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Working prototypes of a Hydraulic Hybrid Vehicle (HHV) are already under testing
and investigation. One of the problems reported from testing is that the noise levels
emitted by the hydraulic system are not acceptable. Therefore, there is a need to perform
extensive research to improve the HHV systems in terms of noise and performance. The
pump is the main source of noise in HHV systems. However, the lack of space, the high
pressure and the dynamics of components within the pump have prevented either direct
observation or measurement of potential noise causing mechanisms within the pump
structure. As a result, there are several theories as to the source of the noise from the pump
units but little concrete information to further isolate and reduce the noise generation.

Currently, the industry use “cut and try” methods in order to study the noise issue.
This necessities the development of a theoretical tool that will enable us to avoid the

costly (time and money) cut and try procedure already employed in the current efforts.



This work creates a dynamic and geometric model of a bent axis pump for this purpose.
Elements of the model include finding the variation of pressure, flow rate, and dynamic
forces acting on the pump components and case as a function of angular rotations of both
the main shaft and the yoke.

The model was constructed using Mathematica™ software and verified against test
data. In turn, this study identifies and analyzes the dominant forces in both the time and
frequency domains. The solution of the theoretical model using Mathematica™ is verified
by a dynamic model created using ADAMS/View software.

The kinematic model was able to predict the variations of the angular velocities and
accelerations and the velocities and the accelerations of the center of gravity of the entire
pump’s parts starting from the main shaft up to the yoke.

This work presents all equations necessary to solve for the piston pressure and pump
flow rate as a function of main shaft and yoke rotations. These equations were tested, and
verified at a constant angular speed of the main shaft and yoke angles ranging from 5° to
40°. Results indicate that the model can predict the variations of pressure profile and flow
rate as well as the forces acting on the pump’s case both in the time and frequency
domains. Conclusions and recommendations are at the end of this research effort. The
harmonics of the reaction forces acting on the pump case occur at frequencies of 25, 50,

100, 200, 220, 250, 350, and 450 Hz respectively.
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CHAPTER 1:INTRODUCTION

In hydraulic power systems, variable displacement pumps save power, increase the
productivity, or control the motion of a load precisely, safely and in an economic manner.
The displacement-varying mechanism and power-to-weight ratio of variable-geometry

axial piston pumps make them most suitable for control of high power levels.

1.1 Background for the Research

The bent axis pump is preferred in hydraulic hybrid vehicles because of its high
performance and efficiency. It is also capable of operating at variable conditions of flow,
pressure, speed, and torque.

Although many researchers in the literature have considered modeling bent axis pump,
they only considered models for pumps rotating at constant angular velocity of the main
shaft of the pump. In real driving conditions, the velocity of the vehicle changes
continuously. Therefore, there is a strong need to consider the transient response of the
pump, i.e. at a variable angular velocity of the main shaft and a variable angular velocity
of the yoke.

Some working prototypes of a Hydraulic Hybrid Vehicle (HHV) are already under
testing and investigation. However, it was found that noise levels emitted by HHV
systems are not acceptable; therefore, additional research has to be conducted to improve

the HHV systems in terms of noise and performance. The pump is the main source of



noise in HHV systems. Currently, industry uses “cut and try” methods in order to study
the noise issue. A theoretical tool will enable us to avoid the costly (time and money) cut
and try procedure already employed in the current efforts.

The derived dynamic mathematical model permits methodical study of the variation of
pressure head, flow rate, and dynamic forces acting on the pump casing as a function of
angular rotations of both the main shaft and the yoke, given the variable input torque and
the variable angular motion of the main shaft of the pump. The mathematical model
predicts the steady state and transient responses of the forces acting on the pump casing
due to the interaction with the moving internal parts of the pump. Subsequently, using
vibration and acoustic finite element analysis of the pump enables us to find the effect of
these forces on noise level variations created by the pump.

In addition to the material mentioned above, the ability of a variable displacement
pump to respond to a constant signal is a critical factor in assessing the dynamic
performance of the circuit in which the pump is located. Hence, a comprehensive dynamic

response model of the pump is necessary in order to realize new techniques for control.

1.2 Problem Statement

The objective of this research is to find the dominating factors that create the noise in
the bent axis pump. The pump will be working within the circuit of a hydraulic hybrid
vehicle. Knowing the sources of noise enables taking the appropriate decisions in terms of
design, control strategy, and the implementation of anti-noise techniques and procedures
either to the pump or to the hydraulic system in order to reduce the noise level to

acceptable levels.



The application and extension of the results presented in this study would significantly
assist in the analysis of the structures that connects to the pump within a hydraulic system.
Knowing the constraints at all joints in the pump structure and the forces in the time and
frequency domain as obtained from the current study, a transient finite element model
could be implemented for both the pump’s case and the pump’s internal parts. Moreover, a
vibration analysis could be implemented on the structure to which the pump is mounted.
This allows an effective design and development of the mounts, which tie to the pump.
Furthermore, an acoustic finite element analysis of the pump may be performed to find the
effect of the different forces that act on the pump case on noise level variations created by

the pump.

1.3 Work Outline

Chapter 2 will present a literature review. The key components of a Hydraulic Hybrid
Vehicle are described and explained in detail including: the pump, the high and low
pressure accumulators, the oil conditioning system, the hydraulic power steering system,
the potential changes to the battery, alternator, and starter system, and the hydraulic
fittings and hoses. It also introduces Mild Hydraulic Hybrid vehicles and Full Hydraulic
Hybrid vehicles.

Moreover, chapter 2 fully describes the bent axis piston pump/motor including
definitions of some performance parameters such as volumetric efficiency, mechanical
efficiency, and overall efficiency. It also explains pump noise and cavitation as
performance parameters and types of noise. Likewise, it clarifies and defines in some

detail pump noise level limits and control.



The principal forces acting on the bearing surface between the valve plate and cylinder
block are considered. The effect of the valve plate shape on the fluid film between the
valve plate and the cylinder block has been investigated under real working conditions.
This study presents mathematical modeling of bent-axis hydraulic piston pumps and
motors including: steady state modeling and performance of a variable displacement
pump, the mathematical expressions for the torque applied to the swash plate considering
the different loss components, theoretical flow rate and leakage flow rates. The feasibility
of using a nonlinear gas spring in the pump controller is also investigated. In addition,
bent-axis piston pump modeling using neural networks are mentioned.

In addition, the theoretical mechanism for driving the tapered pistons of a bent axis pump
is introduced. Besides, Friction losses analyses of a bent-axis type hydraulic piston pump.
Furthermore, noise reduction techniques and control have been introduced.

Chapter 3 considers in detail a comprehensive theoretical dynamic modeling and
analysis of the internal pump parts are. A kinematic analysis for each part of the pump
determines velocities, accelerations, angular velocities, and angular. Then, the equations
of motion of each part as well as the whole system have been determined using Newtonian
mechanics.

Chapter 4 shows the implementation and simulation of the mathematical model using
Mathematica™ software to study the steady state and transient responses of the forces
acting on the pump casing. In addition, the study validates the model against the
commercially available ADAMS/View software. Chapter 5 summarizes the work and

outlines the conclusions and future work.



CHAPTER 2:LITERATURE REVIEW

2.1 Hydraulic Hybrid Vehicles

One major benefit of a hydraulic vehicle is the ability to capture a large percentage of
the energy normally lost in vehicle braking. In urban stop-and-go driving, as much as half
of all the energy available at the vehicle wheels is lost in braking and a hydraulic design
can capture and reuse a large portion of this otherwise wasted energy. The specific fuel
economy improvement associated with a hydraulic hybrid vehicle is dependent upon
vehicle driving cycle. In turn, there will always be a larger improvement for those vehicles
with a high amount of stop-and-go driving. Therefore, hydraulic hybrid technology has
perhaps the greatest commercial potential for a wide range of medium-duty vehicles such
as urban delivery trucks [1].

Hydraulic hybrid vehicles can be classified into two main categories: parallel

hydraulic hybrid vehicles and series hydraulic hybrid vehicles.

Parallel Hydraulic Hybrid Vehicle (PHH)

A parallel hydraulic hybrid vehicle has both a conventional vehicle power train and a
hydraulic secondary storage system. A PHH system captures and stores a large fraction of
the energy normally wasted in vehicle braking and uses this energy to help propel the
vehicle during the next vehicle acceleration. Figure 2-1 shows the hydraulic circuit

diagram of PHH vehicle. In a parallel hydraulic hybrid system, the engine and the



hydraulic pump/motor are mechanically coupled to the same drive shaft. This system has
the potential to decrease the fuel consumption in the range of 20% to 40%. Higher
efficiencies are limited because the engine must follow the speed of the tires through the
transmission.

In pumping mode, hydraulic fluid is pumped into an accumulator under pressure. This
requires power from the drive shaft of the vehicle provided either by the ICE or by
braking. The accumulator holds the pressurized fluid until it is needed. In motor mode, the
hydraulic P/M uses the pressurized fluid to drive the vehicle. In this way, the hydraulic

P/M returns power to the vehicle [2].

LowPressure
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e

Figure 2-1: Basic hydraulic circuit diagram of a parallel hydraulic hybrid vehicle [2-4]

One issue with a PHH vehicle is whether the engine would ever be shut off to save
fuel in those modes where engine power is not required or where the hydraulic launch-
assist alone is able to provide sufficient power. Therefore, a PHH vehicle can be designed
to work according to either an engine-on strategy, or an engine-off strategy. In an engine-

on strategy, the driver would only shut down the engine when the he turns the engine off,



usually at the end of a trip. On the other hand, in an engine-off strategy, the engine

operation will be shut down whenever the vehicle is not moving [1].

Series Hydraulic Hybrids (SHH)

In a series hydraulic hybrid, there is no direct link between the internal combustion
engine and the driveline components of the vehicle (Figure 2-2). Since the internal
combustion engine is now separated from the road, the SHH design permits much greater
use of engine-off strategies and maximizes the operation of the engine at or near its peak
efficiency [1]. An SHH is capable of more than 70% improvement in fuel savings. The
engine is operated to pump hydraulic fluid at pressure to the HPA. When operating
conditions are such that there is sufficient pressure in the HPA, the ICE is placed in an off
condition. When it is necessary to operate the engine again, a small amount of fluid is
directed to the P/M to restart the engine, and this unit returns to motoring mode. The rear
P/M operates the drive train of the vehicle. In motoring mode, it takes high-pressure
hydraulic fluid from the accumulator to drive the axle. When braking, the axle drives the

unit in pumping mode to re-pressurize the HPA [2].

. High Pressure J

Accumulator

Figure 2-2: A series hydraulic hybrid configuration [2-4]



2.2 Description of Bent Axis Piston Pump/Motor

Piston pumps are the most expensive of the hydraulic pumps. They also provide the
highest level of overall performance. They can operate at high speeds to provide a high
power-to-weight ratio. They can operate at the highest-pressure levels (up to 5000 psi).
Due to very close-fitting pistons, they have the highest volumetric efficiencies among the
other types of pumps [5]. Piston P/M can be classified as in-line piston P/M (swash plate)

or bent axis type.

2.2.1 Bent axial piston pump

Figure 2-3 shows a bent axis piston pump, which contains a cylinder block rotating
with the drive shaft. The centerline of the cylinder block is set at an offset angle relative to
the centerline of the drive shaft. The cylinder block contains a number of pistons arranged
along a circle. Ball and socket joints connect the piston rods to the drive shaft flange. The
pistons are forced in and out of their bores as the distance between the drive shaft flange
and cylinder block changes. A universal link connects the block to the drive shaft to

provide alignment and positive drive.
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Figure 2-3: Basic components of a bent axis pump

2.2.2 Inline piston pump (swash plate)

Figure 2-4 shows the basic design of an inline piston pump. The cylinder bears against

a valve plate. Ports in the plate alternatively connect the cylinders to the inlet, and to the

discharge ports. The switch from inlet to discharge occurs when a piston is at its most

extended position (BDC). The switch from discharge back to inlet occurs 180° later when

the piston reaches its greatest penetration into the cylinder block (TDC) [6].
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Figure 2-4: Inline piston pump [6]

2.2.3 Pump/Motor basic parameters

2.2.3.1 Volumetric efficiency

The volumetric displacement of the P/M varies with the offset angle 6. No flow results
when the cylinder block centerline is parallel to the drive shaft centerline. 6 can vary from
zero degrees to a maximum of about 50°.

Internal leakage between the inlet and outlet reduces the volumetric efficiencies of a
hydraulic pump/motor. Volumetric efficiency of the pump indicates the amount of leakage

that takes place within the pump and can be written as [5]

_Qu

Ty, pump Q (2.1)
T

The volumetric efficiency of a hydraulic motor is the inverse of that for a pump. This
is because a pump does not produce as much flow as it should theoretically, whereas a
motor uses more flow than it should theoretically due to leakage. In turn, the volumetric

efficiency of a motor is given by
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=

2.2
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2.2.3.2 Mechanical efficiency

Mechanical efficiency indicates the amount of energy losses that occur for reasons
other than leakage. This includes friction in bearings and between other mating parts. It
also includes energy losses due to fluid turbulence. Therefore, the mechanical efficiency
of a pump is expressed as [5]

_ pump output power assuming no leakage  pQ;
T, pump actual power delevired to pump T,N

(2.3)

One can also compute the mechanical efficiency of a pump in terms of torques as
given by

_ theoretical torque required to operate pump _ T,
T pump actual torque delevired to pump T,

(2.4)

The mechanical efficiency of a hydraulic motor is the inverse of that for a pump.
Because of friction, a pump requires a greater torque than it should theoretically whereas a
motor produces less torque than it should theoretically.

B actual torque delevired by motor T,

_ : A 2.5
T motor torque motor should theoretically deliver T, @)

Where
p = pump discharge pressure
Ta = actual torque delivered to pump
The theoretical torque varies proportionally to both the pressure and the volumetric

displacement:
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V, x
T, = Dzﬂp (2.6)

The theoretical power (which is the power a frictionless hydraulic motor would
develop) is given by
Theoretical power (W) = T, (N.m) x N (rad/s) .7
The actual torque is given by

__actual power delivered to/by pump/motor(W)

TA
w(rad/s)
27 (2.8)
=—N(rpm
= N(rom)
2.2.3.3 The overall efficiency of P/M
The overall efficiency (n,) considers all energy losses and is defined as [5]
actual power delivered by pump/motor
o = P Y PITP =10 X7 (2.9)

~ actual power delivered to pump/motor

2.2.4 Pump noise

More than 95% of noise problems in hydraulically actuated machines are due to
pumps and motors. Valves are the other major hydraulic noise source [6].

Pumps are good generators but poor radiators of noise. The noise we hear is not just
the sound coming directly from the pump. It includes the vibration and fluid pulsations
produced by the pump as well. Pumps are compact, and because of their relatively small
size, they are poor radiators of noise, especially at lower frequencies. Therefore, pump-
induced vibrations or pulsations can cause them to radiate audible noise greater than that

coming from the pump [5].
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Pump speed has a strong effect on noise, whereas pressure and pump size have about
equal but smaller effects. To achieve the lowest noise levels, the lowest practical speed
(1000 or 2000 rpm) is selected [5].

Pump noise is created as the internal rotating components abruptly increase the fluid
pressure from inlet to outlet. The abruptness of the pressure increases plays a big role in
the intensity of the pump noise. Thus, the noise level at which a pump operates depends
greatly on the design of the pump. Noise can be classified into three types [6]: audible
noise referred to as Air Born Noise (ABN), vibrations referred to as Structure Born Noise
(SBN), and fluid pulsations referred to as Fluid Born Noise (FBN).

Pumps commonly generate as much as 1000 times more energy in the form of SBN or
FBN noise than they do in the form of ABN. These forms act on other machine elements
and frequently end up generating more noise than that coming directly from the pump.

Machines generally have a number of noise sources. Effective noise control depends
on identifying one or two of the strongest noises. Separating noise by energy path and
frequency helps identify these leading noises. Once we find how they travel from their

source to our ear, their control is generally assured [6].

Chen et al. studied the dynamic analysis of a swash-plate water hydraulic motor in a
modern water hydraulic system. They modeled a swash-plate mechanism as a system with
3 masses and 14 degrees of freedom. They presented numerical simulation analysis of the
dynamic response of the model due to pressure pulsation and compared with experimental
testing. They obtained and studied a series of the dynamic vibration characteristics of the
water hydraulic piston motor by the numerical simulation. The model simulates the

vibration signal of the casing in the hydraulic motor. According to the authors, the
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waveform and frequency of the simulated signal is similar to the experimental signal. In
addition, they found that the simulated signals in other directions show that the vibration
signals in all the directions mainly consist of the hydraulic pump and motor rotational

frequencies.

2.2.5 Noise level limits

The strength of a sound wave, which depends on the pressure amplitude, is described
by its intensity. Sound intensity is defined as the rate at which sound energy is transmitted
through a unit area. This energy transfer rate is expressed in units of decibels (dB).
Decibels give the relative magnitudes of two intensities by comparing the one under
consideration to the intensity of a sound at the threshold of hearing [5].

Intensity and loudness are not the same. Loudness depends on each person’s sense of
hearing. The intensity of a sound, which represents the amount of energy possessed by the
sound, can be measured and thus does not depend on the person hearing it [5].

One decibel equals approximately the smallest change in intensity that most people
can detect. Zero dB designates the weakest sound intensity that the human ear can hear.
Sound intensities of 120dB or greater produce pain and may cause permanent loss of
hearing [5].

The sound level in dB is obtained by taking the logarithm to the base 10 of the ratio of

the intensity under consideration to the threshold of hearing intensity [5].

1(dB) =10Iog; (2.10)

hear.threshold

Where

| = the intensity of a sound under consideration in units of W/m?
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Inear threshold = the intensity of a sound at the threshold of hearing in units of W/m?
The amount that the intensity of sound increases in units of dB if the intensity in W/m?

increases by a given factor is given by

dB

I
=10log 2! (2.11)

initial

increase

The occupational Safety and Health Administration (OSHA) stipulates that 90 dB is
the maximum sound level that a person may be exposed to during an 8hr period in the
workplace [5]. Higher noise levels are allowable if the exposure durations were shorter.
For each 5-dB (A) increase in noise, the allowable duration was cut to half. Similarly, if
longer exposure time occurred, the level was decreased by the same rate.

Table 2-1 shows the allowable noise exposure levels. The total exposure time at
various noise levels is given by [6]

C, C C
C,==2+2+..+2<1
T 1,7, T (2.12)

Where
n = number of exposure levels
Cy, Cs... C, = total time at the given levels
Ti, To... T, =total time allowed at the given levels
Noise reduction can be accomplished in different ways as follows [5]:
1. Make changes to the source of noise. Problems may include misaligned
pump/motor couplings, improperly installed pump/motor mounting plates, pump
cavitation, and excess pump speed or pressure.

2. Modify components connected to the primary source of the noise. An example is

the clamping of hydraulic piping at specifically located supports.
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3. Use sound absorption materials in nearby screens or partitions. This practice will
reduce the reflection of sound waves to other areas of the building where noise can
be a problem.

4. Refer to the methods mentioned in chapter 1, section 1.3.4 (Noise Reduction and

Control).

Table 2-1: OSHA Allowable Noise Exposures [6]

Noise level | Exposure per day | Noise level | Exposure per day
dB(A) hr dB(A) hr
90 8 102 1.5
92 6 105 1
95 4 110 0.5
97 3 115 max 0.25
100 2

2.2.6 Pump cavitation

Cavitation occurs when pump suction lift is excessive and the pump inlet pressure falls
below the vapor pressure of the fluid (usually about 5-psi suction). As a result, air or vapor
bubbles, which form in the low-pressure inlet region of the pump, collapse when they
reach the high-pressure discharge region. This produces high fluid velocity and impact

forces, which can erode the metallic components and shorten pump life.

2.3 Design of Valve Plate and Forces Acting on It
With reference to Figure 2-5, the interface between valve plate and cylinder block is

the most important sliding part in axial piston pumps, because the cylinder block rapidly
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rotates on the fixed valve plate, and the pistons in the cylinders during approximately half
a revolution perform the suction and discharge action of working oil through the kidney
ports. In addition, the pressure distribution on the valve plate varies momentarily.

Therefore, optimal force balance is required to reduce the leakage flow rates and friction.

Inner Land

Figure 2-5: Geometric parameters of the valve plate

Figure 2-6 shows that there are two principal axial forces acting on the bearing surface
between valve plate and cylinder block. One of these forces is a pushing force associated
with the highly pressurized pistons tending to push the cylinder block via the highly
pressurized oil to the valve plate. This is because the highly pressurized fluid on the
discharge port of the valve plate acts on the cylinder block walls by a frictional force in
the direction of the oil stream leaving the cylindrical cavity. On the other hand, on the

suction port of the valve plate, the oil enters the cylindrical cavity resulting in a frictional
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force that pulls the cylindrical block from the valve plate. Therefore, the net frictional
force, which is the difference between the two forces at the discharge and suction ports,

acts in the direction of pushing the cylindrical block towards the valve plate.

| /Ml
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Figure 2-6: Principal forces in the interface between the barrel and the valve plate

The other force is a separating force associated with the pressure in the highly
pressurized kidney port and across its lands tending to separate the cylinder block with the
valve plate. If the pushing force due to the pistons under high pressure is too big, the faces
will be subjected to high friction, rapid wear, overheating, and therefore reducing
mechanical efficiency. If the separating force due to the pressure distribution on the seal
lands is too big, the cylinder block will be forced away from the valve plate leading to
excessive leakage losses [7].

