to be ON or OFF. We have selected a value ‗1‘ for SELECT inputs 

which is fed to A1, A2, A3, A4, A5, and A6 AND gates. Depending upon these input 

values, the PSM changes the routing of LABs. The output from A1, A2, A3, A4, A5, and 

A6 AND gates is then fed to the PSM AND gates. The benefit of having the interconnect 

lines is that, it can accommodate as many PSMs as needed. This design is very difficult in 

QCA because to the crossovers. We have used both coplanar crossover and multilayer 

crossover for the design of programmable interconnect switch matrix. For this research 

work, we have modeled only one PSM and the interconnect lines. Addition of PSMs can 

be done as per the requirement of the application. Table 6.1 shows the operation of PSM 

depending upon the inputs to the PSM. It incorporates all the combinations for 

interconnectivity. Figure 6-5 shows the QCA design of the PSM in QCADesigner. The 

simulation has been performed to verify all the combinations of ports. Figure 6-6 shows 

the simulation showing West port connecting to the North Port. Figure 6-6 shows the 

simulation showing North port connecting the East port. 
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Figure 6-4: Gate Level Representation of Programmable Switch Matrix 
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Table 6.1: Port Connections according to Interconnect Lines  

Port Connections I1 I2 I3 I4 I5 I6 

WEST-NORTH 1 0 0 0 0 0 

SOUTH-WEST 0 1 0 0 0 0 

NORTH-EAST 0 0 1 0 0 0 

EAST-SOUTH 0 0 0 1 0 0 

SOUTH-NORTH 0 0 0 0 1 0 

EAST-WEST 0 0 0 0 0 1 

WEST-EAST 1 0 1 0 0 0 

NORTH-WEST 0 0 1 0 0 1 

EAST-NORTH 1 0 0 0 0 1 

SOUTH-EAST 0 0 1 0 1 0 

NORTH-SOUTH 0 0 1 1 0 0 
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Figure 6-5: QCA Layout of Programmable Switch Matrix 
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Figure 6-6: Simulation of PSM showing North Terminal connecting East Terminal 
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Figure 6-7: Simulation of PSM showing West Terminal connecting the North Terminal  

 

 Simulation results show that the design for the programmable interconnect switch 

matrix is successfully modeled in QCA. This design gives more routing flexibility than 

[29]. With this PSM design, we can connect many LABs together to form an FPGA.  
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Chapter 7 

 

Design Analysis and Comparison 

 

We have modeled the QCA design of Altera Stratix LAB and programmable 

switch matrix; however these deign has to be analyzed for their performance, functional 

verification and accountability in real world.  

The first ever Altera Stratix logic array block is successfully designed and 

simulated at the quantum level using QCA technology. The LAB has been successfully 

modeled, implemented, and simulated using the QCADesigner tool. The simulated result 

of a LAB is verified with its expected outcomes to confirm the proper functioning of the 

LAB. The proposed architecture has also been optimized with respect to various design 

parameters like the number of QCA cells used to implement the logic circuit, the area 

occupied by the logic circuit and the overall latency of LAB. 

7.1 Logic Array Block            

The design parameters of various sub-components of the LUT have been tabulated in 

Table 7.1. 
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Table 7.1: Design Parameters of Sub-components of LUT 

Component 

No. of 

QCA Cells 

Area in 

nm
2
 

Latency 

Contribution 

to overall 

Area (%) 

Simulation 

Time 

(Seconds) 

Decoder 2818 913032 5 51.26 36 

Memory 

Architecture 

1838 595512 1 33.43 24 

Output 

Circuit 

842 272808 5 15.31 7 

 

From Table 7.1, it can be seen that the decoder takes more QCA cells and it 

contributes more than 50 % of the QCA cells. As the number of QCA cells increase, the 

simulation time also increases.  

