
A Thesis

entitled

Verification of a Computational Aeroacoustics Code Using External Verification

Analysis (EVA)

by

Daniel Ingraham

Submitted to the Graduate Faculty as partial fulfillment of the requirements

for the Master of Science Degree in Mechanical Engineering

Dr. Ray Hixon, Committee Chair

Dr. Douglas Oliver, Committee Member

Dr. Chunhua Sheng, Committee Member

Dr. Patricia Komuniecki, Dean
College of Graduate Studies

The University of Toledo

May 2010

An Abstract of

Verification of a Computational Aeroacoustics Code Using External Verification
Analysis (EVA)

by

Daniel Ingraham

Submitted to the Graduate Faculty as partial fulfillment of the requirements
for the Master of Science Degree in Mechanical Engineering

The University of Toledo
May 2010

As Computational Aeroacoustics (CAA) codes become more complex and widely

used, robust Verification of such codes becomes more and more important. Recently,

Hixon et al. proposed a variation of the Method of Manufactured Solutions of Roache

especially suited for Verifying unsteady CFD and CAA codes that does not require the

generation of source terms or any modification of the code being Verified. This work

will present the development of the External Verification Analysis (EVA) method and

the results of its application to some popular model equations of CFD/CAA and a

high-order nonlinear CAA code.

iii

To Melissa, my everything.

Acknowledgments

This work was supported by the Subsonic Fixed Wing Project of the NASA Fun-

damental Aeronautics Program, under Task NNC07E125T-0. The technical monitor

for this work was Dr. Edmane Envia of the NASA Glenn Research Center.

I am grateful for Dr. Oliver and Dr. Sheng for agreeing to serve on my committee.

I am deeply appreciative of Dr. Hixon’s help and guidance, and for allowing me

to work on such an interesting and challenging project.

My thanks to my parents, Jim and Becky, and my sisters, Cassie and Trisha.

Their love and constant encouragement are responsible for any success I may have in

the future.

And finally, my heartfelt thanks to my wonderful wife Melissa, who endured more

than a few lonely nights and did not receive the attention she deserves during the

creation of this work.

v

Contents

Abstract iii

Acknowledgments v

Contents vi

List of Figures ix

List of Abbreviations xii

List of Symbols xiii

1 Overview of Code Verification 1

1.1 Code Verification vs. Solution Verification vs. Validation 2

1.2 Review of Methods of Code Verification 4

1.3 Linear Analysis of Numerical Schemes 5

1.3.1 Spatial Differencing using Finite Differences 6

1.3.2 Runge-Kutta Time-Marching Methods 11

2 The External Verification Analysis Method 16

2.1 Mathematical Foundation of EVA . 16

2.2 The EVA Process . 18

2.2.1 Step 1: Obtain a Reference Solution using EVA 19

vi

2.2.2 Step 2: Run the Code to be Verified 20

2.2.3 Step 3: Calculate the Error Norm 21

2.2.4 Step 4: Calculate the Observed Order-of-Accuracy 22

2.2.5 An Alternative Method for Verifying Temporal Order-of-Accuracy

— Using Multiple EVA Solutions 24

2.3 The EVA3 Code — Implementation of the EVA Method 30

2.3.1 Using the Flux Jacobians with the EVA Method 30

2.3.2 Controlling the Accuracy of the EVA Taylor Series Using EVA3 32

3 Application of the EVA Method to Some Model Equations 35

3.1 Equations Considered . 35

3.2 Description of the “FD1D” Code . 37

3.3 Spatial Order-of-Accuracy Results . 39

3.3.1 Linear Inviscid Burger . 39

3.3.2 Nonlinear Inviscid Burger . 41

3.4 Temporal Order-of-Accuracy Results — Single EVA Solution 43

3.4.1 Linear Inviscid Burger . 44

3.4.2 Nonlinear Inviscid Burger . 45

3.5 Temporal Order-of-Accuracy Results — Multiple EVA Solution . . . 47

3.5.1 Linear Inviscid Burger . 48

3.5.2 Nonlinear Inviscid Burger . 49

4 Application of the EVA Method to the Euler Equations 52

4.1 Equations Considered . 52

4.2 Description of the BASS Code . 55

4.3 Spatial Order-of-Accuracy Results . 56

4.3.1 Two-Dimensional . 57

4.3.2 Three-Dimensional . 63

vii

4.4 Temporal Order-of-Accuracy Results — Single EVA Solution 70

4.4.1 Two-Dimensional . 70

4.4.2 Three-Dimensional . 75

4.5 Temporal Order-of-Accuracy Results — Multiple EVA Solutions . . . 81

4.5.1 Two-Dimensional . 81

4.5.2 Three-Dimensional . 85

5 Conclusions and Future Work 88

5.1 Conclusions . 88

5.2 Potential Applications of the EVA Method 89

5.3 Proposed Extensions to the EVA3 Code 90

References 91

viii

List of Figures

1-1 Numerical Wavenumber (k∆x)∗ for Various Spatial Differencing Schemes 9

1-2 Error Magnitude for Various Spatial Differencing Schemes 9

1-3 Observed Order-of-Accuracy for Various Spatial Differencing Schemes 11

1-4 Amplification Factor of Various Runge-Kutta Time-Marching Schemes 13

1-5 Error Magnitude of Various Runge-Kutta Time-Marching Schemes . . 14

1-6 Observed Order-of-Accuracy of Various Runge-Kutta Time-Marching

Schemes . 14

3-1 FD1D Initial Condition . 38

3-2 Linear inviscid Burger — L2 error norm for the spatial stencils 39

3-3 Linear inviscid Burger — observed order-of-accuracy for the 1st-Order

Backward and 2nd- and 4th-Order Central Stencils 40

3-4 Linear inviscid Burger — observed order-of-accuracy for the 6th-Order

Central and DRP Stencils . 41

3-5 Nonlinear inviscid Burger — L2 error norm for the spatial stencils . . 42

3-6 Nonlinear inviscid Burger — observed order-of-accuracy for the 1st-

Order backward and 2nd- and 4th-order central stencils 42

3-7 Nonlinear inviscid Burger — observed order-of-accuracy — 6th-order

central and DRP stencils . 43

3-8 Linear inviscid Burger — L2 error norm for the time-marching schemes 44

ix

3-9 Linear inviscid Burger — observed order-of-accuracy for the time-

marching schemes . 45

3-10 Nonlinear inviscid Burger — L2 error norm for the time-marching

schemes . 46

3-11 Nonlinear inviscid Burger — observed order-of-accuracy for the time-

marching schemes . 46

3-12 Linear inviscid Burger — L2 error for the time-marching schemes using

the multiple EVA solution approach 48

3-13 Linear inviscid Burger — observed order-of-accuracy for the time-

marching schemes using the multiple EVA solution method 49

3-14 Nonlinear inviscid Burger — L2 error for the time-marching schemes

using the multiple EVA solution approach 50

3-15 Nonlinear inviscid Burger — observed order-of-accuracy for the time-

marching schemes using the multiple EVA solution method 51

4-1 Euler 2D Spatial Lmax Error — Uniform Grid 59

4-2 Euler 2D Spatial Observed Order-of-Accuracy — Uniform Grid . . . 59

4-3 2D Curvilinear Grid — Rotated 27.4◦ 60

4-4 2D Curvilinear Grid, Enlarged — Rotated 27.4◦ 60

4-5 Euler 2D Spatial Lmax Error — Curvilinear Grid Rotated 27.4◦ 62

4-6 Euler 2D Spatial Lmax Error — Curvilinear Grid Rotated 45.0◦ 62

4-7 Euler 2D Spatial Observed Order-of-Accuracy — Curvilinear Grid Ro-

tated 27.4◦ . 63

4-8 Euler 2D Spatial Observed Order-of-Accuracy — Curvilinear Grid Ro-

tated 45.0◦ . 64

4-9 Euler 3D Spatial L2 Error — Uniform Grid 65

4-10 Euler 3D Spatial Observed Order-of-Accuracy — Uniform Grid . . . 66

4-11 3D Curvilinear Grid Corner with 253 Grid Points 67

x

4-12 Euler 3D Spatial L2 Error — Curvilinear Grid 68

4-13 Euler 3D Spatial Observed Order-of-Accuracy — Curvilinear Grid . . 69

4-14 Euler 2D Temporal L2 Error — Uniform Grid 72

4-15 Euler 2D Temporal Order-of-Accuracy — Uniform Grid 72

4-16 Euler 2D Temporal Lmax Error — Curvilinear Grid 74

4-17 Euler 2D Temporal Observed Order-of-Accuracy — Curvilinear Grid 75

4-18 Euler 3D Temporal Lmax Error — Uniform Grid 76

4-19 Euler 3D Temporal Observed Order-of-Accuracy — Uniform Grid . . 77

4-20 Euler 3D Temporal L2 Error — Curvilinear Rotated Grid 80

4-21 Euler 3D Temporal Observed Order-of-Accuracy — Curvilinear Ro-

tated Grid . 80

4-22 Euler 2D Temporal L2 Error — Curvilinear Rotated Grid — Multiple

EVA Solutions . 83

4-23 Euler 2D Temporal Observed Order-of-Accuracy — Curvilinear Ro-

tated Grid — Multiple EVA Solutions 84

4-24 Euler 3D Temporal L2 Error — Curvilinear Rotated Grid — Multiple

EVA Solutions . 86

4-25 Euler 3D Temporal Observed Order-of-Accuracy — Curvilinear Ro-

tated Grid — Multiple EVA Solutions 86

xi

List of Abbreviations

BASS The NASA Glenn Research Center’s Broadband Aeroacous-
tic Stator Simulator CAA Code

CAA Computational Aeroacoustics
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy number
DEE Discretization Error Estimation, Salari and Knupp’s term

for Solution Verification
DRP Tam and Webb’s Dispersion Relation Preserving spatial dif-

ferencing scheme
EVA External Verification Analysis
GCI Grid Convergence Index
HALE RK High-accuracy large-step explicit Runge-Kutta schemes of

Allampalli et al.
MMS Method of Manufactured Solutions
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RANS Reynolds-Averaged Navier-Stokes Equations
RK . Runge-Kutta schemes, a class of algorithms for numeri-

cally integrating ordinary differential equations and pseudo-
ODEs

xii

List of Symbols

αn Local measure of grid volume
∆ Spatial discretization measure (grid spacing)
∆t Time step size
∆x Grid spacing in the x-direction
∆y Grid spacing in the y-direction
∆z Grid spacing in the z-direction
ε Error magnitude
γ Ratio of specific heats
µ Viscous term coefficient of the viscous Burgers’ equation
ρ Density
ρu Momentum in the x-direction
ρv Momentum in the y-direction
ρw Momentum in the z-direction
ω∗ Numerical frequency of disturbances
c Propagation speed of disturbances
Etotal Total energy
~E Cartesian flux vector in x-direction
~F Cartesian flux vector in y-direction
~G Cartesian flux vector in z-direction
j Grid point index
k Wavenumber of disturbances
(k∆x)∗ . . Numerical wavenumber of disturbances
n Time step index
N Number of grid points
p Order-of-accuracy of a numerical scheme
p Pressure
~P Taylor series polynomial
q Number of spatial dimensions
~Q Solution vector of the Euler Equations

xiii

Q̄ Mean value of ~Q

Q̃ Magnitude of fluctuating component of ~Q
~Q Exact solution of a hypothetical PDE
~R Residual error of truncated Taylor Series
T Number of time steps
U Reference solution used to calculate an error norm
u Dependent variable of Burgers’ equation
u Velocity in the x-direction
v Velocity in the z-direction
w Velocity in the y-direction

xiv

Chapter 1

Overview of Code Verification

The development of high-speed computers in the last half-century has resulted

in the creation of many sophisticated tools intended to aid engineers in the design

process. The usefulness of these tools (or codes, as they are more commonly called,

and of which Computation Fluid Dynamics (CFD) and Computation Aeroacoustics

(CAA) codes are a member) lie in their ability to simulate complex phenomena for

which analytic solutions are not known and reproduction in a laboratory may be diffi-

cult, impossible or prohibitively expensive. No one can deny that these codes are very

useful, but what assurance does one have that they perform correctly? The question

is made even more pertinent by the amount of time, effort and money that is required

to develop these tools, and by the importance of the decisions that are informed by

them. The fact that a code may compare well with a handful of experiments or is

widely used in industry is unfortunately not a guarantee of its accuracy. Abanto et

al. [1] show how popular CFD codes can return surprising results for simple-looking

test cases. Of course, experimental or developing codes in academia may have their

problems, too.

To address this problem, the field of Verification and Validation has developed in

the past few decades. One of the more popular techniques that has emerged from

1

the field is the Method of Manufactured Solutions, or MMS. First introduced by

Roache [2], MMS provides a way to rigorously demonstrate that a CFD or CAA code

is solving its governing equations correctly. Its main disadvantage, however, is that

it requires one to modify or add a source term to the solver in the code, which may

be undesirable, impractical or (perhaps in the case of a proprietary code) impossible.

Recently, Hixon and Anderson [3] have presented a variant of MMS called “External

Verification Analysis” (EVA) that does not require the addition of source terms to

the governing equations of a code, or modification of the code at all. The focus of this

work will be the development and application of the EVA method to code Verification

with special emphasis on Verifying the NASA Glenn Research Center’s Broadband

Aeroacoustic Stator Simulator (BASS) code.

1.1 Code Verification vs. Solution Verification vs.

Validation

To the general public the terms “Code Verification,” “Solution Verification” and

“Validation” may all appear to be synonymous; however, each of these three terms

have a precise definition in the literature and describe very different processes. The

popular distinction between “Verification” and “Validation” is attributed to Boehm [4]

and Blottner [5] and is emphasized repeatedly by Roache [6] [7] [8] and Oberkampf

and Trucano [9]:

Verification Solving the equations right

Validation Solving the right equations

Verification consists of convincingly demonstrating that a code solves its governing

equations to the expected order-of-accuracy, while Validation is ensuring that the

equations and models used by the code adequately represent the physics of the prob-

2

lem. Verification, as emphasized by Roache, is purely a mathematical exercise with

the goal of ensuring that the numerical techniques of a code are functioning properly,

while Validation is an exercise in science or engineering to ensure that the solution

obtained with the code actually corresponds with reality. A code and/or solution

could be Verified yet fail Validation. For instance, using an incompressible flow solver

for a supersonic configuration will always fail Validation no matter how convincingly

the solver is Verified. On the other hand, Verification is a necessary prerequisite for

Validation; there is no point in attempting to determine if one is “solving the right

equations” if one isn’t “solving the equations right” in the first place.

There also exists a distinction between “Code Verification” and “Solution Verifi-

cation” in the literature. Roache does an excellent job discussing this, as do Salari

and Knupp [10] — although they prefer the term “Discretization Error Estimation

(DEE)” to Solution Verification. Solution Verification, as defined by Roache, is the

process of “banding” the numerical error of the solution by performing grid conver-

gence studies. Solution Verification should be preformed for each code run, and (ac-

cording to Roache) should accompany any results in scholarly publications. Roache

has also developed a “Grid Convergence Index (GCI)” [6] based on Richardson Ex-

trapolation with the intention of promoting uniform reporting of grid convergence

in the literature. Code Verification, on the other hand, is performed to Verify that

the numerical methods used in the code are functioning properly by calculating the

code’s observed order-of-accuracy and comparing it to the formal order-of-accuracy

of the numerical scheme. In contrast to Solution Verification, Code Verification need

only be preformed once for each combination of code options. This work is focused

on describing the External Verification Analysis (EVA) method, a new technique of

Code Verification.

