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Working prototypes of a Hydraulic Hybrid Vehicle (HHV) are already under testing 

and investigation. One of the problems reported from testing is that the noise levels 

emitted by the hydraulic system are not acceptable. Therefore, there is a need to perform 

extensive research to improve the HHV systems in terms of noise and performance. The 

pump is the main source of noise in HHV systems. However, the lack of space, the high 

pressure and the dynamics of components within the pump have prevented either direct 

observation or measurement of potential noise causing mechanisms within the pump 

structure. As a result, there are several theories as to the source of the noise from the pump 

units but little concrete information to further isolate and reduce the noise generation.  

Currently, the industry use “cut and try” methods in order to study the noise issue. 

This necessities the development of a theoretical tool that will enable us to avoid the 

costly (time and money) cut and try procedure already employed in the current efforts. 
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This work creates a dynamic and geometric model of a bent axis pump for this purpose. 

Elements of the model include finding the variation of pressure, flow rate, and dynamic 

forces acting on the pump components and case as a function of angular rotations of both 

the main shaft and the yoke.  

The model was constructed using Mathematica software and verified against test 

data. In turn, this study identifies and analyzes the dominant forces in both the time and 

frequency domains. The solution of the theoretical model using Mathematicais verified 

by a dynamic model created using ADAMS/View software.  

The kinematic model was able to predict the variations of the angular velocities and 

accelerations and the velocities and the accelerations of the center of gravity of the entire 

pump’s parts starting from the main shaft up to the yoke. 

This work presents all equations necessary to solve for the piston pressure and pump 

flow rate as a function of main shaft and yoke rotations. These equations were tested, and 

verified at a constant angular speed of the main shaft and yoke angles ranging from 5 to 

40. Results indicate that the model can predict the variations of pressure profile and flow 

rate as well as the forces acting on the pump’s case both in the time and frequency 

domains. Conclusions and recommendations are at the end of this research effort. The 

harmonics of the reaction forces acting on the pump case occur at frequencies of 25, 50, 

100, 200, 220, 250, 350, and 450 Hz respectively. 
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NOMENCLATURE 

“a1a2a3“ Inertial coordinate system (“A” frame) 

Aac2 The acceleration of the CG of the second cross 

AaCR() Acceleration of the CG of the connecting rod 

Aaim1 Acceleration of the CG of the first intermediate shaft of the CVJ 

Aaos The acceleration of the CG of the barrel-output shaft assembly 

Aap The acceleration of the CG of the piston 

ABN Air Born Noise 

Ac Cylinder cross sectional area  

Ace Exit cross sectional area of the cylinder 

AFACtoY66 The reaction force from the actuating link to the yoke 

AFB1toMS Reaction force from the ball bearing to the main shaft 

AFB2toMS Reaction force from the thrust bearing to the main shaft 

AFCtoRAM90 The frictional force from the ram cylinder interface at point 90 

AFCtoY67 Reaction force on case from yoke at yoke axis of rotation (Suction port) 

AFCtoY68 Reaction force on case from yoke at yoke axis of rotation (discharge port) 

AFHPAtoY79 The reaction force from the fluid inside the hose between the HPA and the 

discharge exit at the yoke axis of rotation at point 79 

AFLPAtoY78 The reaction force from the fluid inside the hose between the LPA and the 

suction exit at the yoke axis of rotation at point 78 

AFMStoCR,i Reaction force from the main shaft to the i
th

 connecting rod 

AFPtoCRi The reaction from the i
th

 piston to the i
th

 connecting rod 
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AFPtoRAM The cylinder pressure force on the ram 

AFRAMtoAC90 The reaction force from the pin of the ram at point 90 

AIAC Moment of inertia of the actuating link around axis system that is attached 

to its CG and parallel to the principal axes of the part 

AMACtoY66 The frictional moment from the actuating link to the yoke 

AMB1toMS The ball bearing frictional moment on the main shaft 

AMB2toMS The thrust roller bearing frictional moment on the main shaft 

AMCtoY67 The friction moment at the axis of rotation of the yoke at point 67 

AMCtoY68 The friction moment at the axis of rotation the yoke at point 68 

AMMStoCR,i The friction moments generated on the i
th

 spherical joint between the main 

shaft and the i
th

 connecting rod 

AMPtoCRi The frictional moment from the i
th

 piston to the i
th

 connecting rod 

AMRAMtoAC90 Friction moment from the pin of the ram at point 90 

Ap Cross sectional area of the piston 

Ar,i() The overlap area of the i
th

 region at any angular position of the barrel 

Ar1 Position vector of the ball bearing reaction at point (1) (Figure  3-4) with 

respect to the left end of the main shaft 

Ar2 Position vector of the thrust bearing reaction at point 2 of main shaft 

(Figure ‎3-4) with respect to the left end of the main shaft 

Ar29 Position vector of point (29) on the second cross with respect to the center 

of rotation of the yoke 

Ar30 Position vector of point (30) on the second cross with respect to the center 

of rotation of the yoke 
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ARAM Cross sectional area of the ram 

ArCR,i Position vector of the i
th

 spherical joint between the main shaft and the i
th

 

connecting rod with respect to the left end of the main shaft 

ArCtoY67 The position vector of the reaction force from the yoke to the case at the 

axis of rotation of the yoke at point 67 

ArCtoY68 The position vector of the reaction force from the yoke to the case at the 

axis of rotation of the yoke at point 68 

ArEB Position vector of spherical joint between piston and connecting rod with 

respect to spherical joint between main shaft and connecting rod 

ArHPAtoY79 Position vector of the reaction force from the fluid, that is inside the hose 

between the HPA and the discharge exit at the yoke axis of rotation at 

point 79 with respect to the axes of rotation of the yoke 

ArLPAtoY78 Position vector of the reaction force from the fluid inside the hose between 

the LPA and the suction exit at the yoke axis of rotation at point 78 with 

respect to the axes of rotation of the yoke 

ArRAMtoAC90 Position vector of the reaction force from ram on actuating link at point 90 

as measured from common point between the yoke and actuating link 

ArWms Position vector of the CG of main shaft with respect its left end 

As,i The i
th

 solid area between successive cylinders 

ATin Input torque to the main shaft 

AVB Velocity of point B (Figure  3-9) 

AVCR() Velocity of the CG of the connecting rod 

AVp Velocity of the CG of the piston 
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AWAC Weight of the actuating link 

AWC1 Weight of the first cross of the CVJ 

AWC2 Weight of the second cross of the CVJ 

AWCR Weight of the connecting rod 

AWim1 Weight of the first intermediate shaft of the CVJ 

AWim2 Weight of the second intermediate shaft the CVJ 

AWMS Weight of the main shaft 

AWOIL,i Weight of the i
th

 oil control volume 

AWos Weight of the barrel-output shaft assembly 

AWP Weight of the piston 

AWRAM Weight of the ram 

AWvp Weight of the valve plate-yoke assembly 

B Bulk Modulus of the hydraulic oil 

“b1b2b3“ Moving coordinate system attached to the main shaft (“B” frame) 

BDC Bottom Dead Center 

BIms Principal moment of inertia of main shaft with respect 

Br3 Position vector of the pin of the first cross at point 3 of the main shaft with 

respect to the left end of the main shaft 

Br4 Position vector of the pin of the first cross at point 4 of the main shaft with 

respect to the left end of the main shaft 

BMS Angular velocity of main shaft, rad/s 

“c1c2c3“ Moving coordinate system attached to the first intermediate shaft 

Caim1 Acceleration of the CG of the first intermediate shaft of the CVJ 
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Caim2 Acceleration of the CG of the second intermediate shaft,  

Cd Orifice discharge coefficient at the i
th

 overlap area 

CFIM2toIM125 Sliding force reaction from second intermediate to first intermediate shaft 

CG Center of gravity 

CIim1 Principal moment of inertia of the first intermediate shaft of the CVJ 

CIim2 Principal moment of inertia of the second intermediate shaft of the CVJ 

CMIM2toIM125 Reaction couple from second intermediate shaft to first intermediate shaft 

Co1 The static load rating of the ball bearing of the main shaft 

Co2 The static load rating of the thrust roller bearing of the main shaft 

Co4 The static load rating of the thrust ball bearing at the barrel 

Cp One half the radial clearance between the piston and the cylinder 

Cr23 Position vector of point (23) on the first intermediate shaft as measured 

from the center of the first cross 

Cr24 Position vector of point (24) on the first intermediate shaft as measured 

from the center of the first cross 

Cr27 Position vector of point (27) on the second cross or second intermediate 

shaft as measured from the center of the first cross 

Cr28 Position vector of point (28) on the second cross or second intermediate 

shaft as measured from the center of the first cross 

Crim1 Position vector of CG of first intermediate shaft relative to CG of first 

cross 

Crim2 Position vector of CG of second intermediate shaft relative to CG of first 

cross 
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CVc2 Velocity of the CG of the second cross 

CVim1 Velocity of CG of the first intermediate shaft 

CVim2 Velocity of CG of the second intermediate shaft 

CVim2/im1 Velocity of CG of second intermediate shaft with respect to first 

intermediate shaft 

CVJ Constant velocity joint 

cw, ccw Clockwise, counter clockwise 

Cim1 Angular acceleration of the first intermediate shaft of the CVJ, rad/s
2
 

Cim1 Angular velocity of the first intermediate shaft of the CVJ, rad/s 

D1 Outside diameter of the ball bearing at the main shaft, mm 

d1 Bore diameter of the ball bearing at the main shaft, mm 

“d1d2d3“ Moving coordinate system attached to the output shaft of the CVJ 

d2 Bore diameter of the thrust bearing at the main shaft, mm 

D2 Outside diameter of the thrust bearing at the main shaft, mm 

d3 Bore diameter of the needle bearing at the barrel, mm 

D3 Outside diameter of the needle bearing at the barrel, mm 

d4 Bore diameter of the thrust ball bearing at the barrel, mm 

D4 Outside diameter of the thrust ball bearing at the barrel, mm 

DF Distance from center of spherical joint between piston and connecting rod 

and the bottom end of the cylindrical cavity for a zero yoke angle 

(Figure  3-15) 

DFB3FtoB  Reaction force from the first journal bearing to the barrel at the end of the 

barrel (point 58) 
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DFB3StoB Reaction force from the second journal bearing to the barrel at the end of 

the barrel (point 58) 

DFB4toB Reaction force from the thrust bearing to the barrel at point 65 

DFBStoVP,i Reaction force between discharge/suction port of the valve plate and the i
th

 

solid area located between each successive cylinders at points 69 to 77 

DFBtoP,i Reaction force from the i
th

 oil film between the barrel and piston to the 

piston at points 31 to 39 

DFOILtoB,i The force from the i
th

 oil column in the cylinder at points 49 to 57 

DFOILtoP,i The force from the i
th

 oil control volume in the cylinder to the i
th

 piston at 

points 40 to 48 

DFOILtoVP,i
 Force due to pressure on discharge or suction orifice at points 80 to 88

 
 

DFVPtoBinD Hydrodynamic force due to the oil film between the valve plate and the 

barrel at point 60 at the discharge side 

DFVPtoBinS Hydrodynamic force due to the oil film between the valve plate and the 

barrel at point 61 at the suction side 

DFVPtoBoutD Hydrodynamic force due to the oil film between the valve plate and the 

barrel at point 59 at the discharge side 

DFVPtoBoutS Hydrodynamic force due to the oil film between the valve plate and the 

barrel at point 62 at the suction side 

DG Distance from upper end of actuating link (D) to its CG 

DIos Moment of inertia of output shaft of the barrel-output shaft assembly 

DIp Principal moment of inertia of the 

dm1 Pitch circle diameter of the ball bearing at the main shaft, mm 
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dm2 Pitch circle diameter of the thrust bearing at the main shaft, mm 

dm4 Pitch circle diameter of the thrust ball bearing at the barrel, mm 

DMB3toB Frictional moment on the barrel form the journal bearing at point 58 

DMB4toB Frictional moment on the barrel from the thrust ball bearing at the end of 

the barrel at point 65 

DMVPtoB Frictional moment due to fluid film between the barrel and the valve plate 

Dr30 + i i
th

 position vector of the reaction force from oil film between the i
th

 piston 

and the barrel at points 31 to 39 as observed from yoke axis of rotation 

DrB3FtoB Position vector of the reaction force from the first needle bearing at the end 

of the barrel (point 58) as observed from the yoke axis of rotation 

DrB3StoB Position vector of the reaction force from the second needle bearing at the 

end of the barrel (point 58) as observed from the yoke axis of rotation 

DrB4toB Position vector of the reaction force from the thrust ball bearing at the end 

of the barrel (point 65) as observed from the yoke axis of rotation 

DrBStoVPi Position vector of the reaction force between the discharge/suction port of 

the valve plate and the solid area located between each successive 

cylinders at points 69 to 77 as observed from the yoke axis of rotation 

DrBtoP Position vector of reaction force from the barrel to the piston as measured 

from the common point between the piston and the connecting rod 

DrI The position vector of the center of the second cross with respect to the 

center of rotation of the yoke 

DrinD Position vector of hydrodynamic force at inner land of the discharge port 

DrinS Position vector of the hydrodynamic force at the inner land of suction port 



xxxi 

 

DrOILtoB,i Position vector of the force from oil column in cylinders at points 49 to 57 

DrOILtoVPD,i
 The i

th
 position vector of the force due to the pressure on the discharge or 

suction orifice at points 80 to 88 

DrOS Position vector of the CG of the barrel-output shaft assembly with respect 

to the center of rotation of the yoke 

DrOUTD Position vector of hydrodynamic force at outer land of the discharge port 

DrOUTS Position vector of the hydrodynamic force at the outer land of suction port 

DrWP Position vector of the CG of the piston as measured from the center of the 

spherical joint between the piston and the connecting rod 

DVos The velocity of the CG of the barrel-output shaft assembly 

Dvpb,i Axial velocity of the i
th

 piston with respect to the barrel 

Dms Angular acceleration of the piston, rad/s
2
 

Dos Angular velocity of barrel-output shaft assembly, rad/s 

Dp Angular velocity of the piston, rad/s 

EF Distance from the center of rotation of the yoke and the bottom end of the 

cylindrical cavity for a zero yoke angle (Figure  3-15) 

f1 An index taking into account the magnitude of the load at a roller bearing  

f1f2f3 Moving coordinate system attached to the first cross of the CVJ 

Fa1 Axial load component of the ball bearing reaction at the main shaft 

Fa2 Axial load component of the thrust bearing reaction at the main shaft 

fa2 Index, depending on the axial load Fa2 and the lubricating condition 

Fa4 Axial load component of the thrust ball bearing reaction at the barrel 

fa4 Index, depending on the axial load Fa4 and the lubricating condition 
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FFIM1toC123 Reaction from the first intermediate shaft to the first cross at point 23 

FFIM1toC124 Reaction from the first intermediate shaft to the first cross at point 24 

FFMStoC13 Reaction force from the main shaft to the pin of first cross at point (3) 

FFMStoC14 Reaction force from the main shaft to the pin of first cross at point (4) 

FIc1 Principal moment of inertia of first cross of the CVJ 

FMIM1toC123 Frictional moment from first intermediate shaft to first cross at point (23) 

FMIM1toC124 Frictional moment from first intermediate shaft to first cross at point (24) 

FMMStoC13 Frictional moment at the pin of the first cross (point 3) 

FMMStoC14 Frictional moment at the pin of the first cross (point 4) 

fo1, fo2, fo4 Index for bearing type and lubrication type for ball bearing at main shaft, 

thrust bearing at main shaft, and thrust ball bearing at barrel respectively 

Fr1 Radial load component of the ball bearing reaction at the main shaft 

Fr2 Radial load component of the thrust bearing reaction at the main shaft 

Fr23 Position vector of point (23) on the first cross with respect to its center 

Fr24 Position vector of point (24) on the first cross with respect to its center 

Fr3 Position vector of point 3 on first cross of the CVJ with respect to its center 

Fr4 Radial load component of the thrust ball bearing reaction at the barrel 

Fr4 Position vector of point 3 on first cross of the CVJ with respect to its center 

Fc1 Angular acceleration of first cross of the CVJ, rad/s
2
 

Fc1 Angular velocity of the first cross of the constant velocity joint, rad/s 

g Acceleration of gravity 

h Fluid film thickness between valve plate and the barrel 

Havp Acceleration of the CG of the valve plate-yoke assembly 
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hg Half width of groove after discharge/suction port of the valve plate 

HHV Hydraulic Hybrid Vehicle 

HIvp Moment of inertia of the valve plate-yoke assembly 

HPA High pressure accumulator 

HrACtoY66 Position vector of the reaction force from the actuating link at point 66 

with respect to the center of rotation of the yoke 

Hrvp Position vector of the CG of the valve plate-yoke assembly with respect to 

the center of rotation of the yoke 

HVvp Velocity of the CG of the valve plate-yoke assembly 

Hvp Angular acceleration of the valve plate-yoke assembly, rad/s
2
 

Hvp Angular velocity of the valve plate-yoke assembly, rad/s 

“i1i2i3“ Moving coordinate system attached to the second cross of the joint 

IFIM2toC227 Reaction force from the second intermediate shaft to the second cross at 

the pin point (27) 

IFIM2toC228 Reaction force from the second intermediate shaft to the second cross at 

the pin point (28) 

IFOStoC229 Reaction force from the output shaft to the second cross at point (29) 

IFOStoC230 Reaction force from the output shaft to the second cross at point (30) 

IIc2 Principal moment of inertia of the second cross of the CVJ 

IMIM2toC227 Frictional moment from second intermediate shaft to second cross at point 

(27) 

IMIM2toC228 Frictional moment from second intermediate shaft to second cross at point 

(28) 



xxxiv 

 

IMOStoC229 Frictional moments from the output shaft to the second cross at point (29) 

IMOStoC230 Frictional moment from the output shaft to the second cross at point (30) 

IP Distance from CG of second intermediate shaft to center of second cross 

Ir27 Position vector of point (27) on the second cross with respect to its center 

Ir28 Position vector of point (28) on the second cross with respect to its center 

Ir29 Position vector of point (29) on the second cross with respect to its center 

Ir30 Position vector of point (30) on the second cross with respect to its center 

JICR Principal moment of inertia of the connecting rod 

L45 Length of notch groove base (Figure  3-20) 

Lac Length of actuating link 

LC1 Minimum cylindrical length of the oil control volume at any angular 

position of the yoke (Figure  3-14) 

LC2 Length of the convergent part of the cylindrical cavity (Figure  3-14) 

LCIMo

 
Contact length between first and second intermediate shafts at zero yoke 

angle
 

LCo Length of oil cylindrical cavity at zero yoke angle (Figure  3-15) 

LCR Length of the connecting rod 

Lim Distance between the centers of the two cardan joints of the CVJ 

LIM1 Distance from the center of the first cross to the far edge of the first 

intermediate shaft along the “c3“ direction 

Lis Length of input shaft of the CVJ (Figure  3-9) 

LMCS,i The i
th

 net rate of change of the linear momentum through the control 

surface of the i
th

 oil control volume 
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LMcv The i
th

 net rate of change of the linear momentum of the content of the 

control volume of the i
th

 oil column 

Lmin Distance from the barrel-valve plate interface to the CG of the oil control 

volume at TDC for any angular rotation of the yoke angle (Figure  3-14) 

Lp Length of piston that is in the cylinder when axial displacement is zero 

Lp1 Distance from the spherical joint between the piston and the connecting 

rod to the piston’s face 

LPA Low pressure accumulator 

LPtoCR Distance from the left face of the piston to the common point between the 

piston and the connecting rod 

Lv Distance from barrel-valve plate interface to CG of the oil control volume 

at any yoke angle,  and any main shaft angular rotation, Figure  3-14 

LYtoVP Distance along the “d3“ direction from the yoke axis of rotation to the 

barrel valve plate interface 

M1m, M2m, 

M4m 

Mechanical friction torque of: ball bearing at the main shaft, thrust bearing 

at the main shaft, and the thrust ball bearing at the barrel respectively 

M1v, M2v, 

M4v 

Viscous friction torque of: ball bearing at the main shaft, thrust bearing at 

the main shaft, and the thrust ball bearing at the barrel respectively 

M2a , M4a Mechanical friction torque of thrust bearing at main shaft and the thrust 

ball bearing at the end of the barrel due to axial load 

MAC Mass of the actuating link 

Mc1 Mass of the first cross 

Mc2 Mass of the second cross 
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MCR Mass of the connecting rod 

MH Mass of gas in the HPA 

MHH Mild hydraulic hybrid 

Mim1 Mass of the first intermediate shaft 

Mim2 Mass of the second intermediate shaft 

ML Mass of gas in the LPA 

MMS Mass of the main shaft 

MOIL,i Mass of oil in the i
th

 cylinder 

Mos Mass of the barrel-output shaft assembly 

Mp Mass of piston 

MRAM Mass of the ram 

Mvp Mass of the valve plate-yoke assembly 

nms Angular velocity of the main shaft, rpm 

Nrated Rated speed of pump, rpm 

P Pressure at radius R 

P/M Pump/Motor 

P11 Load that governs the load-depending frictional moment M1m, M2m, and 

M4m, which takes into account the fact that these frictional moments 

change with the load angle 

Pb() Boundary pressure at the valve plate (either PD or PS) 

PD Discharge pressure at the valve plate 

PH(t) Gas pressure in the HPA 

PL(t) Gas pressure in the LPA 
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PlossH Pressure losses between the discharge port and the HPA 

PlossL Pressure losses between the suction port and the LPA 

PmaxH Maximum gas pressure in the HPA 

PmaxL Maximum gas pressure in the LPA 

PminH Minimum gas pressure in the HPA 

PminL Minimum gas pressure in the LPA 

Po1 Equivalent load determined for operating load at ball bearing of main shaft 

POILi Pressure of the i
th

 cylinder 

PPH Pre-charge pressure in the HPA 

PPL Pre-charge pressure in the LPA 

PRAM Fluid pressure at the ram 

Ps Suction pressure at the valve plate 

QA Actual flow rate 

QDS,i(t) Discharge/suction flow rate at the overlap area 

Qi(t) Net flow rate from the i
th

 cylinder 

QL,i(t) Leakage flow rate from the i
th

 cylinder 

QT Theoretical flow rate 

QTTD Total theoretical oil flow rate of the pump at the discharge port 

r Pitch circle radius at the barrel side 

R Pitch circle radius at the main shaft side 

R1 Radius of the outer land of the port plate (Figure  2-5) 

R2 Outside radius of the discharge/suction port (Figure  2-5) 

R3 Inside radius of the discharge/suction port (Figure  2-5) 
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R4 Radius of the inner land of the port plate (Figure  2-5) 

rAC Radius of pin between the yoke and the actuating link 

rC1 Distance from the center of the first or the center of the second cross to 

point 3 on the first cross or point 29 on the second cross 

rC2 Distance from the center of the first or second cross to point 23 on the first 

cross or point 27 on the second cross 

rCP1 Radius of the cross section of pin 3-4 that is attached to the input shaft at 

the first cross or the output shaft at the second cross 

rCP2 Radius of the cross section of pin 23-24 that is attached to the first or 

second intermediate shafts at point 23 

rCP3 Radius of the cross section of pin 23-24 that is attached to the first or 

second intermediate shafts at point 24 

RCRL Radius of the left end of the connecting rod 

RCRR Radius of the right end of the connecting rod 

RinD Radius of point of application of the normal hydraulic force between the 

barrel and the valve for the inner land at the discharge side 

RinS Radius of point of application of the normal hydraulic force between the 

barrel and the valve for the inner land at the suction side 

RN Gas constant of nitrogen, J/kgK 

RoutD Radius of point of application of the normal hydraulic force between the 

barrel and the valve for the outer land at the discharge side 

RoutS Radius of point of application of the normal hydraulic force between the 

barrel and the valve for the outer land at the suction side 
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rp The piston radius 

rY Radius of the yoke’s pin at its axis of rotation 

Ry Distance from center of rotation of yoke to center of first or second cross 

SBN Structure Born Noise 

Shearin Shear moment at the inner land due to discharge and suction ports 

Shearout,D Shear moment at the outer land due to discharge and suction ports 

T Operating oil temperature, ºC 

T1 Rotation matrix of the “b1b2b3“ frame of reference with respect to “a1a2a3“ 

T2 Rotation matrix resulting from rotating “a1a2a3“ frame of reference about a1 

axis by an angle of  to get “ '

3

'

2

'

1 aaa ” 

T3 Rotation matrix resulting from rotating “ '

3

'

2

'

1 aaa ” frame of reference about 

'

3a  axis by an angle of  to get “c1c2c3“ 

T6 Rotation matrix of the “h1h2h3“ frame of reference with respect to “a1a2a3“ 

Tc1 Rotation matrix of the “f1f2f3“ frame of reference with respect to “a1a2a3“ 

Tc2 Rotation matrix of the “i1i2i3“ frame of reference with respect to “a1a2a3“ 

TDC Top Dead Center 

Tg Temperature of gas in the HPA or LPA at pre-charge, ºK 

Tim1 Rotation matrix of the “c1c2c3“ frame of reference with respect to “a1a2a3“ 

Tos Rotation matrix of the output shaft “d1d2d3“ with respect to the A frame 

VCRLi Absolute value of the sliding velocity between the left end of the 

connecting rod and the cup at the main shaft 

VCRRi Absolute value of the sliding velocity between the right end of the 
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connecting rod and the piston 

Vfixed Volume of oil at end of the cylinder cavity (conical portion) (Figure  3-14) 

VH(t) Instantaneous gas volume in the HPA 

Vi + 39 Velocity of flow at the piston contact for the i
th

 control volume 

Vi + 79 Velocity of flow just before the exit of the cylinder of i
th

 control volume 

VL(t) Instantaneous gas volume in the LPA 

VmaxH Maximum gas volume in the HPA 

VmaxL Maximum gas volume in the LPA 

Vmin Minimum cylinder volume at zero piston displacement (at TDC) which is a 

function of the yoke angle,  

VOIL,i Volume of oil in the i
th

 cylinder 

VPH Pre-charge gas volume in the HPA 

VPL Pre-charge gas volume in the LPA 

Z() Piston’s displacement with respect to barrel as measured from the TDC 

ms Angular acceleration of main shaft, rad/s
2
 

c2 Angular acceleration of the second cross of the CVJ, rad/s 

c2 Angular velocity of the second cross of the CVJ, rad/s 

 Angle between intermediate and main shaft / output shafts 

o Nominal contact angle of the thrust bearing at the main shaft 

 Angular rotation of the intermediate shaft about its axis of rotation 

 Inclination angle of the cylinder along which the ram slides 

 Angular rotation of the main shaft about its axis of rotation 
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o Connecting rod angle with the horizontal at a zero yoke angle 

 Angular positions of overlap areas between the exit of one cylinder and the 

suction/discharge port 

o Connecting rod angle with the horizontal at any angular rotation of the 

yoke at the TDC (Figure  3-15) 

v,i The volumetric efficiency of the pump at the i
th

 cylinder as read from the 

pump map as a function of pressure and angular speed of the barrel 

 Coefficient of dynamic viscosity 

ACtoY Friction coefficient at the pin between the yoke and the actuating link 

B3toB Friction coefficient at the interface between the journal bearing and the 

barrel at point 58 

C1 Friction coefficient at the pins of the first or second cross 

CRLi Friction coefficient at the right end of the i
th

 connecting rod 

CRLi Friction coefficient at the left end of the i
th

 connecting rod  

CtoRAM90 Friction coefficient between the ram and the cylinder walls at point 90 

im Friction coefficient between the first and second intermediate shafts 

Y Friction coefficient at the right/left pins of the yoke at its axis of rotation 

 Angular positions of solid areas between successive cylinders that are 

under either suction or discharge pressures 

 Angular rotation of the yoke about its axis of rotation 

 Oil density 

L Angular rotation of the line of action of the reaction force from the 
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LPA/HPA from the negative “a3“ direction 

 Tangential stress 

 Operating kinematic viscosity of the hydraulic oil, mm
2
/s 

 Angular rotation of the output shaft about its axis of rotation 

 Kidney angle of the valve plate 

1 Angular position of the center line of the circular end of the discharge port 

with respect to the TDC (Figure  3-32) 

C Angle between the center lines of the circular ends of the bottom of the 

cylindrical cavity (Figure  3-32) 

D Angle between two successive cylinders 
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CHAPTER 1: INTRODUCTION 

In hydraulic power systems, variable displacement pumps save power, increase the 

productivity, or control the motion of a load precisely, safely and in an economic manner. 

The displacement-varying mechanism and power-to-weight ratio of variable-geometry 

axial piston pumps make them most suitable for control of high power levels. 

1.1 Background for the Research 

The bent axis pump is preferred in hydraulic hybrid vehicles because of its high 

performance and efficiency. It is also capable of operating at variable conditions of flow, 

pressure, speed, and torque.  

Although many researchers in the literature have considered modeling bent axis pump, 

they only considered models for pumps rotating at constant angular velocity of the main 

shaft of the pump. In real driving conditions, the velocity of the vehicle changes 

continuously. Therefore, there is a strong need to consider the transient response of the 

pump, i.e. at a variable angular velocity of the main shaft and a variable angular velocity 

of the yoke.  

Some working prototypes of a Hydraulic Hybrid Vehicle (HHV) are already under 

testing and investigation. However, it was found that noise levels emitted by HHV 

systems are not acceptable; therefore, additional research has to be conducted to improve 

the HHV systems in terms of noise and performance. The pump is the main source of 
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noise in HHV systems. Currently, industry uses “cut and try” methods in order to study 

the noise issue. A theoretical tool will enable us to avoid the costly (time and money) cut 

and try procedure already employed in the current efforts. 

The derived dynamic mathematical model permits methodical study of the variation of 

pressure head, flow rate, and dynamic forces acting on the pump casing as a function of 

angular rotations of both the main shaft and the yoke, given the variable input torque and 

the variable angular motion of the main shaft of the pump. The mathematical model 

predicts the steady state and transient responses of the forces acting on the pump casing 

due to the interaction with the moving internal parts of the pump. Subsequently, using 

vibration and acoustic finite element analysis of the pump enables us to find the effect of 

these forces on noise level variations created by the pump.  

In addition to the material mentioned above, the ability of a variable displacement 

pump to respond to a constant signal is a critical factor in assessing the dynamic 

performance of the circuit in which the pump is located. Hence, a comprehensive dynamic 

response model of the pump is necessary in order to realize new techniques for control. 

1.2 Problem Statement 

The objective of this research is to find the dominating factors that create the noise in 

the bent axis pump. The pump will be working within the circuit of a hydraulic hybrid 

vehicle. Knowing the sources of noise enables taking the appropriate decisions in terms of 

design, control strategy, and the implementation of anti-noise techniques and procedures 

either to the pump or to the hydraulic system in order to reduce the noise level to 

acceptable levels. 
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The application and extension of the results presented in this study would significantly 

assist in the analysis of the structures that connects to the pump within a hydraulic system. 

Knowing the constraints at all joints in the pump structure and the forces in the time and 

frequency domain as obtained from the current study, a transient finite element model 

could be implemented for both the pump’s case and the pump’s internal parts. Moreover, a 

vibration analysis could be implemented on the structure to which the pump is mounted. 

This allows an effective design and development of the mounts, which tie to the pump. 

Furthermore, an acoustic finite element analysis of the pump may be performed to find the 

effect of the different forces that act on the pump case on noise level variations created by 

the pump. 

1.3 Work Outline 

Chapter 2 will present a literature review. The key components of a Hydraulic Hybrid 

Vehicle are described and explained in detail including: the pump, the high and low 

pressure accumulators, the oil conditioning system, the hydraulic power steering system, 

the potential changes to the battery, alternator, and starter system, and the hydraulic 

fittings and hoses. It also introduces Mild Hydraulic Hybrid vehicles and Full Hydraulic 

Hybrid vehicles. 

Moreover, chapter 2 fully describes the bent axis piston pump/motor including 

definitions of some performance parameters such as volumetric efficiency, mechanical 

efficiency, and overall efficiency. It also explains pump noise and cavitation as 

performance parameters and types of noise. Likewise, it clarifies and defines in some 

detail pump noise level limits and control. 
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The principal forces acting on the bearing surface between the valve plate and cylinder 

block are considered. The effect of the valve plate shape on the fluid film between the 

valve plate and the cylinder block has been investigated under real working conditions. 

This study presents mathematical modeling of bent-axis hydraulic piston pumps and 

motors including: steady state modeling and performance of a variable displacement 

pump, the mathematical expressions for the torque applied to the swash plate considering 

the different loss components, theoretical flow rate and leakage flow rates. The feasibility 

of using a nonlinear gas spring in the pump controller is also investigated. In addition, 

bent-axis piston pump modeling using neural networks are mentioned. 

In addition, the theoretical mechanism for driving the tapered pistons of a bent axis pump 

is introduced. Besides, Friction losses analyses of a bent-axis type hydraulic piston pump. 

Furthermore, noise reduction techniques and control have been introduced. 

Chapter 3 considers in detail a comprehensive theoretical dynamic modeling and 

analysis of the internal pump parts are. A kinematic analysis for each part of the pump 

determines velocities, accelerations, angular velocities, and angular. Then, the equations 

of motion of each part as well as the whole system have been determined using Newtonian 

mechanics. 

Chapter 4 shows the implementation and simulation of the mathematical model using 

Mathematica
TM

 software to study the steady state and transient responses of the forces 

acting on the pump casing. In addition, the study validates the model against the 

commercially available ADAMS/View software. Chapter 5 summarizes the work and 

outlines the conclusions and future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Hydraulic Hybrid Vehicles 

One major benefit of a hydraulic vehicle is the ability to capture a large percentage of 

the energy normally lost in vehicle braking. In urban stop-and-go driving, as much as half 

of all the energy available at the vehicle wheels is lost in braking and a hydraulic design 

can capture and reuse a large portion of this otherwise wasted energy. The specific fuel 

economy improvement associated with a hydraulic hybrid vehicle is dependent upon 

vehicle driving cycle. In turn, there will always be a larger improvement for those vehicles 

with a high amount of stop-and-go driving. Therefore, hydraulic hybrid technology has 

perhaps the greatest commercial potential for a wide range of medium-duty vehicles such 

as urban delivery trucks [1]. 

Hydraulic hybrid vehicles can be classified into two main categories: parallel 

hydraulic hybrid vehicles and series hydraulic hybrid vehicles. 

Parallel Hydraulic Hybrid Vehicle (PHH) 

A parallel hydraulic hybrid vehicle has both a conventional vehicle power train and a 

hydraulic secondary storage system. A PHH system captures and stores a large fraction of 

the energy normally wasted in vehicle braking and uses this energy to help propel the 

vehicle during the next vehicle acceleration. Figure  2-1 shows the hydraulic circuit 

diagram of PHH vehicle. In a parallel hydraulic hybrid system, the engine and the 
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hydraulic pump/motor are mechanically coupled to the same drive shaft. This system has 

the potential to decrease the fuel consumption in the range of 20% to 40%. Higher 

efficiencies are limited because the engine must follow the speed of the tires through the 

transmission.  

In pumping mode, hydraulic fluid is pumped into an accumulator under pressure. This 

requires power from the drive shaft of the vehicle provided either by the ICE or by 

braking. The accumulator holds the pressurized fluid until it is needed. In motor mode, the 

hydraulic P/M uses the pressurized fluid to drive the vehicle. In this way, the hydraulic 

P/M returns power to the vehicle [2]. 

 

Figure ‎2-1: Basic hydraulic circuit diagram of a parallel hydraulic hybrid vehicle [2-4] 

One issue with a PHH vehicle is whether the engine would ever be shut off to save 

fuel in those modes where engine power is not required or where the hydraulic launch-

assist alone is able to provide sufficient power. Therefore, a PHH vehicle can be designed 

to work according to either an engine-on strategy, or an engine-off strategy. In an engine-

on strategy, the driver would only shut down the engine when the he turns the engine off, 
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usually at the end of a trip. On the other hand, in an engine-off strategy, the engine 

operation will be shut down whenever the vehicle is not moving [1]. 

Series Hydraulic Hybrids (SHH) 

In a series hydraulic hybrid, there is no direct link between the internal combustion 

engine and the driveline components of the vehicle (Figure  2-2). Since the internal 

combustion engine is now separated from the road, the SHH design permits much greater 

use of engine-off strategies and maximizes the operation of the engine at or near its peak 

efficiency [1]. An SHH is capable of more than 70% improvement in fuel savings. The 

engine is operated to pump hydraulic fluid at pressure to the HPA. When operating 

conditions are such that there is sufficient pressure in the HPA, the ICE is placed in an off 

condition. When it is necessary to operate the engine again, a small amount of fluid is 

directed to the P/M to restart the engine, and this unit returns to motoring mode. The rear 

P/M operates the drive train of the vehicle. In motoring mode, it takes high-pressure 

hydraulic fluid from the accumulator to drive the axle. When braking, the axle drives the 

unit in pumping mode to re-pressurize the HPA [2]. 

 

Figure ‎2-2: A series hydraulic hybrid configuration [2-4] 
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2.2 Description of Bent Axis Piston Pump/Motor 

Piston pumps are the most expensive of the hydraulic pumps. They also provide the 

highest level of overall performance. They can operate at high speeds to provide a high 

power-to-weight ratio. They can operate at the highest-pressure levels (up to 5000 psi). 

Due to very close-fitting pistons, they have the highest volumetric efficiencies among the 

other types of pumps [5]. Piston P/M can be classified as in-line piston P/M (swash plate) 

or bent axis type. 

2.2.1 Bent axial piston pump 

Figure  2-3 shows a bent axis piston pump, which contains a cylinder block rotating 

with the drive shaft. The centerline of the cylinder block is set at an offset angle relative to 

the centerline of the drive shaft. The cylinder block contains a number of pistons arranged 

along a circle. Ball and socket joints connect the piston rods to the drive shaft flange. The 

pistons are forced in and out of their bores as the distance between the drive shaft flange 

and cylinder block changes. A universal link connects the block to the drive shaft to 

provide alignment and positive drive. 



9 

 

 

Figure ‎2-3: Basic components of a bent axis pump 

2.2.2 Inline piston pump (swash plate) 

Figure  2-4 shows the basic design of an inline piston pump. The cylinder bears against 

a valve plate. Ports in the plate alternatively connect the cylinders to the inlet, and to the 

discharge ports. The switch from inlet to discharge occurs when a piston is at its most 

extended position (BDC). The switch from discharge back to inlet occurs 180
o
 later when 

the piston reaches its greatest penetration into the cylinder block (TDC) [6]. 
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Figure ‎2-4: Inline piston pump [6] 

2.2.3 Pump/Motor basic parameters 

2.2.3.1 Volumetric efficiency 

The volumetric displacement of the P/M varies with the offset angle . No flow results 

when the cylinder block centerline is parallel to the drive shaft centerline.  can vary from 

zero degrees to a maximum of about 50º.  

Internal leakage between the inlet and outlet reduces the volumetric efficiencies of a 

hydraulic pump/motor. Volumetric efficiency of the pump indicates the amount of leakage 

that takes place within the pump and can be written as [5] 

T

A
pumpv

Q

Q
,  (‎2.1) 

The volumetric efficiency of a hydraulic motor is the inverse of that for a pump. This 

is because a pump does not produce as much flow as it should theoretically, whereas a 

motor uses more flow than it should theoretically due to leakage. In turn, the volumetric 

efficiency of a motor is given by 
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A

T
v

Q

Q
  (‎2.2) 

2.2.3.2 Mechanical efficiency 

Mechanical efficiency indicates the amount of energy losses that occur for reasons 

other than leakage. This includes friction in bearings and between other mating parts. It 

also includes energy losses due to fluid turbulence. Therefore, the mechanical efficiency 

of a pump is expressed as [5] 

,

pump output power assuming no leakage

actual power delevired to pump

T
m pump

A

pQ

T N
    (‎2.3) 

One can also compute the mechanical efficiency of a pump in terms of torques as 

given by 

theoretical torque required to operate pump
,

actual torque delevired to pump

T
m pump

A

T

T
    (‎2.4) 

The mechanical efficiency of a hydraulic motor is the inverse of that for a pump. 

Because of friction, a pump requires a greater torque than it should theoretically whereas a 

motor produces less torque than it should theoretically. 

,

actual torque delevired by motor

torque motor should theoretically deliver

A
m motor

T

T

T
    (‎2.5) 

Where 

p = pump discharge pressure 

TA = actual torque delivered to pump 

The theoretical torque varies proportionally to both the pressure and the volumetric 

displacement: 
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2

pV
T D

T


  (‎2.6) 

The theoretical power (which is the power a frictionless hydraulic motor would 

develop) is given by 

TTheoretical power (W) = T  (N.m) × N (rad/s)  (‎2.7) 

The actual torque is given by 

actual power delivered to/by pump/motor(W)

( / )

2
( )

60
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rad s

N rpm










 
(‎2.8) 

2.2.3.3 The overall efficiency of P/M 

The overall efficiency o) considers all energy losses and is defined as [5] 

actual power delivered by pump/motor

actual power delivered to pump/motor
o v m      (‎2.9) 

2.2.4 Pump noise 

More than 95% of noise problems in hydraulically actuated machines are due to 

pumps and motors. Valves are the other major hydraulic noise source [6]. 

Pumps are good generators but poor radiators of noise. The noise we hear is not just 

the sound coming directly from the pump. It includes the vibration and fluid pulsations 

produced by the pump as well. Pumps are compact, and because of their relatively small 

size, they are poor radiators of noise, especially at lower frequencies. Therefore, pump-

induced vibrations or pulsations can cause them to radiate audible noise greater than that 

coming from the pump [5].  
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Pump speed has a strong effect on noise, whereas pressure and pump size have about 

equal but smaller effects. To achieve the lowest noise levels, the lowest practical speed 

(1000 or 2000 rpm) is selected [5]. 

Pump noise is created as the internal rotating components abruptly increase the fluid 

pressure from inlet to outlet. The abruptness of the pressure increases plays a big role in 

the intensity of the pump noise. Thus, the noise level at which a pump operates depends 

greatly on the design of the pump. Noise can be classified into three types [6]: audible 

noise referred to as Air Born Noise (ABN), vibrations referred to as Structure Born Noise 

(SBN), and fluid pulsations referred to as Fluid Born Noise (FBN). 

Pumps commonly generate as much as 1000 times more energy in the form of SBN or 

FBN noise than they do in the form of ABN. These forms act on other machine elements 

and frequently end up generating more noise than that coming directly from the pump. 

Machines generally have a number of noise sources. Effective noise control depends 

on identifying one or two of the strongest noises. Separating noise by energy path and 

frequency helps identify these leading noises. Once we find how they travel from their 

source to our ear, their control is generally assured [6]. 

Chen et al. studied the dynamic analysis of a swash-plate water hydraulic motor in a 

modern water hydraulic system. They modeled a swash-plate mechanism as a system with 

3 masses and 14 degrees of freedom. They presented numerical simulation analysis of the 

dynamic response of the model due to pressure pulsation and compared with experimental 

testing. They obtained and studied a series of the dynamic vibration characteristics of the 

water hydraulic piston motor by the numerical simulation. The model simulates the 

vibration signal of the casing in the hydraulic motor. According to the authors, the 
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waveform and frequency of the simulated signal is similar to the experimental signal. In 

addition, they found that the simulated signals in other directions show that the vibration 

signals in all the directions mainly consist of the hydraulic pump and motor rotational 

frequencies. 

2.2.5 Noise level limits 

The strength of a sound wave, which depends on the pressure amplitude, is described 

by its intensity. Sound intensity is defined as the rate at which sound energy is transmitted 

through a unit area. This energy transfer rate is expressed in units of decibels (dB). 

Decibels give the relative magnitudes of two intensities by comparing the one under 

consideration to the intensity of a sound at the threshold of hearing [5]. 

Intensity and loudness are not the same. Loudness depends on each person’s sense of 

hearing. The intensity of a sound, which represents the amount of energy possessed by the 

sound, can be measured and thus does not depend on the person hearing it [5]. 

One decibel equals approximately the smallest change in intensity that most people 

can detect. Zero dB designates the weakest sound intensity that the human ear can hear. 

Sound intensities of 120dB or greater produce pain and may cause permanent loss of 

hearing [5]. 

The sound level in dB is obtained by taking the logarithm to the base 10 of the ratio of 

the intensity under consideration to the threshold of hearing intensity [5]. 

thresholdhearI

I
dBI

.

log10)(   (‎2.10) 

Where 

I = the intensity of a sound under consideration in units of W/m
2
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Ihear threshold = the intensity of a sound at the threshold of hearing in units of W/m
2
 

The amount that the intensity of sound increases in units of dB if the intensity in W/m
2
 

increases by a given factor is given by 

initial

final

increase
I

I
dB log10  (‎2.11) 

The occupational Safety and Health Administration (OSHA) stipulates that 90 dB is 

the maximum sound level that a person may be exposed to during an 8hr period in the 

workplace [5]. Higher noise levels are allowable if the exposure durations were shorter. 

For each 5-dB (A) increase in noise, the allowable duration was cut to half. Similarly, if 

longer exposure time occurred, the level was decreased by the same rate.  

Table  2-1 shows the allowable noise exposure levels. The total exposure time at 

various noise levels is given by [6] 

1....
2

2

1

1 
n

n
T

T

C

T

C

T

C
C  (‎2.12) 

Where 

n = number of exposure levels 

C1, C2… Cn = total time at the given levels 

T1, T2… Tn = total time allowed at the given levels 

Noise reduction can be accomplished in different ways as follows [5]: 

1. Make changes to the source of noise. Problems may include misaligned 

pump/motor couplings, improperly installed pump/motor mounting plates, pump 

cavitation, and excess pump speed or pressure. 

2. Modify components connected to the primary source of the noise. An example is 

the clamping of hydraulic piping at specifically located supports. 
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3. Use sound absorption materials in nearby screens or partitions. This practice will 

reduce the reflection of sound waves to other areas of the building where noise can 

be a problem. 

4. Refer to the methods mentioned in chapter 1, section 1.3.4 (Noise Reduction and 

Control). 

Table ‎2-1: OSHA Allowable Noise Exposures [6] 

Noise level 

dB(A) 

Exposure per day 

hr 

Noise level 

dB(A) 

Exposure per day 

hr 

90 8 102 1.5 

92 6 105 1 

95 4 110 0.5 

97 3 115 max 0.25 

100 2   

2.2.6 Pump cavitation 

Cavitation occurs when pump suction lift is excessive and the pump inlet pressure falls 

below the vapor pressure of the fluid (usually about 5-psi suction). As a result, air or vapor 

bubbles, which form in the low-pressure inlet region of the pump, collapse when they 

reach the high-pressure discharge region. This produces high fluid velocity and impact 

forces, which can erode the metallic components and shorten pump life. 

2.3 Design of Valve Plate and Forces Acting on It 

With reference to Figure  2-5, the interface between valve plate and cylinder block is 

the most important sliding part in axial piston pumps, because the cylinder block rapidly 
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rotates on the fixed valve plate, and the pistons in the cylinders during approximately half 

a revolution perform the suction and discharge action of working oil through the kidney 

ports. In addition, the pressure distribution on the valve plate varies momentarily. 

Therefore, optimal force balance is required to reduce the leakage flow rates and friction. 

 

Figure ‎2-5: Geometric parameters of the valve plate 

Figure  2-6 shows that there are two principal axial forces acting on the bearing surface 

between valve plate and cylinder block. One of these forces is a pushing force associated 

with the highly pressurized pistons tending to push the cylinder block via the highly 

pressurized oil to the valve plate. This is because the highly pressurized fluid on the 

discharge port of the valve plate acts on the cylinder block walls by a frictional force in 

the direction of the oil stream leaving the cylindrical cavity. On the other hand, on the 

suction port of the valve plate, the oil enters the cylindrical cavity resulting in a frictional 
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force that pulls the cylindrical block from the valve plate. Therefore, the net frictional 

force, which is the difference between the two forces at the discharge and suction ports, 

acts in the direction of pushing the cylindrical block towards the valve plate. 

 

Figure ‎2-6: Principal forces in the interface between the barrel and the valve plate 

The other force is a separating force associated with the pressure in the highly 

pressurized kidney port and across its lands tending to separate the cylinder block with the 

valve plate. If the pushing force due to the pistons under high pressure is too big, the faces 

will be subjected to high friction, rapid wear, overheating, and therefore reducing 

mechanical efficiency. If the separating force due to the pressure distribution on the seal 

lands is too big, the cylinder block will be forced away from the valve plate leading to 

excessive leakage losses [7]. 

Franco [8] derived equations for the forces that act on the port plate of a swash plate 

pump based on the following assumptions: 

1 Fluid flow in the clearance between the barrel and port plate is laminar. 

2 Forces due to pressure drop peripherally between the inlet and discharge ports 

were ignored. 

3 Hydrodynamic friction forces created by the rotary motion of the barrel were 

neglected. 
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4 Leakage flow is assumed to spread in the radial direction between the lands. 

5 Constant coefficient of dynamic viscosity. 

6 The centrifugal forces of the fluid in the clearance between the port plate and the 

barrel were neglected. 

7 The velocity distribution in the clearance is based on the conditions that the 

maximum relative velocity happens at the middle of the clearance and zero at the 

walls. 