The proposed architecture is compared with the existing architectures with respect 

to read latency, write latency and area. The existing CLB architectures are all based on 

design of a 4-input LUT. Table 7.2 shows the comparison of latency of various 

architectures with the proposed architecture. The proposed design provides more 

functionality than [12], [14] with respect to the number of inputs used, logical operations, 

and arithmetic operations. The proposed LAB supports applications like addition, logic 

operations, and combinational logic operations which are not available in the hypothetical 

designs presented in [12], [14]. It should be noted that CLB in [14] is optimized version 

of CLB in [12]. Also, the QCA LUT design presented in this paper has an advantage over 

the LUT design in [12], [14] that it uses less number of QCA cells. Also, the QCA LUT 
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design presented in this research has an advantage over the LUT design in [12], [13], and 

[14] in that it uses less number of QCA cells.  

QCA cell dimension of 18 nm and a dot size of 5 nm are used. Table 7.2 shows the 

detailed analysis of proposed LAB. Area acquired by each component and the respective 

latency contribution is shown in Table 7.2. Figure 7-1 shows the graphical representation 

of area acquired by each component of LAB. It can be seen that the decoder takes most of 

the area of QCA design. It is very essential that the decoder design has to be minimized. 

We have minimized the decoder design with respect number of majority gates used, 

crossovers, and routing of inputs. In previous designs, a multiplexer is used for the output 

circuit of the LUT which takes more QCA cells to design as compared to the simple 

output circuit for the LUT used in this design. 

Table 7.2: Detailed Analyses of Components in Proposed LAB 

Components Area (µm
2
) No. Of Cells Latency 

Decoders 3.65 11272 5 

Memory 2.36 7284 1 

Output circuit 1.09 3368 5 

D Flip-flop  0.045 140 2 

Full Adder 0.0706 218 1 

Routing inside 

the LAB 

0.339 1045 3 

 



 

78 

 

 

Figure 7-1: Graphical Representation of Area acquired by Components in LAB 

Also, a latency pie diagram (Figure 7-2) is shown to represent latency contribution 

of each component. From this pie diagram, it is seen that the output circuit and the 

decoders contribute most of the latency in the LAB. 

 

Figure 7-2: Latency Pie Diagram 
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A comparison of the area of the proposed architecture with other designs is shown 

in Table 7.3. A comparison of the area of the proposed architecture with other designs is 

shown in Table I. These numbers do not include QCA cells used for internal LAB routing. 

CLB in [14] has used a set of row and column decoders to enable each of the 16 memory 

cells while in our design we are using only one decoder to enable the same number of 

memory cells. In addition, we have minimized the number of gates on the decoder and 

memory cell and have used a simple output circuit for the LUT as compared to [12], [14]. 

We have modeled the LUT using both coplanar and multi-layer crossover. From Table 

7.3, it is observed that the design presented in this research occupies less QCA cells and 

area than designs in [12], [14]. 

Table 7.3: Area Comparison of Proposed LAB 

Design 

Number of 

QCA Cells 

Area (µm
2
) 

Proposed LAB 25K 8.094 

CLB in [12] 
203K 65.77 

CLB in [14] 
105K 34.02 

 

The latency comparison with other designs is shown in Table 7.4 for various 

components. From Table 7.4, it is observed that the proposed design has less latency than 

the designs presented in [12], [13]. The latency is comparable to the design presented in 

[14]. However, design in [14] lacks ability to perform arithmetic operations and is 

suitable only for logic implementation. 
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Table 7.4: Latency Comparison of Proposed LAB 

Components 

Proposed 

LAB 

CLB in 

[12] 

CLB in 

[13] 

CLB in 

[14] 

Decoder 5 5 3 5 

Memory & Output 

Circuit 

6 6 9 9 

D Flip-flop 2 - 2 - 

Routing inside the LAB 3 19 4 - 

Full Adder 1 - - - 

Complete Design 17 30 18 16 

  

From the results tabulated above, it can be inferred that the architecture of the 

proposed LAB with a 4-input LUT is better than the rest of the existing architectures 

[12], [13], [14] with respect to all design parameters.  Similar to CMOS technology, QCA 

has the ability to be designed in multiple layers. A multilayer QCA can be used to further 

optimize the area of the proposed design. An earlier design by the authors of this paper in 

[30] adopts the strategy of multi-layer QCA design applied to a Xilinx Virtex FPGA. 

