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The main objective of the work presented in this thesis is to develop new methods

to extend the time and length scales of atomistic kinetic Monte Carlo (KMC) simula-

tions. When all the relevant processes and their activation barriers are known, KMC

is an extremely efficient method to carry out atomistic simulations for longer time

scales. However, in some cases (ex. low barrier repetitive events) direct KMC sim-

ulations may not be sufficient to reach the experimentally relevant length and time

scales. Accordingly, we have tested and developed several different parallel KMC

algorithms and also developed a dynamic boundary allocation (DBA) method to im-

prove parallel efficiency by reducing number of boundary events. Results for parallel

KMC simulations of Ag(111) island coarsening at room temperature carried out using

a large database of processes obtained from previous self-learning KMC simulations

are also presented. We find that at long times the coarsening behavior corresponds

to Ostwald ripening. We also find that the inclusion of concerted small-cluster events

has a significant impact on the average island size. In addition, we have also devel-
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oped a first passage time (FPT) approach to KMC simulations to accelerate KMC

simulation of (100) multilayer epitaxial growth with rapid edge diffusion. In our FPT

approach, by mapping edge-diffusion to a 1D random walk, numerous diffusive hops

are replaced with first-passage time to make one large jump to a new location. As a

test, we have applied our method to carry out multilayer growth simulations of three

different models. We note that despite the additional overhead, the FPT approach

leads to a significant speed-up compared to regular KMC simulations

Finally, we present results obtained from KMC simulations of irreversible sub-

monolayer island growth with strain and rapid island relaxation. Our results indicate

that in the presence of large strain there is significant anisotropy in qualitative agree-

ment with experiments on InAs/GaAs and Ge/Si growth. Somewhat surprisingly,

we also find that the scaled island-size distribution depends only weakly on the ef-

fects of strain. This is in qualitative agreement with recent experimental results for

InAs/GaAs(100) submonolayer growth.
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Chapter 1

Introduction

1.1 Simulations of Thin Film Growth

Understanding and controlling the evolving surface morphology of epitaxial thin

films is of immense technological interest. Work in this field has been motivated by

the ever more stringent requirements on the quality of thin films needed for developing

advanced microelectronic, optical, and magnetic devices, as well as the thrust toward

nanometer- scale structures. As device miniaturization reaches sub-micrometer- and

nanometer-length regimes, atomic-level control of the fabrication processes for both

novel materials and new devices is becoming crucial. Depending on the application,

one may wish to produce either atomically flat or nanostructured surfaces. However,

in each case the performance depends critically on the surface morphology as well as

on the underlying film structure.

A wide range of physical phenomena, from the molecular scale to galactic, may be

studied using some form of computer simulation. Computer simulations of materials

1
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behavior are an important component of materials science research because measure-

ments are indirect, requiring theoretical interpretation. The main aim of the research

in this field is to predict and control the morphology of the films by tuning the ma-

terial composition and growth conditions. A model study of film growth typically

involves deposition of a controlled amount of atoms onto a substrate in a prescribed

set of growth conditions. The precisely defined growth conditions make it possible to

decipher, at an atomic level, the rules governing the evolution of the growth front,

and to explore ways to tailor film morphology to obtain specific characteristics.

Thin film growth involves a large range of time scales, with the detailed atomistic

motions operating in a regime of 10−12 − 10−15 sec , while a typical time scale for

the formation of an atomic layer of atoms is of the order of 1 sec -1 min. Thus,

a continuing challenge in thin film growth simulations is to reach experimentally

relevant time and length scales while keeping simulations as realistic as possible.

1.2 The scope of this thesis

In this thesis we have developed new methods to extend the time and length scales

of kinetic Monte Carlo (KMC) simulations and successfully applied these methods to

carry out realistic simulations of epitaxial thin-film growth.

In chapter 2, we first introduce the Monte Carlo method and briefly discuss

different types of existing Monte Carlo methods used in thin film growth simulations.

In addition, we will give a brief description of one of the newly developed on-the-fly

KMC methods referred to as the self-learning kinetic Monte carlo method. In this



3

method, a fixed catalog of processes is replaced by the continuous identification of

possible activated processes on the fly making KMC simulations more realistic.

In chapter 3 we discuss a variety of algorithms for parallel kinetic Monte Carlo

including the recently developed optimistic synchronous relaxation (OSR) algorithm

as well as the semi-rigorous synchronous sublattice (SL) algorithm. A variation of

the OSR algorithm corresponding to optimistic synchronous relaxation with pseudo-

rollback (OSRPR) is proposed. In addition, a dynamic boundary allocation (DBA)

method for improving the parallel efficiency by reducing the number of boundary

events is proposed. A variety of other methods for enhancing the efficiency of our

simulations are also discussed. These methods are then applied to study the coars-

ening of Ag(111) submonolayer islands at room temperature. We note that, because

of the relatively high temperature of our simulations, as well as the large range of

energy barriers (ranging from 0.05 eV to 0.8 eV), developing an efficient algorithm

for parallel KMC and/or SLKMC simulations is particularly challenging. However,

by using DBA to minimize the number of boundary events, we have achieved sig-

nificantly improved parallel efficiencies for the OSRPR and SL algorithms. Finally,

we note that, among the three parallel algorithms which we have tested here, the SL

algorithm with DBA yielded the highest parallel efficiency. As a result, we have ob-

tained reasonable parallel efficiencies in our simulations of room-temperature Ag(111)

island coarsening for a small number of processors (e.g. Np = 2 and 4). Since the SL

algorithm scales with system size for fixed processor size, we expect that comparable

and/or even larger parallel efficiencies should be possible for parallel KMC and/or

SLKMC simulations of larger systems with larger a number of processors.
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In chapter 4, we present the results of parallel KMC simulations of Ag(111)

island coarsening at room temperatures carried out using a very large database ob-

tained via self-learming KMC simulations. Our results indicate that, while cluster

diffusion and coalescence play an important role for small clusters and at very early

times, at late time the coarsening proceeds via Ostwald ripening, i.e. large clusters

grow while small clusters evaporate. In addition, an asymptotic analysis of our results

for the average island size S(t) as a function of time t leads to a coarsening expo-

nent n = 1/3 (where S(t) ∼ t2n), in good agreement with theoretical predictions.

However, by comparing with simulations without concerted (multi-atom) moves, we

also find that the inclusion of such moves significantly increases the average island

size. Somewhat surprisingly we also find that, while the average island size increases

during coarsening, the scaled island-size distribution does not change significantly.

In chapter 5, a first-passage-time (FPT) approach to accelerate kinetic Monte

Carlo (KMC) simulations of metal(100) epitaxial growth with fast edge diffusion is

described. In our approach, the process of (one-bond) edge-diffusion is replaced by

an analytical expression for the first-passage time for an edge-diffuser to be absorbed

either by corner-rounding or kink-attachment, while the remaining activated processes

are treated with regular KMC. As a test of this approach we have studied three

different models of multilayer growth, including two irreversible growth models as

well as an effective-medium theory (EMT) model of Cu/Cu(100) growth. By taking

into account the differences in hopping rates at boundaries and including interactions

of edge-diffusers with other atoms we have obtained very good agreement between

our FPT KMC and regular KMC simulations. In addition, we find that our FPT
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approach can lead to a significant speed-up compared to regular KMC simulations.

Finally, in Appendix B.3 expressions for the conditional first-passage time are also

derived

In chapter 6 the effects of strain on the island morphology and size distribution

in irreversible submonolayer growth with rapid island relaxation are investigated. In

our simulations the strain energy is approximated by an isotropic 1/r3 interaction.

While the island density increases with strain, in the presence of sufficient island

relaxation due to edge diffusion, the island shape changes from square to rectangular.

However, due to fluctuations, there is a broad distribution of island widths. General

scaling forms for the island width and island length distributions are derived and

good scaling is obtained as a function of coverage while there is only a relatively

weak dependence on the strain. The scaled island-size distribution is also found to

be only weakly affected by strain. These latter results are in qualitative agreement

with recent experimental results for InAs/GaAs(100) growth.



Chapter 2

Monte Carlo Methods

2.1 Introduction to Monte Carlo Methods

While a variety of models have been developed to study the evolution of the surface

morphology and thin-film microscructure during the growth process, most of these

models are classified into three basic approaches: (i) stochastic continuum equations,

(ii) simple discrete models, and (iii) more realistic atomic scale models. However, in

order to get a full understanding of the growth process, more realistic atomic scale

models are needed. In particular, we will focus on kinetic Monte Carlo (KMC) and

modifications to it, to make KMC simulations as realistic as possible.

There are essentially two approaches to performing molecular simulations: stochas-

tic and deterministic. The stochastic approach is called Monte Carlo (MC) and the

deterministic approach, called Molecular Dynamics (MD). If the interaction potential

is known, then MD simulations are the most accurate atomistic simulation technique.

Using this method the dynamics of a many-body system can be modeled by numeri-

6
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cally solving the differential equations of motion for all atoms involved. This enables

us to determine statistical averages of the static and dynamical physical properties.

Hence, in MD simulations, the positions are deterministic and connected in time.

However, it is difficult to accommodate the motions of all atoms accurately on the

basis of a deterministic model, since the space and time intervals required are much

longer than the length and time scales available in MD simulations (typically from

ps to µs). In addition, it is difficult for MD to handle events that occur with vastly

different rates or probabilities. This problem limits the scope of dynamical MD sim-

ulations involving interacting atoms, particles, or molecules [1]. Fortunately, there

exists another method, the Monte Carlo (MC) method, for evaluating the properties

of complex, many-body systems [1, 2, 3]. In this method a detailed knowledge of the

exact positions of atoms and their velocities is sacrificed in favor of a more coarse-

grained approach which takes into account the time-evolution of the system from one

energy minimum or basin to another. Using this method, time scales significantly

larger than those typically studied in MD can be used. In MC simulations the posi-

tions are generated stochastically such that an atomic configuration depends only on

the previous configuration [4].
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2.2 Metropolis Monte Carlo

2.2.1 Markov Chains

Before proceeding to Markov chains, we introduce truly random or uncorrelated

chains, in which the probability of occurrence of a particular sequence of the system

which transits from its initial state xi to its final state xf is statistically uncorrelated

[2]:

P (xi, xi+1, ...., xf−1, xf ) = P1(xi)P1(xi+1)...P1(xf ) (2.1)

where P1(x) is independent probability of occurrence for the state x. In contrast, a

Markov chain is a correlated sequence of random events whose probability densities

at a time interval depend upon the previous states of the system. It is defined in

terms of a system with a set of transition probabilities W (xa → xb) to have state

xb succeed state xa in the sequence. The probability of having a sequence of states x

then may be written as:

P (xi, xi+1, ...., xf−1, xf ) = P1(xi)W (xi → xx+1)W (xi+1 → xi+2)...W (xf−1 → xf )

(2.2)

Now we introduce the time evolution of the transition probability P (x, t) of the

system in state x. This evolution of dynamical transition probability P (x, t) is quite

intuitive and is given by a Markovian master equation [1].
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∂P (xf , t)

∂t
=
∑
xi

W (xi → xf )P (xi, t)−
∑
xf

W (xf → xi)P (xf , t) (2.3)

and W (xi → xf ) Here P (x, t) is the probability that a system is in state x at time

t and W (xi → xf ) is the transition probability per unit time that the system will

transit from state xi to state xf .

The controlling factor in a Markov chain is the transition probability. The proba-

bility is a conditional probability for the system to transit or migrate to a particular

new state, given the current state of the system. For many situations, such as the

case in which the system is at thermal equilibrium (steady state),the occupation

probability is weighted according to the Boltzmann distribution,

Pi ∝ e−Ei/kBT (2.4)

where Ei is the energy of state i, T is the temperature, and kB is Boltzmann’s

constant.

At the steady state, the sum of all transitions into a particular state x equals

the sum of all transitions out of the state. To be consistent with the Boltzmann

distribution in equilibrium, the detailed-balance criterion must be imposed on the

MC transition probabilities. The detailed-balance criterion may be expressed as [1]

W (xi → xf )P (xi, t =∞) = W (xf → xi)P (xf , t =∞) (2.5)

However the detailed balance criterion does not uniquely determine the transition



10

probability W (xi → xf ) but leaves an ambiguity in the choice of W [5].

2.2.2 Metropolis Algorithm

To evolve a system towards equilibrium or evaluate thermodynamic averages of

the system, one can apply MC method with importance sampling. The desired im-

portance sampling may be obtained by the Markov chain. This means that estimates

could be quite efficient if the proper transition probabilities can be determined. There

are many methods used to select the prior transition probabilities. One often used is

the Metropolis algorithm given by:

W (xi → xf ) =


1
τ
e−δE/kBT for δE > 0

1
τ

Otherwise

(2.6)

For Metropolis, τ is the usual MC step, and δE = E(xf ) − E(xi) the energy

difference. The detailed procedure of the Metropolis algorithm may be outlined as

[5, 3]:

• Produce a new state from the current state by using a uniform random number

• Calculate the energy difference δE between the new state and the current state.

• if δE ≤ 0, update to new state.

• if δE > 0, generate a uniform random number ν ∈ [0,1].

1. if eδE/kBT > ν, update to new state.

2. else, no update.
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• Go to first step and repeat

A Monte Carlo simulation using such Metropolis algorithm is often called as

Metropolis Monte Carlo simulation.

2.3 Kinetic Monte Carlo

In many materials, the dynamical evolution occurs through a series of “rare

events”, in which the system spends a long time period in one potential-energy min-

imum before escaping and moving on to another. Since the localized motion in the

potential-energy minima is not significant, the dynamical evolution can be simulated

as a series of jumps between potential-energy minima. This is the aim of kinetic

Monte Carlo (KMC) simulations.

Kinetic Monte Carlo (KMC), sometimes called dynamic MC [6], is an extremely

efficient method for carrying out dynamical simulations of a wide variety of stochastic

and/or thermally activated processes when the relevant atomic-scale processes are

known . In KMC, the system is evolved using a stochastic algorithm that directly

takes into account the physical energy barriers that govern the evolution of a system

and that translates to a real time scale[1]. Importantly, the KMC time for a given

step will be scaled by the average time required to observe the particular stochastic

event chosen to occur at that time step. Thus, each KMC time step will have widely

different magnitudes depending on the temperature, energy-barrier and so on.

Single-processor (serial) KMC simulations have been used to model a variety of

dynamical processes ranging from catalysis to thin-film growth. In this section, we
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first introduce the basic algorithm of KMC, then deal with models of crystal growth

using KMC.

2.3.1 KMC Algorithm

The KMC algorithm is based on the so called “n-fold-way” [1, 7]. This algorithm

for KMC is also known as Bortz-Kalos-Lebowitz(BKL) or residence-time algorithm.

This algorithm may be outlined as the following procedure:

1. Set the start time t = 0.

2. Update list of all possible events (transitions) that can occur and rates for each

event in the system: assume each event ‘i’ has rate Ri ∝ e−Eb/kBT , where Eb is

the barrier energy.

3. Calculate the partial cumulative event rates (partial sums)

Si =
i∑

j=1

Rj

for i = 1, ...., N where N is the total number of events. Denote So=0 and the

total event rate RT = SN .

4. Get a uniform random number Pj ∈ [0,1].

5. Select event j to occur with probability

Sj−1/RT < Pj ≤ Sj/RT
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6. Perform j.

7. Update time t = t− ln(r)/RT where 0 < r < 1 is uniform random number.

8. Go to 2 and repeat.

Because there is a thermally activated diffusion move or a deposition event in

every loop of the program, KMC is a very efficient method, and can bridge the gap

of time scales between relatively fast thermal diffusion processes and rare deposition

events. However, one of the major disadvantage of KMC is that all parameters, such

as the event rates Ri, have to be known in advance. This method itself can do nothing

to predict them. Thus, they can only be obtained from experimental data, or derived

from other simulation methods such as MD simulations or ab initio calculations. De-

spite this limitation, KMC remains the most powerful approach available for making

dynamical predictions at the mesoscale.

2.3.2 Binary tree Search Algorithm

The seach algorithm described above clearly scales as O(N) where N is the total

number of events, since step 3 has a sum over N elements. Using a binary-tree, it is

possible to reduce the scaling below N, even down to O(log2N).

1. Update the list of all possible event types (transition) that can occur and rates

for each event type in the system. Assume each type i has event number ni

with Ri.
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2. Construct a binary tree where each node contains the sum of the rates below

the node (see fig 2-1) and the lowest level nodes (leaves) contain the sums of

the rates for the events of the same type: S0[i] = niRi. The root node the tree

Stotal = Sk[0] has total rate of the entire system at all times, where k is the

number of levels or total depth of the binary tree.

3. Generate a random number ψ ∈ [0, Stotal] and start from the root of the tree

(n = k, i = 0).

4. Compare the number ψ with the left branch Sn−1[2i]

5. If ψ ≤ Sn−1[2i], descend tot he left branch n→ n− 1, i→ 2i (see fig 2-1) and

continue to 4.

6. If ψ > Sn−1[2i], update the random number ψ → ψ − Sn−1[2i] and descend to

the right branch n→ n− 1, i→ 2i+ 1 (see fig. 2-1) and then continue to 4.

7. If the lowest level n = 0 (leaves of the tree) is reached then i gives the type of

picked event.

8. Another random number is generated u ∈ [0, n[i]] and perform the event j for

which nj−1 < u ≤ nj[i].