Manring [9] examined the control and containment forces and moments acting on the 

swash plate of an axial-piston pump. Swash-plate control and containment devices must 

resist the moments and forces that attempt to dislocate the swash plate from its proper 

position. He derived the needed forces and moments for insuring proper swash-plate 

motion. 

Manring [10] examined the control and containment forces acting on the swash plate 

of an axial piston pump by including the analysis of a secondary swash-plate angle. He 

derived the needed forces and moments for insuring proper swash plate motion. He also 

studied the dynamic characteristics of the control and containment forces by deriving 

instantaneous and average equations of motion for the swash plate. Manring showed that 

the primary advantage of implementing a secondary swash-plate angle is that it can reduce 

the overall control effort of the pump. On the other hand, the disadvantages of using the 

secondary swash-plate angle are associated with additional containment requirements for 

the swash plate. 
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Manring [11] identified the physical contributors of the phenomenon of tipping of the 

cylinder block. He specified certain design guidelines that may be used to prevent the 

failure of cylinder block tipping. He begins with the mechanical analysis of the machine 

and presents a tipping criterion based upon the centroidal location of the force reaction 

between the cylinder block and the valve plate. He then derived the effective pressurized 

area within a single piston bore. In addition, he examined the pressure within a single 

piston bore using an approximate pressure profile in order to specify a design criterion. 

The design criterion ensures that the pressures within the system never cause the cylinder 

block to tip. By satisfying this criterion, he found that the worst tipping conditions exists 

when the system pressures are zero. 

Bergada et al. [12] had analyzed the pressure distribution, leakage, force, and torque 

between the barrel and the port plate of an axial piston pump. They developed a detailed 

set of new equations, which takes into account important parameters such as tilt, clearance 

and rotational speed, and timing groove. Additionally, they derived the pressure 

distribution for different operating conditions, together with a complementary numerical 

analysis of the original differential equations. They evaluated overall mean force and 

torques over the barrel and showed that the torque over the XX axis is much smaller than 

the torque over the YY axis (Figure  2-7). They then conducted a detailed dynamic analysis 

and found that the torque fluctuation over the YY axis is typically 8% of the torque total 

magnitude. They were also able to predict a double peak in each torque fluctuation 

resulting from the more exact modeling the pressure distribution characteristic of the 

piston/port plate/timing groove during motion. 
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Figure ‎2-7: Barrel/port plate configuration[12] 

For radial flow in a system, the temperature of the fluid increases as the pressure drop 

across the system. Therefore, Mckeown et al. [13] had derived an analysis for the forces 

acting on valve plate for a system in which both radial and tangential flows occur. Given 

the input conditions of pressure, temperature, and a reference viscosity, they presented a 

numerical method to solve for the corresponding temperature, pressure drop, leakage flow 

rate, and the viscosity at any point in the fluid film between the barrel and the valve plate. 

He then defined three force coefficients to calculate the hydrostatic force between the 

valve plate and the rotating barrel. This analysis was conducted for two cases. For the first 

case, it was assumed that no heat from the fluid is lost to the boundaries. For the other 
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case, they considered the effect of heat losses from the fluid as it passed through the 

sealing gap. 

Casoli et al. [14] presented a numerical model for the simulation of a swash-plate axial 

piston pump, focusing on the characterization of fluid properties. First, they gave a quick 

overview on a previously developed pump model. Then, they presented four different 

models of the fluid, which take into account cavitation. These models aim at 

characterizing the unsteady and erratic cavitation features in a simplified manner in order 

to apply the models to the simulation of hydraulic components. In the second part of the 

paper, they showed an application of these models to an axial piston pump. They got a few 

results and compared them with available test data. 

Kim et al. [7] conducted a study to investigate the effect of the valve plate shape on 

the fluid film between the valve plate and the cylinder block under real working 

conditions. They designed three valve plates with different shapes. One of the valve plates 

was without bearing pad, a second one with a bearing pad and the third one was a 

spherical valve plate. The leakage flow rates and the shaft torque were also investigated in 

order to clarify the performance difference between the three types. The spherical valve 

plate estimated good fluid film patterns and good performance more than the other valve 

plates in oil hydraulic axial piston pumps in overall pressure range. The discharge pressure 

pulsation, the leakage flow rates and the total efficiency are strongly related to the 

changing pattern of the fluid film on the valve plate. Kim et al. [7] also reached the 

following conclusions: 

1. As the barrel is tilted from the center of the valve plate, the fluid film in the 

discharge region is smaller than that in the suction region. 
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2. The fluid film on the valve plate is continuously changed in value and location 

during one revolution of the cylinder block as can be seen in Figure  2-6. The 

shaking of the cylinder block is attributed to the discharge pressure pulsation. The 

clearance of the spline and the bearing causes the tilting of the cylinder block. The 

size of the shaking and the tilting increases with increased discharge pressure. The 

spherical valve plate was able to reduce both the shaking and the tilting of the 

cylinder block over all driving conditions due to spherical contact. 

3. In case of the plane valve plate without bearing pad, the possibility of contacts 

between valve plate and cylinder block is really increasing in high discharge 

pressure condition. Therefore, high friction, severe wear and hence the frictional 

loss will be increased. 

4. For both the spherical valve plate and plane valve plate with bearing pad, the 

difference of fluid film between discharge region and suction region was 

noticeably reduced compared with that of the plane valve plate without bearing 

pad. 

5. Overall, the minimum fluid film thickness slightly increased as rotational speed 

increased.  

6. The minimum fluid film linearly decreased as discharge pressure increases. The 

minimum fluid film of the plane valve plate without bearing pad decreased more 

steeply than the other valve plates in high-pressure range. 

In general, the leakage flow rates increase as discharge pressure increases. The leakage 

flow rates of the spherical valve plate show the lowest value compared with the other two 

valve plates in the range above 20 MPa. The leakage flow rates of the plane valve plate 
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without bearing pad sharply increase compared with those of the plane valve plate with 

bearing pad in high-pressure range above 25MPa due to the increase of fluid film. 

Manring [15] examined the volumetric efficiency of an axial-piston pump as it relates 

to the compressibility losses of the fluid. He compared a standard valve-plate design 

which utilizes slots to a trapped-volume design which eliminates the slots altogether. He 

found analytically that the standard valve-plate design introduces a volumetric loss, which 

may be accounted for by the uncontrolled expansion and compression of the fluid that 

occurs through the slots themselves. In addition, he suggested that the operating efficiency 

could be improved by utilizing a trapped volume design. 

Zloto et al. [16] applied the Reynolds equation, commonly applied in the theory of 

lubrication, in the numerical analysis (finite element method) of pressure distribution of an 

oil film on the valve plate in the variable height gap of an axial piston pump. They used an 

adaptive mesh refinement based on residual estimations of solution errors in order to 

obtain high accuracy of the results. They found that the geometric and work parameters of 

the kinematic pair (cylinder block/valve plate) have a substantial impact on the pressure 

distributions in the variable height gap. With an increase in the angular velocity of the 

cylinder block or oil viscosity, the values of the oil film over-and under-pressure “peaks” 

increase linearly. They also reported that Maximal over-and under-pressure “peaks” occur 

for the smallest values of the bias angle. Upon an increase in bias angle the values of the 

over-and under-pressure “peaks” decrease. Additionally, the maximal values of the over-

and under-pressure “peaks” occur for the minimal gap height. Upon an increase in the 

minimal value of the gap height the values of the over-and under-pressure “peaks” 

decrease. 
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2.4 Modeling of Bent-Axis hydraulic Piston Pumps and Motors 

Schoenau et al. [17] presented a mathematical model of a variable displacement swash 

plate pump modulated by a hydraulic control signal. The model was based on the 

assumptions that the main input shaft is rotating at a fixed angular velocity, and negligible 

stiction due to the constant piston motion. They derived an expression for the torque 

applied to the swash plate that consists of four components: piston inertia effects, pressure 

force effects, piston shear effect, and shoe plate force effect. Neglecting stiction, an 

expression for the damping torque acting on the yoke due to viscous friction was 

introduced. This torque varies linearly with the angular velocity of the yoke via a 

proportionality constant determined experimentally. 

In finding the pressure force effects, Schoenau et al. [17] had considered the pressure 

variations through one complete revolution of the swash plate. Because the valve ports 

have relief notches to avoid step changes in pressure in the transition regions, they 

considered the resulting overlap, which produces six distinct pressure regions for each 

revolution of the piston barrel (see Figure  2-8).  

In region 1, the cylinder is completely open to the discharge port and so the cylinder 

pressure is equal to the discharge pressure. In region 2, the cylinder is open to both the 

discharge port and the relief notch before the suction port. In region 3, the cylinder is open 

only to the relief notch before the suction port. In region 4, the cylinder is completely open 

to the suction port and so the cylinder pressure is equal to the suction pressure. In region 5, 

the cylinder is open to both the suction port and the relief notch before the discharge port. 

In region 6, the cylinder is open only to the relief notch before the discharge port. 
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Applying the continuity and momentum equations to each region resulted in 

expressions for the pressure and flow variation with the barrel rotational angle. The 

leakage flow rate is the sum of the flow rate between the cylinders and the pistons, the 

flow out through the slippers, and the leakage between the cylinder barrel and the valve 

plate. The leakage flow rate was found to be proportional to the pressure [17]. 

 

Figure ‎2-8: Pressure regions according to Schoenau et al. [17] 

Bartos [18] presented a mathematical modeling for bent-axis hydraulic piston motor 

with multiple pistons. In his model, he derived an equation for the instantaneous 

theoretical torque generated by the fluid pressure forces at the pistons. This equation only 

expresses the torque generated by the pressure forces and does not model the net torque 
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output of the motor because losses due to viscous forces and Coulomb friction were not 

considered. Mathematical relations that involve two non-dimensional constants then 

approximated the equation. Moreover, he derived the torque losses. These losses include: 

the torque due to viscous forces of the fluid in the clearance between the barrel and the 

valve plate, the resisting torque created by viscous forces in the clearance between the 

barrel and the motor housing, coulomb friction torque at the motor bearings, shaft torques 

resulting from Coulomb friction from internal oil seals, and piston motion within the 

barrel. The net motor output torque to the load is therefore equivalent to the pressure 

torque at the pistons less the torque losses and the torque expended to accelerate the motor 

parts. Likewise, the theoretical flow rate through the motor, ignoring leakage effects was 

found. This flow rate was also approximated by mathematical relationships that involve 

two non-dimensional constants that have the same values as those for the torque 

expression. Besides, the leakage flow rates were also derived that include: the leakage past 

the hydraulic motor pistons from the pressure and return ports to the case drain, the fluid 

leakage between the valve plate and the cylinder block, and the total cross port leakage 

(leakage flow between motor ports across the valve plate to barrel sealing surface).  

Karkoub et al. [19] derived a neural network model to predict the steady-state and 

dynamic behavior of a bent-axis piston pump with the objective to reduce the power loss 

at high pressures. The model uses data obtained from an experimental setup. The neural 

network model has a feed forward architecture and uses the Levenberg Marquardt 

optimization technique in the training process. According to the authors, the model was 

able to predict the behavior of the pump accurately. 
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Canbulut et al. [20] employed a neural network to analyze axial piston pump of 

hydrostatic circular recessed bearing. The system mainly consists of cylinder block, 

piston, slipper, ball-joint and swash plate. The neural model of the system has three layers, 

which are input layer with one neuron, hidden layer with ten neurons and output layer 

with three neurons. According to the authors, the proposed neural network was able to 

predict static and dynamic parameters of the bearing system in real time. 

Gad et al. [21] investigated the static and dynamic behavior of a variable displacement 

bent axis axial piston pump with power controller theoretically and experimentally. A 

mathematical model was deduced to predict the performance of the pump and its 

controller. The steady-state characteristics and pump transient response were predicted 

theoretically and evaluated experimentally. The authors indicated that the theoretical 

results showed good agreement with the experimental results in the steady state and 

transient modes of operation. According to the authors, the study of the pump performance 

showed that the pump does not present the hyperbolic power curve, which represents the 

constant power curve. 

The feasibility of using a nonlinear gas spring in the pump controller was also 

investigated. The proposed controller includes a gas charged accumulator to replace the 

used mechanical springs in the feedback path. A nonlinear mathematical model of the 

proposed controller was developed and treated by using SIMULINK. The static 

characteristics of the proposed controller showed that, the P-Q relation is near to the 

required hyperbola in case of slow variation load pressure, isothermal compression 

process. In case of real polytrophic gas process in the accumulator, the resulting P-Q 
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relation deviates from the required hyperbolic curve. During short time period, the gas 

temperature reaches its original steady-state value due to the good thermal conductivity of 

the metallic materials of the accumulator house. Then the operating point displaces to be 

on the P-Q curve corresponding to the isothermal process. The mathematical model 

describing the pump dynamic behavior was based on the following assumptions [21]: 

 The fluid pressure at the suction and return lines is zero gauge pressure. 

 The pressure losses in the short pipelines are neglected. 

 The pump rotates at constant speed. 

 The oil temperature and viscosity are constant. 

 The inertia force of oil column in the cylinder is negligible. 

 Half the number of pistons is exposed to high pressure and the leakage originates 

at these cylinders. 

 The pressure forces acting on the valve plate were neglected. 

The proposed controller, equipped with the hydraulic accumulator, results in a better 

utilization of available power compared with the actual one specially at the 

commencement power control at the higher operating pressure range. The transient 

response of the pump, to step throttling of exit line, is calculated. The transient pressure 

oscillations and settling time are considerably reduced, but the maximum over shoot is 

increased [21]. 

Zhang et al. [22] proposed the modeling of a damping mechanism with an open-loop 

reduced order model for the swash plate dynamics of an axial piston pump. They derived 

an analytical expression for the damping mechanism. They also validated the proposed 

reduced order model by comparing with a complete nonlinear simulation of the pump 
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dynamics over the entire range of operating conditions. The model should potentially help 

in the development of improved control design of swash plate for hydraulic axial-piston 

pumps. 

In a study conducted by Kim et al. [23], the theoretical mechanism for driving the 

tapered pistons of a bent axis pump is studied by use of the geometric method. The driving 

area of the tapered pistons was defined by measuring the strain of a cylinder forced against 

a tapered piston using an electric strain gage and a slip ring as can be seen in Figure  2-9. 

The forces applied to tapered pistons are also investigated with the change of discharge 

pressure and the rotational speed. It was concluded that the cylinder block is driven by one 

tapered piston in a limited area and the driving area is changed due to space angle of the 

tapered pistons and the swivel angle of the barrel. The force applied to tapered pistons 

increases as the discharge pressure and the rotational speed increase. 

 

Figure ‎2-9: Driving mechanism experimental setup [23] 

Bael et al. [24] studied the theoretical mechanism for the bent-axis type axial piston 

pump by using the geometrical method. They determined the theoretical equations for the 

driving range of the tapered piston. They found out that, the cylinder block is driven by 
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one tapered piston in a limited range and that the core parameters such as the tilting angle 

of the piston and the ahead delay angle influence performance of the bent-axis type axial 

piston pump. 

Hong et al. [25] presented a study on the friction losses of a bent-axis Type Hydraulic 

Piston Pump to find out which design factors influence its torque efficiency most 

significantly. The friction coefficients of the pump parts such as piston heads, spherical 

joints, shaft bearings, and valve plate were experimentally identified. Applying the 

experimental data to the equations of motion for pistons as well as to the theoretical 

friction models for the pump parts, the frictional torques produced by them was computed. 

The accuracy of the computed results was confirmed by comparison with the practical 

input torque of the pump. They found that the viscous friction forces on the valve plate 

and input shaft bearing are the primary sources of the friction losses of the bent-axis type 

pump, while the friction forces and moments on the piston are of little significance. 

According to the study, the diameters of the valve plate and the shaft bearing should be 

minimized in order to increase the torque efficiency of the object pump at high input shaft 

speed [25]. 

The total friction torques generated by the piston heads, spherical joints, valve plate 

and bearing add to around 10.9% of the theoretical input torque at a rotational speed of 10, 

000 rpm and a load pressure of 300 bars. The computed total input torques is slightly 

smaller than the measured ones. The object pump indicated a practical torque efficiency of 

about 85% at a rotational speed of 4, 000 rpm and 75% at 8, 000 rpm for the load pressure 

of 136 bars [25]. 



32 

 

Nie et al. [26] formulated the characteristic equation of the hydrostatic slipper bearing 

with an annular orifice damper, where the effects of various geometric factors are 

reflected. They investigated the reaction force of the bearing in water hydraulic axial 

piston motor (WHAPM). Moreover, they examined the effects from the friction within the 

cylinder bore, the dynamics of the piston, and the centrifugal force of the piston–slipper 

assembly. Results of the theoretical analyses indicated that the friction coefficient, the 

swash plate angle, and the inertia and centrifugal loads would have significant influences 

on the reaction force. Furthermore, an appropriate swash plate angle can help eliminate the 

fluctuation of the reaction force. Besides, the load-carrying capacity of the hydrostatic 

slipper bearing is more sensitive to the damping length than to the supporting length of the 

piston. Moreover, a short damping length can help improve the load-carrying capacity. 

Experimental studies of the slipper pads sliding against the swash plates are also 

conducted at a custom-manufactured test apparatus. The experimental results indicated 

that the hydrostatic slipper bearing with an annular orifice damper would decrease the 

possibility of the severe wear between the slipper pad and the swash plate in comparison 

with the hydrostatic clamping ratio bearing in the WHAPM. 

Watton, J. [27] introduced a non-dimensional approach to the explicit characterization 

of the non-linear steady state performance of an axial piston motor. The motor is driven by 

a servo valve and it is shown how the flow characteristics, including losses, may be 

sufficiently represented by a well-established single equation that may then be used to 

produce directly usable design equations for speed, efficiency, and power transfer. The 

new equations allow direct determination of the conditions for maximum efficiency and 
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power transfer, which leads to determine the effect of flow and torque losses for both 

open-loop and closed-loop operation. The approach was validated by experimental results. 

The derived equations, though applicable over a wide range of conditions, become more 

accurate at high speeds and particularly with closed-loop control at higher load pressures. 

The flow equations for closed-loop control at very high load pressures where the servo 

valve current saturates are not applicable. Optimum drive performance in the sense of 

maximum power transfer and efficiency may be possible but at a very low drive speed and 

a low drive efficiency. 

2.5 Noise Reduction and Control 

The reduction in source flow ripple in hydraulic systems is the most effective method 

of reducing pump-generated pressure ripple and system noise. 

According to Watton [27] and Johansson [28, 29], the noise and vibrations created by 

the pump have mainly two different origins. First, the cylinder pressures acting on the 

piston will create piston forces inside the pump. Second, the pump generates flow ripple, 

which in a system will be transformed to pressure ripple and noise. Pump generated flow 

ripple can be divided into two different parts. The first part is the kinematic flow ripple, 

which is due to the limited number of pistons, which portion the flow into the delivery 

line. The second part is the compressible flow ripple, which becomes evident as the fluid 

is exposed to large alternating pressures. 

Manring [30] examined the idealized and actual flow-ripple of an axial-piston swash-

plate type hydrostatic pump. He considered two cases. First, the idealized case in which 

the leakage is considered zero and the fluid is assumed incompressible. Both the ripple 

height and the pulse frequency of the ripple are described for a pump with an even and an 
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odd number of pistons. In the other case, the actual flow-ripple of the pump is examined 

by considering the pump leakage and the fluid compressibility. From an idealized point of 

view, Manring showed quantitatively that an eight-piston design is less attractive than a 

nine or seven-piston design. From a flow ripple point of view, Manring indicated 

numerically that a pump designed with an even number of pistons might be as feasible as 

one that is designed with an odd number of pistons. 

Helgestad et al. [31] outlined a scheme whereby the delivery port opened relatively 

late in the cycle and allowed a one-way valve in the port plate to open when the cylinder 

reached the delivery pressure. Ideally, this would produce optimal cylinder pre-

compression for every pump operating condition. The valve would close each time that it 

communicated with a low-pressure cylinder and then open again as each cylinder reached 

the delivery pressure. Because of this, the valve might only have a limited life; a nine-

piston pump operating at 1500 rpm for example would cause the valve to switch 810000 

times/hour. Furthermore, at higher pump speeds, the frequency response of the valve may 

limit its switching performance. 

A possible solution to the FBN problem is the incorporation of an auxiliary source of 

flow ripple which, when combined with the pump flow ripple, produces destructive 

interference. However, a mechanical method of achieving this would be difficult due to 

the short duration of the cylinder reverse flows. Likewise, the anti-noise mechanism 

would need to respond precisely to transient changes in the mean delivery pressure, 

displacement, and speed. Otherwise, the device itself might create a significant unwanted 

FBN. Rebel [32] attempted FBN cancellation by introducing a high-frequency flow 

fluctuation using a fast-response servo-valve and an auxiliary pump. Initially, open-loop 
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control was used with a single sinusoidal control of the valve used to cancel a specific 

harmonic. He carried out cancellation tests on a radial three-piston pump, operating at a 

maximum speed of 2000 rpm and achieved a measure of success. He found that the servo-

valve could cause a 9dB reduction in the pump FBN at the pump fundamental frequency. 

Under closed-loop control, with the pump pressure ripple signal used for feedback, a 

larger reduction of 17dB was achieved through cancellation of a number of the lower-

pump flow ripple harmonics. However, Rebel concluded that the system was not 

commercially feasible; the cancellation of higher-frequency components above 50Hz was 

limited by the frequency response of the servo-valve. Also, bleeding off and adding fluid 

reduced the overall system efficiency. Furthermore, the cost of the servo valve would 

probably be analogous with that of the piston pump. 

The delivery delay needed for optimal pre-compression depends on the fluid 

properties, pump speed and displacement, and pressure difference between suction and 

delivery. To achieve optimal or near-optimal pre-compression over a wide range of 

operating conditions, a variable timing mechanism was proposed by several researchers 

that actuates the angular position of the port plate [33-35] in response to changes in these 

characteristics. However, the concept is limited in its effectiveness because any delay in 

the opening of the delivery port is also applied to the suction port. With large delays, the 

end of the delivery port can extend over the piston TDC position, leading to transfer of 

fluid back to the suction port and a consequent reduction in the pump volumetric 

efficiency. In addition, a delayed opening of the suction port is likely to cause cavitation in 

the cylinder at the start of the suction stroke. 
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Martin et al. [35] and Boltyanski et al. [36] attempted to separate the timing of the 

suction and delivery ports by using independent mechanisms acting at the start of both 

ports. However, the main problem with these mechanisms is the high cost of their 

implementation. In addition, the servomechanisms controlling the variable timing 

elements become extremely complex in order to reveal the necessary pressure, flow and 

speed compensation characteristic.  

An alternative approach to variable timing is to use mechanisms that pre-compress the 

cylinder contents to the delivery pressure in time for communication with a fixed delivery 

port. Pre-compression filter volume (PCFV) has been developed by Boyer [37] and 

Pettersson [38]. Very careful design of the arrangement is required for adequate flow 

ripple attenuation over a wide range of operating conditions. In particular, the volume of 

the PCFV and the diameter and length of the connecting channel from the PCFV to the 

port plate are critical factors in achieving good performance. Now, results from the PCFV 

mechanism have only been published for fixed-displacement pumps. 

Bartos [39] presented a Mathematical Model describing the torque and flow ripple 

effects of a bent-axis hydraulic piston motor. This paper describes how the resultant 

torque and flow ripple can be reduced by properly phasing the hydraulic motors when 

multiple motors are used to drive a device. The total instantaneous torque with minimum 

torque and flow ripple generated by the hydraulic motors is equivalent to the instantaneous 

torque generated by a single motor with a displacement equal to the displacement of one 

motor multiplied by the number of motors. In the mean time, number of pistons equal to 

the number of pistons of one motor multiplied by twice the number of motors if the motor 

has an odd number of pistons. The corresponding equivalent displacement for an even 
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number of pistons equals to the displacement of one motor multiplied by the number of 

motors, while the equivalent number of pistons equals to the number of pistons of one 

motor multiplied by the number of motors. 

Harrison et al. [40] indicated that the main feature of the axial piston pump delivery 

flow ripple is the short-duration reverse flow into the cylinder at the beginning of the 

delivery phase caused by under-compression of the cylinder fluid as the cylinder passes 

from the suction port to the delivery port. Conventionally, a pressure relief groove 

machined on the face of the port plate prior to the opening of the delivery kidney slot 

reduces the severity of the cylinder reverse flow. This extends the period over which 

reverse flow occurs, thereby reducing the magnitude of higher frequency flow ripple 

harmonics. However, the size and timing of this feature are highly dependent upon the 

delivery and suction pressures and upon the pump displacement and speed. Pressure relief 

grooves have no mechanism to respond to such changes, and so they are optimized for 

best performance over a limited range of operating conditions. Consequently, pumps with 

relief grooves can generate a significant increase in FBN when operating away from the 

design point. 

Kim et al. [41] simultaneously measured pressure variations in a cylinder at the 

discharge region and the pump noise for different values of the discharge pressures and 

rotational speeds during the pump working. They used three types of valve plates to 

investigate the effects of the pre-compression and the V-notch in the valve plate. They 

found that the pressure variations in the cylinder increase as the discharge pressure and the 

rotational speed increase. In addition, the pump noise is deeply related to the pressure 

variations in the cylinder and the pressure pulsations in the discharge line. Furthermore, 
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the pressure variations in the cylinder and the pressure pulsations in the discharge line can 

be reduced by optimizing the design of the pre-compression angle and the V-notch in the 

valve plate, which consequently may result in the reduction of the pump noise. 

Mandal et al. [42] presented a model that puts special emphasis on analyzing the effect 

of volume variation of the silencing grooves. They carried out the analysis for a swash 

plate pump with leading-side manifolds. Therefore, they indicated optimal dimensions for 

these grooves through a constant-speed parametric analysis at fixed load. With the goal to 

minimize the pressure and flow ripples, they also developed a mathematical model that 

attempts an explicit solution of pressure within each silencing groove. 

Kumar et al. [43] presented static and dynamic characteristics of a piston pump slipper 

with a groove. They have applied three-dimensional Navier Stokes equations in 

cylindrical coordinates to the slipper/plate gap, including the groove. They presented 

pressure, leakage, force, and torque variations when groove dimensions and position are 

being modified. They also considered the effect of slipper tangential velocity and turning 

speed. They found a good agreement between theoretical analysis and experimental 

results. In their analysis, they assumed laminar and incompressible flow under all 

conditions and that the slipper is parallel to the plate. In addition, they gave design 

instructions to optimize slipper/groove performance. 

Harrison et al. [40] presented a timing mechanism which is speed, flow and pressure 

sensing to reduce axial piston pump delivery flow ripple. The mechanism consists of a 

series of heavily damped check valves (HDCV) built-in the delivery port of the pump 

valve plate. Fixed-speed tests have shown that the mechanism can significantly reduce 

axial-piston pump’s delivery flow ripple over a wide range of delivery pressures and pump 
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displacements. Moreover, the reduction in pressure ripple achieved with the mechanism 

led to reductions in overall Air Born Noise (ABN) levels of up to 6 dB in a simple system. 

A simulation model has been produced to predict the behavior of the prototype 

mechanism. According to the authors, the model achieved good agreement with the 

measured delivery flow ripple. The final HDCV prototype achieved reductions in delivery 

flow ripple and casing ABN for delivery pressures between 100 and 250bar, and for pump 

displacements between 20 and 100%. The level of damping applied to the valve is 

important. With too much damping, the valve response will be slow and the pump could 

become noisy during transient changes in operating conditions. With too little damping, 

the valve element will switch rapidly and hence may have a limited life and may be an 

additional noise source; it could also result in damage to the pump. In each condition, the 

HDCV prototype appears to cause more gradual cylinder compression. For the maximum 

flow conditions, the first harmonic is significantly reduced with the higher harmonics 

relatively unaffected. However, for the 20% flow conditions, the flow ripple is 

significantly reduced for the first four harmonics. In high-flow conditions, the 

improvements are less exciting. The introduction of the HDCVs led to a reduction in 

measured sound pressure level (SPL) of between one and 6 dB (A). As with the reductions 

in flow ripple, the largest SPL reductions occurred at lower pump displacements. Overall, 

the simulation model underestimates the HDCV damping at low frequencies in contrast 

with the overestimation at higher frequencies. 

Johansson et al. [28, 29] introduced an overview of a design feature called the “cross-

angle”. Cross-angle is a bias angle (2º to 4º) of the swash plate around the axis that is 

perpendicular to the normal displacement angle (see Figure  2-10). Because of the cross-
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angle, the time delay (pre-compression) before linking up to the discharge kidney changes 

with the displacement angle. The physical principle of a cross-angle is similar to the 

revolving valve plate, but instead of rotating the valve plate, the dead centers are moved as 

the displacement angle changes. 

 

Figure ‎2-10: Cross angle 

In a study conducted by Kim et al. [44], a parallel line is introduced to the hydraulic 

pipeline for the hydraulic system with a bent axis piston pump as a method to reduce the 

pressure ripples. It was confirmed by experiment and by simulation that the hydraulic 

pipeline with a parallel line can considerably reduce the amount of pressure ripples by 

using the phase difference of pressure waves caused by the length difference between the 

main line and the parallel line. 
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CHAPTER 3:  THEORITICAL ANALYSIS 

All vectors dealt with in this analysis should be referenced to either the inertial 

coordinate frame “a1a2a3“ or any other moving coordinate frame. A letter at its lower left 

corner should precede the vector. This letter indicates that the vector is expressed with 

respect to the indicated frame of reference. For example, the vector DV is a vector V that is 

expressed with respect to the moving coordinate frame D. 

3.1 The Frictional Moments at the Rolling Bearings 

Figure  3-1 shows the basic components of a ball roller bearing, which include the 

inner race, the rollers, the outer race, and the cage. The resistance to rotation of a rolling 

bearing is composed of rolling, sliding, and lubrication frictions. 

Rolling contact friction occurs when the rolling elements roll over the raceways. It 

results in part from elastic hysteresis and partially from the associated sliding resistance. 

The rolling contact friction is proportional to the size of the contact areas and the size of 

the contact angle between rolling elements and raceways. 

Sliding friction occurs at the guiding surfaces of the cage, between the rollers for 

bearings without a cage, at the roller faces and the raceway lips. Lubricant friction is the 

result of the internal friction of the lubricant between the working surfaces as well as its 

churning and working action that occurs with excess lubricant at high speeds. 
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The total resistance to running of a rolling bearing is very small compared with the 

transmitted forces. However, the friction determines the heat generated in a bearing, thus 

influencing the operating temperature of the bearing parts and the lubricant. 

 

Figure ‎3-1: Basic components of a roller bearing [45] 

The frictional moment of a roller bearing depends on the load, the speed, and the 

lubrication viscosity. Under normal operating conditions, the entire frictional moment of a 

roller bearing, which accommodates both radial and axial loads is given by 

v m aM M M M    (‎3.1) 

Where 

M = total frictional moment of the bearing (N.m) 

Mv = load independent component of the frictional moment (N.m) 

Mm = radial load dependent component of the frictional moment (N.m) 

Ma = axial load dependent component of the frictional moment (N.m) 
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3.1.1 The load-independent component Mv 

This depends on the operating viscosity  of the lubricant and on the speed of the 

rotating shaft. The bearing friction through the bearing temperature in turn influences the 

operating viscosity. In addition, the bearing size dm and the width of the rolling contact 

areas, which varies noticeably from type to type, have an effect on Mv. The load 

independent component Mv of the frictional moment is determined in accordance with the 

empirical formula given by [25] 
















2000,10160

2000,)(10

310

33/210

msmo

msmmso

v
vndf

vndvnf
M

 

(‎3.2) 

fo = index for bearing type and lubrication type [45] 

The pitch circle diameter of the bearing, dm is given by 

2
m

D d
d


  (‎3.3) 

Where 

d = bore diameter of the bearing in mm 

D = Outside diameter of the bearing in mm  

 = operating viscosity (mm
2
/s) of the oil 

The oil used in the pump assumed here is Mobile 1 synthetic ATF, which has viscosity 

values as shown in Figure  3-2. For the operating temperature range (20C to 40C), the 

kinematic viscosity could be assumed to vary exponentially with the operating 

temperature with reasonable accuracy according to the relationship 

0.02592.31 Te   (‎3.4) 
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Figure ‎3-2: Kinematic viscosity of Mobile 1 synthetic ATF hydraulic oil vs. temperature 

The index fo is indicated in Table  3-1 for oil bath lubrication where the oil level in the 

stationary bearing reaches the center of the bottommost rolling element. For fixed dm, fo 

increases with the size of the balls or with the length of the rollers, i.e. it also increases 

indirectly with the size of the bearing cross-section. If radial bearings run on a vertical 

shaft under radial load, twice the value given in Table  3-1 has to be assumed; the same 

applies to a large cooling-oil flow rate or an excessive amount of grease. 

Table ‎3-1: Indexes fo, f1, P1 for the calculation of rolling bearings frictional moment [45] 

Bearing type fo f1 P1 

Deep groove ball bearings 1.5-2 
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3.1.2 The Radial load dependent frictional moment component Mm 

This results from the rolling friction and from the sliding friction at the lips. Under 

normal operating conditions, Mm hardly varies with speed but it does vary with the size of 

the contact area and consequently with the rolling element/raceway curvature ratio and the 

loading of the bearing. The radial load dependent frictional moment is given by 

1000

11 m
m

dPf
M   (‎3.5) 

f1 is an index taking into account the magnitude of load and is listed in Table  3-1 for 

different bearing types. 

The load P1 governs the radial load-depending frictional moment Mm. It takes into 

account the fact that Mm changes with the load angle and is listed in Table  3-1 for different 

bearing types. 

3.1.3 Axial load dependent component of the frictional moment 

The axial load dependent component of the frictional moment is given by 

maaa dFfM 5106   (‎3.6) 

The index fa, which depends on the axial load Fa and the lubricating condition, is given 

by 
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Fb = 0.0048 for caged bearings 
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Fb = 0.0061 for full complement bearings (without a cage) 

For a bent axis piston pump linked to a HPA at the discharge port and to a LPA at the 

suction port, x1 in Eq. ( 3.7) will always be less than 1.0. Therefore, Eq. ( 3.7) reduces to 

1,15.0 1  xfa  (‎3.9) 

3.2 Dynamic Analysis of Main Shaft Assembly 

The main shaft includes the drive shaft, the input shaft to the constant velocity joint, 

the cups of the Connecting Rods, and the disk. The drive shaft transmits power from the 

engine by means of a splined end of the shaft. 

Consider the inertial coordinate axis system “a1a2a3” as shown in Figure  3-3. Attach a 

coordinate system “b1b2b3“ to the main shaft. “b1b2b3“ is obtained by rotating “a1a2a3“ 

about the “a3“ axis with an angle  (3-rotation). Therefore, the transformation matrix can 

be written as 

1

cos sin 0

sin cos 0

0 0 1

T

 

 

 
 

 
 
    

(‎3.10) 

The angular velocity of the rotating frame of reference expressed in “B” frame with 

respect to “A” frame in a skew symmetric matrix form is given by [46] 

1 1

0 1 0

1 0 0

0 0 0

A B T

B TT 

 
 

 
 
  



 

(‎3.11) 

The angular velocity and angular acceleration of the main shaft in a vector form are 

given by 
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0 0
T

B ms    
  (‎3.12) 

0 0
T

B ms    
  (‎3.13) 

The definition of the “b1b2b3“ frame in terms of “a1a2a3“ frame can be expressed as 

1 1 1 1 2

2 1 2 2 1 2

3 3 3 3

cos sin 0 cos sin

sin cos 0 sin cos

0 0 1

b a a a a

b T a a a a

b a a a

   

   

         
         

     
         
                  

 

 


 

(‎3.14) 

The velocity and acceleration of the center of gravity of the main shaft equals to zero. 

 

Figure ‎3-3: Main Shaft 

Figure  3-4 shows the Free Body Diagram (FBD) of the main shaft. The forces and 

moments that act on the FBD of the main shaft include: 

1. The torque input, ATin, to the main shaft and is expressed as 
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 0 0
T

A in A inzT T  (‎3.15) 

2. The reaction force from the ball bearing at point (1). It consists of two force 

components acting perpendicular to the shaft axis and a frictional moment around 

the shaft axis. The reaction force and the corresponding position vector as 

measured from the left end of the main shaft can be expressed as 

1 1 1 0
T

A B toMS A B toMSx A B toMSyF F F     (‎3.16) 

 1 10 0
T

A zr r
 

(‎3.17) 

The frictional moment opposes the direction of rotation of the shaft and is 

expressed as 

 1 1 .A B toMS A B toMSz B msM M sign    (‎3.18) 

3. The reaction force from the thrust bearing at point (2). Two force components are 

perpendicular to the axis of the shaft and the third one is parallel to it. In addition, 

there is frictional moment acting around the shaft axis. The thrust bearing reaction 

force and the corresponding position vector as measured from the left end of the 

main shaft is expressed as 

2 2 2 2

T

A B toMS A B toMSx A B toMSy A B toMSzF F F F     (‎3.19) 

 2 20 0
T

A zr r
 

(‎3.20) 

The frictional moment opposes the direction of rotation of the shaft and is 

expressed as 

 2 2 .A B toMS A B toMSz B msM M sign    (‎3.21) 

4. The reactions from the two side pins of the first cross of the CVJ at points (3) and 

(4). The reaction force at each pin consists of two perpendicular components 
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denoted by –FFMStoC13, - FFMStoC14. These reaction forces are equal in magnitude 

and opposite in direction, thus forming a couple. Moreover, there is a frictional 

moment around the axis of each pin, denoted as –FMMStoC13 and - FMMStoC14. The 

corresponding position vectors of these reaction forces as measured from the left 

end of the main shaft is given by 

 3 1 30
T

B C zr r r   (‎3.22) 

 4 1 30
T

B C zr r r  (‎3.23) 

5. Reaction forces from the connecting rods at the cups at points (5) through (13). 

Each connecting rod acts with a reaction force that consists of three force 

components. Besides, there are three frictional moment components from the 

spherical end of each connecting rod. The connecting rod reaction forces and the 

frictional moments at the end of the connecting rod are donated as - AFMStoCR,i, and 

- AMMStoCR,i respectively, where i = 1, 2, …9. The position vector of this reaction 

force as measured from the left end of the main shaft is expressed as 

 1 5

2 ( 1)
( ) 0 ,    1,2,...9

9

T

T

A CR z

i
r i T R r i




  
     

  
 (‎3.24)

 

6. The weight of the main shaft and the corresponding position vector as measured 

from its left end are expressed as 

 0 0
T

A MS MSW gM  (‎3.25) 

 0 0
T

A Wms Wmszr r
 

(‎3.26) 
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Figure ‎3-4: Free Body Diagram of the main shaft sub-assembly 

3.2.1 The frictional moment at the ball bearing of the main shaft 

The frictional moment from the ball bearing opposes the direction of rotation of the 

main shaft and is expressed as 

1 1
B ms

A B toMS B toMSz

B ms

M M





  (‎3.27) 

A detailed analysis of frictional moment components of roller bearings is presented in 

section 3.1. The thrust-tapered roller bearing carries out the thrust load from the main 

shaft. Therefore, the axial load dependent component of the frictional moment from the 

ball bearing is zero. Hence, the frictional moment on the ball bearing as given by Eq. ( 3.1) 

reduces to 

vmtoMSzB MMM 111 
 

(‎3.28) 

nms is the angular velocity of the main shaft in rpm and is given by 
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 3 60

2

ms

msn





  (‎3.29) 

The pitch circle diameter of the bearing, dm1 is given by 

1 1
1

2
m

D d
d


  (‎3.30) 

The index f11 which takes into account the magnitude of load is given by [45] 

0.5

1
11

1

0.005 0.009 o

o

P
f

C

 
   

   

(‎3.31) 

Po1 is the equivalent load determined for the operating load and is given by [45] 

1 1 1 1 1

1 1

    

0.6 and 0.5

o o r o a

o o

P X F Y F

X Y

 

 
 (‎3.32) 

Co1 is the static load rating of the bearing. The load P11 governs the load-depending 

frictional moment M1m. For deep groove ball bearings with zero thrust loading, it is given 

by [45] 

11 r1P  = F  (‎3.33) 

Fr1 is the radial load component of the bearing reaction at point (1) and is given by 

2

1

2

11 toMSyBtoMSxBr FFF 
 

(‎3.34) 

3.2.2 The frictional moment at the thrust bearing 

The frictional moment opposes the direction of rotation of the shaft and is expressed as 

toMSzBA

msB

msB
toMSBA MM 22






 

(‎3.35) 

Therefore, the frictional moment at the tapered roller bearings is given by 

avmtoMSzBA MMMM 2222   (‎3.36) 
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The index fo2 for bearing and lubrication type = 3 to 6 for tapered roller bearings. The 

pitch circle diameter of the bearing, dm2 is given by 

2 2
2

2
m

D d
d


  (‎3.37) 

The index f12, which takes into account the magnitude of load, equals to 0.0004. The 

load P12 which governs the load-depending frictional moment M2m, for tapered roller 

bearings, is given by [45] 

 12 a2 r2P  = max 2Y F , F  (‎3.38) 

Y is a thrust load factor. Brändlein et al. [45] listed equations for the factor Y, where 

for a tapered roller bearing is given by 

o

r

a
o

r

a

e

e
F

F

e
F

F

Y





tan5.1

,cot4.0

,0

2

2

2

2





















 

(‎3.39) 

The axial reaction component at the thrust bearing “Fa2“ comes from the axial 

component of the pistons’ pressure. Most of the times, the yoke angle () is less than 45. 

In addition, “Fa2“ is proportional to “POIL cos“ while the radial reaction component is 

proportional POIL sin . Therefore, the ratio of the axial reaction component to the radial 

reaction component (
2

2

r

a

F

F
) will be more than 1.0 as long as  is less than 45. Moreover, 

the nominal contact angle (o) usually ranges from 10 to 20, which leads to the fact that 

e in Eq. ( 3.39) will always be less than 1.0. Consequently, the ratio 
2

2

r

a

F

F
 will be greater 

than e. As a result, Eq. ( 3.39) reduces to 
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oY cot4.0  (‎3.40) 

The nominal contact angle (o) usually ranges from 10 to 20. Therefore, cot o will 

vary between 5.67 and 2.74. Hence, Y in Eq. ( 3.40) will range between 1.1 and 2.27. As a 

result, the term “2Y Fa2“ will be larger than Fr2 in Eq. ( 3.38). Thus, Eq. ( 3.38) reduces to 

12 a2P  = 2Y F  (‎3.41) 

Fr2 is the radial load component of the bearing reaction and is given by 

2

2

2

22 toMSyBAtoMSxBAr FFF 
 

(‎3.42) 

3.2.3 Equations of motion 

Since the main shaft is in pure rotation, its CG has a zero translational acceleration. 

Therefore, the sum of all forces is zero in all directions. 

9

1 2 1 13 1 14 ,

1

-  . -  .  -  0T T

A B toMS A B toMS c F MStoC c F MStoC A MS A MStoCR i

i

F F T F T F W F


    (‎3.43) 

The sum of the moments of all forces about the center of the thrust roller bearing 

equals to the rotational acceleration times the moment of inertia. 

 

 

 

 

 

1 2 1 1 2

1 3 2 1 13 1 13

1 4 2 1 14 1 14

9 9

2

1 1

2 1

( ) .  -  .

( )  . - . 

 ( ) (

A in A A A B toMS A B toMS A B toMS

T T T

B A c F MStoC c F MStoC

T T T

B A c F MStoC c F MStoC

A CRi A A MStoCRi A MStoCRi

i i

T

A Wms A A MS B

T r r F M M

T r r T F T M

T r r T F T M

r r F M

r r W T







 

    

   

   

   

    

 

. )ms B MSI 

 
(‎3.44) 

3.3 Dynamic Analysis of the Constant Velocity Joint 

The constant velocity joint (CVJ) is a double cardan joint that connects the main shaft 

and the barrel to assure a positive drive. With reference to Figure  3-5, the CVJ consists of 
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the input shaft to the joint, the first cross, the intermediate shaft, the second cross, and the 

output shaft. The input shaft has the same angular velocity as the drive shaft. The analysis 

of the input shaft was lumped with main shaft in the previous section. The intermediate 

shaft consists of two parts: the first intermediate shaft that connects to the first cross, and 

the second intermediate shaft that connects to the second cross. The second intermediate 

shaft can slide with respect to the first intermediate shaft along its own axis to allow for 

the variation of the length of the intermediate shaft as the yoke rotates. The output shaft of 

the joint has the same angular velocity as the barrel. The analysis of the output shaft is 

lumped to the barrel. 

 

Figure ‎3-5: Double Cardan constant velocity joint 

Johnson et al. [47] presented the conditions for a double cardan joint to be a CVJ. 

First, the axis of the input yoke that is attached to the input shaft should be parallel to the 

axis of the output yoke that is attached to the output shaft. In addition, the axes of the two 

yokes attached to the intermediate shafts should be parallel as can be seen in Figure  3-5 

and Figure  3-6. Second, the angle between the input shaft and the intermediate shaft 

should equal to the angle between the intermediate shaft and the output shaft. 
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Hence, the swivel angle,  is related to the angle between the input shaft and the 

intermediate shaft,  by 

2


 

 

(‎3.45) 

To start analyzing the CVJ, the inertial frame of reference “a1a2a3” is defined as shown 

in Figure  3-6. “a1“ axis is normal to the plane formed by the axes of the input and 

intermediate shaft and is initially parallel to the input yoke and is always normal to the 

input axis. “a3“ is aligned with the input axis of the first joint. “a2“ is normal to both “a1“ 

and “a3“ according to the right hand rule. 

 

Figure ‎3-6: Double Cardan Joint Geometric relations 

Input shaft 

Output shaft 

2
nd

 Intermediate shaft 

1
st
 Intermediate shaft 
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Attach a reference frame “b1b2b3“ to the input shaft axis such that: “b1“ is parallel to 

the input yoke axis, “b3“ is aligned along the axis of the input shaft, and “b2“ is normal to 

both “b3“ and “b1“ according to the right hand rule. The frame of reference “b1b2b3” 

relates to the inertial frame through the relation given by Eq. ( 3.14). 

3.3.1 Analysis of the first intermediate shaft 

Attach a coordinate system “c1c2c3“ to the first intermediate shaft such that: “c2“ is 

aligned with the axis of the output yoke of the first joint, “c3“ is aligned with the axis of 

the intermediate shaft (output shaft of first joint), and “c1“ is normal to both “c2“ and “c3“ 

according to the right hand rule. 

One can obtain “c1c2c3“ in two steps. First, “a1a2a3“ is rotated about “a1“ (1-rotation) 

by an angle of  to get “
'

3

'

2

'

1 aaa “. Then, “
'

3

'

2

'

1 aaa “ is rotated about “
'

3a “ (3-rotation) an 

angle of  to get “c1c2c3“. 

 2

1 0 0

0 cos sin
2 2

0 sin cos
2 2

T
 



 

 
 
 
 
 
 
 
  

 (‎3.46) 

3

cos sin 0

sin cos 0

0 0 1

T

 

 

 
 

 
 
    

(‎3.47) 

Therefore, “c1c2c3“ and “a1a2a3“ are related by 
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 
1 1 1

2 3 2 2 2

3 2 3

cos sin cos sin sin
2 2

sin cos cos cos sin
2 2

0 sin cos
2 2

c a a

c T T a a

c a a

 
  

 
   

 

 
 

      
        
      
           

 
  

 (‎3.48) 

The total transformation matrix between the “A” and “C” frames is given by 

 1 3 2

cos sin cos sin sin
2 2

sin cos cos cos sin
2 2

0 sin cos
2 2

imT T T

 
  

 
   

 

 
 
 
   
 
 
 
  

 (‎3.49) 

The angular velocity and angular acceleration of the first intermediate shaft in vector 

form are given by 

1 cos sin
2 2

T

C im

 
   

 
  
 

 
  (‎3.50)

 

1

cos sin
1

cos sin
2

2

C im

   

    



 
 

   
 
 

  

  


 

(‎3.51) 

The position vector of the CG of the first intermediate shaft with respect to the origin 

of the first cross is given by 

 1 10 0
T

C im im zr r  (‎3.52) 

The linear velocity and linear acceleration of the center of gravity of the first 

intermediate shaft are given by 

 1 1 1 1

1
sin cos 0

2

T

C im C im C im im zv r r         (‎3.53) 
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2

1 1

1
2 sin 2 cos

4

T

C im im za r         
    (‎3.54) 

Orthogonalty constraint between the yoke axes 

The two yokes of the joint are constrained by the inside cross, resulting in the 

orthogonalty constraint between the yoke axes as follows: 

021 cb


 
(‎3.55) 

211 sincos aab


 
 

(‎3.56) 

3212 sincoscoscossin aaac


 
 

(‎3.57) 

Therefore,  

















 

2
costantan 1 



 

(‎3.58) 

Figure  3-7 shows the forces that act on the FBD of the first intermediate shaft, which 

include: 

1. The reaction forces from the first cross at points (23) and (24) denoted as – 

FFIM1toC123 and - FFIM1toC124. These reaction forces are equal in magnitude and 

opposite in direction, thus forming a couple. 

2. The frictional moments from the first cross at points (23) and (24) denoted as –

FMIM1toC123 and –FMIM1toC124. 