Although the multilayer approach reduces the area and the latency considerably, it 

increases the complexity of the design. In this design, area and latency has been reduced 

using a single layer approach. We are not able to compare our work with the work in [31] 

because it presents a programmable QCA device based on a 4-diamond circuit [8] which 

is a simple computational building block. Authors in [31] have used a MATLAB 

platform to simulate the QCA device. 
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7.2 Programmable Switch Matrix 

 The proposed PSM is modeled in QCA using QCADesigner. The proposed PSM 

is comprised of 1107 QCA cells. The Proposed PSM has a latency of 1 clock cycle. There 

has been some work on QCA interconnects in [7], [29], [32]. The authors in [7], [32] 

propose a different approach for interconnection between LABs and use QCA clock 

phases to route the signals in between the components. The author in [32] has proposed 

Universal Crossing Element (UCE) which is programmed at its fabrication. The UCE 

cannot be modified once fabricated. Its clock phases cannot be altered after fabrication. 

For UCE, the inputs have to be configured at the fabrication to set the direction and 

output. We cannot change the direction of flow of information once fabricated. However, 

setting up inputs to a particular clock phase is difficult from the fabrication point of view. 

Due to different phases of adjust cycles, the fabrication might not be simple. The authors 

in [32] are using a simulator based on Inter Cellular Hartree Approximation (ICHA) to 

design and simulate the UCE. The authors in [32] are not using QCADesigner to simulate 

the UCE. The proposed PSM is more flexible than [32] and it can accommodate more 

routing resources. 
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Chapter 8 

 

Conclusion and Future Work 

 

8.1 Conclusion 

Quantum-dot cellular automata is a novel technology with characteristics that 

differ substantially from CMOS. QCA offers an avenue toward very high density with 

low power requirements and minimal heat dissipation. The economic concerns of chip 

fabrication costs can be addressed by taking advantage of the self-assembling nature of 

the molecular world (Quantum Dots). In short, QCA is poised to breach the red brick 

wall of the ITRS roadmap [11].  

This research presents the design, layout, and successful simulation of a LUT-

based logic array block (LAB) using QCADesigner. To the best of our knowledge, this 

design is the first implementation of Altera Stratix LAB architecture.  Results show that 

the proposed LAB occupies less area than [12], [13], [14]. Also, the latency is less than 

designs presented in [12], [13] and comparable to [14]. 

This research also presents the design, layout, and simulation of a programmable 

switch matrix (PSM) using QCADesigner. The simulation results are generated using the 

‗QCA Designer‘ software version 2.0.3. Bi-stable approximation is used to simulate the 

results presented in this research. 
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8.2 Contributions 

The major contributions of this research are as follows: 

1. Design of a parallel read write QCA memory cell. 

2. Design of a LUT with less number of QCA cells than previous LUT designs. 

3. First successful implementation of an Altera Stratix LAB architecture. Previous 

designs are based on Xilinx family architectures.  

4. Design of a LAB which has more functionality than previous designs with respect to 

the number of inputs used, logical operations, and arithmetic operations. 

5. Design of a LAB which has less area and latency than the previous designs mentioned 

in this work. 

 

8.3 Future Work 

Some of the future work related to this research are as follows: 

 Similar to CMOS technology, QCA has the ability to be designed in multiple layers. 

A multilayer QCA can be used to further optimize the area of the proposed design. 

 The LABs and programmable interconnects presented in this work can be integrated 

to implement an FPGA for digital applications in the nano-electronics industry.  

 In this work, the proposed LAB is transformed from the gate level to the QCA logic 

using a one-to-one mapping which often does not exploit the advantages of the QCA 

technology. Therefore, optimization during the translation of the gate level to the MV 

logic by eliminating redundant logic can be investigated.  
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 The QCADesigner tool has many limitations. Further research is needed to develop 

other tools which will give the user better control in the design, layout, and simulation 

of QCA circuits. 
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