Franco [8] derived equations for the forces that act on the port plate of a swash plate
pump based on the following assumptions:

1 Fluid flow in the clearance between the barrel and port plate is laminar.

2 Forces due to pressure drop peripherally between the inlet and discharge ports

were ignored.

3 Hydrodynamic friction forces created by the rotary motion of the barrel were

neglected.
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4 Leakage flow is assumed to spread in the radial direction between the lands.

5 Constant coefficient of dynamic viscosity.

6 The centrifugal forces of the fluid in the clearance between the port plate and the
barrel were neglected.

7 The velocity distribution in the clearance is based on the conditions that the
maximum relative velocity happens at the middle of the clearance and zero at the

walls.

Manring [9] examined the control and containment forces and moments acting on the
swash plate of an axial-piston pump. Swash-plate control and containment devices must
resist the moments and forces that attempt to dislocate the swash plate from its proper
position. He derived the needed forces and moments for insuring proper swash-plate
motion.

Manring [10] examined the control and containment forces acting on the swash plate
of an axial piston pump by including the analysis of a secondary swash-plate angle. He
derived the needed forces and moments for insuring proper swash plate motion. He also
studied the dynamic characteristics of the control and containment forces by deriving
instantaneous and average equations of motion for the swash plate. Manring showed that
the primary advantage of implementing a secondary swash-plate angle is that it can reduce
the overall control effort of the pump. On the other hand, the disadvantages of using the
secondary swash-plate angle are associated with additional containment requirements for

the swash plate.



20

Manring [11] identified the physical contributors of the phenomenon of tipping of the
cylinder block. He specified certain design guidelines that may be used to prevent the
failure of cylinder block tipping. He begins with the mechanical analysis of the machine
and presents a tipping criterion based upon the centroidal location of the force reaction
between the cylinder block and the valve plate. He then derived the effective pressurized
area within a single piston bore. In addition, he examined the pressure within a single
piston bore using an approximate pressure profile in order to specify a design criterion.
The design criterion ensures that the pressures within the system never cause the cylinder
block to tip. By satisfying this criterion, he found that the worst tipping conditions exists

when the system pressures are zero.

Bergada et al. [12] had analyzed the pressure distribution, leakage, force, and torque
between the barrel and the port plate of an axial piston pump. They developed a detailed
set of new equations, which takes into account important parameters such as tilt, clearance
and rotational speed, and timing groove. Additionally, they derived the pressure
distribution for different operating conditions, together with a complementary numerical
analysis of the original differential equations. They evaluated overall mean force and
torques over the barrel and showed that the torque over the XX axis is much smaller than
the torque over the Y'Y axis (Figure 2-7). They then conducted a detailed dynamic analysis
and found that the torque fluctuation over the Y'Y axis is typically 8% of the torque total
magnitude. They were also able to predict a double peak in each torque fluctuation
resulting from the more exact modeling the pressure distribution characteristic of the

piston/port plate/timing groove during motion.
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Figure 2-7: Barrel/port plate configuration[12]
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For radial flow in a system, the temperature of the fluid increases as the pressure drop
across the system. Therefore, Mckeown et al. [13] had derived an analysis for the forces
acting on valve plate for a system in which both radial and tangential flows occur. Given
the input conditions of pressure, temperature, and a reference viscosity, they presented a
numerical method to solve for the corresponding temperature, pressure drop, leakage flow
rate, and the viscosity at any point in the fluid film between the barrel and the valve plate.
He then defined three force coefficients to calculate the hydrostatic force between the
valve plate and the rotating barrel. This analysis was conducted for two cases. For the first

case, it was assumed that no heat from the fluid is lost to the boundaries. For the other
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case, they considered the effect of heat losses from the fluid as it passed through the
sealing gap.

Casoli et al. [14] presented a numerical model for the simulation of a swash-plate axial
piston pump, focusing on the characterization of fluid properties. First, they gave a quick
overview on a previously developed pump model. Then, they presented four different
models of the fluid, which take into account cavitation. These models aim at
characterizing the unsteady and erratic cavitation features in a simplified manner in order
to apply the models to the simulation of hydraulic components. In the second part of the
paper, they showed an application of these models to an axial piston pump. They got a few
results and compared them with available test data.

Kim et al. [7] conducted a study to investigate the effect of the valve plate shape on
the fluid film between the valve plate and the cylinder block under real working
conditions. They designed three valve plates with different shapes. One of the valve plates
was without bearing pad, a second one with a bearing pad and the third one was a
spherical valve plate. The leakage flow rates and the shaft torque were also investigated in
order to clarify the performance difference between the three types. The spherical valve
plate estimated good fluid film patterns and good performance more than the other valve
plates in oil hydraulic axial piston pumps in overall pressure range. The discharge pressure
pulsation, the leakage flow rates and the total efficiency are strongly related to the
changing pattern of the fluid film on the valve plate. Kim et al. [7] also reached the
following conclusions:

1. As the barrel is tilted from the center of the valve plate, the fluid film in the

discharge region is smaller than that in the suction region.
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2. The fluid film on the valve plate is continuously changed in value and location
during one revolution of the cylinder block as can be seen in Figure 2-6. The
shaking of the cylinder block is attributed to the discharge pressure pulsation. The
clearance of the spline and the bearing causes the tilting of the cylinder block. The
size of the shaking and the tilting increases with increased discharge pressure. The
spherical valve plate was able to reduce both the shaking and the tilting of the
cylinder block over all driving conditions due to spherical contact.

3. In case of the plane valve plate without bearing pad, the possibility of contacts
between valve plate and cylinder block is really increasing in high discharge
pressure condition. Therefore, high friction, severe wear and hence the frictional
loss will be increased.

4. For both the spherical valve plate and plane valve plate with bearing pad, the
difference of fluid film between discharge region and suction region was
noticeably reduced compared with that of the plane valve plate without bearing
pad.

5. Overall, the minimum fluid film thickness slightly increased as rotational speed
increased.

6. The minimum fluid film linearly decreased as discharge pressure increases. The
minimum fluid film of the plane valve plate without bearing pad decreased more
steeply than the other valve plates in high-pressure range.

In general, the leakage flow rates increase as discharge pressure increases. The leakage

flow rates of the spherical valve plate show the lowest value compared with the other two

valve plates in the range above 20 MPa. The leakage flow rates of the plane valve plate
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without bearing pad sharply increase compared with those of the plane valve plate with
bearing pad in high-pressure range above 25MPa due to the increase of fluid film.

Manring [15] examined the volumetric efficiency of an axial-piston pump as it relates
to the compressibility losses of the fluid. He compared a standard valve-plate design
which utilizes slots to a trapped-volume design which eliminates the slots altogether. He
found analytically that the standard valve-plate design introduces a volumetric loss, which
may be accounted for by the uncontrolled expansion and compression of the fluid that
occurs through the slots themselves. In addition, he suggested that the operating efficiency
could be improved by utilizing a trapped volume design.

Zloto et al. [16] applied the Reynolds equation, commonly applied in the theory of
lubrication, in the numerical analysis (finite element method) of pressure distribution of an
oil film on the valve plate in the variable height gap of an axial piston pump. They used an
adaptive mesh refinement based on residual estimations of solution errors in order to
obtain high accuracy of the results. They found that the geometric and work parameters of
the kinematic pair (cylinder block/valve plate) have a substantial impact on the pressure
distributions in the variable height gap. With an increase in the angular velocity of the
cylinder block or oil viscosity, the values of the oil film over-and under-pressure “peaks”
increase linearly. They also reported that Maximal over-and under-pressure “peaks” occur
for the smallest values of the bias angle. Upon an increase in bias angle the values of the
over-and under-pressure “peaks” decrease. Additionally, the maximal values of the over-
and under-pressure “peaks” occur for the minimal gap height. Upon an increase in the
minimal value of the gap height the values of the over-and under-pressure “peaks”

decrease.



25

2.4 Modeling of Bent-Axis hydraulic Piston Pumps and Motors

Schoenau et al. [17] presented a mathematical model of a variable displacement swash
plate pump modulated by a hydraulic control signal. The model was based on the
assumptions that the main input shaft is rotating at a fixed angular velocity, and negligible
stiction due to the constant piston motion. They derived an expression for the torque
applied to the swash plate that consists of four components: piston inertia effects, pressure
force effects, piston shear effect, and shoe plate force effect. Neglecting stiction, an
expression for the damping torque acting on the yoke due to viscous friction was
introduced. This torque varies linearly with the angular velocity of the yoke via a
proportionality constant determined experimentally.

In finding the pressure force effects, Schoenau et al. [17] had considered the pressure
variations through one complete revolution of the swash plate. Because the valve ports
have relief notches to avoid step changes in pressure in the transition regions, they
considered the resulting overlap, which produces six distinct pressure regions for each
revolution of the piston barrel (see Figure 2-8).

In region 1, the cylinder is completely open to the discharge port and so the cylinder
pressure is equal to the discharge pressure. In region 2, the cylinder is open to both the
discharge port and the relief notch before the suction port. In region 3, the cylinder is open
only to the relief notch before the suction port. In region 4, the cylinder is completely open
to the suction port and so the cylinder pressure is equal to the suction pressure. In region 5,
the cylinder is open to both the suction port and the relief notch before the discharge port.

In region 6, the cylinder is open only to the relief notch before the discharge port.
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Applying the continuity and momentum equations to each region resulted in
expressions for the pressure and flow variation with the barrel rotational angle. The
leakage flow rate is the sum of the flow rate between the cylinders and the pistons, the
flow out through the slippers, and the leakage between the cylinder barrel and the valve

plate. The leakage flow rate was found to be proportional to the pressure [17].

Figure 2-8: Pressure regions according to Schoenau et al. [17]

Bartos [18] presented a mathematical modeling for bent-axis hydraulic piston motor
with multiple pistons. In his model, he derived an equation for the instantaneous
theoretical torque generated by the fluid pressure forces at the pistons. This equation only

expresses the torque generated by the pressure forces and does not model the net torque
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output of the motor because losses due to viscous forces and Coulomb friction were not
considered. Mathematical relations that involve two non-dimensional constants then
approximated the equation. Moreover, he derived the torque losses. These losses include:
the torque due to viscous forces of the fluid in the clearance between the barrel and the
valve plate, the resisting torque created by viscous forces in the clearance between the
barrel and the motor housing, coulomb friction torque at the motor bearings, shaft torques
resulting from Coulomb friction from internal oil seals, and piston motion within the
barrel. The net motor output torque to the load is therefore equivalent to the pressure
torque at the pistons less the torque losses and the torque expended to accelerate the motor
parts. Likewise, the theoretical flow rate through the motor, ignoring leakage effects was
found. This flow rate was also approximated by mathematical relationships that involve
two non-dimensional constants that have the same values as those for the torque
expression. Besides, the leakage flow rates were also derived that include: the leakage past
the hydraulic motor pistons from the pressure and return ports to the case drain, the fluid
leakage between the valve plate and the cylinder block, and the total cross port leakage

(leakage flow between motor ports across the valve plate to barrel sealing surface).

Karkoub et al. [19] derived a neural network model to predict the steady-state and
dynamic behavior of a bent-axis piston pump with the objective to reduce the power loss
at high pressures. The model uses data obtained from an experimental setup. The neural
network model has a feed forward architecture and uses the Levenberg Marquardt
optimization technique in the training process. According to the authors, the model was

able to predict the behavior of the pump accurately.
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Canbulut et al. [20] employed a neural network to analyze axial piston pump of
hydrostatic circular recessed bearing. The system mainly consists of cylinder block,
piston, slipper, ball-joint and swash plate. The neural model of the system has three layers,
which are input layer with one neuron, hidden layer with ten neurons and output layer
with three neurons. According to the authors, the proposed neural network was able to

predict static and dynamic parameters of the bearing system in real time.

Gad et al. [21] investigated the static and dynamic behavior of a variable displacement
bent axis axial piston pump with power controller theoretically and experimentally. A
mathematical model was deduced to predict the performance of the pump and its
controller. The steady-state characteristics and pump transient response were predicted
theoretically and evaluated experimentally. The authors indicated that the theoretical
results showed good agreement with the experimental results in the steady state and
transient modes of operation. According to the authors, the study of the pump performance
showed that the pump does not present the hyperbolic power curve, which represents the

constant power curve.

The feasibility of using a nonlinear gas spring in the pump controller was also
investigated. The proposed controller includes a gas charged accumulator to replace the
used mechanical springs in the feedback path. A nonlinear mathematical model of the
proposed controller was developed and treated by using SIMULINK. The static
characteristics of the proposed controller showed that, the P-Q relation is near to the
required hyperbola in case of slow variation load pressure, isothermal compression

process. In case of real polytrophic gas process in the accumulator, the resulting P-Q
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relation deviates from the required hyperbolic curve. During short time period, the gas
temperature reaches its original steady-state value due to the good thermal conductivity of
the metallic materials of the accumulator house. Then the operating point displaces to be
on the P-Q curve corresponding to the isothermal process. The mathematical model
describing the pump dynamic behavior was based on the following assumptions [21]:

e The fluid pressure at the suction and return lines is zero gauge pressure.

e The pressure losses in the short pipelines are neglected.

e The pump rotates at constant speed.

e The oil temperature and viscosity are constant.

e The inertia force of oil column in the cylinder is negligible.

e Half the number of pistons is exposed to high pressure and the leakage originates

at these cylinders.

e The pressure forces acting on the valve plate were neglected.

The proposed controller, equipped with the hydraulic accumulator, results in a better
utilization of available power compared with the actual one specially at the
commencement power control at the higher operating pressure range. The transient
response of the pump, to step throttling of exit line, is calculated. The transient pressure
oscillations and settling time are considerably reduced, but the maximum over shoot is
increased [21].

Zhang et al. [22] proposed the modeling of a damping mechanism with an open-loop
reduced order model for the swash plate dynamics of an axial piston pump. They derived
an analytical expression for the damping mechanism. They also validated the proposed

reduced order model by comparing with a complete nonlinear simulation of the pump
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dynamics over the entire range of operating conditions. The model should potentially help
in the development of improved control design of swash plate for hydraulic axial-piston

pumps.

In a study conducted by Kim et al. [23], the theoretical mechanism for driving the
tapered pistons of a bent axis pump is studied by use of the geometric method. The driving
area of the tapered pistons was defined by measuring the strain of a cylinder forced against
a tapered piston using an electric strain gage and a slip ring as can be seen in Figure 2-9.
The forces applied to tapered pistons are also investigated with the change of discharge
pressure and the rotational speed. It was concluded that the cylinder block is driven by one
tapered piston in a limited area and the driving area is changed due to space angle of the
tapered pistons and the swivel angle of the barrel. The force applied to tapered pistons

increases as the discharge pressure and the rotational speed increase.

Rotation

Figure 2-9: Driving mechanism experimental setup [23]

Bael et al. [24] studied the theoretical mechanism for the bent-axis type axial piston
pump by using the geometrical method. They determined the theoretical equations for the

driving range of the tapered piston. They found out that, the cylinder block is driven by
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one tapered piston in a limited range and that the core parameters such as the tilting angle
of the piston and the ahead delay angle influence performance of the bent-axis type axial

piston pump.

Hong et al. [25] presented a study on the friction losses of a bent-axis Type Hydraulic
Piston Pump to find out which design factors influence its torque efficiency most
significantly. The friction coefficients of the pump parts such as piston heads, spherical
joints, shaft bearings, and valve plate were experimentally identified. Applying the
experimental data to the equations of motion for pistons as well as to the theoretical
friction models for the pump parts, the frictional torques produced by them was computed.
The accuracy of the computed results was confirmed by comparison with the practical
input torque of the pump. They found that the viscous friction forces on the valve plate
and input shaft bearing are the primary sources of the friction losses of the bent-axis type
pump, while the friction forces and moments on the piston are of little significance.
According to the study, the diameters of the valve plate and the shaft bearing should be
minimized in order to increase the torque efficiency of the object pump at high input shaft

speed [25].

The total friction torques generated by the piston heads, spherical joints, valve plate
and bearing add to around 10.9% of the theoretical input torque at a rotational speed of 10,
000 rpm and a load pressure of 300 bars. The computed total input torques is slightly
smaller than the measured ones. The object pump indicated a practical torque efficiency of
about 85% at a rotational speed of 4, 000 rpm and 75% at 8, 000 rpm for the load pressure

of 136 bars [25].
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Nie et al. [26] formulated the characteristic equation of the hydrostatic slipper bearing
with an annular orifice damper, where the effects of various geometric factors are
reflected. They investigated the reaction force of the bearing in water hydraulic axial
piston motor (WHAPM). Moreover, they examined the effects from the friction within the
cylinder bore, the dynamics of the piston, and the centrifugal force of the piston—slipper
assembly. Results of the theoretical analyses indicated that the friction coefficient, the
swash plate angle, and the inertia and centrifugal loads would have significant influences
on the reaction force. Furthermore, an appropriate swash plate angle can help eliminate the
fluctuation of the reaction force. Besides, the load-carrying capacity of the hydrostatic
slipper bearing is more sensitive to the damping length than to the supporting length of the
piston. Moreover, a short damping length can help improve the load-carrying capacity.
Experimental studies of the slipper pads sliding against the swash plates are also
conducted at a custom-manufactured test apparatus. The experimental results indicated
that the hydrostatic slipper bearing with an annular orifice damper would decrease the
possibility of the severe wear between the slipper pad and the swash plate in comparison

with the hydrostatic clamping ratio bearing in the WHAPM.

Watton, J. [27] introduced a non-dimensional approach to the explicit characterization
of the non-linear steady state performance of an axial piston motor. The motor is driven by
a servo valve and it is shown how the flow characteristics, including losses, may be
sufficiently represented by a well-established single equation that may then be used to
produce directly usable design equations for speed, efficiency, and power transfer. The

new equations allow direct determination of the conditions for maximum efficiency and
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power transfer, which leads to determine the effect of flow and torque losses for both
open-loop and closed-loop operation. The approach was validated by experimental results.
The derived equations, though applicable over a wide range of conditions, become more
accurate at high speeds and particularly with closed-loop control at higher load pressures.
The flow equations for closed-loop control at very high load pressures where the servo
valve current saturates are not applicable. Optimum drive performance in the sense of
maximum power transfer and efficiency may be possible but at a very low drive speed and

a low drive efficiency.

2.5 Noise Reduction and Control

The reduction in source flow ripple in hydraulic systems is the most effective method
of reducing pump-generated pressure ripple and system noise.

According to Watton [27] and Johansson [28, 29], the noise and vibrations created by
the pump have mainly two different origins. First, the cylinder pressures acting on the
piston will create piston forces inside the pump. Second, the pump generates flow ripple,
which in a system will be transformed to pressure ripple and noise. Pump generated flow
ripple can be divided into two different parts. The first part is the kinematic flow ripple,
which is due to the limited number of pistons, which portion the flow into the delivery
line. The second part is the compressible flow ripple, which becomes evident as the fluid
is exposed to large alternating pressures.

Manring [30] examined the idealized and actual flow-ripple of an axial-piston swash-
plate type hydrostatic pump. He considered two cases. First, the idealized case in which
the leakage is considered zero and the fluid is assumed incompressible. Both the ripple

height and the pulse frequency of the ripple are described for a pump with an even and an
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odd number of pistons. In the other case, the actual flow-ripple of the pump is examined
by considering the pump leakage and the fluid compressibility. From an idealized point of
view, Manring showed quantitatively that an eight-piston design is less attractive than a
nine or seven-piston design. From a flow ripple point of view, Manring indicated
numerically that a pump designed with an even number of pistons might be as feasible as
one that is designed with an odd number of pistons.

Helgestad et al. [31] outlined a scheme whereby the delivery port opened relatively
late in the cycle and allowed a one-way valve in the port plate to open when the cylinder
reached the delivery pressure. Ideally, this would produce optimal cylinder pre-
compression for every pump operating condition. The valve would close each time that it
communicated with a low-pressure cylinder and then open again as each cylinder reached
the delivery pressure. Because of this, the valve might only have a limited life; a nine-
piston pump operating at 1500 rpm for example would cause the valve to switch 810000
times/hour. Furthermore, at higher pump speeds, the frequency response of the valve may
limit its switching performance.