3. The reaction forces from the second intermediate shaft that acts at points (25). It 

consists of a sliding force component and a couple around the axis of the 

intermediate shaft. The sliding force component can be expressed as 

 2 125 2 125  0 0
T

C IM toIM IM toIM zF F  (‎3.59)
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The reaction couple from the second intermediate shaft to the first intermediate 

shaft is expressed as 

 2 125 2 125 0 0
T

C IM toIM IM toIM zM M  (‎3.60) 

4. The weight of the first intermediate shaft and is expressed as 

 1 10 0
T

A im imW gM  (‎3.61) 

 

Figure ‎3-7: FBD of the first intermediate shaft 

Equations of motion of the first intermediate shaft 

The sum of all forces acting on the first intermediate shaft equals to its mass multiplied 

by the acceleration. 

1 1 123 1 124 1 2 125 1 1 1.( ) .   .T T

c F IM toC F IM toC im C IM toIM A im im A imT F F T F W M a      (‎3.62) 
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Let the origin of the C frame be at the center of the first cross. Therefore, expressing 

the position vectors of all forces acting on the FBD of the first intermediate with respect to 

the center of the first cross: 

 23 2  - 0 0
T

C Cr r  (‎3.63) 

C 24 C 23r  = - r  (‎3.64)
 

Sum of moments of all forces about the center of the first cross is given by 

 

1 23 1 1 123 1 1 123 1 24 1 1 124

1 1 124 1 2 125

1 1 1 1 1 1 1 1 1 1

( . ) . -  . ( . )  .

- .  .

 ( . )  .( . ) ( . ) .

T T T T T

im C c F IM toC c F IM toC im C c F IM toC

T T

c F IM toC im C IM toIM

T T T

im C im A im im C im C im im C im im A im

T r T F T M T r T F

T M T M

T r W T I T r M a

   



    

 (‎3.65) 

3.3.2 Dynamic analysis of the cross of the first joint 

With reference to Figure  3-6, the f1f2f3 coordinate system is attached to the first cross of 

the joint such that: “f1“ is parallel to “b1“, “f2“ is parallel to “c2“, and “f3“ is perpendicular 

to “f1“ and “f2“ according to the right hand rule. Therefore, the expression of the “f1f2f3“ 

frame with respect to “A” frame is given by 

     1 1 cos sin 0
T

f b     (‎3.66)

 

   2 2 sin cos cos cos sin
2 2

T

f c
 

  
 

   
 

 (‎3.67) 

   3 1 2

cos sin sin
2

cos cos sin
2

cos cos cos sin sin
2

f f f


 


 


   

 
 
 
    
 
 
 
  

 (‎3.68) 

Therefore, the rotation matrix of the first cross is given by 
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1

cos sin 0

sin cos cos cos sin
2 2

cos sin sin cos cos sin cos cos cos sin sin
2 2 2

cT

 

 
  

  
       

 
 
 
  
 
 
  
  

 (‎3.69) 

The angular velocity and angular acceleration of the first cross in vector form are 

given by 

2

1

sin sin 2cos cos cos sin 2 sin
2 4 2

cos sin
2

cos cos cos sin sin
2

F c

  
     


  


    

  
    

  
 

  
 
  

  
   








 (‎3.70) 

1 1F c F c

d

dt
   (‎3.71) 

Figure  3-8 shows the forces that act on the FBD of the first cross which include: 

1. The reaction forces from the main shaft which act at points (3) and (4) and are 

given by 

 13 13 13  0
T

F MStoC MStoC x MStoC zF F F  (‎3.72)

 

F MStoC14 F MStoC13F  = - F  (‎3.73) 

2. The frictional moments from the main shaft at the pins of the cross at points (3) 

and (4) which are expressed as 

 13 13 10 ( [2]) 0
T

F MStoC MStoC F CM M sign    (‎3.74)

 
 14 14 10 ( [2]) 0

T

F MStoC MStoC F CM M sign    (‎3.75) 

3. The reaction forces from the first intermediate shaft which act at points 23 and 24 

given by 
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1 123 1 123 1 123 0
T

F IM toC F IM toC y F IM toC zF F F     (‎3.76)

 

F IM1toC124 F IM1toC123F  = - F  (‎3.77) 

4. The frictional moments from the first intermediate shaft at points (23) and (24) 

expressed as 

 1 123 1 123 1( [1]) 0 0
T

F IM toC IM toC F CM M sign    (‎3.78) 

 1 124 1 124 1( [1]) 0 0
T

F IM toC M toC F CM M sign    (‎3.79) 

5. The weight of the cross and is expressed as 

1 1[0  0]T

A c cW g M  (‎3.80)

 

 

Figure ‎3-8: FBD of the first cross of the CVJ 

The frictional moments of the pins of the first cross are given by 

2 2

13 1 1 13 13MStoC C CP F MStoC x F MStoC zM r F F   (‎3.81)
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2 2

14 1 1 14 14MStoC C CP F MStoC x F MStoC zM r F F   (‎3.82) 

2 2

1 123 1 2 1 123 1 123IM toC C CP IM toC y IM toC zM r F F   (‎3.83) 

2 2

1 124 1 3 1 124 1 124IM toC C CP IM toC y IM toC zM r F F   (‎3.84) 

C1 = the friction coefficient at the pins of the first cross 

Equations of motion of the first cross: 

Since the acceleration of the CG of the first cross is zero, the sum of all forces acting 

on the FBD is zero: 

13 14 1 123 1 124 1 1  .   0F MStoC F MStoC F IM toC F IM toC C A cF F F F T W      (‎3.85)
 

Attach the F frame to the origin of the first cross and express the position vectors of 

the forces acting on the FBD of the first cross in terms of the F frame: 

 3 1  0 - 0
T

F Cr r  (‎3.86)
 

F 4 F 3r  = - r  (‎3.87)
 

 23 2 - 0 0
T

F Cr r  (‎3.88)
 

F 24 F 23r  = - r   (‎3.89) 

The sum of moments about the center of the first cross is given by 

3 13 4 14 23 1 123 1 123

24 1 124 1 124 1 1

     

   .

F F MStoC F F MStoC F F IM toC F IM toC

F F IM toC F IM toC F c F c

r F r F r F M

r F M I 

     

   
 (‎3.90) 

3.3.3 Dynamic analysis of the second intermediate shaft 

The second intermediate shaft has the same angular velocity as the first intermediate 

shaft. However, the second intermediate shaft moves along its longitudinal axis with 
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respect to the first intermediate shaft. Therefore, the velocity of the center of gravity of the 

second intermediate shaft is given by 

2 2/ 1 1 2C im C im im C im C imv v r  
 

(‎3.91) 

Where 

CVim2/im1 = velocity of CG of the second intermediate shaft with respect to the first 

intermediate shaft. 

Figure  3-9 defines the geometric parameters of a typical bent axes pump as follows: 

 IH = axis of rotation of the output shaft of CVJ 

 AJ = Lis = length of the input shaft of the universal joint 

 JK = Ry = distance from center of rotation of the yoke to center of first cross 

 IK = Ry = distance from center of rotation of the yoke to center of second cross 

 JI = Lim = length of intermediate shaft of the universal joint, it changes with the 

angle of rotation of the yoke, . 

 CD = LCR = connecting rod at the TDC 

  = connecting rod angle at BDC 

  = yoke angle 

 G = center of gravity of the connecting rod 

The distance between the centers of the two-cardan joints at any angular rotation () of 

the yoke is given by 

2
cosR2IJL yim




 

(‎3.92) 
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 The relative velocity of the second intermediate shaft with respect to the first 

intermediate shaft equals to the rate of change of Lim with respect to time 

2/ 1 y0 0 R sin
2

T

C im imv



 

  
 

  (‎3.93) 

 

Figure ‎3-9: Bent axis pump geometric relations 

Let Crim2 = JP = position vector of CG of the second intermediate shaft with respect to 

the center of the first cross expressed in C frame. 

 2 - 2 cos 0 0 1
2

T

C im yr IP R
 

  
 

 (‎3.94) 

2

sin
2 cos

2 2

cos
2 cos

2 2

sin
2

y

C im y

y

IP R

v IP R

R

  

  




  
  

  
  

   
  

 
 

  







 (‎3.95) 

The acceleration of the CG of the second intermediate shaft is given by 
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2
4 cos

2

1 2
sin 2 cos 2 sin

2 2 2

1 2
cos 2 cos 2 sin

2 2 2 2

1
sin

4 2
IP Ry

IP R Ry y

a IP R Ry yC im

Ry


 
  

 
  


 

  
 

 

  

   
   
   

   
     

 
 
  

 

 



 
(‎3.96) 

Figure  3-10 shows the forces that act on the FBD of the second intermediate shaft, 

which includes: 

1. The reaction force and moment from the first intermediate shaft at point (25) are 

denoted by –CFIM2toIM125 and –CMIM2toIM125. 

2. The reaction forces from the second cross at points (27) and (28) denoted by - 

IFIM2toC227 and - IFIM2toC228. 

3. The reaction moments from the second cross at points (27) and (28) and denoted 

by - IMIM2toC227 and - IMIM2toC228. 

4. The weight of the second intermediate shaft and is expressed as 

2 2  [0,   ,  0]T

A im imW g M  (‎3.97) 

Equations of motion of the second intermediate shaft 

The sum of forces equals to the mass multiplied by the acceleration as follows: 

2 1 2 125 2 2 227 2 228 1 2 2- .   .(  + )  . .T T T

A im im C IM toIM c I IM toC I IM toC im im C imW T F T F F T M a   (‎3.98) 

Let the origin of the C frame be at the center of the first cross. Then, define the 

position vectors of the forces acting on the second intermediate shaft as follows: 

 27 2 - 0
T

C C imr r L  (‎3.99)

 
 28 2 0

T

C C imr r L  (‎3.100)
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Summing the moments of the forces acting on the second intermediate shaft about the 

center of the first cross, yields 

 
1 27 2 2 227 1 28 2 2 228 1 2 2

2 2 227 2 228 1 2 1 1 2 2 2

- ( . ) ( . ) - ( . ) ( . ) ( . )  

- . .( . ) .( . )

T T T T T

im C c I IM toC im C c I IM toC im C im A im

T T T

c I IM toC IM toC im C im C im im C im im C im

T r T F T r T F T r W

T M M T I T r M a

   

   
 (‎3.101) 

 

Figure ‎3-10: FBD of the second intermediate shaft 

3.3.4 Dynamic analysis of the second cardan joint 

With reference to Figure  3-6, a coordinate frame “e1e2e3“ is selected. “e1“ axis is 

normal to the plane formed by the intermediate and output axes of second joint (“e1“ is 

initially parallel to the output yoke of the second joint as shown and is always normal to 

the intermediate axis). “e3“ is aligned with the axis of the intermediate shaft. “e2“ is 

normal to both “e3“ and “e1“ according to the right hand rule. “e1e2e3” is obtained by 

rotating “a1a2a3“ about “a1“ an angle of : 
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    1 2 3 2 1 2 3

T T
e e e T a a a  (‎3.102) 

“g1g2g3“ is attached to the intermediate axis such that: “g2“ is parallel to the input yoke 

of the second joint, “g3“ is aligned along the axis of the intermediate shaft, and “g1“ is 

normal to both “g2“ and “g3“ according to the right hand rule. “g1g2g3“ is obtained by 

rotating the “e1e2e3“ by an angle of   around the intermediate shaft axis “e3“ yielding the 

following relationship between “g1g2g3“ and “e1e2e3“: 

    1 2 3 3 1 2 3

T T
g g g T e e e  (‎3.103)

 A coordinate system “d1d2d3“ is attached to the output shaft of the second joint such 

that: “d1“ is aligned with the axis of the output yoke of the second joint, “d3“ is aligned 

with the axis of the output shaft of the second joint, “d2“ is normal to both “d3“ and “d1“ 

according to the right hand rule. “d1d2d3“ is obtained in two steps. First, “d1d2d3“ is rotated 

about “e1“ by an angle of  to get “
'

3

'

2

'

1 eee “. “
'

3

'

2

'

1 eee “
 

relates to “e1e2e3“ by the 

transformation matrix T2() as given by equation ( 3.46). Second, “
'

3

'

2

'

1 eee “ is rotated about 

“
'

3e “ an angle of   to get “d1d2d3“. 

 4

cos sin 0

sin cos 0

0 0 1

T

 

  

 
 

 
 
    

(‎3.104) 

Therefore, “d1d2d3“ and “a1a2a3“ are related by 

     
1 1 1

2 4 2 2 2 2

3 2 2

cos sin cos sin sin

sin cos cos cos sin

0 sin cos

d a a

d T T T a a

d a a

    

       

 

       
       

  
       
                

(‎3.105) 

The rotation matrix of the output shaft with respect to the A frame is given by 
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 

cos sin cos sin sin

, sin cos cos cos sin

0 sin cos

osT

    

      

 

 
 

 
 
  

 (‎3.106) 

The angular velocity of the output shaft is given by 

cos sin
T

D os        
    (‎3.107) 

Orthogonalty constraint between the intermediate shaft and the output shaft of the 

second joint: 

The two yokes of the second joint are also constrained by the inside cross, resulting in 

the orthogonally constraint between the yoke axes as follows 

2 1 0g d 


 (‎3.108) 

 2 sin cos 0
T

g     (‎3.109) 

1 cos sin cos sin sin
2 2

T

d
 

  
 

  
 


 (‎3.110) 

Therefore,  




 







 

2
costantan 1

 (‎3.111) 

Attach “i1i2i3“ coordinate system to the second cross of the joint such that: “i1“ is 

parallel to “d1“, “i2“ is parallel to “c2“, and “i3“ is perpendicular to “i1“ and “i2“ according 

to the right hand rule. Therefore, the frame of reference “i1i2i3“ can be expressed in terms 

of the A frame as 

     1 1 cos sin cos sin sin
T

i d        (‎3.112) 

   2 2 sin cos cos cos sin
2 2

T

i c
 

  
 

   
 

 (‎3.113)
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   3 1 2

cos sin sin
2

cos cos sin sin sin sin
2

cos cos cos sin cos sin
2

i i i


 


    


    

 
 

 
     
 
 
 
  

 (‎3.114) 

Therefore, the rotation matrix of the second cross is given by 

2

cos sin cos sin sin

sin cos cos cos sin
2 2

cos sin sin cos cos sin sin sin sin cos cos cos sin cos sin
2 2 2

cT

    

 
  

  
           

 
 
 
  
 
 
    
  

 
(‎3.115)

 

The angular velocity and angular acceleration of the second cross in vector form are 

given by 

2

2

sin sin 2cos cos cos sin 2 sin
2 4 2

cos sin sin cos cos cos sin sin
2 2

sin sin cos cos cos cos sin sin
2 2

I c

  
     

 
        

 
       

  
   

  
  

     
  

  
    
   




 

 

 (‎3.116)

 

2 2I c I c

d

dt
   (‎3.117) 

The position vectors of points 27 on the pin of the second cross with respect to its CG 

expressed in the “I” frame is given by 

 27 2 0 0
T

I Cr r   (‎3.118) 

The center of the second cross does not move with respect to either the second 

intermediate shaft or the output shaft. Therefore, it is appropriate to assume that the center 

of the second cross is a common point between the second intermediate shaft and the 
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output shaft. The velocity of the CG of the second cross (expressed in terms of the C 

frame) is given by 

C c2 im2im1 C im1 C ICV  = V + × r cos sin cos cos sin
2 2 2

y

T

R 
  

 
 

  
 

  (‎3.119) 

The position vector of point I (Figure  3-9) with respect to the center of the first cross 

can be expressed as 

 0 0
C I

T

imr L  (‎3.120) 

The acceleration of the CG of the second cross is given by 

C c2

2

2

2

sin

 = cos

cos sin
2 2

cos sin
2 2

cos sin
2 2

y

y

y

R

R

R

a

 

 



 


 


 


  
   
 

 
  

   
  

  
  

   













 

(‎3.121) 

Figure  3-11 shows the FBD of the second cross of the double cardan joint. The reaction 

forces that act on the second cross include: 

1. The reaction forces from the second intermediate shaft at the pins (points 27 and 

28) expressed as 

2 227 2 227 2 227  0
T

I IM toC IM toC y IM toC zF F F     (‎3.122)

 

I IM2toC228 I IM2toC227F  = - F  (‎3.123) 

2. The frictional moments from the second intermediate shaft at the pins (points 27 

and 28) are expressed as 

 2 227 2 227 2( [1]) 0 0
T

I IM toC M toC I CM M sign    (‎3.124) 

 2 228 2 228 2( [1]) 0 0
T

I IM toC M toC I CM M sign    (‎3.125) 
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3. The reaction forces from the output shaft at the pins (points 29 and 30). They are 

given by 

 229 229 2290
T

I OStoC OStoC x OStoC zF F F  (‎3.126)

 
I OStoC230 I OStoC229F  = - F  (‎3.127) 

4. The frictional moments from the output shaft at the right and left pins of the cross 

at points (29) and (30) expressed as 

 229 229 20 ( [2]) 0
T

I OStoC OStoC I CM M sign    (‎3.128)

 
 230 230 20 ( [2]) 0

T

I OStoC OStoC I CM M sign    (‎3.129)

 5. The weight of the second cross (very small compared with other forces) and is 

expressed as 

2 2 [0,   ,0]T

A c cW M g  (‎3.130) 

The frictional moments of the pins of the second cross are given by 

2 2

2 227 1 2 2 227 2 227IM toC C CP IM toC y IM toC zM r F F   (‎3.131) 

2 2

2 228 1 2 2 228 2 228IM toC C CP IM toC y IM toC zM r F F   (‎3.132) 

2 2

229 1 1 229 229OStoC C CP OStoC x OStoC zM r F F   (‎3.133) 

2 2

230 1 1 230 230OStoC C CP OStoC x OStoC zM r F F   (‎3.134) 
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Figure ‎3-11: FBD of the second cross of the CVJ 

Equations of motion of the second cross 

The sum of all forces acting on the FBD is given by 

2 2 227 2 228 229 230 2 2 2.( )   .T

c I IM toC I IM toC I OStoC I OStoC A C c A cT F F F F W M a      (‎3.135) 

Express the position vectors of the forces acting on the FBD of the second cross in 

terms of the “I” frame with respect to the center of the second cross: 

I 28 I 27r  = - r  (‎3.136)
 

 29 1 0 - 0
T

I Cr r  (‎3.137)
 

I 30 I 29r  = - r  (‎3.138) 

Find the sum of moments about the center of the second
 
cross: 

27 2 227 2 227 28 2 228 2 228

29 229 229 30 230 230 2 2 .

I I IM toC I IM toC I I IM toC I IM toC

I I OStoC I OStoC I I OStoC I OStoC I c I C

r F M r F M

r F M r F M I 

    

      
 (‎3.139) 
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3.4 The Barrel-Output Shaft Assembly 

Attach the coordinate frame D to the center of rotation of the yoke (point K in 

Figure  3-9). The position vector of the CG of the output shaft with respect to point K 

expressed in the D frame is given by 

 0 0
T

D os oszr r  (‎3.140)

 The position vector of the center of the second cross (point I) with respect to the yoke 

center of rotation is given by 

0 0
T

D I yr R     (‎3.141) 

The velocity of the CG of the output shaft is given by 

     , . 0 cos sinT

A os os D os D os

T

oszV T r r           (‎3.142) 

The acceleration of the output shaft is given by 

2

2

0

cos sin

cos sin

A os osza r    

   



 
 
 
 
   

 

 
 

(‎3.143) 

Figure  3-12 shows the FBD of the output shaft and barrel assembly. The forces that act 

on the assembly include: 

1. The reactions forces from the second cross at points 29 and 30 denoted by –

IFOStoC229 and –IFOStoC230. These forces are equal in magnitude and opposite in 

direction, thus forming a couple. The respective position vectors at points 29 and 

30 with respect to the yoke center of rotation are given by: 

 A 29 2 I 29r , . . rT T

os D I cT r T    (‎3.144)

 

 A 30 2 I 30r , . . rT T

os D I cT r T    (‎3.145) 
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2. The frictional moment from the second cross at points 29 and 30 and are denoted 

by –IMOStoC229 and –IMOStoC230. 

3. The reaction forces from the piston and oil film between the barrel and the pistons 

at points 31 to 39 denoted by –DFBtoP,i where i = 1, 2, …9. The respective position 

vectors with respect to the yoke axes of rotation are given by: 

30

2
0 - ( , ( 1) ) ,     1,  2,  ...9

9

T

D i y WPr r R IF i r i


 

  
       

  
 (‎3.146) 

Refer to equation ( 3.263) for an expression of 
2

IF , + ( 1)
9

i


 
 

 
 

. 

4. The weight of the output shaft and barrel assembly: 

 0 0
T

A os osW M g  (‎3.147)

 

5. The force from the oil column in the cylinder at points 49 to 57 denoted as DFOILtoB, 

i.  

6. The hydrodynamic forces DFVPtoBoutD, DFVPtoBinD, DFVPtoBinS, DFVPtoBoutS, due to the 

oil film between the valve plate and the barrel at points 59, 60, 61, and 62 

respectively. 

7. The frictional moment due to the fluid film between the barrel and the valve plate, 

DMVPtoB. 

8. The reaction forces from the needle bearings at the end of the barrel (point 58). 

The bearings are fixed to the valve plate. These reaction forces with their 

respective position vectors can be expressed in the D frame as 

3 3 3 0
T

D B FtoB B FtoBx B FtoByF F F     (‎3.148) 
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 3 30 0
T

D B FtoB B FtoBzr r  (‎3.149)

 

D B3StoB B3StoBx B3StoByF = F F 0
T

    (‎3.150)

 

 3 30 0
T

D B StoB B StoBzr r  (‎3.151) 

9. The frictional moments form the needle bearings at point 58 are given by 

 3 3 0 0 - ( [3])
T

D B FtoB B FtoBz D osM M sign   (‎3.152)

 

 3 3 0 0 - ( [3])
T

D B StoB B StoBz D osM M sign   (‎3.153) 

The next section presents the derivation of the equations for these moments. 

10. The reaction force from the thrust ball bearing at the end of the barrel at point 65, 

which is denoted by DFB4toB. The corresponding position vector is given by 

 4 40 0
T

D B toB B toBzr r  (‎3.154) 

11. The frictional moment from the thrust ball bearing at the end of the barrel at point 

65 denoted as DMB4toB 

12. The reaction forces between the discharge/suction port of the valve plate and the 

solid area located between each successive cylinder on the barrel at points 69 to 

77, respectively. These forces denoted as - DFBStoVP,i where i = 1, 2…9. The 

corresponding position vectors are expressed as 

 0 -
T

D BStoVP YtoVPr r L  (‎3.155) 
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Figure ‎3-12: FBD of the output shaft and barrel assembly 

3.4.1 The frictional moment at the needle bearings at end of the barrel 

There are two radial needle bearings at point 58 denoted F (First) and S (Second). 

Section 3.1 presents a detailed analysis of the frictional moment components of roller 

bearings. The thrust ball bearing at the upper end of the barrel carries out the thrust load 

from the barrel. Therefore, the axial load dependent component of the frictional moment 

from the needle bearings is zero. Hence, the frictional moment on the needle bearings as 

given by Eq. ( 3.1) reduces to 

FvFmFtoBzB MMM 333   (‎3.156) 

d2 
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SvSmStoBzB MMM 333   (‎3.157) 

Where 

M3Fv and M3Sv = the viscous frictional component at the first and second needle bearings 

and are given by Eq. ( 3.2) 

M3Fm and M3Sm = the radial load dependent component of the frictional moment of the 

first and second needle bearings and are given by Eq. ( 3.5) 

The index fo3 for bearing and lubrication type ranges from 5 to 5.5 for needle roller 

bearings. The index f13F which takes into account the magnitude of load has a value of 

0.0005 [45]. For needle bearings, P13F and P13S are given by [45] 

13F B3FtoBrP  = F  (‎3.158) 

13S B3StoBrP  = F  (‎3.159) 

FB3FtoBr and FB3StoBr are the radial load components of the bearing reactions at the 

needle bearings point (58) and are given by 

2

3

2

33 FtoByBFtoBxBFtoBrB FFF 
 

(‎3.160) 

2

3

2

33 StoByBStoBxBStoBrB FFF 
 

(‎3.161) 

3.4.2 The frictional moment at the thrust bearing at the end of the barrel 

The frictional moment opposes the direction of the angular velocity component along 

the “d3“ direction of the barrel 

 4 4( [3]) 0 0 1
T

D B toB D os B toBzM sign M   (‎3.162)

 

The frictional moment at the thrust ball bearings carries only the axial load from the 

barrel: 
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4 4 4B toBSz v aM M M 
 

(‎3.163)
 

The index fo4 for bearing and lubrication type has a value of 1.5 for thrust ball 

bearings. The pitch circle diameter of the bearing, dm4 is given by 

4 4
4

2
m

D d
d


  (‎3.164)

 

The index f14 which takes into account the magnitude of load and is given by [45] 

0.33

4
14

4

0.0012 a

o

F
f

C

 
  

 
 (‎3.165) 

The load P14 governs the load-depending frictional moment M4m. For thrust ball 

bearings, P14 is given by [45] 

14 B4toBzP  = F  (‎3.166) 

The index fa4, which depends on the axial load FB4toBz and the lubricating condition, 

equals to 0.15 as given by Eq. ( 3.9). 

3.4.3 Hydrodynamic forces due to the oil film between the valve plate and barrel 

The following analysis is based on an analysis done by Franco [8], which is based on 

the following assumptions: 

a. Because the clearance between the barrel and valve plate is small, and because 

leakage through it has to be a small predetermined quantity, fluid flow can be 

assumed to be laminar in that clearance. 

b. Neglect forces due to pressure drop peripherally between the two orifices (both 

sides between the suction and discharge ports). 

c. Leakage flow is assumed to spread in the radial direction between the lands. 
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The differential equation relating the velocity distribution with pressure and angular 

velocity in the outer land is given by 

21d dv dP P
R

dz dz dR R
 



   
     

     

(‎3.167) 

R = varies between R2 and R1 as shown in Figure  2-5Error! Reference source not found. 

P = pressure at radius R 

 = angular velocity of barrel around its axis 

 = fluid density 

 = tangential stress 

 = coefficient of dynamic viscosity 

The relative velocity is zero at both the lower and upper surfaces. Therefore, the 

velocity distribution in the clearance for the outer land can be expressed as 

2
2 21

2 4

dP P h
v R z

dR R




  
     

    

(‎3.168) 

The leakage flow q can be computed as 

/ 2 / 2

2 3

/ 2 / 2
12

h h

h h

R dP P
q vds v Rdz R h

dR R


 


 

 
      

 
 

 

(‎3.169) 

The negative sign for q denotes that crescent pressure and leakage flow are in opposite 

directions. Expressing the pressure distribution as a linear differential equation: 

2

3

1 12 1dP q
P R

dR R h R





   

 

(‎3.170) 

Integrating, given that pressure in the outer side of the land is practically zero, P = 0 at 

R = R1 and P = Pb, boundary pressure = discharge PD, or suction pressure PS at R = R2 

yields 
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2 1
1 2

1 2

( )
( )( )

( )
b

R R
P R R R R P

R R



   


 

(‎3.171) 

Pressure distribution on the inner land 

The velocity distribution is related to the pressure and angular velocity of the barrel 

through the following relation: 

2dP P d dv
R

dR R dz dz
  

 
    

   

(‎3.172) 

Given that, the relative velocity of the fluid film contacting the barrel or the valve 

plate is zero (no-slip condition); the velocity distribution of the fluid film for the inner 

land can be written as 

2
2 21

2 4

dP P h
v R z

dR R




  
     

    

(‎3.173) 

Moreover, the leakage flow is 

3
2

12

Rh dP P
q R

dR R






 
    

   

(‎3.174) 

The linear differential equation of the pressure variation with the radial distance is 

given by 

2

3

1 12 1dP q
P R

dR R h R





    

 

(‎3.175) 

Solving this linear differential equation knowing that the pressure in the inner side of 

the land is practically zero, i.e. P = 0 at R = R4, and P = boundary pressure, Pb = discharge 

pressure, PD or suction pressure PS at R = R3, therefore pressure distribution can be 

expressed by 
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23 4 4
3 3 4

4 3

( )( )
3

bP R R R R R
P R R R R R

R R R R


   
       

     

(‎3.176) 

Resultant hydraulic force on the port plate: 

The hydraulic force in differential form is given by 

dF Pds PRdRd   (‎3.177) 

Where 

P = pressure acting on surface of the port plate lands and is given by equations ( 3.171) and 

( 3.176) 

For the outside land, R varies from R2 to R1, and  from - /2 to + /2. For the inside 

land, R varies from R4 to R3, and  from - /2 to + /2. Therefore, the hydrodynamic 

forces normal to the interface between the valve plate and the barrel are given by 

2

21 2
1 2 1 2 1 2

( ) 2
Discharge: 0,0,2 ( 2 ) ( )( )

12 60
H VPtoBoutD D ms

R R
F P R R n R R R R

 


   
       

   

 (‎3.178) 

2

21 2
1 2 1 2 1 2

( ) 2
Suction: 0,0,2 ( 2 ) ( )( )

12 60
H VPtoBoutS S ms

R R
F P R R n R R R R

 


   
       

   

 (‎3.179) 

2

23 4
3 3 4 3 4

( ) 2
Discharge :  0,0,6 ( )( )

12 60
H VPtoBinD D ms

R R
F P R n R R R R

 


   
      

   
 

(‎3.180) 

2

23 4
3 3 4 3 4

( ) 2
Suction: 0,0,6 ( )( )

12 60
H VPtoBinS S ms

R R
F P R n R R R R

 


   
      

   

 (‎3.181) 
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Point of application of the hydraulic forces 

The points of application of the forces acting on the outer land are given by 

   

   

2

2 2 2 2 2

1 1 2 2 1 2 1 1 2 2

2

2

1 2 1 2 1 2

2
5 2 3 ( ) 3 4 3

60
Discharge: 

2
5 2 2 ( )

60

D ms

outD

D ms

P R R R R n R R R R R R

R

P R R n R R R R







 
      

 
  

        

 
(‎3.182) 

   

   

2

2 2 2 2 2

1 1 2 2 1 2 1 1 2 2

2

2

1 2 1 2 1 2

2
5 2 3 ( ) 3 4 3

60
Suction: 

2
5 2 2 ( )

60

S ms

outS

S ms

P R R R R n R R R R R R

R

P R R n R R R R







 
      

 
  

        

 (‎3.183) 

The points of application of the forces acting on the inner land are given by 

   

 

2

2 2 2

3 3 4 3 4 3 3 4 4

2

2

3 3 4 3 4

2
30 2 2 ( ) 4 7 4

60
Discharge: 

2
90 15 ( )

60

D ms

inD

D ms

P R R R n R R R R R R

R

P R n R R R R







 
     

 
 

   
 

 (‎3.184) 

   

 

2

2 2 2

3 3 4 3 4 3 3 4 4

2

2

3 3 4 3 4

2
30 2 2 ( ) 4 7 4

60
Suction: 

2
90 15 ( )

60

S ms

inS

S ms

P R R R n R R R R R R

R

P R n R R R R







 
     

 
 

   
 

 (‎3.185) 

The position vectors of the hydrodynamic forces are given by 

 - 0
T

H IND inD YtoVPr R L  (‎3.186)
 

 0
T

H INS inS YtoVPr R L  (‎3.187)
 

 - 0
T

H OUTD outD YtoVPr R L  (‎3.188)
 

 0
T

H OUTS outS YtoVPr R L  (‎3.189) 

Shear moments in the interface between the valve plate and the barrel 

The shear moment in the outer land is given by 
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1

2

/ 2

2

/ 2

R

R

shear R dRd





 


    (‎3.190) 

dz

dv
 

 

(‎3.191) 

Therefore, the shear moment at the outer land for both the discharge and suction ports 

is given by 

   
2

1
1 2 1 2 2

2
2

4 60
out D S ms

h R
Shear R R P P R R R n

 


  
          

 (‎3.192) 

Similarly, the shear moment at the inner land for both the discharge and suction ports 

is given by 

     
2

3 3

3 4 3 3 4

2
3 2

12 60
in D S ms

h
Shear R R R P P R R n

 


  
          

 (‎3.193) 

Therefore, the total moment due to the fluid film between the barrel and the valve 

plate is given by 

    - 0 0 ( ) * [3]
T

D VPtoB out in D osM Shear Shear sign    (‎3.194) 

3.4.4 Equations of motion of the barrel-output shaft assembly 

The sum of all forces on the output shaft and barrel assembly equals to mass 

multiplied by acceleration. 

   

 

 

2 229 230 3 3 4

9

, ,  ,
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[ , ]. .(- -  )  

 [ , ].

-  [ , ].  -  [ , ].  
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os c I OStoC I OStoC D B FtoB D B StoB D B toB

T

os vp H VPtoBoutD H VPtoBoutS H VPtoBinD H VPtoBinS

D BtoP i D BStoVP i D OILtoB i os A os os A osos
i

T T F F F F F

T T F F F F

F F F T W T M a

 

 
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

  

   

     0

 
(‎3.195) 

Summing moments of all forces about the yoke axis of rotation yields 
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(‎3.196) 

3.5 Control Volume of the Oil in One Cylinder 

Figure  3-13 shows the control volume of the fluid inside the vacancy of one cylinder 

within the barrel. The external forces that act on the control volume include the following: 

1. The force from the piston to the control volume at points 40 to 48 denoted as –

DFOILtoP,i. The corresponding position vector with respect to the yoke axis of 

rotation is given by 

D OILtoP,i D P 

1

0
2 ( 1)

r = r , 0 ,    1,2,...9
9

P

i
i

L


 

 
   

    
   

 

 (‎3.197)
 

Where D P 

2 ( 1)
r ,

9

i
 

 
 

   is given by Eq. ( 3.267
)
) 

2. The weight of the oil column which varies with the barrel angle of rotation and 

yoke angular position and is given by 

,  

2 ( 1)
0 , 0 ,     1,2,...9

9

T

A OIL i OIL

i
W gV i


  

  
    

  
 (‎3.198) 

The volume of the control volume is given by Eq. ( 3.214). 
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3. The reaction forces from the barrel to the control volumes at points 49 to 57 

denoted as –DFOILtoB,i. Eq. ( 3.206) provides the expression for the corresponding 

position vectors. 

4. The force due to the pressure on the discharge or suction orifice at points 80 to 88 

denoted as - DFOILtoVP,i. The corresponding position vector is given by Eq. ( 3.319). 

 

 
Figure ‎3-13: Control Volume of the Oil in the cylinder cavity 

3.5.1 Linear momentum equation of the oil control volume 

The principle of linear momentum can be stated as follows: 

, , ,ext i cv i cs iF LM LM   (‎3.199) 

th

,  sum of external forces acting on the i  control volumeext iF 

,

time rate of change of the linear momentum
 

of the contents of the control volume
cv i

cv

LM v dV
t


 

   
  


, . net rate of the linear momentum through the control surfacecs i

cs

LM v v ndA   
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The time rate of change of the linear momentum of the contents of the control volume 

can be changed into derivative format by multiplying the integrand dV by dt/dt and then 

simplifying to get:
 

,
OIL OIL

D cv i D pb OIL D pb D pb

cv cv

dV dV
LM V dV V dt V

t t dt dt
  

 
  
    (‎3.200)

 

The term of the time rate of change of the linear momentum of the contents of the 

control volume for the conical part of the cylindrical cavity is zero because its volume is 

fixed and the flow in and out of this part is steady. Therefore, the linear momentum of the 

contents of the control volume is the one due to the volume whose length is Lc1 + Z and is 

given by 

,

2 ( 1) 2 ( 1)
, , ,    1,2,...9

9 9
D cv i D pb OIL

i d i
LM V V i

dt

 
    

    
      

   
 (‎3.201) 

Where 

DVpb = velocity of fluid at the section adjacent to the piston and is given by Eq. ( 3.265). 

The net rate of the linear momentum through the control surface is given by 

,

0 0

0 0 ,    1,2,...9

1 1

c
D cs i c D pb D pb D pb

r

A
LM A V V V i

A


    
    

        
        

 (‎3.202) 

Combining equations ( 3.198) and ( 3.200) to ( 3.202) yields the linear momentum 

equations of the pistons’ control volumes 

D CVi D CSi A OILi D OILtoPi D OILtoBi D OILtoVPi 

2 ( 1)
LM LM , . W F F F

9
os

i
T


 

 
      

 
 (‎3.203)
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3.5.2 The position vector of the reaction forces from the barrel to the control volumes 

at points 49 to 57 

The position vector of the force from the oil control volume in the cylinder at points 

49 to 57 is determined by the aid of Figure  3-14. 

 

 
 

 

min min 1 2

v

min

,
V ,

2
L ,  = 

V ,

c C C

c

Z
l A Z L L

A Z

 
 

 
 

 
   

 


 

(‎3.204) 

 

Figure ‎3-14: Center of gravity of the oil control volume at any angle of rotation of the main shaft,  

Therefore, the position vectors of the reaction forces from the oil control volume to the 

barrel at points 49 to 57 as measured from the yoke axis of rotation are given by 

 
   1 2 1

0

,  0

,  -  ,

D OILtoB

C C V p

r

Z L L L L

 

   

 
 

  
    

 (‎3.205)

 

D OILtoBi D 30+i D OILtoB D WP

2 ( 1)
r  = r + r , r

9

i
 

 
  

 
 (‎3.206)
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Equation ( 3.146) gives an expression for Dr30 + i. 

3.5.3 Minimum volume of oil column in the i
th

 cylinder at the TDC 

The minimum volume of the oil column (Vmin) in the cylinder at the TDC for any 

angular rotation of the yoke,  is determined based on Figure  3-15 as follows: 

-1

1  = tan
r

EH


 

(‎3.207) 

2 2EF = r ( )EH  (‎3.208)

 

GF = 2 .sin
2

EF
 
 
 

 (‎3.209)

 

 

  1

  - cos cos cos

sin sin sin
2

CR o CR o

CR o

CG DF L L

r R L GF

  


  

 

 
      

 

 (‎3.210)

 

1 2 1  -   -C C PL CG L L  (‎3.211)

 

min C1 c fixedV = L A  +V  (‎3.212) 

 

Figure ‎3-15: Determination of Vmin as a function of yoke angular rotation, 
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3.5.4 Differential equation of the piston pressure 

The mass of oil in the i
th

 cylindrical cavity of the barrel is given by 

 

, ,OIL i OIL iM V
 

(‎3.213)

 

The instantaneous oil volume of the i
th

 cylindrical cavity of the barrel is given by 

OIL,i min

2 ( 1)
V = V ,

9
c

i
A Z


 

 
  

 
 (‎3.214)

 

Differentiating equation ( 3.213) with respect to time yields 

, ,

,

OIL i OIL i

OIL i

dM dV d
V

dt dt dt


 

 

(‎3.215)

 

The oil density is related to its bulk modulus, B through the relation [48]: 

 ,OIL i

d d
P t

dt B dt

 
  (‎3.216)

 

In addition, the mass flow rate is related to volume flow rate, Qi: 

 ,OIL i

i

dM
Q t

dt


 

(‎3.217)

 

Substituting equations ( 3.216) and ( 3.217) in equation ( 3.215) yields 

    ,

,

,

OIL i

OIL i i

OIL i

dVd B
P t Q t

dt V dt

 
  

 
 (‎3.218)

 

The initial conditions necessary to solve the above differential equations are 

1.  , max0  for 1,2,...5OIL i LP P i   

2.  , min0  for 6,7,...9OIL i HP P i   

Figure  3-16 shows a schematic of the hydraulic system under consideration, which 

consists of the LPA, the pump, and the HPA. The oil leaves the LPA at a rate, QDS. The 

leaking oil from the pump is sent back to the accumulator. 
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Figure ‎3-16: System consisting of pump connected to low and high-pressure accumulators 

The flow rate at the i
th

 cylindrical cavity can be expressed as 

       -i DSi LiQ t Q t Q t  (‎3.219) 

QDsi(t) is the discharge/suction flow rate at the overlap area. QLi(t) is the leakage flow 

rate. It includes leakage in the annular clearance between the cylinder and piston, leakage 

flow rate in the hole in the middle of the piston head that is used to pass lubrication oil to 

the ball and socket joints of the connecting rod, and leakage at the barrel and valve plate 

interface. Therefore, the net flow rate at the exit of the i
th

 cylindrical cavity is related to the 

discharge/suction flow rare via the volumetric efficiency: 

   i , DSiQ Qv it t  (‎3.220) 

The discharge/suction flow rate at the overlap area is calculated using the orifice 

formula [49]: 

       
   ,

, ,

2
( )

OIL i b

DS i OIL i b d r

P t P
Q t sign P t P C A


 




 

 

(‎3.221) 

Where 

Pb = the boundary pressure outside the control volume (either PD or PS) 

QDS QDS - QL 

QL 

Low Pressure 

Accumulator 
Pu

mp 

High Pressure 

Accumulator 
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Cd = the orifice discharge coefficient which is assumed to be constant in this analysis 

Ar = the overlap area of the i
th

 region 

PD = discharge pressure which varies with the SOC of the HPA 

PS = suction pressure which varies with the SOC of the LPA 

v,i is the pump volumetric efficiency, which can be read from the efficiency map of 

the pump. The pump volumetric efficiency is assumed to vary in a parabolic fashion with 

pump rotational speed and exponentially with the oil pressure according to the following 

relation: 

  
2

, 1 2 ,expms ms
v i o o OIL i b

rated rated

n n
a a a b P P

n n
 

    
       
     

 (‎3.222) 

ao, a1, a2, and bo are experimentally determined constants. 

Discharge/Suction pressure variations 

The discharge port of the valve plate is connected to the high-pressure accumulator 

(HPA) while the suction port is connected to the LPA. Therefore, the pressure at the exit 

of the cylinder is related to the gas pressure in the HPA or LPA depending on the piston 

angular position: 
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 (‎3.223) 
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 D H lossHP  =  P t  + P  (‎3.224) 

 S L lossLP  =  P t  - P  (‎3.225) 

PH(t) = gas pressure in the HPA 

PL(t) = gas pressure in the LPA 

The pressure losses (friction and minor) between the discharge/suction port and the 

HPA/LPA are assumed negligible in this analysis. 

3.5.5 Analysis of the high pressure and low-pressure accumulators 

The gas volume at pre-charge condition is found using the ideal gas low for both the 

HPA and LPA as follows: 

H N g

PH

PH

M R T
V

p
  (‎3.226) 

L N g

PL

PL

M R T
V

p
  (‎3.227) 

The gas pre-charge pressure is to be slightly lower than the minimum hydraulic 

pressure so that the bladder does not continually contact the oil valve (wear). In order to 

reduce bladder wear on the inlet valve, the gas pre-charge pressure at room temperature 

with-no fluid is related to the minimum operating pressure by [50]: 

min0.9PH Hp P  (‎3.228) 

min0.9PL Lp P  (‎3.229) 

Assuming that a polytrophic relation relates the pressure and volume of the gas in the 

HPA/LPA, therefore the gas pressures in the HPA and LPA are given by 
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H
H H
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P t P

V t
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 (‎3.230) 
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 (‎3.231) 

The sum of the gas in the LPA and HPA is constant at any instant of time leading to 

max minL H H LV V V V    (‎3.232) 

The gas volume at the minimum operating pressure for both the HPA and the LPA are 

given by 

1/1.4

1.4

max

min

PH
H PH

H

p
V V

p

 
  
   

(‎3.233) 

1/1.4

1.4

max

min

PL
L PL

L

p
V V

p

 
  
   

( 3.234) 

The maximum hydraulic pressure is not to exceed 4 times the pre-charge pressure; 

otherwise, the elasticity of the bladder will be adversely affected. In addition, excessive 

changes in pressure result in considerable heating of the gas. Reducing the pressure 

differential between the HPA and LPA increases the bladder service life. On the other 

hand, it must be taken into account that a lower pressure differential also reduces the 

utilization of available storage capacity [50]. 

max 4H PHp P  (‎3.235) 

max 4L PLp P  (‎3.236) 

The actual flow rate through the pump is related to the gas volume through the 

continuity equation. The actual total flow rate of the hydraulic fluid entering the HPA 

equals to the rate of contraction of the gas in the HPA: 
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H
TTD

dV
Q

dt
   (‎3.237) 

The total actual flow rate equals to the rate of change of the total oil volumes within 

the barrel at the discharge port side 

9

1 2

i

TTD

i

Q
Q



  (‎3.238) 

Initially, the gas volume in the high-pressure accumulator equals to the maximum gas 

volume in the HPA. Therefore, the initial condition necessary to solve equation ( 3.237) 

can be expressed as 

  max0H HV t V   (‎3.239) 

3.5.6 Orifice area 

In finding the pressure force effects, Schoenau et al. had considered the pressure 

variations through one complete revolution of the swash plate. The valve ports have relief 

notches to avoid step changes in pressure in the transition regions. The resulting overlap 

produces six distinct pressure regions for each revolution of the piston barrel [17]. Each 

region gives rise to a different expression for pressure and flow. 

The value of the cylinder pressure, POIL1,i, depends on the angular position of the 

piston with respect to the TDC. In fact, the resulting overlap produces 16 distinct pressure 

regions for each revolution of the piston barrel as shown in Figure  3-17. These regions 

are: 

1. Regions 1 and 9: the cylinder is completely closed by the land between the suction 

and discharge ports. 

2. Regions 2 to 8: the cylinder is open to the suction port. 
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3. Regions 10 to 16: the cylinder is open to the discharge port. 

The above regions have different exit areas and they are grouped as shown in Table  3-2. 

Table ‎3-2: Orifice area classification 

Region Area Angular range Region Area Angular range 

1 Ar1 = 0 1 <  < 2 9 Ar1 = 0 9 <  < 10 

2 Ar2 2 <  < 3 10 Ar2 10 <  < 11 

3 Ar3 3 <  < 4 11 Ar3 11 <  < 12 

4 Ar4 4 <  < 5 12 Ar4 12 <  < 13 

5 Ar5 5 <  < 6 13 Ar5 13 <  < 14 

6 Ar6 6 <  < 7 14 Ar6 14 <  < 15 

7 Ar7 7 <  < 88 15 Ar7 15 <  < 16 

8 Ar8 8 <  < 9 16 Ar8 16 <  < 1 
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Figure ‎3-17: Pressure regions as seen by cylinders 

The overlap area varies with the angular position of the barrel as shown in Figure  3-18: 
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Figure ‎3-18: Orifice area variation with main shaft angular rotation 
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The area profile shown in Figure  3-18 repeats in the same manner every revolution of 

the barrel. Therefore, a Fourier series can represent the expression of area given by Eq. 