3

1.2 Review of Methods of Code Verification

The most widely-used method of Code Verification is the Method of Manufac-

tured Solutions (MMS) first developed by Steinberg and Roache [2], and explained in

detail in [11, 10, 6]. In short, the Method of Manufactured Solutions consists of spec-

ifying and inserting a “test” (manufactured) solution into the governing equation(s)

of interest. Because the “test” solution is not an actual solution of the equations, a

residual error will remain; however, if the governing equations are modified to include

a source term equal to the residual error, then the “test solution” is an exact — or

“manufactured” — solution to the modified governing equations. The computer code

to be Verified must then be modified to include the source term found during the

“manufacturing” process. The code is then run using different grid spacings or time

steps and compared to the manufactured solution so that the rate of convergence may

be observed. As an example, consider the nonlinear inviscid Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= 0 (1.1)

If a “test solution” ũ(x, t) is assumed and substituted into Equation (1.1)

∂ũ

∂t
+ ũ

∂ũ

∂x
= S̃(x, t) (1.2)

where S̃(x, t) is the residual error from ũ not satisfying the inviscid Burgers’ equa-

tion. If S̃(x, t) is added to the governing equation solver as a source term, however,

ũ becomes an exact solution to the new, modified governing equation. This “manu-

factured” solution can now be used to Verify the order-of-accuracy of the spatial or

temporal discretization schemes used to solve Equation (1.1), provided that the code

supports or can be made to support arbitrary source terms.

Numerous examples of the use of the Method of Manufactured Solutions can be

4

found in the literature. Roy applies MMS to two steady-state two-dimensional Eu-

ler Equation solvers in [12]. Roy et al. use MMS to Verify the same codes for both

the two-dimensional Euler and Navier-Stokes equations in [13]. Bond, Knupp and

Ober used MMS to Verify both the interior stencil and various boundary conditions

of a Reynolds-Averaged Navier-Stokes (RANS) solver in [14, 15, 16]. The two text-

books published on Code Verification — one by Roache [6] and another by Salari and

Knupp [10] — contain excellent examples of and advice on the MMS process (though

some of the content of the textbooks is duplicated in other papers by the authors —

see [8, 11]). Finally, Eça et al. [17] used MMS to Verify the implementation of an

incompressible RANS solver with numerous turbulence models.

1.3 Linear Analysis of Numerical Schemes

A familiarity with the numerical schemes used in a CFD or CAA code is not re-

quired in order to Verify it using External Verification Analysis (or any other method);

however, experience has shown it to be immensely helpful in interpreting results and

troubleshooting difficult test cases.

Generally, the governing equations that a CFD or CAA code will be designed to

solve can be written in a form such as

∂ ~Q

∂t
+
∂ ~F (~Q, ~Qx, ~Qy, ~Qz)

∂x, y, z
= 0 (1.3)

where ~Q is a vector of the solution variables and ~F is a flux, which is a function of

the solution variables. An initial condition is also provided

~Q(x, y, z, t = t0) = ~f(x, y, z) (1.4)

5

One may then rewrite

∂ ~Q

∂t
= −∂

~F (~Q, ~Qx, ~Qy, ~Qz)

∂x, y, z
(1.5)

and use some type of spatial differencing scheme to approximate the flux derivatives,

which in turn gives the temporal derivative of the solution vector

∂ ~Q

∂t

∣∣∣∣∣∣
num

= − ∂ ~F

∂x, y, z

∣∣∣∣∣∣
num

+ ϑ(∆) (1.6)

where ∆ is some spatial discretization measure. With an initial condition and a

temporal derivative of that initial condition, one can march in time:

~Q(t = t0 + ∆t) = ~Q(t = t0) +
∫ t0+∆t

t0

∂ ~Q

∂t
d t+ ϑ(∆t) (1.7)

where ∆t is the time step size, then

~Q(t = t0 + ∆t) = ~Q(t = t0) +
∫ t0+∆t

t0

∂ ~F

∂x, y, z
d t+ ϑ(∆) + ϑ(∆t) (1.8)

Equation (1.8) shows that there are two sources of errors to consider in our Verifica-

tion: the spatial discretization scheme (∆) and the time-marching scheme (∆t). In

this section, each of the spatial differencing and time-marching schemes discussed in

this work will be applied to the linear inviscid Burgers’ equation (see Section 3.1 for

more information on the linear and nonlinear Burgers’ equations) in order to better

understand the behavior of these schemes.

1.3.1 Spatial Differencing using Finite Differences

The linear inviscid Burgers’ equation is

∂u

∂t
+ c

∂u

∂x
= 0 (1.9)

6

One solution to (1.9) is

u(x, t) = ei(kx−ωt) (1.10)

where ω ≡ ck. Now, define

j ≡ x−xmin

∆x
+ 1

n ≡ t−t0
∆t

(1.11)

where

∆x ≡ xmax−xmin

N−1

∆t ≡ tmax−tmin

T

(1.12)

and N is the number of points in the domain and T is the number of time steps taken.

Now one can write

u(x, t) = unj (1.13)

In this work, most of the spatial derivative schemes are central differences that can

be expressed in the general form

∂u

∂x

∣∣∣∣∣
n

j,num

=
1

∆x

M∑
m=1

am(uj+m − uj−m) (1.14)

where M is the “span” of the stencil (1 for the standard second-order central, 2 for

the standard fourth-order central, etc.) and am are the coefficients of the stencil. The

only exception in this work to Equation (1.14) is the compact 6th-order scheme of

Lele [18]. If Equation (1.10) is substituted into Equation (1.14)

∂u
∂x

∣∣∣n
j,num

= 1
∆x

∑M
m=1 am

(
eik(j+m)∆x−ωt − eik(j−m)∆x−ωt

)
= 1

∆x

∑M
m=1 am

(
eikm∆x − e−ikm∆xunj

)
= i

∆x

∑M
m=1 2am sin(mk∆x)unj

(1.15)

7

One can also find the exact derivative of the assumed solution (Equation (1.10))

∂u
∂x

∣∣∣n
j,exact

= ikekx−ωt

= ikunj

= i (k∆x)
∆x

unj

(1.16)

One can now define the numerical wavenumber (k∆x)∗ such that

(k∆x)∗ ≡
M∑
m=1

2am sin(mk∆x) (1.17)

so that

∂u

∂x

∣∣∣∣∣
n

j,num

= i
(k∆x)∗

∆x
unj (1.18)

Equations (1.16) and (1.18) are very similar — they only differ in the (k∆x) term.

Thus the accuracy of a given spatial derivative is wholly dependent on the behavior

of (k∆x)∗, which itself is a function of k∆x. Figure 1-1 shows (k∆x)∗ as a function

of k∆x for each of the spatial differencing schemes considered in this work. The

compact 6th-order scheme “hugs” the exact curve for the largest range of k∆x and

thus performs the best. All of the schemes agree with the exact solution very closely

as k∆x goes to 0, however.

One can calculate the error introduced by using Equation (1.14) as an approxi-

mation of the spatial derivative of u(x, t) with the equation

ε(k∆x) =

∣∣∣∣∣
∂u
∂x num

− ∂u
∂x exact

∂u
∂x exact

∣∣∣∣∣ (1.19)

or, after substituting Equations (1.16) and (1.18)

ε(k∆x) =

∣∣∣∣∣(k∆x)∗

k∆x
− 1

∣∣∣∣∣ (1.20)

8

0 1 2 3
k∆x

0

1

2

3

(k
∆

x
)*

2nd-Order Central
4th-Order Central
6th-Order Central
DRP
6th-Order Compact

Exact

Figure 1-1: Numerical Wavenumber (k∆x)∗ for Various Spatial Differencing
Schemes

0.1 1
k∆x

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

M
ag

n
it

u
d

e

2nd-Order Central
4th-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 1-2: Error Magnitude for Various Spatial Differencing Schemes

9

Figure 1-2 shows a plot of the error magnitude for each of the spatial differencing

schemes considered here. Figure 1-1 would seem to indicate that the compact 6th-

order scheme’s error magnitude would be the lowest, and Figure 1-2 confirms that

this is true. Also as expected, the explicit 6th-order scheme is more accurate than the

explicit 4th-order scheme, which is in turn more accurate than the 2nd-order scheme.

The most interesting scheme is the Dispersion Relation Preserving (DRP) scheme of

Tam and Webb [19]. The DRP is a 4th-order scheme but actually compares better

to the exact solution than the 6th-order explicit scheme for higher k∆x ranges and

worse for lower. This is because the DRP scheme is optimized to achieve a low level

of error for a wide range of grid points — a side-effect of this optimization process is

that the error magnitude can actually increase as ∆x is lowered.

When the error magnitude of a spatial differencing scheme is plotted on a log-log

plot the slope of the error is the observed order-of-accuracy of the scheme. To find an

expression for the observed order-of-accuracy of each scheme as a function of k∆x,

one can use the chain rule

d [log(ε(k∆x))]

d [k∆x]
=
d [log(ε(k∆x))]

d [log(k∆x)]

d [log(k∆x)]

d [k∆x]
(1.21)

and then

d [log(ε(k∆x))]

d [log(k∆x)]
=
d [log(ε(k∆x))]

d [k∆x]
/
d [log(k∆x)]

d [k∆x]
(1.22)

Equation (1.22) was used to plot the observed order-of-accuracy for each of the spatial

differencing schemes — the results are shown in Figure 1-3. Each of the schemes

eventually attain their formal order-of-accuracy (recall from above that the DRP is

a fourth-order scheme) as k∆x goes to zero, but none of the schemes return their

expected order-of-accuracy for the entire range of k∆x. In general, the higher-order

the scheme, the smaller the range of k∆x values where it shows its formal order-of-

accuracy. In particular, the DRP scheme is only briefly fourth-order accurate at very

10

low values of k∆x — this indicates that it will require many more grid points (i.e.,

smaller ∆x) to convincingly Verify it than the other spatial differencing schemes.

0 1 2 3
k∆x

0

1

2

3

4

5

6

7

8

9

10

11

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u

ra
cy

2nd-Order Central
4th-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 1-3: Observed Order-of-Accuracy for Various Spatial Differencing
Schemes

1.3.2 Runge-Kutta Time-Marching Methods

Once an approximation of ∂u
∂x

is obtained, an approximation of ∂u
∂t

can also be

found from the governing equation:

∂u
∂t

∣∣∣n
num

= −c ∂u
∂x

∣∣∣n
num

= −ic (k∆x)∗

∆x
un

= −iω∗un

(1.23)

where ω∗ is the numerical frequency, ω∗ = c (k∆x)∗

∆x
. With knowledge of un and ∂u

∂t

∣∣∣n,

a time-marching scheme can be used to find the solution at the next time level un+1.

Many such schemes exist, but this work will focus on explicit Runge-Kutta time-

11

marching methods. To use a Runge-Kutta scheme the temporal derivative is rewritten

∂u

∂t

∣∣∣∣∣
n

num

= −iω∗un = F (un) (1.24)

The function F (un) in Equation (1.24) is then used to evaluate the various stages of

the Runge-Kutta scheme. For instance, the “classical” RK4 4th-order scheme can be

written as

u0 = un

k1 = ∆tF (u0)

k2 = ∆tF (u0 + 1
2
k1)

k3 = ∆tF (u0 + 1
2
k2)

k4 = ∆tF (u0 + k3)

un+1 = un + 1
6
(k1 + 2k2 + 2k3 + k4)

(1.25)

If the function F (un) of Equation (1.24) is substituted into Equation (1.25)

un+1 =
(

1 + (iω∗∆t) +
1

2
(iω∗∆t)2 +

1

6
(iω∗∆t)3 +

1

24
(iω∗∆t)4

)
un (1.26)

we see that the RK4 scheme is effectively using a Taylor series (in this case, 4th-order,

though not all Runge-Kutta schemes are 4th-order) to integrate the equations in time

— all explicit Runge-Kutta schemes can be expressed in this form, and each scheme

differs only in the number of stages and the value of the leading coefficients for each

term of the Taylor series in Equation (1.26). The amplitude
∣∣∣un+1

un

∣∣∣ is only a function of

ω∗∆t and is shown for each of the time-marching schemes considered for this work in

Figure 1-4. For stability,
∣∣∣un+1

un

∣∣∣ < 1, so the stability limits for each scheme can be seen

from Figure 1-4. Similar to the (k∆x)∗ plot in Figure 1-1, each scheme approaches

the exact solution as ω∗∆t goes to zero. It appears from Figure 1-4 that the Hu

RK56 [20] scheme is the most accurate, followed closely by the HALE RK7 [21].

12

0 1 2 3 4 5 6

ω
∗
∆t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

u
n
+

1
/u

n

RK4

Jameson RK5

HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Exact

Figure 1-4: Amplification Factor of Various Runge-Kutta Time-Marching
Schemes

The error magnitude of each time-marching scheme can be calculated using the

expression

ε(ω∗∆t) =

∣∣∣∣∣un+1

un
− eiω∗∆t

∣∣∣∣∣ (1.27)

Figure 1-5 shows the error magnitude for the various Runge-Kutta schemes con-

sidered in this work. As expected, the Hu RK56 and HALE RK7 schemes are the

most accurate. Like in the corresponding plot for the spatial differencing schemes,

the slope of the error curves for each scheme indicates the observed order-of-accuracy

of the scheme. After using the chain rule in a fashion similar to Equation (1.22), the

observed order-of-accuracy can be plotted as a function of ω∗∆t, as in Figure 1-6.

Like in Figure 1-3, each scheme eventually achieves it’s formal order-of-accuracy (4th

for all schemes except the Jameson RK5 [22], which is 2nd-order) as the numerical

frequency goes to zero. Note that the truncation error of a pth-order Runge-Kutta

scheme for one time step is actually on the order of ∆tp+1 — this is explained in more

13

0.1 1

ω
∗
∆t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

M
ag

n
it

u
d

e

RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK67

Figure 1-5: Error Magnitude of Various Runge-Kutta Time-Marching
Schemes

0 1 2 3 4 5 6

ω
∗
∆t

0

1

2

3

4

5

6

7

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u
ra

cy
 +

 1

RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 1-6: Observed Order-of-Accuracy of Various Runge-Kutta Time-
Marching Schemes

14

detail in Section 2.2.5. The Hu RK56 scheme is similar to Tam and Webb’s DRP

spatial differencing scheme in that each is heavily optimized for accuracy and thus

only exhibits its formal order-of-accuracy for a short range of numerical frequency or

wavenumber, respectively. As with the DRP, one would expect the Hu RK56 to be

the most difficult to Verify.

An additional Runge-Kutta scheme is used in this work but is not discussed here:

the RK4 scheme of Jameson [22]. The Jameson RK4 scheme is, for linear prob-

lems, identical to the classical RK4 scheme, but is 2nd-order accurate for nonlinear

problems. The Jameson RK4 “lost” its 4th-order accuracy when it was recast in a

low-storage form by Jameson.

15

Chapter 2

The External Verification Analysis

Method

The External Verification Analysis (EVA) method is used to strongly Verify the

numerical schemes employed in codes used to solve partial differential equations, such

as CFD/CAA codes. As the name implies, it is external, i.e., it does not require any

access to or modification of the source code, unlike the Method of Manufactured

Solutions (MMS). Like MMS, the EVA method works by providing a very accurate

solution to the governing equations the simulation code solves. Grid convergence or

time step studies are then preformed to Verify the theoretical order-of-accuracy of

the spatial differencing or time-marching scheme, respectively. The mathematical

foundation and EVA process will be described in the following sections, as well as

details of the implementation of the EVA method in “EVA3,” a FORTRAN 2003

code.

2.1 Mathematical Foundation of EVA

The External Verification Analysis (EVA) method will be applied to the two-

and three-dimensional Euler equations in the present work, in addition to the linear

16

and nonlinear forms of the inviscid Burgers’ equation. The three-dimensional Euler

equations can be written as

∂ ~Q

∂t
+
∂ ~E

∂x
+
∂ ~F

∂y
+
∂ ~G

∂z
= 0 (2.1)

where ~Q is the vector of conserved flow variables and ~E, ~F and ~G are the Cartesian

flux vectors in the x, y and z directions, respectively.

Equation (2.1) can be rewritten as:

∂ ~Q

∂t
= −

∂ ~E(~Q)

∂x
+
∂ ~F (~Q)

∂y
+
∂ ~G(~Q)

∂z

 (2.2)

and, if the conserved flow variables are continuous in space at a time t0,

∂ ~Q

∂t

∣∣∣∣∣∣
t=t0

= −

∂ ~E
∂ ~Q

∂ ~Q

∂x
+
∂ ~F

∂ ~Q

∂ ~Q

∂y
+

∂ ~G

∂ ~Q

∂ ~Q

∂z

t=t0

(2.3)

where the derivatives of the flux vectors with respect to ~Q are the flux Jacobian

matrices.