9. Update the tree.

The binary tree search algorithm is more efficient than the n-fold way algorithm

in large systems with many different kinds of objects and possible events.
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2.4 On-the-Fly/Self Learning Kinetic Monte Carlo

2.4.1 Introduction

One of the limitations of KMC simulations is the reliance on an ad hoc choice of

processes. If this input is accurate and complete, KMC simulations will give accurate

results. Standard KMC simulations are performed with a set of the most obvious

simple atom or concerted processes as input, and all others are ignored or included

in approximate ways or in an ad hoc manner to fit experimental data. For these

reasons and also because of experimental observations of complex and unforeseen

processes, simulation with an a priori chosen catalog process needs to be replaced

by a continuous identification of possible processes as the environment changes. This

is the motivation behind On-the-fly KMC [8, 9, 10], to replace a chosen catalog of

processes by finding all possible processes on the fly making KMC simulations more

realistic.

One such recently developed technique to address the completeness issues of KMC

is the self-learning KMC method (SLKMC) [10, 11]. In an SLKMC simulation, rather

than use a fixed catalog of processes and their corresponding activation barriers, the

activation barriers corresponding to new configurations not already included in the

database are obtained on the fly. The resulting processes are then added to the

SLKMC database. A pattern recognition scheme is used to identify configurations.

This allow efficient storage and subsequent retrieval of information from the database

of diffusion processes, their paths, and their activation energy barriers thus making

it efficient and reliable.



17

2.4.2 Self Learning KMC Algorithm

As mentioned earlier the aim of SLKMC is to replace an ad hoc list of processes

with the identification of processes on the fly. To identify different processes, SLKMC

needs to identify the local environment of undercoordinated atoms during the course

of the simulation. Then by carrying out MD simulations and using the nudged elastic

band (NEB) method to determine activation energies, or alternatively using the less

powerful “drag” method [10] the relevant activated processes for a given configuration

can be determined. A pattern recognition scheme is then used to store them and for

subsequent usage in the simulations. Pattern recognition described here is for an

fcc(111) surface with six fold symmetry. Any process is assumed to involve a central

atom and atoms in the next two shells( or three rings depending on the system) as

illustrated in Fig. 2-2. The motif in Fig. 2-2 serves as cookie cutter and is placed on

all active atoms. A process may be described as central atom moving to a neighboring

vacancy accompanied by the motion of any other atoms or atoms in the surrounding

shells. To uniquely indentify local environments each shell is given a ring number.

This ring number is derived as a binary number based on locations of atoms in the

shell and then converterd to a decimal number as shown in Fig. 2-2, which is self

explanatory. The same procedure is followed for atoms in the other outer shells.

Hence for an atom to be active (i.e., the cental atom for a given process), it should

have a vacancy in its first shell (or occupancy number less than 63)

Once the atoms are classified as active and non active and encrypted with the
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6 7 1915
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13 9

8

12 11 10

16 17 18

Shell     Base 2               Base 10
   1       001100                 12
   2       000000111100      60

Figure 2-2: Two-shell indexing around central atom labeled 1

shell scheme all possible active atoms are determined. Fig. 2-3 shows a configuration

with ring numbers (12,60), first and second number respectively. Fig. 2-3 also shows

how processes are labeled and stored in the database and aslo an example of multiple

atom process. Here central atom labelled 1 moves to a vacant site 2 along with atoms

at sites 5, 4 and 13. The activation energy barrier for this process is found to be

0.373eV. Fig. 2-3 also shows other possible processes for that configuration along

with their activation energies for those processses.

In standard KMC simulations these energy barriers are provided as input. But

with SLKMC these barriers are calculated on the fly. These activation barriers are

stored and tagged to atomic processes in the database. Self-learning is achived by

the system through the abilty to (1) calculate activation energies on the fly, (2) store
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Figure 2-3: Example of a multiple atom process and also shows how a configuration
is stored in the database.

them in a database and (3) recognize and retrive them using the labeling described

above. If a new process is encountered, actual calculation is preformed and then

added to the database.

In order to minimize the size of the database we have also used the symmetry of

the fcc(111) surface. In particular, the following 5 symmetry operations were used:

(1) 120o rotation (2) 240o rotation (3) mirror reflection (4) mirror reflection followed

by 120o rotation and (5) Mirror reflection followed by 240o rotation. Thus, if a given

configuration was not found in the database, then the symmetry operations mentioned

above were performed and used to identify the configuration in the database. If it is

still not found in the database then actual calculation is done to find paths and their

corresponding barriers and these are then added to the database. Fig 2-4 shows an

example of 120o rotation symmetry operation.
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Figure 2-4: Example of 120o rotation symmetry operation showing two symmetry
related configurations (a) and (b).



Chapter 3

Algorithms for Parallel Kinetic

Monte Carlo

3.1 Introduction

Since the time of the next event is determined by the total overall rate for all

processes, both the standard kinetic Monte Carlo method and SLKMC are serial

algorithms, i.e. only one event can occur at each step. However, in some cases one

needs to simulate larger length and/ or time scales than can be simulated using a

serial algorithm. Therefore, it is desirable to develop efficient parallel kinetic Monte

Carlo algorithms in order to extend the range of time and/or length scales over which

realistic simulations can be carried out.

A number of different algorithms for parallel KMC have been studied and applied

to simulations of thin-film growth. These include the synchronous relaxation (SR)

21
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algorithm [12, 13, 14], the optimistic1 synchronous2 relaxation algorithm (OSR) [16]

and the semi-rigorous synchronous sub-lattice (SL) algorithm [17]. The SL algorithm

[17] has been shown to provide good parallel efficiency in simulations of variety of

simplified models of nucleation and thin film growth. Due to the fact that it only

requires local communications, the SL algorithm also scales with system size, e.g. for

a fixed processor size the simulation time is independent of the number of processors.

We note that this work is part of a larger project to develop parallel algorithms to

carry out realistic SLKMC simulations over larger time- and length-scales. Therefore,

in addition to presenting results for the coarsening of Ag(111) islands in chapter 4

we also present results for the efficiency and accuracy of a number of different algo-

rithms applied to Ag(111) island coarsening. In particular,we discuss the optimistic

synchronous relaxation (OSR) algorithm, the optimistic synchronous relaxation with

pseudo-rollback (OSRPR) algorithm, the synchronous sub-lattice (SL) algorithm as

well as a number of improvements such as dynamic boundary allocation (DBA).We

note that processes in the database have a very large range of event rates (see Fig. 4-

3) (ranging from 4× 103 s−1 for double-bond detachment from an island to 8× 1010

s−1 for monomer hopping). As a result, developing an efficient algorithm for parallel

KMC and/or SLKMC simulations is particularly challenging. However, our results

indicate that by using the SL algorithm along with dynamic boundary allocation

to increase the cycle time and thus reduce communication overhead, a reasonable

parallel efficiency can be achieved.

1Optimistic approach uses a detection and recovery approach [15]: causality errors are detected,
and a rollback mechanism is invoked to recover.

2All processors are ‘in synch’ at the beginning and after each cycle.
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3.2 KMC Algorithm

In order to maximize the efficiency of our simulations we have used a binary tree

algorithm [18] combined with lists. In particular, at the beginning of our simulation

we scan through the lattice and identify the configurations for every occupied site

to determine the corresponding moves and activation barriers for each configuration.

Based on this information we create an array of lists, where each list corresponds to

one of the 4712 different possible mechanisms for activated events, and contains all

the central atom locations corresponding to that type of event. The total rate for each

type of move (corresponding to the rate for that move times the number of central

atoms of that type) is calculated and placed at the “base” of a binary tree. We then

generate a random number (between 0 and the total rate for all events) and use the

binary tree structure to efficiently select the list “type” of the next move, while the

particular move is randomly selected from the selected list. After each transition, the

neighborhood of each changed site is updated along with the associated lists as well

as the total rate and binary tree. This leads to a code which is efficient and scales

with system size.

We note that all our simulations were carried out using the 1.4 Ghz Itanium

Cluster at the Ohio Supercomputer Center (OSC). By replacing a “standard” KMC

by one which uses a binary tree with lists as described above, as well as replacing a

linear search through the database with a matrix (described in Sec. 4.2), we were able

to significantly reduce the average time per KMC step from 592.8 µs in our initial

code to 24.6 µs. For comparison, we note that in a typical KMC with a small number
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of different event types such as edge- and/or corner-diffusion the corresponding time

is typically 6 µs or less.

3.3 Parallel Algorithms for the kinetic Monte Carlo

Method

3.3.1 Optimistic Synchronous Relaxation (OSR) Algorithm

One of the first rigorous algorithms for parallel discrete-event 3 simulations was the

synchronous relaxation algorithm developed by Lubachevsky [12]. We note that the

application of this algorithm to KMC simulations as well as its scaling as a function

of the number of processors Np has been recently studied by Shim and Amar [14].

However, since this algorithm is relatively complex and requires multiple iterations

for each cycle, Merrick and Fichthorn have recently developed a similar but simpler

algorithm which they refer to as optimistic synchronous relaxation (OSR) [16].

Fig. 3-1 shows a typical decomposition of a square system into Np square regions,

where Np is the number of processors. Also indicated in Fig. 3-1 are the boundary

and “ghost” regions for the central processor, where the boundary region is defined

as that portion of the processor’s domain in which a change may affect neighboring

processors. Similarly, the ghost region corresponds to that part of the neighboring

processors’ domains which can affect a given processor. Thus, in general the width

3A discrete event simulation model assumes that system being simulated only changes state at
discrete points in simulated time. The simulation model jumps from one state to another upon the
occurrence of an event.
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Ghost region

Boundary region

Figure 3-1: Schematic diagram of square decomposition for Np=9. Solid lines corre-
spond to processor domains

of the boundary and ghost regions must be at least equal to the range of interaction.

As shown in Fig. 3-2, in the OSR algorithm in each cycle all processors start

with the same initial time and then simultaneously and independently carry out

KMC events in their domains until either the number of KMC events reaches a pre-

determined fixed number G, or one of the events corresponds to a “boundary event”,

i.e. an event which modifies the boundary region of the given processor, and which

can thus affect events in neighboring processors. Defining the time for the last event

in each processor as tlast, a global communication is then carried out to determine the

time tmin corresponding to the minimum of tlast over all processors. Each processor
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then “rolls back” or undoes all KMC events which occur after tmin. If there are

no boundary events then the processors all move on to the next cycle with the new

starting time corresponding to tmin and all events after that time are rolled back.

However, if tmin corresponds to a boundary event, then an additional communication

is needed to update the ghost and/or boundary regions of all processors affected by

the boundary event.

We note that typically the OSR algorithm requires 2 − 3 global communications

each cycle, one to determine tmin, another to determine if the event with tmin cor-

responded to a boundary event, and a third to update the boundary regions of the

affected processors if there was a boundary event. To reduce the number of global

communications we have encoded the processor identity as well as whether or not the

last event was a boundary event, along with the least advanced time of each processor

in a single floating point number before doing a global communications to determine

tmin. This was done by replacing tlast with a number whose most significant figures

corresponded to tlast but whose least significant figures contained information about

the processor ID and whether or not that processor had a boundary event 4. Thus, in

our implementation of the OSR algorithm only one global communication was needed

if tlast corresponded to a non-boundary event, while two communications were needed

if it was a boundary event.

4 In this method, the time each processor advances from its previous cycle is multiplied by a
very large number to form the integer part of the double precision packed number. The ratio of the
processor ID to the total number of processors used Np is then added to the decimal part if there
is a boundary event in that processor. If there is no boundary event in that processor a decimal
number is added such that it does not correspond to any processor identity. In our implementation
the multiplying number was 1020, which leads to good accuracy.
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Figure 3-2: Time evolution of events for OSR and OSRPR algorithms with G =
4. Dashed lines correspond to selected events, while the dashed line with an X
corresponds to an event exceeding tmin (see text). In OSR this event is discarded
while in OSRPR this event is added to the next cycle.

We note that in the OSR algorithm for a given configuration there is an optimal

value of G which takes into account the tradeoffs between communication time (which

is wasted if there are no boundary events) and rollbacks. While in general, an adaptive

method could be used to attempt to optimize the value of G from cycle to cycle, in

practice we have found it more efficient to simply use trial and error to find the

optimal fixed value of G for our simulation (see Sec. 3.3.4).

3.3.2 Optimistic Synchronous Relaxation with Pseudo-Rollback

(OSRPR) Algorithm

In the OSR algorithm each processor discards all KMC events which occur after

tmin. However, this is unnecessary if there are no boundary events in any of the pro-

cessors. Therefore, we have considered a variation of the OSR algorithm (optimistic
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Figure 3-3: Comparison between parallel results using the OSRPR algorithm with
square decomposition (Np = 4) and serial results for fractal model with D/F = 105

and G = 7.

synchronous relaxation with pseudo-rollback [19]) in which, when there are no bound-

ary events in the system, those events that would have been discarded are added to

the next cycle. This can reduce the loss of computational time due to undoing and

then ‘redoing’ events and thus enhance the computational efficiency. As a test of the

OSRPR algorithm, we have carried out parallel simulations using this algorithm for a

‘fractal’ model of irreversible submonolayer growth in which only monomer deposition

and diffusion processes are included [14], with Np = 4. As expected, there is excellent

agreement between serial and parallel results for the island and monomer densities

(see Fig. 3-3).
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3.3.3 Synchronous Sublattice (SL) Algorithm

In order to maximize the parallel efficiency we have also carried out simulations

using the semi-rigorous synchronous sublattice (SL) algorithm recently developed by

Shim and Amar [17]. To avoid conflicts between processors, in the SL algorithm each

processor domain is divided into subregions or sublattices (see Fig. 3-4). A complete

synchronous cycle corresponding to a cycle time τ is then as follows. At the beginning

of a cycle, each processor’s local time is initialized to zero. One of the sublattices (A

or B) is then randomly selected so that all processors operate on the same sublattice

during the cycle. Each processor then simultaneously and independently carries out

KMC events in the selected sublattice until the time of the next event exceeds the time

interval τ (see Fig. 3-5). The processors then communicate any necessary changes

(boundary events) with their neighboring processors, update their event rates, and

move on to the next cycle using a new randomly chosen sublattice. We note that in

order to ensure accuracy, the cycle time must typically be less than or equal to the

inverse of the fastest possible single-event rate in the system [17].

Since it only requires local communication, the scaling behavior of the SL algo-

rithm is significantly better than for the OSR and OSRPR algorithms. As a result,

it has been shown to be relatively efficient in parallel KMC simulations of a variety

of models of growth [17, 20] and island coarsening [21]. In addition, while it is not

exact, in simulations of a variety of models [17, 20, 21] it was found that unless the

processor size is extremely small (smaller than a “diffusion length”) or the cycle time
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Ghost
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Processor 1

B B

Processor
Boundary

Processor 2

Figure 3-4: Schematic diagram of strip decomposition for Np = 2. Each processor
domain is subdivided into A and B sublattices. Boundary and ghost regions for B
sublattice of processor 1 are also shown.

is too large, there is essentially perfect agreement between the results of parallel sim-

ulations using the SL algorithm and serial simulations. Furthermore, while the cycle

time must typically be smaller than the inverse of the fastest possible single-event

rate in the system [17], it has recently been shown [21] that in simulations of coars-

ening significantly longer cycle times can be used, thus decreasing the overhead due

to communications and increasing the parallel efficiency.
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Figure 3-5: Time evolution in the SL algorithm. Dashed lines correspond to selected
events, while the dashed line with an X corresponds to an event which is rejected
since it exceeds the cycle time τ .

3.3.4 Dynamic Boundary Allocation

One of the main factors controlling the efficiency of a parallel KMC algorithm is

the existence of boundary events, which can lead to “rollback” in the OSR algorithm

and can decrease the accuracy of semi-rigorous algorithms such as the SL algorithm. A

decrease in the number of boundary events can also significantly increase the optimal

value of G used in the OSR and OSRPR algorithms and thus reduce the communi-

cations overhead. In the case of the SL algorithm, such a decrease can also allow the

cycle time τ to be increased without sacrificing accuracy, thus increasing the parallel

efficiency.

As an example, edge-diffusion near a processor boundary can lead to a large

number of boundary events. Thus, if a processor or sublattice boundary passes near or

cuts through an island this can significantly reduce the parallel efficiency. Accordingly,
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Figure 3-6: Example of square decomposition with DBA for system size L = 512
(triangular lattice with periodic boundary conditions) and Np = 4.

we have developed a method for dynamic boundary allocation (DBA) [19] which keeps

the processor and sublattice boundaries as far away as possible from islands. In our

DBA method, we start with a spatial decomposition of the lattice using straight-line

boundaries and use the island center-of-mass to assign islands to each processor or

sublattice. We then use a “burning-algorithm” starting from each island boundary

to determine the processor and/or sublattice boundaries between islands.

Since atoms and islands can diffuse and/or grow during a simulation, atoms will

eventually move into the boundary region and as a result the parallel efficiency will

decrease. To overcome this, DBA is carried out regularly (e.g. several times per

sec of simulated time) to adjust the processor boundaries. Fig. 3-6 shows a typical

square decomposition with DBA for the case of island-coarsening for a system size

L = 512 with four processors. As can be seen, the processor boundaries are relatively
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Figure 3-7: Same as Fig. 3-6 but for strip decomposition into sublattices with Np = 4.

convoluted but remain well away from the island edges. A similar DBA decomposition

is shown in Fig. 3-7 for the case of sublattice strip decomposition with four processors.

We note that in this case there are 8 separate sublattices.

3.4 Parallel Efficiency Results

Before presenting our results for Ag/Ag(111) island-coarsening, we first present

our results for the parallel efficiencies of the OSR, OSRPR, and SL algorithm (with

and without DBA) as obtained from simulations of room-temperature Ag/Ag(111)

island coarsening (as described in more detail in Sec. 5.2) using our SLKMC-derived

database. We note that in each case the parallel efficiency (PE) was obtained using

the expression PE = tser/(Np tp) where tser is the time for a serial simulation of

the entire system (system size L = 1024), while tp is the time for the corresponding

parallel simulation where Np is the number of processors.