( 3.240): 

     
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 (‎3.241) 
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
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

   (‎3.244) 

3.5.6 Expressions of the overlap areas 

Regions 1 and 9: When the cylinder is at either region 1 or region 9, it is totally closed by 

the land between the discharge and suction ports. However, in reality there is some 

leakage at these regions because of the clearance between the barrel and the valve. Thus, 

the overlap area at regions 1 and 9 is assumed around 1% of the overlap area where the 

cylinder is completely open to either the discharge or suction port. Therefore, the net 

overlap area for either region (1) or (9) is given by 

 r9 r1 r6A =A  = 0.01A   (‎3.245) 
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Figure ‎3-19: Geometric parameters of pressure region 1 

Regions 2 and 10: The net suction area or discharge area is given by 
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Figure ‎3-20: Geometric parameters of pressure region 2 

Regions 3 and 11: The expression for the net suction or discharge area of is given by 

     2 2

3 1 2 3 3 3r rA R R A      (‎3.251) 

The angle between lines AC and BC is given by: 

1

1 2sin
2

AB

k

L

R
 

 
(‎3.252) 

The length of line AB is given by 
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Figure ‎3-21: Geometric parameters of pressure region 3 

Region 5 and 13: The net suction or discharge area is given by 
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Figure ‎3-22: Geometric parameters of pressure region 5 
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Regions 6 and 14: The net suction area or discharge area is given by 
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Figure ‎3-23: Geometric parameters of pressure region 6 

Regions 7 and 15: The net suction area or discharge area is given by 
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Figure ‎3-24: Geometric parameters of pressure region 7 

Regions 8 and 16: The net suction area or discharge area is given by 

   2

8 1 1sinr kA R     (‎3.258) 

 

Figure ‎3-25: Geometric parameters of pressure region 8 
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3.6 Dynamic Analysis of the Piston 

3.6.1 Displacement and velocity of the piston with respect to barrel 

With reference to Figure  3-9, equate the vertical distance at the main shaft side to the 

vertical distance at the barrel side when the connecting rod is at the TDC yields 




 sin
2

sincossinL oCR IHIJrR 
 

(‎3.259) 

Equate the horizontal distances when the connecting rod is at the TDC yields 




 cos
2

cossincosL oCR IHIJLr is 
 

(‎3.260) 

Solving equations: ( 3.259) and ( 3.260) yields: 

 
1

cos sin
sin

y is

o

CR

r R R L

L

 
  

   
  
 
 

 

(‎3.261) 

cos( ) ( )cos siny CR o is yIH R L L R R         
 

(‎3.262) 

Knowing that the value of the vector ArEB given by equation ( 3.281) is equal to the 

length of the connecting rod LCR, therefore, the distance IF is given by 

   

 

    

22 2 2 2 2

2 2 2

, cos sin cos

sin 2 1 2cos sin
2

sin cos 1 2cos sin cos

y is y

CR is y

is y

IF R L R R

L L R r rR

R L R r R

    


 

    

    

 
     

 

    

 

(‎3.263) 

The piston is assumed to have a value of zero displacement at the TDC. The 

displacement of the piston with respect to the barrel at any angle of rotation of main shaft 

is denoted by the letter z and is given by 

   Z ,  -IF ,IH     (‎3.264) 

The velocity of the piston with respect to the barrel is given by 
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 D p/b,i

d 2 ( 1)
v = Z , 0 0 1

dt 9

Ti
 

 
  

 

 

(‎3.265) 

The angular velocity of the piston is the same as the angular velocity of the barrel and 

is given by 

D p D os= 

 

(‎3.266) 

The position vector of the geometric center of the ball joint between the piston and the 

connecting rod with respect to the center of the yoke axis of rotation is given by 

   , 0 ,
T

D p yr r IF R       

 

(‎3.267) 

The position vector of the CG of the piston with respect to the center of the ball joint 

between the piston and the connecting rod is given by 

  [0,  0,  ]T

D WP WPr r  (‎3.268) 

The velocity of the CG of the piston is given by 

 p Pb D p D p D WP= +
D D
V V r r  

 
(‎3.269) 

The angular acceleration of the piston is given by 

 p

cos sin

, = cos sinD

   

      



 
 
  
 
 

  

  


 

(‎3.270) 

The absolute acceleration of the CG of the piston is given by 

     p Pb D p D p D p D WP D p D p D WP
, =

D D
a a r r r r         

 

(‎3.271) 

3.6.2 Force analysis of the piston 

Figure  3-26 shows the FBD of the i
th

 piston. The forces that act on the piston include: 

1. The reaction forces from the connecting rod to the piston denoted by - AFPtoCR,i at 

points (14) to (22), where i = 1, 2, …9 
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2. The frictional moment from the connecting rod to the piston denoted by - AMPtoCR,i 

at points (14) to (22), where i = 1, 2, …9 

3. The pressure force from the hydraulic oil given by 

, ,  [0 0 - ] ,      1,  2,  ...9T

D OILtoP i OIL i pF P A i   (‎3.272) 

4. The reaction force from the barrel to the piston at points 31 to 39 given by 

, , , , ,      1,  2,  ...9
T

D BtoP i BtoPx i BtoPy i BtoPz iF F F F i     (‎3.273) 

5. The weight of the piston given by 

0 0
T

A p pW M g     (‎3.274) 

 

Figure ‎3-26: FBD of the piston 

3.6.3 The frictional force between the barrel and the piston 

Based on laminar incompressible flow, the viscous force on one piston can be 

expressed as [51] 

,

BtoPz,iF ,   i = 1, 2, ...9
p D pb i p

p

r v L

C


 

 

[17] (‎3.275) 
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Lp is the length of the piston that is inserted in the cylinder when the axial displacement is 

zero. It is assumed equal to the total length of the piston for all yoke angular positions. 

rp = the piston radius 

DVpb,i = the axial velocity of the i
th

 piston with respect to the barrel 

Cp = one half the radial clearance between the piston and the cylinder 

 = oil viscosity, Ns/m
2
 

3.6.4 Equations of motion of the pistons 

Attach the origin of the D coordinate system to point (14 to 22) (center point of 

contact between the connecting rod and the piston). Assuming that the reaction force from 

the barrel to the piston acts at the CG of the piston length, therefore, its position vector is 

given by 

 0 0
T

D BtoP WPr r  (‎3.276) 

Summing forces along the three inertial directions yields 

 , , ,

2 ( -1)
- , .  

9

2 ( -1)
-  , 0,      1,  2,  ...9

9

T

A PtoCR i os D OILtoP i D BtoP i

A p p A p

i
F T F F

i
W M a i


 


 

 
   

 

 
    

 

 (‎3.277) 

Summing moments about the common point between the connecting rod and the 

piston (points 14 to 22) yields 

os A PtoCR,i D BtoP D BtoP,i D WP os A p

D p D WP p A p

2 (i-1) 2 (i-1)
-T , + . M + r F + r T , + . W

9 9

2 ( 1) 2 (i-1)
- I . ,  - r M a , + = 0,  i = 1, 2, ...9

9 9
D p

i

 
   

 
    

    
     

    

   
    

   

 

(‎3.278) 
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3.7 Dynamic Analysis of the Connecting Rod 

With reference to Figure  3-9, the position vector of point B with respect to point A is 

given by 

 0 0
T

B Br R   (‎3.279) 

The position vector of point E with respect to point A is given by 

   
 

1

0 0 0

, 0 . 0 , .

,

T T

A E im os

is im

r T T r

L L IF

   

 

    
    

       
     
     

 (‎3.280) 

The position vector of point E with respect to point B is given by 

   1, .T

A EB A E B Br r T r     (‎3.281) 

The velocity of point B is related to the rotation of the main shaft and is given by 

 1

cos

. sin

0

T

A B B MS B BV T r R



  

 
 

    
 
 

  (‎3.282) 

The position vector of the CG of the i
th

 Connecting rod with respect to point A 

(Figure  3-9) is given by 

     1, ,.
A CRG

T CR
B B A EB

CR

r T
r

r r
L

      (‎3.283) 

The velocity of the CG of the connecting rod is given by 

,
,

2 ( 1)

9
A CR i A CRG
V r

d i

dt
 


 

 
 
   

(‎3.284) 

The linear acceleration of the connecting rod can be expressed in terms of the inertial 

coordinate frame as 
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,

2

2
,

2 ( 1)

9
A CR i A CRG
a r

d i

dt
 


 

 
 
   

(‎3.285) 

Figure  3-27 shows the forces that act on the FBD of the connecting rod that include: 

1. The weight of the connecting rod expressed as 

 0 0A CR CRW M g  (‎3.286) 

2. The reaction force from the cup at the main shaft side at points (5) to (13) and is 

expressed in terms of the A frame as 

, , , ,  ,        1,  2,  ...9A MStoCR i MStoCR ix MStoCR iy MStoCR izF F F F i     (‎3.287) 

3. The frictional moment from the cup at the main shaft-side at points (5) to (13) that 

will be explained in detail in the next section. 

4. The reaction force from the piston to the connecting rod at points (14) to (22) and 

is expressed as 

, , , , ,      1,  2,  ...9
T

A PtoCR i PtoCR ix PtoCR iy PtoCR izF F F F i     (‎3.288) 

5. The frictional moment from the piston to the connecting rod at points (14) to (22) 

and will be explained in detail below. 

 

Figure ‎3-27: FBD of the connecting rod 
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3.7.1 The frictional moment from the cup at the main shaft 

The friction moments, AMMStoCR,i, generated on the spherical joint at points (5) to (13) 

are determined by the reaction force “AFMStoCR,i”, friction coefficient “CRL,i“, and radius 

“RCRL“. Its direction is opposite to the angular velocity of the connecting rod. The friction 

moments, AMMStoCR,i are expressed by [25] 

9… 2, 1, = i,

9

)1(2
,

9

)1(2
,

9

)1(2
,

2

,

2

,

2

,,

,

izMStoCRiyMStoCRixMStoCRiCRLCRL

CRJ

CRJ

T

CR

iMStoCRA

FFFR

i

ii
T

M










 









 








 















 (‎3.289) 

Experimental tangential speeds below 0.7m/s was not possible because of the stick-

slip phenomena [25]. However, the friction coefficient in the low speed range can be 

assumed by linear interpolation between 0.04 and 0.09, the static friction coefficient [25]. 

The spherical joint makes slide motion on its surface with the velocity lower than 0.3m/s 

even at the max input shaft speed of 10, 000 rpm and its friction coefficient changes 

between 0.07 and 0.09 within this speed range [25]. The coefficient of friction is almost of 

constant value (0.04) for sliding speeds above 0.7m/s [25]. Therefore, using the three 

points of coefficient of friction variation with slide speed as shown in Table  3-3, a linear fit 

can be obtained as follows:
 
 

, ,

,

,

0.0716 0.0905        0 0.7

0.04038                              0.7

CRL i CRL i

CRL i

CRL i

V V

V


   
 


 

(‎3.290) 

Where i = 1, 2, …, 9 and H denotes the Heaviside function and VCRLi is the absolute 

value of the sliding velocity at the surface of contact with the cup at the main shaft side. 

2 ( 1)
, ,   i = 1, 2, ...9

9
CRLi CRL J CR

i
V R


  

 
  

   
(‎3.291) 
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Table ‎3-3: Coefficient of friction variation with Spherical joint sliding speed [25] 

Spherical joint sliding speed (m/s) Coefficient of friction 

0 0.09 

0.3 0.07 

0.7 0.04 

3.7.2 The frictional moment from the spherical joint at the piston side 

The friction moments, AMPtoCR,i, generated on the spherical joint at points (14) to (22) 

are determined by the reaction force, AFPtoCR,i, friction coefficient, CRR,i, and radius, RCRR, 

while its direction is opposite to the angular velocity of the connecting rod JWCR. The 

friction moments, AMPtoCR,i are expressed by [25] 

,

2 2 2

, , , ,

2 ( 1) 2 ( 1)
, ,

9 9

2 ( 1)
,

9

,     i = 1, 2, ..., 9

T

CR J CR

A PtoCR i

J CR

CRR CRR i PtoCR ix PtoCR iy PtoCR iz

i i
T

M
i

R F F F

 
    


  



    
      

   
 

 
 

 

 

(‎3.292) 

Where i = 1, 2… 9 and j = 0, 1… 8 

As before, the friction coefficients are expressed as 

, ,

,

,

0.0716 0.0905        0 0.7

0.04038                              0.7

CRR i CRR i

CRR i

CRR i

V V

V


   
 


 

(‎3.293) 

 Where 

9…, 2 1, = i,
9

)1(2
,, 







 


i
RV CRJCRRiCRR


  (‎3.294)

 

VCRR,i is the absolute value of the sliding velocity at the surface of contact between the 

piston and the right end of connecting rod. 
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3.7.3 Equations of motion of the connecting rods 

Applying Newton’s second law along the three inertial coordinates, yields 

 , ,

2 ( -1)
-  ,  0,     1,  2,  ...9

9
A CR A MStoCR i A PtoCR i CR A CR

i
W F F M a i


 
 

     
 

 (‎3.295) 

3.8 Dynamic Analysis of the Valve Plate-Yoke Assembly 

Attach a coordinate system h1h2h3 to the valve plate at the axis of rotation of the yoke. 

“h1h2h3“ is obtained by rotating “a1a2a3“ about “a1“ by an angle of : 

1 0 0

0 cos sin

0 sin cos

vpT  

 

 
 


 
    

(‎3.296) 

The angular velocity and angular acceleration of the valve plate is given by   

0 0
T

H vp    
  (‎3.297)

 

0 0
T

H vp    
  (‎3.298) 

The origin of the “H” frame is located at the center of rotation of the yoke. Therefore, 

with reference to Figure  3-9 the position vector of the CG of the valve plate-yoke 

assembly is given by 

0
T

H vp vpx vpzr r r     (‎3.299)

 
The velocity and acceleration of the valve plate CG are given by 

0 0
T

H vp H vp H vp vpzV r r       
  (‎3.300) 

20
H vp

T

vpza r      
   (‎3.301) 

Figure  3-28 shows the forces acting on the FBD of the valve plate-yoke assembly that 

include: 
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1. The reaction forces at the axis of rotation of the yoke at points 67 and 68 and their 

respective position vectors given by 

67 67 67 67

T

A CtoY CtoY x CtoY y CtoY zF F F F     (‎3.302)

 

 67 67- 0 0
T

A CtoY CtoY xr r  (‎3.303)

 

68 68 680
T

A CtoY CtoY y CtoY zF F F     (‎3.304)

 

A CtoY68 A CtoY67r  = - r  (‎3.305) 

2. The friction moments at the axis of the yoke at points 67 and 68 given by 

67 67 - ( [1]) 0 0
T

A CtoY CtoY x H vpM M sign      (‎3.306)

 

68 68 - ( [1]) 0 0
T

A CtoY CtoY x H vpM M sign      (‎3.307) 

The derivation of equations for these moments is shown in the next section. 

3. The reaction force from the actuating link at point 66 and its respective position 

vector as measured from the yoke axis of rotation. This force has two components: 

one is parallel to the actuating link and the other is normal to it. 

66 66 8 66 8

66 8 66 8

0

sin( ) cos( )

cos( ) sin( )

A ACtoY ACtoY P ACtoY N

ACtoY P ACtoY N

F F F

F F

   

   

 
 

   
 
    

 (‎3.308)

 

66 66 66 66

T

H ACtoY ACtoY x ACtoY y ACtoY zr r r r     (‎3.309) 

4. The frictional moment from the actuating link at point 66: 

 66 66 - ( [1]) 0 0
T

A ACtoY ACtoY x A ACM M sign   (‎3.310) 

The derivation of equations for these moments is shown in the next section. 

5. The reaction forces from the needle bearings at the end of the barrel at point 58, 

which are denoted as - DFB3FtoB and - DFB3StoB. The bearings are fixed to the valve 
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plate. The corresponding position vector as observed from the yoke axis of rotation 

denoted as DrB3FtoB and DrB3StoB. 

6. The frictional moment form the needle bearings at point 58 denoted as - DMB3FtoB 

and - DMB3StoB. 

7. The weight of the valve plate - yoke assembly given by 

0  0
T

A vp vpW M g     (‎3.311) 

8. The reaction force from the thrust ball bearing at the end of the barrel at point 65, 

denoted by - DFB4toB: 

 4 40 0
T

D B toB B toBzF F  (‎3.312) 

9. The frictional moment at the thrust ball bearing (point 65) denoted by –DMB4toB. 

10. The hydrodynamic forces: - HFVPtoBoutD, - HFVPtoBinD, - HFVPtoBinS, and - HFVPtoBoutS 

due to the oil film between the valve plate and the barrel at points 59, 60, 61, and 

62 respectively. 

11. The frictional moment due to the fluid film between the barrel and the valve plate 

denoted as - DMVPtoB 

12. The reaction forces between the discharge/suction port of the valve plate and the 

solid area located between each successive cylinder at points 69 to 77 respectively. 

D BStoVP,i b s

2 (i-1) 2 (i-1)
F  = 0 0 P +  A + ,    1,2,...9

9 9

T

i
 

 
    

    
    

 (‎3.313) 

Where Pb = PD or PS depending on the angular position () 

Section 3.7.1 presents the derivations of the equations of As,i, which depends on 

the main shaft angular position (). 
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13. The reaction force from the fluid inside the hose between the LPA and the suction 

exit at the yoke axis of rotation at point 78. This force as well as its position vector 

can be expressed as 

 78 78 0 sin cos
T

A LPAtoY S L LF P A     (‎3.314)

 

 78 78- 0 0
T

A LPAtoY LPAtoY xr r  (‎3.315) 

14. The reaction force from the fluid inside the hose between the HPA and the 

discharge exit at the yoke axis of rotation at point 79. This force as well as its 

position vector can be expressed as 

 79 78 0 sin cos
T

A HPAtoY D L LFL P A     (‎3.316)

 

A HPAtoY79 A LPAtoY78r  = - r  (‎3.317) 

15. The force due to the pressure on the discharge or suction orifice at points 80 to 88 

as well as its position vector can be expressed as 

D OILtoVP,i b r

2 (i-1) 2 (i-1)
F = 0 0 P +  A + ,    1,2,...9

9 9

T

i
 

 
    

    
    

 (‎3.318)

 

  0
T

D OILtoVP YtoVPr r L   (‎3.319)
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Figure ‎3-28: FBD of the valve plate-yoke assembly 

3.8.1 The frictional moments at the axis of the yoke 

The value of the frictional moments components at the axis of the yoke at points 67 

and 68 are expressed as 

2 2

67 67 67CtoY x Y Y CtoY y CtoY zM r F F 
 

(‎3.320) 

2 2

68 68 68CtoY x Y Y CtoY y CtoY zM r F F 
 

(‎3.321) 

Y = the friction coefficient at the right/left pins of the yoke 

rY = radius of pin of the yoke 

3.8.2 The frictional moments at the common axis between the yoke and actuating link 

The value of the frictional moment component at the common axis of the yoke and 

actuating link at points 66 is expressed as 
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2 2

66 66 66ACtoY x ACtoY AC ACtoY y ACtoY zM r F F 
 

(‎3.322) 

ACtoY = the friction coefficient at the pin between the yoke and the actuating link 

rAC = radius of pin between the yoke and the actuating link 

3.8.3 Solid area between two successive cylinders 

Figure  3-29 shows the regions of solid area between successive cylinders. There are 12 

regions. In regions one and seven, the solid area between successive cylinders coincides 

with the land between the suction and discharge ports. In regions 2 to 6, the solid area 

between successive cylinders is under suction pressure. In regions 8 to 12, the solid areas 

between successive cylinders are under discharge pressure. The solid areas between 

successive cylinders at any angular rotation of the main shaft is shown in and given by 

   
12

s s,i 1

1

A  = A i i

i

H H    



      (‎3.323) 
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Figure ‎3-29: Regions of the solid area between successive cylinders 

 

Figure ‎3-30: Solid area between successive cylinders 
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Solid area between two successive cylinders for region (1) 

Figure  3-31 shows schematic of region 1. Region 1 extends over the angular rotation 

<≤. The solid area between the first and second cylinders that is under the suction 

pressure for region 1 or region 7 is given by 

s1A  = 0  (‎3.324) 

 

Figure ‎3-31: Solid area between two successive cylinders for region (1) 

Solid area between two successive cylinders for regions (2), (6), (8), and (12) 
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Figure ‎3-32 shows schematic of region 2. Region 2 extends over the angular range 

<≤. The solid area between the first and second cylinders that is under the suction 

pressure is given by: 

 2 2

s2 4 2 3

1
A  = 

2
R R   (‎3.325) 

Equation ( 3.325) applies also to regions (6), (8), and (12) except that 4 is different for 

each region. 4 is the angle between lines 1 - 4 and 2 - 3 and is given by 

1

1

4

1

1

;         for region (2 & 3)
2

;          for region (5 & 6)
2

;      for region (8 & 9)
2

;                for region (11 & 12)
2

C
D

C

C
D

C


  


  




  


 


  


   


 
   


  


 (‎3.326)
 

 

Figure ‎3-32: Solid area between two successive cylinders for region (2) 
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Solid area between two successive cylinders for regions (3), (5), (9), and (11) 

Figure  3-33 shows schematic of region 3. Region 3 extends over the angular range: 

<≤. The solid area between the first and second cylinders that is under the suction 

pressure is given by 

     
22 2

s3 4 2 3 2 3 1 1

1 1
A  = sin

2 4
R R R R       (‎3.327) 

This equation also applies to regions (5), (9), and (11) except that 1 and 4 are 

different for each region.4 is given by equation ( 3.326), while 1 is given by 

1 2 1

1 2 1

1

1 2 1

1 2 1

cos ;          for region (3)
2

cos ;  for region (5)
2

= 

cos ;          for region (9)
2

cos ;   for region (11)
2

c

c
D

c

c
D

k k

k k

k k

k k


 


  




 


  

  
    

 


        

  

   
 

  
     

 

 (‎3.328)
 

 

 

 

22 2
2 32 2 3 3

1 22 2

2 3 2 3

6
=  and 

2 2

R RR R R R
k k

R R R R

 


 
 (‎3.329) 
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Figure ‎3-33: Solid area between two successive cylinders for region (3) 

Solid area between two successive cylinders for region (4) 

Figure  3-34 shows schematic of region 4. Region 4 extends over the angular range 

<≤. The solid area between the first and second cylinders that is under the suction 

pressure for region 4 or region 10 is given by 

  2 2 2

s4 2 3

1
A  = -

2
D C kR R R     (‎3.330) 
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Figure ‎3-34: Solid area between two successive cylinders for region (4) 

3.8.4 Equations of motion of the valve plate-yoke assembly 

The sum of all forces on the valve plate-yoke assembly should equal to mass 

multiplied by acceleration: 

   

H VPtoBoutD H VPtoBoutS

A CtoY67 A CtoY68 A ACtoY66 A vp

H VPtoBinD H VPtoBinS

T T

os D B3FtoB D B3StoB D B4toB os D BStoVP,i

T

A HPAtoY79 A LPAtoY78 os

F + F
F + F + F + W .

F F

2 ( 1)
-T , . F F F + T , . F

9

2 ( 1)
+ F + F + T ,

9

T

vpT

i

i


   


 

 
  

  

 
   

 


 T

D OILtoVPD,i vp vp H vp. F - T .(M . a ) = 0

i=1, 2, ...9


 
 

 (‎3.331) 

Summing moments of all forces about point k (axis of rotation of the yoke): 
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   
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 
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 

 

 (‎3.332) 

3.9 Dynamic Analysis of the Yoke-Displacement Mechanism 

The yoke rotates through an angle of  by the aid of a slider crank mechanism as 

shown in Figure  3-35. The ram moves with a translational motion, with position given by 

 

   

3 5 5

2 22 2

4 3 5 4 3 5

cos( ) cos( )

sin( ) sin( )ac ac

x L

L L L L L L

    

    

    

        
 

(‎3.333) 

L3 = the radius of rotation of the yoke 

Lac = length of the actuating link 

The velocity and acceleration of the ram in vector form is given by 

 0 sin cos
T

A RAMV x      (‎3.334) 

 0 sin cos
T

A RAM A RAM A RAM

d
a V a x

dt
      (‎3.335) 
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Figure ‎3-35: Geometric parameters of the displacement mechanism 

The angular velocity of the actuating link is determined using the instant center 

method as shown in Figure  3-35: 

 1 0 0
T

A AC

x

CD
  



 

(‎3.336) 
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    

  

22

4 3 5 5

4 3 5

sin tan

sin

acCD L L L

L L

     

  

       

   

 (‎3.337) 

The angular acceleration of the actuating link is given by 

A AC A AC

d

dt
   (‎3.338) 

The distance from the center of gravity of the actuating link to the instant center is 

given by 

2 2

82 . .cos
2

CG DG CD DG CD



 

    
   

(‎3.339)
 

1 4 3 5
8

sin( )
sin

ac

L L

L

  
    

   (‎3.340) 

The velocity of the center of gravity of the actuating link is given by 

 1

4 8sin cos
DG

CG
   

  
 

 (‎3.341) 

 4 4. 0 sin( ) cos( )
T

A AC A ACV CG        

 

(‎3.342) 

The acceleration of the center of gravity of the actuating link is given by 

A AC A AC

d
a V

dt
  (‎3.343) 

Figure  3-36 shows the forces acting on FBD of the actuating link that include: 

1. The reaction force from the pin of the ram at point 90. This forces as well as its 

respective position vector as measured from the axis of rotation of the yoke are 

given by 

90 90 8 90 8

90 8 90 8

0

sin( ) cos( )

cos( ) sin( )

A RAMtoAC RAMtoAC z RAMtoAC y

RAMtoAC z RAMtoAC y

F F F

F F

   

   

 
 

    
    

 (‎3.344)

 



127 

 

90 3 5 8

3 5 8

0

sin( ) sin( )

cos( ) cos( )

A RAMtoAC ac

ac

r L L

L L

   

   

 
 

    
 
    

 (‎3.345) 

2. The reaction from the yoke at point 66 denoted as - AFACtoY66. The respective 

position vector is given by 

66 66.T

A ACtoY vp H ACtoYr T r  (‎3.346) 

3. The frictional moment from the yoke at point 66 denoted as - AMACtoY66 

4. The weight of the actuating link and its corresponding position vector as measured 

from the yoke axis of rotation are given by 

 0  0
T

A AC ACW M g  (‎3.347)

 

     
     

3 5 8

3 5 8

0

  sin sin

cos cos

A WAC ac

ac

r L L DG

L L DG

   

   

 
 

      
     

 (‎3.348) 

Force balance of the actuating link 

A RAMtoAC90 A ACtoY66 A AC AC ACF  -  F  + W  - M .a  = 0  (‎3.349) 

Sum of moments about center of rotation of the yoke (point A) is given by 

90 90 66 66

66

 -   

- - .  -  .   0

A RAMtoAC A RAMtoAC A ACtoY A ACtoY A WAC A AC

A ACtoY A WAC AC A AC A AC A AC

r F r F r W

M r M a I 

   

 
 (‎3.350) 
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Figure ‎3-36: FBD of the actuating link 

Figure  3-37 shows the forces acting on the FBD of the ram that include: 

1. The reaction force from the pin between the ram and the actuating link at point 90 

denoted as - AFRAMtoAC90. 

2. The reaction force from the ram cylinder interface at point 90 and is expressed as 

90 90 90 90

90 90 90

0

  sin - cos

cos sin

A CtoRAM CtoRAM CtoRAM CtoRAM

CtoRAM CtoRAM CtoRAM

F N N

N N

  

  

 
 


 
  

 (‎3.351) 

3. The weight of the ram is given by 

 0  0
T

A RAM RAMW M g  (‎3.352) 

4. The cylinder pressure force on the ram and is given by 

   0 sin cos
T

A PtoRAM RAM RAMF P A    (‎3.353) 
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Figure ‎3-37: FBD of the ram 

Force balance of the ram 

90 90- -  .   0A RAMtoAC A CtoRAM A RAM A PtoRAM RAM A RAMF F W F M a     (‎3.354) 

3.10 Summary of the Theoretical Analysis 

This chapter presented the mathematical derivations of the equations of motion of the 

parts of the pump. In the process of developing these equations, hydrodynamic analysis 

was introduced at the pistons. The hydrodynamic analysis at the pistons of the pump 

resulted in differential equations that relate cylinder pressures and flow rates to the 

geometric parameters of the pump, the physical properties of the hydraulic oil, and the 

thermodynamic states of the nitrogen gas in the HPA and LPA. In addition, the 

hydrodynamic forces acting at the interface between the barrel and the valve plate were 

determined by defining and deriving the differential equations governing the oil film at the 

interface. 

In the next chapter, the equations of motion of the parts, the differential equations of 

the piston pressure, and the hydrodynamic force will be solved numerically using 

Mathematica
TM

 software. 
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CHAPTER 4: NUMERICAL SOLUTION AND 

SIMULATION OF THE 

MATHEMATICAL MODEL 

The theoretical model is created using Mathematica
TM

 and is examined against well 

know conditions of the rotation of the main shaft and the yoke. It is also compared against 

experimental data that is created by the Environmental Protection Agency. The geometric 

data of an actual variable displacement pump was used. The technical data of the actual 

pump under consideration and the results of the experimental testing are not shown here 

because it is propriety of the Environmental Protection Agency and we do not get 

permission to release such data. 

4.1 Kinematics of the Pump Components 

The kinematic model is compared against a CAD model created using ADAMS/View 

software. This study considers two cases. In the first case, the yoke has no angular rotation 

while the main shaft angular motion is a function of time. In the second case, the yoke has 

a fixed angular position while the main shaft rotates at a constant angular velocity. 

Case 1: Yoke angle of zero degrees 

Because the yoke is not displaced, all the parts except the pistons and the connecting 

rods are in pure rotation with velocities and accelerations as given in Table  4-1. The yoke 

and the displacement mechanism are stationary. If the pitch radius R at the main shaft side 
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and the pitch radius r at the barrel side are the same, then the velocities and accelerations 

of the pistons and the connecting rods are the same. The main shaft, the first and second 

intermediate shafts, the first and second crosses, the barrel, the pistons, and the connecting 

rods have the same angular velocity and angular acceleration as given by Eq. ( 3.12) and 

Eq. ( 3.13). In addition, the pistons do not move with respect to the barrel. 

Table ‎4-1: Parameters of the pump for a yoke angle of zero degrees 

AaCR() 
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 
 
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AVp  cos sin 0
T

r    

AVCR()  
 cos sin 0CR

CR

Tr R r
R

L
  




 
 
 

  

Case 2: Fixed yoke angle and constant angular velocity of the main shaft 

In this case, the main shaft rotates at a constant angular velocity of 1500 rpm while the 

yoke is kept at 30. Therefore, one complete revolution of the main shaft is equivalent to 

0.04 seconds of time. 

The intermediate shaft has one angular velocity component along its longitudinal axes 

“c3“. As can be seen from Figure  4-1, the angular velocity of the intermediate shaft 

oscillates between 1449 rpm and 1553 rpm with an average value of around 1500 rpm 

every half a revolution of the main shaft.  
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Figure ‎4-1: Angular velocity of the intermediate shaft (Case 2) 

Observing the intermediate shaft from the inertial coordinate system, the intermediate 

shaft has two components of angular acceleration. One component is along the “a2“ 

direction as can be seen from Figure  4-2, and oscillates between - 442 and 442 rad/s
2
 

every half revolution of the main shaft. 

 

Figure ‎4-2: Angular acceleration of the intermediate shaft along the “a2“ direction (case-2) 



133 

 

The component of the angular acceleration of the intermediate shaft along the “a3“ 

direction is shown in Figure  4-3. This component fluctuates between - 1650 rad/s
2
 and 

1650 rad/s
2
 for each revolution of the main shaft. 

Both the translational velocity and acceleration of the intermediate shaft are zero since 

it undergoes pure rotation. 

 

Figure ‎4-3: Angular acceleration of the intermediate shaft along the “a3“ direction (case-2) 

Figure  4-4 shows that the variation of the angular velocity component along the “a1“ 

direction of the first cross for a complete revolution of the main shaft. The “a1“ component 

varies smoothly from zero at  = 0 to - 194 rpm at  = /4 to 0 at  =  to 194 rpm at  = 

3 and back to zero at  =  in half a revolution.  
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Figure ‎4-4: Angular velocity component of the first cross along the “a1“ direction of the CVJ (case 2) 

The “a2“ component shown in Figure  4-5 varies between 0 and - 402 rpm. In addition, 

the “a3“ has a constant value of 1500 rpm as shown in Figure  4-6. 

 

Figure ‎4-5: Angular velocity component of the first cross along the “a2“ direction of the CVJ (case 2) 
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Figure ‎4-6: Angular velocity component of the first cross along the “a3“ direction of the CVJ (case 2) 

With reference to Figure  4-7 the angular acceleration component of the first cross 

along the “a1“ direction changes sinusoidally between - 6170 to 6170 rad/s
2
 in half a 

revolution of the main shaft. The “a2“ component varies between - 6600 and 6600 every 

half revolution. There is no acceleration component along the “a3“ direction. 

 

Figure ‎4-7: Angular acceleration component along the “a1“ direction of the first cross of CVJ (case 2) 
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Figure ‎4-8: Angular acceleration component along the “a2“ direction of the first cross of CVJ (case 2) 

The angular rotation of the barrel around its axis of rotation is the same as the angular 

rotation of the main shaft. 

Figure  4-9 to Figure  4-11 show the angular velocity components of the second cross. 

Comparing Figure  4-4 with Figure  4-9, one can notice that the angular velocity component 

along the “a1“ direction of the first cross is canceled out by that of the second cross. The 

component along the “a2“ direction varies between - 750 and - 402 rpm in a sinusoidal 

manner. In addition, the “a3“ component fluctuates between 1299 and 1499 rpm. 

 

Figure ‎4-9: Angular velocity component along the “a1“ direction of the second cross of CVJ (case 2) 
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Figure ‎4-10: Angular velocity component along the “a2“ direction of the second cross of CVJ (case 2) 

 

Figure ‎4-11: Angular velocity component along the “a3“ direction of the second cross of CVJ (case 2) 

Figure  4-12 to Figure  4-14 show the components of the angular acceleration of the 

second crossed expressed with respect to the inertial frame of reference. The component 

along the “a1“ direction of the second cross cancels out the “a1“ component of the first 

cross. The components along the “a2“ and “a3“ directions are in phase and change in a 

sinusoidal mannar. 
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Figure ‎4-12: Angular acceleration (“a1“ component) of the second cross of CVJ (case 2) 

 

Figure ‎4-13: Angular acceleration (“a2“ component) of the second cross of CVJ (case 2) 

 

Figure ‎4-14: Angular acceleration (“a3“ component) of the second cross of CVJ (case 2) 
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The velocity and acceleration of the second cross are zero. The velocity and 

acceleration of the CG of the barrel are also zero. 

Figure  4-15 shows the piston displacement as a function of the main shaft and yoke 

rotations. The piston is not displaced relative to the barrel if the yoke angle is zero 

regardless of the angular rotation of the main shaft. In addition, for a given yoke angle the 

piston displacement with respect to the barrel varies sinusoidally with the main shaft 

rotation. 

 

Figure ‎4-15: Piston displacement as a function of main shaft and yoke rotations 

The velocity components of the first piston are shown in Figure  4-16 to Figure  4-18. 

Notice that the mathematical model matches that of ADAMS/View model along the “a1“ 

and “a2“ directions. Although there is a phase shift of around 40 between the 

mathematical model and the ADAMS model along the “a3“ direction, both models 

indicate the same trend and the same maximum and minimum values. In addition, the “a3“ 

component is insignificant because it is only around 3% of the value of either the “a1“ or 
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the “a2“ component. The solution of the Mathematica
TM

 model is exact. On the other hand, 

the numerical solution obtained from ADAMS/View is approximate and involves some 

simplifications. Therefore, the difference between the Mathematica
TM

 model and 

ADAMS/View model could be attributed to numerical approximations involved in the 

ADAMS model. 

 

Figure ‎4-16: The velocity of the piston along the “a1“ direction (Case 2) 

 

Figure ‎4-17: The velocity of the piston along the “a2“ direction (Case 2) 
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Figure ‎4-18: The velocity of the piston along the “a3“ direction (Case 2) 

The acceleration components of the piston are shown in Figure  4-19 to Figure  4-21. 

Both the mathematical and ADAMS model match accurately along the “a1“ and “a2“ 

directions. There is a small difference (less than 2%) between the two models in the “a3“ 

direction. 

 

Figure ‎4-19: The acceleration of the first piston along the “a1“ direction (case 2) 
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Figure ‎4-20: The acceleration of the first piston along the “a2“ direction (case 2) 

 

Figure ‎4-21: The acceleration magnitude of the first piston (case 2) 

Figure  4-22 to Figure  4-24 show the variation of the velocity components of the 

connecting rod along the three inertial directions. There is a matching between the 

mathematical model and the ADAMS model along the “a1“ and “a2“ directions. Although 

there is a small phase shift between the mathematical and ADAMS model along the “a3“ 

direction, the trend is the same and the maximum and minimum of both models have the 

same values.  
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Figure ‎4-22: The velocity component of the connecting rod along the “a1“ directions (case 2) 

 

Figure ‎4-23: The velocity component of the connecting rod along the “a2“ direction (case 2) 

 

Figure ‎4-24: The velocity component of the connecting rod along the “a3“ direction (case 2) 
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As can be seen from Figure  4-25, the acceleration components along the “a1“ and “a2“ 

directions vary in a sinusoidal manner and they match the plots from ADAMS model. The 

velocities and accelerations of all pistons and connecting rods are shown in Appendix A. 

 

Figure ‎4-25: The acceleration component of the connecting rod along the “a1“ direction (case 2) 

 

Figure ‎4-26: The acceleration component along the “a2“ direction of the connecting rod (case 2) 
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Figure ‎4-27: The magnitude of the acceleration of the connecting rod (case 2) 

The yoke-valve plate assembly, the ram, and the actuating link of the yoke 

displacement mechanism are stationary because the yoke angle is fixed. 

4.2 Numerical Solution of the Piston Flow Rate and Pressure 

The theoretical model of the piston pressure as given by equations ( 3.213) to ( 3.264) is 

examined numerically against well know conditions of the rotation of the main shaft and 

the yoke. The geometric data of an actual variable displacement pump was used. The main 

shaft rotates at a constant angular velocity of 1500 rpm while the yoke is kept at 5, 10, 

20, 30, and 40 respectively. 

4.2.1 The piston displacement 

The piston’s displacement and velocity is covered in a previous section from a 

kinematic context and it is revisited here as it is directly related to piston’s pressure and 

pump’s flow rate. Figure  4-15 shows a 3-dimensional plot of the piston’s displacement as 

a function of the main shaft and yoke rotations. The piston is not displaced relative to the 



146 

 

barrel if the yoke angle is zero regardless of the angular rotation of the main shaft. In 

addition, for a given yoke angle the piston’s displacement varies periodically with the 

main shaft rotation. 

The velocity of the first piston (Figure  4-28), assuming that it starts from the top dead 

center, with respect to the barrel varies in a sinusoidal manner with the main shaft angular 

rotation. It has maximum values at the middle of the discharge/suction ports ( and 

). 

 

Figure ‎4-28: The velocity of the first piston with respect to the barrel 

4.2.2 Cylinder flow rate (time domain) 

Figure  4-29 shows the cylinder flow rate as a function of time at a constant main shaft 

speed of 1500 rpm for yoke angles of 5, 10, 20, 30, and 40 respectively. 

The numerical solution at a yoke angle of 0 did not converge, however the trend at 

this angle can be anticipated by extrapolating the results at the other angles (0 to 40). At 

0 yoke angle, the piston displacement is always zero regardless of barrel rotation. 

Therefore, there will be no flow rate due to the piston kinematics except for the flow in or 

out of the pistons due to leakage through the clearances between the mating parts. Upon 
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transition at the BDC from the suction port to the discharge port (at t = 0.02 seconds), 

there will be a sharp pulse of oil flow in the cylinder coming from the high-pressure 

accumulator. Similarly, there will be also a pulse as the oil flows from the cylinder to the 

low-pressure accumulator as the cylinder switches from the discharge to the suction port at 

the TDC. 

As the yoke angle increases from 5 to 40, the cylinder flow rate increases 

accordingly because the piston displacement increases. 

 

 

Figure ‎4-29: Cylinder flow rate profile for yoke angles of 5, 10, 20, 30, and 40 

Zooming on the period just before 0.02 sec to just above 0.04 sec for yoke angle of 10 

will clarify why the sudden jump occurs as shown in Figure  4-30. As the cylinder moves 
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from the TDC ( = 0) ccw, the piston’s displacement increases. In the meantime, the 

cylinder inflow to the cylinder increases and reaches a maximum at  = 90 (t = 0.01 sec). 

After this maximum, the oil inflow to the cylinder starts to decrease until the cylinder exit 

is totally closed by the land between the suction and discharge ports. While the cylinder is 

closed, except for some leakage through clearances between mating parts, its volume 

increases leading to a negative pressure buildup until the cylinder starts to open to the 

notch groove before the start of the discharge port. Because of this negative pressure build 

up inside the cylinder while in the closed state, a reverse flow from the discharge port 

enters the cylinder causing the inflow to increase abruptly. Then after the reverse flow 

balances the negative pressure build up, the inflow again decreases until reaching the 

BDC. 

 

Figure ‎4-30: Enlarged view of the Cylinder flow rate profile,  = 10 (time domain) 

As the cylinder pass the BDC, the volume of the cylinder starts to decrease while the 

outflow increases until reaching a maximum at  = 270. After that, the outflow starts to 
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decrease again until the cylinder is completely closed by the land between discharge and 

suction ports. During the closure region, the cylinder volume continues to decrease 

causing a positive pressure buildup. As soon as the cylinder is open to the notch groove 

(before the start of the suction port), the oil moves out rapidly from the cylinder in order to 

balance the effect of pressure buildup during the closer period. This causes the outflow to 

increase abruptly. After which the outflow decreases back again until reaching zero at the 

TDC. 

4.2.3 Cylinder flow rate (frequency domain) 

Figure  4-31 shows the amplitude spectrum for the cylinder flow rate at a yoke angle of 

30. The plots of the cylinder flow rate at yoke angles of 5, 10, 20, and 40 are similar 

to those at 30 except for the magnitudes of the respective harmonics. As can be seen from 

the figure, there is a major harmonic that occurs at a frequency of 25 Hz. The other 

harmonics are very small and die very quickly at higher frequencies. 

 

Figure ‎4-31: Cylinder flow harmonics (frequency domain),  = 30 

The fundamental cylinder flow harmonic occurs at a frequency of 25 Hz for all angular 

yoke rotations under investigation as can be seen in Figure  4-32. The cylinder flow 
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amplitude of the fundamental harmonic increases linearly with the yoke angle because of 

the higher piston displacement as the yoke angle increases. 

 

Figure ‎4-32: Fundamental harmonic amplitude of cylinder flow vs. yoke angle 

4.2.4 Pump flow rate (time domain) 

The pump flow rate is the sum of the cylinder flow rates at the discharge or suction 

port from all individual cylinders less the leakage. The pump flow rate for yoke angles of 

5, 10, 20, 30, and 40 is shown in Figure  4-33. The mean flow rate increases as the 

yoke angle increases due to increased piston displacement. The pump flow rate has a 

repeating flow ripple about the mean flow rate with a frequency of 225 Hz. 
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Figure ‎4-33: Pump flow rate profile for yoke angles of 5, 10, 20, 30, and 40 

4.2.5 Pump flow rate (Frequency domain) 

Figure  4-34 shows the amplitude spectrum of the pump flow as a function of yoke 

angle. All harmonics are very small and die very quickly for all yoke angles. What is 

shown at 0 Hz actually represents the steady state pump flow rate which is constant for a 

given yoke angle. The steady state pump flow rate increases linearly with the yoke angle 

as can be seen in Figure  4-35 due to the increased piston displacement with increased yoke 

angle. 
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Figure ‎4-34: Pump flow harmonics (frequency domain),  = 30 

 

Figure ‎4-35: Steady state pump flow vs. yoke angle 

4.2.6 Piston pressure (time domain): 

The cylinder pressure profiles for yoke angles of 5, 10, 20, 30, and 40 are shown 

in Figure  4-36. As the yoke angle decreases, the jumps beyond the low pressure or high - 

pressure accumulators at the points of transitions between the ports decrease accordingly 

because compression or expansion of the oil near the TDC and BDC gets smaller. 
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Figure ‎4-36: Cylinder pressure profile for yoke angles of 5, 10, 20, 30, and 40 

As the yoke angle starts to increase, a sharp overshoot or undershoot is being noticed 

and increased while the yoke angle increases. Before reaching the BDC, the orifice exit 

area of the cylinder is totally closed by the land between the suction and discharge ports. 

Consequently, as the barrel rotates in this period up to the BDC the volume of the oil 

inside the cylinder increases causing a negative pressure in the suction port. This leads to 

pressure undershoot. At angles of 30, and 40 the pressure undershoot is below zero gage 

pressure, which might cause cavitation of the pump as the barrel rotates from suction to 

discharge port. The same explanation applies upon the transition from the discharge to the 

suction port at the TDC except that the oil is compressed at the TDC while the cylinder is 
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closed by the land between the discharge and suction ports. Thus, an overshoot in pressure 

occurs beyond the pressure of the HPA. 

4.2.7 Piston pressure (frequency domain) 

The cylinder pressure harmonics are shown in Figure  4-37 for a yoke angle of 30. The 

trend is similar at other angles. 

 

Figure ‎4-37: Cylinder pressure harmonics (frequency domain),  = 30 

The piston pressure harmonics vary parabolically and slowly with the yoke angle as 

can be depicted in Figure  4-38. What looks like a harmonic at 0 Hz is actually the steady 

state value of the piston pressure.  
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Figure ‎4-38: Cylinder pressure harmonics vs. yoke angle 

4.3 Numerical Solution of the Forces Acting on the Pump Case 

To simplify the solution of the mathematical model numerically, the frictional moment 

is neglected (it is very small) at the ball bearing and the thrust bearing of the main shaft, 

spherical joints between the main shaft and the connecting rods and between the 

connecting rods and the pistons, and at all pin joints. 

The weights of the very small parts of the CVJ are neglected in this analysis including 

the weight of the first and second cross, and the weight of the first and second 

intermediate shafts. 

Based on the numerical solution of the equations of motion of the parts of the pumps 

mentioned in chapter 3, plots of the reactions forces acting on the pump case were 

obtained. The analysis of these plots will be conducted in both the time and frequency 

domains. 
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4.3.1 Reaction forces on the case from the main shaft at the ball bearing 

Figure  4-39 to Figure  4-41 shows the reaction force from the main shaft at the radial 

roller bearing for yoke angles of 5, 10, 20, 30, and 40 and shaft speed of 1500 rpm. 

This force has two components that are normal to the axis of the main shaft. All 

components alternate about the mean value with a frequency that is nine times the 

frequency of rotation of the main shaft. The component along the “a1“ direction arises 

from the fact that the pitch circles at the main shaft side and the barrel side are not the 

same. In addition, the connecting rod is inclined at an angle with the horizontal even when 

the yoke angle is zero. This means that the connecting rod has three-dimensional 

inclinations in the sense that if you take a front view or a top view of the connecting rod, 

you still have the connecting rod inclined in both views. Therefore, the piston forces 

transmitted through the connecting rod to the main shaft will have components along the 

three directions. Some of the two components that are normal to the main shaft axes are 

shared between the ball and thrust bearings, while the component along the shaft axes is 

carried only by the thrust bearing at the main shaft and at the revolute joints of the yoke 

axis of rotation. 

The pump is connected to the LPA at the inlet port and to the HPA at the discharge 

port. As the pump delivers the hydraulic oil from the LPA to the HPA, the pressure 

differential across the pump increases accordingly. For that reason, the mean value of the 

reaction force along all directions increases very slowly with time. This result applies to 

other reaction forces. 
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Figure ‎4-39: Reaction force component along the “a1“ direction on the case of the pump at the Ball 

bearing (main shaft)  
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Figure ‎4-40: Reaction force component along the “a2“ direction on the case of the pump at the Ball 

bearing (main shaft) 
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Figure ‎4-41: Magnitude of the reaction force on the case of the pump at the Ball bearing (main shaft) 

The average values of the force components are calculated over a period of 1.0 second. 

Figure  4-42 shows a plot of these averages as a function of the yoke angle. Both 

components have some pulsation due to the mechanism of the pistons’ movement, the 

limited number of pistons (9 in this case), and the pressure pulsations in the cylinders 

within the barrel. The mean value along the “a1“ direction varies parabolically with the 

yoke angle. The mean value along the “a2“ direction increases linearly with the yoke 

angle. 
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Figure ‎4-42: Average value of the reaction force at the ball bearing (main shaft) vs. yoke angle 

In order to identify the harmonics of the reaction forces acting on the case of the 

pump, these forces are converted into the frequency domain using Discrete Fourier 

Transform analysis.  

Figure  4-43 shows the amplitude spectrum of the force components from the main 

shaft to the pump case at the ball bearing at a yoke angle of 30 and shaft speed of 1500 

rpm. The harmonics of the component along the “a1“ direction are very small and 

negligible. What looks like as a harmonic at 0 Hz, really represents the steady state value 

of the a1 component. The steady state value of the a1 component increases parabolically 

with the yoke angle as can be noticed from Figure  4-44.  
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Figure ‎4-43: Amplitude spectrum of the magnitude of the reaction force from the main shaft at the 

ball bearing to the pump case ( = 30) 
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Figure ‎4-44: Steady state value of the “a1“ component of the reaction force from the main shaft at the 

ball bearing to the pump case as a function of the yoke angle 

The component along the “a2“ direction has two major harmonics at 225 Hz and 450 

Hz. What looks like a harmonic at zero Hz actually represents the steady state value of the 

a2 component. The steady state value of the a2 component increases linearly with the yoke 

angle. The amplitude of the harmonics at 225 Hz and 450 Hz increases parabolically with 

the yoke angle. 

 

Figure ‎4-45: Amplitude spectrum of the “a2“ component of the reaction force from the main shaft at 

the ball bearing to the pump case as a function of the yoke angle 
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4.3.2 Reaction forces on the case from the main shaft at the thrust rolling bearing 

Figure  4-46 to Figure  4-49 show the reaction force components on the case of the 

pump at the thrust roller bearing at yoke angles of 5, 10, 20, 30, and 40 and shaft 

speed of 1500 rpm. Although both components along the “a1“ and “a2“ directions behave 

in a similar fashion as the components at the radial ball bearing, they are out of phase by 

180. Although the magnitudes of the components increase with the yoke angle, the trend 

of variation stays the same. In addition, the fluctuation from the mean value increases as 

the yoke angle increases. 

 

 

Figure ‎4-46: Reaction force component along the “a1“ direction on the case of the pump at the thrust 

roller bearing (main shaft) vs. yoke angle 
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Figure ‎4-47: Reaction force component along the “a2“ direction on the case of the pump at the thrust 

roller bearing (main shaft) vs. yoke angle 
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Figure ‎4-48: Reaction force component along the “a3“ direction on the case of the pump at the thrust 

roller bearing (main shaft) vs. yoke angle 
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Figure ‎4-49: The magnitude of the reaction force on the case of the pump at the thrust roller bearing 

(main shaft) vs. yoke angle 

Figure  4-50 shows the average values of the components of the reaction force at the thrust 

roller bearing calculated over a period of one second. The component along the “a1“ 

direction increases parabolically with the yoke angle. The component along the “a2“ 

direction increases linearly steeply with the yoke angle, while the “a3“ component 

decreases parabolically with the yoke angle. Overall, the magnitude of the force increases 

linearly with the yoke angle. 
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Figure ‎4-50: The average values of the components of the reaction force on the case of the pump at the 

thrust roller bearing (main shaft) vs. yoke angle 

Figure  4-51 shows the harmonics of the reaction force component along the “a1“ 

direction from the main shaft to the pump case at the thrust roller bearing at a yoke angle 

of 30 and shaft speed of 1500 rpm. This component has very small and negligible 

harmonics. What looks like a harmonic at zero Hz is in fact the steady state value of the 

component at a given yoke angle. This steady state value increases parabolically with the 

yoke angle.  