A possible solution to the FBN problem is the incorporation of an auxiliary source of
flow ripple which, when combined with the pump flow ripple, produces destructive
interference. However, a mechanical method of achieving this would be difficult due to
the short duration of the cylinder reverse flows. Likewise, the anti-noise mechanism
would need to respond precisely to transient changes in the mean delivery pressure,
displacement, and speed. Otherwise, the device itself might create a significant unwanted
FBN. Rebel [32] attempted FBN cancellation by introducing a high-frequency flow

fluctuation using a fast-response servo-valve and an auxiliary pump. Initially, open-loop
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control was used with a single sinusoidal control of the valve used to cancel a specific
harmonic. He carried out cancellation tests on a radial three-piston pump, operating at a
maximum speed of 2000 rpm and achieved a measure of success. He found that the servo-
valve could cause a 9dB reduction in the pump FBN at the pump fundamental frequency.
Under closed-loop control, with the pump pressure ripple signal used for feedback, a
larger reduction of 17dB was achieved through cancellation of a number of the lower-
pump flow ripple harmonics. However, Rebel concluded that the system was not
commercially feasible; the cancellation of higher-frequency components above 50Hz was
limited by the frequency response of the servo-valve. Also, bleeding off and adding fluid
reduced the overall system efficiency. Furthermore, the cost of the servo valve would
probably be analogous with that of the piston pump.

The delivery delay needed for optimal pre-compression depends on the fluid
properties, pump speed and displacement, and pressure difference between suction and
delivery. To achieve optimal or near-optimal pre-compression over a wide range of
operating conditions, a variable timing mechanism was proposed by several researchers
that actuates the angular position of the port plate [33-35] in response to changes in these
characteristics. However, the concept is limited in its effectiveness because any delay in
the opening of the delivery port is also applied to the suction port. With large delays, the
end of the delivery port can extend over the piston TDC position, leading to transfer of
fluid back to the suction port and a consequent reduction in the pump volumetric
efficiency. In addition, a delayed opening of the suction port is likely to cause cavitation in

the cylinder at the start of the suction stroke.
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Martin et al. [35] and Boltyanski et al. [36] attempted to separate the timing of the
suction and delivery ports by using independent mechanisms acting at the start of both
ports. However, the main problem with these mechanisms is the high cost of their
implementation. In addition, the servomechanisms controlling the variable timing
elements become extremely complex in order to reveal the necessary pressure, flow and
speed compensation characteristic.

An alternative approach to variable timing is to use mechanisms that pre-compress the
cylinder contents to the delivery pressure in time for communication with a fixed delivery
port. Pre-compression filter volume (PCFV) has been developed by Boyer [37] and
Pettersson [38]. Very careful design of the arrangement is required for adequate flow
ripple attenuation over a wide range of operating conditions. In particular, the volume of
the PCFV and the diameter and length of the connecting channel from the PCFV to the
port plate are critical factors in achieving good performance. Now, results from the PCFV
mechanism have only been published for fixed-displacement pumps.

Bartos [39] presented a Mathematical Model describing the torque and flow ripple
effects of a bent-axis hydraulic piston motor. This paper describes how the resultant
torque and flow ripple can be reduced by properly phasing the hydraulic motors when
multiple motors are used to drive a device. The total instantaneous torque with minimum
torque and flow ripple generated by the hydraulic motors is equivalent to the instantaneous
torque generated by a single motor with a displacement equal to the displacement of one
motor multiplied by the number of motors. In the mean time, number of pistons equal to
the number of pistons of one motor multiplied by twice the number of motors if the motor

has an odd number of pistons. The corresponding equivalent displacement for an even
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number of pistons equals to the displacement of one motor multiplied by the number of
motors, while the equivalent number of pistons equals to the number of pistons of one
motor multiplied by the number of motors.

Harrison et al. [40] indicated that the main feature of the axial piston pump delivery
flow ripple is the short-duration reverse flow into the cylinder at the beginning of the
delivery phase caused by under-compression of the cylinder fluid as the cylinder passes
from the suction port to the delivery port. Conventionally, a pressure relief groove
machined on the face of the port plate prior to the opening of the delivery kidney slot
reduces the severity of the cylinder reverse flow. This extends the period over which
reverse flow occurs, thereby reducing the magnitude of higher frequency flow ripple
harmonics. However, the size and timing of this feature are highly dependent upon the
delivery and suction pressures and upon the pump displacement and speed. Pressure relief
grooves have no mechanism to respond to such changes, and so they are optimized for
best performance over a limited range of operating conditions. Consequently, pumps with
relief grooves can generate a significant increase in FBN when operating away from the
design point.

Kim et al. [41] simultaneously measured pressure variations in a cylinder at the
discharge region and the pump noise for different values of the discharge pressures and
rotational speeds during the pump working. They used three types of valve plates to
investigate the effects of the pre-compression and the V-notch in the valve plate. They
found that the pressure variations in the cylinder increase as the discharge pressure and the
rotational speed increase. In addition, the pump noise is deeply related to the pressure

variations in the cylinder and the pressure pulsations in the discharge line. Furthermore,
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the pressure variations in the cylinder and the pressure pulsations in the discharge line can
be reduced by optimizing the design of the pre-compression angle and the V-notch in the
valve plate, which consequently may result in the reduction of the pump noise.

Mandal et al. [42] presented a model that puts special emphasis on analyzing the effect
of volume variation of the silencing grooves. They carried out the analysis for a swash
plate pump with leading-side manifolds. Therefore, they indicated optimal dimensions for
these grooves through a constant-speed parametric analysis at fixed load. With the goal to
minimize the pressure and flow ripples, they also developed a mathematical model that
attempts an explicit solution of pressure within each silencing groove.

Kumar et al. [43] presented static and dynamic characteristics of a piston pump slipper
with a groove. They have applied three-dimensional Navier Stokes equations in
cylindrical coordinates to the slipper/plate gap, including the groove. They presented
pressure, leakage, force, and torque variations when groove dimensions and position are
being modified. They also considered the effect of slipper tangential velocity and turning
speed. They found a good agreement between theoretical analysis and experimental
results. In their analysis, they assumed laminar and incompressible flow under all
conditions and that the slipper is parallel to the plate. In addition, they gave design
instructions to optimize slipper/groove performance.

Harrison et al. [40] presented a timing mechanism which is speed, flow and pressure
sensing to reduce axial piston pump delivery flow ripple. The mechanism consists of a
series of heavily damped check valves (HDCV) built-in the delivery port of the pump
valve plate. Fixed-speed tests have shown that the mechanism can significantly reduce

axial-piston pump’s delivery flow ripple over a wide range of delivery pressures and pump
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displacements. Moreover, the reduction in pressure ripple achieved with the mechanism
led to reductions in overall Air Born Noise (ABN) levels of up to 6 dB in a simple system.
A simulation model has been produced to predict the behavior of the prototype
mechanism. According to the authors, the model achieved good agreement with the
measured delivery flow ripple. The final HDCV prototype achieved reductions in delivery
flow ripple and casing ABN for delivery pressures between 100 and 250bar, and for pump
displacements between 20 and 100%. The level of damping applied to the valve is
important. With too much damping, the valve response will be slow and the pump could
become noisy during transient changes in operating conditions. With too little damping,
the valve element will switch rapidly and hence may have a limited life and may be an
additional noise source; it could also result in damage to the pump. In each condition, the
HDCYV prototype appears to cause more gradual cylinder compression. For the maximum
flow conditions, the first harmonic is significantly reduced with the higher harmonics
relatively unaffected. However, for the 20% flow conditions, the flow ripple is
significantly reduced for the first four harmonics. In high-flow conditions, the
improvements are less exciting. The introduction of the HDCVs led to a reduction in
measured sound pressure level (SPL) of between one and 6 dB (A). As with the reductions
in flow ripple, the largest SPL reductions occurred at lower pump displacements. Overall,
the simulation model underestimates the HDCV damping at low frequencies in contrast
with the overestimation at higher frequencies.

Johansson et al. [28, 29] introduced an overview of a design feature called the “cross-
angle”. Cross-angle is a bias angle (2° to 4°) of the swash plate around the axis that is

perpendicular to the normal displacement angle (see Figure 2-10). Because of the cross-
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angle, the time delay (pre-compression) before linking up to the discharge kidney changes
with the displacement angle. The physical principle of a cross-angle is similar to the
revolving valve plate, but instead of rotating the valve plate, the dead centers are moved as

the displacement angle changes.

«

Swash plate surface
inclined with a cross
angle of 2 to 4 degrees

)

>

Figure 2-10: Cross angle

In a study conducted by Kim et al. [44], a parallel line is introduced to the hydraulic
pipeline for the hydraulic system with a bent axis piston pump as a method to reduce the
pressure ripples. It was confirmed by experiment and by simulation that the hydraulic
pipeline with a parallel line can considerably reduce the amount of pressure ripples by
using the phase difference of pressure waves caused by the length difference between the

main line and the parallel line.



CHAPTER 3: THEORITICAL ANALYSIS

All vectors dealt with in this analysis should be referenced to either the inertial
coordinate frame “ajayaz* or any other moving coordinate frame. A letter at its lower left
corner should precede the vector. This letter indicates that the vector is expressed with
respect to the indicated frame of reference. For example, the vector pV is a vector V that is

expressed with respect to the moving coordinate frame D.

3.1 The Frictional Moments at the Rolling Bearings

Figure 3-1 shows the basic components of a ball roller bearing, which include the
inner race, the rollers, the outer race, and the cage. The resistance to rotation of a rolling
bearing is composed of rolling, sliding, and lubrication frictions.

Rolling contact friction occurs when the rolling elements roll over the raceways. It
results in part from elastic hysteresis and partially from the associated sliding resistance.
The rolling contact friction is proportional to the size of the contact areas and the size of

the contact angle between rolling elements and raceways.

Sliding friction occurs at the guiding surfaces of the cage, between the rollers for
bearings without a cage, at the roller faces and the raceway lips. Lubricant friction is the
result of the internal friction of the lubricant between the working surfaces as well as its

churning and working action that occurs with excess lubricant at high speeds.

41
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The total resistance to running of a rolling bearing is very small compared with the
transmitted forces. However, the friction determines the heat generated in a bearing, thus
influencing the operating temperature of the bearing parts and the lubricant.

Oulor raca

cags

inner race

ball beaning
B

- ’%M

Figure 3-1: Basic components of a roller bearing [45]

The frictional moment of a roller bearing depends on the load, the speed, and the
lubrication viscosity. Under normal operating conditions, the entire frictional moment of a
roller bearing, which accommaodates both radial and axial loads is given by

M=M,+M_ +M, (3.1)
Where
M = total frictional moment of the bearing (N.m)
M, = load independent component of the frictional moment (N.m)
My, = radial load dependent component of the frictional moment (N.m)

M, = axial load dependent component of the frictional moment (N.m)
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3.1.1 The load-independent component Mv

This depends on the operating viscosity v of the lubricant and on the speed of the
rotating shaft. The bearing friction through the bearing temperature in turn influences the
operating viscosity. In addition, the bearing size dn, and the width of the rolling contact
areas, which varies noticeably from type to type, have an effect on M,. The load
independent component M, of the frictional moment is determined in accordance with the

empirical formula given by [25]

{1010 f (vn,)?*d3,vn_ > 2000

v = 3.2
160x10™*°f d3,vn_ < 2000 ©2
fo, = index for bearing type and lubrication type [45]
The pitch circle diameter of the bearing, dn, is given by
D+d
d = 3.3
m 5 (3:3)

Where
d = bore diameter of the bearing in mm
D = Outside diameter of the bearing in mm

v = operating viscosity (mm?/s) of the oil

The oil used in the pump assumed here is Mobile 1 synthetic ATF, which has viscosity
values as shown in Figure 3-2. For the operating temperature range (20°C to 40°C), the
kinematic viscosity could be assumed to vary exponentially with the operating

temperature with reasonable accuracy according to the relationship

v =92.31e %" (3.4)
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Figure 3-2: Kinematic viscosity of Mobile 1 synthetic ATF hydraulic oil vs. temperature

The index f, is indicated in Table 3-1 for oil bath lubrication where the oil level in the
stationary bearing reaches the center of the bottommost rolling element. For fixed dp, fo
increases with the size of the balls or with the length of the rollers, i.e. it also increases
indirectly with the size of the bearing cross-section. If radial bearings run on a vertical
shaft under radial load, twice the value given in Table 3-1 has to be assumed; the same

applies to a large cooling-oil flow rate or an excessive amount of grease.

Table 3-1: Indexes f,, f1, Py for the calculation of rolling bearings frictional moment [45]

Bearing type fo f1 P1

0.5
Deep groove ball bearings | 1.5-2 | 0.005-0.009 [CP—"j max(F,3.3F, -0.1F)

0

Tapered roller bearings 3-6 0.0004 max(2Y F,, F.)

al' 'r

Needle roller bearings 5-5.5 0.0005 Fr

0.33
Thrust ball bearings 15 0.0012 (E—] F,

0
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3.1.2 The Radial load dependent frictional moment component M,

This results from the rolling friction and from the sliding friction at the lips. Under
normal operating conditions, My, hardly varies with speed but it does vary with the size of
the contact area and consequently with the rolling element/raceway curvature ratio and the

loading of the bearing. The radial load dependent frictional moment is given by

M — flpldm
" 1000

(3:5)
f1 is an index taking into account the magnitude of load and is listed in Table 3-1 for
different bearing types.

The load P; governs the radial load-depending frictional moment My,. It takes into

account the fact that My, changes with the load angle and is listed in Table 3-1 for different

bearing types.

3.1.3 Axial load dependent component of the frictional moment
The axial load dependent component of the frictional moment is given by
M, =6x10"f,F.d_ (3.6)

The index f,, which depends on the axial load F, and the lubricating condition, is given

by
0.15,x <1
f, =1-0.0699Inx, +0.151<x, <7 (3.7)
0.014,x, > 7
fbdmmms
X = (3.8)

~ F3(D*-d?)

Fr = 0.0048 for caged bearings
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Fp = 0.0061 for full complement bearings (without a cage)

For a bent axis piston pump linked to a HPA at the discharge port and to a LPA at the
suction port, x; in Eq. (3.7) will always be less than 1.0. Therefore, Eq. (3.7) reduces to

f,=0.15x <1 (3.9)

3.2 Dynamic Analysis of Main Shaft Assembly
The main shaft includes the drive shaft, the input shaft to the constant velocity joint,
the cups of the Connecting Rods, and the disk. The drive shaft transmits power from the

engine by means of a splined end of the shaft.

Consider the inertial coordinate axis system “ajapas” as shown in Figure 3-3. Attach a
coordinate system “b;b,bs* to the main shaft. “bib,bs* is obtained by rotating “a;a,az*
about the “as* axis with an angle ¢ (3-rotation). Therefore, the transformation matrix can

be written as

cosg sing O
T, =|-sing cos¢g O (3.10)
0 0 1

The angular velocity of the rotating frame of reference expressed in “B” frame with

respect to “A” frame in a skew symmetric matrix form is given by [46]

0 -1 0
20 =TT =|1 0 0l (3.12)
0 0 O

The angular velocity and angular acceleration of the main shaft in a vector form are

given by
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2@ =[0 0 4] (3.12)

5y =0 0 ¢'5]T (3.13)

The definition of the “b;b,bs* frame in terms of “a;a,as* frame can be expressed as

b, a cosg sing 0|l a COS @8, +Sin ¢a,
b, |=T,|a, |=|—sing cos¢ O] a, |=|—singa +cosgpa, (3.14)
b, 8 0 0 1ja 4

The velocity and acceleration of the center of gravity of the main shaft equals to zero.

Figure 3-3: Main Shaft

Figure 3-4 shows the Free Body Diagram (FBD) of the main shaft. The forces and

moments that act on the FBD of the main shaft include:

1. The torque input, ATin, to the main shaft and is expressed as
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NI

in =

0o .T.T (3.15)
2. The reaction force from the ball bearing at point (1). It consists of two force
components acting perpendicular to the shaft axis and a frictional moment around

the shaft axis. The reaction force and the corresponding position vector as

measured from the left end of the main shaft can be expressed as

N
a Fattoms =|:AFBlt0MSX AFBltoMSy 0] (3.16)

=0 0 1] (3.17)

The frictional moment opposes the direction of rotation of the shaft and is

expressed as

AMasovs == aMgioms: -SION (5 Dy ) (3.18)

3. The reaction force from the thrust bearing at point (2). Two force components are
perpendicular to the axis of the shaft and the third one is parallel to it. In addition,
there is frictional moment acting around the shaft axis. The thrust bearing reaction
force and the corresponding position vector as measured from the left end of the

main shaft is expressed as

F

T
aFaatoms = |: aFeaomsc 4 B2toMsy A FBZtoMSz] (3.19)

Al :[O 0 r2z]T (3.20)
The frictional moment opposes the direction of rotation of the shaft and is

expressed as

AMgooms == aMaoous, -Sign(sa’ms) (3.21)
4. The reactions from the two side pins of the first cross of the CVJ at points (3) and

(4). The reaction force at each pin consists of two perpendicular components
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denoted by —rFmstoc13, - FFmstoc14- These reaction forces are equal in magnitude
and opposite in direction, thus forming a couple. Moreover, there is a frictional
moment around the axis of each pin, denoted as —+Mwsic13 and - FMusioc14. The
corresponding position vectors of these reaction forces as measured from the left

end of the main shaft is given by

Br3=[0 —Io r3z] (3.22)

0 r, rJ (3.23)
Reaction forces from the connecting rods at the cups at points (5) through (13).
Each connecting rod acts with a reaction force that consists of three force
components. Besides, there are three frictional moment components from the
spherical end of each connecting rod. The connecting rod reaction forces and the
frictional moments at the end of the connecting rod are donated as - aAFmstocr,i, and
- AMmsiocrii respectively, where i = 1, 2, ...9. The position vector of this reaction

force as measured from the left end of the main shaft is expressed as

Arca(i)={Tl(¢+$ﬂ [0 R rJ], i=12..9 (3.24)

. The weight of the main shaft and the corresponding position vector as measured
from its left end are expressed as

AWMS=[O M s O]T (3.25)

Aers = [0 O r{Nmsz ]T (326)



50

Figure 3-4: Free Body Diagram of the main shaft sub-assembly

3.2.1 The frictional moment at the ball bearing of the main shaft
The frictional moment from the ball bearing opposes the direction of rotation of the

main shaft and is expressed as

_ " 8%ns M

A M BltoMS — BltoMSz (3.27)
| 8 Dnns |

A detailed analysis of frictional moment components of roller bearings is presented in
section 3.1. The thrust-tapered roller bearing carries out the thrust load from the main
shaft. Therefore, the axial load dependent component of the frictional moment from the
ball bearing is zero. Hence, the frictional moment on the ball bearing as given by Eq. (3.1)

reduces to

M BltoMSz — Mlm + Mlv (3.28)

Nms 1S the angular velocity of the main shaft in rpm and is given by



o1

@ [3]%60
Ny =A™ (3.29)
2

The pitch circle diameter of the bearing, dm; is given by

dml = M (3.30)
2
The index f1; which takes into account the magnitude of load is given by [45]
P 0.5
f,= 0.005—0.009( 2 ] (3.31)
o
Po1 is the equivalent load determined for the operating load and is given by [45]
Po = XaFu + YuFu (3.32)

Xy=06andY, =05
Co1 is the static load rating of the bearing. The load P;; governs the load-depending
frictional moment My,. For deep groove ball bearings with zero thrust loading, it is given
by [45]
P, =F, (3.33)

F1 is the radial load component of the bearing reaction at point (1) and is given by

2 2
F.= \/ Faiomsx T Faiomsy (3.34)

3.2.2 The frictional moment at the thrust bearing

The frictional moment opposes the direction of rotation of the shaft and is expressed as

B Whns

AMesoums; (3.35)
|Ba)ms|

A M B2toMS —

Therefore, the frictional moment at the tapered roller bearings is given by

AM B2toMSz — MZm + sz + Mza (3.36)
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The index f,, for bearing and lubrication type = 3 to 6 for tapered roller bearings. The
pitch circle diameter of the bearing, dn; is given by

d,, = Dz;rdz (3.37)

The index fi,, which takes into account the magnitude of load, equals to 0.0004. The
load P2 which governs the load-depending frictional moment My, for tapered roller
bearings, is given by [45]

P, =max(2Y F,, F,) (3.38)

Y is a thrust load factor. Bréndlein et al. [45] listed equations for the factor Y, where

for a tapered roller bearing is given by

0, Fao <e
Y _ I:r2
B F., (3.39)
O0.4cota,, 2=>e
r2
e=15tane,

The axial reaction component at the thrust bearing “Fy* comes from the axial
component of the pistons’ pressure. Most of the times, the yoke angle (0) is less than 45°.
In addition, “Fa" is proportional to “Po,. cos6“ while the radial reaction component is

proportional Poy_ sin 0. Therefore, the ratio of the axial reaction component to the radial

. F . .
reaction component (?”) will be more than 1.0 as long as 0 is less than 45°. Moreover,
r2

the nominal contact angle (o) usually ranges from 10° to 20°, which leads to the fact that

e in Eq. (3.39) will always be less than 1.0. Consequently, the ratio Fo will be greater
r2

than e. As a result, Eq. (3.39) reduces to
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Y =0.4cot ¢, (3.40)

The nominal contact angle (o) usually ranges from 10° to 20°. Therefore, cot o, will

vary between 5.67 and 2.74. Hence, Y in Eq. (3.40) will range between 1.1 and 2.27. As a
result, the term “2Y F* will be larger than Fy, in Eq. (3.38). Thus, Eq. (3.38) reduces to

P,=2YF, (3.41)

Fy, is the radial load component of the bearing reaction and is given by

\/ Faziomsxt aFo: B2toMSy (3.42)

3.2.3 Equations of motion
Since the main shaft is in pure rotation, its CG has a zero translational acceleration.

Therefore, the sum of all forces is zero in all directions.