Tables 3.1 and 3.2 summarize our results for the overall parallel efficiency of the
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OSR, OSRPR and SL algorithms obtained from coarsening simulations with and

without DBA for Np = 2 and Np = 4. As can be seen, in contrast to previous

results using the OSR algorithm to study Ag/Ag(111) island nucleation and growth

at very low temperatures [16], in our room temperature simulations of Ag(111) island

coarsening, the PE of the OSR algorithm is generally low. In addition, due to the

increased cost for global communications as well as the increased ratio of the boundary

region to the processor “core” region, the PE decreases significantly with increasing

Np. Our results also indicate that including pseudo rollback (OSRPR algorithm)

leads to a significant increase in the parallel efficiency although for the case Np = 4

the PE still remains below 50%. However, in all cases we find that the SL algorithm

yields the highest PE due to its significantly reduced communication overhead and

relatively large number of KMC events carried out during a given cycle time τ .

We now discuss the effects of DBA on the PE as well as on the optimal value

of G for the OSR and OSRPR algorithms. We note that without DBA the optimal

value of G for the OSR and OSRPR algorithms is about 10 for Np = 2 and decreases

slightly with increasing Np. On the other hand, with DBA the optimal value of G

increases significantly, due to the significantly reduced number of boundary events.

However, despite the large increase in G, the improvement of the PE for the OSR

algorithm is only moderate due to the significant fraction of roll-back events fR. On

the other hand, the increase in the PE with DBA for the OSRPR algorithm is quite

noticeable since the fraction of roll-back events is significantly decreased.

We now consider the parallel efficiency of the SL algorithm both with and without

DBA. As already noted, in parallel KMC simulations of island nucleation and growth
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Table 3.1: Comparison of efficiencies of parallel algorithms with Np = 2 and L = 1024.
The cycle time τ used for the SL algorithm is given in parentheses. fR is the fraction
of roll-back events per cycle in the OSR and OSRPR algorithms.

No DBA DBA
Algorithm PE G (τ) fR PE G (τ) fR

OSR 0.33 9 0.27 0.43 161 0.21
OSRPR 0.47 11 0.04 0.58 161 0.02

SL 0.52 (10−7 s) − 0.74 (10−6 s) −

using the SL algorithm, the cycle time must typically be smaller than the inverse of

the fastest possible single-event rate in the system [17]. More recently it was found

[21] that in simulations of coarsening significantly longer cycle times can be used, thus

decreasing the overhead due to communications and increasing the parallel efficiency.

As shown in Fig. 3-8, by reducing the number of boundary events with DBA, the cycle

time can be made even longer without affecting the accuracy, thereby improving the

parallel efficiency significantly. Thus, we find (see Tables 3.1 and 3.2) that, due to

the relatively low communications overhead as well as the relatively long cycle times,

the PE for the SL algorithm is in general significantly higher than for the OSR and

OSRPR algorithms. Accordingly, in our parallel KMC simulations of Ag(111) island

coarsening over extended times, we have used the SL algorithm with Np = 4 and a

cycle time τ = 10−6 s. We note that with these parameters, the average number of

events carried out per cycle per processor (ne ' 76) was somewhat smaller than the

optimal value of G using the OSRPR algorithm.

We now consider the parallel efficiency of the SL algorithm both with and without

DBA. As already noted, in parallel KMC simulations of island nucleation and growth
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Table 3.2: Comparison of efficiencies of parallel algorithms with Np = 4 and L = 1024.

No DBA DBA
Algorithm PE G (τ) fR PE G (τ) fR

OSR 0.14 7 0.53 0.25 151 0.45
OSRPR 0.22 7 0.28 0.41 151 0.05

SL 0.39 (10−7 s) − 0.60 (10−6 s) −

using the SL algorithm, the cycle time must typically be smaller than the inverse of

the fastest possible single-event rate in the system [17]. More recently it was found

[21] that in simulations of coarsening significantly longer cycle times can be used, thus

decreasing the overhead due to communications and increasing the parallel efficiency.

As shown in Fig. 3-8, by reducing the number of boundary events with DBA, the cycle

time can be made even longer without affecting the accuracy, thereby improving the

parallel efficiency significantly. Thus, we find (see Tables 3.1and 3.2) that, due to

the relatively low communications overhead as well as the relatively long cycle times,

the PE for the SL algorithm is in general significantly higher than for the OSR and

OSRPR algorithms. Accordingly, in our parallel KMC simulations of Ag(111) island

coarsening over extended times, we have used the SL algorithm with Np = 4 and a

cycle time τ = 10−6 s. We note that with these parameters, the average number of

events carried out per cycle per processor (ne ' 76) was somewhat smaller than the

optimal value of G using the OSRPR algorithm.
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Figure 3-8: Comparison of results for the island density obtained from coarsening
simulations carried out using serial KMC with the corresponding results obtained
using the SL algorithm with DBA for Np = 4 and τ = 10−6 s.



Chapter 4

Parallel Kinetic Monte Carlo

Simulations of Ag(111) Island

Coarsening using a Large Database

4.1 Introduction

Coarsening, i.e., the increase of the characteristic feature size with time, is a well

known and ubiquitous phenomenon in many fields. In general, coarsening is driven by

the minimization of the surface or interface energy in a system. This leads to survival

of the fattest since large islands grow at the expense of small ones. Coarsening

plays an important role in a wide variety of processes ranging from grain growth in

alloys [22], to soot formation [23] to the formation of galaxies [24]. One example

of particular current interest is the coarsening of two-dimensional (2D) or three-

dimensional (3D) islands on a surface [25], since the coarsening process determines the

38
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nanoscale ordering and surface structure. As a result, island-coarsening has recently

been the subject of a large amount of experimental and theoretical work [25, 26, 27,

28, 29, 30, 31, 32, 33, 34]

Here we present the results of parallel kinetic Monte Carlo simulations of room-

temperature coarsening of Ag(111) clusters carried out using a large database ob-

tained via SLKMC simulations. We used the SL algorithm with DBA to extend the

length and time scale of the simulation.

4.2 KMC Database

Our database was obtained from self-learning kinetic Monte Carlo simulations of

Ag(111) island and cluster motion carried out at 300 K and 500 K and consists of two

parts. The first part is a large-cluster database which was obtained from SLKMC

simulations of islands of 19 atoms and larger, i.e. clusters typically consisting of a

central atom and at least two filled rings. For these large islands, we have found

that for homoepitaxy, cluster diffusion typically occurs via a series of single or multi-

atom moves of edge-atoms from fcc sites to fcc sites. Accordingly, in this case the

drag method was used for the associated saddle-point searches while all moves were

assumed to involve fcc sites.1

We note that for large islands we have found that these approximations are ad-

1In the drag method, the moving entity is dragged in very small steps toward the probable
(aimed) final state. The dragged atom is constrained in the direction toward the aimed position
while the other two degrees of freedom (perpendicular to this direction) and all degrees of the rest
of the atoms in the system are allowed to relax. The other atoms are thus free to participate in
the move, there by activating many-atom processes in which neighbor adatoms start to follow the
central leading atom. In connection with the SLKMC method, the central atom is always dragged
toward one of its vacant fcc sites.
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equate to describe island diffusion. In particular, the scaling of the island diffusion

coefficient with the island size was found to be in excellent agreement with previous

determinations [10]. Hence, the first part of the database was filled using studies of

the diffusion of large islands (i.e. periphery diffusion using drag method and fcc oc-

cupation). All activation energies were determined using interaction potentials based

on the embedded-atom method (EAM) as developed by Foiles et al [35].

While the third shell surrounding a central atom was included in the SLKMC sim-

ulations when building the large-cluster database, in our KMC simulations only the

first two shells were used, since the third shell surrounding a central atom has a rel-

atively weak effect on the activation barrier. Accordingly, the large cluster database

corresponds as shown in Fig. 2-2, to the first two shells surrounding an occupied site

and contains approximately 2302 configurations (not including symmetry) with ap-

proximately 4455 different “moves” or transitions including concerted moves. Fig. 4-1

shows some of the low-barrier moves included in this database.

The second part of the database was a small-cluster database obtained from

SLKMC simulations of islands of less than 19 atoms. In these small-island SLKMC

simulations, it was found earlier [11] that the three assumptions used for large sys-

tems (that all cluster mobility is due to periphery motion, that all atoms remain on

fcc sites, and that the drag method is sufficiently accurate) were unable to describe

mechanisms revealed by molecular dynamics (MD) simulations of small islands on

fcc(111). In particular, the most important mechanisms for diffusion of small islands

were found (by MD) to be translation and rotation of the whole island. Since the drag

method involving periphery atoms was unable to retrieve these two main mechanisms
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and others involving collective motion, we proceeded by calculating their barriers

using the nudged-elastic band (NEB) method [36, 37] and incorporating them into

the SLKMC database. The last hurdle was to overcome the hcp occupancy (seen in

MD simulations) since our SLKMC database involves only fcc occupancy. Using the

fact that when a small cluster occupies fcc sites, it moves as a whole to hcp sites

and then to fcc sites, we described a sequence of fcc-to-hcp and hcp-to-fcc moves as

a single fcc-fcc move with a modified prefactor determined using symmetry (degen-

eracy) factors [11]. Hence, the database for small clusters was built by hand using

NEB for mechanisms revealed by MD simulations and involving collective motion of

the islands, in addition to moves involving periphery atoms which were found using

the drag method attached to SLKMC.

Since the small-cluster database only involves clusters of less than 19 atoms, it only

involves configurations in which there is a central atom surrounded by two partially

filled rings and an empty third ring. We note that our small-cluster database contains

50 configurations (not including symmetry) with 252 different “moves“ or transitions

including concerted moves. Fig. 4-2 shows some typical small-cluster transitions which

were included in this database.

Thus, in order to find the possible transitions and their corresponding rates for

a given configuration corresponding to an occupied central site and the surrounding

rings, if the 3rd ring was unoccupied, we first searched the small cluster database

for a match for the 1st and 2nd rings. If no match was found, or if the 3rd ring

was not empty, we then searched the large cluster database for a match. We note
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(a) E
b
 = 0.047 eV (b) E

b
 = 0.076 eV

Figure 4-1: Two typical low-barrier moves in the large cluster database along with
the corresponding activation barriers Eb. Dark blue atom corresponds to the central
atom involved in the transition, while light blue and red atoms correspond to occupied
sites in the first and second rings, respectively. Third ring of atoms (orange) is also
shown.

that to save time, instead of doing a search through each database, we instead stored

the data in a two-dimensional matrix with 1st (2nd) indices corresponding to the

1st (2nd) rings. However, if no match was found for either of the two indices, we

then generated the (up to 5) additional symmetry representations for each of our

two configuration ring indices, in order to search for symmetry equivalents. Once

a configuration was identified as belonging to the database, the possible moves and

their respective barriers were added to our KMC lists. However, if after searching

both databases, the configuration was not identified as part of the database, then

nothing was done.

Fig. 4-3 shows a histogram of the energy barriers corresponding to the 4712 pro-

cesses (not including symmetry) in both databases. As can be seen, the distribution

is very wide, covering activation energies as small as a few hundredths of an eV and

as large as 0.8 eV. Assuming a prefactor of 1012 s−1 as was assumed in our sim-
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(b) E
b
 = 0.197 eV

(c) E
b
 = 0.350 eV (d) E

b
 = 0.350 eV

(a) E
b
 = 0.115 eV

Figure 4-2: Some typical concerted moves in the small cluster database. Color code
is the same as in Fig. 4-1.

ulations, this corresponds at room temperature to rates ranging from 0.036 s−1 to

approximately 8× 1010 s−1.

4.3 Results for Ag/Ag(111) Island Coarsening

In order to test our parallel KMC algorithm and also to apply the large database to

a realistic problem, we have carried out parallel KMC simulations of Ag(111) island

coarsening at room temperature. The initial configuration used in our coarsening

simulations (see Fig. 4-4 (a)) was generated by depositing θ = 0.1 ML at a deposition

rate of 1 ML/s at 145 K. We then carried out parallel KMC simulations of coarsening

at room temperature for 400 s using the SL algorithm with DBA and a cycle time of
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10−6 s with Np = 4. In order to avoid finite-size effects our simulations were carried

out using a relatively large lattice size L = 1024, while to have good statistics our

results were averaged over 10 runs. We note that if each run had been carried out

using serial KMC it would have taken almost 5 weeks. However, because of the use of

parallel KMC the whole set of runs took only 2 weeks. In order to study the coarsening

behavior, the island-size distribution Ns(θ, t) corresponding to the density of islands

of size s (where s is the number of atoms in an island) at time t was measured along

with the island density N =
∑
s≥2Ns, monomer density N1, and average island size

S =
∑
s≥2 sNs/N .

Before presenting our simulation results, we note that for the case of 2D clusters

on a surface, there are two particular limiting regimes - Ostwald ripening [38, 39] and

cluster diffusion and coalescence [26, 27, 28, 40, 30, 29, 31, 32, 33] - in which the

coarsening is dominated by diffusion. In the case of Ostwald ripening the islands are

assumed to be immobile, while the coarsening is mediated by a background density of

diffusing atoms such that islands bigger than a critical island-size grow while smaller

islands shrink or evaporate. This results in power-law growth of the average island

size S(t) ∼ t2n where n = 1/3 [41, 42]. However, in the case of cluster diffusion and

coalescence, if the cluster diffusion coefficient D(s) decays as a power-law with island-

size s, i.e. D(s) ∼ s−x, then n = 1/2(1 + x) [26]. In this case, three different limiting

cases are of particular interest [27, 28, 40, 30, 29, 31, 32] - cluster diffusion due to

periphery diffusion (x = 3/2, n = 1/5), cluster diffusion due to correlated evapora-

tion/condensation (x = 1, n = 1/4), and finally cluster diffusion due to uncorrelated

evaporation-condensation (x = 1/2, n = 1/3). Although asymptotically, one might
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Figure 4-4: Evolution of island morphology during room-temperature coarsening.
Pictures correspond to 256 × 256 portions of 1024× 1024 system.

expect one of these processes to dominate, at intermediate times all of these processes

may play a role.

Fig. 4-4 shows a typical example of the evolution of a portion of the system starting

from the initial configuration at t = 0 and ending with the final configuration at

t = 400 s. As can be seen, during the annealing process there is a dramatic change

in the island morphology while the average island size increases dramatically. In

particular, the system evolves from the small dendritic islands at t = 0 shown in

Fig. 4-4(a) to the much larger truncated-hexagonal islands at t = 400 s shown in

Fig. 4-4(f). These results for the island morphology are consistent with previous
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Figure 4-5: Average island size S(t) as function of time (open circles). Dashed line
corresponds to simulations without concerted motion. Inset shows log-log plot of
S(t)− S(0).

work using a simplified KMC model based on the same EAM potential for Ag, which

indicates that for this potential the A step-edge is energetically favored over the B

step edge [43].

Fig. 4-5 shows a log-log plot of the average island size S(t) as a function of time.

As can be seen, the effective slope increases with time while a fit to the late-time

region indicates a coarsening exponent n ' 0.47. However, if the initial island size

S(0) is subtracted, then as shown in the inset, after an initial transient period the
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Figure 4-6: Island and monomer (inset) densities as function of time.

slope appears to approach an asymptotic value (0.70) which is close to 2/3 and thus

corresponds to a coarsening exponent n ' 1/3. Also shown in Fig. 4-5 (dashed curve)

are results for the average island size starting with the same initial configurations but

without the inclusion of multi-atom or concerted events during coarsening. As can

be seen, while the asymptotic coarsening behavior is very similar, the average island

size is significantly smaller. Thus, the inclusion of complex concerted moves in our

KMC database significantly increases the average island size.

In order to better understand the asymptotic coarsening behavior we have also
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calculated the effective exponent neff(t) [44] using the expression,

neff(t) =
ln[S(tf )/S(ti)]

2 ln(tf/ti)
(4.1)

where tf/ti ' 2. Fig. 4-7 shows a plot of neff as a function of inverse average island

size 1/S. As can be seen, a linear fit to the data gives an asymptotic exponent

neff(∞) = 0.72, while a fit to the last 3 points gives neff(∞) = 0.66. This suggests

that the asymptotic exponent is indeed close to 1/3. We note that such an exponent

is consistent with both cluster diffusion due to uncorrelated evaporation-condensation

and Ostwald ripening. However, a detailed analysis of our simulations indicates that
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while there is some cluster diffusion and coalescence at early times, at later times

there is very little cluster diffusion. Instead, the coarsening appears to proceed via

evaporation-condensation, i.e. small clusters shrink while larger clusters grow. Thus,

in general our results are consistent with Ostwald ripening.

We note that in recent parallel KMC simulations of coarsening using a simplified

bond-counting model [21], Ostwald ripening was also observed, although in this case

an exponent of 1/3 was obtained directly from the late-time slope on a log-log plot

of average island size S(t) as function of annealing time t. In this case, it was also

noted that the effective value of the coarsening exponent n on such a plot did not

approach 1/3 until the monomer density was larger than the island density, while for

earlier times the effective exponent was close to 1/4. We note that such a condition

is reasonable, since only when the monomer density is significantly larger than the

island density can one think of the islands as being in quasi-equilibrium with a gas

of monomers.