 

Figure ‎4-51: Amplitude spectrum of the reaction force component along the “a1“ direction from the 

main shaft at the thrust roller bearing to the pump case ( = 30) 
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Figure ‎4-52: Steady state value of the “a1“ component of the reaction force from the main shaft at the 

thrust roller bearing to the pump case as a function of the yoke angle 

The amplitude spectrum of the reaction force from the main shaft to the pump case at 

the thrust roller bearing along the “a2“ direction is shown in Figure  4-53 for a yoke angle 

of 30 and shaft speed of 1500 rpm. There are two harmonics, which occur at frequencies 

of 225 Hz and 450 Hz. What looks like a harmonic at zero Hz is indeed the steady state 

value of the a2 component at a given yoke angle. The steady state value increases linearly 

with the yoke angle. 

 

Figure ‎4-53: Amplitude spectrum of the reaction force component along the “a2“ direction from the 

main shaft at the thrust roller bearing to the pump case ( = 30) 
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The harmonics at 225 Hz and 450 Hz increase parabolically with the yoke angle as can 

be illustrated in Figure  4-54. 

 

Figure ‎4-54: Amplitude spectrum of the “a2“ component of the reaction force from the main shaft at 

the thrust roller bearing to the pump case as a function of the yoke angle 

Figure  4-55 shows the amplitude spectrum of the “a3“ component of the reaction force 

at the thrust roller bearing at a yoke angle of 30 and shaft speed of 1500 rpm. This 

component has three major harmonics at 225, 350, and 450 Hz respectively. What it looks 

like as a harmonic at zero Hz is in reality the steady state value of the a3 component at a 

given yoke angle. The steady state value of the a3 component decreases parabolically with 

the yoke angle as can be seen in Figure  4-56 and that may explain in part the noise heard 

when testing the pump at zero degrees yoke angle. 
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Figure ‎4-55: Amplitude spectrum of the reaction force component along the “a3“ direction from the 

main shaft at the thrust roller bearing to the pump case ( = 30) 

The amplitude of the harmonics at 225, 350, and 450 Hz increases parabolically with 

the yoke angle. 

 

Figure ‎4-56: Amplitude spectrum of the “a3“ component of the reaction force from the main shaft at 

the thrust roller bearing to the pump case as a function of the yoke angle 
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4.3.3 Reaction forces on the case from yoke axis of rotation at the suction port 

Figure  4-57 shows the “a1“ component of the reaction force at the yoke axis of rotation 

(suction port side) for yoke angles of 5, 10, 20, 30, 40 and shaft speed of 1500 rpm. 

This force component fluctuates in a sinusoidal fashion and is independent of the yoke 

angle. 

 

 

Figure ‎4-57: Reaction force component along the “a1“ direction from the yoke to the case of the pump 

at the suction port 

Figure  4-58 shows the amplitude spectrum of the “a1“ component of the reaction force 

from the yoke axis of rotation at the suction port to the pump. This component has one 
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harmonic that occurs at a frequency of 25 Hz. The amplitude of this fundamental 

harmonic is independent of the yoke angle as can be depicted in Figure  4-59. Therefore, 

since this component is independent of the yoke angle, it can be said that this component 

contribute to the noise heard at zero yoke angle. 

 

Figure ‎4-58: Amplitude spectrum of the reaction force component along the “a1“ direction from the 

yoke axis of rotation to the pump case at the suction port ( = 30) 

 

Figure ‎4-59: Amplitude spectrum of the “a1“ component of the reaction force from the yoke to the 

pump case (suction portside) as a function of the yoke angle 
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The variation of the “a2“ component of the force from the yoke to the pump case at the 

suction port is shown in Figure  4-60. The mean magnitude of this component increases 

with time because of the increased pressure differential that has to be carried out by the 

pump to deliver oil from the LPA to the HPA. This component fluctuates about the mean 

value with nine major pulsations for each revolution of the main shaft. 

 

 

Figure ‎4-60: Reaction force component along the “a2“ direction from the yoke to the case of the pump 

at the suction port 

Figure  4-61 shows the variation of the mean value of the reaction force at the suction port 

calculated over a period of one second. The mean value of the “a2“ component increases 
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linearly with the yoke angle. On the other hand, the value of the component along the “a3“ 

direction decreases as the yoke angle increases. Overall, the average value of the 

magnitude of this reaction increases proportionally with the yoke angle. 

 

Figure ‎4-61: Average value of the components of the reaction force from the yoke to the case of the 

pump at the suction port 

The “a2“ component of the force from the yoke to the pump case has four major 

harmonics at 25, 225, 200, and 250 Hz respectively as can be seen in Figure  4-63. What 

seems like a harmonic at 0 Hz is indeed the steady state value of the “a2“ component. This 

steady value increases linearly with the yoke. Initially, the fundamental harmonic at 25 Hz 

decreases with the yoke angle until reaching a minimum at 20. After that, it increases 

again as the yoke angle increases. The remaining harmonics at 225, 200, and 250 Hz 

increase parabolically and slowly with the yoke angle. 



175 

 

 

Figure ‎4-62: Amplitude spectrum of the reaction force component along the “a2“ direction from the 

yoke axis of rotation to the pump case at the suction port ( = 30) 

 

Figure ‎4-63: Amplitude spectrum of the “a2“ component of the reaction force from the yoke to the 

pump case (suction portside) as a function of the yoke angle 

Figure  4-64 shows the variation of the “a3“ component of the force from the yoke to 

the pump case with time. This component fluctuates about the mean value with nine major 

pulsations due to the limited number of pistons. 
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Figure ‎4-64: Reaction force component along the “a3“ direction from the yoke to the case of the pump 

at the suction port 

The amplitude spectrum of the force component from the yoke to the case at the 

suction port along the “a3“ direction is shown in Figure  4-65 for a yoke angle of 30 and 

shaft speed of 1500 rpm. 

The “a3“ component has four major harmonics at frequencies of 25, 225, 200, and 250 

Hz respectively as can be seen in Figure  4-65 and Figure  4-66. What appears as a 

harmonic at zero Hz is actually the steady state value of the “a3“ component. This steady 

state value decreases slowly as the yoke angle increases from 5 to 40. This explains in 



177 

 

part the reason of the noise heard at zero degrees yoke angle. The fundamental harmonic, 

which occurs at a frequency of 25 Hz, remains unchanged as the yoke angle changes. The 

harmonics at frequencies of 225, 200, and 250 Hz increase parabolically and slowly with 

the yoke angle. 

 

Figure ‎4-65: Amplitude spectrum of the reaction force component along the “a3“ direction from the 

yoke axis of rotation to the pump case at the suction port ( = 30) 

 

Figure ‎4-66: Amplitude spectrum of the “a3“ component of the reaction force from the yoke to the 

pump case (suction portside) as a function of the yoke angle 



178 

 

 

Figure  4-67 shows the magnitude of the reaction force from the yoke to the pump case at 

the suction port. 

 

 

Figure ‎4-67: magnitude of the reaction force from the yoke to the case of the pump at the suction port 

Figure  4-68 shows the amplitude spectrum of the magnitude of the reaction force from 

the yoke at the suction side. The first highest harmonics occur at frequencies of 25, 225, 

50, 450, and 350 Hz respectively. What it looks like a harmonic at zero Hz is in fact the 

steady state value of the magnitude of the reaction force at the suction port. This steady 

state value increases linearly with the yoke angle. The fundamental harmonic at 25 Hz 
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decreases linearly with the yoke angle as illustrated in Figure  4-69. The second harmonic 

at 225 Hz increases parabolically and slowly with the yoke angle. The remaining 

harmonics are independent of the yoke angle. 

 

Figure ‎4-68: Amplitude spectrum of the magnitude of the reaction force from the yoke axis of rotation 

to the pump case at the suction port ( = 30) 

 

Figure ‎4-69: Amplitude spectrum of magnitude of the reaction force from the yoke to the pump case 

(suction portside) as a function of the yoke angle 
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4.3.4 Reaction forces on the case from yoke axis of rotation at the discharge port 

Figure  4-70 to Figure  4-72 show the variation of the reaction force from the yoke to 

the pump case at the yoke axis of rotation (Discharge side) at a shaft speed of 1500 rpm. 

The force components at the discharge side behave in a similar fashion as those at the 

suction side. In addition, these components have a pulse every 40 of the main shaft 

rotation. 

 

 

Figure ‎4-70: Reaction force component along the “a2“ direction from the yoke to the case of the pump 

at the discharge port 
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Figure ‎4-71: Reaction force component along the “a3“ direction from the yoke to the case of the pump 

at the discharge port 
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Figure ‎4-72: Magnitude of the reaction force from the yoke to the case of the pump at the discharge 

port 
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Figure  4-73 shows the variation of the average value (calculated over a period of one 

second) of the components of the reaction force from the yoke to the pump case with the 

yoke angle. The value of the average of the component along the “a2“ direction increases 

linearly with the yoke angle at a relatively rapid rate. On the other hand, the value along 

the “a3“ direction decreases slowly with the yoke angle. Overall, the average value of the 

magnitude of this force increases very slowly with the yoke angle. 

 

Figure ‎4-73: Average values of the components of the reaction force from the yoke to the pump case at 

the discharge port vs. yoke angle 

Generally, the amplitude of the harmonics of the force from the yoke to the pump case 

at the discharge port increases with the yoke angle as can be noticed from Figure  4-74 and 

Figure  4-75. What appears as a harmonic at zero Hz is indeed the steady state value of 

“a2“ component. This steady state value increases linearly with the yoke angle. The 

fundamental harmonic at 25 Hz and the second harmonic at 225 Hz increase parabolically 
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with the yoke angle. The remaining smaller harmonics at 200, 250, and 350 Hz are nearly 

independent of the yoke angle. 

 

Figure ‎4-74: Amplitude spectrum of the “a2“ component of the reaction force from the yoke axis of 

rotation to the pump case at the discharge port ( = 30) 

 

Figure ‎4-75: Amplitude spectrum of the “a2“ component of the reaction force from the yoke to the 

pump case (discharge portside) as a function of the yoke angle 

The amplitude spectrum of the “a3“ component of the force from the yoke to the pump 

case at the discharge port side is shown in Figure  4-76. It has two major harmonics at 25 
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Hz, and 225 Hz. What it looks like, as a harmonic at zero Hz is actually the steady state 

value of the “a3 component. The steady state value decreases parabolically and slowly 

with the yoke angle. 

 

Figure ‎4-76: Amplitude spectrum of the “a3“ component of the reaction force from the yoke axis of 

rotation to the pump case at the discharge port ( = 30) 

The fundamental harmonic at 25 Hz decreases very slowly with the yoke angle as can 

be seen in Figure  4-77. The second harmonic at 225 Hz increases parabolically with the 

yoke angle. The remaining higher frequency harmonics are nearly independent of the yoke 

angle. 
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Figure ‎4-77: Amplitude spectrum of the “a3“ component of the reaction force from the yoke to the 

pump case (discharge portside) as a function of the yoke angle 

4.3.5 Reaction force on the case from the ram 

Figure  4-78 to Figure  4-80 shows the variation of the reaction force from ram to the 

pump case as a function of yoke angle at a shaft speed of 1500 rpm. The average value of 

the magnitude of the force at the ram is computed over a period of 1 second. The average 

value increases as the yoke angle increases until reaching a maximum at 15 as can be 

seen in Figure  4-81. Then it decreases until reaching a minimum at 35. Beyond a yoke 

angle of 35, the average value increases again. 
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Figure ‎4-78: Reaction force from the ram along the “a2“ direction 
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Figure ‎4-79: Reaction force from the ram along the “a3“ direction 
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Figure ‎4-80: Magnitude of the reaction force from the ram 
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Figure ‎4-81: Average value of the magnitude of the force at the ram 

Figure  4-82 shows the amplitude spectrum of the reaction force at the ram as a function of 

the yoke angle. There are three major harmonics at 25, 200, and 250 Hz respectively. The 

amplitude of the fundamental harmonic at 25 Hz increases with the yoke angle until 

reaching a maximum at 15. After that, it decreases until reaching a minimum at 35. 

Beyond 35, the amplitude resumes to increase as the yoke angle increases. The amplitude 

of the harmonics at 200 Hz and 250 Hz increases with the yoke angle until reaching a 

maximum at 20. After that, it decreases until reaching a minimum at 30. Beyond 30, the 

amplitude resumes to increase as the yoke angle increases. 
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Figure ‎4-82: Amplitude spectrum of the reaction force component along the “a2“ direction at the ram 

(upper graph for  = 30) 

Figure  4-83 shows the amplitude spectrum of the reaction force at the ram along the “a3“ 

direction. This component has three major harmonics at 25, 200, and 250 Hz respectively. 

These harmonics vary with the yoke angle in the same way as the component along the 

“a2“ direction varies. 
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Figure ‎4-83: Amplitude spectrum of the reaction force component along the “a3“ direction at the ram 

(upper graph for  = 30) 

Figure  4-84 shows the amplitude spectrum of the magnitude of the reaction force at the 

ram. There are three major harmonics at 50, 100, and 225 Hz. What it looks like a 

harmonic at zero Hz is indeed the steady state value of the reaction force. The harmonics 

of the magnitude of the reaction force at the ram vary with the yoke angle as the 

component along the “a2“ direction does. 
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Figure ‎4-84: Amplitude spectrum of the magnitude of the reaction force at the ram 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

This chapter summarizes the presented analytical work and dynamic modeling of the 

bent axes pump, which is connected to LPA at the suction port and HPA at the discharge 

port. In addition, it presents the conclusions and recommendations for future research. 

5.1 Summary 

The objective of this research is to find the dominating harmonics that create the noise 

in the bent axis pump. The pump will be working within the circuit of a hydraulic hybrid 

vehicle. Knowing the sources of noise enables taking the appropriate decisions in terms of 

design, control strategy, and the implementation of anti-noise techniques and procedures 

either to the pump or to the hydraulic system to reduce the noise level to acceptable levels. 

This study derived a dynamic mathematical model of a bent axis pump with the 

purpose of finding the variation of pressure head, flow rate, and dynamic forces acting on 

the pump’s case as a function of the angular rotations of both the main shaft and the yoke. 

The forces acting on the pump’s case due to the interaction with the moving internal parts 

of the pump were determined both in the time and frequency domains. 

A kinematic analysis was implemented to find velocities, accelerations, angular 

velocities, and angular accelerations for each part of the pump. Then, the equation of 

motion for each part as well as the whole system has been determined using Newtonian 
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mechanics. Consequently, the forces acting on the pump case are determined numerically 

using Mathematica
TM

 in the time and frequency domains. 

The theoretical model was created using Mathematica
TM

 and is examined against well 

know conditions of the rotation of the main shaft and the yoke and compared against a 

CAD model created using ADAMS/View software. 

The theoretical model of the piston pressure and flow rate was also solved numerically 

against well know conditions of the rotation of the main shaft and the yoke. The geometric 

data of an actual variable displacement pump was used in getting the numerical solutions.  

Although the numerical solution of the mathematical model is implemented at main 

shaft speed of 1500 rpm for yoke angles of 5, 10, 20, 30, and 40 respectively, one has 

to keep in mind that this model can solve for any conditions of main shaft rotation and 

yoke angular positions no matter how they vary with time. 

5.2 Conclusions 

The following conclusions are based on the analytical and modeling work presented in 

this study: 

Kinematics of the pump components 

 The kinematic model was able to predict the variations of the angular velocities 

and accelerations and the velocities and the accelerations of the center of gravity of 

the entire pump’s parts starting from the main shaft up to the yoke. 
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 For the case when the main shaft rotates at a constant angular velocity at a fixed 

angular position of the yoke, the angular rotation of the barrel is the same as the 

angular rotation of the main shaft. 

 For a given yoke angle the piston displacement with respect to the barrel varies 

sinusoidally with the main shaft rotation. 

 For the piston and the connecting rod, there is a matching between the 

mathematical model and the ADAMS model along the “a1“ and “a2“ directions for 

both velocity and acceleration. Although there is some phase shift between the 

mathematical model and ADAMS model along the “a3“ direction, the trend is the 

same and the maximum and minimum of both models have the same values. In 

addition, the “a3“ component is about 3% of either the “a1“ or the “a2“ component. 

Piston Hydrodynamics 

 All equations necessary to solve for the piston pressure and pump flow rate as a 

function of main shaft and yoke rotations have been derived, tested, and verified at 

a constant angular speed (1500 rpm) of the main shaft and yoke angles ranging 

from 5 to 40. The model was able to predict the variations of pressure profile and 

flow rate. 

 At zero degrees yoke angle, the piston displacement is always zero regardless of 

barrel rotation. Therefore, there will be no flow rate due to piston kinematics, 

except for the leakage flow through the clearances between the mating parts. Upon 

transition from the BDC at the suction port to the discharge port, there is a sharp 

pulse of oil flow in the cylinder coming from the HPA. Similarly, there is also a 
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pulse as the oil flows from the cylinder to the LPA as the cylinder switches from 

the discharge to the suction port at the TDC. 

 The cylinder flow rate increases as the yoke angle increases due to increased piston 

displacement. 

 The fundamental cylinder flow harmonic occurs at a frequency of 25 Hz at 1500 

rpm of the main shaft and for all angular yoke rotations under investigation and 

increases linearly with the yoke angle because of the higher piston displacement 

with increased yoke angle. 

 The mean pump flow rate increases as the yoke angle increases due to increased 

piston displacement. The pump flow rate has a repeating flow ripple about the 

mean flow rate with a frequency equals to nine times the frequency of rotation of 

the main shaft. The harmonics of the pump flow rate are very small and negligible 

for all yoke angles. 

 As the yoke angle decreases, the jumps in pressure beyond the LPA or HPA 

pressures at the points of transitions between the ports decrease accordingly 

because compression or expansion of the oil near the TDC and BDC is getting 

smaller. 

 The overshoot at the TDC or undershoot at the BDC in piston pressure increases 

with the yoke angle. At angles of 30 and 40, the pressure undershoot is below 

zero gage pressure which might cause cavitation of the pump as the barrel rotates 

from suction to discharge port. 

 The piston pressure harmonics vary very slowly and parabolically with the yoke 

angle.  
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Reaction forces on the case from the main shaft at the ball bearing 

This force has two components that are normal to the axis of the main shaft. All 

components alternate about the mean value with a frequency that is nine times the 

frequency of rotation of the main shaft. The mean value along the “a1“ direction increases 

parabolically with the yoke angle. The component along the “a2“ direction increases 

linearly with the yoke angle. The component along the “a1“ direction has very small and 

negligible harmonics.  

The component along the “a2“ direction has two major harmonics at 225 Hz and 450 

Hz. The amplitude of these harmonics increases parabolically with the yoke angle. 

Reaction forces on the case from the main shaft at the thrust rolling bearing 

Both components along the “a1“ and “a2“ directions behave in a similar fashion as the 

components at the radial ball bearing, but they are out of phase by 180. The component 

along the “a1“ direction increases parabolically with the yoke angle. The component along 

the “a2“ direction increases linearly and steeply with the yoke angle, while the “a3“ 

component decreases parabolically with the yoke angle. Overall, the magnitude of the 

force increases linearly with the yoke angle. 

The reaction force component along the “a1“ direction has very small and negligible 

harmonics for all yoke angles. The “a2“ component has two major harmonics at 

frequencies of 225 Hz, and 450 Hz. The amplitude of these harmonics increase 

parabolically with the yoke angle. 



199 

 

The “a3“ component of the reaction force at the thrust roller bearing has three major 

harmonics at 225, 350, and 450 Hz respectively. The amplitude of these harmonics 

increases parabolically with the yoke angle. 

Reaction forces on the case from yoke axis of rotation at the suction port 

The “a1“ component of the reaction force at the yoke axis of rotation (suction port 

side) fluctuates in a sinusoidal fashion and is independent of the yoke angle. This 

component has one harmonic that occurs at a frequency of 25 Hz. The amplitude (60 N) of 

this fundamental harmonic is independent of the yoke angle. Therefore, it can be 

concluded that this component contribute in part to the noise heard at zero yoke angle. 

The mean value of the “a2“ component increases linearly with the yoke angle. This 

component fluctuates about the mean value with nine major pulsations for each revolution 

of the main shaft. The value of the component along the “a3“ direction decreases as the 

yoke angle increases. Overall, the average value of the magnitude of this reaction 

increases proportionally with the yoke angle. 

The first four major harmonics of the “a2“ component occur at 25, 225, 200, and 250 

Hz respectively. The amplitude of the fundamental harmonic at 25 Hz decreases with the 

yoke angle up to a yoke angle of 20. After that, it increases again as the yoke angle 

increases. The remaining harmonics at 225, 200, and 250 Hz increase parabolically and 

slowly with the yoke angle. 

The first four harmonics of “a3“ component occurs at 25, 225, 200, and 250 Hz. The 

fundamental harmonic, which occurs at a frequency of 25 Hz, remains nearly constant as 



200 

 

the yoke angle changes. The harmonics at frequencies of 225, 200, and 250 Hz increase 

parabolically and slowly with the yoke angle. 

Reaction forces on the case from yoke axis of rotation at the discharge port 

The force components at the discharge side behave in a similar fashion as those at the 

suction side. The value of the average of the component along the “a2“ direction increases 

linearly with the yoke angle at a relatively rapid rate. On the other hand, the value along 

the a3 direction decreases slowly with the yoke angle. Overall, the average value of the 

magnitude of this force increases very slowly with the yoke angle. The fundamental 

harmonic at 25 Hz and the second harmonic at 225 Hz increase parabolically with the 

yoke angle. The remaining smaller amplitude harmonics are nearly independent of the 

yoke angle. 

The fundamental harmonic of the “a3“ component occurs at a frequency of 25 Hz and 

decreases very slowly with the yoke angle. The second harmonic at 225 Hz increases 

parabolically with the yoke angle. The remaining high frequency harmonics are nearly 

independent of the yoke angle. 

Reaction force on the case from the ram 

The average value of the magnitude of this force increases as the yoke angle increases 

until reaching a maximum at 15. Then it decreases until reaching a minimum at 35. 

Beyond a yoke angle of 35, the average value increases again. 

The “a2“ component has three major harmonics at 25, 200, and 250 Hz respectively. The 

amplitude of the fundamental harmonic at 25 Hz increases with the yoke angle until 
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reaching a maximum at 15. After that, it decreases until reaching a minimum at 35. 

Beyond 35, the amplitude resumes to increase as the yoke angle increases. The amplitude 

of the harmonics at 200 Hz and 250 Hz increases with the yoke angle until reaching a 

maximum at 20. After that, it decreases until reaching a minimum at 30. Beyond 30, the 

amplitude resumes to increase as the yoke angle increases. 

The “a3“ component has three major harmonics at 25, 200, and 250 Hz respectively. These 

harmonics vary with the yoke angle in the same way as the component along the “a2“ 

direction varies. 

5.3 Recommendations and Future Work 

The study presented in this dissertation represents the infrastructure for further work 

that is related to bent axis pump design, analysis, performance, and application to 

hydraulic hybrid vehicles. The application and extension of concepts presented in this 

study would significantly benefit the analysis of the structures that would be connected to 

the pump within a hydraulic system. Some of the recommendations for future work 

include: 

 Knowing the constraints at all joints in the pump structure and the forces in the 

time domain as obtained from the current study, a transient finite element model 

could be implemented for both the pump’s case and the pump’s internal parts. 

 With all forces at the joints within the structure of the pump being determined, a 

vibration analysis could be conducted to the structure to which the pump is 

mounted. Therefore, the mounts to which the pump is tied can be designed 

effectively. 
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 Given the forces on the pump case as obtained from the mathematical model, a 

vibration and acoustic finite element analysis of the pump may be performed to 

find the effect of the different forces that act on the pump case on noise level 

variations created by the pump. 
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 APPENDIX A: VELOCITY AND ACCELERATION OF PISTONS AND 

CONNCETING RODS 

  

A- 1: The velocity of all pistons along the “a1“ direction (Case 2) 

 
 

A- 2: The velocity of all pistons along the “a2“ direction (Case 2) 

  

A- 3: The velocity of all pistons along the “a3“ direction (Case 2) 
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A- 4: Acceleration of all pistons along the “a1“ direction (Case 2) 

  

A- 5: Acceleration of all pistons along the “a2“ direction (Case 2) 

  

A- 6: Acceleration of all pistons along the “a3“ direction (Case 2) 
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A- 7: Velocity of all connecting rods along the “a1“ direction (Case 2) 

  

A- 8: Velocity of all connecting rods along the “a2“ direction (Case 2) 

 
 

A- 9: Velocity of all connecting rods along the “a3“ direction (Case 2) 
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A- 10: Acceleration of all connecting rods along the “a1“ direction (Case 2) 

  

A- 11: Acceleration of all connecting rods along the “a2“ direction (Case 2) 

 
 

A- 12: Acceleration of all connecting rods along the “a3“ direction (Case 2) 
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APPENDIX B: MATHEMATICA NOTEBOOK TO SOLVE THE EQUATIONS OF 

MOTION OF THE PUMP 

 (*Equations of Motion of parts of bent axis piston pump*) 

(*Rotation matrix functions*) 

MatrixForm[Tx[_] : = RotationMatrix[, {1, 0, 0}]

];  

MatrixForm[Ty[_] : = RotationMatrix[, {0, 1, 0}]

];  

MatrixForm[Tz[_] : = RotationMatrix[, {0, 0, 1}]

];  

(*Derivative wrt time of the rotation matrix functions*) 
dTx[_, t_] : = Dt[Tx[], t];  

dTy[_, t_] : = Dt[Ty[], t];  

MatrixForm[dTz[_, t_] : = Dt[Tz[], t]];  

 

(*Rolling Bearing Friction Model 
d = bore diameter of thrust bearing (mm) 

D = outside diameter of thrust bearing (mm) 

dm = pitch circle diameter of thrust bearing (mm) 

fo = index for bearing type and lubrication type 

type = a variable that defines type of bearing 

type = 1 for Deep groove ball bearings 

type = 2 for Tapered roller bearings 

type = 3 for Needle roller bearings 

type = 4 for Thrust ball bearings 

T = oil operating temperature 

 = oil viscosity in mm
2
/s 

Mv = load independent component of frictional moment (N.m) 

Fr = radial load component of bearing reaction 

Fa = axial load component of bearing reaction 

f1 = index taking into account magnitude of load 

P1 = governs radial load-depending frictional moment Mm, takes into account that Mm changes with load 

angle 

Mm = radial load dependent component of frictional moment (N.mm) 

fa = index, depending on axial load Fa and lubricating condition*) 

 

Friction[revx_, typex_, dx_, Dx_, Tempx_, Frx_, Fax_, Cox_] : = Module[{Friction, dm, Mv, Mm, Ma, fo, 

f1, P1},  

 [Temp_] = 92.31*Exp[0.025Temp]; fo[type_] = Which[type = = 1, 2, type = = 2, 4.5, type = = 3, 5.25, 

type = = 4, 1.5];  

 f1[type_, Fr_, Co_, Faxial_] = Which[type = = 1, 0.005 - 0.009 (0.6*Fr/Co)^0.5, type = = 2, 0.0004, type = 

= 3, 0.0005, type = = 4, 0.0012 (Faxial/Co)^0.33]; P1[type_, Fr_, Faxial_] = Which[type = = 1, Fr, type = = 

2, 0.8*Cot[o] Faxial, type = = 3, Fr, type = = 4, Faxial];  

  

dm[diam_, DIAM_] = (diam + DIAM)/2;  

 

Mv[rev_, type_, Temp_, diam_, DIAM_] = If[[Temp]*rev2000, 1*^ - 

10*fo[type]*([Temp]*rev)^(2/3)*dm[diam, DIAM]^3, 160*^ - 10*fo[type]*dm[diam, DIAM]^3];  

Mm[type_, Fr_, Faxial_, diam_, DIAM_, Co_] = f1[type, Fr, Co, Faxial]*P1[type, Fr, Faxial]*dm[diam, 

DIAM]/1000;  
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Ma[type_, Faxial_, diam_, DIAM_] = Which[type1, 0, type2, (9*^ - 6)*Faxial*dm[diam, DIAM], 

type3, 0, type4, (9*^ - 6)*Faxial*dm[diam, DIAM]];  

Friction[rev_, type_, diam_, DIAM_, Temp_, Fr_, Faxial_, Co_] = Mv[rev, type, Temp, diam, DIAM] + 

Mm[type, Fr, Faxial, diam, DIAM, Co] + Ma[type, Faxial, diam, DIAM] ; Friction[revx, typex, dx, Dx, 

Tempx, Frx, Fax, Cox]] 

SetDirectory["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models"] 

 (*Orifice area*) 
FileOrificeArea = OpenRead["AoRF.nb"];  

ArFR[_] = Read[FileOrificeArea];  

Close[FileOrificeArea];  

(*Solid area between successive cylinders*) 
FileSolidArea = OpenRead["Asolid.nb"];  

Share[AsFR[_] = Read[FileSolidArea]];  

Close[FileSolidArea];  

Needs["PlotLegends`"] 

Plot[AsFR[]*1000000, {, 0, 2Pi}, AxesOrigin{0, 0}, AxesLabel{" (rad)", "Asolid (mm
2
)"}, 

BoundaryStyleThick, PlotStyleThick, LabelStyleDirective[Bold], Ticks{{0, Pi/2, Pi, 3Pi/2, 2Pi}}] 

(*Constant Inputs*) 
Ac : = Cylinder cross sectional area;  

Ace : = Exit cross sectional area of the cylinder;  

Ap : = Cross sectional area of the piston;  

ARAM : = Cross sectional area of the ram;  

AIAC : = Moment of inertia of actuating link around axis system attached to its CG and parallel to the 

principal axes of the part; 

ATinz : = Input torque to the main shaft; 

A78 : = area of discharge/suction exit to HPA/LPA at yoke axis (Point 78 and 79); 

B : = Oil bulk modulus;  

Co1 : = The static load rating of the ball bearing of the main shaft; 

Co2 : = The static load rating of the thrust roller bearing of the main shaft; 

Co4 : = The static load rating of the thrust ball bearing at the barrel; 

Cp = One half the radial clearance between the piston and the cylinder;  

D1 : = Outside diameter of the ball bearing at the main shaft; (*mm*) 

d11 : = Bore diameter of the ball bearing at the main shaft; (*mm*) 

D2 : = Outside diameter of the thrust bearing at the main shaft; (*mm*) 

d2 : = Bore diameter of the thrust bearing at the main shaft; (*mm*) 

D3 : = Outside diameter of the needle bearing at the barrel; (*mm*) 

d3 : = Bore diameter of the needle bearing at the barrel ; (*mm*) 

D4 : = Outside diameter of the thrust ball bearing at the barrel; (*mm*) 

d4 : = Bore diameter of the thrust ball bearing at the barrel; (*mm*) 

DG : = Distance from upper end of actuating link (D) to its CG; 

DF : = Distance from center of spherical joint between piston and connecting rod and the bottom end of the 

cylindrical cavity for a zero yoke angle (Figure  3-15);  

g : = Acceleration of gravity; 

h : = Fluid film thickness between valve plate and the barrel; 

Ims11 = Moment of inerital of main shaft along b1 direction;  

Ims12 = Product moment of inerital of main shaft (b1- b2);  

Ims13 = Product moment of inerital of main shaft (b1- b3); 

Ims22 = Moment of inerital of main shaft along b2 direction;  

Ims23 = Product moment of inerital of main shaft (b2- b3); 

Ims33 = Moment of inerital of main shaft along b3 direction;  
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Iim111 = Moment of inerital of 1
st
 intermediate shaft along c1 direction;  

Iim113 = Product moment of inerital of 1
st
 intermediate shaft (c1- c3); 

Iim122 = Moment of inerital of 1
st
 intermediate shaft along c2 direction;  

Iim133 = Moment of inerital of 1
st
 intermediate shaft along c3 direction;  

Iim211 = Moment of inerital of 2
nd

 intermediate shaft along c1 direction;  

Iim213 = Product moment of inerital of 2
nd

 ntermediate shaft (c1- c3);  

Iim222 = Moment of inerital of 2
nd

 ntermediate shaft along c2 direction;  

Iim233 = Moment of inerital of 2
nd

 intermediate shaft along c3 direction;  

Ios11 = Moment of inerital of barrel along d1 direction;  

Ios12 = Product moment of inerital of barrel (d1- d2); 

Ios13 = Product moment of inerital of barrel (d1- d3); 

Ios22 = Moment of inerital of barrel along d2 direction;  

Ios23 = Product moment of inerital of barrel (d2- d3); 

Ios33 = Moment of inerital of barrel along d3 direction;  

Ip11 = Moment of inerital of piston along d1 direction;  

Ip33 = Moment of inerital of piston along d3 direction; 

Ic11 = Moment of inerital of 1
st
 cross along f1 direction; 

Ic12 = Product moment of inerital of 1
st
 cross (f1- f2); 

Ic13 = Product moment of inerital of 1
st
 cross (f1- f3); 

Ivp11 : = Moment of inerital of yoke-valve plate along h1 direction; 

Ivp12 = Product moment of inerital of yoke-valve plate (h1- h2); 

Ivp13 = Product moment of inerital of yoke-valve plate (h1- h3); 

Ivp22 = Moment of inerital of yoke-valve plate along h2 direction; 

Ivp23 = Product moment of inerital of yoke-valve plate (h2- h3); 

Ivp33 = Moment of inerital of yoke-valve plate along h3 direction; 

IP : = Distance from CG of second intermediate shaft to center of second cross;  

Lac : = Length of actuating link;  

LCo : = Length of oil cylindrical cavity at zero yoke angle (Figure  3-15);  

LC2 : = Length of the convergent part of the cylindrical cavity (Figure  3-14);  

LCIMo : = Contact length between first and second intermediate shafts at zero yoke angle;  

LCR : = Length of the connecting rod;  

LIM1 : = Distance from the center of the first cross to the far edge of the first intermediate shaft along the 

“c3“ direction;  

Lis : = Length of input shaft of the CVJ (Figure  3-9);  

Lp : = Length of piston that is in the cylinder when axial displacement is zero;  

Lp1 = Distance from the spherical joint between the piston and the connecting rod to the piston’s face; 

LPtoCR : = Distance from the left face of the piston to the common point between the piston and the 

connecting rod;  

LYtoVP : = Distance along the “d3“ direction from the yoke axis of rotation to the barrel valve plate 

interface;  

L3 : = 55/1000;  

L4 : = 51.67/1000;  

MAC = Mass of the actuating link;  

Mc1 : = Mass of the first cross;  

Mc2 : = Mass of the second cross;  

MCR : = Mass of the connecting rod;  

MH : = Mass of gas in the HPA; 

ML : = Mass of gas in the LPA; 

Mim1 : = Mass of the first intermediate shaft;  

Mim2 : = Mass of the second intermediate shaft;  

MMS : = Mass of the main shaft;  

Mos : = Mass of the barrel-output shaft assembly;  

Mp : = Mass of piston;  

MRAM : = Mass of the ram;  

Mvp : = Mass of the valve plate-yoke assembly;  
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nrated : = Rated speed of pump, rpm; 

PlossH : = Pressure losses between the discharge port and the HPA; 

PlossL : = Pressure losses between the suction port and the LPA; 

PmaxL = Maximum gas pressure in the LPA 

PmaxH = Maximum gas pressure in the HPA; 

PPH : = Pre-charge pressure in the HPA; 

PPL : = Pre-charge pressure in the LPA; 

r : = Pitch circle radius at the barrel side;  

R : = Pitch circle radius at the main shaft side;  

RN : = Gas constant of nitrogen, J/kgK; 

R1 : = Radius of the outer land of the port plate (Figure  2-5);  

R2 : = Outside radius of the discharge/suction port (Figure  2-5);  

R3 : = Inside radius of the discharge/suction port (Figure  2-5);  

R4 : = Radius of the inner land of the port plate (Figure  2-5);  

rAC : = Radius of pin between the yoke and the actuating link;  

rC1 : = Distance from the center of the first or the center of the second cross to point 3 on the first cross or 

point 29 on the second cross;  

rC2 : = Distance from the center of the first or second cross to point 23 on the first cross or point 27 on the 

second cross;  

rCP1 : = Radius of the cross section of pin 3-4 that is attached to the input shaft at the first cross or the 

output shaft at the second cross;  

rCP2 : = Radius of the cross section of pin 23-24 that is attached to the first or second intermediate shafts at 

point 23;  

rCP3 : = Radius of the cross section of pin 23-24 that is attached to the first or second intermediate shafts at 

point 24;  

RCRL : = Radius of the left end of the connecting rod;  

RCRR : = Radius of the right end of the connecting rod;  

rp : = The piston radius;  

rY : = Radius of the yoke’s pin at its axis of rotation;  

Ry : = Distance from center of rotation of yoke to center of first or second cross;  

r1z : = Distance from left end of main shaft to the ball bearing ;  

r2z : Distance from left end of main shaft to the thrust bearing;  

r3z : = Distance from left end of main shaft to the CG of the 1
st
 cross along the a3 direction;  

r5z : = Distance from left end of main shaft to the ConRod spherical joint along the a3 direction;  

rCtoY67x = See nomenclature ;  

rLPAtoY78x : = See nomenclature;  

rim1z : = Distance from CG of 1
st
 cross to CG of 1

st
 intermediate shaft along c3 direction;  

rOSz : = Distance from  yoke axis of rotation to CG of barrel along d3 direction;  

rWmsz : = Distance from left end of main shaft to its CG along the a3 direction;  

rWP : = Distance from ConRod spherical joint to CG of piston along d3 direction;  

rACtoY66x : = See nomenclature;  

rACtoY66y : = See nomenclature;  

rACtoY66z : = See nomenclature;  

rB3FtoBz : = Distance from yoke axis of rotation to 1
st
 needle bearing of the barrel along d3 direction;  

rB3StoBz : = Distance from yoke axis of rotation to 2
nd

 needle bearing of the barrel along d3 direction;  

rB4toBz : = Distance from yoke axis of rotation to thrust ball  bearing of the barrel along d3 direction;  

rvpx = Distance from yoke axis of rotation to CG of yoke-valve plate along h1 direction;  

rvpz = Distance from yoke axis of rotation to CG of yoke-valve plate along h3 direction;  

rCR : = See nomenclature;  

T : = Operating oil temperature, ºC; 

Tg : = Temperature of gas in the HPA or LPA at pre-charge, ºK; 

Vfixed : = Volume of oil at end of the cylinder cavity (conical portion) (Figure  3-14);  

o : = Nominal contact angle of the thrust bearing at the main shaft;  

 : = Kidney angle of the valve plate;  

5 : = See nomenclature;  
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 : = Inclination angle of the cylinder along which the ram slides;  

C1 = Friction coefficient at the pins of the first or second cross;  

im = Friction coefficient between the first and second intermediate shafts;  

Y = Friction coefficient at the right/left pins of the yoke at its axis of rotation;  

ACtoY = Friction coefficient at the pin between the yoke and the actuating link;  

CtoRAM90 = Friction coefficient between the ram and the cylinder walls at point 90;  

L = Angular rotation of the line of action of the reaction force from the LPA/HPA from the negative “a3“ 

direction;  

 = Oil density;  

 = Angular rotation of the main shaft about its axis of rotation;  

 = Angular rotation of the yoke about its axis of rotation;  

(*Main shaft - Kinematic*) 
 (*Transformation matrix of B frame wrt A frame*) 

MatrixForm[T1[x_] = Tz[x]];  

(*Angular velocity of the rotating frame of reference expressed in B frame wrt to A frame*) 

Simplify[MatrixForm[WABB[t_, x_] = T1[x].Dt[T1[x], t]]];  

(*Angular velocity and angular acceleration of main shaft in vector form*) 

Simplify[MatrixForm[BMS = {WABB[t, ][[3, 2]], WABB[t, ][[1, 3]], WABB[t, ][[2, 1]]}]];  

Simplify[MatrixForm[BMS = Dt[BMS, t]]];  

 

(*Position vectors of forces acting on main shaft*) 

MatrixForm[Ar1 = {0, 0, r1z}]; (*Ball bearing at point 1*) 

MatrixForm[Ar2 = {0, 0, r2z}]; (*Thrust bearing at point 2*) 

MatrixForm[Br3 = {0, - rC1, r3z}]; (*pin 3 of 1st cross*) 

MatrixForm[Br4 = {0, rC1, r3z}]; (*pin 4 of 1st cross*) 

MatrixForm[ArCR1 = T1[]

.{0, - R, r5z}]; (*1st ConRod*) 

MatrixForm[ArCR2 = T1[ + 2*Pi/9]

.{0, - R, r5z}]; (*2nd ConRod*) 

MatrixForm[ArCR3 = T1[ + 4*Pi/9]

.{0, - R, r5z}]; (*3rd ConRod*) 

MatrixForm[ArCR4 = T1[ + 6*Pi/9]

.{0, - R, r5z}]; (*4th ConRod*) 

MatrixForm[ArCR5 = T1[ + 8*Pi/9]

.{0, - R, r5z}]; (*5th ConRod*) 

MatrixForm[ArCR6 = T1[ + 10*Pi/9]

.{0, - R, r5z}]; (*6th ConRod*) 

MatrixForm[ArCR7 = T1[ + 12*Pi/9]

.{0, - R, r5z}]; (*7th ConRod*) 

MatrixForm[ArCR8 = T1[ + 14*Pi/9]

.{0, - R, r5z}]; (*8th ConRod*) 

MatrixForm[ArCR9 = T1[ + 16*Pi/9]

.{0, - R, r5z}]; (*9th ConRod*) 

MatrixForm[ArWms = {0, 0, rWmsz}];  

(*First Intermediate shaft angular rotation*) 
(* Orthogonally constraint between the yoke axes*) 

 = ArcTan[Tan[]*Cos[/2]];  

(*First Intermediate shaft transformation matrix*) 

(*Attach coordinate system c1c2c3 to 1st intermediate shaft*) 

(*c2 is aligned with axis of output yoke of 1st joint.*) 

(*c3 is aligned with axis of intermediate shaft*) 

MatrixForm[T2[_] = Tx[]];  

MatrixForm[T3 = Simplify[Tz[]]]/.(1/Sqrt[Sec[]^2]Cos[]);  
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(*Transformation matrix between A and C frames*) 

MatrixForm[Tim1 = Simplify[T3.T2[/2]]]/.(1/Sqrt[Sec[]^2]Cos[]);  

 

(*Angular velocity of 1
st
 intermediate shaft expressed in C frame in skew symmetric form*) 

MatrixForm[WACC = Simplify[Tim1.Dt[Tim1, t]]];  
 

(*Angular velocity of 1st intermediate shaft expressed in C frame in vector form*) 

MatrixForm[Cim1 = FullSimplify[{WACC[[3, 2]], WACC[[1, 3]], WACC[[2, 1]]}]];  

MatrixForm[Aim1 = Simplify[N[Tim1.Cim1]]];  

Aim1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica 

models\\Kinematic data from adams at 30 degrees\\Angular velocity\\AngVelFirstIntermediate.csv"];  

Aim1ADAMSmag = ListInterpolation[Aim1ADAMS[[All, 5]], {Aim1ADAMS[[All, 1]]}];  

 

(*Angular acceleration of 1st intermediate shaft expressed in C frame in vector form*) 

MatrixForm[Cim1 = Simplify[Dt[Cim1, t]]];  

MatrixForm[Aim1 = N[Tim1.Cim1]];  

Aim1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica 

models\\Kinematic data from adams at 30 degrees\\Angular acceleration\\AngAccFirstIntermediate.csv"];  

Aim1ADAMSz = ListInterpolation[Aim1ADAMS[[All, 3]], {Aim1ADAMS[[All, 1]]}];  

Aim1ADAMSy = ListInterpolation[Aim1ADAMS[[All, 4]], {Aim1ADAMS[[All, 1]]}];  

 

(*First Intermediate shaft*) 
(* Position vector of CG of 1st intermediate shaft expressed in C frame wrt center of 1st cross*) 

MatrixForm[Crim1 = {0, 0, rim1z}];  

 

(* Velocity of CG of 1st intermediate shaft expressed in C frame*) 

MatrixForm[CVim1 = Cim1Crim1];  

(*Acceleration of CG of 1st intermediate*) 

Simplify[MatrixForm[Caim1 = Cim1(Cim1Crim1) + Cim1Crim1]];  

Simplify[MatrixForm[Aaim1 = Simplify[Tim1.Caim1]]];  

(*First Intermediate shaft*) 
Lim = 2*Ry*Cos[/2]; (*Intermediate shaft length*) 

(*Position vectors of the reaction forces wrt center of 1st cross*) 

MatrixForm[Cr23 = { - rC2, 0, 0}];  

MatrixForm[Cr24 = - Cr23];  

 

(*First Cross coordinate system, f1f2f3*) 
(*1. f1 is parallel to b1*) 

(*2. f2 is parallel to c2*) 

MatrixForm[f1 = T1[][[1]]];  

MatrixForm[f2 = Tim1[[2]]]/.(1/Sqrt[Sec[]^2]Cos[]);  

MatrixForm[f3 = Simplify[f1f2]]/.Cos[] Sqrt[Sec[]
2
]1;  

 

(*First Cross rotation matrix*) 
MatrixForm[Tc1 = {f1, f2, f3}];  

 

(*Angular velocity of 1st cross *) 
MatrixForm[c1 = Tc1.Transpose[Dt[Tc1, t]]];  

MatrixForm[Fc1 = N[Simplify[{c1[[3, 2]], c1[[1, 3]], c1[[2, 1]]}/.(1/Sqrt[Sec[]
2
]Cos[])]]];  
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MatrixForm[Ac1 = Simplify[N[Tc1.Fc1]]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Velocities and 

Accelerations\\Awc1.csv", Table[{t, Ac1[[1]], Ac1[[3]], - Ac1[[2]]}, {t, 0, 0.04, 0.0001}]];  

 

Ac1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Angular velocity\\AngVelFirstCross.csv"];  

Ac1ADAMSx = ListInterpolation[Ac1ADAMS[[All, 2]], {Ac1ADAMS[[All, 1]]}];  

Ac1ADAMSz = ListInterpolation[Ac1ADAMS[[All, 3]], {Ac1ADAMS[[All, 1]]}];  

Ac1ADAMSy = ListInterpolation[Ac1ADAMS[[All, 4]], {Ac1ADAMS[[All, 1]]}];  

 

(*Angular acceleration of 1st cross in vector form expressed in F frame*) 
MatrixForm[Fc1 = Chop[Dt[Fc1, t]]];  

MatrixForm[Ac1 = Chop[Tc1.Fc1]];  

Ac1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Angular acceleration\\AngAccFirstCross.csv"];  

 

Ac1ADAMSx = ListInterpolation[Ac1ADAMS[[All, 2]], {Ac1ADAMS[[All, 1]]}];  

Ac1ADAMSz = ListInterpolation[Ac1ADAMS[[All, 3]], {Ac1ADAMS[[All, 1]]}];  

Ac1ADAMSy = ListInterpolation[Ac1ADAMS[[All, 4]], {Ac1ADAMS[[All, 1]]}];  

  

(*Position vectors of forces acting on FBD of 1st cross in terms of F frame wrt its 

origin*) 
MatrixForm[Fr3 = {0, - rC1, 0}];  

MatrixForm[Fr4 = - Fr3];  

Fr23 = { - rC2, 0, 0};  

Fr24 = - Fr23;  

 

(*Second Intermediate Shaft*) 
(*Relative velocity of 2nd intermediate shaft wrt 1st intermediate shaft expressed in C frame*) 

SetAttributes[Ry, Constant] 

MatrixForm[CVim2im1 = {0, 0, Dt[Lim, t]}];  

 

 (*Position vector of CG of 2nd intermediate shaft wrt center of 1st cross expressed in C frame*) 

MatrixForm[Crim2 = {0, 0, Lim - IP}];  

 

(*Velocity of CG of 2nd intermediate shaft expressed in C frame*) 

MatrixForm[CVim2 = Simplify[CVim2im1 + Cim1Crim2]];  

 

(*Acceleration of CG of 2nd intermediate shaft expressed in C frame*) 

SetAttributes[{IP}, Constant] 

MatrixForm[Caim2 = Simplify[Dt[CVim2im1, t] + Cim1(Cim1Crim2) + Cim1Crim2 + 

2Cim1CVim2im1]];  

 

(*Second Intermediate Shaft*) 
(*Moment of inertia of 2nd intermediate shaft*) 

MatrixForm[CIim2 = {{Iim211, 0, Iim213}, {0, Iim222, 0}, {Iim213, 0, Iim233}}];  

 

(*Let origin of C frame be at center of 1st cross*) 

(*Position vectors of forces acting on 2nd intermediate shaft*) 

MatrixForm[Cr27 = { - rC2, 0, Lim}];  

MatrixForm[Cr28 = {rC2, 0, Lim}];  
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(*Output Shaft coordinate system, d1d2d3*) 
(*Attach coordinate system d1d2d3 to output shaft of 2nd joint*) 