One can obtain higher temporal derivatives of ~Q by taking the t-derivative of

Equation (2.3):

∂2 ~Q

∂t2

∣∣∣∣∣∣
t=t0

= −

 ∂2 ~E

∂x∂t
+
∂2 ~F

∂y∂t
+
∂2 ~G

∂z∂t

t=t0

(2.4)

Analytical expressions for the mixed temporal derivatives can be found by using the

flux Jacobian matrices and by taking spatial derivatives of (2.3). For example,

∂2 ~E

∂x∂t

∣∣∣∣∣∣
t=t0

=

∂2 ~E

∂ ~Q2

∂ ~Q

∂x

∂ ~Q

∂t
+
∂ ~E

∂ ~Q

∂2 ~Q

∂x∂t

t=t0

(2.5)

and

∂2 ~Q

∂x∂t

∣∣∣∣∣∣
t=t0

= −

∂2 ~E

∂x2
+

∂2 ~F

∂x∂y
+

∂2 ~G

∂x∂z

t=t0

(2.6)

17

This process can be repeated to obtain analytical expressions for higher-order tempo-

ral derivatives of ~Q in terms of ~Q and its spatial derivatives. Once these expressions

are found, they can be used to build a Taylor series centered at t = t0 to obtain the

flow at the time t = t0 + ∆t:

~Q
∣∣∣
x,y,z,t0+∆t

= ~Q
∣∣∣
x,y,z,t0

+∆t
∂ ~Q

∂t

∣∣∣∣∣∣
x,y,z,t0

+
∆t2

2

∂2 ~Q

∂t2

∣∣∣∣∣∣
x,y,z,t0

+
∆t3

6

∂3 ~Q

∂t3

∣∣∣∣∣∣
x,y,z,t0

+
∆t4

24

∂4 ~Q

∂t4

∣∣∣∣∣∣
x,y,z,t0

+· · ·

(2.7)

By increasing the number of terms included in Equation (2.7), a solution of arbi-

trary accuracy can be found at a later time level (t = t0 + ∆t). Practically, the order

of Equation (2.7) is limited by computational constraints — especially the amount

of memory available, as the analytic expressions of the higher-order derivatives of

the two- and three-dimensional Euler equations contain many terms and are com-

putationally intensive to evaluate. Currently, the EVA tool can calculate up to an

eleventh-order Taylor series for the two-dimensional Euler equations and a tenth-

order Taylor series for the three-dimensional Euler equations, and a thirteenth-order

order series for the one-dimensional Euler and linear and nonlinear inviscid Burgers’

equations. These limits could be increased with the availability of more memory —

they are not limitations “built-in” to the code itself.

2.2 The EVA Process

Section 2.1 shows how the flow at a later time level can be found using the

EVA method; however, obtaining an EVA solution is only one step in Verifying a

CFD/CAA code. The actual process of Verifying a CFD/CAA code can be summa-

rized in the following steps:

1. Construct a grid and specify an initial condition and final time level for the

EVA method, and then use the EVA method to obtain the solution at the later

18

time level.

2. Run the code to be Verified using the same initial condition using a range of

grid spacings or time steps to Verify either the spatial or temporal discretization

scheme, respectively.

3. Calculate some error norm of each simulation run using the EVA solution as an

“exact” reference solution.

4. Calculate the rate of convergence of the error norm found in step 3 (i.e., the

observed order-of-accuracy) and compare to the theoretical order-of-accuracy

of the numerical scheme used.

Each step will be described in detail in this section.

2.2.1 Step 1: Obtain a Reference Solution using EVA

The first step in the EVA process must be to specify an initial condition, grid and

final time level that will be used for both the EVA method and the simulation. The

grid used for the EVA method can be identical to the grid used in the simulation

code; however, using a smaller, coarser grid (i.e., a grid containing less points) has

been found to be much more computationally efficient and to have no discernible

effect on the Verification process. If the EVA grid boundary locations are identical

to the simulation grid boundary locations care must be taken to ensure that no flow

gradients exist in the vicinity of the boundaries as the EVA method does not enforce

boundary conditions. Since the calculation of the EVA solution at a given grid point

is not dependent on the solution at adjacent grid points the grid file format need

not contain connectivity information, and the use of nonuniform, curvilinear or fully-

unstructured grids require no special considerations or computational techniques.

The initial condition specified must be an analytical one, as the EVA method relies

on being able to find analytical expressions of the spatial derivatives of the initial

19

condition. The initial condition should be smooth and possess many derivatives.

Again, it may be prudent to design the initial condition’s gradients to approach zero

at the boundaries of the simulation domain so that any boundary conditions enforced

in the simulation are not exercised.

2.2.2 Step 2: Run the Code to be Verified

After the EVA solution has been found, the code to be Verified is run using

the same initial condition used in the EVA method. The analytical distribution

of the initial condition must be evaluated at discrete points for numerical codes.

The simulation grid should contain the EVA solution grid points and, as indicated

previously, will also likely be much larger and contain more grid points than the EVA

grid.

When Verifying the spatial discretization scheme the simulation code is run on a

series of progressively finer grids for a single time step in order to observe the grid

spacing’s effect on the accuracy of the solution calculated by the simulation code. The

EVA method does not require integer grid refinement (i.e., dividing the grid spacing of

the previous grid by some integer to obtain the next grid’s grid spacing) — in practice,

integer grid refinement even by a factor of two (for instance, two-dimensional grids

with 1012, 2012 4012, 8012, 16012 . . . grid points), will quickly produce very dense

grids. A better solution might be to add an integer number of grid points between

each grid point in the coarsest grid (i.e., two-dimensional grids with 1012, 2012, 3012,

4012, 5012 . . . grid points). This latter approach will increase the number of simulation

runs that can be performed before the grids become prohibitively large, allowing one

to “zoom in” on a wider range of grid spacings, which may be necessary when Verifying

schemes that do not uniformly converge at their “formal” order-of-accuracy.

To insure that the numerical error of the simulation code is dominated by the

spatial discretization error a very small time step should be used. It may also be

20

advisable to use the most accurate time-marching scheme available; however, with a

sufficiently small time step this may not be necessary.

When Verifying the temporal discretization scheme the simulation code is run

using progressively smaller time step sizes in order to observe the time step’s effect

on the accuracy of the simulation code’s solution. Similar to the spatial case, integer

time step refinement is not required and may actually be detrimental; by reducing

the time step so aggressively the range of time steps for which the scheme converges

at its “formal” rate may be missed.

Again like the spatial case, a very fine grid spacing should be used in conjunction

with a high-resolution spatial scheme to keep the spatial discretization error much

lower than the temporal discretization error. Care must be taken to avoid increasing

the Courant number (c∆t
∆x

, where c is the maximum propagation speed of a distur-

bance), however, beyond the stability limit of the temporal scheme being used, though

the calculation may avoid becoming unstable if only a few time steps are taken (as

may be the case for the larger time step sizes).

2.2.3 Step 3: Calculate the Error Norm

After the EVA solution and each of the simulation solutions have been obtained

the error norm for each simulation solution is calculated using the EVA solution as

the “exact” solution. Two error norms have been used with the EVA method thus

far: the L2 and Lmax error norms. The latter error norm is simply the maximum

error found in the problem domain, as indicated by Salari and Knupp [11]:

Lmax = max
n
| un − Un | (2.8)

where u and U are different solutions evaluated at n common points.

21

The L2 error norm is essentially the root-mean-square of the error:

L2 =

√∑
n(un − Un)2αn∑

n αn
(2.9)

where α is some measure of the local volume of the grid. Salari and Knupp point

out that since un − Un should be on the order of ∆p, where ∆ is the grid spacing

or time step and p is the order of the numerical scheme used, then one can replace

Equation (2.9) with

L2 =

√∑
n(un − Un)2

N
(2.10)

where N is the total number of grid points, so no special efforts need to be made

to accommodate non-uniform grids. This change will effect the magnitude of the

error calculated for each run but will not effect the order-of-accuracy calculation, as

Equation (2.10) will still be on the order of ∆p.

The EVA3 Code contains routines to calculate both the L2 and Lmax error norms,

but very little difference can be discerned when comparing the results using the two

methods, and both appear to be perfectly adequate for Verification.

2.2.4 Step 4: Calculate the Observed Order-of-Accuracy

After the error for each of the simulation runs have been calculated, the order-

of-accuracy is calculated and compared to the theoretical order-of-accuracy of the

numerical scheme used. If the observed order-of-accuracy matches the theoretical

order-of-accuracy the code is Verified. The discussion to follow can be found in

sources by Roy [12], Salari and Knupp [10] or Roache [6].

The error of most numerical schemes is a function of some measure of discretization

(grid spacing or time step, typically):

ε(∆) = f(∆)− fexact (2.11)

22

where ε is the error. Since many numerical schemes are based on Taylor series ex-

pansions, one can also write

ε(∆) = f(∆)− fexact = C∆p + HOT (2.12)

where ε is again the error, p is the order of the scheme, HOT stands for higher-order

terms, and C is some constant that is independent of ∆. If there are two simulation

solutions ε1 and ε2 with two discretization ∆1 and ∆2, and both solutions are in the

asymptotic range, then HOT can be neglected and

ε1(∆1)

ε2(∆2)
=
C∆p

1

C∆p
2

=
(

∆1

∆2

)p
(2.13)

then, rearranging,

p =
log

(
ε1
ε2

)
log

(
∆1

∆2

) (2.14)

The use of Equation (2.14) is straightforward when Verifying the spatial discretiza-

tion scheme of a code on grids with uniform spacing, or when Verifying temporal

discretization schemes. When Verifying spatial discretization schemes on nonuniform

grids, however, ∆ is no longer constant and the evaluation of p using Equation (2.14)

may not be clear. In this work the equation

p =
log

(
ε1
ε2

)
log

(
q√N2−1
q√N1−1

) (2.15)

was used to find the observed order-of-accuracy when Verifying spatial discretization

schemes, where N is the number of grid points and q is the number of spatial dimen-

sions of the domain. Using Equation (2.15) with logically square (for 2D) or cubic

(for 3D) domains removes any ambiguity when using nonuniform grids and has been

found to work well in the cases considered here.

23

2.2.5 An Alternative Method for Verifying Temporal Order-

of-Accuracy — Using Multiple EVA Solutions

An alternative method for Verifying the temporal order-of-accuracy of a CFD/CAA

code involves using the EVA method to obtain the solution to the governing equa-

tions at multiple time levels (this is the approach used by Hixon and Anderson in [3]).

The code to be Verified is then marched one time step to each of the aforementioned

time levels and the error norms and order-of-accuracy are computed as described in

Sections 2.2.3 and 2.2.4. This approach has the advantage of requiring a less-accurate

Taylor series (i.e., less terms in Equation (2.7)) than the single-EVA-solution method.

When using the single-EVA-solution method, the user must include enough terms in

the Taylor series to drive the truncation error down to less than the truncation error

of the simulation code run with the greatest number of time steps (i.e., the smallest

∆t). For example, if the final time level chosen for the EVA and simulation runs is

∆t and the maximum number of time steps that will be used by the simulation to

march to the ∆t final time level is n, then the truncation error of the EVA solution is

εEVA ∼ (∆t)p+1 (2.16)

where p is the number of terms used in the Taylor series used to obtain the EVA

solution, and the smallest truncation error of the simulation runs will be (assuming

the error from the spatial discretization is negligible)

εMinSim ∼
(

∆t

n

)q
(2.17)

where q is the order of the time marching scheme used by the simulation code. To

be able to use the EVA solution to Verify the simulation code, εEVA must be less

than εMinSim — to achieve this, p must generally be much larger than q. If, instead,

24

multiple EVA solutions are used, then the truncation error of the EVA solution at a

given ∆t would be

εEVA ∼ (∆ti)
p+1 (2.18)

and the truncation error of a given simulation solution would be

εSim ∼ (∆ti)
q+1 (2.19)

and to insure that εEVA < εSim only requires p > q.

Using the multiple-EVA-solution method requires calculating the observed order-

of-accuracy slightly differently, as the order of the error of one time step of a Runge-

Kutta method is actually one greater than the total accumulated error over multiple

time steps. So, for instance, the “classical” 4th-order RK4 method will actually

appear to be a 5th-order time marching scheme if Equation (2.14) is used. One can

show this by expressing the approximate solution ~Q obtained from a pth Runge-Kutta

scheme at the (n + 1)th time level using a range of time levels ∆ti in terms of the

exact solution ~Q as

~Qn+1
i = ~Qn + ∆ti

∂ ~Q
∂t

∣∣∣∣∣∣
n

+
∆t2i
2

∂2 ~Q
∂t2

∣∣∣∣∣∣
n

+
∆t3i
6

∂3 ~Q
∂t3

∣∣∣∣∣∣
n

+ · · ·+ ∆tpi
p!

∂p ~Q
∂tp

∣∣∣∣∣∣
n

(2.20)

and the error of the ith run can be evaluated as

εi =
∥∥∥ ~Qn+1 − ~Qn+1

i

∥∥∥ (2.21)

If Equation (2.20) is substituted into Equation (2.21) and ~Qn+1 is expanded into a

Taylor series centered around the nth time level, then

εi =

∥∥∥∥∥∥ ∆tp+1
i

(p+ 1)!

∂p+1 ~Q
∂tp+1

∣∣∣∣∣∣
n∥∥∥∥∥∥+ HOT (2.22)

25

will be the form of the error, where HOT indicates higher-order terms. If the rate of

convergence of the error is found using the ith and (i+ 1)th CFD/CAA run, then

log

(
εi

εi+1

)
log

(
∆ti

∆ti+1

) =

log

 ∆t
p+1
i

(p+1)!
∂p+1 ~Q
∂tp+1

∆t
p+1
i+1

(p+1)!
∂p+1 ~Q
∂tp+1

log

(
∆ti

∆ti+1

)
=

log

((
∆ti

∆ti+1

)p+1
)

log

(
∆ti

∆ti+1

)
= p+ 1

(2.23)

and it is clear that the error will converge at a rate one order higher than the order-

of-accuracy of the time-marching scheme, and that the equation that should be used

to evaluate the observed order-of-accuracy is

p =
log

(
εi
εi+1

)
log

(
∆ti

∆ti+1

) − 1. (2.24)

As described earlier, the single-EVA-solution approach advances the solution from

the nth to the (n+1)th time level using a varying number of time steps, and Equation

(2.14) is the correct equation for evaluating the observed order-of-accuracy. Again,

this can be seen by expanding the calculated solution using a Taylor series. If a

pth-order Runge-Kutta scheme is used to with just one time step, then

~Qn+1 = ~Qn + ∆t
∂ ~Q
∂t

∣∣∣∣∣∣
n

+
∆t2

2

∂2 ~Q
∂t2

∣∣∣∣∣∣
n

+ · · ·+ ∆tp

p!

∂p ~Q
∂tp

∣∣∣∣∣∣
n

(2.25)

and the error can be found

ε1,total =
∥∥∥ ~Qn+1 − ~Qn+1

∥∥∥ =

∥∥∥∥∥∥ ∆tp+1

(p+ 1)!

∂p+1 ~Q
∂tp+1

∣∣∣∣∣∣
n∥∥∥∥∥∥+ HOT (2.26)

where ~Q has been expanded in a Taylor series centered around n and the subscript

26

on ε indicates the total number of time steps used to advance the solution to (n+ 1).

If two time steps are used to advance the solution to the same time level the time

step size will be ∆t
2

, and

~Qn+ 1
2 = ~Qn +

(
∆t

2

)
∂ ~Q
∂t

∣∣∣∣∣∣
n

+

(
∆t
2

)2

2

∂2 ~Q
∂t2

∣∣∣∣∣∣
n

+ · · ·+

(
∆t
2

)p
p!