In order to determine if such a late-time regime has been reached in our Ag/Ag(111)

island coarsening simulations, we have measured both the island and monomer den-

sities as a function of time as shown in Fig. 4-6. We note that the monomer hopping

rate in our simulations (Dm = 8 × 1010 s−1) is sufficiently large, while the adatom-

island detachment rate is significantly lower than Dm (Ddetach ' 2.2× 10−4Dm) and

thus, most of the time there are no monomers in the system, and instead the main

processes are edge-diffusion and island re-arrangement. Accordingly, to accurately

measure the monomer density, we instead measured the number of monomer hopping

events over an extended time-interval of 10−3 s, and then divided this number by
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Figure 4-8: Scaled island size distribution at four different times during coarsening.

the product of this time-interval and the monomer hopping rate. As can be seen

the monomer density is significantly lower than the island density, thus indicating

that we have not yet reached the asymptotic regime. However, the slower decay of

the monomer density indicates that at large enough times, the monomer density will

indeed be larger than the island density. These results also support our conclusion

that even though the asymptotic regime has not yet been reached, the coarsening is

due to evaporation-condensation mediated by monomer diffusion.

We now consider the time evolution of the scaled island-size distribution (ISD)
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given by [45],

f(s/S) = Ns(t)S
2/θ. (4.2)

Fig. 4-8 shows our results for the scaled ISD at t = 0, along with results at later times.

Somewhat surprisingly, we find that even though the average island size increases

significantly, the scaled ISD has very little dependence on time. This result is also

in strong contrast to our previous study of a bond-counting model in which the

asymptotic coarsening behavior was observed, while the scaled ISD was found to

broaden and become less sharply peaked in the asymptotic regime. We note that

this independence of the scaled ISD on time is consistent with recent experiments

on room-temperature annealing of Cu/Cu(100) islands [46] in which the scaled ISD

was also found not to change during the coarsening process. We believe that this

independence of the ISD on annealing time is again due to the fact that we have not

yet reached the asymptotic regime.

4.4 Analysis of energy barriers

In order to gain more insight into the dominant processes during coarsening we

have also analyzed the frequency of events as a function of energy barrier. Fig. 4-9

shows a histogram of the energy barriers for all events carried out during the first 100

s of coarsening. Somewhat surprisingly, we find that the energy barriers for the most

frequently selected processes are spread over a relatively wide range of values ranging

from 0.06 eV to 0.5 eV, while the barrier for the most frequently selected event is
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Figure 4-9: Histogram of energy barriers of selected events during the first 100 s of
coarsening. Histogram width is 0.01 eV. Inset shows the same results on a semilog
scale.

approximately 0.26 eV.

The inset of Fig. 4-9 shows the same data on a semi-log plot and indicates even

more clearly that the energy barriers for selected events corresponds to a broad distri-

bution. Fig. 4-10 shows the four most frequently selected moves other than monomer

diffusion (which has a barrier of 0.066 eV) during the first 100 s of simulation. As

can be seen the most frequently selected event corresponds to corner-rounding, with
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(c) E
b
 = 0.269 eV

(b) E
b
 = 0.260 eV(a) E

b
 = 0.070 eV

(d) E
b
 = 0.472 eV

Figure 4-10: Configurations and energy-barriers corresponding to the 4 most fre-
quently selected events during the first 100 s of coarsening.

a barrier of approximately 0.07 eV. However, the next two most frequently selected

events correspond to edge-diffusion (see Fig. 4-10 (b) and (c)) and have significantly

higher energy barriers (0.26 eV). We also note that detachment from a kink shown in

Fig. 4-10 (d) occurs quite frequently despite its relatively high energy barrier (0.472

eV). However, it also leads to rapid reattachment to the kink site (with a much lower

energy barrier of 0.253 eV) as shown in Fig. 4-10 (b). Thus, our results indicate

that a variety of different processes with a wide range of energy barriers may play an

important role in room-temperature island coarsening.
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4.5 Conclusion

As a test of the applicability of parallel algorithms to realistic simulations over

extended time- and length-scales, we have presented the results of kinetic Monte Carlo

simulations of the room-temperature coarsening of Ag(111) islands carried out using

a large database obtained via SLKMC simulations. Our results indicate that while

cluster diffusion and coalescence play a role for small clusters and at very early times,

at late time the coarsening proceeds via Ostwald ripening, i.e. large clusters grow

while small clusters evaporate. In addition, an asymptotic analysis of our results for

the average island-size as a function of time leads to a coarsening exponent n = 1/3

in good agreement with theoretical predictions for this case. By comparing with

simulations without concerted (multi-atom) moves, we also find that the inclusion of

such moves significantly increases the average island-size. Somewhat surprisingly we

also find that, while the average island-size increases significantly during coarsening,

the scaled island-size distribution does not change significantly.

In addition to presenting results for the coarsening of Ag(111) islands we have

also presented results for the efficiency and accuracy of a number of different parallel

algorithms. In particular, we have presented results for the optimistic synchronous

relaxation (OSR), optimistic synchronous relaxation with pseudo-rollback (OSRPR),

and semi-rigorous synchronous sublattice (SL) algorithms, as well as a number of

improvements such as dynamic boundary allocation (DBA). Because of the relatively

high temperature of our simulations, as well as the large range of energy barriers

present in the database ranging from 0.05 eV to 0.8 eV, developing an efficient al-
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gorithm for parallel KMC and/or SLKMC simulations was particularly challenging.

However, by using dynamic boundary allocation (DBA) to minimize the number of

boundary events, we have achieved significantly improved parallel efficiencies for the

OSRPR and SL algorithms. In particular, the optimal value of G increased signif-

icantly for both the OSR and OSRPR algorithms due to the significantly reduced

number of boundary events. However, there was a negligible improvement in the

parallel efficiency for the OSR algorithm due to the significant fraction of roll-back

events. Finally, we note that among the three parallel algorithms which we have

tested, the semi-rigorous SL algorithm with DBA led to the highest parallel efficien-

cies. As a result, we have obtained reasonable parallel efficiencies in our simulations

of room-temperature Ag(111) island coarsening using this algorithm for a moderate

number of processors (e.g. Np = 2 and Np = 4). Since the SL algorithm scales with

system size for fixed processor size, while the parallel efficiency increases with increas-

ing processor size, we expect that comparable and/or even larger parallel efficiencies

should be possible in parallel KMC and/or SLKMC simulations of larger systems

with larger numbers of processors.

In conclusion, we have carried out realistic parallel KMC simulations of Ag(111) is-

land coarsening using a large database obtained from SLKMC simulations and tested

the parallel performance of the OSR, OSRPR, and SL algorithms with and without

DBA. We find that the SL algorithm with DBA yields the highest parallel efficiency

due to the significantly increased cycle time, and also exhibits the best scaling behav-

ior as a function of the system size and number of processors. However, the parallel

efficiency for the OSRPR algorithm with DBA is also quite reasonable for a relatively
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small number of processors, suggesting that this algorithm may also be useful in a

variety of parallel KMC simulations. Finally, our coarsening simulation results indi-

cate that while cluster diffusion and coalescence play a role at early and intermediate

times, at late times the coarsening appears to proceed via Ostwald ripening.



Chapter 5

First-passage time approach to

kinetic Monte Carlo simulations of

metal(100) growth

5.1 Introduction

Kinetic Monte Carlo (KMC) is an extremely efficient method[7, 47, 48, 49, 6, 18]

to carry out non-equilibrium simulations of dynamical processes when the relevant

rates are known. As a result, the KMC method has been successfully used to carry

out simulations of a wide variety of dynamical processes over experimentally relevant

time- and length-scales. However, in some cases, such as when the relevant processes

have a wide range of activation energies, much of the simulation time can be ‘wasted’

on low-barrier repetitive events. As a result, in these cases direct KMC simulations

may not be sufficient to reach the time-scales of interest.

58
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A variety of approximate approaches to dealing with this “time-scale” prob-

lem have been suggested, including the level-set method[50] and other multi-scale

approaches.[51, 52, 53, 54] However, another approach is the use of first-passage-time

(FPT) algorithms. In this approach one avoids simulating the numerous diffusive hops

of atoms, and instead replaces them with an analytic expression for the first-passage

time to make a transition from one location to another.1 For example, the FPT

method has been used in Monte Carlo simulations of single-walker propagation,[56, 57]

as well as in simulations of annihilating continuum random walkers in two and three-

dimensions.[58] More recently a hybrid FPT method has been used to study the

irreversible growth of extended one-dimensional islands.[59] However, perhaps be-

cause of their complexity, FPT techniques have not been previously used to carry out

simulations of multilayer epitaxial growth.

Here we develop and apply a FPT method to accelerate KMC simulations of

multilayer epitaxial growth. We note that one of the primary motivations of this

work was the observation that, due to the extremely low-barrier for edge-diffusion in

Cu/Cu(100) growth, a great deal of computation time is ‘wasted’ on repetitive edge-

diffusion events even at relatively low temperatures. Accordingly, we have used our

method to carry out simulations of a variety of models of epitaxial growth with fast

edge-diffusion and a significant barrier for corner-rounding. These include a relatively

sophisticated effective-medium-theory (EMT) model of Cu/Cu(100) growth as well as

simpler irreversible growth models including a ‘generic’ model of irreversible fcc(100)

1We note that in the context of standard Monte Carlo simulations a similar method, the ‘absorb-
ing Markov chain method’ has also been developed, see Ref. [55]
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growth and a solid-on-solid model.

In our simulations, the process of (one-bond) edge diffusion is treated using the

FPT approach, while the remaining activated processes are treated with regular KMC.

In particular, the process of edge diffusion was first mapped onto a one-dimensional

random walk between two partially absorbing boundaries for which explicit expres-

sions for the mean FPT and absorption probabilities have already been derived.

[60, 44] For completeness, we have also derived explicit expressions for the condi-

tional first-passage time. In order to take into account the difference in hopping rate

at a corner and along a straight-edge, we have also derived analytical expressions

for the number of times an edge-diffuser reaches a boundary corresponding to a kink-

attachment site or a corner before being absorbed. Since an edge-diffuser can interact

with other atoms such as another edge-diffuser or a monomer approaching a step, we

have also included these interactions in our simulations. While this requires signif-

icant overhead, we have been able to achieve a significant speed-up in simulations

of multilayer epitaxial growth carried out using our FPT method. In addition, we

find that in the absence of significant detachment of edge-diffusers from step-edges,

there is excellent agreement between our FPT KMC simulations and regular KMC

simulations.

This chapter is organized as follows. In Sec. 5.2 we describe the models used in our

simulations. These include an effective medium theory (EMT) model of Cu/Cu(100)

growth as well as two irreversible growth models - a generic model of fcc (100) growth

and a solid-on-solid (SOS) model. In Sec. 5.3.2 we describe our FPT approach in detail

and also provide the corresponding analytical expressions for first passage time and
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absorption probabilities. A comparison between simulation results obtained using

FPT KMC and regular KMC is presented in Sec. 5.4, while a summary of our results

is presented in Sec. 5.5. Finally, in Appendix B.4 we derive corrections to the mean

FPT corresponding to the number of times a diffusing particle hits the boundaries

before it is absorbed. Explicit expressions for the conditional FPT are also derived

in Appendix B.3.

5.2 Model

In order to test our FPT KMC method, we have applied it to an EMT model

of Cu/Cu(100) growth with fast edge-diffusion which also takes into account the fcc

crystalline geometry. We note that this model has previously been used [20, 61]

to obtain excellent quantitative agreement with the experimental results of Ernst et

al [62] for Cu/Cu(100) multilayer growth at 160 and 200 K. More recently it has

also been used[63] to explain similar but slightly different experimental results for

Cu/Cu(100) growth obtained by Botez et al.[64]

In this model, the energy barriers for intralayer diffusion correspond to a param-

eterization of EMT barriers calculated by Jacobsen.[65] In particular, as shown in

Fig. 5-1, in the EMT model the energy barriers for hopping of an adatom on a flat

terrace are determined by its interactions with the five neighboring atoms labeled

A,B1, B2, C1, and C2. In particular, if an adatom (filled circle) has a lateral bond

with neighboring site i (where i = A,B1, B2, C1 and C2), then the occupation number

Ni for that site is 1 and otherwise it is zero. The corresponding energy barrier Eb
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Figure 5-1: Diagram showing neighboring sites affecting the energy barrier for in-
tralayer diffusion of a central atom (shaded circle) used in EMT model of Cu/Cu(100)
growth (see Eq. 5.1).

may then be calculated using the expression, [65]

Eb =
Ea
2

+
Ea
2

[δ(NA, 1) + δ(NC1 , 0)δ(NC2 , 0) (1 + δ(NB1 , 1)δ(NB2 , 1))] (5.1)

where Ea = 0.425 eV is the activation energy for monomer diffusion. We note that

this expression implies the existence of 4 possible different values for the intralayer

diffusion barrier: Ea/2 for atoms without an A neighbor but with one or both of

C1, C2, Ea for atoms with no neighbors, and also for atoms with an A neighbor and

one or both of C1, C2, 3Ea/2 for atoms with an A neighbor and no “B” or “C”

neighbors, and 2Ea for atoms with an A neighbor and both “B” neighbors and no

“C” neighbors. One of the consequence of Eq. 5.1 is the existence of “fast” edge-

diffusion (see Fig. 5-2) with a barrier (Ea/2) which is significantly smaller than that

for monomer diffusion. Another consequence is that dimer diffusion (via reptation)

is as fast as monomer diffusion. Once the activation barrier is obtained, the rate for

a given move is given by D = D0 e
−Eb/kBT where D0 = 3× 1011 sec−1. We note that

this value was determined by comparing the calculated antiphase diffraction factor
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at a coverage of 0.3 monolayer (ML) at T = 213 K and deposition rate F = 0.1

ML/min with the corresponding experimental results of Swan et al. [66] In all of our

simulations a deposition rate F = 1/120 ML/s - the same as in the experiments of

Ernst et al[62] - was assumed.

In order to simulate multilayer growth, the model described by Eq. 5.1 has been

modified in two ways.[20] First, to take into account the Ehrlich-Schwoebel (ES) bar-

rier, [67, 68] for all interlayer diffusion processes an additional ES barrier of 0.02 eV

is added to the value Eb given by Eq. 5.1. We note that this should be considered

to be an effective ES barrier, since both EMT calculations[69] and density-functional

theory (DFT) calculations[70] indicate that the ES barrier for interlayer diffusion at a

close-packed step-edge is significantly higher than at an open step-edge. The second

modification involves the barrier for corner-rounding (see Fig. 5-2(e). Since Eq. 5.1

implies that the barrier for an adatom at a corner along a step-edge of an island to

detach along the edge is given by Ea while the barrier to ‘re-attach” is very small

(Ea/2), this implies an effective corner-rounding barrier of 0.425 eV. However, in

Ref. [20] it was found to be necessary to assume a smaller effective corner-rounding

barrier (e.g. 0.35 eV) in order to explain the relatively large value of the growth

exponent β (β ' 1/2) found in the experiments of Ernst et al[62] at 200 K. Accord-

ingly, in our simulations, this smaller barrier was used. We note that in our model

this enhanced corner-rounding move is only allowed to occur for the case of in-plane

motion, i.e. no combined enhanced corner-rounding and interlayer diffusion moves

are included in our simulations. Finally, we note that in all the results presented here

the “corner-rounding” move was suppressed for dimers and trimers since this leads
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to enhanced dimer and trimer diffusion.

As in previous simulations of metal(100) growth, also included in our model is

downward funneling (DF),[71] for atoms deposited at non-four-fold hollow sites. In

KMC simulations with the usual DF and no short-range attraction, atoms are as-

sumed to be deposited only at the underlying fcc(100) lattice sites, each of which

corresponds to a ‘capture zone’ for deposition.[72, 73] In particular, if a selected de-

position site is a four-fold hollow site, then the deposited atom remains where it is

immediately after deposition. However, if one or more of the four-fold hollow ‘support’

atoms is missing, then the atom ‘cascades’ randomly to one of the missing support

sites. This process is repeated until a four-fold hollow site is found. As in Ref. [20],

in the simulations presented here, the deposition process is similar, but with a small

modification to take into account the effects of uphill funneling as determined from

molecular dynamics simulations.[73] In particular, if an atom lands at a site which is

not a four-fold hollow site but for which one or more of the missing support sites are

themselves four-fold hollow sites, then one of these four-fold hollow sites is randomly

selected. Otherwise, the deposition process is the same as for DF.

Fig 5-2 shows some of the important intralayer diffusion moves in our EMT model,

including monomer-diffusion (Fig. 5-2(a)), singly-bonded edge-diffusion (Fig. 5-2(b)),

double-bond edge-diffusion (Fig. 5-2(c)), corner-rounding (Fig. 5-2(e)), kink detach-

ment (Fig. 5-2(f)), and kink re-attachment (Fig. 5-2(d)). As can be seen, the bar-

riers for singly-bonded edge-diffusion, doubly-bonded edge-diffusion and kink re-

attachment are very low (e.g. Ea/2 = 0.2125 eV) while the barrier for kink de-
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Figure 5-2: Diagram showing some important intralayer moves in EMT Cu(100)
model along with corresponding activation barriers. (a) monomer diffusion (b) single-
bond edge diffusion and detachment (c) two-bond edge diffusion (d) monomer attach-
ment at a step-edge (e) corner-rounding (Ec = 0.35 eV) (f) kink detachment along
an edge.
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Figure 5-3: Pathways for edge- and interlayer diffusion in EMT Cu(100) model. Bar-
riers for each process are as follows: (1) Ea/2 (2) Ec (3) 3Ea/2 + EES (4) 3Ea/2 (5)
Ea + EES (6) Ea (7) Ea/2 + EES

tachment along an edge (see Fig. 5-2(f)) is the same as for monomer diffusion. Ac-

cordingly, we expect that both singly-bonded and doubly-bonded edge-diffusion will

lead to fast repetitive events which can significantly slow down regular KMC simu-

lations. However, because it turns out that two-bond edge-diffusion has almost no

effect on either the surface roughness or the surface morphology, and also because the

focus here is on applying the FPT method to accelerate single-bond edge-diffusion,

to save computational time the rate of two-bond edge-diffusion has been reduced by

a factor of 10 in all of our EMT model simulations. Fig. 5-3 shows all the possible

different absorption pathways for a singly-bonded edge-diffusing atom in our EMT

model along with the corresponding barriers. In addition to kink-attachment (1) and

corner-rounding (2), these include detachment perpendicular to an edge with (3) or
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without (4) interlayer diffusion, detachment parallel to an edge with (5) and without

(6) interlayer diffusion, and edge-diffusion over a step-edge (7).