9
T T
aFaioms +a Fazoms = Terr Fusocis = Terw ¢ Fustocia TaWis - Z A FMStoCR,i =0 (3.43)
i=1

The sum of the moments of all forces about the center of the thrust roller bearing

equals to the rotational acceleration times the moment of inertia.

+(A 1 Ar2)>< FBltoMS+ MBl’[OMS+ MBZtoMS

T
_(T1 (¢)'B =al )XTch-F Fustoc1s - TcT1'F M vsioc13

T T T
- T (¢) Ny — ) Tcl F FMStoC14 Tcl FM MStoC14 (3.44)
9 9
Z Aleri =a T FMStoCRi - Z A M MStoCRi
i=1 i=1

+(Aers A Z)XAWMS = T1T(¢)‘(B|ms-BaMs)

3.3 Dynamic Analysis of the Constant Velocity Joint
The constant velocity joint (CVJ) is a double cardan joint that connects the main shaft

and the barrel to assure a positive drive. With reference to Figure 3-5, the CVJ consists of
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the input shaft to the joint, the first cross, the intermediate shaft, the second cross, and the
output shaft. The input shaft has the same angular velocity as the drive shaft. The analysis
of the input shaft was lumped with main shaft in the previous section. The intermediate
shaft consists of two parts: the first intermediate shaft that connects to the first cross, and
the second intermediate shaft that connects to the second cross. The second intermediate
shaft can slide with respect to the first intermediate shaft along its own axis to allow for
the variation of the length of the intermediate shaft as the yoke rotates. The output shaft of
the joint has the same angular velocity as the barrel. The analysis of the output shaft is

lumped to the barrel.

Figure 3-5: Double Cardan constant velocity joint

Johnson et al. [47] presented the conditions for a double cardan joint to be a CVJ.
First, the axis of the input yoke that is attached to the input shaft should be parallel to the
axis of the output yoke that is attached to the output shaft. In addition, the axes of the two
yokes attached to the intermediate shafts should be parallel as can be seen in Figure 3-5
and Figure 3-6. Second, the angle between the input shaft and the intermediate shaft

should equal to the angle between the intermediate shaft and the output shaft.
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Hence, the swivel angle, 6 is related to the angle between the input shaft and the

intermediate shaft, 8 by

%
L= > (3.45)

To start analyzing the CVJ, the inertial frame of reference “aja,as” is defined as shown
in Figure 3-6. “a;* axis is normal to the plane formed by the axes of the input and
intermediate shaft and is initially parallel to the input yoke and is always normal to the
input axis. “az“ is aligned with the input axis of the first joint. “a,* is normal to both “a;*

and “as*“ according to the right hand rule.

Output shaft

1% Intermediate shaft

2" Intermediate shaft

Input shaft

pviat

Figure 3-6: Double Cardan Joint Geometric relations
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Attach a reference frame “b;b,bs* to the input shaft axis such that: “b;* is parallel to
the input yoke axis, “bs* is aligned along the axis of the input shaft, and “b,* is normal to
both “bs* and “b;“ according to the right hand rule. The frame of reference “bibybs”

relates to the inertial frame through the relation given by Eq. (3.14).

3.3.1 Analysis of the first intermediate shaft

Attach a coordinate system ‘“ciC,c3* to the first intermediate shaft such that: “c,™ is
aligned with the axis of the output yoke of the first joint, “cs“ is aligned with the axis of
the intermediate shaft (output shaft of first joint), and “c;“ is normal to both “c,* and “cs*
according to the right hand rule.

One can obtain “cic,c3* in two steps. First, “ajasas™ is rotated about “a;*“ (1-rotation)
by an angle of 6/2 to get “a,a,a,*. Then, “a,a,a,“ is rotated about “a,* (3-rotation) an

angle of 3 to get “c1CaC3™,

1 0 0

T,(6)=|0 cosg sing (3.46)

.0 o0
0 —-sin— cos—
2 2

cosd sind O
T,=|-sind coso O (3.47)
0 0 1

Therefore, “ciC,C3 and “ajajas“ are related by



S7

CoSJo sin5cos§ sinésing
Cl > 0 0 %
c, |=T,T,(0)| &, |=| —sins cosécosz cosésinE a, (3.48)
C, a, ) )
0 -sin— C0S—
L 2 2 |

The total transformation matrix between the “A” and “C” frames is given by

C0So sinécosg sinﬁsing
2 2
. 0 .0
T =TT, (6)=| —sin& cosacosE cosésmz (3.49)
0 —sing cosg
L 2 2

The angular velocity and angular acceleration of the first intermediate shaft in vector

form are given by

. . T
Ca)m:{gcos& —gsin5 ) (3.50)
. dcoss —05sins
¢m =% —05c0sS—0sing (3.51)
26

The position vector of the CG of the first intermediate shaft with respect to the origin

of the first cross is given by

T
Criml :[O O rimlz] (352)
The linear velocity and linear acceleration of the center of gravity of the first

intermediate shaft are given by

cVim = cBm X clim = _% I’-imlzg.[SirI 0 Coso O]T (3.53)
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By = s [ 205in 5 200055 6°] (354

Orthogonalty constraint between the yoke axes
The two yokes of the joint are constrained by the inside cross, resulting in the

orthogonalty constraint between the yoke axes as follows:

b -C,=0 (3.55)
b, = cos ¢a, +5in ¢a, (3.56)
C, =—Sin d&, +C0S o Cos fa, +Cos o'sin fa, (3.57)
Therefore,
o= tan‘l(tan¢cos(gn (3.58)

Figure 3-7 shows the forces that act on the FBD of the first intermediate shaft, which

include:

1. The reaction forces from the first cross at points (23) and (24) denoted as —
FFimitoc123 and - eFiviociza. These reaction forces are equal in magnitude and
opposite in direction, thus forming a couple.

2. The frictional moments from the first cross at points (23) and (24) denoted as —
FMim1toc123 and —sMimitoci24.

3. The reaction forces from the second intermediate shaft that acts at points (25). It
consists of a sliding force component and a couple around the axis of the

intermediate shaft. The sliding force component can be expressed as

c Fimatomizs = [0 0 F|M2to|M125z]T (3.59)
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The reaction couple from the second intermediate shaft to the first intermediate

shaft is expressed as

CMIMZIOIM125 :[0 0 MIMZtoIMlZSz]T (3.60)

4. The weight of the first intermediate shaft and is expressed as

Avvim1=[0 IM;m O]T (3.61)

Figure 3-7: FBD of the first intermediate shaft

Equations of motion of the first intermediate shaft

The sum of all forces acting on the first intermediate shaft equals to its mass multiplied

by the acceleration.

T T
_Tcl '(F I:IM1t0C123 +F I:IM1t0C124) +Timl'C I:IM 2t0IM 125 +A Vviml = I\/Iiml'Aaiml (362)
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Let the origin of the C frame be at the center of the first cross. Therefore, expressing
the position vectors of all forces acting on the FBD of the first intermediate with respect to

the center of the first cross:
chs = ['rcz 0 O] (3.63)

=-cls (3.64)

Sum of moments of all forces about the center of the first cross is given by

T T T T T
_(Timl'C r23) ><Tcl 'F I:IMlt0C123 - Tcl ‘F M IM1toC123 ~ (Timl'C r24) X Tcl 'F I:IM 1toC124

T T
-Tcl ‘F M IM1toC124 + Timl'C M IM 2toIM 125 (365)

T T T
+ (Tnze M) X Wit = Tia- (e lim ¢ @imt) + (T o Fimt) X ( M iml'Aaiml)

3.3.2 Dynamic analysis of the cross of the first joint

With reference to Figure 3-6, the f;f,f; coordinate system is attached to the first cross of
the joint such that: “f;* is parallel to “b;*, “f,* is parallel to “c,, and “f5* is perpendicular
to “f,* and “f,* according to the right hand rule. Therefore, the expression of the “f;f,f5*

frame with respect to “A” frame is given by

[f.]=[b]=[cos¢ sing O] (3.66)

.
[fz]:[cz]:[—sin5 cos5cos§ cos5sin§} (3.67)

cososin gsin ¢
[f,]=[f.xf,]= —cos5cos¢sin§ (3.69)

cos§cos§cos¢+sin osing

Therefore, the rotation matrix of the first cross is given by
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CoS ¢ sin ¢ 0

T, = —sind cosécosg cos5sing (3.69)

cososin gsin o —cos5cos¢sin§ cos5cos§cos¢+sin osing

The angular velocity and angular acceleration of the first cross in vector form are

given by

—osin gsin ¢+%(2 cos’ 5cos¢+cos§sin 20sin ¢j

cw, = écos&sing (3.70)

¢3(c03§cos¢cos§+sin sin ¢j

d
Qg = a F Oy (3.71)

Figure 3-8 shows the forces that act on the FBD of the first cross which include:

1.

The reaction forces from the main shaft which act at points (3) and (4) and are

given by

T
F FMStOClS = [FMSt0C13X O FMSt0C13Z] (372)

rFvstoc1s = “FFustocia (3.73)

The frictional moments from the main shaft at the pins of the cross at points (3)
and (4) which are expressed as
F Musiocis = Musiocas [0 =sign( o, [2]) O]T (3.74)

F Musiocia = Misioc14 [O =sign( g ar4[2]) O]T (3.75)
The reaction forces from the first intermediate shaft which act at points 23 and 24

given by



T
F I:IM 1t0C123 — I:O F I:IM 1toC123y F I:IM 1toC123z ]

F FIMltOClZ4 =- F FIM1t0C123

62

(3.76)

(3.77)

4. The frictional moments from the first intermediate shaft at points (23) and (24)

expressed as
FMimocizs = Mimaocizs [_Sign(F o,[1]) 0 O]T

FMimioci2e = Muiocioa [_Sign(F @y[1]) O O]T

5. The weight of the cross and is expressed as

AWcl =[0 g Mcl O]T

‘ 3:FMStoC13 ‘

23: FIM1toC123

| 24: FFIM1toC124

4:FFMStoC14 |

Figure 3-8: FBD of the first cross of the CVJ

The frictional moments of the pins of the first cross are given by

_ 2 2
M MStoC13 — ﬂmrcpl\/ F FMStoCle +E FMStoCl3z

(3.79)

(3.79)

(3.80)

(3.81)
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— 2 2
M MStoC14 — ﬂCerPl\/F FMS'[OC14X + F FMStOC14Z (382)
2 2
M IM1toC123 — IuC1rCP2 \jFIMltOClBy + I:IM 1toC123z (383)
— 2 2
M IM1toC124 — ﬂCerPB\/FIM 1toC124y + I:IM 1toC124z (384)

uci = the friction coefficient at the pins of the first cross

Equations of motion of the first cross:
Since the acceleration of the CG of the first cross is zero, the sum of all forces acting
on the FBD is zero:
F FMStoC13 + F FMSI0C14 + F I:IM 1toC123 + F I:IM 1toC124 + TCl'AWcl = 0 (3-85)
Attach the F frame to the origin of the first cross and express the position vectors of

the forces acting on the FBD of the first cross in terms of the F frame:

=10 -, 0] (3.86)
Fly =l (3.87)
hy =[f, 0 0] (3.88)
Flos = ¢l (3.89)

The sum of moments about the center of the first cross is given by

FBXeFusocis T el X e Fusocis + s X £ Fimiocizs + £ Mimiocazs (3.90)

+ F r24 X F I:IMlt0C124 + F M IM1toC124 — F Icl'Facl
3.3.3 Dynamic analysis of the second intermediate shaft
The second intermediate shaft has the same angular velocity as the first intermediate

shaft. However, the second intermediate shaft moves along its longitudinal axis with
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respect to the first intermediate shaft. Therefore, the velocity of the center of gravity of the
second intermediate shaft is given by

cVimz = ¢ Vim2simt T ¢ @ X ¢ lim2 (3.91)
Where
cVimzim1 = Velocity of CG of the second intermediate shaft with respect to the first

intermediate shaft.

Figure 3-9 defines the geometric parameters of a typical bent axes pump as follows:

e |H = axis of rotation of the output shaft of CVJ

e AJ=Ljs = length of the input shaft of the universal joint

e JK =Ry =distance from center of rotation of the yoke to center of first cross

e |IK =Ry =distance from center of rotation of the yoke to center of second cross

e Jl = Lin = length of intermediate shaft of the universal joint, it changes with the
angle of rotation of the yoke, 6.

e CD = Lcg = connecting rod at the TDC

e (@, = connecting rod angle at BDC

e O =yokeangle

e G = center of gravity of the connecting rod

The distance between the centers of the two-cardan joints at any angular rotation (0) of

the yoke is given by

0
Li, =l=2R, COSE (3.92)
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The relative velocity of the second intermediate shaft with respect to the first

intermediate shaft equals to the rate of change of Li, with respect to time

.. o071
cVimasim = [0 0 —Ryesing} (3.93)

Cennscting Rod

N
S

Figure 3-9: Bent axis pump geometric relations

Let crimz = JP = position vector of CG of the second intermediate shaft with respect to

the center of the first cross expressed in C frame.

Crimz=(-|P+2Rycosgj[0 0 1] (3.94)
‘93'”5(|P—2R cosQJ
2 y 2
0cosS 0
cViny = 5 (IP—ZRy COSEJ (3.95)
—éRysing

The acceleration of the CG of the second intermediate shaft is given by
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_1 . .. o 2 .0 ]
—sino| 6| IP-2R,, cos— |+2R, 6" sin —
2 Y= y 2

1 . 0 : 0
Caim2 = Zcosﬁ(e(lP—ZRy cosszrZRyH2 sin 2) (3.96)

1 . . 0
[ 1p—4ry cos? |62 — Ry, sin —
4 ) Y™

Figure 3-10 shows the forces that act on the FBD of the second intermediate shaft,
which includes:

1. The reaction force and moment from the first intermediate shaft at point (25) are
denoted by —cFim2toim125 and —cMimztoimizs.

2. The reaction forces from the second cross at points (27) and (28) denoted by -
IFimatoc227 and - |Fimatoc22s.

3. The reaction moments from the second cross at points (27) and (28) and denoted
by - iMim2toc227 and - |Mm2toc22s.

4. The weight of the second intermediate shaft and is expressed as

W, =[0,gM,,, O (3.97)

Equations of motion of the second intermediate shaft

The sum of forces equals to the mass multiplied by the acceleration as follows:

AVVimZ --ﬂ;l'CFIMZtolM125 - Tcz'(l I:IM2toC227 +I I:IM2t0C228) = Ti;l'MimZ'CaimZ (3-98)
Let the origin of the C frame be at the center of the first cross. Then, define the

position vectors of the forces acting on the second intermediate shaft as follows:
T
chry = ['rcz 0 le] (3.99)

el =[l; 0 L] (3.100)
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Summing the moments of the forces acting on the second intermediate shaft about the
center of the first cross, yields

T T T T T
- (Timl'C r27) X (Tc2' | Fim 2toC227) - (Timl'C rzs) X (Tcz- 1 Fim 2t0C228) + (Timl'C rimz) X Wio

) ] : (3.101)
'Tcz-( 1M ivaoc22r + My 2t0C228) =Tim-(c limze ¢ @im) + Tina-( ¢ Fimz X Minz-c @im2)

AWim2

Figure 3-10: FBD of the second intermediate shaft

3.3.4 Dynamic analysis of the second cardan joint

With reference to Figure 3-6, a coordinate frame “eje,es” is selected. “e;* axis is
normal to the plane formed by the intermediate and output axes of second joint (“e;“ is
initially parallel to the output yoke of the second joint as shown and is always normal to
the intermediate axis). “es* is aligned with the axis of the intermediate shaft. “e, is
normal to both “es* and “e; according to the right hand rule. “eie,e3” is obtained by

rotating “a;a,as" about “a;*“ an angle of 6/2:
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& e e] =T.(0)a a af (3.102)

010203 is attached to the intermediate axis such that: “g,* is parallel to the input yoke

of the second joint, “gs“ is aligned along the axis of the intermediate shaft, and “g;“ is
normal to both “g,* and “gs“ according to the right hand rule. “g;g.0s*“ is obtained by
rotating the “eje,e;“ by an angle of & around the intermediate shaft axis “es;* yielding the

following relationship between “g10.0s* and “e;e.e3*:

T

[9, 9, gs]T =[T:][e. e &] (3.103)

A coordinate system “d;d,ds“ is attached to the output shaft of the second joint such
that: “d;* is aligned with the axis of the output yoke of the second joint, “ds“ is aligned
with the axis of the output shaft of the second joint, “d,* is normal to both “ds* and “d;*

according to the right hand rule. “d;d,ds* is obtained in two steps. First, “d;d.ds“ is rotated
about “e;“ by an angle of /2 to get “eene, “. “eee, “ relates to “ejeses* by the
transformation matrix T,(6) as given by equation (3.46). Second, “ee,e,* is rotated about
“g,“an angle of y to get “dyd,ds“.

cosy siny 0

T,(w)=|-siny cosy O (3.104)
0 0 1

Therefore, “did.ds* and “a;a,asz* are related by

d, a cosy sinycosé sinysing || a
d, |=T,(v)T,(6)T,(0)| a, |=| —siny cosycosd cosysind || a, (3.105)
d, a, 0 —-siné cosd a,

The rotation matrix of the output shaft with respect to the A frame is given by



69

cosy  sinycosd sinysingd
T (0,4)=|—siny cosycosd cosysind (3.106)
0 —-sin@ cosé

The angular velocity of the output shaft is given by

Dcoosz[écosqﬁ —0sing ¢B]T (3.107)

Orthogonalty constraint between the intermediate shaft and the output shaft of the
second joint:
The two yokes of the second joint are also constrained by the inside cross, resulting in

the orthogonally constraint between the yoke axes as follows

—

g,-d, =0 (3.108)
g, =[-sind coss O]T (3.109)
- . o . .07
d, =| cosy smyxcosi S|m//5|nE (3.110)
Therefore,
4 0
w =tan (tan O C0S Ej =¢ (3.111)

Attach “ijioiz* coordinate system to the second cross of the joint such that: “i;* is
parallel to “d;“, “i,* is parallel to “c,*, and “iz* is perpendicular to “i;* and “i,* according
to the right hand rule. Therefore, the frame of reference “ii,iz* can be expressed in terms

of the A frame as

[d,]=[cos¢ singcosé singsind] (3.112)

|

L

—_
I

[i,]=[c.]=

. 0 Nk
—siné cosdcosz cos5sm§ (3.113)

1
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—cosésingsin @

[i;]=[i,xi,] = —cos¢cos§sin§—sin ssingsin ¢ (3.114)

cosgcos¢cosé+sin o cosésin ¢

Therefore, the rotation matrix of the second cross is given by

Cos¢ singcosé singsin@

T,= —sind cos&cosg cos5sin§ (3.115)

c2

—cos&singsin i/ —cos¢cos§sin§—sin osingsing cos%cos¢cos§+sin ocosésing

The angular velocity and angular acceleration of the second cross in vector form are

given by
Ssingsin ¢+§(2005¢0052 5+cos§sin 29sin ¢]

| @y, =| —$COS 5sing—ésin ¢[cos§cos¢cos5+sin sin ¢j (3.116)

—0sin ¢singc035+¢(cosécos§cos¢+sin Jsin ¢J

d
1 Xep = qt | D2 (3.117)

The position vectors of points 27 on the pin of the second cross with respect to its CG
expressed in the “I”” frame is given by
h=[t, 0 0] (3.118)
The center of the second cross does not move with respect to either the second

intermediate shaft or the output shaft. Therefore, it is appropriate to assume that the center

of the second cross is a common point between the second intermediate shaft and the
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output shaft. The velocity of the CG of the second cross (expressed in terms of the C

frame) is given by

9 6 2l
M, = Nigim T ¢ @mXch :—Ryé[cosisiné 00350035 sinﬂ (3.119)

The position vector of point | (Figure 3-9) with respect to the center of the first cross

can be expressed as

=0 0 L, (3.120)

The acceleration of the CG of the second cross is given by

R sin 5(—& cosg+<9'2 sin QJ
Y 2 2

.0 ,. 0
@, =|R cosé —QCOS§+¢9 SmE (3.121)