(* d1 is aligned with axis of output yoke of 2nd joint*) 

(* d3 is aligned with axis of output shaft of 2nd joint*) 

(*d1d2d3 and a1a2a3 are related by*) 

MatrixForm[T4[x_] = Tz[x]];  

MatrixForm[Dos = Simplify[T4[].T2[/2]]];  

 

(*Output Shaft rotation matrix*) 

(*coordinate frame e1e2e3*) 

Simplify[MatrixForm[Tos[x_, x_] = T4[x].T2[x/2].T2[x/2]]];  

 

(*Angular velocity and angular acceleration of output shaft expressed in d frame*) 

MatrixForm[WADD = Tos[, ].Dt[Tos[, ], t]];  
MatrixForm[Dos = Simplify[{WADD[[3, 2]], WADD[[1, 3]], WADD[[2, 1]]}]];  

MatrixForm[Dos = Dt[Dos, t]];  

 

(*Second Cross coordinate system, i1i2i3*) 
(* i1 is parallel to d1*) 

(* i2 is parallel to c2*) 

MatrixForm[i1 = Simplify[Tos[, ][[1]]]];  

MatrixForm[i2 = Tim1[[2]]]/.(1/Sqrt[Sec[]^2])Cos[];  

MatrixForm[i3 = Simplify[i1i2]]/.Cos[] Sqrt[Sec[]
2
]1;  

 

(*Rotation matrix of 2nd cross*) 

MatrixForm[Tc2 = Simplify[{i1, i2, i3}]]/.{1/Sqrt[Sec[]^2]Cos[], Cos[] Sqrt[ Sec[]
2
]1};  

 

(*Angular velocity and angular acceleration of 2nd cross expressed in I frame*) 

MatrixForm[Wc2 = Tc2.Dt[Tc2, t]];  
MatrixForm[Ic2 = Simplify[{Wc2[[3, 2]], Wc2[[1, 3]], Wc2[[2, 1]]}/.(1/Sqrt[ Sec[]

2
])Cos[]]];  

MatrixForm[Ic2 = Simplify[Dt[Ic2, t]]];  

MatrixForm[Ac2 = N[Simplify[Tc2.Ic2]]];  

Ac2ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Angular velocity\\AngVelSecondCross.csv"];  

 

Ac2ADAMSx = ListInterpolation[Ac2ADAMS[[All, 2]], {Ac2ADAMS[[All, 1]]}];  

Ac2ADAMSz = ListInterpolation[Ac2ADAMS[[All, 3]], {Ac2ADAMS[[All, 1]]}];  

Ac2ADAMSy = ListInterpolation[Ac2ADAMS[[All, 4]], {Ac2ADAMS[[All, 1]]}];  

MatrixForm[Ac2 = N[Simplify[Tc2.Ic2]]];  

Ac2ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Angular acceleration\\AngAccSecondCross.csv"];  

 

Ac2ADAMSx = ListInterpolation[Ac2ADAMS[[All, 2]], {Ac2ADAMS[[All, 1]]}];  

Ac2ADAMSz = ListInterpolation[Ac2ADAMS[[All, 3]], {Ac2ADAMS[[All, 1]]}];  

Ac2ADAMSy = ListInterpolation[Ac2ADAMS[[All, 4]], {Ac2ADAMS[[All, 1]]}];  

 

(*Second Cross*) 
(*Position vector of point 27 of pin on 2nd cross wrt its CG expressed in I frame*) 

MatrixForm[Ir27 = { - rC2, 0, 0}];  

 

(*Position vector of CG of 2nd cross wrt center of 1st cross*) 
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MatrixForm[CrI = {0, 0, Lim}];  

 

(*Velocity and acceleration of CG of 2nd cross expressed in C frame*) 

MatrixForm[CVc2 = Simplify[CVim2im1 + Cim1CrI]];  

SetAttributes[{rC2}, Constant] 

MatrixForm[Cac2 = Simplify[Dt[CVim2im1, t] + Cim1(Cim1CrI) + Cim1CrI + 

2Cim1CVim2im1]];  

 (*Moment of inertia of 2nd cross*) 

MatrixForm[IIc2 = {{Ic11, 0, 0}, {0, Ic12, 0}, {0, 0, Ic13}}] ;  

 

(*Position vectors of forces acting on 2nd cross wrt its CG*) 

MatrixForm[Ir28 = - Ir27];  

MatrixForm[Ir29 = {0, - rC1, 0}];  

MatrixForm[Ir30 = - Ir29];  

 

(*Barrel - Output Shaft Assembly*) 
(*Attach coordinate frame D to center of rotation of yoke*) 

MatrixForm[DrI = {0, 0, Ry}]; (*CG of 2nd cross wrt yoke axis of rotation*) 

MatrixForm[DrOS = {0, 0, rOSz}]; (*Position vector of CG of barrel wrt point K*) 

 

(*Velocity of CG of output shaft express wrt A frame*) 

MatrixForm[AVos = Simplify[Chop[Tos[, ].(DosDrOS)]]];  

(*Acceleration of output shaft*) 

MatrixForm[Aaos = Simplify[Chop[Tos[, ].(Dos(DosDrOS) + DosDrOS)]]];  

(*Moment of inertia of output shaft*) 

MatrixForm[DIos = {{Ios11, Ios12, Ios13}, {Ios12, Ios22, Ios23}, {Ios13, Ios23, Ios33}}];  

 

(*Piston displacement*) 
[_] : = Module[{o}, o[_] : =  + ArcSin[(r - R Cos[] - (Ry + Lis) Sin[])/LCR]; o[]] 
IF[_, _] : = Module[{IF}, IF[_, _] : = - Ry - (Lis + Ry) Cos[] + R Cos[] Sin[] + Sqrt[LCR

2
 - 

Sin[]2
 (Lis + Ry)

2
 - r

2
 + 2r R (1 - 2 Cos[]

2
 Sin[/2]

2
) + R

2
 (Sin[]2

 Cos[]
2
 - 1) + 2(Lis + 

Ry)Cos[]Sin[](r - R Cos[ ])]; IF[, ]];  

 

Z[_, _] : = Module[{Z, IH}, IH : = - Ry + LCR Cos[o[] - ] - (Lis + Ry) Cos[] + R Sin[]; Z[_, 

_] : = Chop[IH - IF[, ]]; Z[, ]] 

 

ZD[tt_, ii_] = Module[{ZD}, ZD[t_, i_] = Dt[Z[,  + 2*Pi*(i - 1)/9], t, Constants{r, R, Lis, Ry, LCR, i}]; 

ZD[tt, ii]];  

 

ZDD[tt_, ii_] = Module[{ZDD}, ZDD[t_, i_] = Dt[Z[,  + 2*Pi*(i - 1)/9], {t, 2}, Constants{r, R, Lis, Ry, 

LCR, i}]; ZDD[tt, ii]];  

 

(*Barrel - Output Shaft Assembly - Position vectors*) 
(*Position vectors at points 29 and 30 wrt yoke center of rotation*) 

Ar29 = (Tos[, ].DrI + Tc2.Ir29)/.(1/Sqrt[Sec[]^2])Cos[];  

Ar30 = (Tos[, ].DrI + Tc2.Ir30)/.(1/Sqrt[Sec[]^2])Cos[];  

(*Position vector of reaction force from thrust ball bearing at end of barrel*) 

DrB4toB = {0, 0, rB4toBz};  

 



223 

 

(*Position vectors of reaction forces from piston and oil film between barrel and piston at points 31 to 

39 (–DFBtoP, i) wrt yoke axes of rotation*) 

Dr31 = Simplify[{0, - r, Ry + IF[, ] + rWP}];  

Dr32 = Simplify[{0, - r, Ry + IF[,  + 2Pi/9] + rWP}];  

Dr33 = Chop[Simplify[{0, - r, Ry + IF[,  + 4Pi/9] + rWP}/.Cos[Pi/18 - ]^2(1 - Sin[Pi/18 - ]^2)]];  

Dr34 = Simplify[{0, - r, Ry + IF[,  + 6Pi/9] + rWP}];  

Dr35 = Simplify[{0, - r, Ry + IF[,  + 8Pi/9] + rWP}];  

Dr36 = Simplify[{0, - r, Ry + IF[,  + 10Pi/9] + rWP}];  

Dr37 = Simplify[{0, - r, Ry + IF[,  + 12Pi/9] + rWP}];  

Dr38 = Simplify[{0, - r, Ry + IF[,  + 14Pi/9] + rWP}];  

Dr39 = Simplify[{0, - r, Ry + IF[,  + 16Pi/9] + rWP}];  

 

(*Position vectors of reaction forces between discharge/suction port of valve plate and solid area 

located between each successive cylinder on barrel at points 69 to 77*) 

DrBStoVP = {0, - r, LYtoVP};  

 

(*Velocity & acceleration of piston wrt barrel expressed in D frame*) 

SetAttributes[{ii1}, Constant] 

MatrixForm[DVpb[t_, ii1_] = Simplify[Chop[{0, 0, - ZD[t, ii1]}]]];  

MatrixForm[Dapb[t_, ii1_] = Simplify[Chop[{0, 0, - ZDD[t, ii1]}]]];  

 

AVpb1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica 

models\\Kinematic data from adams at 30 degrees\\Velocity\\VelPistonToBarrel.csv"];  

 

AVpb1ADAMSz = ListInterpolation[AVpb1ADAMS[[All, 2]], {AVpb1ADAMS[[All, 1]]}];  

AVpb1ADAMSy = ListInterpolation[AVpb1ADAMS[[All, 3]], {AVpb1ADAMS[[All, 1]]}];  

AVpb1ADAMSMag = ListInterpolation[AVpb1ADAMS[[All, 4]], {AVpb1ADAMS[[All, 1]]}];  

 

(*Angular velocity of piston expressed in D frame*) 

MatrixForm[Dp = Dos];  

 

(*Position vector of CG of ball joint between piston and ConRod wrt center of yoke axis of rotation*) 

MatrixForm[Drp[_, _, mm_] = {0, - r, IF[,  + 2Pi*(mm - 1)/9] + Ry}];  

 

(*Position vector of CG of piston wrt center of ball joint between piston and ConRod*) 

DrWP = {0, 0, rWP};  

 

(*Position vector of reaction force from barrel to piston*) 

DrBtoP = {0, 0, rWP};  

 

(*Velocity of CG of piston*) 

MatrixForm[DVp[t_, jj_] = DVpb[t, jj] + Dp(Drp[, , jj] + DrWP)];  

AVp[t_, j_] = Simplify[Tos[,  + 2Pi*(j - 1)/9].DVp[t, j]];  

AVp1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston1.csv"];  

 

AVp2ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston2.csv"];  

AVp3ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston3.csv"];  

AVp4ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston4.csv"];  

AVp5ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston5.csv"];  
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AVp6ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston6.csv"];  

AVp7ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston7.csv"];  

AVp8ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston8.csv"];  

AVp9ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Velocity\\VelPiston9.csv"];  

 

AVp1ADAMSx = ListInterpolation[AVp1ADAMS[[All, 2]], {AVp1ADAMS[[All, 1]]}];  

AVp1ADAMSz = ListInterpolation[AVp1ADAMS[[All, 3]], {AVp1ADAMS[[All, 1]]}];  

AVp1ADAMSy = ListInterpolation[AVp1ADAMS[[All, 4]], {AVp1ADAMS[[All, 1]]}];  

AVp1ADAMSMag = ListInterpolation[AVp1ADAMS[[All, 5]], {AVp1ADAMS[[All, 1]]}];  

AVp2ADAMSx = ListInterpolation[AVp2ADAMS[[All, 2]], {AVp2ADAMS[[All, 1]]}];  

AVp2ADAMSz = ListInterpolation[AVp2ADAMS[[All, 3]], {AVp2ADAMS[[All, 1]]}];  

AVp2ADAMSy = ListInterpolation[AVp2ADAMS[[All, 4]], {AVp2ADAMS[[All, 1]]}];  

AVp3ADAMSx = ListInterpolation[AVp3ADAMS[[All, 2]], {AVp3ADAMS[[All, 1]]}];  

AVp3ADAMSz = ListInterpolation[AVp3ADAMS[[All, 3]], {AVp3ADAMS[[All, 1]]}];  

AVp3ADAMSy = ListInterpolation[AVp3ADAMS[[All, 4]], {AVp3ADAMS[[All, 1]]}];  

AVp4ADAMSx = ListInterpolation[AVp4ADAMS[[All, 2]], {AVp4ADAMS[[All, 1]]}];  

AVp4ADAMSz = ListInterpolation[AVp4ADAMS[[All, 3]], {AVp4ADAMS[[All, 1]]}];  

AVp4ADAMSy = ListInterpolation[AVp4ADAMS[[All, 4]], {AVp4ADAMS[[All, 1]]}];  

AVp5ADAMSx = ListInterpolation[AVp5ADAMS[[All, 2]], {AVp5ADAMS[[All, 1]]}];  

AVp5ADAMSz = ListInterpolation[AVp5ADAMS[[All, 3]], {AVp5ADAMS[[All, 1]]}];  

AVp5ADAMSy = ListInterpolation[AVp5ADAMS[[All, 4]], {AVp5ADAMS[[All, 1]]}];  

 

AVp6ADAMSx = ListInterpolation[AVp6ADAMS[[All, 2]], {AVp6ADAMS[[All, 1]]}];  

AVp6ADAMSz = ListInterpolation[AVp6ADAMS[[All, 3]], {AVp6ADAMS[[All, 1]]}];  

AVp6ADAMSy = ListInterpolation[AVp6ADAMS[[All, 4]], {AVp6ADAMS[[All, 1]]}];  

AVp7ADAMSx = ListInterpolation[AVp7ADAMS[[All, 2]], {AVp7ADAMS[[All, 1]]}];  

AVp7ADAMSz = ListInterpolation[AVp7ADAMS[[All, 3]], {AVp7ADAMS[[All, 1]]}];  

AVp7ADAMSy = ListInterpolation[AVp7ADAMS[[All, 4]], {AVp7ADAMS[[All, 1]]}];  

AVp8ADAMSx = ListInterpolation[AVp8ADAMS[[All, 2]], {AVp8ADAMS[[All, 1]]}];  

AVp8ADAMSz = ListInterpolation[AVp8ADAMS[[All, 3]], {AVp8ADAMS[[All, 1]]}];  

AVp8ADAMSy = ListInterpolation[AVp8ADAMS[[All, 4]], {AVp8ADAMS[[All, 1]]}];  

AVp9ADAMSx = ListInterpolation[AVp9ADAMS[[All, 2]], {AVp9ADAMS[[All, 1]]}];  

AVp9ADAMSz = ListInterpolation[AVp9ADAMS[[All, 3]], {AVp9ADAMS[[All, 1]]}];  

AVp9ADAMSy = ListInterpolation[AVp9ADAMS[[All, 4]], {AVp9ADAMS[[All, 1]]}];  

 

(*The Piston*) 
(*Moment of inertia of piston*) 

MatrixForm[DIp = {{Ip11, 0, 0}, {0, Ip11, 0}, {0, 0, Ip33}}];  

 

 (*Angular velocity and Acceleration of piston*) 

MatrixForm[Dp = Simplify[Dt[Dos, t]]];  

MatrixForm[Dap[x_, x_, kk_] = Chop[Dapb[t, kk] + Dp(Dp(Drp[x, x, kk] + DrWP)) + 

Dp(Drp[x, x, kk] + DrWP)]];  

Aap[_, _, kk_] = Tos[,  + 2Pi*(kk - 1)/9].Dap[, , kk];  

Aap1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston1.csv"];  

 

Aap2ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston2.csv"];  
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Aap3ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston3.csv"];  

Aap4ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston4.csv"];  

Aap5ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston5.csv"];  

Aap6ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston6.csv"];  

Aap7ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston7.csv"];  

Aap8ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston8.csv"];  

Aap9ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Kinematic 

data from adams at 30 degrees\\Acceleration\\AccPiston9.csv"];  

 

Aap1ADAMSx = ListInterpolation[Aap1ADAMS[[All, 2]], {Aap1ADAMS[[All, 1]]}];  

Aap1ADAMSz = ListInterpolation[Aap1ADAMS[[All, 3]], {Aap1ADAMS[[All, 1]]}];  

Aap1ADAMSy = ListInterpolation[Aap1ADAMS[[All, 4]], {Aap1ADAMS[[All, 1]]}];  

Aap1ADAMSMag = ListInterpolation[Aap1ADAMS[[All, 5]], {Aap1ADAMS[[All, 1]]}];  

Aap2ADAMSx = ListInterpolation[Aap2ADAMS[[All, 2]], {Aap2ADAMS[[All, 1]]}];  

Aap2ADAMSz = ListInterpolation[Aap2ADAMS[[All, 3]], {Aap2ADAMS[[All, 1]]}];  

Aap2ADAMSy = ListInterpolation[Aap2ADAMS[[All, 4]], {Aap2ADAMS[[All, 1]]}];  

Aap2ADAMSMag = ListInterpolation[Aap2ADAMS[[All, 5]], {Aap2ADAMS[[All, 1]]}];  

Aap3ADAMSx = ListInterpolation[Aap3ADAMS[[All, 2]], {Aap3ADAMS[[All, 1]]}];  

Aap3ADAMSz = ListInterpolation[Aap3ADAMS[[All, 3]], {Aap3ADAMS[[All, 1]]}];  

Aap3ADAMSy = ListInterpolation[Aap3ADAMS[[All, 4]], {Aap3ADAMS[[All, 1]]}];  

Aap3ADAMSMag = ListInterpolation[Aap3ADAMS[[All, 5]], {Aap3ADAMS[[All, 1]]}];  

Aap4ADAMSx = ListInterpolation[Aap4ADAMS[[All, 2]], {Aap4ADAMS[[All, 1]]}];  

Aap4ADAMSz = ListInterpolation[Aap4ADAMS[[All, 3]], {Aap4ADAMS[[All, 1]]}];  

Aap4ADAMSy = ListInterpolation[Aap4ADAMS[[All, 4]], {Aap4ADAMS[[All, 1]]}];  

Aap4ADAMSMag = ListInterpolation[Aap4ADAMS[[All, 5]], {Aap4ADAMS[[All, 1]]}];  

Aap5ADAMSx = ListInterpolation[Aap5ADAMS[[All, 2]], {Aap5ADAMS[[All, 1]]}];  

Aap5ADAMSz = ListInterpolation[Aap5ADAMS[[All, 3]], {Aap5ADAMS[[All, 1]]}];  

Aap5ADAMSy = ListInterpolation[Aap5ADAMS[[All, 4]], {Aap5ADAMS[[All, 1]]}];  

Aap5ADAMSMag = ListInterpolation[Aap5ADAMS[[All, 5]], {Aap5ADAMS[[All, 1]]}];  

Aap6ADAMSx = ListInterpolation[Aap6ADAMS[[All, 2]], {Aap6ADAMS[[All, 1]]}];  

Aap6ADAMSz = ListInterpolation[Aap6ADAMS[[All, 3]], {Aap6ADAMS[[All, 1]]}];  

Aap6ADAMSy = ListInterpolation[Aap6ADAMS[[All, 4]], {Aap6ADAMS[[All, 1]]}];  

Aap6ADAMSMag = ListInterpolation[Aap6ADAMS[[All, 5]], {Aap6ADAMS[[All, 1]]}];  

Aap7ADAMSx = ListInterpolation[Aap7ADAMS[[All, 2]], {Aap7ADAMS[[All, 1]]}];  

Aap7ADAMSz = ListInterpolation[Aap7ADAMS[[All, 3]], {Aap7ADAMS[[All, 1]]}];  

Aap7ADAMSy = ListInterpolation[Aap7ADAMS[[All, 4]], {Aap7ADAMS[[All, 1]]}];  

Aap7ADAMSMag = ListInterpolation[Aap7ADAMS[[All, 5]], {Aap7ADAMS[[All, 1]]}];  

Aap8ADAMSx = ListInterpolation[Aap8ADAMS[[All, 2]], {Aap8ADAMS[[All, 1]]}];  

Aap8ADAMSz = ListInterpolation[Aap8ADAMS[[All, 3]], {Aap8ADAMS[[All, 1]]}];  

Aap8ADAMSy = ListInterpolation[Aap8ADAMS[[All, 4]], {Aap8ADAMS[[All, 1]]}];  

Aap8ADAMSMag = ListInterpolation[Aap8ADAMS[[All, 5]], {Aap8ADAMS[[All, 1]]}];  

Aap9ADAMSx = ListInterpolation[Aap9ADAMS[[All, 2]], {Aap9ADAMS[[All, 1]]}];  

Aap9ADAMSz = ListInterpolation[Aap9ADAMS[[All, 3]], {Aap9ADAMS[[All, 1]]}];  

Aap9ADAMSy = ListInterpolation[Aap9ADAMS[[All, 4]], {Aap9ADAMS[[All, 1]]}];  

Aap9ADAMSMag = ListInterpolation[Aap9ADAMS[[All, 5]], {Aap9ADAMS[[All, 1]]}];  

 

(*Connecting Rod - Position vectors*) 
(*position vector of point B wrt point A*) 

MatrixForm[BrB = {0, - R, 0}];  
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(*Position vector of point E wrt point A*) 

MatrixForm[ArE[x_, x_] = Simplify[Chop[{0, 0, Lis} + Tim1.{0, 0, Lim} + Tos[x, x].{0, - r, IF[x, 

x]}]]];  

 

(*Position vector of E wrt B*) 

MatrixForm[ArEB[x_, x_] = Simplify[Chop[ArE[x, x] - T1[x].BrB]]];  

 

(*Velocity of point B*) 

MatrixForm[AVB[x_] = Simplify[Chop[T1[x]].(BMSBrB)]];  

MatrixForm[AaB[x_] = Simplify[Chop[T1[x].(BMS(BMSBrB) + BMSBrB)]]];  

 (*Connecting Rod - Velocity*) 

(*Position vector of CG of ConRod wrt to its left end*) 

ArCRG[x_, x_] = T1[x].BrB + rCR*ArEB[x, x]/LCR;  

(*Velocity of CG of ConRod*) 

AVCR[tt_, ii_] = Module[{AVCR}, AVCR[t_, i_] = Dt[ArCRG[,  + 2Pi (i - 1)/9], t, Constants{r, R, 

Lis, Ry, LCR, i}]; AVCR[tt, ii]];  

 

AVCR1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica 

models\\Kinematic data from adams at 30 degrees\\Velocity\\VelConRod1.csv"];  

 

AVCR1ADAMSx = ListInterpolation[AVCR1ADAMS[[All, 2]], {AVCR1ADAMS[[All, 1]]}];  

AVCR1ADAMSz = ListInterpolation[AVCR1ADAMS[[All, 3]], {AVCR1ADAMS[[All, 1]]}];  

AVCR1ADAMSy = ListInterpolation[AVCR1ADAMS[[All, 4]], {AVCR1ADAMS[[All, 1]]}];  

AVCR1ADAMSMag = ListInterpolation[AVCR1ADAMS[[All, 5]], {AVCR1ADAMS[[All, 1]]}];  

 

(*Acceleration of ConRod*) 

AaCR[tt_, ii_] = Module[{AaCR}, AaCR[t_, i_] = Dt[ArCRG[,  + 2Pi (i - 1)/9], {t, 2}, Constants{r, R, 

Lis, Ry, LCR, i}]; AaCR[tt, ii]];  

AaCR1ADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica 

models\\Kinematic data from adams at 30 degrees\\Acceleration\\AccConRod1.csv"];  

 

AaCR1ADAMSx = ListInterpolation[AaCR1ADAMS[[All, 2]], {AaCR1ADAMS[[All, 1]]}];  

AaCR1ADAMSz = ListInterpolation[AaCR1ADAMS[[All, 3]], {AaCR1ADAMS[[All, 1]]}];  

AaCR1ADAMSy = ListInterpolation[AaCR1ADAMS[[All, 4]], {AaCR1ADAMS[[All, 1]]}];  

AaCR1ADAMSMag = ListInterpolation[AaCR1ADAMS[[All, 5]], {AaCR1ADAMS[[All, 1]]}];  

 

(*Valve Plate - Yoke assembly*) 
(*Attach coordinate system h1h2h3 to valve plate*) 

MatrixForm[Tvp = Tx[]];  
 

(*Angular velocity (skew symmetric form) of valve plate*) 

MatrixForm[vp = Simplify[Tvp.Transpose[Dt[Tvp, t]]]];  

(*Angular velocity and angular acceleration (vector form) of valve plate*) 

Simplify[MatrixForm[Hvp = {vp[[3, 2]], vp[[1, 3]], vp[[2, 1]]}]];  

MatrixForm[Hvp = Dt[Hvp, t]];  

 

(*Position vector of CG of valve plate*) 

MatrixForm[Hrvp = {rvpx, 0, rvpz}];  

 

(*Velocity of CG of valve plate*) 
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MatrixForm[HVvp = HvpHrvp];  

 

(*Acceleration of CG of valve plate*) 

MatrixForm[Havp = Hvp(HvpHrvp) + HvpHrvp];  

 

(*Moment of inertia of valve plate*) 

MatrixForm[HIvp = {{Ivp11, Ivp12, Ivp13}, {Ivp12, Ivp22, Ivp23}, {Ivp13, Ivp23, Ivp33}}];  
 

(*Displacement of ram (derivation based on displacement mechanism.nb)*) 

x = L3(Cos[5 + ] - Cos[5 +  + ]) + Sqrt[Lac
2
 - (L4 - L3 Sin[5 +  + ])

2
] - Sqrt[Lac

2
 - (L4 - L3 Sin[5 

+ ])
2
];  

 

(*Velocity of ram*) 

SetAttributes[{L3, , Lac, 5, L4}, Constant]  

xD : = Simplify [Dt[x, t]];  

AVram = Simplify[{0, - Sin[], - Cos[]}*xD] ;  

AaRAM = Dt[AVram, t] ;  

CD : = - (L4 - L3 Sin[5 +  + ]) - Sqrt[Lac
2
 - (L4 - L3 Sin[5 +  + ])

2
]Tan[5 +  + ];  

AAC = Simplify[(xD/CD)*{ - 1, 0, 0}];  

 

(*Angular acceleration of actuating link*) 

AAC = Dt[AAC, t];  

 

(*Distance from CG of actuating link to instant center of rotation*) 

8 = - ArcSin[(L4 - L3 Sin[5 +  + ] )/Lac];  

CG := Sqrt[DG^2 + CD^2 - 2*DG*CD*Sin[8]];  

4 := ArcSin[DG*Cos[8]/CG];  
 

(*Velocity of CG of actuating link*)  

AVAC = Simplify[AAC*CG]×{0, - Sin[ - 4], - Cos[ - 4]};  

SetAttributes[{L3, , Lac, 5, DG, EH}, Constant] 

AaAC = Dt[AVAC, t];  

 

(*Barrel - Output Shaft Assembly*) 
 

LC1[_] : = Module[{LC1, CG, GF}, o = ArcSin[(r - R)/LCR]; 1 : = ArcTan[r/EH]; EF : = Sqrt[r^2 + 

EH^2];  

GF[x_] : = 2*EF*Sin[x/2]; CG[x_] : = (DF - LCR Cos[o[x]] + LCR Cos[o]) Cos[x] - GF[x] 

Sin[1 - x/2] - ( - r + R + LCR Sin[o[x]]) Sin[x]; LC1[x_] : = CG[x] - LC2 - Lp1; LC1[]] 
 

Vmin[_] : = Module[{Vmin},  

Vmin[x_] : = Chop[LC1[x]*Ac + Vfixed]; Vmin[]] 
 

Lmin[_] : = Module[{Lmin}, Dce : = Sqrt[4*Ace/Pi]; Dc : = Sqrt[4*Ac/Pi]; Le : = LC2*Dce/(Dc - Dce); 

Lmin[x_] : = ((2*Ac/9)*(LC2 + Le)^2 - (2*Ace/9)*Le^2 + Ac*LC1[x]*(LC1[x]/2 + LC2 + Le) - 

Vmin[x]*Le)/Vmin[x]; Lmin[]] 
 

Lv[_, _] : = Module[{Lv}, Lv[x_, x_] : = (Vmin[x]*Lmin[x] + Ac*Z[x, x]*(Z[x, x]/2 + 

LC1[x] + LC2))/(Vmin[x] + Ac*Z[x, x]); Lv[, ]] 

 

VOIL[_, _] : = Module[{VOIL}, VOIL[x_, x_] : = Vmin[x] + Ac*Z[x, x]; VOIL[, ]] 

VOILD[tt_, ii_] = Module[{VOILD}, VOILD[t_, i_] = Dt[VOIL[,  + 2*Pi*(i - 1)/9], t, Constants{i}]; 

VOILD[tt, ii]];  

 

(*Oil Control Volume*) 
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(*External forces acting on oil control volume*) 

(*1. Force from piston to control volume at points 40 to 48 denoted as –DFOILtoPi with respective position 

vectors*) 

DrOILtoP1 = Drp[, , 1] + {0, 0, Lp1};  

DrOILtoP2 = Drp[, , 2] + {0, 0, Lp1};  

DrOILtoP3 = Drp[, , 3] + {0, 0, Lp1};  

DrOILtoP4 = Drp[, , 4] + {0, 0, Lp1};  

DrOILtoP5 = Drp[, , 5] + {0, 0, Lp1};  

DrOILtoP6 = Drp[, , 6] + {0, 0, Lp1};  

DrOILtoP7 = Drp[, , 7] + {0, 0, Lp1};  

DrOILtoP8 = Drp[, , 8] + {0, 0, Lp1};  

DrOILtoP9 = Drp[, , 9] + {0, 0, Lp1};  

 

(*2. Weight of oil column*) 

MatrixForm[AWOIL1 = {0, *g*VOIL[, ], 0}];  

MatrixForm[AWOIL2 = {0,  g VOIL[,  + 2*Pi/9], 0}];  

MatrixForm[AWOIL3 = {0,  g VOIL[,  + 4*Pi/9], 0}];  

MatrixForm[AWOIL4 = {0,  g VOIL[,  + 6*Pi/9], 0}];  

MatrixForm[AWOIL5 = {0,  g VOIL[,  + 8*Pi/9], 0}];  

MatrixForm[AWOIL6 = {0,  g VOIL[,  + 10*Pi/9], 0}];  

MatrixForm[AWOIL7 = {0,  g VOIL[,  + 12*Pi/9], 0}];  

MatrixForm[AWOIL8 = {0,  g VOIL[,  + 14*Pi/9], 0}];  

MatrixForm[AWOIL9 = {0,  g VOIL[,  + 16*Pi/9], 0}];  

 

(*3.Reaction forces from barrel to control volumes at points 49 to 57 denoted as –DFOILtoBi.*) 

(*Position vectors of forces from oil control volume in the cylinder at points 49 to 57*) 

DrOILtoB[x_, x_] : = {0, 0, Z[x, x] + LC1[x] + LC2 - Lv[x, x] + Lp1};  

DrOILtoB1 : = Dr31 + DrOILtoB[, ] - DrWP;  

DrOILtoB2 : = Dr32 + DrOILtoB[,  + 2*Pi/9] - DrWP;  

DrOILtoB3 : = Dr33 + DrOILtoB[,  + 4*Pi/9] - DrWP;  

DrOILtoB4 : = Dr34 + DrOILtoB[,  + 6*Pi/9] - DrWP;  

DrOILtoB5 : = Dr35 + DrOILtoB[,  + 8*Pi/9] - DrWP;  

DrOILtoB6 : = Dr36 + DrOILtoB[,  + 10*Pi/9] - DrWP;  

DrOILtoB7 : = Dr37 + DrOILtoB[,  + 12*Pi/9] - DrWP;  

DrOILtoB8 : = Dr38 + DrOILtoB[,  + 14*Pi/9] - DrWP;  

DrOILtoB9 : = Dr39 + DrOILtoB[,  + 16*Pi/9] - DrWP;  

 

(*4. Force due to pressure on discharge or suction orifice at points 80 to 88 denoted as - DFOILtoVPi. 

The corresponding position vector is DrOILtoVP*) 

 

(*Linear momentum of the control volume*) 

DLMcv1 = *DVpb[t, 1]*VOILD[t, 1];  

DLMcv2 = *DVpb[t, 2]*VOILD[t, 2];  

DLMcv3 = *DVpb[t, 3]*VOILD[t, 3];  

DLMcv4 = *DVpb[t, 4]*VOILD[t, 4];  

DLMcv5 = *DVpb[t, 5]*VOILD[t, 5];  

DLMcv6 = *DVpb[t, 6]*VOILD[t, 6];  

DLMcv7 = *DVpb[t, 7]*VOILD[t, 7];  

DLMcv8 = *DVpb[t, 8]*VOILD[t, 8];  

DLMcv9 = *DVpb[t, 9]*VOILD[t, 9];  

 

(*Net rate of linear momentum through the control surface of oil control volume*) 

DLMcs1 = *Ac*DVpb[t, 1]*(DVpb[t, 1].{0, 0, - 1} + (Ac/ArFR[])*(DVpb[t, 1].{0, 0, 1}));  

DLMcs2 = *Ac*DVpb[t, 2]*(DVpb[t, 2].{0, 0, - 1} + (Ac/ArFR[ + 2*Pi/9])*(DVpb[t, 2].{0, 0, 1}));  

DLMcs3 = *Ac*DVpb[t, 3]*(DVpb[t, 3].{0, 0, - 1} + (Ac/ArFR[ + 4*Pi/9])*(DVpb[t, 3].{0, 0, 1}));  

DLMcs4 = *Ac*DVpb[t, 4]*(DVpb[t, 4].{0, 0, - 1} + (Ac/ArFR[ + 6*Pi/9])*(DVpb[t, 4].{0, 0, 1}));  
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DLMcs5 = *Ac*DVpb[t, 5]*(DVpb[t, 5].{0, 0, - 1} + (Ac/ArFR[ + 8*Pi/9])*(DVpb[t, 5].{0, 0, 1}));  

DLMcs6 = *Ac*DVpb[t, 6]*(DVpb[t, 6].{0, 0, - 1} + (Ac/ArFR[ + 10*Pi/9])*(DVpb[t, 6].{0, 0, 1}));  

DLMcs7 = *Ac*DVpb[t, 7]*(DVpb[t, 7].{0, 0, - 1} + (Ac/ArFR[ + 12*Pi/9])*(DVpb[t, 7].{0, 0, 1}));  

DLMcs8 = *Ac*DVpb[t, 8]*(DVpb[t, 8].{0, 0, - 1} + (Ac/ArFR[ + 14*Pi/9])*(DVpb[t, 8].{0, 0, 1}));  

DLMcs9 = *Ac*DVpb[t, 9]*(DVpb[t, 9].{0, 0, - 1} + (Ac/ArFR[ + 16*Pi/9])*(DVpb[t, 9].{0, 0, 1}));  

 

DrOILtoVP = {0, - r, LYtoVP};  

 

File1 = OpenRead["POIL.nb"];  

PD = Read[File1];  

PS = Read[File1];  

POIL1[t_] = Read[File1];  

POIL2[t_] = Read[File1];  

POIL3[t_] = Read[File1];  

POIL4[t_] = Read[File1];  

POIL5[t_] = Read[File1];  

POIL6[t_] = Read[File1];  

POIL7[t_] = Read[File1];  

POIL8[t_] = Read[File1];  

POIL9[t_] = Read[File1];  

Pb[_] = Read[File1];  

Close[File1];  

 

(*Barrel - Output Shaft Assembly*) 
PD1 = PD[[1]];  

PS1 = PS[[1]];  

 

(*Point of application of hydraulic forces*) 

RoutD = (5 PD1 (R1
2
 + 2 R1 R2 + 3 R2

2
) + (R1 - R2)

2
 (3 R1

2
 + 4 R1 R2 + 3 R2

2
)  BMS[[3]]

2
)/(5 (2 PD1 

(R1 + 2 R2) + (R1 - R2)
2
 (R1 + R2)  BMS[[3]]

2
));  

 

RoutS = (5 PS1 (R1
2
 + 2 R1 R2 + 3 R2

2
) + (R1 - R2)

2
 (3 R1

2
 + 4 R1 R2 + 3 R2

2
)  BMS[[3]]

2
)/(5 (2 PS1 

(R1 + 2 R2) + (R1 - R2)
2
 (R1 + R2)  BMS[[3]]

2
));  

 

RinD = (30 PD1 R3 (2 R3 + R4) - 2 (R3 - R4)
2
 (4 R3

2
 + 7 R3 R4 + 4 R4

2
)  BMS[[3]]

2
)/(90 PD1 R3 - 15 

(R3 - R4)
2
 (R3 + R4)  BMS[[3]]

2
);  

 

RinS = (30 PS1 R3 (2 R3 + R4) - 2 (R3 - R4)
2
 (4 R3

2
 + 7 R3 R4 + 4 R4

2
)  BMS[[3]]

2
)/(90 PS1 R3 - 15 

(R3 - R4)
2
 (R3 + R4)  BMS[[3]]

2
);  

 

(*Position vectors of hydrodynamic forces*) 

HrIND = { - RinD, 0, LYtoVP};  

HrINS = {RinS, 0, LYtoVP};  

HrOUTD = { - RoutD, 0, LYtoVP};  

HrOUTS = {RoutS, 0, LYtoVP};  

 

(*Main Shaft - Frictional Moment at Ball bearing at point (1)*) 
nms = Simplify[BMS[[3]]];  

(*Radial load component of bearing reaction*) 

Fr1 = (AFB1toMSx^2 + AFB1toMSy^2)^0.5;  

(*Total frictional moment of the bearing (N.m)*) 

AMB1toMSz = Friction[nms, 1, d11, D1, 40, Fr1, 0, Co1] ;  
 

(*Main Shaft - Frictional Moment at Thrust bearing, point (2)*) 
(*Radial load component of bearing reaction*) 
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Fr2 = (AFB2toMSx^2 + AFB2toMSy^2)^0.5;  

(*Axial load component of bearing reaction*) 

Fa2 = AFB2toMSz;  

AMB2toMSz = Friction[nms, 2, d2, D2, 40, Fr2, Fa2, Co2] ;  

(*MBz = total frictional moment of bearing (N.m)*) 
 

(*Main Shaft - Forces*) 
ATin = {0, 0, ATinz}; (*input torque*) 

AFB1toMS = {AFB1toMSx, AFB1toMSy, 0}; (*Ball bearing reaction*) 

AMB1toMS = Simplify[ - AMB1toMSz*Sign[BMS]]; (*Ball bearing Frictional moment*) 

 

AFB2toMS = {AFB2toMSx, AFB2toMSy, AFB2toMSz}; (*Thrust bearing reaction*) 

AMB2toMS = Simplify[ - AMB2toMSz*Sign[BMS]]; (*Thrust bearing Frictional moment*) 

 

AWms = {0, g*MMS, 0};  

 

(*First Intermediate shaft - Forces*) 
(*1. Reaction forces and moments from 1st cross at points (23) and (24)*) 

(*2. Reaction force and torque from 2nd intermediate shaft at point (25)*) 

 

MatrixForm[CFIM2toIM125 = {0, 0, FIM2toIM125z}] ; (*reaction from 2nd intermediate shaft to 1st 

intermediate at (25)*) 

 

MatrixForm[CMIM2toIM125 = {0, 0, - MIM2toIM125z}] ; (*Reaction torque from 2nd intermediate shaft 

to 1st intermediate shaft*) 

 

MatrixForm[AWim1 = {0, g Mim1, 0}];  
 

(*First Cross - Forces*) 
(*1. Reaction forces from main shaft at points (3) and (4)*) 

FFMStoC13 = {FFMStoC13x, 0, FFMStoC13z};  

FFMStoC14 = - FFMStoC13;  

 

(*Frictional moments from main shaft at right and left pins of 1st cross at points (3) and (4)*) 

MMStoC13 = C1*rCP1*Sqrt[FFMStoC13x^2 + FFMStoC13z^2];  

MMStoC14 = MMStoC13;  

FMMStoC13 = Simplify[MMStoC13*{0, - Sign[Fc1[[2]]], 0}];  

FMMStoC14 = Simplify[MMStoC14*{0, - Sign[Fc1[[2]]], 0}];  

 

(*Reaction forces from 1st intermediate shaft at points (23) and (24)*) 

FFIM1toC123 = {0, FIM1toC123y, FIM1toC123z};  

FFIM1toC124 = - FFIM1toC123;  

 

(*Frictional moments from 1st intermediate shaft at points (23) and (24)*) 

MIM1toC123 : = C1*rCP2*Sqrt[FIM1toC123y^2 + FIM1toC123z^2];  

MIM1toC124 : = C1*rCP3*Sqrt[FIM1toC124y^2 + FIM1toC124z^2];  

FMIM1toC123 = - MIM1toC123*Sign[Fc1[[1]]]*{1, 0, 0};  

FMIM1toC124 = - MIM1toC124*Sign[Fc1[[1]]]*{1, 0, 0};  

 

AWc1 = {0, g Mc1, 0}; (*Weight of 1st cross*) 
 

(*Second Intermediate Shaft - Forces*) 
(*1. Reaction forces and torques from 1st intermediate shaft at point (25)*) 

(*2. Reaction forces and moments from 2nd cross at points (27) and (28)*) 
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(* - CFIM2toIM125*) 

(* - CMIM2toIM125*) 

(* - IFIM2toC227*) 

(* - IFIM2toC228*) 

(* - IMIM2toC227*) 

(* - IMIM2toC228*) 

AWim2 = {0, g*Mim2, 0};  

 

(*Second Cross - Forces*) 
(*1. Reaction forces and moments from 2nd intermediate shaft at the pins (points 27 and 28)*) 

(*2. Reaction forces and moments from output shaft at the pins (points 29 and 30)*) 

(*3. Weight of 2nd cross*) 

 

MatrixForm[IFIM2toC227 = {0, FIM2toC227y, FIM2toC227z}];  

MIM2toC227 = C1*rCP2*Sqrt[FIM2toC227y^2 + FIM2toC227z^2];  

MatrixForm[IMIM2toC227 = MIM2toC227*{ - Sign[Ic2[[1]]], 0, 0}];  

MatrixForm[IFIM2toC228 = - IFIM2toC227];  

MIM2toC228 = C1*rCP2*Sqrt[FIM2toC228y^2 + FIM2toC228z^2];  

MatrixForm[IMIM2toC228 = MIM2toC228*{ - Sign[Ic2[[1]]], 0, 0}];  

MatrixForm[IFOStoC229 = {FOStoC229x, 0, FOStoC229z}];  

MOStoC229 = C1*rCP1*Sqrt[FOStoC229x^2 + FOStoC229z^2];  

MatrixForm[IMOStoC229 = MOStoC229*{0, - Sign[Ic2[[2]]], 0}];  

MatrixForm[IFOStoC230 = - IFOStoC229];  

MOStoC230 = C1*rCP1*Sqrt[FOStoC230x^2 + FOStoC230z^2];  

MatrixForm[IMOStoC230 = MOStoC230*{0, - Sign[Ic2[[2]]], 0}];  

MatrixForm[AWC2 = {0, Mc2*g, 0}];  

 

(*Barrel - Output Shaft Assembly - Forces*) 
(*1.Reaction forces from 2nd cross at points 29 and 30 denoted as - IFOStoC229 and - IFOStoC230 with 

respective position vectors: Ir29 and Ir30*) 

(*2.Frictional moment from 2nd cross at points 29 and 30 denoted as - IMOStoC229 and - IMOStoC230*) 

(*3.Reaction forces from piston and oil film between barrel and piston at points 31 to 39 denoted by - 

DFBtoPi, i = 1, 2, …9*) 

(*4.Weight of output shaft - barrel assembly*) 

 

AWos = {0, Mos g, 0};  

 

(*5.Force from oil column in cylinder at points 49 to 57 denoted as DFOILtoB, i*) 

(*6.Frictional moment due to fluid film between barrel and valve plate*)  

(*7.Hydrodynamic forces HFVPtoBoutD, HFVPtoBinD, HFVPtoBinS, HFVPtoBoutS due to oil film 

between VP & barrel at points 59, 60, 61, and 62*) 

(*8.Frictional moment form journal bearing at point 58*) 

(*9.Reaction force from thrust ball bearing at end of barrel at point 65 denoted by DFB4toB*) 

(*10.Frictional moment from thrust ball bearing at end of barrel at point 65 denoted by DMB4toB*) 

(*11.Reaction forces between discharge/suction port of VP & solid area located between each successive 

cylinder on barrel at points 69 to 77. These forces denoted as - DFBStoVP, ii = 1, 2, …9*)  

(*Barrel - Output Shaft Assembly - Forces*) 

 

(*Force from needle bearing (point 58) to barrel*) 

DFB3FtoB = {FB3FtoBx, FB3FtoBy, 0};  

DFB3StoB = {FB3StoBx, FB3StoBy, 0};  

(*Position vector of journal bearing reaction*) 

DrB3FtoB = {0, 0, rB3FtoBz};  

DrB3StoB = {0, 0, rB3StoBz};  
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FB3FtoBr = Sqrt[FB3FtoBx^2 + FB3FtoBy^2];  

FB3StoBr = Sqrt[FB3StoBx^2 + FB3StoBy^2];  

 

MB3FtoBz = Friction[nms, 3, d3, D3, 40, FB3FtoBr, 0, 1];  

MB3StoBz = Friction[nms, 3, d3, D3, 40, FB3StoBr, 0, 1];  

 

(*Frictional moment component at end of barrel at point 58*) 

DMB3FtoB = MB3FtoBz*{0, 0, - Sign[Dos[[3]]]};  

DMB3StoB = MB3StoBz*{0, 0, - Sign[Dos[[3]]]};  

 

 (*Frictional moment at thrust bearing at end of barrel (point 65)*) 

Fa4 = FB4toBz;  

(*Value of frictional moment of thrust ball bearing*) 

MB4toBz = Friction[nms, 4, d4, D4, 40, 0, FB4toBz, Co4];  

(*Frictional moment opposes direction of angular velocity component along d3 direction of barrel*) 

DMB4toB = - Sign[Dos[[3]]]*MB4toBz {0, 0, 1};  

 

(*Hydrodynamic force normal to interface between valve plate and barrel*) 

MatrixForm[HFVPtoBoutD = {0, 0, - (*(R1 - R2)/12)*2*PD1*(R1 + 2 R2) + *BMS[[3]]^2(R1 + 

R2)*(R1 - R2)^2}];  

 

MatrixForm[HFVPtoBoutS = - (*(R1 - R2)/12) 

 {0, 0, 2*PS1*(R1 + 2 R2) + *BMS[[3]]^2(R1 + R2)*(R1 - R2)^2}];  

 

MatrixForm[HFVPtoBinD = - (*(R3 - R4)/12) 

 {0, 0, 6*PD1*R3 - *BMS[[3]]^2(R3 + R4)*(R3 - R4)^2}];  

 

MatrixForm[HFVPtoBinS = - (*(R3 - R4)/12) 

 {0, 0, 6*PS1*R3 - *BMS[[3]]^2(R3 + R4)*(R3 - R4)^2}];  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\HFVPtoBinS.csv", Table[{t, HFVPtoBinS[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\HFVPtoBinD.csv", Table[{t, HFVPtoBinD[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\HFVPtoBoutS.csv", Table[{t, HFVPtoBoutS[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\HFVPtoBoutD.csv", Table[{t, HFVPtoBoutD[[3]]}, {t, 0, 1, 0.0001}]];  

 

(*Shear moment at outer land for both discharge and suction ports*) 

shearout = 1/4 R1 (R1 + R2) h  ( - PD1 - PS1 + 2 (R1 - R2) R2  BMS[[3]]
2
);  

(*Shear moment at inner land for both discharge and suction ports*) 

shearin = 1/12 (R3 + R4) h  (3 PD1 R3 + 3 PS1 R3 + 2 ( - R3
3
 + R4

3
)  BMS[[3]]

2
);  

(*Total moment due to fluid film between barrel and valve plate*) 

MatrixForm[DMVPtoB = - {0, 0, shearout + shearin}*Sign[Dos[[3]]]];  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DMVPtoB.csv", Table[{t, DMVPtoB[[3]]}, {t, 0, 1, 0.0001}]];  

 

 (*The Piston - Forces*) 
(*1. Reaction forces from ConRod to piston denoted by: - AFPtoCRi, i = 1 to 9*) 

(*2. Frictional moment from ConRod to piston denoted by - AMPtoCRi at points (14) to (22)*) 

(*3. Pressure force from hydraulic oil*) 

 

MatrixForm[DFOILtoP1 = {0, 0, - POIL1[t][[1]]*Ap}];  

MatrixForm[DFOILtoP2 = {0, 0, - POIL2[t][[1]]*Ap}];  
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MatrixForm[DFOILtoP3 = {0, 0, - POIL3[t][[1]]*Ap}];  

MatrixForm[DFOILtoP4 = {0, 0, - POIL4[t][[1]]*Ap}];  

MatrixForm[DFOILtoP5 = {0, 0, - POIL5[t][[1]]*Ap}];  

MatrixForm[DFOILtoP6 = {0, 0, - POIL6[t][[1]]*Ap}];  

MatrixForm[DFOILtoP7 = {0, 0, - POIL7[t][[1]]*Ap}];  

MatrixForm[DFOILtoP8 = {0, 0, - POIL8[t][[1]]*Ap}];  