∂p ~Q
∂tp

∣∣∣∣∣∣
n

(2.27)

then the error from the first time step can be found

ε
n+ 1

2
2 =

∥∥∥ ~Qn+ 1
2 − ~Qn+ 1

2

∥∥∥ =

∥∥∥∥∥∥∥
(

∆t
2

)p+1

(p+ 1)!

∂p+1 ~Q
∂tp+1

∣∣∣∣∣∣
n
∥∥∥∥∥∥∥+ HOT (2.28)

where, again, ~Qn+ 1
2 has been expanded using a Taylor series centered at n. The

calculated solution at the (n+ 1
2
)th time level can then be written as

~Qn+ 1
2 = ~Qn+ 1

2 + ε
n+ 1

2
2 (2.29)

Then the solution is marched from the (n+ 1
2
)th to the (n+ 1)th time level

~Qn+1 = ~Qn+ 1
2 +

(
∆t

2

)
∂ ~Q

∂t

∣∣∣∣∣∣
n+ 1

2

+

(
∆t
2

)2

2

∂2 ~Q

∂t2

∣∣∣∣∣∣
n+ 1

2

+ · · ·+

(
∆t
2

)p
p!

∂p ~Q

∂tp

∣∣∣∣∣∣
n+ 1

2

(2.30)

The “exact” and “error” parts of ~Qn+ 1
2 can be considered separately:

Q̃n+1 = ~Qn+ 1
2 +

(
∆t

2

)
∂ ~Q
∂t

∣∣∣∣∣∣
n+ 1

2

+

(
∆t
2

)2

2

∂2 ~Q
∂t2

∣∣∣∣∣∣
n+ 1

2

+ · · ·+

(
∆t
2

)p
p!

∂p ~Q
∂tp

∣∣∣∣∣∣
n+ 1

2

(2.31)

where Q̃ is “solution” part of the calculated ~Q that matches the exact solution ~Q

through the pth Taylor series term. The error from the previous time step will be

27

advanced in the same manner as the solution:

εn+1
2 = ε

n+ 1
2

2 +
(

∆t

2

)
∂ε2

∂t

∣∣∣∣∣
n+ 1

2

+

(
∆t
2

)2

2

∂2ε2

∂t2

∣∣∣∣∣
n+ 1

2

+ · · ·+

(
∆t
2

)p
p!

∂pε2

∂tp

∣∣∣∣∣
n+ 1

2

(2.32)

then the total error accumulated over the two time steps is

ε2,total =
∥∥∥ ~Qn+1 − ~Qn+1

∥∥∥
=

∥∥∥ ~Qn+1 −
(
Q̃n+1 + εn+1

2

)∥∥∥
=

∥∥∥ ~Qn+1 − Q̃n+1
∥∥∥+

∥∥∥εn+1
2

∥∥∥
(2.33)

The expression
∥∥∥ ~Qn+1 − Q̃n+1

∥∥∥ can be evaluated by inspecting Equation (2.31) and

expanding ~Qn+1 using a Taylor series centered at the (n + 1
2
)th time level, and then

expanding the result using a Taylor series centered at the nth time level:

∥∥∥ ~Qn+1 − Q̃n+1
∥∥∥ =

∥∥∥∥∥(∆t
2)

p+1

(p+1)!
∂p+1 ~Q
∂tp+1

∣∣∣n+ 1
2

∥∥∥∥∥
=

∥∥∥∥∥(∆t
2)

p+1

(p+1)!

[
∂p+1 ~Q
∂tp+1

∣∣∣n + ∆t ∂
p+2 ~Q

∆tp+2

∣∣∣n + · · ·
]∥∥∥∥∥+ HOT

=

∥∥∥∥∥(∆t
2)

p+1

(p+1)!
∂p+1 ~Q
∂tp+1

∣∣∣n∥∥∥∥∥+ HOT

(2.34)

where any terms multiplied by powers of ∆t greater than p + 1 have been absorbed

into HOT . The εn+1
2 term can be evaluated by substituting Equation (2.28) into

Equation (2.32):

εn+1
2 =

∥∥∥∥∥(∆t
2)

p+1

(p+1)!
∂p+1 ~Q
∂tp+1

∣∣∣n + HOT

∥∥∥∥∥
+

(
∆t
2

) ∥∥∥∥∥(∆t
2)

p+1

(p+1)!
∂p+2 ~Q
∂tp+2

∣∣∣n + HOT

∥∥∥∥∥
+ · · ·

=

∥∥∥∥∥(∆t
2)

p+1

(p+1)!
∂p+1 ~Q
∂tp+1

∣∣∣n∥∥∥∥∥+ HOT

(2.35)

where, again, the higher-order ∆t terms have been included in HOT . The total error

28

accumulated over the two time steps is then

ε2,total =

∥∥∥∥∥(∆t
2)

p+1

(p+1)!
∂p+1 ~Q
∂tp+1

∣∣∣n∥∥∥∥∥+

∥∥∥∥∥(∆t
2)

p+1

(p+1)!
∂p+1 ~Q
∂tp+1

∣∣∣n∥∥∥∥∥+ HOT

=

∥∥∥∥∥2(∆t
2)

p+1

(p+1)!
∂p+1 ~Q
∂tp+1

∣∣∣n∥∥∥∥∥+ HOT
(2.36)

Now the convergence rate can be calculated using ε1,total and ε2,total , giving

log

(
ε1,total
ε2,total

)
log

(
∆t
∆t
2

) =

log

 ∆tp+1

(p+1)!
∂p+1 ~Q
∂tp+1

2
(∆t

2)
p+1

(p+1)!
∂p+1 ~Q
∂tp+1

log

(
∆t
∆t
2

)
= p

(2.37)

as expected.

The disadvantage of the multiple-EVA-solution approach is the added computa-

tional cost of computing the necessary multiple EVA solutions; however, the only

difference between an EVA solution at two different time levels is the value of ∆t

in Equation (2.7). So, if an array of ∆t’s were specified at the beginning, the EVA

solution for each time level could be calculated for a given point one after another

without needing to reevaluate the many derivatives of ~Q. Since most of the computa-

tion effort of the EVA method is involved in finding these derivatives, the gains in a

less-stringent requirement for the accuracy of the EVA solution outweigh the addition

cost of evaluating the EVA Taylor series at multiple ∆t’s.

One must also be more mindful of the stability limits of the time-marching scheme

being Verified when using the multiple-EVA-solution approach. Because the solution

is advanced only one time step for each simulation run, the code will likely survive

even if the CFL used is well past the stability limit of the scheme and will return

observed order-of-accuracy results much higher than the formal order-of-accuracy of

the scheme. This superconvergent behavior is actually indicated by Figure 1-6 —

29

the observed order-of-accuracy for numerical frequencies past the stability limits of

each scheme is large. This behavior is not seen when using the single-EVA-solution

method (usually the scheme will return large error insensitive to time step size for

the unstable time steps, giving very low order-of-accuracy until a stable time step is

used), and may be misleading if the stability limits are not known to the user.

2.3 The EVA3 Code — Implementation of the EVA

Method

The method of solving the governing equations of fluid flow described in Section 2.1

has been implemented in a FORTRAN 2003 computer code called “EVA3”. Aspects

of its implementation are discussed in this section.

2.3.1 Using the Flux Jacobians with the EVA Method

After exploring the alternatives, the most computationally efficient approach to

implementing the EVA method was found to involve the flux Jacobians. The flux

Jacobians are found by taking derivatives of the flux vectors with respect to the solu-

tion vector (as was done in Section 2.1). For example, consider the one-dimensional

Euler equation

~Qt + ~Fx = 0 (2.38)

where the subscripts denote differentiation. If one writes the solution vector of the

one-dimensional Euler equations as

~Q =

ρ

ρu

Etotal

=

Q1

Q2

Q3

(2.39)

30

the Cartesian flux vector in the x-direction is (assuming an ideal gas: p = (γ −

1)
[
Etotal − 1

2
ρu2

]
)

~F =

ρu

ρu2 + p

u(Etotal + p)

=

Q2

3−γ
2

Q2
2

Q1
+ (γ − 1)Q3

γQ2Q3

Q1
+ 1−γ

2

Q3
2

Q2
1

(2.40)

then the Jacobian of the flux ~F is

~F ~Q =

0 1 0

γ−3
2

Q2
2

Q2
1

(3− γ)Q2

Q1
γ − 1

−γQ2Q3

Q2
1

+ (γ − 1)
Q3

2

Q3
1

γQ3

Q1
+ 3(1−γ)

2

Q2
2

Q2
1

Q2

Q1

 (2.41)

and the 1D Euler equation can be rewritten as

~Qt + ~F ~Q
~Qx = 0 (2.42)

Then, using the approach described in Section 2.1, higher temporal derivatives of ~Q

can be found

~Qtt = −
(
~F ~Q2

~Qt
~Qx + ~F ~Q

~Qxt

)
(2.43)

where

~Qxt = −
(
~F ~Q2

~Qx
~Qx + ~F ~Q

~Qxx

)
(2.44)

31

In Equations (2.43) and (2.44), ~F ~Q2 is a 3 by 3 by 3 array. The alternative would be

to evaluate ~Fxt directly — for example, the 3rd entry of ~Fxt would be

~Fxt(3) = γQ(2)xtQ(3)
Q(1)

+ γQ(2)xQ(3)t
Q(1)

+γQ(2)tQ(3)x
Q(1)

+ γQ(2)Q(3)xt
Q(1)

− γQ(2)Q(3)xQ(1)t
Q(1)2

−γQ(2)tQ(3)xQ(1)x
Q(1)2 − γQ(2)Q(3)xtQ(1)x

Q(1)x
+ γQ(2)Q(3)xQ(1)xQ(1)t

Q(1)3 − γQ(2)Q(3)xQ(1)xt
Q(1)2

+3(1− γ)Q(2)2Q(2)t
Q(1)3 + 3(1− γ)Q(2)3Q(1)t

Q(1)4

(2.45)

Rewriting the governing equations using the flux Jacobians when applying the EVA

method turns out to be much more efficient than using the fluxes themselves — it

appears that the flux Jacobian approach “factors” the governing equations in a way

that requires less operations to evaluate.

2.3.2 Controlling the Accuracy of the EVA Taylor Series Us-

ing EVA3

While the procedure described in Section 2.1 can be used to obtain a solution at

t0 + ∆t of arbitrary accuracy (providing sufficient derivatives of ~Q(x, y, z, t0) exist),

the computational demands of doing so increase greatly with the addition of each term

in Equation (2.7). Thankfully, experience has shown that the error in the solution

provided by the EVA method only needs to be a few orders-of-magnitude lower than

the error of the solution of the code being Verified. It would be useful to be able to

control the error of the Taylor Series used in the EVA method in order to balance

accuracy with computational efficiency, and the EVA3 code provides two methods.

First, the EVA3 code allows the user to set a minimum and maximum order for

the EVA solution that will be used throughout the problem domain. Second, the

EVA3 code allows the user to specify a maximum desired error of the Taylor Series

in Equation (2.7). The error in truncating the series of Equation (2.7) (or any Taylor

32

Series) can be estimated using Taylor’s Theorem (see any introductory calculus book

— for example, [23]):

Taylor’s Theorem. Suppose that ~Q has (n + 1) derivatives on the interval (t0 −

r, t0 + r) for some r > 0, and ~Pn(t = t0 + ∆t) is the Taylor Series of ~Q truncated at

n terms. Then, for t ∈ (t0 − r, t0 + r), ~Q(t) ≈ ~Pn(t) and the error in using ~Pn(t) to

approximate ~Q(t) is

~Rn(t) = ~Q(t)− ~Pn(t) =
~Qtn+1(z)∆tn+1

(n+ 1)!

for some number z between t0 and t = t0 + ∆t.

One can see that ~Rn(t) in Taylor’s Theorem is nothing more than the (n+1)th term

of Equation (2.7), but evaluated at z. Unfortunately, only derivatives of ~Q evaluated

at t0 are available to the EVA method, since we obtain the derivatives of ~Q by using the

spatial derivatives of an analytic initial condition (at t0) and the governing equation to

find ~Q(t0)t. One might suggest using ~Qtn+1(t0) in place of ~Qtn+1(z) to estimate ~Rn(t),

but ~Qtn+1(t0) might provide an unacceptably poor approximation to ~R(t) in some

cases. For instance, it is well-known that alternating Taylor Series terms of sin(t) or

cos(t) become zero when the Taylor Series is expanded around certain points. If one

used only ~Qtn+1(t0) to estimate ~R(t) in this case one would greatly underestimate the

error of using ~Pn(t) to approximate ~Q(t). The natural suggestion would be to also use

the (n + 2)th term of ~Pn to estimate ~Rn, and that is precisely what the EVA3 code

does. Specifically, the EVA3 code estimates ~Rn as the sum of the absolute value of the

(n+ 1)th and (n+ 2)th terms of ~Pn for each (x, y, z) point in the problem domain. If

this value is greater than the user’s desired maximum error, then the EVA3 code will

use an additional term to approximate ~Q(t) at that point. The EVA3 code originally

used some logical statements that resulted in approximating ~Rn as the absolute value

of the (n+ 2)th term when it (the absolute value of the (n+ 2)th term) exceeded the

33

absolute value of the (n + 1)th term and as the absolute value of the n + 1th term

otherwise, but it was decided that the former method was more straightforward and

essentially resulted in the same thing.

Also, for systems of equations like the one-, two- or three-dimensional Euler equa-

tions, the EVA3 code will consider the user-specified desired error constraint satisfied

only when the estimated error for a given Taylor Series order is less than the desired

error for every flow variable. In other words, at a given (x, y, z) point the EVA3 code

will use a Taylor Series of the same order to estimate each entry of ~Q.

Since estimating the truncation error of Equation (2.7) at a given n essentially

involves calculating the (n + 1)th and (n + 2)th terms, it seemed wasteful to not

include both the (n+ 1)th and (n+ 2)th terms of Equation (2.7) in the EVA3 code’s

approximation of ~Q(t). So, when calculating ~Q(t) at each (x, y, z) point in the problem

domain, the EVA3 code will report an estimated error that would result from using

two fewer Taylor Series terms of Equation (2.7) — so the actual error is likely to be

considerably smaller than the EVA3 code suggests.

34

Chapter 3

Application of the EVA Method to

Some Model Equations

3.1 Equations Considered

Because of the complex nature of the governing equations of fluid flow, so-called

“Model” equations are frequently used to explore the properties of numerical schemes.

Model equations are PDEs that mimic the physical behavior of the actual governing

equations, but are much simpler. Often some exact solutions of the model equations

are known. Many different model equations are used in CFD [24], but perhaps one

of the most common is

∂u

∂t
+ u

∂u

∂x
= µ

∂2u

∂x2
(3.1)

which is known as Burgers’ Equation. Equation (3.1) can be used as a simple analogue

of the Navier-Stokes Equations, as it contains (from left to right) an unsteady, nonlin-

ear convection and diffusion term. This work is concerned with the Euler Equations,

however, which are the inviscid form of the Navier-Stokes. If µ in Equation (3.1) is

35

set to 0, the Nonlinear Advection Equation is obtained:

∂u

∂t
+ u

∂u

∂x
= 0 (3.2)

It can be shown that, if some initial condition is specified

u(x, t = 0) = f(x) (3.3)

then

u(x, t) = f(x− u(x, t)t) (3.4)

is an implicit solution of the Nonlinear Advection equation. Physically, this means

that an initial disturbance will be propagated at a speed u to the right if u(x, t) > 0 at

a given x and point in time, to the left otherwise. Because the speed of the disturbance

is different from point to point, a solution to (3.2) may steepen and eventually develop

discontinuities. Explicit solutions to (3.2) do exist [25] for some initial conditions.

If the u multiplying ∂u
∂x

in Equation (3.2) is replaced by some real constant c

∂u

∂t
+ c

∂u

∂x
= 0 (3.5)

the Linear Advection equation is obtained. Similar to the Nonlinear Advection equa-

tion, if some initial condition is specified

u(x, t = 0) = f(x) (3.6)

then

u(x, t) = f(x− ct) (3.7)

is an explicit solution to the Linear Advection equation, so the solution to (3.5) is

immediately know after the initial condition (3.6) is specified. Physically, (3.7) shows

36

that an initial disturbance will be propagated at a speed c to the right if c > 0, to

the left otherwise.