R ((9'2 cos + disin QJ
Y 2 2

Figure 3-11 shows the FBD of the second cross of the double cardan joint. The reaction

forces that act on the second cross include:

1. The reaction forces from the second intermediate shaft at the pins (points 27 and

28) expressed as

T
| Fimawc2r = [0 Fiu 2toC227y Fiu 2toC227z] (3.122)
\Fivztoc2s = =1 Fimatoczo7 (3.123)

2. The frictional moments from the second intermediate shaft at the pins (points 27

and 28) are expressed as
I M IM 2toC227 — MM2toC227 [_Sign(| a)cz[l]) 0 O]T (3.124)

I M IM 2t0C228 — MM210C228 [_Sign(| a)cz[]-]) 0 O]T (3.125)
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3. The reaction forces from the output shaft at the pins (points 29 and 30). They are

given by

T
| I:OStoC 229 — [ I:OStOC 229x 0 FOStOC 229z ] (3 126)

I FOStoCZ3O — 7 Fosmczzg (3.127)

4. The frictional moments from the output shaft at the right and left pins of the cross

at points (29) and (30) expressed as
1 Mosioc220 = Mostoc 220 [0 —sign(, @.,[2]) O]T (3.128)

I Mosmczso = Mosmczso [0 _Sign(l a)cz[z]) O]T (3.129)
5. The weight of the second cross (very small compared with other forces) and is

expressed as

W, = [0, Mg ,0T (3.130)

The frictional moments of the pins of the second cross are given by

2 2
M 2t0C227 — /uCerPZ\/ Fiv 2woc227y T Fiv 2t0C 2272 (3.131)
— 2 2
M v2toc228 = Healepa \/ Fim 2t0c 28y T Fin 210c 2282 (3.132)
2 2
Mostoc220 = /uCerPl\/ Fostoc220x + Fostoc 229 (3.133)

2 2
M 0StoC230 — ﬂCl r.CPl \/ FOStOC 230x + FOStOC 230z (3 134)



73

a2

Figure 3-11: FBD of the second cross of the CVJ

Equations of motion of the second cross

The sum of all forces acting on the FBD is given by

Tc-;'(l I:IM 2toC 227 + | I:IM 2toC 228 + | FOStOC229 + | I:OSt0C230) + AWC2 = MCZ'AaCZ (3135)
Express the position vectors of the forces acting on the FBD of the second cross in

terms of the “I”” frame with respect to the center of the second cross:

s == Iy (3.136)

T
1 Do :[O -Teq 0] (3.137)
1fa0 = =1l (3.138)

Find the sum of moments about the center of the second cross:

127 %1 Fimaioc227 + 1 Mimaioc 22 T 1 F2s X 1 Fimatoc 228 + 1 Mimztoc 22 (3.139)

+1 9 % Fosioc220 T 1 Mostoc 220 + 1 Tao X 1 Fostoczzo T 1 Mostoc2s0 = 1 lez1 ez
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3.4 The Barrel-Output Shaft Assembly
Attach the coordinate frame D to the center of rotation of the yoke (point K in
Figure 3-9). The position vector of the CG of the output shaft with respect to point K

expressed in the D frame is given by

ol =[0 0 r.] (3.140)

The position vector of the center of the second cross (point 1) with respect to the yoke

center of rotation is given by

ofi=[0 0 R ]T (3.141)
The velocity of the CG of the output shaft is given by
N =T (6,8).(ya,, x o1, ) =—1,,0[0 cos® siné] (3.142)
The acceleration of the output shaft is given by

0
a =r_|-0cosf+6siné (3.143)
—6*cos@—Hsind

Figure 3-12 shows the FBD of the output shaft and barrel assembly. The forces that act

on the assembly include:
1. The reactions forces from the second cross at points 29 and 30 denoted by —
IFostoc229 and —Fostc23o. These forces are equal in magnitude and opposite in
direction, thus forming a couple. The respective position vectors at points 29 and

30 with respect to the yoke center of rotation are given by:
Al =T (6,8)-01 +T5 g (3.144)

INED =T0£ (0' ¢)'Dr| +TCT2-|r30 (3.145)
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2. The frictional moment from the second cross at points 29 and 30 and are denoted

by —1Mostoc220 and —Mostoc230.
3. The reaction forces from the piston and oil film between the barrel and the pistons
at points 31 to 39 denoted by —pFgipi Where i = 1, 2, ...9. The respective position

vectors with respect to the yoke axes of rotation are given by:
2 T
b 041 {0 - (R + IF(9,¢+§(i —1)J+ rwp)} , i=12,..9  (3146)

Refer to equation (3.263) for an expression of IF(0,¢+2§(i —1)} .

4. The weight of the output shaft and barrel assembly:

W, =[0 Mg O]T (3.147)

5. The force from the oil column in the cylinder at points 49 to 57 denoted as pFoLtwos,
.

6. The hydrodynamic forces pFvpiosoutd, pFvptosinD, bFvpioins, bFvriosouts, due to the
oil film between the valve plate and the barrel at points 59, 60, 61, and 62
respectively.

7. The frictional moment due to the fluid film between the barrel and the valve plate,
pMvptos.

8. The reaction forces from the needle bearings at the end of the barrel (point 58).
The bearings are fixed to the valve plate. These reaction forces with their

respective position vectors can be expressed in the D frame as

T
b Faaroe = I:FBBFton FBSFtoBy O:I (3.148)
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.
b 'B3Ftos = [O 0 Tosroe: ] (3.149)
_ T
b Fessios = ': Fossoex  Faastosy O] (3.150)
.
ple3ss = [O 0 Fossioe: ] (3.151)

9. The frictional moments form the needle bearings at point 58 are given by
o Maaros = Masros; [O 0 -sign(,a, [3])]T (3.152)

o Massis = Maasier: [0 0 -sign(, @, [3])]T (3.153)
The next section presents the derivation of the equations for these moments.
10. The reaction force from the thrust ball bearing at the end of the barrel at point 65,

which is denoted by pFgsios. The corresponding position vector is given by

.
b Bt = [0 0 rB4toBz] (3.154)

11. The frictional moment from the thrust ball bearing at the end of the barrel at point
65 denoted as pMgatoB

12. The reaction forces between the discharge/suction port of the valve plate and the
solid area located between each successive cylinder on the barrel at points 69 to
77, respectively. These forces denoted as - pFgswovpi Where i = 1, 2...9. The

corresponding position vectors are expressed as

T
plestove = [0 -r LYtoVP] (3.155)
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|“H7 DFOILOBY |  [5g.77: PmatavP, |

AL i

Figure 3-12: FBD of the output shaft and barrel assembly

3.4.1 The frictional moment at the needle bearings at end of the barrel
There are two radial needle bearings at point 58 denoted F (First) and S (Second).
Section 3.1 presents a detailed analysis of the frictional moment components of roller
bearings. The thrust ball bearing at the upper end of the barrel carries out the thrust load
from the barrel. Therefore, the axial load dependent component of the frictional moment
from the needle bearings is zero. Hence, the frictional moment on the needle bearings as
given by Eq. (3.1) reduces to
M =M

+ Mg, (3.156)

B3FtoBz — 3 Fm
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M gasios, = Magm + Mag, (3.157)

Where
Msr, and Mss, = the viscous frictional component at the first and second needle bearings
and are given by Eq. (3.2)
Msrm and Mssy, = the radial load dependent component of the frictional moment of the
first and second needle bearings and are given by Eqg. (3.5)

The index fo3 for bearing and lubrication type ranges from 5 to 5.5 for needle roller
bearings. The index fi3r which takes into account the magnitude of load has a value of
0.0005 [45]. For needle bearings, P13r and P13s are given by [45]

Pisr = Fasrionr (3.158)

PlSS = FBSStoBr (3.159)

Fesriosr and Fgasiosr are the radial load components of the bearing reactions at the

needle bearings point (58) and are given by

2 2
Fosrosr = \/FBSFton + Fasrony (3.160)

2 2
Faastonr = \/FB3Ston + FB3StoBy (3.161)

3.4.2 The frictional moment at the thrust bearing at the end of the barrel
The frictional moment opposes the direction of the angular velocity component along

the “ds* direction of the barrel

o Mg ues = —SIAN(, O, [BI)M g 410, [0 0 1]T (3.162)
The frictional moment at the thrust ball bearings carries only the axial load from the

barrel:
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Mgaoss, =My, + My, (3.163)
The index fy, for bearing and lubrication type has a value of 1.5 for thrust ball
bearings. The pitch circle diameter of the bearing, dma is given by

_ D4+d4

d
mé 2

(3.164)

The index f14 which takes into account the magnitude of load and is given by [45]

F 0.33
f,, =0.0012 (—a“] (3.165)

04

The load P14 governs the load-depending frictional moment Mgy, For thrust ball
bearings, P14 is given by [45]
Pl = Fion, (3.166)

The index f,s, which depends on the axial load Fgaws; and the lubricating condition,

equals to 0.15 as given by Eq. (3.9).

3.4.3 Hydrodynamic forces due to the oil film between the valve plate and barrel

The following analysis is based on an analysis done by Franco [8], which is based on

the following assumptions:

a. Because the clearance between the barrel and valve plate is small, and because
leakage through it has to be a small predetermined quantity, fluid flow can be
assumed to be laminar in that clearance.

b. Neglect forces due to pressure drop peripherally between the two orifices (both
sides between the suction and discharge ports).

c. Leakage flow is assumed to spread in the radial direction between the lands.
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The differential equation relating the velocity distribution with pressure and angular

velocity in the outer land is given by

1(ﬂj—l(d—P—E+sz ] (3.167)
dz\dz)” R R P |

R = varies between R, and R; as shown in Figure 2-5Error! Reference source not found.
P = pressure at radius R

o = angular velocity of barrel around its axis

p = fluid density

T = tangential stress

u = coefficient of dynamic viscosity

The relative velocity is zero at both the lower and upper surfaces. Therefore, the

velocity distribution in the clearance for the outer land can be expressed as

l(dP P 2) , W
V=—r| ———+Rpa® || 2 —— (3.168)
2u\dR R 4

The leakage flow g can be computed as

h/2 h/2
q= | vds= | Vé’RdZ:—ﬁ(d—P—E+pa)2th3 (3.169)
7

-h/2 -h/2
The negative sign for g denotes that crescent pressure and leakage flow are in opposite

directions. Expressing the pressure distribution as a linear differential equation:

dP 1 1219 1
_Zp-_HMA R (3.170)

dR R ch® R
Integrating, given that pressure in the outer side of the land is practically zero, P = 0 at
R = R; and P = Py, boundary pressure = discharge Pp, or suction pressure Ps at R = R;

yields
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Pzpa)z(Rl—R)(R—Rz)+Pb% (3.171)

Pressure distribution on the inner land
The velocity distribution is related to the pressure and angular velocity of the barrel

through the following relation:

PP Rotp=p i (3.172)
R R P a\ az |

Given that, the relative velocity of the fluid film contacting the barrel or the valve
plate is zero (no-slip condition); the velocity distribution of the fluid film for the inner

land can be written as

1 (dP P zj , h?
V=—|—+——po'R| z°—— (3.173)
2u\dR R 4
Moreover, the leakage flow is
3
q=—§Rh (d—PJrE—pa)ZR] (3.174)
124 \dR R

The linear differential equation of the pressure variation with the radial distance is

given by

dR R ¢h®

dpP 1 12 1
P=- ’uq-E+Rpa)2 (3.175)

Solving this linear differential equation knowing that the pressure in the inner side of
the land is practically zero, i.e. P =0 at R = R4, and P = boundary pressure, P, = discharge
pressure, Pp or suction pressure Ps at R = Rj, therefore pressure distribution can be

expressed by
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PR,[ R,—R R,—R
P= R,-R)(R;,+R, +R .
R [R4_R3]+pa)( 3R j( )R, +R,+R) (3.176)

Resultant hydraulic force on the port plate:

The hydraulic force in differential form is given by

dF = Pds = PRdRd¢ (3.177)

Where
P = pressure acting on surface of the port plate lands and is given by equations (3.171) and
(3.176)

For the outside land, R varies from R, to Ry, and £ from - {/2 to + {/2. For the inside
land, R varies from R4 to R3, and £ from - /2 to + (/2. Therefore, the hydrodynamic

forces normal to the interface between the valve plate and the barrel are given by

_¢R-R)

Discharge: |, Rpiosoup = 12

{OOZP (R1+2R)+p[é ) (R, +R)(R —R,)? (3.178)

2
Discharge: , Fypuano %{oow R p(fj’of j (R, +R)(R,~R,)

suction: |, Fypesous = g(RllzR){OOZP (R1+2R)+p((23 j(Fe1+Fe)(Fe1 R)Z} (3.179)
} (3.180)

2
Suction: |, Fpogins = —@[0, 0,6PR;R, —p(é—g nmsj (R;+R)(R;— RA)Z} (3.181)



83

Point of application of the hydraulic forces

The points of application of the forces acting on the outer land are given by

2
5PD(R12 +2R1R2+3R22)+p(275nmsj (Ri_R2)2(3R12+4R1R2+3R22)

Discharge: R, = 5 (3.182)
27T 2
S(ZPD (Ro+2R) 4o 2on, | R-RY (R Rz)j
2
5P, (R’ +2RR, +3R22)+p[2g ”mj (R,—R,)*(3R +4RR, +3R;)
Suction: R s = 5 (3.183)
27 )
S[ZPS (&+2R2)+p[6onmsj (R=R,)*(R,+ RZ)]
The points of application of the forces acting on the inner land are given by
2
30P,R, (2R, + R4)—2p(2” nmsj (R;—R,)* (4R} +7R;R, + 4R}
. _ 60
Discharge: R, = 5 (3.184)
90P,R, -15,{% nmsj (Ry—R,)?(R, +R,)
2r i 2 2 2
30R,R, (2R, +R,)-2p oM | Re=RY) (4R? +7RR, +4R})
Suction: R, s = > (3.185)
90R;R, —15,0(27(; nms] (Ry-R,)*(R,+R,)
The position vectors of the hydrodynamic forces are given by
T
nhno = ['RinD 0 LYtoVP] (3.186)
T
Hns = [Rins 0 LYtoVP] (3.187)
T
h loutp = ['RoutD 0 LYtoVP] (3.188)
T
nlours = [Routs 0 LYtoVP] (3.189)

Shear moments in the interface between the valve plate and the barrel

The shear moment in the outer land is given by
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Ci2 R
shear = I IrdeRd§ (3.190)
~CI2R,
L ﬂﬂ (3.191)
dz

Therefore, the shear moment at the outer land for both the discharge and suction ports

is given by

2
Shear, , :héVTRi(R1 + Rz)(—PD -P+2(R - RZ)RZp(E—g nms] J (3.192)

Similarly, the shear moment at the inner land for both the discharge and suction ports

is given by

h 2 ’
Shear, = 1—g(R3 + R4)£3R3(PD +Py)+2(-R§ + Rf)p(e—g nmsJ J (3.193)

Therefore, the total moment due to the fluid film between the barrel and the valve

plate is given by

sMypes = -[0 0 (Shear, +Shearin)]T*sign(Dcoos[3]) (3.194)

ut

3.4.4 Equations of motion of the barrel-output shaft assembly
The sum of all forces on the output shaft and barrel assembly equals to mass

multiplied by acceleration.

Tos [9’ ¢](TCE(- | FOSt0C229 T l:OStOC 230)) +( D FBSFtoB + D FB3StOB + D FB4toB )

T
+ Tos [0' ¢] 'Tvp ( H I:VPtoBoutD + H I:VPtoBoutS + H I:VPtoBinD + H I:VPtoBinS)
9

+Z(_D FBtoP,i ) FBStoVP,i o FOILtoB,i)+Tos[0’¢]'AW05 B Tos[e’ ¢] M os ASos = 0

i=1

(3.195)

Summing moments of all forces about the yoke axis of rotation yields
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Tos [‘9’¢]( Al X(TcTz'l Fosmczzg)) w0, 8] ( F30 X c2 | Foswczso))
[ Fao4i *b Fawri To Toios, X b FOILtoB,i]
D

Fastove X b Fastovp,i

T
TCZ ( M OStoC 229 + M OStoC 230) + z

i=1

x (Tos [0’ ¢] AWos) +Tos [0’ ¢] Tv; '(H r-OUTD x H I:VPtoBoutD)
+T,,[0, 4] -Tv; (1 Tours % 1 Foptosous ) + Tos [0, 4] -Tv; (4 "o % 1 Fuproginp)

:
+Tos [9a¢]-Tvp-(H Mvs X 1 Fuptogins ) + o Mypros T b Te3ros X o Fasruos

(3.196)

+ D rBSStOB x D FBSStoB + D M B3FtoB + D M B3StoB + rB4tOB D FB4toB + D M B4toB

_DrosX(Tos[9’¢]'M os'Aaos) - DIOS'DaOS =0

3.5 Control Volume of the Oil in One Cylinder
Figure 3-13 shows the control volume of the fluid inside the vacancy of one cylinder
within the barrel. The external forces that act on the control volume include the following:
1. The force from the piston to the control volume at points 40 to 48 denoted as —

oFoiLwor,i- The corresponding position vector with respect to the yoke axis of

rotation is given by

ploitwri = ofp (01¢+ 27[(:9_1))"‘ 0, 1=12.9 (3.197)
L

i b+ 27(i-1)
Where PP (7 9 is given by Eq. (3.267

)

2. The weight of the oil column which varies with the barrel angle of rotation and

yoke angular position and is given by

2z(i-0)Y) ] .
Mo =10 p9Vy, | 0,9+ S 0|, i=12..9 (3.198)

The volume of the control volume is given by Eqg. (3.214).
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3. The reaction forces from the barrel to the control volumes at points 49 to 57

denoted as —pFoiLws,i- EQ. (3.206) provides the expression for the corresponding

position vectors.

4. The force due to the pressure on the discharge or suction orifice at points 80 to 88

denoted as - pFoiLtovp,i- The corresponding position vector is given by Eqg. (3.319).

49.57: .DFOILtB, ‘

Y
fl

\

40 48: DFOILIOP,| AWoil ‘ 80:68: -DFOILtoVP,i

T e A
" & E ‘,,/ \
al i \
!
a2 9
2

Figure 3-13: Control Volume of the Qil in the cylinder cavity

3.5.1 Linear momentum equation of the oil control volume

The principle of linear momentum can be stated as follows:
zFext,i = I-Ivlcv,i + LMm,i (3.199)

z F..; = sum of external forces acting on the i" control volume
0 time rate of change of the linear momentum
LM, =—[vpdV =
Toooty, of the contents of the control volume

LM, = Iva.ndA = net rate of the linear momentum through the control surface

cs
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The time rate of change of the linear momentum of the contents of the control volume
can be changed into derivative format by multiplying the integrand dV by dt/dt and then
simplifying to get:

dVo,
dt

dVo,
dt

0 0
oLMy; =— _[ P DVpdeOIL = .[ P DVpb dt=p DVpb (3.200)
at cv at cv

The term of the time rate of change of the linear momentum of the contents of the
control volume for the conical part of the cylindrical cavity is zero because its volume is
fixed and the flow in and out of this part is steady. Therefore, the linear momentum of the

contents of the control volume is the one due to the volume whose length is L¢; + Z and is

given by
oMy =PV (91¢+ 27(l _1)JEVO,L (9,¢+Mj, i=12,.9 (3.201)
’ 9 dt 9
Where

oVpp = Velocity of fluid at the section adjacent to the piston and is given by Eq. (3.265).

The net rate of the linear momentum through the control surface is given by

0
D I-I\/Ics,i = pA: DVpb DVpb < 0 +% DVpb 10¢ 1, [ =12..9 (3.202)
-1

Combining equations (3.198) and (3.200) to (3.202) yields the linear momentum

equations of the pistons’ control volumes

27(i-1
D LMCVi +p LMCSi :Tos (9’ ¢+ (9 )j'AWOILi D FOILtoPi D FOILtoBi D FOILtoVPi (3.203)
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3.5.2 The position vector of the reaction forces from the barrel to the control volumes

at points 49 to 57

The position vector of the force from the oil control volume in the cylinder at points

49 to 57 is determined by the aid of Figure 3-14.

(6.4
Vminlmin + A\:Z (9’¢) ((2,)4_ LCl + LCZ]
L (& =
V( 1¢) Vmin +A:Z(91¢)

TDC
g7 99
Vmin”

Lel =
Lc2

4 VRN

Z+Lcl+Le2-Lv

\ .
\ \ o/
\ a4
A

~>‘ Lmin

—~

Lv

(3.204)

Figure 3-14: Center of gravity of the oil control volume at any angle of rotation of the main shaft, ¢

Therefore, the position vectors of the reaction forces from the oil control volume to the

barrel at points 49 to 57 as measured from the yoke axis of rotation are given by

0
b foiLtos (91¢) = 0

Z(0,4)+ Lo+ Lep- Ly, (0’¢)+Lp1

_ 27(1-1)
D rOILtoBi - D r3o+i + D rOILtoB (‘9’ ¢ + Tj D rWP

(3.205)

(3.206)
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Equation (3.146) gives an expression for prsg + .