MatrixForm[DFOILtoP9 = {0, 0, - POIL9[t][[1]]*Ap}];  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP1.csv", Table[{t, - POIL1[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP2.csv", Table[{t, - POIL2[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP3.csv", Table[{t, - POIL3[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP4.csv", Table[{t, - POIL4[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP5.csv", Table[{t, - POIL5[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP6.csv", Table[{t, - POIL6[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP7.csv", Table[{t, - POIL7[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP8.csv", Table[{t, - POIL8[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoP9.csv", Table[{t, - POIL9[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];  

 

 (*Frictional force between barrel and piston*) 

(*Viscous force on one piston*) 

FBtoP1z = - Pi*[T]*rp*DVpb[t, 1][[3]]*Lp/Cp;  

FBtoP2z = - Pi*[T]*rp*DVpb[t, 2][[3]]*Lp/Cp;  

FBtoP3z = - Pi*[T]*rp*DVpb[t, 3][[3]]*Lp/Cp;  

FBtoP4z = - Pi*[T]*rp*DVpb[t, 4][[3]]*Lp/Cp;  

FBtoP5z = - Pi*[T]*rp*DVpb[t, 5][[3]]*Lp/Cp;  

FBtoP6z = - Pi*[T]*rp*DVpb[t, 6][[3]]*Lp/Cp;  

FBtoP7z = - Pi*[T]*rp*DVpb[t, 7][[3]]*Lp/Cp;  

FBtoP8z = - Pi*[T]*rp*DVpb[t, 8][[3]]*Lp/Cp;  

FBtoP9z = - Pi*[T]*rp*DVpb[t, 9][[3]]*Lp/Cp;  

 

 (*3. Reaction force from barrel to piston*) 

MatrixForm[DFBtoP1 = {FBtoP1x, FBtoP1y, FBtoP1z}];  

MatrixForm[DFBtoP2 = {FBtoP2x, FBtoP2y, FBtoP2z}];  

MatrixForm[DFBtoP3 = {FBtoP3x, FBtoP3y, FBtoP3z}];  

MatrixForm[DFBtoP4 = {FBtoP4x, FBtoP4y, FBtoP4z}];  

MatrixForm[DFBtoP5 = {FBtoP5x, FBtoP5y, FBtoP5z}];  

MatrixForm[DFBtoP6 = {FBtoP6x, FBtoP6y, FBtoP6z}];  

MatrixForm[DFBtoP7 = {FBtoP7x, FBtoP7y, FBtoP7z}];  

MatrixForm[DFBtoP8 = {FBtoP8x, FBtoP8y, FBtoP8z}];  

MatrixForm[DFBtoP9 = {FBtoP9x, FBtoP9y, FBtoP9z}];  

 

(*4. Weight of piston*) 

AWp = {0, g*Mp, 0};  

 

(*Connecting Rod - Forces*) 
(*1. Weight of ConRod*) 

AWCR = {0, MCR*g, 0};  
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(*2. Reaction force from cup at main shaft side at points (5) to (13)*) 

AFMStoCR1 = {AFMStoCR1x, AFMStoCR1y, AFMStoCR1z};  

AFMStoCR2 = {AFMStoCR2x, AFMStoCR2y, AFMStoCR2z};  

AFMStoCR3 = {AFMStoCR3x, AFMStoCR3y, AFMStoCR3z};  

AFMStoCR4 = {AFMStoCR4x, AFMStoCR4y, AFMStoCR4z};  

AFMStoCR5 = {AFMStoCR5x, AFMStoCR5y, AFMStoCR5z};  

AFMStoCR6 = {AFMStoCR6x, AFMStoCR6y, AFMStoCR6z};  

AFMStoCR7 = {AFMStoCR7x, AFMStoCR7y, AFMStoCR7z};  

AFMStoCR8 = {AFMStoCR8x, AFMStoCR8y, AFMStoCR8z};  

AFMStoCR9 = {AFMStoCR9x, AFMStoCR9y, AFMStoCR9z};  

 

 (*3. Reaction from piston to ConRod at points (14) to (22)*) 

AFPtoCR1 = {AFPtoCR1x, AFPtoCR1y, AFPtoCR1z};  

AFPtoCR2 = {AFPtoCR2x, AFPtoCR2y, AFPtoCR2z};  

AFPtoCR3 = {AFPtoCR3x, AFPtoCR3y, AFPtoCR3z};  

AFPtoCR4 = {AFPtoCR4x, AFPtoCR4y, AFPtoCR4z};  

AFPtoCR5 = {AFPtoCR5x, AFPtoCR5y, AFPtoCR5z};  

AFPtoCR6 = {AFPtoCR6x, AFPtoCR6y, AFPtoCR6z};  

AFPtoCR7 = {AFPtoCR7x, AFPtoCR7y, AFPtoCR7z};  

AFPtoCR8 = {AFPtoCR8x, AFPtoCR8y, AFPtoCR8z};  

AFPtoCR9 = {AFPtoCR9x, AFPtoCR9y, AFPtoCR9z};  

 

(*Valve Plate - Yoke - Forces*) 
(*1. Reaction forces at axis of rotation of yoke at points 67 and 68 and their respective position 

vectors*) 

AFCtoY67 = {FCtoY67x, FCtoY67y, FCtoY67z};  

ArCtoY67 = { - rCtoY67x, 0, 0};  

AFCtoY68 = {0, FCtoY68y, FCtoY68z};  

ArCtoY68 = - ArCtoY67;  

 

(*Value of frictional moments at axis of yoke at points 67 and 68*) 

(*MCtoY67x = Y*rY*Sqrt[FCtoY67y^2 + FCtoY67z^2] 

MCtoY68x = Y*rY*Sqrt[FCtoY68y^2 + FCtoY68z^2]*) 

 

(*2. Friction moment at axis of yoke at points 67 and 68*) 

(*AMCtoY67 = MCtoY67x*{ - Sign[Hvp[[1]]], 0, 0} 

AMCtoY68 = MCtoY68x*{ - Sign[Hvp[[1]]], 0, 0}*) 

(*Valve Plate - Yoke - Forces*) 

 

(*3.Reaction force from actuating link at point 66 and its respective position vector*) 

AFACtoY66 = {0, FACtoY66P*Sin[ - 8] + FACtoY66N*Cos[ - 8], FACtoY66P*Cos[ - 8] - 

FACtoY66N*Sin[ - 8]};  

(*HrACtoY66 = {rACtoY66x, rACtoY66y, rACtoY66z}; *) 

 

(*Value of frictional moment component at common axis of yoke and actuating link at points 66*) 

(*MACtoY66x = ACtoY*rAC*Sqrt[AFACtoY66[[2]]^2 + AFACtoY66[[3]]^2]*) 

(*4. Frictional moment vector from actuating link at point 66*) 

(*AMACtoY66 = MACtoY66x*{ - Sign[AAC[[1]]], 0, 0}*) 

 

(*5. Reaction force from needle bearing at end of barrel at point 58 denoted as - DFB3FtoB and - 

DFB3StoB*) 

 

(*6. Frictional moment form needle bearings at point 58 denoted as - DMB3FtoB and - DMB3StoB*) 

 

(*7. Weight of valve plate - yoke assembly*) 
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AWvp = {0, Mvp*g, 0};  

 

(*8.Reaction force from thrust ball bearing at end of barrel at point 65, - DFB4toB*) 

DFB4toB = {0, 0, FB4toBz};  

 

(*9.Frictional moment at thrust ball bearing (point 65) denoted by –DMB4toB*) 

 

(*10. Hydrodynamic forces : - HFVPtoBoutD, - HFVPtoBinD, - HFVPtoBinS, and - HFVPtoBoutS 

due to oil film between valve plate and barrel at points 59, 60, 61, and 62 respectively.*) 

 

(*11.Frictional moment due to fluid film between barrel and valve plate denoted as - DMVPtoB*) 

 

(*12.Reaction forces between discharge/suction port of valve plate and solid area located between each 

successive cylinder at points 69 to 77 respectively*) 

DFBStoVP1 = {0, 0, Pb[][[1]]*AsFR[]};  

DFBStoVP2 = {0, 0, Pb[ + 2*Pi/9][[1]]*AsFR[ + 2*Pi/9]};  

DFBStoVP3 = {0, 0, Pb[ + 4*Pi/9][[1]]*AsFR[ + 4*Pi/9]};  

DFBStoVP4 = {0, 0, Pb[ + 6*Pi/9][[1]]*AsFR[ + 6*Pi/9]};  

DFBStoVP5 = {0, 0, Pb[ + 8*Pi/9][[1]]*AsFR[ + 8*Pi/9]};  

DFBStoVP6 = {0, 0, Pb[ + 10*Pi/9][[1]]*AsFR[ + 10*Pi/9]};  

DFBStoVP7 = {0, 0, Pb[ + 12*Pi/9][[1]]*AsFR[ + 12*Pi/9]};  

DFBStoVP8 = {0, 0, Pb[ + 14*Pi/9][[1]]*AsFR[ + 14*Pi/9]};  

DFBStoVP9 = {0, 0, Pb[ + 16*Pi/9][[1]]*AsFR[ + 16*Pi/9]};  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP1.csv", Table[{t, DFBStoVP1[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP2.csv", Table[{t, DFBStoVP2[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP3.csv", Table[{t, DFBStoVP3[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP4.csv", Table[{t, DFBStoVP4[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP5.csv", Table[{t, DFBStoVP5[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP6.csv", Table[{t, DFBStoVP6[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP7.csv", Table[{t, DFBStoVP7[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP8.csv", Table[{t, DFBStoVP8[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBStoVP9.csv", Table[{t, DFBStoVP9[[3]]}, {t, 0, 1, 0.0001}]];  

 

 (*13. Reaction force from fluid inside hose between LPA and suction exit at yoke axis of rotation at 

point 78*) 

AFLPAtoY78 = A78*PS1 {0, - Sin[L], Cos[L]};  

ArLPAtoY78 = { - rLPAtoY78x, 0, 0};  

 

(*14. Reaction force from fluid inside hose between HPA and discharge exit at yoke axis of rotation at 

point 79*) 

AFHPAtoY79 = PD1*A78*{0, - Sin[L], Cos[L]};  

ArHPAtoY79 = - ArLPAtoY78;  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\AFLPAtoY78.csv", Table[{t, AFLPAtoY78[[2]], AFLPAtoY78[[3]]}, {t, 0, 1, 0.0001}]];  
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Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\AFHPAtoY79.csv", Table[{t, AFHPAtoY79[[2]], AFHPAtoY79[[3]]}, {t, 0, 1, 0.0001}]];  

 

 (*15. Force due to pressure on discharge or suction orifice at points 80 to 88 as well as its position 

vector*) 

DFOILtoVP1 = {0, 0, Pb[][[1]]}*ArFR[];  

DFOILtoVP2 = {0, 0, Pb[ + 2*Pi/9][[1]]*ArFR[ + 2*Pi/9]};  

DFOILtoVP3 = {0, 0, Pb[ + 4*Pi/9][[1]]*ArFR[ + 4*Pi/9]};  

DFOILtoVP4 = {0, 0, Pb[ + 6*Pi/9][[1]]*ArFR[ + 6*Pi/9]};  

DFOILtoVP5 = {0, 0, Pb[ + 8*Pi/9][[1]]*ArFR[ + 8*Pi/9]};  

DFOILtoVP6 = {0, 0, Pb[ + 10*Pi/9][[1]]*ArFR[ + 10*Pi/9]};  

DFOILtoVP7 = {0, 0, Pb[ + 12*Pi/9][[1]]*ArFR[ + 12*Pi/9]};  

DFOILtoVP8 = {0, 0, Pb[ + 14*Pi/9][[1]]*ArFR[ + 14*Pi/9]};  

DFOILtoVP9 = {0, 0, Pb[ + 16*Pi/9][[1]]*ArFR[ + 16*Pi/9]};  

DFOILtoVP1z = Interpolation[Table[{t, DFOILtoVP1[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP1 = {0, 0, DFOILtoVP1z[t]};  

 

DFOILtoVP2z = Interpolation[Table[{t, DFOILtoVP2[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP2 = {0, 0, DFOILtoVP2z[t]};  

 

DFOILtoVP3z = Interpolation[Table[{t, DFOILtoVP3[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP3 = {0, 0, DFOILtoVP3z[t]};  

 

DFOILtoVP4z = Interpolation[Table[{t, DFOILtoVP4[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP4 = {0, 0, DFOILtoVP4z[t]};  

 

DFOILtoVP5z = Interpolation[Table[{t, DFOILtoVP5[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP5 = {0, 0, DFOILtoVP5z[t]};  

 

DFOILtoVP6z = Interpolation[Table[{t, DFOILtoVP6[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP6 = {0, 0, DFOILtoVP6z[t]};  

 

DFOILtoVP7z = Interpolation[Table[{t, DFOILtoVP7[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP7 = {0, 0, DFOILtoVP7z[t]};  

 

DFOILtoVP8z = Interpolation[Table[{t, DFOILtoVP8[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP8 = {0, 0, DFOILtoVP8z[t]};  

 

DFOILtoVP9z = Interpolation[Table[{t, DFOILtoVP9[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoVP9 = {0, 0, DFOILtoVP9z[t]};  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP1.csv", Table[{t, DFOILtoVP1[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP2.csv", Table[{t, DFOILtoVP2[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP3.csv", Table[{t, DFOILtoVP3[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP4.csv", Table[{t, DFOILtoVP4[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP5.csv", Table[{t, DFOILtoVP5[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP6.csv", Table[{t, DFOILtoVP6[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP7.csv", Table[{t, DFOILtoVP7[[3]]}, {t, 0, 1, 0.0001}]];  
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Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP8.csv", Table[{t, DFOILtoVP8[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoVP9.csv", Table[{t, DFOILtoVP9[[3]]}, {t, 0, 1, 0.0001}]];  

 

 (*Oil Control Volume - Sum of Forces*) 

DFOILtoB1 = - DFOILtoP1 + Tos[, ].AWOIL1 - DFOILtoVP1 - DLMcv1 - DLMcs1;  

DFOILtoB2 : = - DFOILtoP2 + Tos[,  + 2*Pi/9].AWOIL2 - DFOILtoVP2 - DLMcv2 - DLMcs2;  

DFOILtoB3 : = - DFOILtoP3 + Tos[,  + 4*Pi/9].AWOIL3 - DFOILtoVP3 - DLMcv3 - DLMcs3;  

DFOILtoB4 : = - DFOILtoP4 + Tos[,  + 6*Pi/9].AWOIL4 - DFOILtoVP4 - DLMcv4 - DLMcs4;  

DFOILtoB5 : = - DFOILtoP5 + Tos[,  + 8*Pi/9].AWOIL5 - DFOILtoVP5 - DLMcv5 - DLMcs5;  

DFOILtoB6 : = - DFOILtoP6 + Tos[,  + 10*Pi/9].AWOIL6 - DFOILtoVP6 - DLMcv6 - DLMcs6;  

DFOILtoB7 : = - DFOILtoP7 + Tos[,  + 12*Pi/9].AWOIL7 - DFOILtoVP7 - DLMcv7 - DLMcs7;  

DFOILtoB8 : = - DFOILtoP8 + Tos[,  + 14*Pi/9].AWOIL8 - DFOILtoVP8 - DLMcv8 - DLMcs8;  

DFOILtoB9 : = - DFOILtoP9 + Tos[,  + 16*Pi/9].AWOIL9 - DFOILtoVP9 - DLMcv9 - DLMcs9;  

DFOILtoB1x = Interpolation[Table[{t, DFOILtoB1[[1]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB1y = Interpolation[Table[{t, DFOILtoB1[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB1z = Interpolation[Table[{t, DFOILtoB1[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB1 = {DFOILtoB1x[t], DFOILtoB1y[t], DFOILtoB1z[t]};  

 

DFOILtoB2x = Interpolation[Table[{t, DFOILtoB2[[1]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB2y = Interpolation[Table[{t, DFOILtoB2[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB2z = Interpolation[Table[{t, DFOILtoB2[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB2 = {DFOILtoB2x[t], DFOILtoB2y[t], DFOILtoB2z[t]};  

 

DFOILtoB3x = Interpolation[Table[{t, DFOILtoB3[[1]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB3y = Interpolation[Table[{t, DFOILtoB3[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB3z = Interpolation[Table[{t, DFOILtoB3[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB3 = {DFOILtoB3x[t], DFOILtoB3y[t], DFOILtoB3z[t]};  

 

DFOILtoB4x = Interpolation[Table[{t, DFOILtoB4[[1]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB4y = Interpolation[Table[{t, DFOILtoB4[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB4z = Interpolation[Table[{t, DFOILtoB4[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB4 = {DFOILtoB4x[t], DFOILtoB4y[t], DFOILtoB4z[t]};  

 

DFOILtoB5x = Interpolation[Table[{t, DFOILtoB5[[1]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB5y = Interpolation[Table[{t, DFOILtoB5[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB5z = Interpolation[Table[{t, DFOILtoB5[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB5 = {DFOILtoB5x[t], DFOILtoB5y[t], DFOILtoB5z[t]};  

 

DFOILtoB6x = Interpolation[Table[{t, DFOILtoB6[[1]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB6y = Interpolation[Table[{t, DFOILtoB6[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB6z = Interpolation[Table[{t, DFOILtoB6[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB6 = {DFOILtoB6x[t], DFOILtoB6y[t], DFOILtoB6z[t]};  

 

DFOILtoB7x = Interpolation[Table[{t, DFOILtoB7[[1]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB7y = Interpolation[Table[{t, DFOILtoB7[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB7z = Interpolation[Table[{t, DFOILtoB7[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB7 = {DFOILtoB7x[t], DFOILtoB7y[t], DFOILtoB7z[t]};  

 

DFOILtoB8x = Interpolation[Table[{t, DFOILtoB8[[1]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB8y = Interpolation[Table[{t, DFOILtoB8[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB8z = Interpolation[Table[{t, DFOILtoB8[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB8 = {DFOILtoB8x[t], DFOILtoB8y[t], DFOILtoB8z[t]};  

 

DFOILtoB9x = Interpolation[Table[{t, DFOILtoB9[[1]]}, {t, 0, 1, 0.0001}]];  
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DFOILtoB9y = Interpolation[Table[{t, DFOILtoB9[[2]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB9z = Interpolation[Table[{t, DFOILtoB9[[3]]}, {t, 0, 1, 0.0001}]];  

DFOILtoB9 = {DFOILtoB9x[t], DFOILtoB9y[t], DFOILtoB9z[t]};  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB1.csv", Table[{t, DFOILtoB1[[1]], DFOILtoB1[[2]], DFOILtoB1[[3]]}, {t, 0, 1, 

0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB2.csv", Table[{t, DFOILtoB2[[1]], DFOILtoB2[[2]], DFOILtoB2[[3]]}, {t, 0, 1, 

0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB3.csv", Table[{t, DFOILtoB3[[1]], DFOILtoB3[[2]], DFOILtoB3[[3]]}, {t, 0, 1, 

0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB4.csv", Table[{t, DFOILtoB4[[1]], DFOILtoB4[[2]], DFOILtoB4[[3]]}, {t, 0, 1, 

0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB5.csv", Table[{t, DFOILtoB5[[1]], DFOILtoB5[[2]], DFOILtoB5[[3]]}, {t, 0, 1, 

0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB6.csv", Table[{t, DFOILtoB6[[1]], DFOILtoB6[[2]], DFOILtoB6[[3]]}, {t, 0, 1, 

0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB7.csv", Table[{t, DFOILtoB7[[1]], DFOILtoB7[[2]], DFOILtoB7[[3]]}, {t, 0, 1, 

0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB8.csv", Table[{t, DFOILtoB8[[1]], DFOILtoB8[[2]], DFOILtoB8[[3]]}, {t, 0, 1, 

0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFOILtoB9.csv", Table[{t, DFOILtoB9[[1]], DFOILtoB9[[2]], DFOILtoB9[[3]]}, {t, 0, 1, 

0.0001}]];  

 

 (*Displacement Mechanism (Actuating Link)_Forces*) 
(*1. Reaction force from the pin of ram at point 90 with its respective position vector as measured 

from yoke axis of rotation*) 

 

AFRAMtoAC90 = {0, FRAMtoAC90z*Sin[ - 8] + FRAMtoAC90y*Cos[ - 8], FRAMtoAC90z*Cos[ - 
8] - FRAMtoAC90y*Sin[ - 8]};  

 

ArRAMtoAC90 = {0, - L3*Sin[5 + ] - Lac*Sin[ - 8], L3*Cos[5 + ] - Lac*Cos[ - 8]};  

 

(*2. Reaction force from yoke at point 66 denoted as - AFACtoY66*) 

(*Position vector of AFACtoY66 as measured from yoke axis of rotation*) 

ArACtoY66 = {rACtoY66x, - L3*Sin[5 + ], L3*Cos[5 + ]};  

 

(*3. Weight of actuating link and corresponding position vector*) 

AWAC = {0, MAC*g, 0};  

ArWAC = {0, - L3*Sin[ + 5] - (Lac - DG)*Sin[ - 8], L3*Cos[ + 5] - (Lac - DG)*Cos[ - 8]};  

 

(*The ram - Forces*) 
(*1. Reaction force from the pin between ram and actuating link at point 90 denoted as - 

AFRAMtoAC90*) 

(*2. Reaction force from the ram cylinder interface at point 90*) 

AFCtoRAM90 = {0, CtoRAM90*NCtoRAM90*Sin[] - NCtoRAM90*Cos[], 
CtoRAM90*NCtoRAM90*Cos[] + NCtoRAM90*Sin[]};  
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(*3. Weight of ram*) 

AWRAM = {0, MRAM*g, 0};  

 

(*4. Cylinder pressure force on ram*) 

AFPtoRAM = PRAM*ARAM*{0, Sin[], Cos[]};  

 

(*The Piston - Sum of forces*) 

ForceP1 = - AFPtoCR1 + Tos[, ].(DFOILtoP1 + DFBtoP1) + AWp - Mp*(Tos[, ].Dap[, , 1]);  

ForceP2 = - AFPtoCR2 + Tos[,  + 2*Pi/9].(DFOILtoP2 + DFBtoP2) + AWp - Mp*(Tos[,  + 

2*Pi/9].Dap[, , 2]);  

ForceP3 = - AFPtoCR3 + Tos[,  + 4*Pi/9].(DFOILtoP3 + DFBtoP3) + AWp - Mp*(Tos[,  + 

4*Pi/9].Dap[, , 3]);  

ForceP4 = - AFPtoCR4 + Tos[,  + 6*Pi/9].(DFOILtoP4 + DFBtoP4) + AWp - Mp*(Tos[,  + 

6*Pi/9].Dap[, , 4]);  

ForceP5 = - AFPtoCR5 + Tos[,  + 8*Pi/9].(DFOILtoP5 + DFBtoP5) + AWp - Mp*(Tos[,  + 

8*Pi/9].Dap[, , 5]);  

ForceP6 = - AFPtoCR6 + Tos[,  + 10*Pi/9].(DFOILtoP6 + DFBtoP6) + AWp - Mp*(Tos[,  + 

10*Pi/9].Dap[, , 6]);  

ForceP7 = - AFPtoCR7 + Tos[,  + 12*Pi/9].(DFOILtoP7 + DFBtoP7) + AWp - Mp*(Tos[,  + 

12*Pi/9].Dap[, , 7]);  

ForceP8 = - AFPtoCR8 + Tos[,  + 14*Pi/9].(DFOILtoP8 + DFBtoP8) + AWp - Mp*(Tos[,  + 

14*Pi/9].Dap[, , 8]);  

ForceP9 = - AFPtoCR9 + Tos[,  + 16*Pi/9].(DFOILtoP9 + DFBtoP9) + AWp - Mp*(Tos[,  + 

16*Pi/9].Dap[, , 9]);  

 

FxP1 = ForceP1[[1]];  

FxP2 = ForceP2[[1]];  

FxP3 = ForceP3[[1]];  

FxP4 = ForceP4[[1]];  

FxP5 = ForceP5[[1]];  

FxP6 = ForceP6[[1]];  

FxP7 = ForceP7[[1]];  

FxP8 = ForceP8[[1]];  

FxP9 = ForceP9[[1]];  

 

FyP1 = ForceP1[[2]];  

FyP2 = ForceP2[[2]];  
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FyP3 = ForceP3[[2]];  

FyP4 = ForceP4[[2]];  

FyP5 = ForceP5[[2]];  

FyP6 = ForceP6[[2]];  

FyP7 = ForceP7[[2]];  

FyP8 = ForceP8[[2]];  

FyP9 = ForceP9[[2]];  

 

FzP1 = ForceP1[[3]];  

FzP2 = ForceP2[[3]];  

FzP3 = ForceP3[[3]];  

FzP4 = ForceP4[[3]];  

FzP5 = ForceP5[[3]];  

FzP6 = ForceP6[[3]];  

FzP7 = ForceP7[[3]];  

FzP8 = ForceP8[[3]];  

FzP9 = ForceP9[[3]];  

 

(*The Piston - Sum of moments*) 

(*Moments about the common point between ConRod and piston (points 14 to 22)*) 

AMPtoCR1 = {0, 0, 0};  

AMPtoCR2 = {0, 0, 0};  

AMPtoCR3 = {0, 0, 0};  

AMPtoCR4 = {0, 0, 0};  

AMPtoCR5 = {0, 0, 0};  

AMPtoCR6 = {0, 0, 0};  

AMPtoCR7 = {0, 0, 0};  

AMPtoCR8 = {0, 0, 0};  

AMPtoCR9 = {0, 0, 0};  

 

MomentP1 : = DrBtoPDFBtoP1 + DrWP(Tos[, ].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 1]) - Tos[, 
].AMPtoCR1;  

MomentP2 : = DrBtoPDFBtoP2 + DrWP(Tos[,  + 2*Pi/9].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 

2]) - Tos[,  + 2*Pi/9].AMPtoCR2;  

MomentP3 : = DrBtoPDFBtoP3 + DrWP(Tos[,  + 4*Pi/9].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 

3]) - Tos[,  + 4*Pi/9].AMPtoCR3;  

MomentP4 : = DrBtoPDFBtoP4 + DrWP(Tos[,  + 6*Pi/9].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 

4]) - Tos[,  + 6*Pi/9].AMPtoCR4;  

MomentP5 : = DrBtoPDFBtoP5 + DrWP(Tos[,  + 8*Pi/9].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 

5]) - Tos[,  + 8*Pi/9].AMPtoCR5;  

MomentP6 : = DrBtoPDFBtoP6 + DrWP(Tos[,  + 10*Pi/9].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 

6]) - Tos[,  + 10*Pi/9].AMPtoCR6;  

MomentP7 : = DrBtoPDFBtoP7 + DrWP(Tos[,  + 12*Pi/9].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 

7]) - Tos[,  + 12*Pi/9].AMPtoCR7;  

MomentP8 : = DrBtoPDFBtoP8 + DrWP(Tos[,  + 14*Pi/9].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 

8]) - Tos[,  + 14*Pi/9].AMPtoCR8;  

MomentP9 : = DrBtoPDFBtoP9 + DrWP(Tos[,  + 16*Pi/9].AWp) - DIp.Dp - DrWP(Mp*Dap[, , 

9]) - Tos[,  + 16*Pi/9].AMPtoCR9;  

 

MxP1 = MomentP1[[1]];  

MxP2 = MomentP2[[1]];  

MxP3 = MomentP3[[1]];  

MxP4 = MomentP4[[1]];  

MxP5 = MomentP5[[1]];  

MxP6 = MomentP6[[1]];  

MxP7 = MomentP7[[1]];  
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MxP8 = MomentP8[[1]];  

MxP9 = MomentP9[[1]];  

 

MyP1 = MomentP1[[2]];  

MyP2 = MomentP2[[2]];  

MyP3 = MomentP3[[2]];  

MyP4 = MomentP4[[2]];  

MyP5 = MomentP5[[2]];  

MyP6 = MomentP6[[2]];  

MyP7 = MomentP7[[2]];  

MyP8 = MomentP8[[2]];  

MyP9 = MomentP9[[2]];  

 

solP1 = NSolve[{FxP1 = = 0, FyP1 = = 0, FzP1 = = 0, MxP1 = = 0, MyP1 = = 0}, {AFPtoCR1x, FBtoP1x, 

FBtoP1y, AFPtoCR1y, AFPtoCR1z }];  

solP2 = NSolve[{FxP20, FyP20, FzP20, MxP20, MyP20}, {AFPtoCR2x, FBtoP2x, FBtoP2y, 

AFPtoCR2y, AFPtoCR2z }];  

solP3 = NSolve[{FxP30, FyP30, FzP30, MxP30, MyP30}, {AFPtoCR3x, FBtoP3x, FBtoP3y, 

AFPtoCR3y, AFPtoCR3z }];  

solP4 = NSolve[{FxP40, FyP40, FzP40, MxP40, MyP40}, {AFPtoCR4x, FBtoP4x, FBtoP4y, 

AFPtoCR4y, AFPtoCR4z }];  

solP5 = NSolve[{FxP50, FyP50, FzP50, MxP50, MyP50}, {AFPtoCR5x, FBtoP5x, FBtoP5y, 

AFPtoCR5y, AFPtoCR5z }];  

solP6 = NSolve[{FxP60, FyP60, FzP60, MxP60, MyP60}, {AFPtoCR6x, FBtoP6x, FBtoP6y, 

AFPtoCR6y, AFPtoCR6z }];  

solP7 = NSolve[{FxP70, FyP70, FzP70, MxP70, MyP70}, {AFPtoCR7x, FBtoP7x, FBtoP7y, 

AFPtoCR7y, AFPtoCR7z }];  

solP8 = NSolve[{FxP80, FyP80, FzP80, MxP80, MyP80}, {AFPtoCR8x, FBtoP8x, FBtoP8y, 

AFPtoCR8y, AFPtoCR8z }];  

solP9 = NSolve[{FxP90, FyP90, FzP90, MxP90, MyP90}, {AFPtoCR9x, FBtoP9x, FBtoP9y, 

AFPtoCR9y, AFPtoCR9z }];  

 

FBtoP1x = Evaluate[FBtoP1x]/.solP1[[1]];  

FBtoP1y = Evaluate[FBtoP1y]/.solP1[[1]];  

AFPtoCR1x = Chop[Evaluate[AFPtoCR1x]/.solP1[[1]]];  

AFPtoCR1y = Evaluate[AFPtoCR1y]/.solP1[[1]];  

AFPtoCR1z = Evaluate[AFPtoCR1z]/.solP1[[1]];  

 

FBtoP2x = Evaluate[FBtoP2x]/.solP2[[1]];  

FBtoP2y = Evaluate[FBtoP2y]/.solP2[[1]];  

AFPtoCR2x = Chop[Evaluate[AFPtoCR2x]/.solP2[[1]]];  

AFPtoCR2y = Evaluate[AFPtoCR2y]/.solP2[[1]];  

AFPtoCR2z = Evaluate[AFPtoCR2z]/.solP2[[1]];  

 

FBtoP3x = Evaluate[FBtoP3x]/.solP3[[1]];  

FBtoP3y = Evaluate[FBtoP3y]/.solP3[[1]];  

AFPtoCR3x = Chop[Evaluate[AFPtoCR3x]/.solP3[[1]]];  

AFPtoCR3y = Evaluate[AFPtoCR3y]/.solP3[[1]];  

AFPtoCR3z = Evaluate[AFPtoCR3z]/.solP3[[1]];  

 

FBtoP4x = Evaluate[FBtoP4x]/.solP4[[1]];  

FBtoP4y = Evaluate[FBtoP4y]/.solP4[[1]];  

AFPtoCR4x = Chop[Evaluate[AFPtoCR4x]/.solP4[[1]]];  

AFPtoCR4y = Evaluate[AFPtoCR4y]/.solP4[[1]];  

AFPtoCR4z = Evaluate[AFPtoCR4z]/.solP4[[1]];  
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FBtoP5x = Evaluate[FBtoP5x]/.solP5[[1]];  

FBtoP5y = Evaluate[FBtoP5y]/.solP5[[1]];  

AFPtoCR5x = Chop[Evaluate[AFPtoCR5x]/.solP5[[1]]];  

AFPtoCR5y = Evaluate[AFPtoCR5y]/.solP5[[1]];  

AFPtoCR5z = Evaluate[AFPtoCR5z]/.solP5[[1]];  

 

FBtoP6x = Evaluate[FBtoP6x]/.solP6[[1]];  

FBtoP6y = Evaluate[FBtoP6y]/.solP6[[1]];  

AFPtoCR6x = Chop[Evaluate[AFPtoCR6x]/.solP6[[1]]];  

AFPtoCR6y = Evaluate[AFPtoCR6y]/.solP6[[1]];  

AFPtoCR6z = Evaluate[AFPtoCR6z]/.solP6[[1]];  

 

FBtoP7x = Evaluate[FBtoP7x]/.solP7[[1]];  

FBtoP7y = Evaluate[FBtoP7y]/.solP7[[1]];  

AFPtoCR7x = Chop[Evaluate[AFPtoCR7x]/.solP7[[1]]];  

AFPtoCR7y = Evaluate[AFPtoCR7y]/.solP7[[1]];  

AFPtoCR7z = Evaluate[AFPtoCR7z]/.solP7[[1]];  

 

FBtoP8x = Evaluate[FBtoP8x]/.solP8[[1]];  

FBtoP8y = Evaluate[FBtoP8y]/.solP8[[1]];  

AFPtoCR8x = Chop[Evaluate[AFPtoCR8x]/.solP8[[1]]];  

AFPtoCR8y = Evaluate[AFPtoCR8y]/.solP8[[1]];  

AFPtoCR8z = Evaluate[AFPtoCR8z]/.solP8[[1]];  

 

FBtoP9x = Evaluate[FBtoP9x]/.solP9[[1]];  

FBtoP9y = Evaluate[FBtoP9y]/.solP9[[1]];  

AFPtoCR9x = Chop[Evaluate[AFPtoCR9x]/.solP9[[1]]];  

AFPtoCR9y = Evaluate[AFPtoCR9y]/.solP9[[1]];  

AFPtoCR9z = Evaluate[AFPtoCR9z]/.solP9[[1]];  

AFBtoP1 = Tos[, ].DFBtoP1;  

AFBtoP2 = Tos[, ].DFBtoP2;  

AFBtoP3 = Tos[, ].DFBtoP3;  

AFBtoP4 = Tos[, ].DFBtoP4;  

AFBtoP5 = Tos[, ].DFBtoP5;  

AFBtoP6 = Tos[, ].DFBtoP6;  

AFBtoP7 = Tos[, ].DFBtoP7;  

AFBtoP8 = Tos[, ].DFBtoP8;  

AFBtoP9 = Tos[, ].DFBtoP9;  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP1.csv", Table[{t, DFBtoP1[[1]], DFBtoP1[[2]], DFBtoP1[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP2.csv", Table[{t, DFBtoP2[[1]], DFBtoP2[[2]], DFBtoP2[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP3.csv", Table[{t, DFBtoP3[[1]], DFBtoP3[[2]], DFBtoP3[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP4.csv", Table[{t, DFBtoP4[[1]], DFBtoP4[[2]], DFBtoP4[[3]]}, {t, 0, 1, 0.0001}]];  
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Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP5.csv", Table[{t, DFBtoP5[[1]], DFBtoP5[[2]], DFBtoP5[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP6.csv", Table[{t, DFBtoP6[[1]], DFBtoP6[[2]], DFBtoP6[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP7.csv", Table[{t, DFBtoP7[[1]], DFBtoP7[[2]], DFBtoP7[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP8.csv", Table[{t, DFBtoP8[[1]], DFBtoP8[[2]], DFBtoP8[[3]]}, {t, 0, 1, 0.0001}]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on 

Pistons\\DFBtoP9.csv", Table[{t, DFBtoP9[[1]], DFBtoP9[[2]], DFBtoP9[[3]]}, {t, 0, 1, 0.0001}]];  

 

(*Connecting Rod - Sum of forces*) 
ForceCR1 : = AWCR + AFMStoCR1 + AFPtoCR1 - MCR*AaCR[t, 1];  

ForceCR2 : = AWCR + AFMStoCR2 + AFPtoCR2 - MCR*AaCR[t, 2];  

ForceCR3 : = AWCR + AFMStoCR3 + AFPtoCR3 - MCR*AaCR[t, 3];  

ForceCR4 : = AWCR + AFMStoCR4 + AFPtoCR4 - MCR*AaCR[t, 4];  

ForceCR5 : = AWCR + AFMStoCR5 + AFPtoCR5 - MCR*AaCR[t, 5];  

ForceCR6 : = AWCR + AFMStoCR6 + AFPtoCR6 - MCR*AaCR[t, 6];  

ForceCR7 : = AWCR + AFMStoCR7 + AFPtoCR7 - MCR*AaCR[t, 7];  

ForceCR8 : = AWCR + AFMStoCR8 + AFPtoCR8 - MCR*AaCR[t, 8];  

ForceCR9 : = AWCR + AFMStoCR9 + AFPtoCR9 - MCR*AaCR[t, 9];  

 

FxCR1 = ForceCR1[[1]];  

FxCR2 = ForceCR2[[1]];  

FxCR3 = ForceCR3[[1]];  

FxCR4 = ForceCR4[[1]];  

FxCR5 = ForceCR5[[1]];  

FxCR6 = ForceCR6[[1]];  

FxCR7 = ForceCR7[[1]];  

FxCR8 = ForceCR8[[1]];  

FxCR9 = ForceCR9[[1]];  

 

FyCR1 = ForceCR1[[2]];  

FyCR2 = ForceCR2[[2]];  

FyCR3 = ForceCR3[[2]];  

FyCR4 = ForceCR4[[2]];  

FyCR5 = ForceCR5[[2]];  

FyCR6 = ForceCR6[[2]];  

FyCR7 = ForceCR7[[2]];  

FyCR8 = ForceCR8[[2]];  

FyCR9 = ForceCR9[[2]];  

 

FzCR1 = ForceCR1[[3]];  

FzCR2 = ForceCR2[[3]];  

FzCR3 = ForceCR3[[3]];  

FzCR4 = ForceCR4[[3]];  

FzCR5 = ForceCR5[[3]];  

FzCR6 = ForceCR6[[3]];  

FzCR7 = ForceCR7[[3]];  

FzCR8 = ForceCR8[[3]];  

FzCR9 = ForceCR9[[3]];  

 

solCR1 = NSolve[{FxCR10, FyCR10, FzCR10}, {AFMStoCR1x, AFMStoCR1y, AFMStoCR1z }];  

 

solCR2 = NSolve[{FxCR20, FyCR20, FzCR20}, {AFMStoCR2x, AFMStoCR2y, AFMStoCR2z }];  
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solCR3 = NSolve[{FxCR30, FyCR30, FzCR30}, {AFMStoCR3x, AFMStoCR3y, AFMStoCR3z }];  

 

solCR4 = NSolve[{FxCR40, FyCR40, FzCR40}, {AFMStoCR4x, AFMStoCR4y, AFMStoCR4z }];  

 

solCR5 = NSolve[{FxCR50, FyCR50, FzCR50}, {AFMStoCR5x, AFMStoCR5y, AFMStoCR5z }];  

 

solCR6 = NSolve[{FxCR60, FyCR60, FzCR60}, {AFMStoCR6x, AFMStoCR6y, AFMStoCR6z }];  

 

solCR7 = NSolve[{FxCR70, FyCR70, FzCR70}, {AFMStoCR7x, AFMStoCR7y, AFMStoCR7z }];  

 

solCR8 = NSolve[{FxCR80, FyCR80, FzCR80}, {AFMStoCR8x, AFMStoCR8y, AFMStoCR8z }];  

 

solCR9 = NSolve[{FxCR90, FyCR90, FzCR90}, {AFMStoCR9x, AFMStoCR9y, AFMStoCR9z }];  

 

AFMStoCR1x = Evaluate[AFMStoCR1x]/.solCR1[[1]];  

AFMStoCR1y = Evaluate[AFMStoCR1y]/.solCR1[[1]];  

AFMStoCR1z = Evaluate[AFMStoCR1z]/.solCR1[[1]];  

 

AFMStoCR2x = Evaluate[AFMStoCR2x]/.solCR2[[1]];  

AFMStoCR2y = Evaluate[AFMStoCR2y]/.solCR2[[1]];  

AFMStoCR2z = Evaluate[AFMStoCR2z]/.solCR2[[1]];  

 

AFMStoCR3x = Evaluate[AFMStoCR3x]/.solCR3[[1]];  

AFMStoCR3y = Evaluate[AFMStoCR3y]/.solCR3[[1]];  

AFMStoCR3z = Evaluate[AFMStoCR3z]/.solCR3[[1]];  

 

AFMStoCR4x = Evaluate[AFMStoCR4x]/.solCR4[[1]];  

AFMStoCR4y = Evaluate[AFMStoCR4y]/.solCR4[[1]];  

AFMStoCR4z = Evaluate[AFMStoCR4z]/.solCR4[[1]];  

 

AFMStoCR5x = Evaluate[AFMStoCR5x]/.solCR5[[1]];  

AFMStoCR5y = Evaluate[AFMStoCR5y]/.solCR5[[1]];  

AFMStoCR5z = Evaluate[AFMStoCR5z]/.solCR5[[1]];  

 

AFMStoCR6x = Evaluate[AFMStoCR6x]/.solCR6[[1]];  

AFMStoCR6y = Evaluate[AFMStoCR6y]/.solCR6[[1]];  

AFMStoCR6z = Evaluate[AFMStoCR6z]/.solCR6[[1]];  

 

AFMStoCR7x = Evaluate[AFMStoCR7x]/.solCR7[[1]];  

AFMStoCR7y = Evaluate[AFMStoCR7y]/.solCR7[[1]];  

AFMStoCR7z = Evaluate[AFMStoCR7z]/.solCR7[[1]];  

 

AFMStoCR8x = Evaluate[AFMStoCR8x]/.solCR8[[1]];  

AFMStoCR8y = Evaluate[AFMStoCR8y]/.solCR8[[1]];  

AFMStoCR8z = Evaluate[AFMStoCR8z]/.solCR8[[1]];  

 

AFMStoCR9x = Evaluate[AFMStoCR9x]/.solCR9[[1]];  

AFMStoCR9y = Evaluate[AFMStoCR9y]/.solCR9[[1]];  

AFMStoCR9z = Evaluate[AFMStoCR9z]/.solCR9[[1]];  

 

AFMStoCR1x = Interpolation[Table[{t, AFMStoCR1x}, {t, 0, 1, 0.0001}]];  

AFMStoCR1y = Interpolation[Table[{t, AFMStoCR1y}, {t, 0, 1, 0.0001}]];  

AFMStoCR1z = Interpolation[Table[{t, AFMStoCR1z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR2x = Interpolation[Table[{t, AFMStoCR2x}, {t, 0, 1, 0.0001}]];  

AFMStoCR2y = Interpolation[Table[{t, AFMStoCR2y}, {t, 0, 1, 0.0001}]];  
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AFMStoCR2z = Interpolation[Table[{t, AFMStoCR2z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR3x = Interpolation[Table[{t, AFMStoCR3x}, {t, 0, 1, 0.0001}]];  

AFMStoCR3y = Interpolation[Table[{t, AFMStoCR3y}, {t, 0, 1, 0.0001}]];  

AFMStoCR3z = Interpolation[Table[{t, AFMStoCR3z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR4x = Interpolation[Table[{t, AFMStoCR4x}, {t, 0, 1, 0.0001}]];  

AFMStoCR4y = Interpolation[Table[{t, AFMStoCR4y}, {t, 0, 1, 0.0001}]];  

AFMStoCR4z = Interpolation[Table[{t, AFMStoCR4z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR5x = Interpolation[Table[{t, AFMStoCR5x}, {t, 0, 1, 0.0001}]];  

AFMStoCR5y = Interpolation[Table[{t, AFMStoCR5y}, {t, 0, 1, 0.0001}]];  

AFMStoCR5z = Interpolation[Table[{t, AFMStoCR5z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR6x = Interpolation[Table[{t, AFMStoCR6x}, {t, 0, 1, 0.0001}]];  

AFMStoCR6y = Interpolation[Table[{t, AFMStoCR6y}, {t, 0, 1, 0.0001}]];  

AFMStoCR6z = Interpolation[Table[{t, AFMStoCR6z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR7x = Interpolation[Table[{t, AFMStoCR7x}, {t, 0, 1, 0.0001}]];  

AFMStoCR7y = Interpolation[Table[{t, AFMStoCR7y}, {t, 0, 1, 0.0001}]];  

AFMStoCR7z = Interpolation[Table[{t, AFMStoCR7z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR8x = Interpolation[Table[{t, AFMStoCR8x}, {t, 0, 1, 0.0001}]];  

AFMStoCR8y = Interpolation[Table[{t, AFMStoCR8y}, {t, 0, 1, 0.0001}]];  

AFMStoCR8z = Interpolation[Table[{t, AFMStoCR8z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR9x = Interpolation[Table[{t, AFMStoCR9x}, {t, 0, 1, 0.0001}]];  

AFMStoCR9y = Interpolation[Table[{t, AFMStoCR9y}, {t, 0, 1, 0.0001}]];  

AFMStoCR9z = Interpolation[Table[{t, AFMStoCR9z}, {t, 0, 1, 0.0001}]];  

 

AFMStoCR1 = {AFMStoCR1x[t], AFMStoCR1y[t], AFMStoCR1z[t]};  

AFMStoCR2 = {AFMStoCR2x[t], AFMStoCR2y[t], AFMStoCR2z[t]};  

AFMStoCR3 = {AFMStoCR3x[t], AFMStoCR3y[t], AFMStoCR3z[t]};  

AFMStoCR4 = {AFMStoCR4x[t], AFMStoCR4y[t], AFMStoCR4z[t]};  

AFMStoCR5 = {AFMStoCR5x[t], AFMStoCR5y[t], AFMStoCR5z[t]};  

AFMStoCR6 = {AFMStoCR6x[t], AFMStoCR6y[t], AFMStoCR6z[t]};  

AFMStoCR7 = {AFMStoCR7x[t], AFMStoCR7y[t], AFMStoCR7z[t]};  

AFMStoCR8 = {AFMStoCR8x[t], AFMStoCR8y[t], AFMStoCR8z[t]};  

AFMStoCR9 = {AFMStoCR9x[t], AFMStoCR9y[t], AFMStoCR9z[t]};  

 

s4 = OpenWrite["FConRod.nb"] 

Write[s4, AFMStoCR1[[1]]] 

Write[s4, AFMStoCR1[[2]]] 

Write[s4, AFMStoCR1[[3]]] 

Write[s4, Norm[AFMStoCR1]] 

Write[s4, AFPtoCR1[[1]]] 

Write[s4, AFPtoCR1[[2]]] 

Write[s4, AFPtoCR1[[3]]]},  

Write[s4, Norm[AFPtoCR1]]} 

Close[s4] 

 

(*Connecting Rod - moments*) 
AMMStoCR1 = {0, 0, 0};  

AMMStoCR2 = {0, 0, 0};  

AMMStoCR3 = {0, 0, 0};  

AMMStoCR4 = {0, 0, 0};  
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AMMStoCR5 = {0, 0, 0};  

AMMStoCR6 = {0, 0, 0};  

AMMStoCR7 = {0, 0, 0};  

AMMStoCR8 = {0, 0, 0};  

AMMStoCR9 = {0, 0, 0};  

 

(*Second Intermediate Shaft - Sum of forces*) 
AWim2 = {0, 0, 0};  

(*MatrixForm[ForceIM2 : = - Tim1.CFIM2toIM125 + Tc2.( - IFIM2toC227 - IFIM2toC228) + AWim2 - 

Tim1.(Mim2*Caim2)]; *) 

CFIM2toIM125 = Tim1.AWim2 - Mim2*Caim2;  

FIM2toIM125z = CFIM2toIM125[[3]] 

 

(*Second Intermediate Shaft - Sum of moments*) 
IMIM2toC227 = {0, 0, 0};  

IMIM2toC228 = {0, 0, 0};  

(*Sum of the moments of forces acting on 2nd intermediate shaft about center of 2nd cross*) 

MomentIM2 = Chop[ - CMIM2toIM125 - 2Cr27(Tim1.(Tc2.IFIM2toC227)) + Crim2(Tim1.AWim2) - 

CIim2.Cim1 - Crim2(Mim2*Caim2)];  

 

 (*Second Cross - sum of moments about center of 2nd cross*) 
IMOStoC229 = {0, 0, 0};  

IMOStoC230 = {0, 0, 0};  

 

MomentC2 = Ir27IFIM2toC227 + IMIM2toC227 + Ir28IFIM2toC228 + IMIM2toC228 + 

Ir29IFOStoC229 + IMOStoC229 + Ir30IFOStoC230 + IMOStoC230 - IIc2.Ic2;  

 

FIM2toC227z = ( - 0.5IMIM2toC227 - 0.5IMIM2toC228 - Ir29IFOStoC229 - 0.5IMOStoC229 - 

0.5IMOStoC230 + 0.5IIc2.Ic2)[[2]]/Ir27[[1]];  

 

FOStoC229z = ( - Ir27IFIM2toC227 - 0.5IMIM2toC227 - 0.5IMIM2toC228 - 0.5IMOStoC229 - 

0.5IMOStoC230 + 0.5IIc2.Ic2)[[1]]/Ir29[[2]];  