In addition to the Cu/Cu(100) growth simulations carried out using the EMT

model described above, we have also carried FPT KMC simulations of two simpler

irreversible growth models. These include a “generic” fcc model with DF and irre-

versible island formation (no detachment) as well as an even simpler solid-on-solid

(SOS) model which is similar to the “generic” fcc model but which does not take into

account the fcc geometry. In order to mimic the effects of DF, in the SOS model any

atom deposited at a step-edge was assumed to “funnel” down randomly to one of the

lower nearest-neighbor sites. For both of these irreversible growth models, the depo-

sition flux, and the rates of monomer interlayer and intralayer diffusion, and edge-

and corner-diffusion were assumed to be the same as for the EMT model.

5.3 Application of FPT method to KMC

5.3.1 First-Passage Time for 1D Random Walker

Before discussing the application of our FPT method to KMC simulations, we

first present the relevant analytical expressions for the FPT of a 1D random walker

diffusing on the interval [0, L] with partial reflection and absorption at each boundary

(see Fig. 5-4). Away from the boundaries the particle has an equal probability of

moving to the right or to the left at each time-step. However, we assume that when

the walker arrives at site 0 (L), it is absorbed with probability β0 (βL) and reflected
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Figure 5-4: Schematic showing 1D random walker diffusing between partially absorb-
ing boundaries at 0 and L with absorption probabilities β0 and βL respectively.

with probability 1 − β0 (1 − βL) respectively. The probability P0(x, L, η0, ηL) that a

walker initially at site x will be absorbed at 0 is then given by,[60, 44]

P0(x, L, η0, ηL) =
L− x+ ηL
L+ η0 + ηL

(5.2)

where η0 = (1−β0)/β0 and ηL = (1−βL)/βL, while the probability that the walker will

be absorbed at site L is given by PL(x, L, η0, ηL) = 1 − P0(x, L, η0, ηL). In addition,

the average number of hops n(x) or mean FPT before a walker initially at site x is

absorbed at either of the boundaries is given by,[74, 60]

n(x) =

[
L(L+ 2ηL)(x+ η0)

(L+ η0 + ηL)
− x2

]
(5.3)

While we will primarily make use of Eq. 5.3, it is also interesting to consider

the conditional first-passage time n0(x) (nL(x)) corresponding to the average number

of hops before a particle is absorbed at site 0 (L). We note that the conditional

first-passage times n0(x) and nL(x) must satisfy the condition,

n(x) = P0(x, L, η0, ηL) n0(x) + PL(x, L, η0, ηL) nL(x) (5.4)
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We also note that expressions for the conditional FPT’s n0(x) and nL(x) were pre-

sented in Ref. [60]. However, perhaps due to an error in the boundary conditions,

these expressions are not correct and do not satisfy Eq. 5.4. Accordingly, in Ap-

pendix B.3 we derive and present correct expressions for the conditional first passage

times n0(x) and nL(x) for a 1D random walker diffusing between two partially ab-

sorbing boundaries.

5.3.2 Implementation of FPT approach

In order to speed-up our KMC simulations, we have replaced the detailed moves

of a singly-bonded atom diffusing along an island-edge, by a calculation of its overall

escape time for “absorption”. We note that the remaining diffusive moves, for which

the barriers are typically significantly higher than for edge-diffusion, are treated as

regular KMC moves. Accordingly, we map the diffusion of an edge-atom to a 1D ran-

dom walk with partially absorbing boundaries with the appropriate values of x, L, β0

and βL. For example, for the case shown in Fig. 5-5, with kink-attachment and corner-

rounding at the boundaries, one has x = 0, L = 3, β0 = 1/2, and βL = Dc/(De +Dc)

where De and Dc are the rates of edge-diffusion and corner-rounding respectively.

Assuming that the rate for edge-hopping in a given direction (De) is the same for

all sites along the edge including the boundary sites, and ignoring the time required

for the last “absorption” move from the boundary, then the mean first passage time

τmfp(x) for an edge-diffuser at site x to “escape” from the edge is given by

τmfp(x) = n(x)/(2De) (5.5)
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Figure 5-5: Example of edge-diffusion with two possible absorption pathways: at-
tachment to a kink with rate De, and corner-rounding with rate Dc.

where n(x) is given by Eq. 5.3 while 1/(2De) is the average time for each individual

hop along the edge. However, as discussed in the next subsection, additional terms

must be included to take into account the boundary site corrections. These corrections

turn out to be important to obtain good agreement with regular KMC simulations.

Corrections to first passage time

In deriving Eq. 5.5, we have assumed that the total edge-hopping rate (2De) for

an edge-diffuser is the same for all sites including the boundary. However, this is

not generally true, since the total hopping rate at a corner is given by De + Dc. As

a result corrections to Eq. 5.5 must be included. In order to do so, one first needs

to calculate the number of times an edge-atom arrives at a corner site before being

absorbed. Let us denote by hα1(x, α2) the number of times (excluding the last time if

α1 = α2) that a walker initially at position x arrives at boundary site α2 before being

absorbed at site α1 (where α1, α2 = 0 or L). Then, assuming that the edge-atom was

absorbed at boundary site α, the corresponding correction time ∆tα(x) to the mean
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FPT given in Eq. 5.5 is given by,

∆tα(x) = δ0 hα(x, 0) + δL hα(x, L) + βα/Dα (5.6)

where Dα is the rate for absorption at the boundary, δα = βα
Dα
− 1

2De
corresponds to

the correction time for each hop away from a boundary at site α, and the last term

takes into account the additional time required for the last hop over the boundary.

The mean correction-time ∆tav(x) is then obtained by averaging over the possibilities

that the edge-diffuser is absorbed at site 0 and site L and is given by,

∆tav(x) = P0(x)∆t0(x) + PL(x)∆tL(x) (5.7)

where ∆t0(x) and ∆tL(x) are given in Eq. 5.6.

By carrying out an exact enumeration of all possible walks (see Appendix B.4),

we have derived analytical expressions for h0(x, 0), h0(x, L), hL(x, 0), and hL(x, L). In

particular we find,

hL(x, 0) =
η0(η0 + 1)

L+ η0 + ηL

L− x+ ηL
x+ η0

(5.8)

hL(x, L) = ηL

[
L− 1 + η0

L+ η0 + ηL

]
(5.9)

(5.10)

The corresponding results for h0(x, 0) and h0(x, L) may be obtained by interchanging
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η0 and ηL and replacing x with L−x in Eq. 5.9 and Eq. 5.8 respectively. By combining

Eq. 5.5 and Eq. 5.7 we obtain our final result for the mean first-passage time,

tmfp(x) = τmfp(x) + ∆tav(x) (5.11)

We note that while the distribution of waiting times for a single KMC event

corresponds to an exponential distribution (with mean equal to the inverse of the event

rate) the distribution of first-passage times (with mean equal to the mean first-passage

time) is expected to be somewhat sharper, since it corresponds to an “average” over

a large number of elementary events. However, a general calculation of the full first-

passage-time distribution is extremely difficult. Accordingly, we have considered the

two extreme possibilities: (i) a delta-function distribution, e.g. tfp(x) = tmfp(x)

and (ii) an exponential distribution with mean equal to the mean first-passage time,

e.g. tfp(x) = −ln(ξ) tmfp(x) where ξ is a uniform random number between 0 and

1. Somewhat surprisingly, we found that there was no difference in the simulation

results obtained using the different distributions. Accordingly, in most of our FPT

KMC simulations we have used the assumption of a delta-function distribution.

Interactions between edge-diffuser and other atoms

While the FPT expressions above give the escape time for an isolated edge-diffuser,

an edge-atom can also interact with other atoms before escaping. Examples include

the interaction of an edge-atom with another edge-atom on the same edge, with

another edge-atom on a step-edge two lattice units away, and with a monomer ap-
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proaching the same edge either from above or below the step. We first consider the

interaction between an edge-atom and another edge-atom on the same edge (atoms B

& C in Fig. 5-6). Since it is difficult to determine an exact expression for the distri-

bution of collision-times and locations for two edge-diffusers along an edge in order to

approximately include such an interaction in our simulations, for each edge-diffuser

we have treated any neighboring edge-diffuser as a stationary kink site (see sites C2

and B1 in Fig. 5-6). However, to take into account the fact that the relative diffusion

rate is twice the rate of a single edge-diffuser, the calculated FPT for collision of

each edge-diffuser with the other is divided by a factor of 2. Similarly, a monomer

approaching a step-edge on the lower terrace one step away from the step-edge, is

also treated as a kink site (Fig. 5-6, sites A2 and C1 ). However, in this case the

edge-diffuser is first moved to a random site along the edge before calculating the

FPT to attach to the monomer. This is a good approximation for the models studied

here since the rate of edge-diffusion is significantly higher than the monomer hopping

rate as well as the (per site) deposition rate. For the SOS model this “equilibration”

is particularly important if the monomer arrives from the upper step. In this case the

edge diffuser is first moved to a random site along the edge before either performing

interlayer diffusion or calculating the effective DF due to knockout for a freshly de-

posited atom at a step-edge. We note that while the inclusion of such approximate

equilibration processes only affects the surface roughness very weakly, it has a strong

effect on the surface morphology, and is therefore important to include especially in

SOS models.
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Figure 5-6: Examples of edge-atoms (striped circles) and their corresponding absorp-
tion sites (dashed lines) including interactions with monomers, e.g. absorption sites
for atom A are A1 and A2.
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Figure 5-7: Two interacting step-edges. Edge-atoms between sites I and II are treated
with regular KMC, while edge-atoms outside this region (e.g. atom A) are treated
using FPT KMC.
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Figure 5-8: Schematic showing example of interaction sites (empty circles) associated
with edge-diffuser (striped circle).

Finally, we consider the interaction between two edge-diffusers which are on edges

which are two steps away as shown in Fig. 5-7. In this case, regular KMC is used

when both edge-atoms are in the “common” region (in between I & II) as shown in

Fig. 5-7. Including this process is particularly important in order to properly include

island coalescence in our simulations. Otherwise, FPT KMC is used with sites I and

II treated as kink sites.

In order to take these interactions into account we associate each lattice site with

a list of edge-diffusers it can affect. Accordingly, every time there is a change at the

site all affected edge diffusers are updated. We note that all sites one step away from

the edge as well as both absorption sites are linked with the edge diffuser in this way.

In the case of the fcc model, all potential edge-diffuser support sites one step away

from the edge (see Fig. 5-8) are also linked with the edge diffusing atom in order to

properly take into account the effects of steps on “absorption”.
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Time-based KMC

In order to implement our FPT approach we have used a time-based rather than

a rate-based method. Thus, in addition to maintaining a list of first-passage times for

all edge-diffusers, after each event we also update the total rate for all regular KMC

moves RKMC =
∑
niRi (where Ri is the rate for a process of type i, and ni is the

number of processes of this type). This rate is then used to calculate the time before

the next regular KMC event given by ∆tKMC = −ln(ξ)/RKMC where ξ is a uniform

random number between 0 and 1. This time is then compared with the time of the

earliest FPT event (selected using another binary tree). If the event type corresponds

to a regular KMC event, then the specific event is selected randomly from one of the

possible events of this type. (We note that for the Cu/Cu(100) growth model there

are 8 possible barriers and/or event-types corresponding to a binary tree of order 3.)

After each event the lists containing the number and location of all regular KMC

processes of each type are updated along with any changes to the neighborhood (e.g.

absorption sites, length of the edge and type of boundaries) of all FPT atoms. We

note that in the case of an FPT move, Eq. 5.2 is used to determine to which absorption

site the edge-diffuser will “escape”.

5.4 Results

We first consider the application of our FPT KMC method to the irreversible

fcc(100) growth model described in Sec. 5.2. We note that in these simulations a

system size L = 256 was used, while the rates for monomer interlayer and intralayer
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diffusion, single-bond edge-diffusion, and corner-rounding were assumed to be the

same as for the EMT model (see Table 5.1) at the corresponding temperature. Figs. 5-

9(a) and (b) show a comparison between regular KMC and FPT KMC results for

the surface roughness or “width” (e.g. r.m.s. height fluctuation) as a function of

film thickness obtained at T = 200 K and 250 K, while a comparison between the

corresponding morphologies at T = 200 K and a coverage of 20 ML is shown in

Fig. 5-10. As can be seen, there is excellent agreement between the KMC and FPT

KMC simulation results. Similar good agreement (not shown) has also been obtained

for the lateral correlation length rc (corresponding to the first zero-crossing of the

circularly-averaged height-height correlation function) as well as for the circularly-

averaged height-height correlation function G(r). In addition (see Table 5.2), the

FPT KMC simulations at 200 (250) K are approximately 48 (75) times faster than

the corresponding KMC simulations. However, due to the fact that the rate of corner

diffusion also increases with increasing temperature, the increase in the speed-up

factor from 200 to 250 K is not as large as the increase in the rate of edge-diffusion.

We now consider the SOS model described in Sec. 5.2. As for the generic fcc

model, the rates of monomer interlayer and intralayer diffusion, single-bond edge-

diffusion, and corner-rounding were assumed to be the same as for the EMT model

of Cu/Cu(100) growth at the corresponding temperature. Figs. 5-9(c) and (d) show

a comparison between the roughness obtained from regular KMC and FPT KMC

simulations of this model at T = 200 K and 250 K while Figs. 5-10(c) and (d) show

the corresponding morphologies at a coverage of 30 ML at T = 200 K. As can be
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Figure 5-9: Comparison of regular KMC results (symbols) and FPT KMC results
(lines) for surface roughness obtained from simulations of irreversible growth models
at 200 K and 250 K.
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(c) KMC (SOS) (d) FPT (SOS)

(a) KMC (fcc) (b) FPT (fcc)

Figure 5-10: Comparison of surface morphology (L = 256) obtained in regular KMC
(a) and FPT KMC (b) simulations of “generic” fcc model at coverage of 20 ML and
regular KMC (c) and FPT KMC (d) simulations of SOS model at 30 ML.
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seen, there is excellent agreement for both the surface roughness and the surface

morphology. In addition, as for the fcc growth model, good agreement (not shown)

has also been obtained for the lateral correlation length. We note that in this case

(see Table 5.2) the speed-up factors are not quite as large as for the generic fcc growth

model, but also increase with increasing temperature.

Table 5.1: Parameters used for “generic” fcc(100) and SOS models. Here D is the
total rate for monomer diffusion, while De and Dc are the rates or edge-diffusion and
corner-diffusion respectively.

Temperature D/F De/F Dc/F
200 K 2.8× 103 1.6× 108 5.5× 104

250 K 4.0× 105 1.9× 109 3.2× 106

We now consider the application of our FPT KMC method to simulations of

Cu/Cu(100) growth using our EMT model. We first consider growth at 200 K, since

at this temperature there is negligible one-bond and two-bond detachment. As can

be seen in Fig. 5-11(a), there is very good agreement between the FPT KMC results

(line) and regular KMC results (symbols) for the surface roughness. As shown in

Fig. 5-11(b), similarly good agreement has also been obtained for the lateral correla-

tion length. As indicated by Figs. 5-12(a) and (b), there is also very good agreement

between the morphology obtained using FPT KMC and that obtained using regular

KMC. In addition, in this case the use of FPT leads to a speed-up of approximately

32 (see Table 5.2) over regular KMC.2 We note that as discussed in Sec. II, in both

our regular KMC and FPT KMC simulations of the EMT model, the rate of two-bond

2In particular, while a single FPT KMC simulation takes 2.3 hours on the Ohio Supercomputer
Center (OSC)’s Glenn cluster, the corresponding regular KMC simulation takes over 3 days.
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(a) KMC (b) FPT

Figure 5-12: Comparison of surface morphology (L = 256) obtained in regular KMC
(a) and FPT KMC (b) simulations of EMT model of Cu/Cu(100) growth at coverage
of 60 ML.

edge-diffusion was reduced by a factor of 10 to save computer time, since two-bond

edge-diffusion has almost no effect on the surface morphology. However, for com-

parison we have also carried out simulations at 200 K with two-bond edge-diffusion

completely suppressed. While this has little effect on the surface morphology, in this

case the speed-up due to FPT is even larger (approximately 60).

Finally, we consider our EMT model of Cu/Cu(100) growth at 250 K. As can

be seen in Fig. 5-13 there is again very good agreement between our FPT KMC

simulations and regular KMC simulations. However, due to the increased rates of

double-bond edge-diffusion and corner-rounding, in this case the speed-up factor (see

Table II) is not quite as large as at 200 K.
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Figure 5-13: Comparison of regular KMC (symbols) and FPT KMC (lines) results for
surface roughness obtained in simulations using EMT model of Cu/Cu(100) growth
at 250 K.