The linear and nonlinear forms of the inviscid Burgers’ equation are used in this

work to demonstrate the capabilities of the EVA3 code.

3.2 Description of the “FD1D” Code

To demonstrate the capabilities of the EVA method and to gain experience before

attacking more challenging equations, a simple CFD code was developed that solves

the linear and nonlinear forms of the inviscid Burgers’ equation. The code is named

“FD1D” for Finite Difference One-Dimensional, and can solve the full nonlinear vis-

cous Burgers’ equation in addition to the inviscid forms using the finite difference

method. Numerous spatial differencing schemes are implemented, including 2nd, 4th

and 6th order central differencing and the Dispersion Relation Preserving stencil of

Tam and Webb [19]. Explicit time marching is used; 1st order biased time march-

ing is included, as well as Runge-Kutta-style schemes of Jameson [22], Hu [20] and

Allampali et al. [21] in addition to the “classical” 4th order Runge-Kutta scheme.

Periodic boundary conditions are used in the FD1D code.

For all test cases including both spatial and temporal studies the initial condition

used was

u(x, 0) = 1.0 + 0.1e− ln(2)(x−100.0)2

sin(0.1x). (3.8)

and is shown in Figure 3-1. The computational domain for the FD1D code extended

from 0.0 to 200.0, while the EVA3 code’s was restricted to 90.0 to 110.0. The large do-

main and “compact” initial condition was designed to prevent the periodic boundary

conditions from affecting the solution in the center of the domain where the EVA so-

lution was obtained. For each FD1D code run, the L2 and Lmax error norms between

the FD1D solution and the EVA solution were computed. The rate of convergence of

37

Figure 3-1: FD1D Initial Condition

0 20 40 60 80 100 120 140 160 180 200
x

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

u
(x

,t
=

0
)

successive FD1D code runs was then found for the spatial test cases using the formula

adapted from Salari and Knupp [11] as described in Section 2.2.3:

p =
log ε1

ε2

log N2−1
N1−1

(3.9)

where p is the observed order-of-accuracy, ε is any error measure, N is the number of

grid points in the domain and the subscripts 1 and 2 are used to identify successive

FD1D code runs. The observed order-of-accuracy should match the theoretical order-

of-accuracy of the spatial differencing scheme used. The observed order-of-accuracy

for the time-marching schemes was calculated using

p =
log ε1

ε2

log ∆t1
∆t2

(3.10)

where ∆t is the time step.

38

Figure 3-2: Linear inviscid Burger — L2 error norm for the spatial stencils

100 1000
Number of Gridpoints

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

L
2
 E

rr
o
r

1st-Order Backwards
2nd-Order Central
4th-Order Central
6th-Order Central
DRP

3.3 Spatial Order-of-Accuracy Results

To Verify the spatial order-of-accuracy of the FD1D code, an initial condition and

final time was chosen, and the EVA3 code was used to determine the solution at the

later time level. The FD1D code was marched a single time step to the final time

level using the same initial condition and increasingly fine uniform grids. The final

time level for all spatial cases was t = 0.03125 — this small time step was used to

ensure that the error from the FD1D code’s time marching scheme would be much

less that spatial differencing’s contribution to the error. The nearby final time level

also makes obtaining an accurate EVA solution much less demanding. The EVA3

code was run with an 11-point grid evenly spaced from 90.0 to 110.0.

3.3.1 Linear Inviscid Burger

Figure 3-2 shows the L2 error norms of the FD1D code results when solving the

linear form of the inviscid Burgers’ equation. As expected, the higher-order schemes

are generally more accurate then the lower-order schemes. Note that the DRP is

39

Figure 3-3: Linear inviscid Burger — observed order-of-accuracy for the 1st-
Order Backward and 2nd- and 4th-Order Central Stencils

200 400 600 800 1000 1200 1400 1600
Number of Gridpoints

0

1

2

3

4

5

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

1st-Order Backwards
2nd-Order Central
4th-Order Central

a fourth-order scheme, which explains why the DRP L2 error curve appears nearly

parallel to the 4th-order central L2 curve. The L2 error for the 6th-order scheme

is flattening out at the very dense grid spacings, showing either that the error has

reached machine precision or the accuracy of the EVA solution has been exhausted

— the very low error would tend to indicate the former.

Figure 3-3 shows the observed order-of-accuracy of the FD1D code for the first-

order backward and second- and fourth-order central spatial stencils, and Figure 3-4

shows the same for the sixth-order central and DRP stencils. Each scheme’s observed

order-of-accuracy achieves its theoretical order of accuracy (again, the DRP is a

fourth-order stencil), indicating that each stencil is correctly implemented in the

FD1D code for the linear Burger solver. The sharp drop-off of the 6th-order central

curve is again explained by the error reaching machine precision; the 6th-order stencil

is so accurate at these high grid densities that the error is too tiny to be distinguished

from zero by the computer. All the schemes would eventually experience the same

drop in order if the grid density was sufficiently high and the error from the time-

40

Figure 3-4: Linear inviscid Burger — observed order-of-accuracy for the 6th-
Order Central and DRP Stencils

200 400 600 800 1000 1200 1400 1600
Number of Gridpoints

0

1

2

3

4

5

6

7

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

6th-Order Central
DRP

marching scheme was sufficiently low.

3.3.2 Nonlinear Inviscid Burger

The EVA method was also used to Verify the implementation of the spatial stencils

in the nonlinear inviscid Burgers’ equation solver of the FD1D code. The same

initial condition, time step and grids were used as in the linear case (Section 3.3.1).

Figure 3-5 shows the L2 error norms of the FD1D code results for the nonlinear

Burgers’ equation. The results are nearly identical to Figure 3-2. The flattening of

the 6th-order curve is again likely due to the error reaching machine precision.

Figure 3-6 shows the observed order-of-accuracy of the FD1D code for the first-

order backward and second- and fourth-order central spatial stencils, and Figure 3-7

shows the same for the sixth-order central and DRP stencils. As in the linear case,

each scheme’s observed order-of-accuracy is achieved, and again the 6th-order central

curve drops off as the error reaches machine precision. Overall, these results and the

41

Figure 3-5: Nonlinear inviscid Burger — L2 error norm for the spatial stencils

100 1000
Number of Gridpoints

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

L
2
 E

rr
o
r

1st-Order Backwards
2nd-Order Central
4th-Order Central
6th-Order Central
DRP

Figure 3-6: Nonlinear inviscid Burger — observed order-of-accuracy for the
1st-Order backward and 2nd- and 4th-order central stencils

200 400 600 800 1000 1200 1400 1600
Number of Gridpoints

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u
ra

cy

1st-Order Backward
2nd-Order Central
4th-Order Central

42

Figure 3-7: Nonlinear inviscid Burger — observed order-of-accuracy — 6th-
order central and DRP stencils

200 400 600 800 1000 1200 1400 1600
Number of Gridpoints

0

1

2

3

4

5

6

7

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

6th-Order Central
DRP

results presented in Section 3.3.1 strongly Verify that the FD1D code’s spatial stencils

are properly implemented and are solving the linear and nonlinear forms of Burgers’

equation correctly.

3.4 Temporal Order-of-Accuracy Results — Single

EVA Solution

The same initial condition (Figure 3-1) and computational domain used to verify

the spatial stencils of the FD1D code was used to Verify the time-marching schemes.

The EVA3 code was used to find a solution at t = 0.25 for 21 points evenly spaced

from 90.0 to 110.0. The FD1D code used a 6401-point grid for all test runs. The

very fine grid and later time level was used to ensure most of the error in the FD1D

solution would be due to the time-marching scheme and not the spatial stencil (6th-

order central for all cases). The FD1D code was marched to the desired time level

43

using an increasing number of time steps — 1, 2, 3 . . . 32 for the single-step schemes

and 2, 4, 6 . . . 64 for the two-step schemes (the HALE RK67 and the Hu RK56).

3.4.1 Linear Inviscid Burger

0.01 0.1
Time Step

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

L
2
 E

rr
o
r

RK4
Jameson RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 3-8: Linear inviscid Burger — L2 error norm for the time-marching
schemes

Figure 3-8 shows the L2 error norms of the FD1D code when solving the linear

form of the inviscid Burgers’ equation. As expected, the error decreases with smaller

time steps. For the smallest time steps the error “flattens out” for the more accurate

schemes as the error reaches machine precision. The less accurate schemes would

experience the same flattening of error if the time step used was sufficiently small.

Figure 3-9 shows the observed order-of-accuracy of the FD1D code for the FD1D

code’s time-marching schemes. The Jameson RK5 scheme is clearly a 2nd-order

scheme, while all the other schemes return 4th-order, as they should. Again, the

observed order-of-accuracy decreases for the more accurate schemes as the error ap-

44

0.02 0.04 0.06 0.08 0.1 0.12
Time Step

0

1

2

3

4

5

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

RK4
Jameson RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 3-9: Linear inviscid Burger — observed order-of-accuracy for the
time-marching schemes

proaches machine precision.

3.4.2 Nonlinear Inviscid Burger

Figure 3-10 shows the L2 error norm of the FD1D code’s time-marching scheme

when solving the nonlinear form of the inviscid Burgers’ equation. The results are

similar to the corresponding linear results. Again, the L2 error norm “flattens out”

at the very small time steps for the more accurate schemes. Notice that the Jameson

RK4 scheme is now parallel to the Jameson RK5 2nd-order scheme and not the 4th-

order schemes. The Jameson RK4 is 4th-order accurate for the linear form of the

inviscid Burgers’ equation and 2nd-order for the nonlinear.

Figure 3-11 shows the observed order-of-accuracy of the FD1D code’s time march-

ing schemes when solving the nonlinear Burgers’ equation. This figure confirms that

the Jameson RK4L scheme is 2nd-order accurate when solving the nonlinear form of

45

0.01 0.1
Time Step

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

L
2
 E

rr
o
r

RK4
Jameson RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 3-10: Nonlinear inviscid Burger — L2 error norm for the time-
marching schemes

0.02 0.04 0.06 0.08 0.1 0.12
Time Step

0

1

2

3

4

5

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

RK4
Jameson RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 3-11: Nonlinear inviscid Burger — observed order-of-accuracy for the
time-marching schemes

46

the equation. The observed order-of-accuracy for the remaining schemes is the same

for the linear case: the Jameson RK5L is still 2nd-order, and all others (except the

Jameson RK4L) are 4th-order. Again, the observed order-of-accuracy drops off for

the more accurate schemes at the smallest time steps as the error approaches machine

precision. These results, in conjunction with the results for the linear Burgers’ equa-

tion in Section 3.4.1, strongly Verify that the FD1D code’s time-marching schemes

are properly implemented and solving the linear and nonlinear Burgers’ equations

correctly.

3.5 Temporal Order-of-Accuracy Results — Mul-

tiple EVA Solution

Another approach to Verifying the order-of-accuracy of a time-integration scheme

in a CFD/CAA code using the EVA method (as discussed in Section 2.2.5) consists

of using the EVA3 tool to calculate a solution at multiple time levels using a Taylor

series of at least one order higher than the time-integration scheme to be Verified. The

CFD code is then used to find the solution at the same time levels, and the error can

be found using the same formulae that are used in the single EVA solution approach

(i.e. Equation (3.10)). As discussed in Section 2.2.5, a slightly modified equation is

used to find the observed order-of-accuracy. While this approach does require more

EVA runs than the single EVA solution approach, the accuracy requirements for the

EVA3 runs are much less restrictive, resulting in much faster EVA3 runs and less time

spent using the EVA3 tool overall.

The same initial condition used in the previous sections (Figure 3-1) was used

to Verify the FD1D code’s time-marching schemes using the multiple EVA Solution

approach. The computational domain again extended from 0.0 to 200.0 and included

3201 grid points. Thirty-two time levels were used, consisting of integer multiples of

47

0.0078125 (i.e., 0.0078125, 0.015625, 0.0234375 . . . 0.25). Again, the larger time levels

and dense grid are used to insure that the error from the time-marching outweighs the

error from the spatial discretization. The EVA3 code was used to solve the governing

equation of interest at 21 points from 90.0 to 110.0.

3.5.1 Linear Inviscid Burger

0.01 0.1
Time Step

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

L
2
 E

rr
o
r

RK4
Jameson RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 3-12: Linear inviscid Burger — L2 error for the time-marching
schemes using the multiple EVA solution approach

Figure 3-12 shows the L2 error calculated for the FD1D code’s time-marching

schemes when solving the linear inviscid Burgers’ equation. The results are very

similar to those found using the single EVA solution method (Figure 3-8). The

HALE RK7 scheme appears to be the most accurate, followed closely by the Hu

RK56. The Jameson RK5, being the only linear 2nd-order scheme is clearly much less

accurate than the 4th-order schemes, while all the 4th-order schemes have comparable

accuracy. As before, the L2 error for the most accurate schemes levels off as the error

48

approaches machine-zero.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Time Step

0

1

2

3

4

5

6

7

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u
ra

cy

RK4
Jameson RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 3-13: Linear inviscid Burger — observed order-of-accuracy for the
time-marching schemes using the multiple EVA solution method

Figure 3-13 shows the observed order-of-accuracy based on L2 error for the FD1D

code’s time-marching schemes using the multiple EVA solution method. Each scheme

achieves its formal order-of-accuracy for the majority of time step sizes, and the results

shown are very similar to those in Figure 3-9 — the fourth-order schemes all return

the same order, and the Jameson RK5 exhibits an observed 2nd-order-accuracy. As

before, the order-of-accuracy sharply decreases for the higher-order schemes for the

smallest time levels as the error approaches machine precision.

3.5.2 Nonlinear Inviscid Burger

Figure 3-14 shows the L2 error calculated for the FD1D code’s time-marching

schemes when solving the nonlinear form of the inviscid Burgers’ equation. Again,

the HALE RK7 is the most accurate scheme with the Hu RK56 being only slightly

49

0.01 0.1
Time Steps

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

L
2
 E

rr
o
r

RK4
Jameson RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 3-14: Nonlinear inviscid Burger — L2 error for the time-marching
schemes using the multiple EVA solution approach

less accurate. The Jameson RK4 can be seen to be a 2nd-order nonlinear scheme

by comparing its slope with the Jameson RK5 — they are nearly identical. And yet

again, the error flattens out for the more accurate schemes as the error approaches

machine precision.

Figure 3-15 shows the observed order-of-accuracy for the FD1D code’s time-

marching schemes for the nonlinear inviscid Burger equation using the multiple EVA

solution method. Again, the results are very similar to the previous linear case and

to the nonlinear case using the single EVA solution. As in previous results, the Jame-

son RK4 is shown to be a 2nd-order nonlinear time-marching scheme. All schemes

achieve their formal order-of-accuracy, indicating they are behaving as expected and

implemented correctly.

50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Time Step

0

1

2

3

4

5

6

7

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u
ra

cy

RK4
Jameson RK4
Jameson RK5
HALE_RK6

HALE_RK7

HALE_RK67

Hu RK56

Figure 3-15: Nonlinear inviscid Burger — observed order-of-accuracy for the
time-marching schemes using the multiple EVA solution method

51

Chapter 4

Application of the EVA Method to

the Euler Equations

4.1 Equations Considered

To demonstrate the effectiveness of the EVA method in Verifying computer codes

solving realistic fluid flow problems, the EVA3 code is also capable of solving the one-

, two- and three-dimensional forms of the Euler equations. The “Euler equations”

meant in this context are the governing equations of inviscid, compressible fluid flow,

and the three-dimensional form of these equations solved by the EVA3 code were

given in Equation (2.1) and are reprinted here in more detail:

∂ ~Q

∂t
+
∂ ~E

∂x
+
∂ ~F

∂y
+
∂ ~G

∂z
= 0 (4.1)

52

where ~Q is the solution vector

~Q =

ρ

ρu

ρv

ρw

Etotal

(4.2)

which contains the density, x-, y- and z-momentum and total energy, and ~E, ~F and

~G are the fluxes in the x, y and z directions, respectively

~E =

ρu

ρu2 + p

ρuv

ρuw

u (Etotal + p)

(4.3)

and

~F =

ρv

ρuv

ρv2 + p

ρvw

v (Etotal + p)

(4.4)

53

and

~G =

ρw

ρuw

ρvw

ρw2 + p

w (Etotal + p)

(4.5)

The pressure (p) is related to the other solution variables in an ideal gas by the

equation

p = (γ − 1)

(
Etotal − ρ

(
u2 + v2 + w2

2

))
(4.6)

where γ is the ratio of specific heats, commonly taken to be 1.4 for air (which is the

same value used for all results throughout this work).