 

 (*Barrel - Output Shaft Assembly - sum of forces*) 

ForceOS = Tos[, ].(Tc2.( - IFOStoC229 - IFOStoC230)) + DFOILtoB1 + DFOILtoB2 + DFOILtoB3 + 

DFOILtoB4 + DFOILtoB5 + DFOILtoB6 + DFOILtoB7 + DFOILtoB8 + DFOILtoB9 - DFBtoP1 - 

DFBtoP2 - DFBtoP3 - DFBtoP4 - DFBtoP5 - DFBtoP6 - DFBtoP7 - DFBtoP8 - DFBtoP9 - DFBStoVP1 - 

DFBStoVP2 - DFBStoVP3 - DFBStoVP4 - DFBStoVP5 - DFBStoVP6 - DFBStoVP7 - DFBStoVP8 - 

DFBStoVP9 + Tos[,].Tvp.(HFVPtoBoutD + HFVPtoBinD + HFVPtoBinS + HFVPtoBoutS) + 

DFB3FtoB + DFB3StoB + DFB4toB + Tos[, ].AWos - Tos[, ].(Mos*Aaos);  

 

FB4toBz = ( - DFOILtoB1 - DFOILtoB2 - DFOILtoB3 - DFOILtoB4 - DFOILtoB5 - DFOILtoB6 - 

DFOILtoB7 - DFOILtoB8 - DFOILtoB9 + DFBtoP1 + DFBtoP2 + DFBtoP3 + DFBtoP4 + DFBtoP5 + 

DFBtoP6 + DFBtoP7 + DFBtoP8 + DFBtoP9 + DFBStoVP1 + DFBStoVP2 + DFBStoVP3 + DFBStoVP4 + 

DFBStoVP5 + DFBStoVP6 + DFBStoVP7 + DFBStoVP8 + DFBStoVP9 - Tos[, ].Tvp.(HFVPtoBoutD 

+ HFVPtoBinD + HFVPtoBinS + HFVPtoBoutS) - DFB3FtoB - DFB3StoB - Tos[, ].AWos + Tos[, 
].(Mos*Aaos))[[3]];  

FB4toBz = Interpolation[Table[{t, FB4toBz}, {t, 0, 1, 0.0001}]];  
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 (*Barrel - Output Shaft Assembly - sum of moments about axis of rotation of yoke*) 

DMB3FtoB = {0, 0, 0};  

DMB3StoB = {0, 0, 0};  

DMB4toB = {0, 0, 0};  

MomentOS = - Tos[, ].(Ar29(Tc2.IFOStoC229)) - Tos[, ].(Ar30(Tc2.IFOStoC230)) - 

Dr31DFBtoP1 - Dr32DFBtoP2 - Dr33DFBtoP3 - Dr34DFBtoP4 - Dr35DFBtoP5 - Dr36DFBtoP6 - 

Dr37DFBtoP7 - Dr38DFBtoP8 - Dr39DFBtoP9 + DrOS(Tos[, ].AWos) + Tos[, 

].Tvp.(HrOUTDHFVPtoBoutD) + Tos[, ].Tvp.(HrINDHFVPtoBinD) + Tos[, 

].Tvp.(HrINSHFVPtoBinS) + Tos[, ].Tvp.(HrOUTSHFVPtoBoutS) + DMVPtoB + 

DrB3FtoBDFB3FtoB + DrB3StoBDFB3StoB + DrB4toBDFB4toB - 

{DrBStoVP[[2]]*(DFBStoVP1[[3]] + DFBStoVP2[[3]] + DFBStoVP3[[3]] + DFBStoVP4[[3]] + 

DFBStoVP5[[3]] + DFBStoVP6[[3]] + DFBStoVP7[[3]] + DFBStoVP8[[3]] + DFBStoVP9[[3]]), 0, 0} + 

{DrOILtoB1[[2]]*DFOILtoB1[[3]] - DrOILtoB1[[3]]*DFOILtoB1[[2]], DrOILtoB1[[3]]*DFOILtoB1[[1]], 

- DrOILtoB1[[2]]*DFOILtoB1[[1]]} + {DrOILtoB2[[2]]*DFOILtoB2[[3]] - 

DrOILtoB2[[3]]*DFOILtoB2[[2]], DrOILtoB2[[3]]*DFOILtoB2[[1]], - DrOILtoB2[[2]]*DFOILtoB2[[1]]} 

+ {DrOILtoB3[[2]]*DFOILtoB3[[3]] - DrOILtoB3[[3]]*DFOILtoB3[[2]], 

DrOILtoB3[[3]]*DFOILtoB3[[1]], - DrOILtoB3[[2]]*DFOILtoB3[[1]]} + 

{DrOILtoB4[[2]]*DFOILtoB4[[3]] - DrOILtoB4[[3]]*DFOILtoB4[[2]], DrOILtoB4[[3]]*DFOILtoB4[[1]], 

- DrOILtoB4[[2]]*DFOILtoB4[[1]]} + {DrOILtoB5[[2]]*DFOILtoB5[[3]] - 

DrOILtoB5[[3]]*DFOILtoB5[[2]], DrOILtoB5[[3]]*DFOILtoB5[[1]], - DrOILtoB5[[2]]*DFOILtoB5[[1]]} 

+ {DrOILtoB6[[2]]*DFOILtoB6[[3]] - DrOILtoB6[[3]]*DFOILtoB6[[2]], 

DrOILtoB6[[3]]*DFOILtoB6[[1]], - DrOILtoB6[[2]]*DFOILtoB6[[1]]} + 

{DrOILtoB7[[2]]*DFOILtoB7[[3]] - DrOILtoB7[[3]]*DFOILtoB7[[2]], DrOILtoB7[[3]]*DFOILtoB7[[1]], 

- DrOILtoB7[[2]]*DFOILtoB7[[1]]} + {DrOILtoB8[[2]]*DFOILtoB8[[3]] - 

DrOILtoB8[[3]]*DFOILtoB8[[2]], DrOILtoB8[[3]]*DFOILtoB8[[1]], - DrOILtoB8[[2]]*DFOILtoB8[[1]]} 

+ {DrOILtoB9[[2]]*DFOILtoB9[[3]] - DrOILtoB9[[3]]*DFOILtoB9[[2]], 

DrOILtoB9[[3]]*DFOILtoB9[[1]], - DrOILtoB9[[2]]*DFOILtoB9[[1]]} - Mos*(DrOS(Tos[, ].Aaos)) - 

DIos.Dos;  

 

MzOS = MomentOS[[3]];  

 

solBarrelMz = Solve[{MzOS0}, {FOStoC229x}];  

 

FOStoC229x = Evaluate[FOStoC229x]/.solBarrelMz[[1]];  

FOStoC229x = Interpolation[Table[{t, FOStoC229x}, {t, 0, 1, 0.0001}]];  

 

IFOStoC229 = {FOStoC229x[t], 0, FOStoC229z};  

IFOStoC230 = - IFOStoC229;  

 

MomentC2 = Ir27IFIM2toC227 + IMIM2toC227 + Ir28IFIM2toC228 + IMIM2toC228 + 

Ir29IFOStoC229 + IMOStoC229 + Ir30IFOStoC230 + IMOStoC230 - IIc2.Ic2;  

 

MzC2 = MomentC2[[3]];  

 

solIC2Mz = NSolve[{MzC20}, {FIM2toC227y}];  

 

FIM2toC227y = Evaluate[FIM2toC227y]/.solIC2Mz[[1]];  

 

MomentIM2 = Chop[ - CMIM2toIM125 - 2Cr27(Tim1.(Tc2.IFIM2toC227)) + Crim2(Tim1.AWim2) - 

CIim2.Cim1 - Crim2(Mim2*Caim2)];  

 

 



248 

 

MzIM2 = MomentIM2[[3]];  

 

solIM2Mz = Solve[{MzIM20}, {MIM2toIM125z}];  

 

ByteCount[MIM2toIM125z = Evaluate[MIM2toIM125z]/.solIM2Mz[[1]]] 

 

 (*First Intermediate shaft - Sum of moments about CG of 1st cross*) 
FMIM1toC123 = {0, 0, 0};  

FMIM1toC124 = {0, 0, 0};  

 

(*Moment of inertita of 1st intermediate shaft*) 

MatrixForm[CIim1 = {{Iim111, 0, Iim113}, {0, Iim122, 0}, {Iim113, 0, Iim133}}];  

MomentIM1 = (Tim1.Cr23)( - Tc1.FFIM1toC123) + (Tim1.Cr24)( - Tc1.FFIM1toC124) + 

Tim1.CMIM2toIM125 - (Tim1.Crim1)AWim1 - Tim1.(CIim1.Cim1) -Tim1.Crim1)(Mim1*Aaim1);  

 

MyIM1 = MomentIM1[[2]];  

MzIM1 = MomentIM1[[3]];  

 

solMyMzIM1 = NSolve[{MyIM10, MzIM10}, {FIM1toC123z, FIM1toC123y}];  

 

FIM1toC123z = Evaluate[FIM1toC123z]/.solMyMzIM1[[1]];  

FIM1toC123y = Evaluate[FIM1toC123y]/.solMyMzIM1[[1]];  
 

(*First Cross - Sum of moments about center of 1st cross*) 
FMMStoC13 = 0;  

FMMStoC14 = 0;  

 

(*Moment of inertia of 1st cross*) 

MatrixForm[FIc1 : = {{Ic11, 0, 0}, {0, Ic11, 0}, {0, 0, Ic13}}]  

 

MomentC1 : = Fr3FFMStoC13 + Fr4FFMStoC14 + FMMStoC13 + FMMStoC14 + Fr23FFIM1toC123 

+ FMIM1toC123 + Fr24FFIM1toC124 + FMIM1toC124 - FIc1.Fc1;  

MxC1 = MomentC1[[1]];  

MzC1 = MomentC1[[3]];  

 

solMxMzC1 = NSolve[{MxC10, MzC10}, {FFMStoC13x, FFMStoC13z}];  

 

FFMStoC13x = Evaluate[FFMStoC13x]/.solMxMzC1[[1]];  

FFMStoC13z = Evaluate[FFMStoC13z]/.solMxMzC1[[1]];  
 

(*Main Shaft - Sum of Moments about center of 2nd bearing*) 
AMB1toMS = {0, 0, 0};  

AMB2toMS = {0, 0, 0};  

 

(*Moment of inertia of main shaft*) 

BIms = {{Ims11, Ims12, Ims13}, {Ims12, Ims22, Ims23}, {Ims13, Ims23, Ims33}};  

MomentMS = ATin + (Ar1 - Ar2)AFB1toMS - (T1[].Br3 - Ar2)(Tc1.FFMStoC13) - (T1[].Br4 - 

Ar2)(Tc1.FFMStoC14) - (ArCR1 - Ar2)AFMStoCR1 - (ArCR2 - Ar2)AFMStoCR2 - (ArCR3 - 

Ar2)AFMStoCR3 - (ArCR4 - Ar2)AFMStoCR4 - (ArCR5 - Ar2)AFMStoCR5 - (ArCR6 - 
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Ar2)AFMStoCR6 - (ArCR7 - Ar2)AFMStoCR7 - (ArCR8 - Ar2)AFMStoCR8 - (ArCR9 - 

Ar2)AFMStoCR9 + (ArWms - Ar2)AWms - T1[].(BIms.BMS);  

 

MxMS = MomentMS[[1]];  

MyMS = MomentMS[[2]];  

 

SolMxMyMS = NSolve[{MxMS0, MyMS0}, {AFB1toMSx, AFB1toMSy}] 

 

AFB1toMSx = Evaluate[AFB1toMSx]/.SolMxMyMS[[1]];  

AFB1toMSy = Evaluate[AFB1toMSy]/.SolMxMyMS[[1]];  
 

(*Main Shaft - Sum of Forces*) 

AFB2toMS = - AFB1toMS + Tc1.FFMStoC13 + Tc1.FFMStoC14 + AFMStoCR1 + AFMStoCR2 + 

AFMStoCR3 + AFMStoCR4 + AFMStoCR5 + AFMStoCR6 + AFMStoCR7 + AFMStoCR8 + 

AFMStoCR9 - AWms;  

 

AFB2toMSx = Interpolation[Table[{t, AFB2toMS[[1]]}, {t, 0, 1, 0.0001}]];  

 

AFB2toMSy = Interpolation[Table[{t, AFB2toMS[[2]]}, {t, 0, 1, 0.0001}]];  

 

AFB2toMSz = Interpolation[Table[{t, AFB2toMS[[3]]}, {t, 0, 1, 0.0001}]];  

AFB2toMS = {AFB2toMSx[t], AFB2toMSy[t], AFB2toMSz[t]};  

 

(*Displacement Mechanism (Actuating Link) - Sum of moments about point 90*) 
MomentAC90 = Chop[ - (ArACtoY66 - ArRAMtoAC90)AFACtoY66 + (ArWAC - 

ArRAMtoAC90)AWAC - (ArWAC - ArRAMtoAC90)(MAC*AaAC) - AIAC.AAC];  

 

MxAC90 = Simplify[MomentAC90[[1]]] 

solMxAC90 = Solve[{MxAC900}, {FACtoY66N}] 

FACtoY66N = Evaluate[FACtoY66N]/.solMxAC90[[1]];  

 

(*Displacement Mechanism (Actuating Link) - Sum of moments about point 66*) 
MomentAC66 = Chop[(ArRAMtoAC90 - ArACtoY66)AFRAMtoAC90 + (ArWAC - 

ArACtoY66)AWAC - (ArWAC - ArACtoY66)(MAC*AaAC) - AIAC.AAC];  

 

MxAC66 = Simplify[MomentAC66[[1]]] 

solMxAC66 = Solve[{MxAC660}, {FRAMtoAC90y}] 

FRAMtoAC90y = Evaluate[FRAMtoAC90y]/.solMxAC66[[1]];  

 

AMCtoY67 = {0, 0, 0};  

AMCtoY68 = {0, 0, 0};  

AMACtoY66 = {0, 0, 0};  

 

MomentVPplusOS = Tos[, ].((ArCtoY68 - ArCtoY67)AFCtoY68) + Tos[, ].((ArACtoY66 - 

ArCtoY67)AFACtoY66) + Tos[, ].((Tvp.Hrvp - ArCtoY67)AWvp) + Tos[, ].((ArHPAtoY79 - 

ArCtoY67)AFHPAtoY79) + Tos[, ].((ArLPAtoY78 - ArCtoY67)AFLPAtoY78) + (DrOILtoVP - 

Tos[, ].ArCtoY67)(DFOILtoVP1 + DFOILtoVP2 + DFOILtoVP3 + DFOILtoVP4 + DFOILtoVP5 + 

DFOILtoVP6 + DFOILtoVP7 + DFOILtoVP8 + DFOILtoVP9) - Tos[, ].((Tvp.Hrvp - 

ArCtoY67)(Tvp.(Mvp*Havp))) - Tos[, ].(Tvp.(HIvp.Hvp)) - Tos[, ].((Ar29 - 
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ArCtoY67)(Tc2.IFOStoC229)) - Tos[, ].((Ar30 - ArCtoY67)(Tc2.IFOStoC230)) - (Dr31 - Tos[, 

].ArCtoY67)DFBtoP1 - (Dr32 - Tos[, ].ArCtoY67)DFBtoP2 - (Dr33 - Tos[, ].ArCtoY67)DFBtoP3 

- (Dr34 - Tos[, ].ArCtoY67)DFBtoP4 - (Dr35 - Tos[, ].ArCtoY67)DFBtoP5 - (Dr36 - Tos[, 
].ArCtoY67)DFBtoP6 - (Dr37 - Tos[, ].ArCtoY67)DFBtoP7 - (Dr38 - Tos[, ].ArCtoY67)DFBtoP8 

- (Dr39 - Tos[, ].ArCtoY67)DFBtoP9 + (DrOS - Tos[, ].ArCtoY67)(Tos[, ].AWos) + (DrOILtoB1 

- Tos[, ].ArCtoY67)DFOILtoB1 + (DrOILtoB2 - Tos[, ].ArCtoY67)DFOILtoB2 + (DrOILtoB3 - 

Tos[, ].ArCtoY67)DFOILtoB3 + (DrOILtoB4 - Tos[, ].ArCtoY67)DFOILtoB4 + (DrOILtoB5 - 

Tos[, ].ArCtoY67)DFOILtoB5 + (DrOILtoB6 - Tos[, ].ArCtoY67)DFOILtoB6 + (DrOILtoB7 - 

Tos[, ].ArCtoY67)DFOILtoB7 + (DrOILtoB8 - Tos[, ].ArCtoY67)DFOILtoB8 + (DrOILtoB9 - 

Tos[, ].ArCtoY67)DFOILtoB9 - Mos*((DrOS - Tos[, ].ArCtoY67)(Tos[, ].Aaos)) - DIos.Dos;  

 

MxVPplusOS = MomentVPplusOS[[1]];  

 

MyVPplusOS = MomentVPplusOS[[2]];  

 

MzVPplusOS = MomentVPplusOS[[3]];  

solMomentVPplusOS = NSolve[{MxVPplusOS0, MyVPplusOS0, MzVPplusOS0}, {FCtoY68y, 

FCtoY68z, FACtoY66P}];  

 

FCtoY68y = Evaluate[FCtoY68y]/.solMomentVPplusOS[[1]];  

FCtoY68z = Evaluate[FCtoY68z]/.solMomentVPplusOS[[1]];  

FACtoY66P = Evaluate[FACtoY66P]/.solMomentVPplusOS[[1]];  

 

FCtoY68y = Interpolation[Table[{t, FCtoY68y}, {t, 0, 1, 0.0001}]] 

FCtoY68z = Interpolation[Table[{t, FCtoY68z}, {t, 0, 1, 0.0001}]] 

FACtoY66P = Interpolation[Table[{t, FACtoY66P}, {t, 0, 1, 0.0001}]] 

 

AFCtoY68 = {0, FCtoY68y[t], FCtoY68z[t]} 

AFACtoY66 = {0, FACtoY66P[t]*Sin[ - 8] + FACtoY66N*Cos[ - 8], FACtoY66P[t]*Cos[ - 8] - 

FACtoY66N*Sin[ - 8]} 

 

ForceVPplusOS = Tos[, ].(AFCtoY67 + AFCtoY68 + AFACtoY66 + AWvp + AFLPAtoY78 + 

AFHPAtoY79 - Tvp.(Mvp*Havp) + AWos - Mos*Aaos - Tc2.(IFOStoC229 + IFOStoC230)) + 

DFOILtoVP1 + DFOILtoVP2 + DFOILtoVP3 + DFOILtoVP4 + DFOILtoVP5 + DFOILtoVP6 + 

DFOILtoVP7 + DFOILtoVP8 + DFOILtoVP9 + DFOILtoB1 + DFOILtoB2 + DFOILtoB3 + DFOILtoB4 + 

DFOILtoB5 + DFOILtoB6 + DFOILtoB7 + DFOILtoB8 + DFOILtoB9 - DFBtoP1 - DFBtoP2 - DFBtoP3 - 

DFBtoP4 - DFBtoP5 - DFBtoP6 - DFBtoP7 - DFBtoP8 - DFBtoP9;  

 

AFCtoY67 = - AFCtoY68 - AFACtoY66 - AWvp - AFLPAtoY78 - AFHPAtoY79 + Tvp.(Mvp*Havp) - 

AWos + Mos*Aaos + Tc2.(IFOStoC229 + IFOStoC230) - Tos[, ].(DFOILtoVP1 + DFOILtoVP2 + 

DFOILtoVP3 + DFOILtoVP4 + DFOILtoVP5 + DFOILtoVP6 + DFOILtoVP7 + DFOILtoVP8 + 

DFOILtoVP9 + DFOILtoB1 + DFOILtoB2 + DFOILtoB3 + DFOILtoB4 + DFOILtoB5 + DFOILtoB6 + 

DFOILtoB7 + DFOILtoB8 + DFOILtoB9 - DFBtoP1 - DFBtoP2 - DFBtoP3 - DFBtoP4 - DFBtoP5 - 

DFBtoP6 - DFBtoP7 - DFBtoP8 - DFBtoP9);  

FCtoY67x = Interpolation[Table[{t, AFCtoY67[[1]]}, {t, 0, 1, 0.0001}]];  

FCtoY67y = Interpolation[Table[{t, AFCtoY67[[2]]}, {t, 0, 1, 0.0001}]];  

FCtoY67z = Interpolation[Table[{t, AFCtoY67[[3]]}, {t, 0, 1, 0.0001}]];  

AFCtoY67 = {FCtoY67x[t], FCtoY67y[t], FCtoY67z[t]};  

 

(*Displacement Mechanism (Actuating Link) - Sum of forces*) 
ForceAC = AFRAMtoAC90 - AFACtoY66 + AWAC - MAC*AaAC;  
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FzAC = ForceAC[[3]] 

FyAC = ForceAC[[2]] 

 

solFzAC = Solve[{FyAC0}, {FRAMtoAC90z}] 

FRAMtoAC90z = Evaluate[FRAMtoAC90z]/.solFzAC[[1]];  

 

 (*Ram - Sum of Forces*) 
ForceRam = - AFRAMtoAC90 + AFCtoRAM90 + AWRAM + AFPtoRAM - MRAM*AaRAM;  

 

FyRam = ForceRam[[2]] 

FzRam = ForceRam[[3]] 

 

solForceRam = NSolve[{FyRam0, FzRam0}, {NCtoRAM90, PRAM}];  

NCtoRAM90 = Evaluate[NCtoRAM90]/.solForceRam[[1]];  

PRAM = Evaluate[PRAM]/.solForceRam[[1]];  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFB1toMSx.xls", 

Chop[Table[{t, - AFB1toMS[[1]]}, {t, 0, 0.12, 0.0001}]]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFB1toMSy.xls", 

Chop[Table[{t, - AFB1toMS[[2]]}, {t, 0, 0.12, 0.0001}]]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFB1toMSmag.xls", 

Chop[Table[{t, Norm[AFB1toMS]}, {t, 0, 0.12, 0.0001}]]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFB2toMSx.xls", 

Chop[Table[{t, - AFB2toMS[[1]]}, {t, 0, 0.12, 0.0001}]]];  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFB2toMSy.xls", 

Chop[Table[{t, - AFB2toMS[[2]]}, {t, 0, 0.12, 0.0001}]]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFB2toMSz.xls", 

Chop[Table[{t, - AFB2toMS[[3]]}, {t, 0, 0.12, 0.0001}]]];  

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFB2toMSmag.xls", 

Chop[Table[{t, Norm[AFB2toMS]}, {t, 0, 0.12, 0.0001}]]];  

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoY67x.xls", 

Chop[Table[{t, - AFCtoY67[[1]]}, {t, 0, 0.12, 0.0001}]]] 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoY67y.xls", 

Chop[Table[{t, - AFCtoY67[[2]]}, {t, 0, 0.12, 0.0001}]]] 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoY67z.xls", 

Chop[Table[{t, - AFCtoY67[[3]]}, {t, 0, 0.12, 0.0001}]]] 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoY67mag.xls", 

Chop[Table[{t, Norm[AFCtoY67]}, {t, 0, 0.12, 0.0001}]]] 

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoY68y.xls", 

Chop[Table[{t, - AFCtoY68[[2]]}, {t, 0, 0.12, 0.0001}]]] 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoY68z.xls", 

Chop[Table[{t, - AFCtoY68[[3]]}, {t, 0, 0.12, 0.0001}]]] 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoY68mag.xls", 

Chop[Table[{t, Norm[AFCtoY68]}, {t, 0, 0.12, 0.0001}]]] 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoRAM90y.xls", 

Chop[Table[{t, - AFCtoRAM90[[2]]}, {t, 0, 0.12, 0.0001}]]] 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoRAM90z.xls", 

Chop[Table[{t, - AFCtoRAM90[[3]]}, {t, 0, 0.12, 0.0001}]]] 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\AFCtoRAM90mag.xls", 

Chop[Table[{t, Norm[AFCtoRAM90]}, {t, 0, 0.12, 0.0001}]]] 

 

DFTofAFB1toMSx = Take[Abs[Fourier[Table[AFB1toMS[[1]], {t, 0, 1, 1/(1024)}], FourierParameters{ - 

1, 1}]], {1, 256}];  
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ListLinePlot[DFTofAFB1toMSx, PlotRangeAll, AxesLabel{"Frequency (Hz)", "AFB1toMSx (N)"}, 

LabelStyleDirective[Bold], PlotStyleThick] 

 

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\DFTofAFB1toMSx.xls", 

DFTofAFB1toMSx];  

 

s3 = OpenWrite["Fcase.nb"] 

Write[s3, AFB1toMS[[1]]] 

Write[s3, AFB1toMS[[2]]] 

Write[s3, Norm[AFB1toMS]] 

Write[s3, AFB2toMS[[1]]] 

Write[s3, AFB2toMS[[2]]] 

Write[s3, AFB2toMS[[3]]] 

Write[s3, Norm[AFB2toMS]] 

Write[s3, AFCtoY67[[1]]] 

Write[s3, AFCtoY67[[2]]] 

Write[s3, AFCtoY67[[3]]] 

Write[s3, Norm[AFCtoY67]] 

Write[s3, AFCtoY68[[2]]] 

Write[s3, AFCtoY68[[3]]] 

Write[s3, Norm[AFCtoY68]] 

Write[s3, AFCtoRAM90[[2]]] 

Write[s3, AFCtoRAM90[[3]]] 

Write[s3, Norm[AFCtoRAM90]] 

Close[s3] 
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APPENDIX C: MATHEMATICA NOTEBOOK TO SOLVE FOR THE ORIFICE 

AREA AND THE SOLID AREA BETWEEN SUCCESSIVE CYLINDERS 

 
(*Constant Inputs*) 

SetDirectory["C :\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models"] 

 

L45 = Length of notch groove base (Figure  3-20); 

R2 : = Outside radius of the discharge/suction port (Figure  2-5);  

R3 : = Inside radius of the discharge/suction port (Figure  2-5);  

 

1 : = See Figure  3-17;  

2 : = See Figure  3-17;  

3 : = See Figure  3-17;  

4 : = See Figure  3-17;  

5 : = See Figure  3-17;  

6 = See Figure  3-17;  

7 : = See Figure  3-17;  

8 : = See Figure  3-17;  

9 : = See Figure  3-17;  

 

 

1 : = See Figure  3-29;  

2 : = See Figure  3-29;  

3 : = See Figure  3-29;  

4 : = See Figure  3-29;  

5 : = See Figure  3-29;  

6 : = See Figure  3-29;  

7 : = See Figure  3-29;  

8 : = See Figure  3-29;  

9 : = See Figure  3-29;  

10 : = See Figure  3-29;  

11 : = See Figure  3-29;  

12 : = See Figure  3-29;  

13 : = See Figure  3-29;  

 

D : = Angle between two successive cylinders;  

c : = Angle between center lines of the circular ends of the bottom of the cylindrical cavity (Figure  3-32);  

1 : = Angular position of center line of circular end of discharge port with respect to the TDC (Figure  3-32);  

 : = Kidney angle of the valve plate;  

 

(*Orifice area*) 
Rk = (R2 - R3)/2;  

Aor1 = 0.00002*(2Pi*Rk + R2*c + R3*c);  

 

C1 = (R2
2
 + 6 R2 R3 + R3

2
);  

C2 = Sqrt[(3 R2 + R3)(R2 + 3 R3)] 
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L16 = Sqrt[(1/(8(R2 + R3)
2
) Sin[( - 2)/2]

2
 (2 C1

2
 + C2

2
 (R2 - R3)

2
 + C2 (R2 - R3) (C2 (R2 - R3) Cos[c + 

 + 2] + 2 C1 Sin[c +  + 2])))];  

 

L17 = Sqrt[ 1/(16(R2 + R3)
2
) (( C1 (Cos[1] - Cos[c/2 + 2]) + (R2 - R3)C2( Sin[1] + Sin[c/2 + 2]))^2 

+ C1 (Sin[c/2 + 2] - Sin[1]) + 2 (R2 - R3)C2)
2
];  

 

Aor2[_] = (L45*L16/L17)^2/4 + Aor1;  

 

(*Coordinates of point (5)*) 
Aor3[_] : = Module[{Aor3, L12, 1}, L12 = \[Sqrt](0.5(R2

2
 - 6 R2 R3 + R3

2
 + (R2 + R3)

2
 Cos[ - 1 + 

c/2])); 1 = 2*ArcSin[L12/(2*Rk)]; Aor3[_] = Simplify[Rk^2 (1 - Sin[1]) + Aor2[3]]; Aor3[]];  

 

Aor3F : = ReadList["C :\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Aor3.txt", 

Number, RecordListsTrue];  

 

func3 : = ao + a1 xx + a2 xx^2 + a3 xx^3;  

FindFit[Aor3F, func3, {ao, a1, a2, a3}, {xx}];  

fit3 = func3/.%;  

Aor3fit[_] = 0.0000323178 - 0.000379348  + 0.00132973 2 - 0.000954045 3;  

 

Aor4[_] = Aor3fit[];  

 

Aor5[_] : = Module[{Aor5, 2}, 2 =  + c/2 - 1; Aor5[_] = Pi*Rk^2 + 0.5*(R2^2 - R3^2)*2 + Aor1 

+ L45^2/4; Aor5[]] 

 

Aor5F[_] = 0.0000570751 + 0.000242107 ( - 0.506844 + ) 

 

2P = 6 + c/2 - 1;  

Aor6[_] = Pi*Rk^2 + 0.5*(R2^2 - R3^2)*2P + Aor1 + L45^2/4 + Aor1 

 

Aor7[_] : = Module[{Aor7, 3}, 3 = Pi - (1 - c/2 + ); Aor7[_] : = Aor1 + L45^2/4 + Pi*Rk^2 + 

0.5*(R2^2 - R3^2)*3; Aor7[]] 

 

Aor7F[_] = 0.0000570751 + 0.000242107 (2.634749 - ) 

 

Aor8[_] : = Module[{Aor8, L12, 1}, L12 = \[Sqrt](0.5*(R2
2
 - 6 R2 R3 + R3

2
 - (R2 + R3)

2
 Cos[1 - c/2 

+ ])); Rk = (R2 - R3)/2; 1 = 2*ArcSin[L12/(2*Rk)]; Aor8[_] = Simplify[Rk^2 (1 - Sin[1]) + Aor1]; 

Aor8[]] 

 

Aor8F : = ReadList["C :\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Aor8.txt", 

Number, RecordListsTrue] 

 

func8 : = aoo + a11 x1 + a22 x1^2 + a33 x1^3;  

FindFit[Aor8F, func8, {aoo, a11, a22, a33}, {x1}];  

fit8 = func8/.%;  

 

Aor8fit[_] = - 0.0176193 + 0.020274  - 0.00766259 2 + 0.000954142 3;  

 

Ar[_] = Piecewise[{{Aor1, 1 - Pi< = <2 - Pi}, {Aor2[ + Pi], 2 - Pi< = <3 - Pi}, {Aor3fit[ + Pi], 

3 - Pi< = <5 - Pi}, {Aor5F[ + Pi], 5 - Pi< = <6 - Pi}, {Aor6[ + Pi], 6 - Pi< = <7 - Pi}, 

{Aor7F[ + Pi], 7 - Pi< = <8 - Pi}, {Aor8fit[ + Pi], 8 - Pi< = <9 - Pi}, {Aor1, 1< = <2}, 

{Aor2[], 2< = <3}, {Aor3fit[], 3< = <5}, {Aor5F[], 5< = <6}, {Aor6[], 6< = <7}, 

{Aor7F[], 7< = <8}, {Aor8fit[], 8< = <9}, {Aor1, 9< = <Pi}}];  

 

Needs["FourierSeries`"] 
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s = OpenWrite["AoRF.nb"] 

Write[s, ArFR[_] = NFourierTrigSeries[Ar[], , 40, AccuracyGoal3, PrecisionGoal3]] 

Close[s] 

 

(*Solid area between succesive cylinders*) 
Ass2[_] = Module[{Ass2, 4}, 4 = - 1 - c/2 + D + ; Ass2[_] : = 0.5*4*(R2^2 - R3^2); Ass2[]];  

 

As1 = 0.5*(R2^2 - R3^2)*( - 1 - c/2 + D + 2);  

 

As3[_] : = Module[{As3, 1, 4}, 1 : = 2*ArcSin[Sqrt[0.5*(R2
2
 - 6 R2 R3 + R3

2
 + (R2 + R3)

2
 Cos[1 - 

c/2 - ])]/(R2 - R3)]; 4 : = - 1 - c/2 + D + ; As3[_] : = 0.5*4*(R2^2 - R3^2) - 0.25*(R2 - R3)
2
*(1 - 

Sin[1]); As3[]] 

 

Rk = (R2 - R3)/2;  

As4 : = 0.5*(D - c)*(R2^2 - R3^2) - Pi*Rk^2;  

 

As5[_] : = Module[{As5, 1, 4}, 1 : = 1 = 2 ArcSin[Sqrt[R2
2
 - 6 R2 R3 + R3

2
 - (R2 + R3)

2
 Cos[1 - 

c/2 + D + ]]/(Sqrt[2] (R2 - R3))]; 4 = - 1 - c/2 -  + Pi; As5[_] : = 0.5*4*(R2^2 - R3^2) - 0.25*(R2 

- R3)
2
*(1 - Sin[1]); As5[]] 

 

As6[_] : = Module[{As6, 4}, 4 : = Pi - (1 + c/2 + ); As6[_] : = 0.5*4*(R2^2 - R3^2); As6[]] 

 

AsHalf[_] = Piecewise[{{As1, 0<2}, {Ass2[], 2<3}, {As3[], 3<4}, {As4, 4<5}, 

{As5[], 5<6}, {As6[], 6< = <7}, {As1, 7<Pi}}];  

 

As[_] : = AsHalf[] + AsHalf[ + Pi];  

 

s1 = OpenWrite["Asolid.nb"];  

Write[s1, Chop[NFourierTrigSeries[As[], , 40, AccuracyGoal3, PrecisionGoal3]]];  

Close[s1];  
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APPENDIX D: MATHEMATICA NOTEBOOK TO SOLVE FOR THE PISTON 

PRESSURE 

 

SetDirectory["C :\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models"] 

 

(*Orifice area*) 
FileOrificeArea = OpenRead["AoRF.nb"];  

ArFR[_] = Read[FileOrificeArea];  

Close[FileOrificeArea];  

 

Ac : = Cylinder cross sectional area;  

Ace : = Exit cross sectional area of the cylinder;  

 

B : = Oil bulk modulus;  

DF : = Distance from center of spherical joint between piston and connecting rod and the bottom end of the 

cylindrical cavity for a zero yoke angle (Figure  3-15);  

 

LC2 : = Length of the convergent part of the cylindrical cavity (Figure  3-14);  

LCR : = Length of the connecting rod;  

Lis : = Length of input shaft of the CVJ (Figure  3-9);  

Lp : = Length of piston that is in the cylinder when axial displacement is zero;  

LPtoCR : = Distance from the left face of the piston to the common point between the piston and the 

connecting rod;  

 

MH : = Mass of gas in the HPA; 

ML : = Mass of gas in the LPA; 

 

nrated : = Rated speed of pump, rpm; 

PlossH : = Pressure losses between the discharge port and the HPA; 

PlossL : = Pressure losses between the suction port and the LPA; 

PmaxL = Maximum gas pressure in the LPA 

PmaxH = Maximum gas pressure in the HPA; 

PPH : = Pre-charge pressure in the HPA; 

PPL : = Pre-charge pressure in the LPA; 

 

r : = Pitch circle radius at the barrel side;  

R : = Pitch circle radius at the main shaft side;  

RN : = Gas constant of nitrogen, J/kgK; 

 

Ry : = Distance from center of rotation of yoke to center of first or second cross;  

Tg : = Temperature of gas in the HPA or LPA at pre-charge, ºK; 

Vfixed : = Volume of oil at end of the cylinder cavity (conical portion) (Figure  3-14);  

 

 = Oil density;  

g = Acceleration of gravity; 

 

1 : = See Figure  3-17;  

2 : = See Figure  3-17;  

3 : = See Figure  3-17;  
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4 : = See Figure  3-17;  

5 : = See Figure  3-17;  

6 = See Figure  3-17;  

7 : = See Figure  3-17;  

8 : = See Figure  3-17;  

9 : = See Figure  3-17;  

 

 = Angular rotation of the main shaft about its axis of rotation;  

 = Angular rotation of the yoke about its axis of rotation;  

 

(*The Piston displacement*) 
[_] : = Module[{o},o[_] : =  + ArcSin[(r - R Cos[] - (Ry + Lis) Sin[])/LCR]; o[]] 
 

IF[_,_] : = Module[{IF},IF[_,_] : = - Ry - (Lis + Ry) Cos[] + R Cos[] Sin[] + Sqrt[LCR
2
 - Sin[]2

 

(Lis + Ry)
2
 - r

2
 + 2r R (1 - 2 Cos[]

2
 Sin[/2]

2
) + R

2
 (Sin[]2

 Cos[]
2
 - 1) + 2(Lis + Ry)Cos[]Sin[](r - R 

Cos[ ])]; IF[,]];  

 

Z[_,_] : = Module[{Z,IH},IH : = - Ry + LCR Cos[o[] - ] - (Lis + Ry) Cos[] + R Sin[]; Z[_,_] : 

= Chop[IH - IF[,]]; Z[,]] 

 

LC1[_] : = Module[{LC1,CG,GF},o = ArcSin[(r - R)/LCR]; 1 : = ArcTan[r/EH]; EF : = Sqrt[r^2 + 

EH^2];  

 GF[x_] : = 2*EF*Sin[x/2]; CG[x_] : = (DF - LCR Cos[o[x]] + LCR Cos[o]) Cos[x] - GF[x] 

Sin[1 - x/2] - ( - r + R + LCR Sin[o[x]]) Sin[x]; LC1[x_] : = CG[x] - LC2 - Lp1; LC1[]] 
 

Vmin[_] : = Module[{Vmin},Vmin[x_] : = Chop[LC1[x]*Ac + Vfixed]; Vmin[]] 
 

Lmin[_] : = Module[{Lmin},Dce : = Sqrt[4*Ace/Pi]; Dc : = Sqrt[4*Ac/Pi]; Le : = LC2*Dce/(Dc - Dce); 

Lmin[x_] : = ((2*Ac/9)*(LC2 + Le)^2 - (2*Ace/9)*Le^2 + Ac*LC1[x]*(LC1[x]/2 + LC2 + Le) - 

Vmin[x]*Le)/Vmin[x]; Lmin[]] 
 

Lv[_,_] : = Module[{Lv},Lv[x_,x_] : = (Vmin[x]*Lmin[x] + Ac*Z[x,x]*(Z[x,x]/2 + LC1[x] 

+ LC2))/(Vmin[x] + Ac*Z[x,x]); Lv[,]] 

 

VOIL[_,_] : = Module[{VOIL},VOIL[x_,x_] : = Vmin[x] + Ac*Z[x,x]; VOIL[,]] 

 

VOILD[tt_,ii_] = Module[{VOILD},VOILD[t_,i_] = Simplify[Dt[VOIL[, + 2*Pi*(i - 

1)/9],t,Constants{i}]]; VOILD[tt,ii]];  

 

VPH = MH*RN*Tg/PPH; (*precharge volume of HPA*) 

VPL = ML*RN*Tg/PPL; (*precharge volume of LPA*) 

 

PminL = PPL/0.9; (*minimum pressure of LPA*) 

PminH = PPH/0.9; (*minimum pressure of HPA*) 

 

(*Gas volume at tmin operating pressure*) 

VmaxH = ((PPH/PminH)*VPH^1.4)^(1/1.4); (*HPA*) 

VmaxL = ((PPL/PminL)*VPL^1.4)^(1/1.4); (*LPA*) 

 

(*Gas volume at max operating pressure*) 

VminH = ((PPH/PmaxH)*VPH^1.4)^(1/1.4); (*HPA*) 

VminL = ((PPL/PmaxL)*VPL^1.4)^(1/1.4); (*LPA*) 

 

(*Boundary pressure*) 
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Unit11[x_] = (1 - Clip[(1/(2 - 1))Sin[x - (1 + 2)/2]])/2;  

Unit22[x_] = (1 + Clip[(1/(2 - 1))Sin[x - (1 + 2)/2]])/2;  

 

PH[t_] = PminH*(VmaxH/VH[t])^1.4;  

VL[t_] = VmaxH + VminL - VH[t];  

PL[t_] = PminL*(VmaxL/VL[t])^1.4;  

PD = PH[t] + PlossH + 101325;  

PS = PL[t] - PlossL + 101325;  

 

Pb[xx_] = Unit11[xx]*PD + Unit22[xx]*PS;  

 

Cd = 0.62 

 

QDS1[t_] = - Cd*ArFR[]*Sign[POIL1[t] - Pb[]]*Sqrt[2*Abs[POIL1[t] - Pb[]]/];  

QDS2[t_] = - Cd*ArFR[ + 2*Pi/9]*Sign[POIL2[t] - Pb[ + 2*Pi/9]]*Sqrt[2*Abs[POIL2[t] - Pb[ + 

2*Pi/9]]/];  

QDS3[t_] = - Cd*ArFR[ + 4*Pi/9]*Sign[POIL3[t] - Pb[ + 4*Pi/9]]*Sqrt[2*Abs[POIL3[t] - Pb[ + 

4*Pi/9]]/];  

QDS4[t_] = - Cd*ArFR[ + 6*Pi/9]*Sign[POIL4[t] - Pb[ + 6*Pi/9]]*Sqrt[2*Abs[POIL4[t] - Pb[ + 

6*Pi/9]]/];  

QDS5[t_] = - Cd*ArFR[ + 8*Pi/9]*Sign[POIL5[t] - Pb[ + 8*Pi/9]]*Sqrt[2*Abs[POIL5[t] - Pb[ + 

8*Pi/9]]/]; QDS6[t_] = - Cd*ArFR[ + 10*Pi/9]*Sign[POIL6[t] - Pb[ + 10*Pi/9]]*Sqrt[2*Abs[POIL6[t] - 

Pb[ + 10*Pi/9]]/];  

QDS7[t_] = - Cd*ArFR[ + 12*Pi/9]*Sign[POIL7[t] - Pb[ + 12*Pi/9]]*Sqrt[2*Abs[POIL7[t] - Pb[ + 

12*Pi/9]]/];  

QDS8[t_] = - Cd*ArFR[ + 14*Pi/9]*Sign[POIL8[t] - Pb[ + 14*Pi/9]]*Sqrt[2*Abs[POIL8[t] - Pb[ + 

14*Pi/9]]/];  

QDS9[t_] = - Cd*ArFR[ + 16*Pi/9]*Sign[POIL9[t] - Pb[ + 16*Pi/9]]*Sqrt[2*Abs[POIL9[t] - Pb[ + 

16*Pi/9]]/];  

 

nms = 60D[,t]/(2Pi);  

 

v1[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL1[t] - 

Pb[]]/1000000]/100;  

v2[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL2[t] - Pb[ + 

2Pi/9]]/1000000]/100;  

v3[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL3[t] - Pb[ + 

4Pi/9]]/1000000]/100;  

v4[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL4[t] - Pb[ + 

6Pi/9]]/1000000]/100;  

v5[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL5[t] - Pb[ + 

8Pi/9]]/1000000]/100;  

v6[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL6[t] - Pb[ + 

10Pi/9]]/1000000]/100;  

v7[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL7[t] - Pb[ + 

12Pi/9]]/1000000]/100;  

v8[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL8[t] - Pb[ + 

14Pi/9]]/1000000]/100;  

v9[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)
2
)*Exp[ - 0.003403 Abs[POIL9[t] - Pb[ + 

16Pi/9]]/1000000]/100;  

 

Q1[t_] = QDS1[t]*v1[t];  

Q2[t_] = QDS2[t]*v2[t];  

Q3[t_] = QDS3[t]*v3[t];  

Q4[t_] = QDS4[t]*v4[t];  

Q5[t_] = QDS5[t]*v5[t];  
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Q6[t_] = QDS6[t]*v6[t];  

Q7[t_] = QDS7[t]*v7[t];  

Q8[t_] = QDS8[t]*v8[t];  

Q9[t_] = QDS9[t]*v9[t];  

 

QTTD[t_] = (Abs[Q1[t]] + Abs[Q2[t]] + Abs[Q3[t]] + Abs[Q4[t]] + Abs[Q5[t]] + Abs[Q6[t]] + Abs[Q7[t]] 

+ Abs[Q8[t]] + Abs[Q9[t]])/2;  

 

(*Solve the differential equation of the oil pressure in the ith cylinder*) 

 

eqs = {POIL1'[t] = = (B/VOIL[,])*(Q1[t] - VOILD[t,1]),POIL2'[t] = = (B/VOIL[, + 2*Pi/9])*(Q2[t] - 

VOILD[t,2]),POIL3'[t] = = (B/VOIL[, + 4*Pi/9])*(Q3[t] - VOILD[t,3]),POIL4'[t] = = (B/VOIL[, + 

6*Pi/9])*(Q4[t] - VOILD[t,4]),POIL5'[t] = = (B/VOIL[, + 8*Pi/9])*(Q5[t] - VOILD[t,5]),POIL6'[t] = = 

(B/VOIL[, + 10*Pi/9])*(Q6[t] - VOILD[t,6]),POIL7'[t] = = (B/VOIL[, + 12*Pi/9])*(Q7[t] - 

VOILD[t,7]),POIL8'[t] = = (B/VOIL[, + 14*Pi/9])*(Q8[t] - VOILD[t,8]),POIL9'[t] = = (B/VOIL[, + 

16*Pi/9])*(Q9[t] - VOILD[t,9]),VH'[t] - QTTD[t]};  

 

bcs1 = {POIL1[0] = = PmaxL,POIL2[0] = = PmaxL,POIL3[0] = = PmaxL,POIL4[0] = = PmaxL,POIL5[0] 

= = PmaxL,POIL6[0] = = PminH,POIL7[0] = = PminH,POIL8[0] = = PminH,POIL9[0] = = PminH,VH[0] = 

= VmaxH};  

 

sol = 

NDSolve[{eqs,bcs1},{POIL1,POIL2,POIL3,POIL4,POIL5,POIL6,POIL7,POIL8,POIL9,VH},{t,0,1},MaxS

tepsInfinity,AccuracyGoal5,PrecisionGoal5];  

 

 

Needs["PlotLegends`"] 

DFTPallPistons = Take[Abs[Fourier[Table[PallPistons[[1]]/1000000,{t,0,1,1/1024}],FourierParameters{ - 

1,1}]],{1,256}];  

 

ListLinePlot[DFTPallPistons,PlotRangeAll,AxesLabel{"Frequency (Hz)","Pressure of all pistons 

(MPa)"},LabelStyleDirective[Bold],PlotStyleThick] 

 

Export["C :\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica 

models\\PressureAllPistonsHarmonics10.xls",DFTPallPistons];  

 

Q1 = Interpolation[Table[{t,Evaluate[Q1[t]/.sol]*60000},{t,0,1,0.0001}]];  

Q2 = Interpolation[Table[{t,Evaluate[Q2[t]/.sol]*60000},{t,0,1,0.0001}]];  

Q3 = Interpolation[Table[{t,Evaluate[Q3[t]/.sol]*60000},{t,0,1,0.0001}]];  

Q4 = Interpolation[Table[{t,Evaluate[Q4[t]/.sol]*60000},{t,0,1,0.0001}]];  

Q5 = Interpolation[Table[{t,Evaluate[Q5[t]/.sol]*60000},{t,0,1,0.0001}]];  

Q6 = Interpolation[Table[{t,Evaluate[Q6[t]/.sol]*60000},{t,0,1,0.0001}]];  

Q7 = Interpolation[Table[{t,Evaluate[Q7[t]/.sol]*60000},{t,0,1,0.0001}]];  

Q8 = Interpolation[Table[{t,Evaluate[Q8[t]/.sol]*60000},{t,0,1,0.0001}]];  

Q9 = Interpolation[Table[{t,Evaluate[Q9[t]/.sol]*60000},{t,0,1,0.0001}]];  

 

s = OpenWrite["POIL.nb"] 

Write[s,Evaluate[PD/.sol]] 

Write[s,Evaluate[PS/.sol]] 

Write[s,Evaluate[POIL1[t]/.sol]] 

Write[s,Evaluate[POIL2[t]/.sol]] 

Write[s,Evaluate[POIL3[t]/.sol]] 

Write[s,Evaluate[POIL4[t]/.sol]] 

Write[s,Evaluate[POIL5[t]/.sol]] 

Write[s,Evaluate[POIL6[t]/.sol]] 

Write[s,Evaluate[POIL7[t]/.sol]] 
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Write[s,Evaluate[POIL8[t]/.sol]] 

Write[s,Evaluate[POIL9[t]/.sol]] 

Write[s,Evaluate[Pb[]/.sol]] 

Close[s] 

 

s2 = OpenWrite["QOIL.nb"] 

Write[s2,Q1[t]] 

Write[s2,Q2[t]] 

Write[s2,Q3[t]] 

Write[s2,Q4[t]] 

Write[s2,Q5[t]] 

Write[s2,Q6[t]] 

Write[s2,Q7[t]] 

Write[s2,Q8[t]] 

Write[s2,Q9[t]] 

Close[s2] 