5.5 Discussion

Motivated by the observation that in KMC simulations of growth models with fast

edge-diffusion, a great deal of computer time is wasted on repetitive edge-diffusion

events, we have developed a first-passage-time (FPT) method for accelerating KMC

simulations. We note that while our method applies strictly only to irreversible growth

(e.g. no detachment of monomers from islands) because of the relatively low detach-

ment rate we have successfully applied it to models of reversible Cu/Cu(100) growth

at 200 and 250 K. In our method, the detailed computation of edge-diffusion events

is replaced by a calculation of the mean first-passage-time for an edge-diffuser to be

‘absorbed’, either by attaching to another atom near the edge, or by corner-rounding.
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Table 5.2: Speed-up factors (compared to regular KMC) obtained in FPT KMC
simulations of multilayer growth at T = 200 and 250 K using different models with
Cu parameters.

Model 200 K 250 K
fcc 48 75

SOS 27 58
EMT 32 24

Accordingly, we have mapped the process of edge-diffusion to a 1D random walk be-

tween two partially absorbing boundaries. The corresponding FPT expressions for an

isolated edge-diffuser were then obtained by using known expressions for the escape

probabilities and mean first-passage-times for a 1D random walker, and also including

corrections due to the difference in hopping rate near a corner and along an edge.

By using these expressions and also taking into account the interactions between

an edge-diffuser and other atoms, we have obtained excellent agreement between

our FPT KMC simulations and regular KMC simulations in both the submonolayer

and multilayer regime for a variety of different growth models. These include an

EMT model of Cu/Cu(100) growth as well as simpler models of irreversible growth

including a generic fcc model and an SOS model. In addition, despite the additional

computational overhead required to keep track of the interactions between an edge-

diffuser and other atoms, we have found a significant speed-up in our FPT KMC

simulations compared to regular KMC simulations. For example, in our EMT model

simulations of Cu/Cu(100) growth at 200 and 250 K, we have obtained speed-up

factors of 32 and 24 respectively. We note that the decrease in the acceleration factor

as the temperature is increased from 200 K to 250 K is due to the increase in both

the rate of corner-rounding and kink-detachment with increasing temperature.
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In FPT KMC simulations of a generic fcc model with the same parameters for

monomer diffusion, edge-diffusion, corner-rounding, and interlayer diffusion as in our

EMT model, we have obtained even larger speed-up factors (e.g. 50 at 200 K and

75 at 250 K). Similar speed-up factors have also been obtained for the corresponding

SOS model at 200 and 250 K. The larger acceleration obtained for these models is in

part due to the fact that compared to the EMT model, in these models edge-diffusion

plays an even more dominant role. Similarly, the increase in the FPT acceleration

factor with increasing temperature is due to the increase in the rate of edge-diffusion.

However, the barrier for corner-rounding also plays an important role. In particular,

we expect that even larger acceleration factors may be obtained in the case of a

larger corner-rounding barrier. As a test of this, we have carried out additional FPT

KMC simulations of our generic fcc model at T = 250 K using a barrier for corner

rounding which is 0.1 eV higher than the value (0.35 eV) used in the EMT model of

Cu/Cu(100) growth. In this case, due to the higher barrier for corner rounding the

speed-up factor was almost doubled from 75 to 140.

In addition to deriving expressions for the appropriate absorption probabilities and

mean first-passage time as discussed in Sec. 5.3.2, we have also derived expressions for

the conditional first-passage time (see Appendix B.3). However, we found that the

use of a mean first-passage time rather than a conditional first-passage time (CFPT)

provides significantly better agreement with KMC simulations. In addition, we find

that CFPT KMC simulations are several times slower than the corresponding FPT

KMC simulations, due at least in part to the more complicated expressions required

to calculate the conditional FPT. Accordingly, here we have focused on FPT KMC
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simulations and have not presented any conditional FPT KMC results.

We note that the inclusion of interactions between an edge-diffuser and other

atoms turns out to be crucial in using our FPT method to obtain accurate results.

This includes the interaction with other edge-diffusers on the step-edge or a nearby

step-edge, and with monomers approaching the step-edge from above and below. In

particular, the interaction with another edge-diffuser was included by treating the

other edge-diffuser as a ‘kink’ atom and dividing the FPT by a factor of two to

take into account the relative motion of both edge-diffusers. We have also assumed

that by the time another atom approaches a step-edge on which there is already an

edge-diffuser, this edge-diffuser is already ‘equilibrated’. This is done by randomly re-

locating the edge-diffuser along the edge before re-calculating the corresponding FPT.

While this ‘equilibration’ assumption does not strongly affect the surface roughness,

it turns out to be crucial in obtaining good agreement with the surface morphology

observed in regular KMC simulations.

Since the FPT method requires significant overhead, in both our KMC and FPT

KMC simulations we have taken care to maximize the efficiency. For example, in both

cases binary trees were used to select the next event. In addition, in both KMC and

FPT KMC simulations the regular KMC events were organized into lists of different

types in order to minimize the size of the corresponding binary tree. Nevertheless,

significant additional overhead was still required in our FPT KMC simulations to

keep track of the interactions between an edge-diffuser and other atoms. If in the

future a more efficient method is devised to take these interactions into account then

this could significantly increase the speed-up possible via FPT KMC simulations.



87

Since the implementation of our FPT KMC method is also relatively complex, it

is of interest to compare it with simpler although perhaps less accurate methods. For

example, one possible method to accelerate simulations with fast repetitive events, is

to artificially reduce the rate of these events by a factor of R where R < 1. However,

while this can lead to a speed-up of up to a factor of 1/R, care must still be taken

to ensure that detailed balance is maintained. For the models considered here which

have a relatively short range of interaction, this can be done by using ‘edge-reduction’,

i.e. reducing the rate of edge-diffusion for all singly-bonded edge-diffusers which are

more than one hop away from a kink or other attachment site.3

Fig. 5-14 shows a comparison between the results of regular KMC simulations

using the EMT model at T = 200 K and KMC simulations carried out using different

edge-reduction factors ranging from R = 1.0 (no reduction) to R = 0.01. Also

shown for comparison are results obtained using FPT KMC. As can be seen, while

there is good agreement between the KMC and FPT KMC simulations, the results

obtained with R = 0.1 and 0.01 deviate significantly from the KMC results at large

thicknesses. In addition, the FPT KMC simulations are approximately 4 times faster

than the edge-reduction simulations with R = 0.1 and are also approximately as

fast as the edge-reduction simulations with R = 0.01. Thus our FPT KMC method

provides a more accurate and efficient way to accelerate KMC simulations with fast

3In previous work,[20] a similar comparison between KMC simulations with and without ‘edge-
reduction’ was also made. However, in this case detailed balance was not preserved since the
hopping rate for edge-atoms one step away from a kink was reduced, while the hopping rate for
kink-detachment was not reduced. This leads to even larger deviations from regular KMC results
than is shown here, due to the fact that detailed balance is not preserved.
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edge-diffusion.

Finally, we note that one possible limitation of our method involves the issue

of detachment of an edge-diffuser from a step-edge. In particular, while the effects

of detachment are partially taken into account in our method (since the process of

detachment is simulated using regular KMC) the expressions for the FPT of an edge-

diffuser to be absorbed at a nearby kink or corner site are based on the assumption

of negligible detachment. However, in the presence of detachment the correct mean

FPT will be somewhat less than predicted by Eq. 5.3. Therefore, in order to carry out

FPT KMC simulations with significant detachment it would be desirable to extend

our FPT expressions to take detachment into account.



Chapter 6

Effects of Strain on Island

Morphology and Size Distribution

in Irreversible Submonolayer

Growth

6.1 Introduction

Heteroepitaxial growth is an important process [75, 76, 77] for the fabrication of

nanostructures ranging from quantum wires[78] to quantum dots.[79] In many cases,

the existence of strain due to lattice mismatch can lead to the formation of three-

dimensional (3D) clusters, [80, 81] whose shape can depend on a variety of factors.

A classic example of such 3D clusters are the (105)-facet “hut” clusters observed

90
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in growth of Si/Ge(001). By analyzing the strain energy of a 3D island with a

rectangular base, Tersoff and Tromp[82] have investigated the effects of biaxial strain

on the equilibrium shape and aspect ratio of dislocation-free 3D islands. In particular,

they demonstrated the existence of a shape transition such that for islands smaller

than a critical size the islands are “square”, while for larger sizes the islands are

elongated with a selected width which is determined by the competition between the

strain and surface energies. In more recent work[83, 84] the effects of anisotropic

strain on the equilibrium shape of 2D islands have also been studied.

While there have been extensive studies of the effects of strain on the equilibrium

shape of 2D and 3D islands, there has been less work on the effects of strain on the

island-shape during growth. Recently, Steinbrecher et al [85] have studied the effects

of strain on the fractal growth of individual islands in the absence of island-relaxation.

In their model, the elastic interaction was approximated by a 1/r3 interaction between

the depositing monomer and the atoms of the growing island, which corresponds

to the leading term in a multipole expansion of the strain energy.[86] In this case

they found that the fractal dimension of the growing DLA cluster increased with

strain. More recently, the strain-dependence of the island-density during irreversible

submonolayer growth without island relaxation was studied[87, 88] using a model

in which the elastic interaction was approximated by a 1/r3 interaction between all

atoms on the surface. In this case the strain was found to lead to an increase in

the island-density as well as the critical coverage for nucleation. Earlier, Ratsch et

al [89] studied the dependence of the island-size distribution on strain in a reversible

model of heteroepitaxial submonolayer growth. However, the effects of strain on the
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island-shape and scaled island-size distribution in the presence of relaxation have not

been studied for the case of irreversible growth. This is of particular interest since in

recent work on InAs/GaAs(100) growth, it has been suggested[90] that in the early

stages of growth, e.g. before the transition from 2D to 3D islands, the island-size

distribution is the same as that for irreversible growth without strain, and thus serves

as a template for 3D island formation.

Here we present the results of kinetic Monte Carlo simulations of 2D submonolayer

growth with strain for the case of irreversible island growth (corresponding to a critical

island size of 1) with rapid island relaxation due to edge- and corner-diffusion. We

note that in contrast to previous studies of the effects of strain on the equilibrium

island-shape,[82, 83, 84] the island-shape in our model is entirely determined by

kinetic factors, and so there is no selected island-width as predicted by equilibrium

calculations. In addition to studying the island-shape, including the scaled island-

width and island-length distributions, we also present results for the scaled island-size

distribution as a function of strain. Results for the dependence of the island-density

on deposition flux are also presented.

We note that in our simulations we have approximated the elastic interaction

due to strain by an isotropic 1/r3 interaction.[85, 87, 88] However, unlike Refs. [85,

87, 88] in which it has been assumed that the strength of the 1/r3 interaction is

the same for all adatoms, in most of our simulations we have only included the

strain interaction between island-atoms, while there is no strain interaction between

monomers and other adatoms. This is motivated by the fact that the latter interaction

is in general weaker than the interaction between island-atoms and may be either
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attractive or repulsive depending on the system.[91] However, for comparison we

have also carried out some simulations in which all adatoms, including both island-

atoms and monomers, interact with the same 1/r3 interaction, and similar results

were obtained.

6.2 Model

In order to study the effects of strain on the island morphology and island-size

distribution in irreversible growth, we have carried out kinetic Monte Carlo simu-

lations of a simple model of submonolayer growth which includes irreversible island

nucleation as well as rapid island relaxation via edge- and corner-diffusion. In our

model, atoms are deposited randomly on a square lattice with deposition rate F and

diffuse (hop) to nearest-neighbor sites with diffusion rate D where D = D0 e
−Ea/kBT

in the absence of strain. In order to allow for island-relaxation, edge-diffusion of

singly-bonded atoms along island edges with rate De in the absence of strain, and

around corners with rate Dc in the absence of strain was also included. In most of our

simulations we have assumed Dc = De = D corresponding to rapid island relaxation.

However, for comparison simulations were also carried out with both higher and lower

rates of edge- and corner-diffusion. In order to eliminate dimer and trimer diffusion

we have suppressed corner rounding for dimers and trimers.

In order to include the effects of strain in our simulations, we have approximated

the strain energy by a repulsive 1/r3 interaction. We note that a similar approxi-

mation has been used in previous work[85, 88] and corresponds to the leading term
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in a multipole expansion of the strain energy.[86] Thus, we may write for the strain

energy,

Est(γ) =
∑
ij

γ

r3
ij

(6.1)

where γ characterizes the strength of the elastic interaction and the sum is over

all island adatoms, e.g. all adatoms with one or more nearest-neighbor in-plane

bonds. We note that in contrast to previous work[85, 87, 88] the interaction due

to strain between monomers (corresponding to adatoms with no nearest-neighbor in-

plane bonds) and other adatoms is not included since this interaction is in general

weaker than the interaction between island-atoms and may be either attractive or

repulsive depending on the system.[91]

In order to include the effects of strain on the energy barriers for diffusion in our

simulations, we have assumed that the shift in the energy barrier for hopping of an

atom from site i to site j may be approximated as,

∆Eb
ij(γ) =

1

2
(Est

j (γ)− Est
i (γ)) (6.2)

where Est
i (γ) is the interaction due to strain between the atom at site i and all

other island-atoms. This corresponds to an estimate of the strain-induced shift in the

saddle-point energy which is a linear interpolation between the corresponding energy

shift at the initial site and at the final site. We note that such an interpolation is

not exact, since the effect of strain at a saddle-point may be different from that at a

binding site.[92, 93] However, we expect that it should be a reasonable approximation
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for the “local” effects of the strain-induced interaction between an island-atom and

other nearby island-atoms.1In this connection, we note that in previous work by

Fichthorn and Scheffler [16] it has been found that Eq. 6.2 is a good approximation

for the “long-range” interactions between adatoms in Ag on 1-ML-Ag/Pt(111) growth.

We also note that Eq. 6.2 implies the existence of an “attachment barrier” due to

strain for a monomer to attach to another monomer or an existing island, and also

implies a tendency for diffusing edge-atoms to diffuse “away” from other island-atoms.

Thus, in our model the rate for an atom to hop from site i to a nearest-neighbor

or corner diffusion site j is given by,

Dij(γ) = Dij(0) exp[−(Est
j − Est

i )/2kBT ] (6.3)

where Dij(0) is the corresponding rate in the absence of strain. As already noted, in

most of our simulations we have assumed Dij(0) = De = Dc = D. For simplicity,

we have also assumed that atoms deposited on top of existing islands do not feel the

strain interaction and that there is no barrier to interlayer diffusion at an island-edge.

Since the hopping rate of an atom may be different at every lattice site and may

also depend on direction, we have used a binary tree[18] to keep track of the rates for

all processes and selected kinetic Monte Carlo moves. In our algorithm, the rates for

nearest-neighbor and next-nearest-neighbor hops for all sites are stored in the leaves

(nodes of the lowest level) of a binary tree. Since the strain energy of an atom depends

1Here we assume that the effect of strain on the activation barrier for an isolated monomer is
already taken into account in the value of D used in our simulations
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on its position relative to all other atoms on the substrate, whenever an atom moves

its rate has to be re-calculated while the rates of all atoms affected by this move also

have to be updated. To minimize the computation time only interactions up to a

range of 25 lattice units were included during the update after each move. However,

periodically the rates for all events in the system were re-calculated without any

cutoff in order to eliminate any possible accumulation of errors. The interaction of

an atom with all of its periodic images was included during this re-calculation by the

inclusion of pre-calculated Ewald sums for each possible displacement vector within

the lattice.[94]

Our simulations were carried out using a system of size L = 256 with periodic

boundary conditions in both spatial directions, Simulations of submonolayer island

growth were carried out using values of D/F ranging from 105 − 107. Values of the

strain energy parameter α = γ/2kBT ranging from α = 0 (no strain) to α = 2.0 were

used and our results were averaged over 30 runs.

6.3 Results

6.3.1 Monomer and island densities

We first consider the effects of strain on the island and monomer densities. Fig. 6-1

shows a log-log plot of the monomer density N1 and island density N as a function of

coverage θ for D/F = 3×106 and three different values of the strain parameter α. As

can be seen, with increasing strain α both the island and monomer density increase. In
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Figure 6-1: Monomer density N1 and island density N as a function of coverage θ
with D/F = 3× 106 for α = 0.0, 1.0, and 2.0.

addition, the range of the nucleation regime (corresponding to coverages for which the

monomer density is larger than the island density) is pushed towards higher coverages

with increasing strain. These effects are primarily due to the strain-induced barrier

to dimer formation and are similar to what has been observed in previous simulations

of irreversible growth with strain in the absence of island relaxation.[85] Fig. 2 shows

a plot of the peak island-density as a function of D/F for different values of α. As

expected, in the absence of strain (α = 0) the value of χ is close to but slightly lower

than 1/3. However, with increasing strain, the effective value of χ decreases. Again,

these results are due primarily to the strain-induced barrier to dimer nucleation and
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Figure 6-2: Peak island density as a function of D/F for α = 0.0, 1.0, and 2.0.

are similar to what has been observed in previous simulations of irreversible growth

with strain in the absence of island relaxation.[85]

6.3.2 Island morphology

We now consider the effects of strain on the island morphology. Fig. 6-3 shows

typical pictures of the island shapes both with and without strain obtained in our

simulations for the same parameters as in Fig. 6-1 (D/F = 3 × 106, α = 0 − 2).

As can be seen, in the absence of strain (Fig. 6-3(a), α = 0) but in the presence of

relaxation due to edge-and-corner diffusion, square islands are obtained. In contrast,
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Figure 6-3: Island morphology for coverage θ = 0.2 with D/F = 3 × 106 for strains
(a) α = 0.0 (b) α = 1.0 (c) α = 2.0 (d) D/F = 3× 107 for strain α = 2.0

in the presence of sufficient strain, the island-size is smaller due to the increased

island-density while the island-shape becomes significantly more rectangular. Also

shown in Fig. 6-3(d) is a picture for a somewhat larger value of D/F (3× 107) with

α = 2. In this case the average island is somewhat larger than in Fig. 6-3 (c). We

also note that while the largest islands tend to be rectangular, the smaller islands are

a mixture of square and rectangular islands.