The two-dimensional form of the Euler Equations is very similar to the three-

dimensional:

∂ ~Q

∂t
+
∂ ~E

∂x
+
∂ ~F

∂y
= 0 (4.7)

where ~Q again is the solution vector

~Q =

ρ

ρu

ρv

Etotal

(4.8)

whose entries are defined like those of Equation (4.2), and ~E and ~F are the fluxes in

54

the x and y directions, respectively:

~E =

ρu

ρu2 + p

ρuv

u (Etotal + p)

(4.9)

and

~F =

ρv

ρuv

ρv2 + p

v (Etotal + p)

(4.10)

where the pressure p is again defined similarly:

p = (γ − 1)

(
Etotal − ρ

(
u2 + v2

2

))
(4.11)

The EVA method can be used to generate a highly-accurate solution to the Euler

equations for a flexible set of initial conditions that can be used to fully exercise the

interior portion of the numerical scheme used by a CFD/CAA code to solve the Euler

equations. In this chapter results from Verifying a high-order Computational Aeroa-

coustics code solving the two-dimensional and three-dimensional Euler equations will

be presented.

4.2 Description of the BASS Code

To test the ability of the EVA technique to Verify high-accuracy CAA codes, the

EVA method was applied to the NASA Glenn Research Center Broadband Aeroa-

55

coustic Stator Simulation (BASS) code [26]. The BASS code is designed to solve the

full 3D Navier-Stokes equations but can also solve the 2D and 3D Euler equations

with the appropriate options set. Written in FORTRAN 2003, the BASS code can be

compiled with various implementations of the Message Passing Interface (MPI) and

executed in parallel on a cluster of machines. Numerous spatial stencils and time-

marching schemes are implemented in BASS, many of which have been discussed in

Chapter 3. The spatial stencils available include the Dispersion Relation Preserv-

ing scheme of Tam and Webb and the Compact 6th-order scheme of Lele [18], as

well as standard 2nd- and 6th-order explicit central differencing. The time-marching

schemes include the four- and five-stage Runge-Kutta schemes of Jameson, the 5/6

stage two-step Runge-Kutta scheme of Hu and the High-Accuracy Large-step Ex-

plicit Runge-Kutta (HALE-RK) 6 and 6/7 stage two-step scheme of Allampali et al..

Various boundary conditions are implemented in the BASS code; however, periodic

boundary conditions were applied for all runs in this work as the EVA3 code Verifies

only the interior solver.

4.3 Spatial Order-of-Accuracy Results

The procedure for Verifying the spatial order-of-accuracy of a code described in

Section 2.2 was first performed using the BASS code while solving the two-dimensional

Euler equations, and then the three-dimensional equations for various grids, initial

conditions and final time levels. In general, Verifying the spatial order-of-accuracy of

the BASS code was found to be less challenging than Verifying the temporal order-

of-accuracy, which can be explained by comparing the sources of truncation error

of an EVA solution and a CFD/CAA code solution. For a CFD/CAA code the

truncation error comes from both the spatial stencil used to approximate the spatial

derivatives — with error on the order of some power of the grid spacing — and the

56

time-marching scheme used to integrate the solution in time — with error on the

order of some power of the time step. For the EVA solution, the truncation error

is due entirely to the method used to integrate the solution in time — namely, the

Taylor series of Equation (2.7) — which will again be on the order of some power

of the time step. As a result, one will use a very small time step and large range

of grid spacings with the CFD/CAA code when Verifying the spatial differencing

scheme. The very small time step will also drive the truncation error of the EVA

solution down, requiring less terms in the Taylor series in of Equation (2.7) and thus

making Verification easier. On the other hand, when Verifying the temporal order-of-

accuracy of a code one will use a very fine grid with a final time level comparatively

“far away” from the initial condition — this arrangement will keep error from the

spatial discretization low compared to the temporal scheme’s error. Unfortunately,

the “far away” final time level will also tend to degrade the accuracy of the EVA

solution. A solution of acceptable accuracy can always be found by increasing the

number of terms in the EVA Taylor series, but by adding terms the computation

effort is increased and Verification is more challenging.

4.3.1 Two-Dimensional

The initial condition used to Verify the two-dimensional Euler solver of the BASS

code using a uniform Cartesian grid was

~Q(x, y, t = 0) = Q̄+ Q̃ exp
[
−(x2 + y2)

]
(4.12)

57

where

Q̄ =

ρ̄

ρu

ρv

Ētotal

=

1.0

0.1

0.1

1.78571425

(4.13)

and

Q̃ =

ρ̃

ρ̃u

ρ̃v

Ẽtotal

=

0.1

0.01

0.01

0.1

(4.14)

The final time level chosen was t = 0.015625. For the EVA solution a grid with 32 grid

points was used that extended from −2.0 to 2.0 in both the x- and y-directions. Ten

BASS runs were performed on grids with 252, 492, 732, . . . , 2412 grid points. Each of

the BASS grids extended from −24.0 to 24.0 in both coordinate directions. Figure 4-1

shows the Lmax error norm of the ten BASS runs calculated using the EVA solution

for each of the four spatial differencing schemes (explicit 2nd- and 6th-order central,

compact 6th-order and DRP) and for each of the four solution variables. (Note that

the two momentum variables are nearly on top of each other.) One can see how

the DRP scheme outperforms the explicit 6th-order scheme and nearly equals the

resolution of the compact 6th-order scheme for the coarser grids, but falls off for

the finer grid spacings due to its “optimized” development. Figure 4-2 shows the

observed order-of-accuracy for the ten BASS runs based on the Lmax error. All four

schemes reach their theoretical order-of-accuracy for the finer grid spacings, strongly

indicating that each of the four schemes are implemented correctly in the BASS code

for this situation (i.e., 2D Euler with uniform Cartesian grids). The DRP scheme’s

58

100
Number of Gridpoints in Coordinate Direction

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

L
M

ax
 E

rr
o

r

2nd-Order Central
6th-Order Central
DRP
Compact 6th-Order

Figure 4-1: Euler 2D Spatial Lmax Error — Uniform Grid

50 75 100 125 150 175 200 225 250
Number of Gridpoints in Coordinate Direction

0

1

2

3

4

5

6

7

8

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-2: Euler 2D Spatial Observed Order-of-Accuracy — Uniform Grid

59

observed order-of-accuracy is very high at the coarser grid spacings, then drops off

sharply and approaches its formal order-of-accuracy (4th) for the finer grid spacings.

Again, this behavior is explained by the “optimized” nature of the DRP scheme.

To more rigorously test the spatial discretization schemes of the BASS 2D Euler

solver the code was run on a curvilinear grid. Figure 4-3 shows the third-coarsest

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

Figure 4-3: 2D Curvilinear Grid — Rotated 27.4◦

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4-4: 2D Curvilinear Grid, Enlarged — Rotated 27.4◦

curvilinear grid used for the BASS 2D Euler grid runs, and Figure 4-4 shows an

60

enlargement of the same grid. The equations used to generate the base grid were

x(i, j) = xmin + (i− 1)∆x+ 0.1 sin [π(ymin + (j − 1)∆y)] (4.15)

y(i, j) = ymin + (j − 1)∆y + 0.1 sin [π(xmin + (i− 1)∆x)] (4.16)

The grid was then rotated counter-clockwise using elementary matrix operations.

Figures 4-3 and 4-4 show the 27.4◦ rotation; 45.0◦ was also used. Each curvilinear

grid used for the BASS runs extended from −25.0 to 25.0 in each coordinate direction,

while the EVA grid extended from −8.0 to 8.0 with 9 grid points in each coordinate

direction. Sixteen grids with 512, 1012, 1512, . . . , 8012 grid points were used for the

BASS runs. The final time level was set to t = 0.03125, and the initial condition

chosen was similar to the uniform grid case:

~Q(x, y, t = 0) = Q̄+ Q̃ exp
[
−(x2 + y2)

]
(4.17)

where

Q̄ =

ρ̄

ρu

ρv

Ētotal

=

1.0

0.0

0.0

1.78571425

(4.18)

and

Q̃ =

ρ̃

ρ̃u

ρ̃v

Ẽtotal

=

0.0

0.0

0.0

0.05

(4.19)

61

100
Number of Grid Points in Coordinate Direction

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

L
M

ax
 E

rr
o

r

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-5: Euler 2D Spatial Lmax Error — Curvilinear Grid Rotated 27.4◦

100
Number of Grid Points in Coordinate Direction

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

L
M

ax
 E

rr
o

r

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-6: Euler 2D Spatial Lmax Error — Curvilinear Grid Rotated 45.0◦

62

Figures 4-5 and 4-6 show the Lmax error norms for the curvilinear cases rotated

27.4◦ and 45.0◦, respectively. Very little difference is seen between the two rotations,

and the results overall are similar to the uniform Cartesian grid case. Figures 4-7

0 100 200 300 400 500 600 700 800
Number of Grid Points in Coordinate Direction

0

1

2

3

4

5

6

7

8

9

10
O

b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u

ra
cy

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-7: Euler 2D Spatial Observed Order-of-Accuracy — Curvilinear
Grid Rotated 27.4◦

and 4-8 show the observed order-of-accuracy for the two rotated curvilinear grids.

For both of the rotations the four schemes eventually achieve their respective formal

orders-of-accuracy with enough grid, again strongly indicating that the schemes are

correctly implemented in BASS.

4.3.2 Three-Dimensional

The order-of-accuracy of the spatial schemes implemented in BASS were also

Verified for the three-dimensional Euler case. In general, it is more challenging to

Verify the three-dimensional Euler schemes than the two-dimensional as achieving

the required grid spacing requires much more grid for the three-dimensional case.

63

0 100 200 300 400 500 600 700 800
Number of Grid Points in Coordinate Direction

0

1

2

3

4

5

6

7

8

9

10

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-8: Euler 2D Spatial Observed Order-of-Accuracy — Curvilinear
Grid Rotated 45.0◦

For instance, if one desires an average grid spacing of ∆ = 0.0625 on a logically

square/cubic grid that extends from −4.0 to 4.0, 1293 = 2, 146, 689 grid points are

required for the three-dimensional case, while only 1292 = 16641 are required for the

two-dimensional case.

The spatial differencing schemes implemented in the three-dimensional Euler solver

of BASS are the same for the two-dimensional solver: explicit 2nd and 6th-order cen-

tral differencing, the optimized 4th-order DRP scheme of Tam and Webb, and the

compact 6th-order scheme of Lele. The schemes were first tested on uniform Cartesian

64

grids. The initial condition chosen was

ρ(x, y, z) = 1.0 + 0.1 exp [((x− 0.5)2 + (y − 0.5)2(x− 0.5)2)]

ρu(x, y, z) = 0.1 + 0.01 exp [((x+ 0.5)2 + (y − 0.5)2 + z2)]

ρv(x, y, z) = 0.1 + 0.01 exp [((x− 0.5)2 + (y + 0.5)2 + z2)]

ρw(x, y, z) = 0.1 + 0.01 exp [((x+ 0.5)2 + (y + 0.5)2 + z2)]

Etotal(x, y, z) = 1.78571425 + 0.1 exp [(x2 + y2 + (z − 0.5)2)]

(4.20)

with final time level of t = 0.001953125. The EVA solution was found for the ini-

tial condition at the final time level on a uniform three-dimensional grid extending

from −4.0 to 4.0 in all three directions with 53 grid points. Fourteen grids with

93, 173, 253, 333, . . . , 1133 and extending from −8.0 to 8.0 in each coordinate direction

were used by the BASS code. Figure 4-9 shows the L2 error norm of the fourteen

10 100
Number of Grid Points in Coordinate Direction

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

L
2
 E

rr
o
r

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-9: Euler 3D Spatial L2 Error — Uniform Grid

BASS runs for each of the solution variables and spatial differencing schemes. For the

2nd- and 6th-order central and DRP schemes the error curve appears as a straight

65

line on the log-log plot for the denser grids, indicating that the schemes are con-

verging at a constant order-of-accuracy in this range of grid spacings. The DRP

and especially the compact 6th-order schemes do not show this same uniform con-

vergence, as the “bends” in the error curves show. Each of these schemes do appear

to “straighten out” as the grid density increases, however. Figure 4-10 shows the

0 10 20 30 40 50 60 70 80 90 100 110 120
Number of Grid Points in Coordinate Direction

0

1

2

3

4

5

6

7

8

9

10

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-10: Euler 3D Spatial Observed Order-of-Accuracy — Uniform Grid

observed order-of-accuracy based on the L2 error norm for each of the four spatial

differencing schemes. The 2nd- and 6th-order central schemes attain their formal

order-of-accuracy for practically the entire range of grid spacings. The DRP and

compact 6th-order schemes also eventually return their formal order-of-accuracy, but

the “bends” shown in the L2 error in Figure 4-9 manifest themselves as variations

in the observed order-of-accuracy. As discussed before, this behavior is a result of

the optimization procedure that was used in these schemes’ development and is not

evidence of incorrect implementation.

Again, to more rigorously Verify the spatial discretization schemes implemented

66

in BASS, the EVA method was applied to BASS code on rotated curvilinear grids.

A grid was constructed using the following equations

x(i, j, k) = xmin + (i− 1)∆x+ 0.1250 sin
[
π
4
(ymin + (j − 1)∆y)

]
+ 0.0625 sin

[
π
4
(zmin + (k − 1)∆z)

]
y(i, j, k) = ymin + (j − 1)∆y + 0.2500 sin

[
π
4
(xmin + (i− 1)∆x)

]
+ 0.0625 sin

[
π
4
(zmin + (k − 1)∆z)

]
z(i, j, k) = zmin + (k − 1)∆z + 0.2500 sin

[
π
4
(xmin + (i− 1)∆x)

]
+ 0.1250 sin

[
π
4
(ymin + (j − 1)∆y)

]

(4.21)

The grid was then rotated 45.0◦ about the x-axis, 30.0◦ about the y-axis and 27.4◦

about the z-axis using elementary matrix transformations. A “corner” of the grid is

shown in Figure 4-11. The initial condition used was

−10 −8 −6 −4 −2 0 2 4 6 8 10

−5

0

5

−6

−4

−2

0

2

4

6

Figure 4-11: 3D Curvilinear Grid Corner with 253 Grid Points

67

ρ(x, y, z) = 1.0 + 0.1 exp [((x− 0.5)2 + (y − 0.5)2 + (x− 0.5)2)] sin(2.0x+ 2.0y + 2.0z)

ρu(x, y, z) = 0.1 + 0.01 exp [((x+ 0.5)2 + (y − 0.5)2 + z2)] sin(2.0x+ 2.0y + 2.0z)

ρv(x, y, z) = 0.1 + 0.01 exp [((x− 0.5)2 + (y + 0.5)2 + z2)] sin(2.0x+ 2.0y + 2.0z)

ρw(x, y, z) = 0.1 + 0.01 exp [((x+ 0.5)2 + (y + 0.5)2 + z2)] sin(2.0x+ 2.0y + 2.0z)

Etotal(x, y, z) = 1.78571425 + 0.1 exp [(x2 + y2 + (z − 0.5)2)] sin(2.0x+ 2.0y + 2.0z)

(4.22)

The HALE RK7 scheme was used for each BASS run with a final time level of t =

0.001953125. For the BASS code runs, twenty-four logically-cubic grids were used

with 73, 133, 193, 253, 313, . . . , 1453 grid points extending from −6.0 to 6.0. The EVA

solution was found on a uniform Cartesian grid extending from −4.0 to 4.0 with 53

grid points oriented identically to the grid used for the BASS code runs. Figure 4-12

10 100
Number of Grid Points in Coordinate Direction

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

L
2
 E

rr
o
r

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-12: Euler 3D Spatial L2 Error — Curvilinear Grid

shows the L2 error for each of the spatial schemes in BASS. The results are in line with

previous spatial results. The DRP scheme again performs better than the explicit

6th-order central scheme for the coarser grids and worse for the finer grids, and the

68

compact 6th-order scheme is again the most accurate scheme. Figure 4-13 shows

0 50 100 150
Number of Grid Points in Coordinate Direction

0

1

2

3

4

5

6

7

8

9

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

2nd-Order Central
6th-Order Central
DRP
6th-Order Compact

Figure 4-13: Euler 3D Spatial Observed Order-of-Accuracy — Curvilinear
Grid

the observed order-of-accuracy for the BASS runs. Again, the results are similar

to previous spatial results. The explicit 2nd- and 6th-order central schemes attain

their formal order-of-accuracy for the majority of the grid spacings. The compact

6th-order scheme approaches 6th-order “from above,” as in previous test cases. The

DRP returns at first a higher and then lower order-of-accuracy before approaching its

formal order-of-accuracy (4th). The DRP scheme required the most grid to observe

its formal order-of-accuracy, making it the most difficult to Verify.