3.5.3 Minimum volume of oil column in the i cylinder at the TDC
The minimum volume of the oil column (Vpiy) in the cylinder at the TDC for any

angular rotation of the yoke, 6 is determined based on Figure 3-15 as follows:

= tant —— (3.207)
7 EH '
EF = Jr’ +(EH)? (3.208)
. (0
GF = 2EF.sin [EJ (3.209)

CG = (DF - Lz COs@, + Lz COSy, )COSE

: : : 0 (3.210)

—(-r+R+ Ly sing, )sin@—GFsin| », )
L, = CG - L, -Ly; (3.211)
Vmin = LClAc +\/fixed (3.212)

Figure 3-15: Determination of V,;, as a function of yoke angular rotation, 0
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3.5.4 Differential equation of the piston pressure

The mass of oil in the i" cylindrical cavity of the barrel is given by

MOIL,i = VOIL,i (3.213)

The instantaneous oil volume of the i cylindrical cavity of the barrel is given by
VOIL,i = Viin T AZ [‘91 ¢+$) (3.214)

Differentiating equation (3.213) with respect to time yields

dMg,,; dVo,; dp
~—=p ~+V,,  — 3.215
dt dt Ot dt ( )

The oil density is related to its bulk modulus, B, through the relation [48]:

dp pd
F_LFZp - (t 3.216
dt Bt o (1) (3:210)
In addition, the mass flow rate is related to volume flow rate, Q;:
d'\/IOILi
Ol _ 50 (t 3.217
i PR (3.217)
Substituting equations (3.216) and (3.217) in equation (3.215) yields
d B dVOILi
—Pi(t)= (1) ——t 2
dt OIL,|( ) VOIL,i (Q.( ) dt (3.218)

The initial conditions necessary to solve the above differential equations are

1. Py,(0)=P,, fori=12..5
2. Py, (0)=Pyy fori=6,7,..9

Figure 3-16 shows a schematic of the hydraulic system under consideration, which
consists of the LPA, the pump, and the HPA. The oil leaves the LPA at a rate, Qps. The

leaking oil from the pump is sent back to the accumulator.
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<

v QL
Low Pressure | High Pressure
Accumulator - Pu "|  Accumulator
Qbs Qos - QL

Figure 3-16: System consisting of pump connected to low and high-pressure accumulators

The flow rate at the i™ cylindrical cavity can be expressed as

Q (t) = ‘QDSi (t)‘ -Qu (t) (3.219)

Qosi(t) is the discharge/suction flow rate at the overlap area. Qy;(t) is the leakage flow
rate. It includes leakage in the annular clearance between the cylinder and piston, leakage
flow rate in the hole in the middle of the piston head that is used to pass lubrication oil to
the ball and socket joints of the connecting rod, and leakage at the barrel and valve plate
interface. Therefore, the net flow rate at the exit of the i cylindrical cavity is related to the

discharge/suction flow rare via the volumetric efficiency:

Q; (t) = 77v,iQDSi (t) (3.220)

The discharge/suction flow rate at the overlap area is calculated using the orifice

formula [49]:

~R,(9)

(3.221)

Qs ) =s0(Rs ) 00, (022

Where

Py = the boundary pressure outside the control volume (either Pp or Ps)
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Cq = the orifice discharge coefficient which is assumed to be constant in this analysis
A, = the overlap area of the i" region
Pp = discharge pressure which varies with the SOC of the HPA

Ps = suction pressure which varies with the SOC of the LPA

Nv.i 1S the pump volumetric efficiency, which can be read from the efficiency map of
the pump. The pump volumetric efficiency is assumed to vary in a parabolic fashion with
pump rotational speed and exponentially with the oil pressure according to the following

relation:

POIL,i - Pb (¢)‘) (3.222)

2
77v,i = ao + ai (hj + a2 (hJ eXp (bo

rated rated

ao, a1, a2, and b, are experimentally determined constants.

Discharge/Suction pressure variations

The discharge port of the valve plate is connected to the high-pressure accumulator
(HPA) while the suction port is connected to the LPA. Therefore, the pressure at the exit
of the cylinder is related to the gas pressure in the HPA or LPA depending on the piston

angular position:

PS; O£¢S¢9
(¢_¢9)(PD _PS).
P + (7;+¢2_¢9) ; G <Pp<P+7m
P, (¢)= {Py; m<¢p<2m; Q+r<P<¢+2r (3.223)
PD+(¢_¢1(_¢2:T_)¢§I;S_PD); G+2m<P< P +27m
P,; g, +2n<Pp<2r
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PD

Py (t) + P (3.224)

Ps = PL(t) - Pose (3.225)
Pu(t) = gas pressure in the HPA

PL(t) = gas pressure in the LPA

The pressure losses (friction and minor) between the discharge/suction port and the

HPAJ/LPA are assumed negligible in this analysis.

3.5.5 Analysis of the high pressure and low-pressure accumulators

The gas volume at pre-charge condition is found using the ideal gas low for both the

HPA and LPA as follows:

M, R,T
PH —_HNg (3.226)
Ppy
M R\T
Vo, = L Ng (3.227)
PeL

The gas pre-charge pressure is to be slightly lower than the minimum hydraulic
pressure so that the bladder does not continually contact the oil valve (wear). In order to
reduce bladder wear on the inlet valve, the gas pre-charge pressure at room temperature

with-no fluid is related to the minimum operating pressure by [50]:

Ppy = 0.9P

minH (3-228)
P = 0.9F, (3.229)

Assuming that a polytrophic relation relates the pressure and volume of the gas in the

HPAJ/LPA, therefore the gas pressures in the HPA and LPA are given by
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14
Py (t) = Prian [\\:'“‘*Zt“)J (3.230)
H
VmaXL 14
P (t) =Py V. (1 (3.231)
L

The sum of the gas in the LPA and HPA is constant at any instant of time leading to
VL +VH :VmaxH +VminL (3-232)

The gas volume at the minimum operating pressure for both the HPA and the LPA are

given by
1/1.4
Viaxr = ﬂv;:] (3.233)
minH
1/1.4
Vi = hv;;‘j (3.234)
minL

The maximum hydraulic pressure is not to exceed 4 times the pre-charge pressure;
otherwise, the elasticity of the bladder will be adversely affected. In addition, excessive
changes in pressure result in considerable heating of the gas. Reducing the pressure
differential between the HPA and LPA increases the bladder service life. On the other
hand, it must be taken into account that a lower pressure differential also reduces the

utilization of available storage capacity [50].
Praxt < 4Py (3.235)
Praxt < 45, (3.236)
The actual flow rate through the pump is related to the gas volume through the

continuity equation. The actual total flow rate of the hydraulic fluid entering the HPA

equals to the rate of contraction of the gas in the HPA:
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av,,
dt

=—Qrp (3.237)

The total actual flow rate equals to the rate of change of the total oil volumes within

the barrel at the discharge port side

9 A
Qp = Z% (3.238)
i=1

Initially, the gas volume in the high-pressure accumulator equals to the maximum gas
volume in the HPA. Therefore, the initial condition necessary to solve equation (3.237)

can be expressed as

Vy (t=0)=V, x (3.239)

3.5.6 Orifice area

In finding the pressure force effects, Schoenau et al. had considered the pressure
variations through one complete revolution of the swash plate. The valve ports have relief
notches to avoid step changes in pressure in the transition regions. The resulting overlap
produces six distinct pressure regions for each revolution of the piston barrel [17]. Each
region gives rise to a different expression for pressure and flow.

The value of the cylinder pressure, Poj1i, depends on the angular position of the
piston with respect to the TDC. In fact, the resulting overlap produces 16 distinct pressure
regions for each revolution of the piston barrel as shown in Figure 3-17. These regions
are:

1. Regions 1 and 9: the cylinder is completely closed by the land between the suction

and discharge ports.

2. Regions 2 to 8: the cylinder is open to the suction port.



3. Regions 10 to 16: the cylinder is open to the discharge port.

The above regions have different exit areas and they are grouped as shown in Table 3-2.

Table 3-2: Orifice area classification

Region | Area | Angular range | Region | Area | Angular range
1 A1=0 h<d<d 9 An=0 do < ¢ < d1o
2 Ap b2 <O <3 10 Ar d10 < O < P11
3 Ars b3 <O < da 11 Ar G011 <O < P12
4 Ay b4 << ds 12 Ay G012 < § < 13
5 Ars b5 < d < dg 13 Ars $13 < d < 14
6 A bs <P <7 14 Are ¢14 < ¢ < 915
7 A7 b7 < & < des 15 Ar d15 < d < 16
8 Arg ds < ¢ < do 16 Arg 16 <P <¢1
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Figure 3-17: Pressure regions as seen by cylinders

The overlap area varies with the angular position of the barrel as shown in Figure 3-18:

16

A(9)=2(H(#-4)-H-4.) A, (3.240)
Orifice area, mm?
100 |
50 |
3‘” ¢ (rad)
0 n - 2r

T
2

Figure 3-18: Orifice area variation with main shaft angular rotation
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The area profile shown in Figure 3-18 repeats in the same manner every revolution of
the barrel. Therefore, a Fourier series can represent the expression of area given by Eq.

(3.240):

16

A(8)=(H(@-4)-HB-4.0))A. ()

i=1

) } (3.241)
:%+Zan cosng+ Y b, sinng
n=1 n=1
1 2z
= d :
a,=— ! A (¢)dg (3:242)
1 27
a == _[ A (¢)cosng.dg (3.243)
4 0
l 2z
b, == [ A (¢)sinngdg (3.244)
T

0

3.5.6 Expressions of the overlap areas

Regions 1 and 9: When the cylinder is at either region 1 or region 9, it is totally closed by
the land between the discharge and suction ports. However, in reality there is some
leakage at these regions because of the clearance between the barrel and the valve. Thus,
the overlap area at regions 1 and 9 is assumed around 1% of the overlap area where the
cylinder is completely open to either the discharge or suction port. Therefore, the net

overlap area for either region (1) or (9) is given by

A=A, =0.01A,(¢) (3.245)
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Figure 3-19: Geometric parameters of pressure region 1

Regions 2 and 10: The net suction area or discharge area is given by

Az (¢) :(ths ZLEiJ + A\1

Sin2(¢_¢2j 2C?+CZ(R,-R,)’
2

R | RO
+2015|n(¢+¢2+é’c)
C, [cos ¢ —COS[% +%D
Ly = ﬁ +Cz(R2_R‘”’)[Singﬁsm(%*%ﬂ
\ Cl[_Sin§1+Sin(¢2+%D+2C2(R2_R3)]

C,=R?+6R,R, +R?

C, =/(8R,+R;)(R, +3R, )

99

(3.246)

(3.247)

(3.248)

(3.249)

(3.250)
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X

Figure 3-20: Geometric parameters of pressure region 2

Regions 3 and 11: The expression for the net suction or discharge area of is given by

As(8)=0,(RE—RZ)+A4(4,) (3.251)

The angle between lines AC and BC is given by:

L
O, =2sint —A&
X 2R, (3.252)

The length of line AB is given by

L = \/O.S[Rg—GRZRS +R2+(R, +R,)’ cos(¢—§l +%D (3.253)
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Figure 3-21: Geometric parameters of pressure region 3

Region 5 and 13: The net suction or discharge area is given by

2

As(8)=7R¢ +0-552(R22—R32)+%+ A, (3.254)

(3.255)

Figure 3-22: Geometric parameters of pressure region 5
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Regions 6 and 14: The net suction area or discharge area is given by

2
A =7ka2+0-5(R22—R§)(¢e+%—§1j+%+ﬁl (3.256)
™S

Figure 3-23: Geometric parameters of pressure region 6

Regions 7 and 15: The net suction area or discharge area is given by

"\7(¢)=”R5+0-5(R§—R§)[ﬂ—¢+%—§1J+%+A1 (3.257)
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lilie

ED<C

Figure 3-24: Geometric parameters of pressure region 7

Regions 8 and 16: The net suction area or discharge area is given by

(3.258)

Figure 3-25: Geometric parameters of pressure region 8
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3.6 Dynamic Analysis of the Piston

3.6.1 Displacement and velocity of the piston with respect to barrel
With reference to Figure 3-9, equate the vertical distance at the main shaft side to the

vertical distance at the barrel side when the connecting rod is at the TDC vyields
. .0 .
R+Lgsing, =rcos@+1J smz+ IHsin@ (3.259)
Equate the horizontal distances when the connecting rod is at the TDC yields
: 0
L.gCOsp, +rsind=L,+1J cos§+ IH cos @ (3.260)

Solving equations: (3.259) and (3.260) yields:

. [ r—Rcos@—(R,+L;)sing
@, =0+sin (3.261)
Ler
IH =-R, + L, cos(p, —0)— (L, +R,)cos&+Rsing (3.262)

Knowing that the value of the vector areg given by equation (3.281) is equal to the

length of the connecting rod Lcg, therefore, the distance IF is given by

IF(6,4) =R, —(Lis + R, )cos@+Rsinfcos ¢

12s —(Ls +Ry )2 sin@—r? + 2rR(1— 2cos? gsin? gJ (3.263)
n
+R? (sin2 0 cos? ¢—1)+ 2¢0s gsin H(LiS +R, )(r ~Rcos)
The piston is assumed to have a value of zero displacement at the TDC. The
displacement of the piston with respect to the barrel at any angle of rotation of main shaft
is denoted by the letter z and is given by

Z (6.¢)= IH-IF(6,9) (3.264)

The velocity of the piston with respect to the barrel is given by
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Dvp/b,i:_%z (9,¢+$j[0 0 1]T (3.265)

The angular velocity of the piston is the same as the angular velocity of the barrel and

is given by
D@y = pWes (3.266)
The position vector of the geometric center of the ball joint between the piston and the

connecting rod with respect to the center of the yoke axis of rotation is given by

o, (0.9)=[0 —r IF(0,4)+R,] (3.267)
The position vector of the CG of the piston with respect to the center of the ball joint
between the piston and the connecting rod is given by
o = [0, 0, 1yl (3.268)
The velocity of the CG of the piston is given by
Vo= Vot 5@ X ( b+ pligp ) (3.260)
The angular acceleration of the piston is given by

0 cos ¢ —Ogsin ¢
0@, (6.4)= —0'¢5cos¢i—[9'sin¢ (3.270)
¢

The absolute acceleration of the CG of the piston is given by

28 (0.4)=a, + yo,x s x( o1+ ol )+ 02 % (o1, + o he ) (3.271)

3.6.2 Force analysis of the piston
Figure 3-26 shows the FBD of the i piston. The forces that act on the piston include:
1. The reaction forces from the connecting rod to the piston denoted by - aFptocr;i at

points (14) to (22), wherei=1, 2, ...9
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. The frictional moment from the connecting rod to the piston denoted by - AMptocrii
at points (14) to (22), wherei=1,2,...9

. The pressure force from the hydraulic oil given by

oFowwe; = [0 0 Py AT, i=12.9 (3.272)

. The reaction force from the barrel to the piston at points 31 to 39 given by

T

b Fewor =|:FBton,i FBtoPy,i FBton,i:I , =129 (3:273)
. The weight of the piston given by

.
W =[O M,g O] (3.274)

14-22: AFPtoCr,i

40-48: DFOILtoP,i

31-39: DFBtoP,i

Figure 3-26: FBD of the piston

3.6.3 The frictional force between the barrel and the piston

Based on laminar incompressible flow, the viscous force on one piston can be

expressed as [51]

vl pVeily .
Fatopzi =—pg:—pb’p, 1=1,2, ..9[17 (3.275)

p
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L, is the length of the piston that is inserted in the cylinder when the axial displacement is
zero. It is assumed equal to the total length of the piston for all yoke angular positions.

I, = the piston radius

pVpb,i = the axial velocity of the i™ piston with respect to the barrel

C, = one half the radial clearance between the piston and the cylinder

v = oil viscosity, Ns/m?

3.6.4 Equations of motion of the pistons

Attach the origin of the D coordinate system to point (14 to 22) (center point of
contact between the connecting rod and the piston). Assuming that the reaction force from
the barrel to the piston acts at the CG of the piston length, therefore, its position vector is
given by

b leop = [0 0 K ]T (3.276)
Summing forces along the three inertial directions yields

272(i-1)

'AFPtocR,i +ToTs (‘9'¢+ ] (D FOILtoP,i b FBtoP,i)

3.277
272(i -1) 3217

W, - MpAap(9,¢+ j:o, i=12 .9

Summing moments about the common point between the connecting rod and the

piston (points 14 to 22) yields

27(i-1 27(i-1
-Tos (9’¢+ (9 )j-AMPtocR,i'l'DrBtoP X b Fatopi T o e X(Tos (01¢+ #] Aij

272(i 1)
9

3.278
27(i-1) (3279

: Dlp.Dap(e,m j:o, i=1,2,..9

J - ofwe ><Mp A, (9,¢+
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3.7 Dynamic Analysis of the Connecting Rod
With reference to Figure 3-9, the position vector of point B with respect to point A is
given by
s=[0 -R 0 (3.279)

The position vector of point E with respect to point A is given by

0 0 0
e (60.0)=| 0 |+T| O [+T5(6.4). -—r (3.280)
L L, IF(9,¢)

The position vector of point E with respect to point B is given by

ales (‘9' ¢) =ale _TlT (¢)'B I's (3.281)
The velocity of point B is related to the rotation of the main shaft and is given by

COS ¢
Vg :TlT'(Ba)MS x BrB): R¢‘ sing (3.282)
0

The position vector of the CG of the i™ Connecting rod with respect to point A

(Figure 3-9) is given by

alere (0’ ¢) :TlT (¢)'B 'y +|E:_R Al s (H7¢) (3.283)

R

The velocity of the CG of the connecting rod is given by

AVer,i = % alcre (01 P+ @j (3.284)

The linear acceleration of the connecting rod can be expressed in terms of the inertial

coordinate frame as
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2 .
AR :% alere (Qcﬂwj (3.285)

Figure 3-27 shows the forces that act on the FBD of the connecting rod that include:
1. The weight of the connecting rod expressed as

W =[0 Mg 0] (3.286)
2. The reaction force from the cup at the main shaft side at points (5) to (13) and is

expressed in terms of the A frame as

aFusiocri = ':FMStoCR,ix Fusiocr.iy FMStoCR,iz]’ i=12.9 (3.287)

3. The frictional moment from the cup at the main shaft-side at points (5) to (13) that
will be explained in detail in the next section.

4. The reaction force from the piston to the connecting rod at points (14) to (22) and

is expressed as

T .
aFptocri :I:FPtoCR,ix FPtoCR,iy FPtoCR,iz:| , 1=12,..9 (3.288)
5. The frictional moment from the piston to the connecting rod at points (14) to (22)

and will be explained in detail below.

5-13: AFMStoCR,i

14-22: AFPtoCR,i

AWecer

Figure 3-27: FBD of the connecting rod
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3.7.1 The frictional moment from the cup at the main shaft

The friction moments, AMwustocr,i, generated on the spherical joint at points (5) to (13)
are determined by the reaction force “aFwmsiocr,i”, friction coefficient “ucg i, and radius
“Rerl”. Its direction is opposite to the angular velocity of the connecting rod. The friction

moments, AMwmstocr i are expressed by [25]

_TCTR[Q’ ¢+ 2”(i9_1) }J a)CR[Q’ ¢+ 2! _1)J

9

: a)cR(e, o+ 2”(;‘1) j‘ (3.289)

A M MStoCRi —

ReruHeriy Frascrix + Frasacriy + Frasiocriz 11 =1,2, .9

Experimental tangential speeds below 0.7m/s was not possible because of the stick-
slip phenomena [25]. However, the friction coefficient in the low speed range can be
assumed by linear interpolation between 0.04 and 0.09, the static friction coefficient [25].
The spherical joint makes slide motion on its surface with the velocity lower than 0.3m/s
even at the max input shaft speed of 10, 000 rpm and its friction coefficient changes
between 0.07 and 0.09 within this speed range [25]. The coefficient of friction is almost of
constant value (0.04) for sliding speeds above 0.7m/s [25]. Therefore, using the three
points of coefficient of friction variation with slide speed as shown in Table 3-3, a linear fit

can be obtained as follows:

(3.290)

0.0716V,y ; +0.0905  0<Vy , <0.7
Herti=10.04038 Vi 207

Where i =1, 2, ..., 9 and H denotes the Heaviside function and Vcryj is the absolute

value of the sliding velocity at the surface of contact with the cup at the main shaft side.