In order to quantify the island morphology we have measured the average aspect

ratio 〈Ar〉, corresponding to the average over all islands of the ratio of the range in the
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long (x or y) direction to the range in the short direction. Fig. 6-4 shows typical results

for the average aspect ratio as a function of strain at coverage θ = 0.2 for different

values of D/F . As can be seen, the average aspect ratio increases significantly with

increasing strain. Interestingly, even for the case of zero strain (α = 0) the average

aspect ratio is slightly higher than 1 due to fluctuations. Fig. 6-4 also indicates that,

in general, the aspect ratio also increases with increasing D/F for fixed De as well

as with increasing relaxation rate De for fixed D/F for De ≤ D. Also shown in

Fig. 6-4 are results for De = 10D with D/F = 3.0× 106 (open diamonds). As can be

seen in this case, due to the very high rate of edge-diffusion, the island aspect-ratio

appears to have saturated, i.e. increasing the rate of edge diffusion does not lead to

an increased aspect ratio.

In order to quantify more precisely the island morphology we have also measured

the aspect ratio distribution P (Ar) = N(Ar)/N where N(Ar) is the density of islands

with aspect ratio Ar and N is the total island density. Fig. 6-5 shows a comparison

of the aspect ratio distributions both with and without strain at θ = 0.2 with D/F =

3 × 106. Due to the equivalence between the x and y directions, both distributions

are symmetric about Ar = 1. We note that even for the case without strain (α = 0),

the aspect ratio distribution has a finite width due to fluctuations. However, with

increasing strain the peak at Ar = 1 decreases significantly while the width of the

aspect ratio distribution increases, thus indicating a significant increase in the island

anisotropy.

In order to further quantify the island morphology we have also measured the
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Figure 6-4: Average aspect ratio 〈Ar〉 for D/F = 3 × 106 (diamonds) and 3 × 107

(circles) at coverage θ = 0.2 as a function of strain α.

scaled island-width and scaled island-length distributions. As already noted, in pre-

vious work on the equilibrium island-shape for 2D islands[83, 84] and 3D islands[82]

in the presence of strain, it was found that for islands larger than a critical size, the

islands will be rectangular with a selected width which is determined by a competi-

tion between the surface energy of an island and the strain energy. In contrast, in our

non-equilibrium simulations the surface or lateral-bond energy does not play a direct

role, and as a result fluctuations are likely to be significantly more important.

We first consider the scaled island-width distribution, where the island-width is

defined as the smallest of the lengths corresponding to the range of the island in the
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Figure 6-5: Aspect ratio distribution P (Ar) for coverage θ = 0.2 at D/F = 3 × 106

for strains (a) α = 0.0, 1.0, and 2.0.

x and y directions. Assuming scaling with the average island-width W , we may write

Nw(θ) = A(θ,W )fw(w/W ) where Nw(θ) is the density of islands with width w, and

fw(w/W ) is the island-width distribution scaling function. Using this definition for

the scaling function one may write,

N(θ) = A(θ,W )
∑
w

fw(w/W ) ' A W
∫ ∞

0
fw(u)du (6.4)

Assuming the normalization
∫∞

0 fw(u)du = 1 implies A(θ,W ) = N(θ)/W . We thus
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obtain the general scaling form for the island-width distribution,

fw(w/W ) = WNw(θ)/N(θ) (6.5)

Fig. 6-6 shows typical results for the scaled island-width distribution fw(w/W )

both with and without strain over a range of coverages up to θ = 0.2. As can be

seen in both cases there is excellent scaling, i.e. the scaled island-width distribution

is independent of coverage. However, in contrast to the predictions of Tersoff and

Tromp[82] for the equilibrium island shape, the scaled island-width distribution is

relatively broad even in the presence of strain. In addition, the scaled island-width

distribution depends only weakly on strain, i.e. the scaled island-width distribution

is slightly less sharply peaked in the presence of strain than in the absence of strain.

We have also carried out similar measurements for the scaled island-length dis-

tribution. However, in this case we found that the distribution does not scale with

the average island-length L although it does scale with the peak island length lpk.

Accordingly, one may write for the island-length distribution scaling function,

fl(l/lpk) = lpkNl(θ)/N(θ) (6.6)

As shown in Fig. 6-7, there is again excellent scaling as a function of coverage. How-

ever, in this case the peak of the scaled island-length distribution is significantly lower

in the presence of strain than in the absence of strain.
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Figure 6-6: Scaled island-width distribution fw(w/W ) for different coverages with
D/F = 3× 106, (a) α = 0 (b) α = 1.0
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Figure 6-7: Scaled island-length distribution fl(l/lpk) for different coverages with
D/F = 3× 106, (a) α = 0 (b) α = 1.0
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Figure 6-8: Scaled island-size distribution with D/F = 3×107, α = 2.0 and coverages
ranging from θ = 0.05 to θ = 0.2.

6.3.3 Island-size distribution

We now consider the effects of strain on the scaled island-size distribution (ISD).

This is of particular interest because it has recently been suggested[90] that the 2D

island-size distribution in the early stages of heteroepitaxial growth may play an

important role in determining the 3D distribution.

Fig. 6-8 shows the scaled ISD for the case of large strain (α = 2.0, D/F = 3×107)

over a range of coverages ranging from 0.05 to 0.2 (solid curve). As can be seen, there

is relatively good scaling as a function of coverage. For comparison the scaled ISD in
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Figure 6-9: Scaled island-size distribution with D/F = 3 × 107 at coverage θ = 0.1
for α = 0,1.0 and 2.0.

the absence of strain is also included (open symbols) at coverage θ = 0.1. As can be

seen, there is very little difference between the strained and unstrained results. We

note however, that due to enhanced coalescence the strained ISD has a slightly longer

tail than the ISD without strain. In addition, with increasing coverage, the scaled

ISD in the presence of strain develops a small peak for small scaled island-size. We

attribute this to the delayed nucleation and growth of small islands due to strain.

The dependence of the scaled ISD on strain at fixed coverage (θ = 0.1) is shown in

Fig. 6-9. As can be seen, there is only a relatively weak dependence of the scaled ISD

on strain. We thus conclude that in the case of irreversible growth with fast island
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relaxation the scaled ISD is only weakly affected by the presence of strain.

6.4 Conclusion

Using an isotropic 1/r3 approximation for the strain interaction, we have studied

the effects of strain on the island morphology and size distribution for the case of

irreversible island growth with rapid island relaxation. Consistent with previous

results obtained in the absence of island relaxation,[87] we find that due to the increase

in the barriers to dimer formation and island growth, the nucleation regime increases

with increasing strain while the island and monomer densities also increase. However,

only a small decrease in the effective island-density scaling exponent χ is observed.

Our results also indicate that in the presence of sufficient strain and relaxation due to

edge-diffusion, the island-shape becomes anisotropic. In particular, the average island

aspect ratio 〈Ar〉 increases approximately linearly with strain. For a fixed strain, the

anisotropy also increases with increasing edge-diffusion but eventually saturates for

large edge-diffusion.

In contrast to previous work on the equilibrium island shape in the presence of

strain,[82] we find that in the case of irreversible growth with rapid island relaxation,

fluctuations play an important role. As a result there is a relatively broad distribution

of anisotropies as well as a broad distribution of island-widths. We have also derived

general scaling forms for the island-width and island-length distributions. In particu-

lar, the scaled island-width distribution appears to be independent of coverage and to

depend only weakly on strain. For the case of the island-length distribution we found
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that the distribution does not scale with the average island-length although it does

scale with the peak island-length. The resulting scaled island-length distribution is

again independent of coverage but depends weakly on the amount of strain.

We have also studied the dependence of the scaled island-size distribution on

strain. Somewhat surprisingly, we find that the scaled ISD is only weakly affected

by the presence of strain. This is consistent with recent experimental results for the

scaled ISD for GaAs/GaAs(001) and InAs/GaAs(001)[95, 96] in which no difference

was found between the homoepitaxial and heteroepitaxial cases. We note, however,

that in these experiments the resulting scaled ISD is somewhat different from that

obtained here due to the anisotropy of the underlying substrate. In the future, it

would be interesting to study the effects of strain on the ISD in the case of reversible

growth, since in this case the effects of fluctuations are likely to be significantly

reduced.

Finally, we note that the values of the strain energy considered in our simulations

are quite large compared, for example, to typical strain energies in metal heteroepi-

taxial growth. As an example, for the case of Cu/Ni(100) submonolayer growth, in

which strain relief via island ramification was observed for the case of reversible island

growth, a strain interaction energy of approximately 0.015 eV per island atom was

estimated[97] which corresponds roughly to α = γ/2kBT ' 0.1. Since for the values

of D/F used in our simulations (see Fig. 6-4) the island anisotropy is relatively low

for this value of α (but increases significantly with D/F ) this suggests that in order

to observe large island anisotropy due to strain for the case of irreversible growth,

relatively large values of D/F are required.



Chapter 7

Conclusions and Future Work

In this Thesis we have developed and applied several different methods to ex-

tend the length and time scales of kinetic Monte Carlo (KMC) simulations of non-

equilibrium processes such as thin film growth and island coarsening. This includes

the development of parallel algorithms for kinetic Monte Carlo, as well as the devel-

opment of a first-passage time (FPT) approach to KMC simulations of metal (100)

multilayer growth. In addition, we have applied a variety of methods to increase the

accuracy of kinetic Monte Carlo simulations. This includes the use of a large database

(obtained from self-learning KMC simulations) which includes concerted small-cluster

processes in addition to a large number of simpler processes, as well as the inclusion

of long-range interactions in KMC simulations of heteroepitaxial submonolayer island

growth. Using these methods we have carried out realistic simulations of a variety of

different processes related to thin-film growth and island coarsening.

We now consider some possible extensions to the work presented here. One im-

portant possible extension is the development of an “off-lattice” version KMC. The
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development of such an off-lattice KMC method would greatly extend the applicability

of SLKMC to amorphous systems as well as heteroepitaxial growth. Another impor-

tant extension is the derivation of FPT expressions which explicitly take detachment

into account, since this would allow us to accurately accelerate KMC simulations at

higher temperatures when detachment plays a more important role. Finally, we note

that recently Aqua et al [98] have a developed a more accurate method to calculate

the strain energy in submonolayer growth. Therefore, it would be of interest to com-

pare results obtained using this method with those obtained here. In addition, since

reversibility becomes important at higher temperatures, it would also be of interest

to study the effects of strain on submonolayer island growth in the case of reversible

island growth. Since such simulations are likely to be quite challenging, the exten-

sion of our parallel KMC methods to handle long-range interactions would also be of

interest.



Appendix A

Ewald Sums

In various situations we require the energy of infinite periodic two-dimensional

arrays of particles interaction via the R−3 dipole potential. In this section we show

the derivation of the formula we used in our KMC simulations of 2D submonolayer

growth with strain for the case of irreversible island growth as shown in [94]. We

note that this derivation is for Ewald sums for the case of dipole-dipole interaction

in two-dimensional systems with periodicity in both the directions.

The sum of the interaction energy of one tagged dipole with all other parallel

diploes in a periodic array converges quite slowly, roughly as

2π
∫ Rmax

dr
r

r3
∼ R−1

max (A.1)

where Rmax is the distance from the tagged dipole where the sum is truncated. There-

fore, it is important to recast the sum in a form in which convergence is enhanced. In
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the limit that the number of images become infinite, the energy per image becomes

E =
1

2

∞∑
i,j=1

ν̄(rij) (A.2)

and we are left with the problem of evaluating ν̄(rij).

ν̄(rij) =
∞∑

nxny=−∞

′ [
(xij − nxlx)2 + (yij − nyly)2

]−3/2
(A.3)

where xij = xi−xj and nx and ny are number of images in x and y directions. where

lx and ly are dimensions of the unit cell in x and y directions. The prime indicates

that the nx = ny = 0 term should be omitted when rij = 0. Since the particle does

not interact with its own image derivation for the case of rij = 0 is omitted. When

rij 6= 0 there is not restriction on the sum over nx and ny in Eq. A.3. By factoring ly

we can rewrite Eq. A.3 as

ν(rij) =
1

l3y

∞∑
nxny=−∞

(xij − nxlx
ly

)2

+

(
yij
ly
− ny

)2
−3/2

(A.4)

The sum over ny can be written as

1

l3y

∞∑
ny=−∞

[t21 + (t2 − ny)2]−3/2 =
∞∑

n=−∞
f(n) (A.5)

where xij−lxny
ly

= t1 and yij
ly

= t2. Using poisson sum formula equation(A.13) we
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we can rewrite the above equation as

∞∑
n=−∞

f(n) =
∞∑

k=−∞

∫ ∞
−∞

[t21 + (t2 − x)2]−3/2e−2πikxdx (A.6)

By replacing t2 − x with t3 and dx with −dt3 we can rewrite the above equation as

∞∑
n=−∞

f(n) =
∞∑

k=−∞

∫ ∞
−∞

[t21 + t23]−3/2e−2πik(t2−t3)dt3 =
∞∑

k=−∞
e−2πikt2

∫ ∞
−∞

[t21 + t23]−3/2e2πikt3dt3

∞∑
n=−∞

f(n) =
∞∑

k=−∞
e−2πikt22

∫ ∞
0

(t21 + t23)−3/2cos(2πkt3)dt3, (A.7)

Integral with sin(2πkx) is equal to zero since its integrand is odd. Using equation(??)

we get ∫ ∞
0

cos(2πkt3)

(t21 + t23)3/2
=

2πk

t1
K1(2πkt1) = fk(t1) (A.8)

Where K1 modified bessel Function of second kind of 1st order. After substituting

this back in the equation(A.7) we get

∞∑
n=−∞

f(n) = 2
∞∑
k=1

cos(2πk
yij
ly

)fk(|
xij − lxny

ly
|) k 6= 0

+
2(

xij−lxnx
ly

)2 k = 0

While the term with sin(2πkx) is equal to zero, since the sum is symmetric on the

either side of k = 0. Finally, substituting every thing back in equation(A.3) ν(rij) is

ν(rij) =
2

lyl2x

∞∑
nx=−∞

1(
nx − xij

lx

)2
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+
2

l3y

∞∑
m=1

∞∑
nx=−∞

cos(2πm
yij
ly

)fm

(∣∣∣∣∣xij − nxlxly

∣∣∣∣∣
)

xij 6= 0 (A.9)

If xij = 0 and yij 6= 0 then x and y are switched in the above equation. The second

term in the above equation is rapidly convergent. The first term which corresponds

to the case of m = 0 in the Poisson sum, is Taylor expanded in the variable t =

xij
lx
, (t < 1)

∞∑
nx=−∞

(nx − t)−2 = t−2 +
∞∑

nx=1

[(nx − t)−2 + (nx + t)−2]

= t−2 +
∞∑

nx=1

[
2

n2
x

+
6t2

n4
x

+

{
(nx − t)−2 + (nx + t)−2 − 2

n2
x

− 6t2

n4
x

}]

= t−2 +
π2

3
+ t2

π4

15
+

∞∑
nx=1

2t4(5n2
x − 3t2)

n4
x(nx − t)2(nx + t)2

(A.10)

In the last step, the leading tow non-vanishing terms were summed in closed form and

the remainder, which decays as n−6
x , is left as a sum over nx. Since we have assumed

that xij 6= 0 and t < 1, there is not problem with vanishing denominator in Eq. A.10

Our final expression for ν̄(rij) for xij 6= 0 is

ν̄(rij) =
2

l2xly

t−2 +
π2

3
+ t2

π4

15
+

∞∑
nx=1

2t4(5n2
x − 3t2)

n4
x(nx − t)2(nx + t)2


+

2

l3y

∞∑
m=1

∞∑
nx=−∞

cos(2πm
yij
ly

)fm

(∣∣∣∣∣xij − nxlxly

∣∣∣∣∣
)

xij 6= 0, (A.11)
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Proof of Eq. A.8

The poisson sum formula is a special case of the general result

∞∑
−∞

f(x+ n) =
∞∑
−∞

e−2πikx
∫ ∞
−∞

f(x′)e−2πikx′
dx′, (A.12)

with x = 0 gives poisson summation Rule

∞∑
−∞

f(n) =
∞∑
−∞

∫ ∞
−∞

f(x′)e−2πikx′
dx′ (A.13)

If f(n) = (t2 + n2)−3/2, using poission sum formula (A.13) we can write

∞∑
n=−∞

f(n) =
∞∑

k=−∞

∫ ∞
−∞

(t2 + x2)−3/2e−2πikxdx (A.14)

using eix = cos(x) + i sin(x) and after simplification (integral with sin(2πkx) is equal

to zero since its integrand is odd) we get

∞∑
n=−∞

f(n) = 2
∞∑

k=−∞

∫ ∞
0

(t2 + x2)−3/2 cos(2πkx)dx, (A.15)

using the expression for Kν , modifed Bessel Function of second kind of νth order[99]

Kν(xz) =
Γ(ν + 1

2
)(2z)ν

xνΓ(1
2
)

∫ ∞
0

cos(xt)

(t2 + z2)ν+ 1
2

dt, (A.16)
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and substituing ν = 1 we get

∫ ∞
0

cos(2πkt)