69

4.4 Temporal Order-of-Accuracy Results — Single

EVA Solution

To Verify the BASS code’s temporal order of accuracy, the procedure described in

Section 2.2 was performed first on the two-dimensional and then three-dimensional

forms of the Euler equations. As discussed in the beginning of Section 4.3, Verification

of the temporal schemes of a CFD/CAA code is generally more challenging and

computationally intensive than Verification of the spatial schemes. Results for specific

cases are presented in the proceeding sections.

4.4.1 Two-Dimensional

The initial condition used to Verify the time-marching schemes for the two-

dimensional Euler equations was very similar that used in Section 4.3.1

~Q(x, y, t = 0) = Q̄+ Q̃ exp

[
− ln(2)

9.0
(x2 + y2)

]
(4.23)

where

Q̄ =

ρ̄

ρu

ρv

Ētotal

=

1.0

0.1

0.1

1.78571425

(4.24)

70

and

Q̃ =

ρ̃

ρ̃u

ρ̃v

Ẽtotal

=

0.1

0.01

0.01

0.1

(4.25)

The final time level used was t = 0.25. The EVA solution was found on a uniform grid

using 92 grid points extending from −8.0 to 8.0 in both coordinate directions. For

this first Verification exercise a uniform grid with 8013 grid points was used with each

of the time-marching schemes in the BASS code — however, different grid spacings

were found to be necessary for the different schemes. The two Jameson schemes (the

Jameson RK4 and RK5) were able to be Verified using a grid spacing of 0.125, while

the HALE RK7 required 0.0625 and the HALE RK67 and Hu RK56 needed 0.03125.

The 6th-order compact spatial differencing scheme of Lele was used for each BASS

run. Figure 4-14 shows the L2 error norm for each of the time-marching schemes

in BASS plotted against the time step size. Four curves are shown for each of the

schemes as the two-dimensional Euler equations are a system of four equations. The

curves for each of the four solution variables are nearly straight for the Jameson RK5

and HALE RK7, indicating that these schemes are converging at an approximately

constant order-of-accuracy for the entire range of time steps used. The Jameson RK4

and HALE RK67 schemes also appear to converge at a nearly uniform rate, at least

after the largest two or three time steps. The Hu RK56 scheme shows a noticeable

“bump” in error for all four solution variables in the larger-time-step range, likely

due to the “optimized” nature of the Hu RK56. Figure 4-15 shows the observed

order-of-accuracy for the BASS runs. As indicated by the L2 error plot, the Jameson

RK5 and HALE RK7 maintain an approximately constant order-of-accuracy for the

entire range of time steps, and both achieve their formal orders-of-accuracy (2nd for

71

0.01 0.1
Time Step

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

L
2
 E

rr
o
r

Jameson RK4
Jameson RK5
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-14: Euler 2D Temporal L2 Error — Uniform Grid

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
Time Step

0

1

2

3

4

5

6

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u
ra

cy

Jameson RK4
Jameson RK5
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-15: Euler 2D Temporal Order-of-Accuracy — Uniform Grid

72

the Jameson RK5 and 4th for the HALE RK7). The Jameson RK4 and HALE RK56

also return their formal order-of-accuracy (again 2nd and 4th, respectively) fairly

quickly after the first few large time steps. After a large fall and spike in order-of-

accuracy that was indicated by Figure 4-14 the Hu RK56 goes to 4th-order, which

is its formal order-of-accuracy. The sharp drop in order-of-accuracy for the three

4th-order schemes for the smallest time steps is a result of either the accuracy of

the EVA solution being exhausted, the spatial discretization error overwhelming the

error from the temporal scheme, or the error of the schemes reaching the precision of

the computer. This behavior is not observed in the 2nd-order schemes because the

magnitude of the error is much larger than the 4th-order schemes (judging from the

L2 plot, at least an order-of-magnitude and at most about five).

Each two-dimensional time-marching scheme in BASS was also run on a rotated

curvilinear grid in order to more strongly Verify the schemes. The initial condition

used was identical to the uniform case, i.e., Equations (4.23)–(4.25), and the final

time level was also identical at t = 0.25. The EVA solution was found on a uniform

Cartesian grid rotated 45◦ counter-clockwise — the grid extended from −2.0 to 2.0

in both directions and included 32 grid points. The equations used to create the base

grid for the BASS runs are:

x(i, j) = xmin + (i− 1)∆x+ 0.02 sin
[
π

2
(ymin + (j − 1)∆y)

]
(4.26)

y(i, j) = ymin + (j − 1)∆y + 0.01 sin
[
π

2
(xmin + (i− 1)∆x)

]
(4.27)

Like the EVA grid, the BASS grids were rotated 45◦ degrees. The BASS grids ex-

tended from −4.0 to 4.0 and contained 1292 grid points for the 2nd-order schemes

and 2572 grid points for the 4th-order schemes. The explicit 6th-order central spatial

differencing scheme was used for all BASS runs. Figure 4-16 shows the Lmax error

norm of each of the time-marching schemes. Judging by the slope of the curves,

73

0.01 0.1
Time Step

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

L
M

ax
 E

rr
o

r

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-16: Euler 2D Temporal Lmax Error — Curvilinear Grid

both Jameson schemes show 2nd-order results and the HALE RK7, HALE RK67

and Hu RK56 show 4th-order. As in previous temporal test cases, the three 4th-

order schemes’ error “flattens out” for the smallest time steps as the time-marching

scheme’s contribution to the error no longer dominates. Figure 4-17 shows the ob-

served order-of-accuracy for each of the time marching schemes. Each scheme reaches

its formal order-of-accuracy for a range of time step sizes. As indicated by the Lmax

error plot the observed order-of-accuracy drops sharply for the 4th-order schemes

for the smallest time steps. Both the Jameson RK4 and Hu RK56 schemes show

large variations in observed order-of-accuracy for each scheme’s largest time steps.

Both these schemes have comparatively lower stability limits, so it is likely that both

schemes are unstable for the largest few time steps (the calculation does not “blow

up” because so few time steps are taken).

74

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
Time Step

0

1

2

3

4

5

6

7

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u
ra

cy

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-17: Euler 2D Temporal Observed Order-of-Accuracy — Curvilinear
Grid

4.4.2 Three-Dimensional

As in Section 4.4.1, Verification of the temporal order-of-accuracy of the BASS

code was first preformed on uniform Cartesian grids. The initial condition used was

similar to what was used in Section 4.4.1:

~Q(x, y, t = 0) = Q̄+ Q̃ exp

[
− ln(2)

9.0
(x2 + y2 + z2)

]
(4.28)

where

Q̄ =

ρ̄

ρu

ρv

ρw

Ētotal

=

1.0

0.1

0.1

0.1

1.78571425

(4.29)

75

and

Q̃ =

ρ̃

ρ̃u

ρ̃v

ρ̃w

Ẽtotal

=

0.1

0.01

0.01

0.01

0.1

(4.30)

The final time was again t = 0.25. The EVA solution was computed on a uniform grid

with 93 points extending from −2.0 to 2.0. The BASS code runs were preformed on a

uniform grid extending from −5.0 to 5.0 with 1613 grid points. The explicit 6th-order

central spatial differencing scheme was used for all BASS runs. The BASS code was

run for sixteen different ∆t values: 0.25, 0.125, 0.083333, 0.0625, . . . , 0.015625 for the

single-step schemes and 0.125, 0.0625, 0.041667, 0.03125, . . . , 0.0078125 for the two-

step schemes. Figure 4-18 shows the Lmax error for each of the time-marching schemes.

0.01 0.1
Time Step

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

L
M

ax
 E

rr
o

r

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-18: Euler 3D Temporal Lmax Error — Uniform Grid

76

As in previous test cases, the Jameson RK5 scheme’s error appears to decrease at a

uniform rate throughout the entire range of time steps. The Jameson RK4 scheme’s

error shows the typical “blip” for the larger time steps before it “settles down” to a

constant rate. Each of the 4th-order schemes’ error flattens out for the smallest time

steps as the time-marching scheme’s truncation error decreases to the point where it

is no longer the dominate part of the error. Figure 4-19 shows the observed order-of-

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
Time Step

0

1

2

3

4

5

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u
ra

cy

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-19: Euler 3D Temporal Observed Order-of-Accuracy — Uniform
Grid

accuracy for the sixteen BASS runs. As expected from consideration of Figure 4-18,

the Jameson RK5 scheme’s error is decreasing at approximately a 2nd-order rate

for the entire range of ∆t values, and the Jameson RK4 goes to 2nd-order after

overshooting and then undershooting its formal order-of-accuracy. The HALE RK7

scheme returns 4th-order for the largest ∆t values before sharply dropping off as

the magnitude of the error (again, shown in Figure 4-18) becomes very small. The

HALE RK67 and Hu RK56 — both two-step schemes — show 4th-order results before

77

quickly dropping off. High-accuracy multi-step schemes like the HALE RK67 and Hu

RK56 are particularly challenging to Verify, as they require taking multiple time

steps to the final time level, thus reducing ∆t and the temporal truncation error even

further and increasing the accuracy requirement of the EVA solution.

As in previous test cases, the three-dimensional time-marching schemes of the

BASS code were also run on curvilinear grids in order to Verify the BASS code more

strongly. The initial condition used for these test cases was identical to the uniform

test case:

~Q(x, y, z, t = 0) = Q̄+ Q̃ exp

[
− ln(2)

9.0
(x2 + y2 + z2)

]
(4.31)

where

Q̄ =

ρ̄

ρu

ρv

ρw

Ētotal

=

1.0

0.1

0.1

0.1

1.78571425

(4.32)

and

Q̃ =

ρ̃

ρ̃u

ρ̃v

ρ̃w

Ẽtotal

=

0.1

0.01

0.01

0.01

0.1

(4.33)

78

The EVA solution was found on a curvilinear grid of the form

x(i, j, k) = xmin + (i− 1)∆x+ 0.06250 sin
[
π
2
(ymin + (j − 1)∆y)

]
+ 0.03125 sin [π(zmin + (k − 1)∆z)]

y(i, j, k) = ymin + (j − 1)∆y + 0.12500 sin
[
π
4
(xmin + (i− 1)∆x)

]
+ 0.03125 sin [π(zmin + (k − 1)∆z)]

z(i, j, k) = zmin + (k − 1)∆z + 0.12500 sin
[
π
4
(xmin + (i− 1)∆x)

]
+ 0.06250 sin

[
π
2
(ymin + (j − 1)∆y)

]

(4.34)

with a final time level of t = 0.25. The EVA domain ranged from −1.0 to 1.0 with 33

grid points. After using Equation (4.34) to construct the grid, transformation matri-

ces were used to rotate it 45.0◦ about the x-axis, 30.0◦ about the y and 27.4◦ about the

z. Equation (4.34) was also used to construct the BASS grids with one modification:

the amplitudes of each of the sine functions were divided by ten. Different numbers

of grid points were found to be necessary for some of the schemes: the Jameson

RK5, Jameson RK4 and HALE RK7 used 973, the HALE RK67 used 1213 and the

Hu RK67 used 1453. The explicit 6th-order central scheme was used for the spatial

differencing. Figure 4-20 shows the L2 error for each of the time marching schemes.

As in the previous test cases, the Jameson RK5 is the least accurate scheme, followed

by the Jameson RK4, and both of these schemes appear to be 2nd-order accurate.

Each of the 4th-order schemes “flatten out” for the very small time step values, likely

indicating that the error from the spatial differencing is overwhelming the temporal

error at these small time steps. Figure 4-21 shows the observed order-of-accuracy of

each of the BASS time-marching schemes. As the L2 error plot indicated, the two

Jameson schemes achieve their formal order-of-accuracy for the larger time steps while

the three 4th-order schemes reach their formal order-of-accuracy for the larger time

steps. The sharp drop in order-of-accuracy for the 4th-order schemes is also predicted

by the L2 error plot. Because each scheme reaches its formal order-of-accuracy, one

79

0.01 0.1
Time Step

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

L
2
 E

rr
o
r

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-20: Euler 3D Temporal L2 Error — Curvilinear Rotated Grid

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
Time Step

0

1

2

3

4

5

6

O
b
se

rv
ed

 O
rd

er
-o

f-
A

cc
u
ra

cy

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-21: Euler 3D Temporal Observed Order-of-Accuracy — Curvilinear
Rotated Grid

80

may conclude that each is correctly implemented in BASS for the three-dimensional

case on non-uniform grids.

4.5 Temporal Order-of-Accuracy Results — Mul-

tiple EVA Solutions

As discussed in Section 2.2.5, an alternative method of Verifying the temporal

order-of-accuracy consists of using multiple EVA solutions and marching the code to

be Verified one time step for each run. This method has the advantage of lowering the

accuracy requirement and computation cost of the EVA solution. Results are shown

for the two- and three-dimensional Euler Equations on rotated curvilinear grids.

4.5.1 Two-Dimensional

The initial condition used to Verify the two-dimensional temporal schemes in the

BASS code was:

ρ(x, y) = 1.0 + 0.1 exp
[
− ln(2)

9.0
((x− 0.5)2 + y2)

]
ρu(x, y) = 0.5 + 0.01 exp

[
− ln(2)

9.0
(x2 + (y − 1.0)2)

]
ρv(x, y) = 0.5 + 0.01 exp

[
− ln(2)

9.0
((x− 1.0)2 + y2)

]
Etotal(x, y) = 1.78571425 + 0.1 exp

[
− ln(2)

9.0
(x2 + (y + 0.5)2)

]
(4.35)

The EVA solutions were found on a uniform Cartesian grid rotated 45◦ with 52 grid

points extending from−2.0 to 2.0 in both coordinate directions. Thirty-two EVA solu-

tions were found with final time levels consisting of integer multiples of 0.001953125

(i.e., 0.001953125, 0.00390625, 0.005859375, 0.0078125, . . . , 0.0625). The BASS code

was run on a curvilinear grid rotated 45◦; the grid before the rotation was constructed

81

using the equations:

x(i, j) = xmin + (i− 1)∆x+ 0.0001 sin [2π(ymin + (j − 1)∆y)] (4.36)

y(i, j) = ymin + (j − 1)∆y + 0.0010 sin [π(xmin + (i− 1)∆x)] (4.37)

For the single-step time-marching schemes, the BASS grid extended from −4.0 to 4.0

and contained 1292 grid points, giving an average grid spacing ∆x = ∆y = 0.0625.