VCRLi = RCRL

| O (9,¢+ 2”(;_1) ]‘ i=1,2,..9 (3.201)
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Table 3-3: Coefficient of friction variation with Spherical joint sliding speed [25]

Spherical joint sliding speed (m/s) | Coefficient of friction

0 0.09
0.3 0.07
0.7 0.04

3.7.2 The frictional moment from the spherical joint at the piston side

The friction moments, AMpiocr i, generated on the spherical joint at points (14) to (22)
are determined by the reaction force, aFpiocr i, friction coefficient, ucgr i, and radius, Rcrr,
while its direction is opposite to the angular velocity of the connecting rod ;Wcg. The

friction moments, AMpiocr i are expressed by [25]

. 27(i—1) 2r(i-1)
_TCR(9!¢+9j'Ja)CR(91¢+ 9 j

O (9, b+ 2”(;‘1) ]‘ (3:292)

A M PtoCR,i —

2 2 2 -
RCRRIUCRR,i\/FPtoCR,ix + I:PtoCR,iy + I:PtoCR,iz ! = 1’ 2’ T 9

Wherei=1,2...9andj=0,1... 8
As before, the friction coefficients are expressed as

—0.0716Vgg; +0.0905 0<Vgei <0.7
Herr i (3.293)

~10.04038 Ve 20.7

Where

VCRR,i = RCRR

JwCR(9,¢+ 2”(;_1))‘,i =1,2,..9 (3.294)

Vcrrii IS the absolute value of the sliding velocity at the surface of contact between the

piston and the right end of connecting rod.
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3.7.3 Equations of motion of the connecting rods

Applying Newton’s second law along the three inertial coordinates, yields

27(i -1)

AWCR + AFMStocR,i + AFPtoCR,i - MCR Adcr (‘9’¢+ j: 0, i=12.9 (3.295)

3.8 Dynamic Analysis of the Valve Plate-Yoke Assembly
Attach a coordinate system h;hyh; to the valve plate at the axis of rotation of the yoke.

“h1hohs* is obtained by rotating “ajayas™ about “a;* by an angle of ©:

1 0 0
T,=/0 cosd sind (3.296)
0 -—sin@ cosé@

The angular velocity and angular acceleration of the valve plate is given by
W@, =0 0 O]T (3.297)

Wy =0 0 O]T (3.298)
The origin of the “H” frame is located at the center of rotation of the yoke. Therefore,

with reference to Figure 3-9 the position vector of the CG of the valve plate-yoke

assembly is given by

T
H rvp = I:rvpx 0 rvpz :I (3299)

The velocity and acceleration of the valve plate CG are given by

. T
W = 4 @p X T = 9[0 -, o] (3.300)

vp V]
wa, =T, [0 0 éZ]T (3.301)

Figure 3-28 shows the forces acting on the FBD of the valve plate-yoke assembly that

include:
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1. The reaction forces at the axis of rotation of the yoke at points 67 and 68 and their

respective position vectors given by

T
aFeover = ': Feoverx et 67y Fetoverz :' (3.302)
T
alcoyer = ['rcmv ex 0 0] (3.303)
T
aFcoves = [0 Feov 68y Fetov esz ] (3.304)
Alcoves = ~alciover (3.305)

2. The friction moments at the axis of the yoke at points 67 and 68 given by
. T
aMaiover = Meioyrx I:-Slgn(H w,[ll) 0 0] (3.306)

aMaores = Mogys | -S1ON(4 @, [1]) 0 OT (3.307)

The derivation of equations for these moments is shown in the next section.
3. The reaction force from the actuating link at point 66 and its respective position
vector as measured from the yoke axis of rotation. This force has two components:

one is parallel to the actuating link and the other is normal to it.

0

aFactoves = | Factovesp SINE = 75) + Facovesn COS(€ —75) (3.308)
Facovssp COS(€ = 75) — Facovesn SIN(E = 75)

T
H Mactoves = I:rACtoY sox  Iactovesy  actoves: :' (3:309)

4. The frictional moment from the actuating link at point 66:

AMACtoY66 = MACtoYGGx [_Sign(Aa)AC [1]) 0 O]T (3.310)
The derivation of equations for these moments is shown in the next section.
5. The reaction forces from the needle bearings at the end of the barrel at point 58,

which are denoted as - pFgsrios and - pFassios. The bearings are fixed to the valve
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11.

12.
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plate. The corresponding position vector as observed from the yoke axis of rotation
denoted as prearios and presstos.

The frictional moment form the needle bearings at point 58 denoted as - pMg3rios
and - pMgsstoB.

The weight of the valve plate - yoke assembly given by

:
W, =[0 M,g 0] (3.311)
The reaction force from the thrust ball bearing at the end of the barrel at point 65,

denoted by - pFgatos:

b Faaes = [O 0 Foyee, ]T (3.312)

The frictional moment at the thrust ball bearing (point 65) denoted by —pMgatos.
The hydrodynamic forces: - wFvptoBoutp, = HFvPtoBinD, = HFvPtoins, and - HFvpioBouts
due to the oil film between the valve plate and the barrel at points 59, 60, 61, and
62 respectively.

The frictional moment due to the fluid film between the barrel and the valve plate
denoted as - pMvptos

The reaction forces between the discharge/suction port of the valve plate and the

solid area located between each successive cylinder at points 69 to 77 respectively.

o Faswovpi = {0 0 R (¢+ Zﬂ(i-l)) A (¢+@H , 1=12,...9 (3.313)

9
Where Py, = Pp or Ps depending on the angular position (¢)
Section 3.7.1 presents the derivations of the equations of As;, which depends on

the main shaft angular position (¢).
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13. The reaction force from the fluid inside the hose between the LPA and the suction
exit at the yoke axis of rotation at point 78. This force as well as its position vector

can be expressed as

aFipaoy7s = Ps A [O —sing, cos6; ]T (3.314)

N
allpawy78 = ['rLPAtoY 7x 0 O] (3.315)

14. The reaction force from the fluid inside the hose between the HPA and the
discharge exit at the yoke axis of rotation at point 79. This force as well as its

position vector can be expressed as

aFLipaovs = PoAg[0 —sing,_ cosé, ]T (3.316)

AlHpAY79 AlLpawy7s (3.317)

15. The force due to the pressure on the discharge or suction orifice at points 80 to 88

as well as its position vector can be expressed as

o FoiLovei = {0 0 R (¢+$j A (¢+@ﬂ , 1=12,..9 (3.318)

.
b foiLovp :[0 —r LYtoVP] (3.319)
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$¢: -DFBOFloB

40: AFChY$S
TVAFHPAIDY?)

Figure 3-28: FBD of the valve plate-yoke assembly

3.8.1 The frictional moments at the axis of the yoke
The value of the frictional moments components at the axis of the yoke at points 67

and 68 are expressed as

2 2
M coverx — My Iy \/ FCtoY ery T chv 672 (3.320)

Metovese = 4y \/FCZtOY o8y T Fotov cez (3.321)
py = the friction coefficient at the right/left pins of the yoke

ry = radius of pin of the yoke

3.8.2 The frictional moments at the common axis between the yoke and actuating link
The value of the frictional moment component at the common axis of the yoke and

actuating link at points 66 is expressed as
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2 2
M ACtoY 66x lLlACtOY rAC \/FACtOY 66y + I:ACtOY 662 (3322)

Hactoy = the friction coefficient at the pin between the yoke and the actuating link

rac = radius of pin between the yoke and the actuating link

3.8.3 Solid area between two successive cylinders

Figure 3-29 shows the regions of solid area between successive cylinders. There are 12
regions. In regions one and seven, the solid area between successive cylinders coincides
with the land between the suction and discharge ports. In regions 2 to 6, the solid area
between successive cylinders is under suction pressure. In regions 8 to 12, the solid areas
between successive cylinders are under discharge pressure. The solid areas between

successive cylinders at any angular rotation of the main shaft is shown in and given by

A=Y AG[H(P-4)-H(g-4s)] (3.323)
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| ‘\MT )
g 9

y

Figure 3-29: Regions of the solid area between successive cylinders

Asolid (mmz)

20+

10+

— e : — v— ¢ (rad)
0 z 2
- T 2 n

Figure 3-30: Solid area between successive cylinders
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Solid area between two successive cylinders for region (1)

Figure 3-31 shows schematic of region 1. Region 1 extends over the angular rotation
A1 < ¢ <A, The solid area between the first and second cylinders that is under the suction

pressure for region 1 or region 7 is given by

A, =0 (3.324)

Figure 3-31: Solid area between two successive cylinders for region (1)

Solid area between two successive cylinders for regions (2), (6), (8), and (12)
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Figure 3-32 shows schematic of region 2. Region 2 extends over the angular range

A2 < ¢ < As. The solid area between the first and second cylinders that is under the suction

pressure is given by:

A

S|

) = %54(R22 —Rsz) (3.325)

Equation (3.325) applies also to regions (6), (8), and (12) except that 3, is different for

each region. d, is the angle between lines 1 - 4 and 2 - 3 and is given by

¢‘§1—%+§D; for region (2 & 3)
ﬂ—¢—§1—§—c: for region (5 & 6)
0y = 2 (3.326)
¢+, +§—C—§ ;  forregion (8 &9)
1T D’ g
P+¢ +%°; for region (11 & 12)

X

f— 1 1 1T 1 1

Figure 3-32: Solid area between two successive cylinders for region (2)
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Solid area between two successive cylinders for regions (3), (5), (9), and (11)

Figure 3-33 shows schematic of region 3. Region 3 extends over the angular range:
A3 < ¢ < A4. The solid area between the first and second cylinders that is under the suction
pressure is given by

1

1 .
A, = 554(R22_Rsz)_Z(RZ_RS)Z(gl_Sm&l) (3.327)

S|

This equation also applies to regions (5), (9), and (11) except that &; and &, are

different for each region. 3, is given by equation (3.326), while 3 is given by

k, +k, cos gl—é—;/}j; for region (3)

k, —k, cos gl—%+§D +¢j; for region (5)

(3.328)

k, —k, cos {l—%—gﬁj; for region (9)

k, +k, cos {1—%+§D+¢); for region (11)

2 2 ?
k1: R, —6R,R; +2R3 and k2 - (RLF%)Z (3.329)
Z(RZ—R3) 2(R2_R3)
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Figure 3-33: Solid area between two successive cylinders for region (3)

Solid area between two successive cylinders for region (4)
Figure 3-34 shows schematic of region 4. Region 4 extends over the angular range
A4 < ¢ <As. The solid area between the first and second cylinders that is under the suction

pressure for region 4 or region 10 is given by

Ay = (¢o-¢)(RF-R})-7R? (3.330)

N |~



123

Figure 3-34: Solid area between two successive cylinders for region (4)

3.8.4 Equations of motion of the valve plate-yoke assembly
The sum of all forces on the valve plate-yoke assembly should equal to mass

multiplied by acceleration:

F + ,F
T H " VPtoBoutD H " VPtoBoutS
A FCtoYG? + A l:CtoY(:‘»S + A FACtoY66 +Ava - Tvp ' [ E F
+ H " VPtoBinD + H " VPtoBinS
27(i-1)
9 oh

BStoVP,i (3331)

-T(;I; (0’¢)( D FB3FtoB + D FBSStoB + D FB4toB ) + T(;l;. (0’¢ +

27(i—1) _
*ta FHPAt0Y79 *ta FLPAt0Y78 + ToTs (0' P+ 9 )'D FOILtoVPD,i - Tva-(Mvp ‘H avp) =0
i=1,2,..9

Summing moments of all forces about point k (axis of rotation of the yoke):
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X

A rCtOY 67 77 A FCtoY 67 + rCIOY 68 X I:CtoY 68 +A M CtoY 67 +A M CtoY 68

T T
(Tvp H ACtoYGG)X Factoves ¥ aMacioves = Tos (0'¢)'(D Faarios Xp Fasrios)
Tos (6,9) (5 assos X0 Fassos) = oMasros = oMassis

+ Tv; H vp)>< W Tos (H ¢) ( M40 Xp FB4toB)' oM g

r x, F +, I x, K
T | H'outp “H "vpPtoBoutb TH 'ouTs VPtoBouts T
- T ( J Tos (9'¢)'D MVPtoB

3.332
+r Mo %n Fuposino T Tins X1 Fuptoging ( )

272'(I 1)
(‘9 P+ (D Fastove X Fastove ) +a Tpator 70 Xa Fripaor 7o

27r(| 1)

j (D ToiLove,i X FOILtoVP,i)

TT (H VPX(Mvp Ha\/p)) TT (H va HO(vp) =0

+A r-LPAtoY 78 ><A I:LPAtoY 78 + (9 ¢

3.9 Dynamic Analysis of the Yoke-Displacement Mechanism
The yoke rotates through an angle of 6 by the aid of a slider crank mechanism as
shown in Figure 3-35. The ram moves with a translational motion, with position given by

X = L, (cos(e +y5) —cos(e + 7, +49))

\l L L35|n(g+7/5+¢9)

(3.333)
\/ —(L, —Lysin(s + 7))’

= the radius of rotation of the yoke

L.c = length of the actuating link

The velocity and acceleration of the ram in vector form is given by
Vo =—X[0 sing cose] (3.334)

d

=5 Vean = alray =—X[0 sine cosfg]T (3.335)

A aRAM
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L3=ABo=AB
L4=AEc=AE
LAC=BoDo=BD Ram

—

a2

Axis of main shaft

. . v
Displaced position None-displaced positicn

Figure 3-35: Geometric parameters of the displacement mechanism

The angular velocity of the actuating link is determined using the instant center

method as shown in Figure 3-35:

Aa)AC=%[—1 o of (3.336)



126

CD=—\/L§C—(L4—Lssin(y5+g+9))2 tan(ys +&+6)

(3.337)
—(L,—Lysin(ys +£+0))
The angular acceleration of the actuating link is given by
d
Al :a ADnc (3.338)

The distance from the center of gravity of the actuating link to the instant center is

given by
CG= \/ DG?+CD’ - 2DG.CD.COS(% - ng (3.339)
., L, —Lssin(e+y,+6
¥, =—sin 1Lk L(g s +6) (3.340)
The velocity of the center of gravity of the actuating link is given by
7, =sin™! D—Gcos(y )} (3.341)
) CG ° '

Vac = a0, CG[0 —sin(e—y,) —cos(e —7/4)]T (3.342)

The acceleration of the center of gravity of the actuating link is given by

d

A8pc = at Vac (3.343)

Figure 3-36 shows the forces acting on FBD of the actuating link that include:

1. The reaction force from the pin of the ram at point 90. This forces as well as its
respective position vector as measured from the axis of rotation of the yoke are
given by

0

A Framoacso =| Framoacso, SIN(E —75) + Framtoacaoy cos(& —7s) (3.344)
Framtoacooz COS(& —75) — FRAMtoACQOy sin(e —y,)
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0
alramioaceo = | —Ls SIN(@+ y5) — L. sin(e — 7;) (3.345)
L3 COS(0+ 75) - Lac COS(S - 7/8)

2. The reaction from the yoke at point 66 denoted as - aFacwyss. The respective

position vector is given by

Alactoves = Tv; ‘1 Factov 66 (3.346)
3. The frictional moment from the yoke at point 66 denoted as - AMacioves
4. The weight of the actuating link and its corresponding position vector as measured

from the yoke axis of rotation are given by

W, =[0 Mg O]T (3.347)
0
alwac = | —Lsin(0+y5)—(L, —DG)sin(&—y,) (3.348)

L, c0s(0-+7,) (L. ~ DB )cos(e 74

Force balance of the actuating link

AFramoaceo = aF acoves T aWac ~Mpc.8ac =0 (3.349)
Sum of moments about center of rotation of the yoke (point A) is given by

A rRAMtoAC 90 x A I:RAMtoAC 0 ~ ArACtoY 66 ><A I:ACtoY 66 +A I;/\/AC ><AWAC

(3.350)
=AM acioves = afwac XMac-a@ac = alaca@ac = 0
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S S

Yoke axi§ of rotation

Figure 3-36: FBD of the actuating link

Figure 3-37 shows the forces acting on the FBD of the ram that include:

1.

The reaction force from the pin between the ram and the actuating link at point 90
denoted as - AFRAMtoACQO-

The reaction force from the ram cylinder interface at point 90 and is expressed as

0

aFeoramoo = | Hcroram oo Netorameo SIN € = Neoram oo COS € (3.351)

Heroram 90 Netoram oo €0S € + Neygrameo SINE

The weight of the ram is given by
;
Wy =[0 Mguy g O] (3.352)
The cylinder pressure force on the ram and is given by

. T
AFowuraw = Prav Aran [0 Sine  cose] (3.353)
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AFPtoRAM
-FRAMtoAC90y

-FRAMtoAC90z

28
e
AFCtoRAM90
Figure 3-37: FBD of the ram
Force balance of the ram
A I:RAMtoACQO +A FCtoRAM 90 +AWRAM +A I:PtoRAM - M RAM 'AaRAM = O (3-354)

3.10 Summary of the Theoretical Analysis

This chapter presented the mathematical derivations of the equations of motion of the
parts of the pump. In the process of developing these equations, hydrodynamic analysis
was introduced at the pistons. The hydrodynamic analysis at the pistons of the pump
resulted in differential equations that relate cylinder pressures and flow rates to the
geometric parameters of the pump, the physical properties of the hydraulic oil, and the
thermodynamic states of the nitrogen gas in the HPA and LPA. In addition, the
hydrodynamic forces acting at the interface between the barrel and the valve plate were
determined by defining and deriving the differential equations governing the oil film at the
interface.

In the next chapter, the equations of motion of the parts, the differential equations of
the piston pressure, and the hydrodynamic force will be solved numerically using

Mathematica™ software.



CHAPTER 4:NUMERICAL SOLUTION AND
SIMULATION OF THE
MATHEMATICAL MODEL

The theoretical model is created using Mathematica™ and is examined against well
know conditions of the rotation of the main shaft and the yoke. It is also compared against
experimental data that is created by the Environmental Protection Agency. The geometric
data of an actual variable displacement pump was used. The technical data of the actual
pump under consideration and the results of the experimental testing are not shown here
because it is propriety of the Environmental Protection Agency and we do not get

permission to release such data.

4.1 Kinematics of the Pump Components

The kinematic model is compared against a CAD model created using ADAMS/View
software. This study considers two cases. In the first case, the yoke has no angular rotation
while the main shaft angular motion is a function of time. In the second case, the yoke has

a fixed angular position while the main shaft rotates at a constant angular velocity.

Case 1: Yoke angle of zero degrees
Because the yoke is not displaced, all the parts except the pistons and the connecting
rods are in pure rotation with velocities and accelerations as given in Table 4-1. The yoke

and the displacement mechanism are stationary. If the pitch radius R at the main shaft side

130
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and the pitch radius r at the barrel side are the same, then the velocities and accelerations
of the pistons and the connecting rods are the same. The main shaft, the first and second
intermediate shafts, the first and second crosses, the barrel, the pistons, and the connecting
rods have the same angular velocity and angular acceleration as given by Eq. (3.12) and

Eq. (3.13). In addition, the pistons do not move with respect to the barrel.

Table 4-1: Parameters of the pump for a yoke angle of zero degrees

~acn(0. 0) ¢ cos g — ¢” sin ¢
( (r—R)I‘CRj v 12
R+L— $sing+¢4° cos¢
CR 0
Adp gcosg—g’sing
r| gsing+4° cosg
0
AV, gricosg sing O]
Ver(o, (o, (1= '
V(6. ) ¢[R+mj[cos¢ sing 0]

Case 2: Fixed yoke angle and constant angular velocity of the main shaft
In this case, the main shaft rotates at a constant angular velocity of 1500 rpm while the
yoke is kept at 30°. Therefore, one complete revolution of the main shaft is equivalent to

0.04 seconds of time.

The intermediate shaft has one angular velocity component along its longitudinal axes
“cs™. As can be seen from Figure 4-1, the angular velocity of the intermediate shaft
oscillates between 1449 rpm and 1553 rpm with an average value of around 1500 rpm

every half a revolution of the main shaft.
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cWjm1 (rpm)
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500
- . - — time (s)
0.01 0.02 0.03 0.04

Figure 4-1: Angular velocity of the intermediate shaft (Case 2)

Observing the intermediate shaft from the inertial coordinate system, the intermediate
shaft has two components of angular acceleration. One component is along the “a,*
direction as can be seen from Figure 4-2, and oscillates between - 442 and 442 rad/s?

every half revolution of the main shaft.

2
4% (rad/s®)

400 | ra i
/ \ ‘/‘. \
200 ‘
\\ )‘: «\
/ ) / L time (s)
0.01 0.02 0.03 0.04
—-200 ¢ X / \ (,5 -~ Math model
L : " |~ ADAMS model

—400 |

Figure 4-2: Angular acceleration of the intermediate shaft along the “a,* direction (case-2)
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The component of the angular acceleration of the intermediate shaft along the “as*
direction is shown in Figure 4-3. This component fluctuates between - 1650 rad/s® and
1650 rad/s? for each revolution of the main shaft.

Both the translational velocity and acceleration of the intermediate shaft are zero since
it undergoes pure rotation.