(t2 + z2)3/2
dt =

2πk

z
K1(2πkz) (A.17)

and for the case of k = 0 integral in the Eq. A.15 is equal to 2
t2

After substituting above expressions in the equation (A.15) we get

∞∑
n=−∞

(t2 + n2)3/2 =


∑∞
k=−∞

4πk
t
K1(2πkt) k 6= 0

2
t2

k = 0

(A.18)



Appendix B

Derivation of Expressions used in

FPT KMC

B.1 Mean First Passage Time

Consider a random walk (see Fig. 5-4) on the interval [0, L] with partial reflection

and partial absorption at each boundary. When a walker hits either x = 0 or x = L,

walker is either reflected with probability ρ (= 1− β0) or ω (= 1− βL) back to x = 1

and x = L− 1 or absorbed with probability 1− ρ or 1− ω. Mean first passage time

t(x) satisfies recursive relation,

t(x) =
1

2
(t(x+ 1) + δt) +

1

2
(t(x− 1) + δt) (B.1)

with boundary conditions,

t(0) = ρ+ ρt(1) (B.2)
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t(L) = ω + ωt(L− 1) (B.3)

where δt is time for individual hop and δt = 1. Using eq B.1

t(1) =
1

2
t(2) +

1

2
t(0) + 1 (B.4)

Substituting for t(1) by using Eq. B.2 and after rearranging we get

t(2) =
2− ρ
ρ

t(0)− 4 (B.5)

Similarly by using Eq. B.1, Eq. B.2 and Eq. B.5 we can write

t(3) =
3− 2ρ

ρ
t(0) + 9 (B.6)

Accordingly, we can write expressions for t(4), t(5) and so on in terms of t(0). Finally,

by observation, we can write a general expressions for first passage times as a function

x in terms of t(0).

t(x) =
(
1 +

(1− ρ
ρ

)
x
)
t(0)− x2 (B.7)

Now substituting x = L and L− 1 in Eq. B.7 we get,

t(L) =
(
1 +

(1− ρ
ρ

)
L
)
t(0)− L2 (B.8)

t(L− 1) =
(
1 +

(1− ρ
ρ

)
(L− 1)

)
t(0)− (L− 1)2 (B.9)
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Using Eq. B.3, Eq. B.8 and Eq. B.9 and solving for t(0) we get

t(0) =

Lρ
1−ρ(L+ 2ω

1−ω )

L+ ρ
1−ρ + ω

1−ω
(B.10)

Substituting t(0) from Eq. B.10 in Eq. B.7 and after rearranging and rewriting η0 =

ρ/(1− ρ) and ηL = ω/(1− ω), the expression for mean first passage time (Eq. 5.3) is

given as,

t(x) =
L(L+ 2ηL)(x+ η0)

L+ η0 + ηL
− x2 (B.11)

B.2 Absorption Probabilities

Pk(x) (= Pk(x, L, η0, ηL)) is the probability of absorption at site k given that

walker is initially at site x. Similarly P0(x) (= P0(x, L, η0, ηL)) is the absorption

probability that walker is absorbed at x = 0 while PL(x) (= PL(x, L, η0, ηL)) is the

the absorption probability that walker is absorbed at x = L if walker is initially at

site x. Absorption probability to the left satisfies recursive relation,

P0(x) =
1

2
P0(x+ 1) +

1

2
P0(x− 1) (B.12)

With boundary conditions,

P0(0) = (1− ρ) + ρP0(1) (B.13)

P0(L) = ωP0(L− 1) (B.14)
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Using Eq. B.12 and Eq. B.13 we can write

P0(2) = P0(0)
(2− ρ

ρ

)
− 2

(1− ρ
ρ

)
(B.15)

Using Eq. B.12, Eq. B.13 and Eq. B.15 we can write

P0(3) = P0(0)
(3− 2ρ

ρ

)
− 3

(1− ρ
ρ

)
(B.16)

Similarly, we can also write expressions for P0(4), P0(5) and so on in terms of P0(0).

Finally, from these expressions we can write a general expression for P0(x) in terms

of P0(0) as,

P0(x) =
(x− (x− 1)ρ

ρ

)
P0(0)− x

(1− ρ
ρ

)
(B.17)

Using Eq. B.13 and expressions for P0(L) and P0(L−1) (from Eq. B.17) we can solve

for P0(0), which is given as,

P0(0) =
L+ ω

1−ω
L+ ω

1−ω + ρ
1−ρ

(B.18)

substituting P0(0) in Eq. B.17 and after simplification and rewriting η0 = ρ/(1 − ρ)

and ηL = ω/(1− ω) we get the expression for P0(x)(Eq. 5.2),

P0(x) =
L− x+ ηL
L+ η0 + ηL

(B.19)
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Since P0(x) + PL(x) = 1. Absorption probability to the right boundary is given as

PL(x) =
x+ η0

L+ η0 + ηL
(B.20)

B.3 Expression for Conditional First Passage Time

t(x) = P0(x)t0(x) + PL(x)tL(x) (B.21)

Where t0(x) and tL(x) are conditional mean times for the walker to be absorbed at

either at x = 0 or at x = L respectively if the walker is at x initially. We define the

quantities m0(x) = P0(x) t0(x) and mL(x) = PL(x) tL(x) which satisfy the recursive

relation,

1

2
m0(x+ 1)−m0(x) +

1

2
m0(x− 1) = −P0(x) (B.22)

With boundary conditions

m0(1) =
1

ρ
m0(0)− P0(0) (B.23)

m0(L− 1) =
1

ω
m0(L)− P0(L) (B.24)

. Using Eq. B.22 and Eq. B.23 we can write

m0(2) = −2P0(1) +
(2− ρ

ρ

)
m0(0)− 2P0(0) (B.25)

1

2
m0(3)−m0(2) +

1

2
m0(1) = −P0(2) (B.26)
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Using Eq. B.22, B.23 and B.25 we get

m0(3) =
(3− 2ρ

ρ

)
m0(0)− 4P0(1)− 2P0(2)− 3P0(0) (B.27)

Similarly we can also derive expression for m0(4) as,

m0(4) =
(4− 3ρ

ρ

)
m0(0)− 6P0(1)− 4P0(2)− 2P0(2)− 4P0(0) (B.28)

Using Eq. B.23 Eq. B.25 Eq. B.27 and Eq. B.28 we can write a general equation

m0(x) =
(x− (x− 1)ρ

ρ

)
m0(0)− 2

x−1∑
k=1

(x− k)P0(k)− xP0(0) (B.29)

Using Eq. B.24 and expressions for m0(L) and m0(L−1) in terms of m0(0) (obtained

using Eq. B.29) we can solve for m0
0, which is given as,

m0
0 =

ρ

1− ρ

(
L+ 2ω

1−ω

)
(L2 + 3( ω

1−ω )L− 1) +
(
L+ ω

1−ω

)
(L2 + 2)

3
(
L+ ρ

1−ρ + ω
1−ω

)2 (B.30)

After substituting expression for m0(0) (from Eq. B.30) in Eq. B.29 and after simpli-

fication we get an unique expression for m0(i).

m0(x) =
1

3(L+ η0 + ηL)

i[i2 − 3
(
L+

ω

1− ω
)
i− 1

]
+

(
i+ ρ

1−ρ

)
ψ0(ρ, ω)(

L+ ρ
1−ρ + ω

1−ω

)
 (B.31)



124

By dividing P0(x)(Eq. B.19) and and rewriting η0 = ρ/(1 − ρ) and ηL = ω/(1 − ω)

we obtain conditional first passage time to left boundary t0(x) as,

t0(x) =
1

3(L+ x+ ηL)

x[x2 − 3
(
L+ ηL

)
x− 1

]
+

(
x+ η0

)
ψ(ηL)(

L+ ηo + ηL)

 (B.32)

where ψ(η) ≡
(
L+ 2η

)(
L2 + 3ηL− 1

)
+
(
L+ η)(L2 + 2)

Replacing x by L− x in Eq. B.31 and interchanging η0 and ηL an expression for

mL(x) is obtained, which is given as,

mL
x =

1

3(L+ η0 + ηL)

(L− x)
[
(L− x)2 − 3

(
L+ η0

)
(L− x)− 1

]
+

(
L− x+ ηL

)
ψ(η0)(

L+ η0 + ηL
)


(B.33)

By dividing PL(x) from Eq. B.20 we obtain expression for conditional first passage

time to right boundary tL(x) as,

tL(x) =
1

3(x+ η0)

(L− x)
[
(L− x)2 − 3

(
L+ η0

)
(L− x)− 1

]
+

(
L− x+ ηL

)
ψ(η0)(

L+ η0 + ηL
)


(B.34)

B.4 Number of times random walker reaches the

boundary

Consider a random walk on the interval [0, L] with partially absorbing boundaries

(see Fig. 5-4). β0 and βL are the absorption probabilities at the boundary sites while

η0 = (1− β0)/β0 and ηL = (1− βL)/βL. We first consider the quantity hL(x, L) (see
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Eq. 5.9) corresponding to the number of times (excluding the last time) the walker

reaches the right boundary at L before it is absorbed at the right boundary. To

simplify our notation we define the quantity QL(x) = PL(x, L− 1, η0, 1) (see Eq. 5.2)

corresponding to the probability that a walker initially at x reaches site L at least

once. Similarly, QL(L− 1) = PL(L− 1, L− 1, η0, 1) is the probability that a particle

initially at L− 1 reaches site L at least once.

Probability that walker initial at x is absorbed when it reaches the right boundary

the first time is QL(x)βL. While the probability that walker is absorbed when it

reached boundary the second time is QL(x)(1−βL)QL(L−1)βL. Similarly, probability

that walker is absorbed on third attempt QL(x)[(1−βL)QL(L−1)(1−βL)QL(L−1)]βL

and so on. One may then write,

hL(x, L) =

∑∞
n=1 nQL(x)[QL(L− 1)(1− βL)]n−1βL∑∞
n=1 QL(x)[QL(L− 1)(1− βL)]n−1βL

− 1 (B.35)

Here the factor of QL(x) in each sum corresponds to the probability that the particle

reaches L the first time, while the expression with exponent n− 1 corresponds to the

probability that it is reflected from L and then returns to L, n− 1 times. The factor

of βL in each sum corresponds to the probability that it is absorbed at L the last

time, while 1 is subtracted since the last time is excluded. Using Eq. 5.2 one obtains,

QL(x) = PL(x, L− 1, η0, 1) = x+η0
L+ηL

and QL(L− 1) = PL(L− 1, L− 1, η0, 1) = L−1+η0
L+ηL

.

Substituting and using the formula for an infinite geometric series leads to Eq. 5.9.

hL(x, L) = ηL

[
L− 1 + η0

L+ η0 + ηL

]
(B.36)
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Next we consider the quantity hL(x, 0) (see Eq. 5.8) corresponding to the number

of times the walker reaches the left boundary at 0 before it is absorbed at the right

boundary. In this case probability that walker never reaches the left boundary before

it is absorbed at the right boundary is (1−Q0(x)) while the probability that walker

reaches left boundary once before it is absorbed at right boundary is Q0(x)(1−β0)(1−

Q0(1)). Similarly, probability that atom reaches left boundary twice is Q0(x)(1 −

β0)[Q0(1)(1− β0)](1− P0(1)) and so on. One may then write,

hL(x, 0) =
Q0(x)(1− β0)(1−Q0(1))

∑∞
n=1 n[Q0(1)(1− β0)]n−1

1−Q0(x) +Q0(x)(1− β0)(1−Q0(1))
∑∞
n=1[Q0(1)(1− β0)]n−1

(B.37)

where Q0(x) = P0(x − 1, L − 1, 1, ηL) is the probability that a walker initially

at site x will reach site 0 at least once. Here the factor of Q0(x) in the numerator

corresponds to the probability that a walker initially at site x will reach site 0 at

least once while the factors of 1− β0 correspond to the probability that it is reflected

every time. The factors of Q0(1) in the summation correspond to the probability

that the walker reaches the left boundary after being reflected from site 0, while the

extra factor of 1 − Q0(1) corresponds to the probability that after n − 1 reflections

the walker is absorbed at the right boundary. Using Eq. 5.2 one obtains, Q0(x) =

P0(x−1, L−1, 1, ηL) = L−x+ηL
L+ηL

and Q0(1) = P0(0, L−1, 1, ηL) = L−1+ηL
L+ηL

. Substituting

and using the formula for an infinite geometric series leads to Eq. 5.9.

hL(x, 0) =
η0(η0 + 1)

L+ η0 + ηL

L− x+ ηL
x+ η0

(B.38)
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The corresponding results for h0(x, L) (Eq. B.39) corresponding to number of

times walker reaches left boundary before is absorbed at the left boundary and h0(x, 0)

((Eq. B.39)) corresponding to number of times walker reaches right boundary before is

absorbed at the left boundary are obtained by interchanging η0 and ηL and replacing

x with L− x.

h0(x, 0) = η0

[
L− 1 + ηL
L+ η0 + ηL

]
(B.39)

h0(x, L) =
ηL
βL

1

(L+ η0 + ηL)

x+ η0

(L− x+ ηL)
(B.40)



Appendix C

Characterization of Surface

Morphology

Figure C-1: Illustration of statistics used to describe rough surface. Mean height h,
interface width w, lateral correlation length ξ

The most common statistic used to describe the roughness of a surface is the

standard deviation w of the surface heights hi(t) around its mean value h(t), also

128
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called the interface width or root-mean-square (RMS) roughness. The interface width

as

w(L, t) =

√√√√ 1

Ld−1

L∑
i

[hi(t)− h(t)]2 (C.1)

where L is the linear system size in d-dimensional space, d− 1 dimensionality of the

substrate, the single-values function hi(t) describes the height of the film at the i-th

location at time t, the index i labels lattice sites, and mean height of the film at time

t is given as,

h(t) =
1

Ld−1

L∑
i

hi(t) (C.2)

In many cases surface height fluctuations exhibit universal behavior leading to

scaling in both time and space with three characteristic scaling exponents: roughness

exponent α, roughening or growth exponent β, and dynamic exponent z. In case of

self-affine surface, the profile of the growth interface and its properties are, generally,

statistically invariant under anisotropic transformations, i.e. the length in a direction

parallel to the surface is scaled by a factor and simultaneously the length in the

perpendicular direction and time t are scaled by factors related to the first one.

Assuming an initially flat surface, the interface width w(L, t) typically scales as a

power of time in the initially stages of growth,

w(L, t) ∼ tβ for t� tX (C.3)

where β is a roughness exponent. Due to the lateral correlation in surface heights and

the finite size of the system, the width eventually saturates. The saturating value of
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the interface width scales with a power of the system size L,

w(L, t) ∼ Lα for t� tX (C.4)

where α is the roughness exponent. The crossover time tX , at which the interface

crosses from the behavior described by the Eq. C.3 to that of Eq. C.4 depends on the

system size,

tX ∼ Lz (C.5)

where z is called dynamic exponent.

It is pointed out by Family and Viscek [100] that these three exponents α, β and z

are not independent and the scaling forms for the growth and saturation of the width

of the interface can be described by the following scaling relation:

w(L, t) ∼ Lαf
(
t

Lz

)
(C.6)

where f(x) ∼ tβ for x� 1 and f(x) = const for x� 1. Thus

z =
α

β
(C.7)

Statistics such as the mean height and interface width measure the vertical prop-

erties of a surface and do not reflect correlations between different lateral positions on

the surface. Lateral correlation length ξ||, the typical distance over which the surface

heights “ know about” each other - the characteristic distance over which they are
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correlated. [101] At the beginning of the growth, the sites are correlated. During

deposition ξ|| grows with time.

ξ|| ∼ t1/z for t� tX (C.8)

For a finite system ξ|| cannot grow indefinitely, because it is limited by the size of

the system, L. When ξ|| reaches the size of the system, the entire interface becomes

correlated, resulting in the saturation of the interface width. Thus at saturation

ξ|| ∼ L for t� tX (C.9)

These results imply that the scaling behavior of the surface for a particular model

may be characterized by two parameters, the growth exponent β and roughness expo-

nent α. Thus one expect that different types of growth may fall into a small number

of universality classes, each characterized by given set if scaling exponents.

Alternatively, one may calculate other quantities related to correlations over a

distance r from which the scaling behavior of the surface can be derived. One of

these quantities is the height-height correlation function G(r, t) as

G(r, t) = 〈h̃(0, t) · h̃(r, t)〉 =
1

Ld−1

∑
i

(
hi(t)− h(t)

)(
hi+r(t)− h(t)

)
(C.10)

As can be seen from Fig. C-2 surface width w(L, t) can be related to the height-
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G(r)

r
!

Figure C-2: The typical graph of the height-height correlation function G(r)

height correlation function G(r, t) as,

W 2(L, t) = G(0, t) (C.11)

Typical, the lateral surface correlation length ξ|| is assumed to be the value of the

distance r0 at which the height-height correlation function G(r, t) first crosses zero,

i.e.,

ξ|| ' r0 (C.12)

Another such quantity is the height-difference correlation function G2(r, t):

G2(r, t) =
1

Ld−1

∑
i

(hi+r(t)− hi(t))2 (C.13)

which satisfies

G2(r, t) ∼ r2α (C.14)

One can find the relation between the roughness exponent α and the height-difference
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correlation function G2(r, t).

In order to understand the scaling behavior of the surface growth in detail, one

may introduce the so called general height-difference correlation function Gn(r, t):

Gn(r, t) =
1

Ld−1

∑
i

|hi+2(t)− hi(t)|n (C.15)

which satisfies

G2(r, t) ∼ rnαn (C.16)

If the surface is self-affine and exhibits normal scaling, then αn = α is independent

of n. Otherwise, the scaling behavior of the surface is multi-scaling and αn depends

on n.
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