The grid for the two-step time-marching schemes was identical in form but used 2572

grid points, giving an average grid spacing ∆x = ∆y = 0.03125. The denser grid

was used for the two-step schemes in order to keep the CFL numbers consistent from

scheme to scheme, as the two-step schemes require two time steps to reach the final

time levels discussed above, thus halving ∆t. Since each Runge-Kutta scheme is at

most a 4th-order scheme, a 5th-order EVA Taylor series solution was initially used;

however, it was found that a 6th-order solution was necessary to Verify the two-step

schemes, as they use half the time step of the EVA solution. The explicit 6th-order

central spatial differencing scheme was used for all BASS runs. Figure 4-22 shows the

L2 error norm for each of the time marching schemes. More separation between in the

error of each of the solution variables for a given scheme can be seen, likely due to the

asymmetric initial condition used. The Jameson RK5 scheme, as in previous cases, is

considerably less-accurate than the other schemes and appears to converge at a fairly

uniform rate. The results for the Jameson RK4 scheme are more interesting: three

of the four solution variables appear to converge at the same rate as the Jameson

RK5 and one (density) converges much faster. This is not expected, as the Jameson

RK4 is formally a 2nd-order scheme for nonlinear equations. Numerous test cases

were run using the Jameson RK4 (using different initial conditions, grids, order of

the EVA solution, etc.) but this behavior was always observed. The explanation

may lie in the fact that the continuity equation is a linear PDE, and the Jameson

82

0.001 0.01 0.1
Time Step

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

L
2

 E
rr

o
r

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-22: Euler 2D Temporal L2 Error — Curvilinear Rotated Grid —
Multiple EVA Solutions

RK4 is 4th-order accurate for linear problems. It may be the case that the Jameson

RK4 scheme requires multiple time steps to “build up” nonlinearity in the density

variable and return the correct order-of-accuracy. The HALE RK7, HALE RK67

and Hu RK56 seem to converge at a uniform rate for the larger time steps and then

begin to “flatten out” as the time step decreases. This is likely due to the error from

the spatial differencing scheme — as the time step is reduced, the spatial differencing

truncation error gradually becomes more significant relative to the temporal scheme’s

truncation error, thus reducing the convergence rate. The fact that the level of error

at which this happens seems to be more or less consistent from scheme to scheme

(recall that a finer grid spacing was used with the two-step schemes) supports this

belief. Figure 4-22 shows the observed order-of-accuracy for each of the BASS runs.

The Jameson RK5 uniformly shows it is a 2nd-order scheme. The Jameson RK4

does as well, expect for the density solution variable, which behaves as a 4th-order

scheme. The HALE RK7 shows 4th-order convergence for the larger time steps for

83

0 0.01 0.02 0.03 0.04 0.05 0.06
Time Step

0

1

2

3

4

5

6

7

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-23: Euler 2D Temporal Observed Order-of-Accuracy — Curvilinear
Rotated Grid — Multiple EVA Solutions

each of its solution variables. The HALE RK67 and Hu RK56 both converge at a

slightly higher rate than expected — this may be a result of their “optimized” nature,

especially with the Hu RK56 scheme, as it is designed to converge very quickly for

larger time steps.

84

4.5.2 Three-Dimensional

The initial condition used to Verify the three-dimensional temporal schemes in

BASS was:

ρ(x, y, z) = 1.0 + 0.1 exp
[
− ln(2)

9.0
((x+ 1.0)2 + (y + 1.0)2 + z2)

]
ρu(x, y, z) = 0.5 + 0.4 exp

[
− ln(2)

9.0
(x2 + (y − 0.5)2 + z2)

]
ρv(x, y, z) = 0.4 + 0.3 exp

[
− ln(2)

9.0
(x2 + y2 + (z − 0.5)2)

]
ρw(x, y, z) = 0.3 + 0.2 exp

[
− ln(2)

9.0
((x− 0.5)2 + y2 + z2)

]
Etotal(x, y, z) = 1.78571425 + 0.1 exp

[
− ln(2)

9.0
((x− 0.5)2 + (y − 0.5)2 + z2)

]
(4.38)

The EVA solutions were found on a curvilinear grid rotated 45.0◦ about the x-axis,

30.0◦ about the y-axis and 27.4◦ about the z-axis with 33 grid points extending from

−1.0 to 1.0. The BASS grids were identical to the EVA grids but contained 1293 grid

points and extended from −2.0 to 2.0. The equations used to create the grid were

x(i, j, k) = xmin + (i− 1)∆x+ 0.031250 sin
[
π
6
(ymin + (j − 1)∆y)

]
+ 0.015625 sin

[
π
6
(zmin + (k − 1)∆z)

]
y(i, j, k) = ymin + (j − 1)∆y + 0.062500 sin

[
π
6
(xmin + (i− 1)∆x)

]
+ 0.015625 sin

[
π
6
(zmin + (k − 1)∆z)

]
z(i, j, k) = zmin + (k − 1)∆z + 0.062500 sin

[
π
6
(xmin + (i− 1)∆x)

]
+ 0.031250 sin

[
π
6
(ymin + (j − 1)∆y)

]

(4.39)

where ∆x, ∆y and ∆z of the EVA grid will differ from that of the BASS grid. Twenty-

four BASS/EVA solutions were found with final time levels consisting of integer multi-

ples of 0.001953125 (i.e., 0.001953125, 0.00390625, 0.005859375, 0.0078125, . . . , 0.046875).

A fifth- and sixth-order EVA Taylor series solution was used to calculate the error for

the single- and two-step schemes, respectively. The explicit 6th-order central scheme

was used for each BASS run. Figures 4-24 and 4-25 show the error norm and order-

85

0.001 0.01

Number of Grid Points in Coordinate Direction

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

L
2
 E

rr
o
r

Jameson RK5

Jameson RK4

HALE_RK7

HALE_RK67

Hu RK56

Figure 4-24: Euler 3D Temporal L2 Error — Curvilinear Rotated Grid —
Multiple EVA Solutions

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Number of Grid Points in Coordinate Direction

0

1

2

3

4

5

6

O
b

se
rv

ed
 O

rd
er

-o
f-

A
cc

u
ra

cy

Jameson RK5
Jameson RK4
HALE_RK7

HALE_RK67

Hu RK56

Figure 4-25: Euler 3D Temporal Observed Order-of-Accuracy — Curvilinear
Rotated Grid — Multiple EVA Solutions

86

of-accuracy, respectively, for each of the BASS runs. Results are very similar to the

corresponding two-dimensional results. The Jameson RK5 is again the least accurate

scheme and converges at a 2nd-order rate for all of the time steps. The Jameson RK4

scheme shows the correct 2nd-order accuracy for all of the flow variables except den-

sity, which shows 4th-order convergence. It was thought that the larger fluctuating

component of the momentum variables in Equation (4.38) would cause the continuity

equation to behave in a more nonlinear manner, but this was not the case. Again,

it is thought that using multiple time steps with the scheme would fix this issue.

The results for the 4th-order schemes are similar to previous findings. The Hu RK56

scheme shows 4th-order accuracy for the fewest number of time steps — its error

approaches machine precision the fastest.

87

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, the method of External Verification Analysis (EVA) was discussed

and used to Verify two codes, including FD1D, a simple linear/nonlinear inviscid

Burgers’ equation solver using the finite difference method and BASS, the NASA

Glenn Research Center’s high-order Computational Aeroacoustic code. For all test

cases the observed order-of-accuracy of each spatial and temporal discretization scheme

matched the formal order-of-accuracy of the scheme, indicating each is correctly im-

plemented and thus Verified. It was found through experience with using the EVA3

tool that the spatial discretization schemes are more easily Verified than the tem-

poral. Two methods of Verifying the temporal order-of-accuracy of a time-marching

scheme were presented; the first used one very high-order EVA solution and marched

the code to be Verified various numbers of time steps to the EVA solution time level,

and the second used multiple lower-order EVA solutions at a range of time levels

and marched the code to be Verified one time step to each EVA solution. It was

found that the multiple-EVA-solution technique was computationally more efficient

than using a single EVA solution, though one must be careful of being mislead by

88

superconvergent behavior caused by unstable CFLs. No modifications to either code

or any governing equations were necessary to use EVA, which is its main advantage

over the Method of Manufactured Solutions.

5.2 Potential Applications of the EVA Method

In this work the EVA method was used to Verify two CFD/CAA codes: the FD1D

code and the BASS code. Both of these codes use the Finite Difference method

and structured grids in their solvers. It would be interesting to use EVA to Verify

codes using other numerical strategies, such as the Finite Element, Finite Volume or

Spectral methods, and unstructured grids/meshes. As noted in Section 2.2, the EVA

method is not influenced by the numerical method used by the code to be Verified or

the style of grid used (structured vs. unstructured, uniform vs. nonuniform).

Another application that the EVA method may be applied to is determining the

effect of grid singularities on the accuracy of CFD/CAA codes. Grid singularities are

points on the interfaces of grid blocks with more or less than 4 or 6 adjacent grid points

in a structured two- or three-dimensional grid, respectively, that arise frequently in

the grid generation process. Again, since the EVA method is not influenced by the

grid spacing or structure, a very accurate solution to the flow at the grid singularity

could be found and then used to investigate the behavior of the spatial differencing

error near a grid singularity as the grid is refined.

Yet another interesting application that the EVA method has not been applied to

is Verifying the spatial and temporal order-of-accuracy for a code using grid motion.

This could be accomplished by moving the grid during the calculation without any

wall boundaries present in the domain — thus the grid motion should not affect the

solution and the EVA tool could still be used.

89

5.3 Proposed Extensions to the EVA3 Code

The usefulness of the EVA3 code in Verifying high-order CFD/CAA codes has

been shown in this work; however, added functionality would make the EVA3 code

even more effective. Perhaps the most obvious improvement would be to add func-

tionality that would allow the EVA3 code to solve the Navier-Stokes equations. The

EVA3 code manipulates expressions symbolically, making it easy to add new gov-

erning equations. Adding any form of the Navier-Stokes equations, however, would

require some modification of the EVA3 code, as it currently assumes that all fluxes

are functions only of the solution vector, (for example) ~F = ~F (~Q), which affects

how the Jacobians of the fluxes are evaluated. This assumption is not true for the

Navier-Stokes equations, as (for example) ~F = ~F (~Q, ~Qx, ~Qy, ~Qz).

Another area of improvement for the EVA3 tool is parallelization. Currently EVA3

can only be run on one processor. Parallelizing the EVA3 code has the potential

to drastically improve the two most computationally-intensive functions of EVA3:

finding expressions for the temporal and mixed-spatial-temporal derivatives of ~Q (i.e.,

the terms in Equations (2.3)–(2.7)) and evaluating the solution at each grid point in

the domain. For the latter function, because the EVA solution at a given point does

not need information from neighbouring points to proceed, no information would

need to be exchanged between nodes during the calculation. Finding expressions

for the temporal and mixed-spatial-temporal derivatives could also proceed without

any communication if each expression was broken up into n “pieces”, where n is

the number of processes in the calculation. Each process could find the derivative

of its “piece” in isolation from the other processes, and the final result could be

“assembled” after all processes finish. These modifications have the potential to

lower the computational effort of the entire EVA process.

90

References

[1] Abanto, J., Pelletier, D., Garon, A., Trépanier, J.-Y., and Reggio, M., “Verifi-

cation of some Comercial CFD Codes on Atypical CFD Problems,” 43rd AIAA

Aerospace Sciences Meeting and Exhibit [27].

[2] Roache, P. and Steinburg, S., “Symbolic manipulation and computational fluid

dynamics,” AIAA Journal , Vol. 22, October 1984, pp. 1390–1394.

[3] Hixon, R. and Andersen, B., “Verification of Unsteady CFD Codes using the

Method of Manufactured Solutions,” RTO-MP-AVT-147 , Athens, Greece, De-

cember 2007, Paper 11.

[4] Boehm, B. W., Software Engineering Economics , Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1981.

[5] Blottner, F. G., “Accurate Navier-Stokes Results for the Hypersonic Flow over

a Spherical Nosetip,” AIAA Journal of Spacecraft and Rockets , Vol. 27, No. 2,

March-April 1990, pp. 113–122.

[6] Roache, P., Verification and Validation in Computational Science and Engineer-

ing , Hermosa Publishers, New Mexico, 1998.

[7] Roache, P., “Quantification of Uncertainty in Computational Fluid Dynamics,”

Annual Review of Fluid Mechanics , Vol. 29, 1997, pp. 123–160.

91

[8] Roache, P. J., “Verification of Codes and Calculations,” AIAA Journal , Vol. 36,

No. 5, May 1998, pp. 696–702.

[9] Oberkampf, W. L. and Trucano, T. G., “Verification and validation benchmarks,”

Nuclear Engineering and Design, 2007.

[10] Knupp, P. and Salari, K., Verification of Computer Codes in Computational

Science and Engineering , Chapman & Hall/CRC, 2003.

[11] Salari, K. and Knupp, P., “Code Verification by the Method of Manufactured So-

lutions,” Tech. Rep. SAND2000-1444, Sandia National Laboratories, June 2000.

[12] Roy, C. J., “Review of code and solution verification procedures for computa-

tional simulation,” Journal of Computational Physics , Vol. 205, No. 1, 2005,

pp. 131 – 156.

[13] Roy, C. J., Nelson, C. C., Smith, T. M., and Ober, C. C., “Verification of

Euler/Navier-Stokes Codes using the Method of Manufactured Solutions,” Inter-

national Journal for Numerical Methods in Fluids , Vol. 44, No. 6, 2004, pp. 599–

620.

[14] Bond, R., Knupp, P., and Ober, C., “A Manufactured Solution for Verifying

CFD Boundary Conditions,” 34th AIAA Fluid Dynamics Conference and Ex-

hibit , 2004.

[15] Bond, R., Knupp, P., and Ober, C., “A Manufactured Solution for Verifying

CFD Boundary Conditions, Part II,” 43rd AIAA Aerospace Sciences Meeting

and Exhibit [27].

[16] Bond, R., Ober, C., and Knupp, P., “A Manufactured Solution for Verifying

CFD Boundary Conditions, Part III,” 36th AIAA Fluid Dynamics Conference

and Exhibit , 2006.

92

[17] Eça, L., Hoekstra, M., Hay, A., and Pelletier, D., “Verification of RANS Solvers

with Manufactured Solutions,” Engineering with Computers , 2007.

[18] Lele, S. K., “Compact finite difference schemes with spectral-like resolution,”

Journal of Computational Physics , Vol. 103, No. 1, November 1992, pp. 16–42.

[19] Tam, C. and Webb, J., “Dispersion-Relation-Preserving Finite Difference

Schemes for Computational Acoustics,” Journal of Computational Physics ,

Vol. 107, No. 2, 1993, pp. 262–281.

[20] Hu, F. Q., Hussaini, M. Y., and Manthey, J. L., “Low-dissipation and low-

dispersion Runge-Kutta schemes for computational acoustics,” Journal of Com-

pututational Physics , Vol. 124, No. 1, 1996, pp. 177–191.

[21] Allampalli, V., Hixon, R., Nallasamy, M., and Sawyer, S. D., “High-accuracy

large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroa-

coustics,” Journal of Computational Physics , Vol. 228, No. 10, 2009, pp. 3837 –

3850.

[22] Jameson, A., “Time Dependent Calculations Using Multigrid, with Applications

to Unsteady Flows Past Airfoils and Wings,” AIAA 10th Computational Fluid

Dynamics Conference, Honolulu, HI, June 1991, AIAA 91-1596.

[23] Smitch, R. T. and Minton, R. B., Single Variable Calculus , McGraw-Hill, 2nd

ed., 2002.

[24] Anderson, D. A., Tannehill, J. C., and Pletscher, R. H., “Computational fluid

mechanics and heat transfer,” Series in Computational Methods in Mechanics

and Thermal Sciences, Hemisphere, Philadelphia, 1984, pp. 40–41.

[25] Nadjafikhah, M., “Exact solution of generalized inviscid Burgers’ equation,”

2009.

93

[26] R. Hixon, M. Nallasamy, S. S., “Parallelization Strategy for an Explicit Compu-

tational Aeroacoustics Code,” 8th AIAA/CEAS Aeroacoustics Conference and

Exhibit , Breckenridge, Colorado, June 2002, AIAA 2002-2583.

[27] 43rd AIAA Aerospace Sciences Meeting and Exhibit , 2005.

94