2
4% (rad/s”)

1500 |

1000 - ‘/“ “\ Math model

—  ADAMS model

500f / \ /

—3 —F s time (s)
0.01 0.02 0.03
—500f ”

—1000

—1500

Figure 4-3: Angular acceleration of the intermediate shaft along the “az* direction (case-2)

Figure 4-4 shows that the variation of the angular velocity component along the “a;*
direction of the first cross for a complete revolution of the main shaft. The “a;* component
varies smoothly from zeroat $ =0to- 194 rpmat ¢ =n/4toOat ¢ = /2 to 194 rpmat ¢ =

3n/4 and back to zero at ¢ = « in half a revolution.
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Figure 4-4: Angular velocity component of the first cross along the “a;* direction of the CVJ (case 2)

The “a,* component shown in Figure 4-5 varies between 0 and - 402 rpm. In addition,

the “az* has a constant value of 1500 rpm as shown in Figure 4-6.

A®@c1 (rpm)
. = . — time (s)
0.01 0.02\ 0.03 -0.04
; y

‘\ /‘ ‘

—100}
.\.. //
-200} j /
.\\‘ / ’\ "/
4 \ ;
=i \ / : |- Math model
j ; / |~ ADAMS model

—400 Let? sif

Figure 4-5: Angular velocity component of the first cross along the “a,* direction of the CVJ (case 2)
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AWcy (rpm)
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Figure 4-6: Angular velocity component of the first cross along the “a;* direction of the CVJ (case 2)

With reference to Figure 4-7 the angular acceleration component of the first cross
along the “a,* direction changes sinusoidally between - 6170 to 6170 rad/s? in half a
revolution of the main shaft. The “a,* component varies between - 6600 and 6600 every

half revolution. There is no acceleration component along the “as* direction.

4@y (rad/s?

6000 | i o
f ¥ / i |-~ Math model
i ; " |- ADAMS model
5 A / \
2000 | : \
i : \\
L L : — : time (s)
0.1 002 [ 003
f/ \ '
-2000f ' \
—4000f -
—6000 | R

Figure 4-7: Angular acceleration component along the “a;* direction of the first cross of CVJ (case 2)
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Figure 4-8: Angular acceleration component along the “a,* direction of the first cross of CVJ (case 2)

The angular rotation of the barrel around its axis of rotation is the same as the angular

rotation of the main shaft.

Figure 4-9 to Figure 4-11 show the angular velocity components of the second cross.

Comparing Figure 4-4 with Figure 4-9, one can notice that the angular velocity component

along the “a;* direction of the first cross is canceled out by that of the second cross. The

component along the “a, direction varies between - 750 and - 402 rpm in a sinusoidal

manner. In addition, the “az*“ component fluctuates between 1299 and 1499 rpm.

AWCy (rpm)
200 ¢ 5.

100} /

\ Math model
— ADAMS model

\

—100 ¢

-200 *

+— time (s
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Figure 4-9: Angular velocity component along the “a;* direction of the second cross of CVJ (case 2)
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Figure 4-10: Angular velocity component along the “a,* direction of the second cross of CVJ (case 2)
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Figure 4-11: Angular velocity component along the “as* direction of the second cross of CVJ (case 2)

Figure 4-12 to Figure 4-14 show the components of the angular acceleration of the
second crossed expressed with respect to the inertial frame of reference. The component
along the “a;* direction of the second cross cancels out the “a;* component of the first
cross. The components along the “a,* and “as* directions are in phase and change in a

sinusoidal mannar.
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Figure 4-12: Angular acceleration (“a;* component) of the second cross of CVJ (case 2)
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Figure 4-13: Angular acceleration (“a,* component) of the second cross of CVJ (case 2)
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Figure 4-14: Angular acceleration (“as* component) of the second cross of CVJ (case 2)
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The velocity and acceleration of the second cross are zero. The velocity and
acceleration of the CG of the barrel are also zero.

Figure 4-15 shows the piston displacement as a function of the main shaft and yoke
rotations. The piston is not displaced relative to the barrel if the yoke angle is zero
regardless of the angular rotation of the main shaft. In addition, for a given yoke angle the
piston displacement with respect to the barrel varies sinusoidally with the main shaft

rotation.

¢ frad)

Figure 4-15: Piston displacement as a function of main shaft and yoke rotations

The velocity components of the first piston are shown in Figure 4-16 to Figure 4-18.
Notice that the mathematical model matches that of ADAMS/View model along the “a;*
and “ay* directions. Although there is a phase shift of around 40° between the
mathematical model and the ADAMS model along the “az* direction, both models
indicate the same trend and the same maximum and minimum values. In addition, the “az*

component is insignificant because it is only around 3% of the value of either the “a;* or
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the “a,* component. The solution of the Mathematica™ model is exact. On the other hand,
the numerical solution obtained from ADAMS/View is approximate and involves some
simplifications. Therefore, the difference between the Mathematica™ model and

ADAMS/View model could be attributed to numerical approximations involved in the

ADAMS model.
4Vpx (m/s)
PSRN ,
\
N time (s)
0.01 0.02 0.03 0.04
= ?
\. Math model
\ — ADAMS model

solgilr T /

Figure 4-16: The velocity of the piston along the “a;* direction (Case 2)
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Figure 4-17: The velocity of the piston along the “a,* direction (Case 2)
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Figure 4-18: The velocity of the piston along the “as* direction (Case 2)

The acceleration components of the piston are shown in Figure 4-19 to Figure 4-21.

Both the mathematical and ADAMS model match accurately along the “a;* and “a,

directions. There is a small difference (less than 2%) between the two models in the “az*

direction.
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Figure 4-19: The acceleration of the first piston along the “a;* direction (case 2)
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Figure 4-20: The acceleration of the first piston along the “a,* direction (case 2)
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Figure 4-21: The acceleration magnitude of the first piston (case 2)

Figure 4-22 to Figure 4-24 show the variation of the velocity components of the
connecting rod along the three inertial directions. There is a matching between the
mathematical model and the ADAMS model along the “a;* and “a,* directions. Although
there is a small phase shift between the mathematical and ADAMS model along the “az*
direction, the trend is the same and the maximum and minimum of both models have the

same values.
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Figure 4-22: The velocity component of the connecting rod along the “a;* directions (case 2)
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Figure 4-23: The velocity component of the connecting rod along the “a,* direction (case 2)
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Figure 4-24: The velocity component of the connecting rod along the “as* direction (case 2)
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As can be seen from Figure 4-25, the acceleration components along the “a;* and “a,*

directions vary in a sinusoidal manner and they match the plots from ADAMS model. The

velocities and accelerations of all pistons and connecting rods are shown in Appendix A.
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Figure 4-25: The acceleration component of the connecting rod along the “a;* direction (case 2)
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Figure 4-26: The acceleration component along the “a,* direction of the connecting rod (case 2)
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Figure 4-27: The magnitude of the acceleration of the connecting rod (case 2)

The yoke-valve plate assembly, the ram, and the actuating link of the yoke

displacement mechanism are stationary because the yoke angle is fixed.

4.2 Numerical Solution of the Piston Flow Rate and Pressure
The theoretical model of the piston pressure as given by equations (3.213) to (3.264) is
examined numerically against well know conditions of the rotation of the main shaft and
the yoke. The geometric data of an actual variable displacement pump was used. The main
shaft rotates at a constant angular velocity of 1500 rpm while the yoke is kept at 5°, 10°,

20°, 30°, and 40° respectively.

4.2.1 The piston displacement

The piston’s displacement and velocity is covered in a previous section from a
kinematic context and it is revisited here as it is directly related to piston’s pressure and
pump’s flow rate. Figure 4-15 shows a 3-dimensional plot of the piston’s displacement as

a function of the main shaft and yoke rotations. The piston is not displaced relative to the
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barrel if the yoke angle is zero regardless of the angular rotation of the main shaft. In
addition, for a given yoke angle the piston’s displacement varies periodically with the
main shaft rotation.

The velocity of the first piston (Figure 4-28), assuming that it starts from the top dead
center, with respect to the barrel varies in a sinusoidal manner with the main shaft angular
rotation. It has maximum values at the middle of the discharge/suction ports (¢ = n/2 and
d =37/2).

DVpb (m/s)

time (s)
0.01 0.02 0.03 0.04

Figure 4-28: The velocity of the first piston with respect to the barrel

4.2.2 Cylinder flow rate (time domain)

Figure 4-29 shows the cylinder flow rate as a function of time at a constant main shaft
speed of 1500 rpm for yoke angles of 5°, 10°, 20°, 30°, and 40° respectively.

The numerical solution at a yoke angle of 0° did not converge, however the trend at
this angle can be anticipated by extrapolating the results at the other angles (0° to 40°). At
0° yoke angle, the piston displacement is always zero regardless of barrel rotation.
Therefore, there will be no flow rate due to the piston kinematics except for the flow in or

out of the pistons due to leakage through the clearances between the mating parts. Upon
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transition at the BDC from the suction port to the discharge port (at t = 0.02 seconds),
there will be a sharp pulse of oil flow in the cylinder coming from the high-pressure
accumulator. Similarly, there will be also a pulse as the oil flows from the cylinder to the
low-pressure accumulator as the cylinder switches from the discharge to the suction port at
the TDC.

As the yoke angle increases from 5° to 40° the cylinder flow rate increases

accordingly because the piston displacement increases.
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Figure 4-29: Cylinder flow rate profile for yoke angles of 5°, 10°, 20°, 30°, and 40°

Zooming on the period just before 0.02 sec to just above 0.04 sec for yoke angle of 10°

will clarify why the sudden jump occurs as shown in Figure 4-30. As the cylinder moves
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from the TDC (¢ = 0) ccw, the piston’s displacement increases. In the meantime, the
cylinder inflow to the cylinder increases and reaches a maximum at ¢ = 90° (t = 0.01 sec).
After this maximum, the oil inflow to the cylinder starts to decrease until the cylinder exit
is totally closed by the land between the suction and discharge ports. While the cylinder is
closed, except for some leakage through clearances between mating parts, its volume
increases leading to a negative pressure buildup until the cylinder starts to open to the
notch groove before the start of the discharge port. Because of this negative pressure build
up inside the cylinder while in the closed state, a reverse flow from the discharge port
enters the cylinder causing the inflow to increase abruptly. Then after the reverse flow
balances the negative pressure build up, the inflow again decreases until reaching the

BDC.
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Figure 4-30: Enlarged view of the Cylinder flow rate profile, @ = 10° (time domain)

As the cylinder pass the BDC, the volume of the cylinder starts to decrease while the

outflow increases until reaching a maximum at ¢ = 270°. After that, the outflow starts to
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decrease again until the cylinder is completely closed by the land between discharge and
suction ports. During the closure region, the cylinder volume continues to decrease
causing a positive pressure buildup. As soon as the cylinder is open to the notch groove
(before the start of the suction port), the oil moves out rapidly from the cylinder in order to
balance the effect of pressure buildup during the closer period. This causes the outflow to
increase abruptly. After which the outflow decreases back again until reaching zero at the

TDC.

4.2.3 Cylinder flow rate (frequency domain)

Figure 4-31 shows the amplitude spectrum for the cylinder flow rate at a yoke angle of
30°. The plots of the cylinder flow rate at yoke angles of 5°, 10°, 20°, and 40° are similar
to those at 30° except for the magnitudes of the respective harmonics. As can be seen from
the figure, there is a major harmonic that occurs at a frequency of 25 Hz. The other

harmonics are very small and die very quickly at higher frequencies.
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Figure 4-31: Cylinder flow harmonics (frequency domain), 6 = 30°

The fundamental cylinder flow harmonic occurs at a frequency of 25 Hz for all angular

yoke rotations under investigation as can be seen in Figure 4-32. The cylinder flow
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amplitude of the fundamental harmonic increases linearly with the yoke angle because of

the higher piston displacement as the yoke angle increases.
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4.2.4 Pump flow rate (time domain)

The pump flow rate is the sum of the cylinder flow rates at the discharge or suction

port from all individual cylinders less the leakage. The pump flow rate for yoke angles of

5°, 10°, 20°, 30°, and 40° is shown in Figure 4-33. The mean flow rate increases as the

yoke angle increases due to increased piston displacement. The pump flow rate has a

repeating flow ripple about the mean flow rate with a frequency of 225 Hz.
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Figure 4-33: Pump flow rate profile for yoke angles of 5°, 10°, 20°, 30°, and 40°

4.2.5 Pump flow rate (Frequency domain)

Figure 4-34 shows the amplitude spectrum of the pump flow as a function of yoke
angle. All harmonics are very small and die very quickly for all yoke angles. What is
shown at 0 Hz actually represents the steady state pump flow rate which is constant for a
given yoke angle. The steady state pump flow rate increases linearly with the yoke angle
as can be seen in Figure 4-35 due to the increased piston displacement with increased yoke

angle.
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Figure 4-34: Pump flow harmonics (frequency domain), 6 = 30°
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Figure 4-35: Steady state pump flow vs. yoke angle

4.2.6 Piston pressure (time domain):

The cylinder pressure profiles for yoke angles of 5°, 10°, 20°, 30°, and 40° are shown
in Figure 4-36. As the yoke angle decreases, the jumps beyond the low pressure or high -
pressure accumulators at the points of transitions between the ports decrease accordingly

because compression or expansion of the oil near the TDC and BDC gets smaller.
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Figure 4-36: Cylinder pressure profile for yoke angles of 5°, 10°, 20°, 30°, and 40°

As the yoke angle starts to increase, a sharp overshoot or undershoot is being noticed
and increased while the yoke angle increases. Before reaching the BDC, the orifice exit
area of the cylinder is totally closed by the land between the suction and discharge ports.
Consequently, as the barrel rotates in this period up to the BDC the volume of the oil
inside the cylinder increases causing a negative pressure in the suction port. This leads to
pressure undershoot. At angles of 30°, and 40° the pressure undershoot is below zero gage
pressure, which might cause cavitation of the pump as the barrel rotates from suction to
discharge port. The same explanation applies upon the transition from the discharge to the

suction port at the TDC except that the oil is compressed at the TDC while the cylinder is
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closed by the land between the discharge and suction ports. Thus, an overshoot in pressure

occurs beyond the pressure of the HPA.

4.2.7 Piston pressure (frequency domain)
The cylinder pressure harmonics are shown in Figure 4-37 for a yoke angle of 30°. The

trend is similar at other angles.
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Figure 4-37: Cylinder pressure harmonics (frequency domain), 6 = 30°

The piston pressure harmonics vary parabolically and slowly with the yoke angle as
can be depicted in Figure 4-38. What looks like a harmonic at 0 Hz is actually the steady

state value of the piston pressure.
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Figure 4-38: Cylinder pressure harmonics vs. yoke angle

4.3 Numerical Solution of the Forces Acting on the Pump Case
To simplify the solution of the mathematical model numerically, the frictional moment

is neglected (it is very small) at the ball bearing and the thrust bearing of the main shaft,

spherical joints between the main shaft and the connecting rods and between the

connecting rods and the pistons, and at all pin joints.

The weights of the very small parts of the CVJ are neglected in this analysis including
the weight of the first and second cross, and the weight of the first and second

intermediate shafts.

Based on the numerical solution of the equations of motion of the parts of the pumps
mentioned in chapter 3, plots of the reactions forces acting on the pump case were
obtained. The analysis of these plots will be conducted in both the time and frequency

domains.
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4.3.1 Reaction forces on the case from the main shaft at the ball bearing

Figure 4-39 to Figure 4-41 shows the reaction force from the main shaft at the radial
roller bearing for yoke angles of 5°, 10°, 20°, 30°, and 40° and shaft speed of 1500 rpm.
This force has two components that are normal to the axis of the main shaft. All
components alternate about the mean value with a frequency that is nine times the
frequency of rotation of the main shaft. The component along the “a;* direction arises
from the fact that the pitch circles at the main shaft side and the barrel side are not the
same. In addition, the connecting rod is inclined at an angle with the horizontal even when
the yoke angle is zero. This means that the connecting rod has three-dimensional
inclinations in the sense that if you take a front view or a top view of the connecting rod,
you still have the connecting rod inclined in both views. Therefore, the piston forces
transmitted through the connecting rod to the main shaft will have components along the
three directions. Some of the two components that are normal to the main shaft axes are
shared between the ball and thrust bearings, while the component along the shaft axes is
carried only by the thrust bearing at the main shaft and at the revolute joints of the yoke
axis of rotation.

The pump is connected to the LPA at the inlet port and to the HPA at the discharge
port. As the pump delivers the hydraulic oil from the LPA to the HPA, the pressure
differential across the pump increases accordingly. For that reason, the mean value of the
reaction force along all directions increases very slowly with time. This result applies to

other reaction forces.
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Figure 4-39: Reaction force component along the “a;* direction on the case of the pump at the Ball

bearing (main shaft)
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Figure 4-40: Reaction force component along the “a,“ direction on the case of the pump at the Ball

bearing (main shaft)
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Figure 4-41: Magnitude of the reaction force on the case of the pump at the Ball bearing (main shaft)

The average values of the force components are calculated over a period of 1.0 second.
Figure 4-42 shows a plot of these averages as a function of the yoke angle. Both
components have some pulsation due to the mechanism of the pistons’ movement, the
limited number of pistons (9 in this case), and the pressure pulsations in the cylinders
within the barrel. The mean value along the “a;* direction varies parabolically with the
yoke angle. The mean value along the “a,* direction increases linearly with the yoke

angle.
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Figure 4-42: Average value of the reaction force at the ball bearing (main shaft) vs. yoke angle

In order to identify the harmonics of the reaction forces acting on the case of the

pump, these forces are converted into the frequency domain using Discrete Fourier

Transform analysis.

Figure 4-43 shows the amplitude spectrum of the force components from the main
shaft to the pump case at the ball bearing at a yoke angle of 30° and shaft speed of 1500
rpm. The harmonics of the component along the “a;* direction are very small and
negligible. What looks like as a harmonic at 0 Hz, really represents the steady state value
of the a; component. The steady state value of the a; component increases parabolically

with the yoke angle as can be noticed from Figure 4-44.
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Figure 4-43: Amplitude spectrum of the magnitude of the reaction force from the main shaft at the

ball bearing to the pump case (6 = 30°)
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Figure 4-44: Steady state value of the “a;* component of the reaction force from the main shaft at the

ball bearing to the pump case as a function of the yoke angle

The component along the “a,™ direction has two major harmonics at 225 Hz and 450
Hz. What looks like a harmonic at zero Hz actually represents the steady state value of the
a, component. The steady state value of the a, component increases linearly with the yoke
angle. The amplitude of the harmonics at 225 Hz and 450 Hz increases parabolically with

the yoke angle.
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Figure 4-45: Amplitude spectrum of the “a,* component of the reaction force from the main shaft at

the ball bearing to the pump case as a function of the yoke angle
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4.3.2 Reaction forces on the case from the main shaft at the thrust rolling bearing
Figure 4-46 to Figure 4-49 show the reaction force components on the case of the
pump at the thrust roller bearing at yoke angles of 5°, 10°, 20°, 30°, and 40° and shaft
speed of 1500 rpm. Although both components along the “a;* and “a,™ directions behave
in a similar fashion as the components at the radial ball bearing, they are out of phase by
180°. Although the magnitudes of the components increase with the yoke angle, the trend
of variation stays the same. In addition, the fluctuation from the mean value increases as

the yoke angle increases.
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Figure 4-46: Reaction force component along the “a;* direction on the case of the pump at the thrust

roller bearing (main shaft) vs. yoke angle
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Figure 4-47: Reaction force component along the “a,* direction on the case of the pump at the thrust

roller bearing (main shaft) vs. yoke angle
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Figure 4-48: Reaction force component along the “a;* direction on the case of the pump at the thrust

roller bearing (main shaft) vs. yoke angle
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Figure 4-49: The magnitude of the reaction force on the case of the pump at the thrust roller bearing

(main shaft) vs. yoke angle

Figure 4-50 shows the average values of the components of the reaction force at the thrust
roller bearing calculated over a period of one second. The component along the “a;“
direction increases parabolically with the yoke angle. The component along the “a*
direction increases linearly steeply with the yoke angle, while the “as* component
decreases parabolically with the yoke angle. Overall, the magnitude of the force increases

linearly with the yoke angle.
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Figure 4-50: The average values of the components of the reaction force on the case of the pump at the

thrust roller bearing (main shaft) vs. yoke angle

Figure 4-51 shows the harmonics of the reaction force component along the “a;*
direction from the main shaft to the pump case at the thrust roller bearing at a yoke angle
of 30° and shaft speed of 1500 rpm. This component has very small and negligible
harmonics. What looks like a harmonic at zero Hz is in fact the steady state value of the
component at a given yoke angle. This steady state value increases parabolically with the

yoke angle.
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Figure 4-51: Amplitude spectrum of the reaction force component along the “a;* direction from the

main shaft at the thrust roller bearing to the pump case (6 = 30°)
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Figure 4-52: Steady state value of the “a;* component of the reaction force from the main shaft at the

thrust roller bearing to the pump case as a function of the yoke angle

The amplitude spectrum of the reaction force from the main shaft to the pump case at
the thrust roller bearing along the “a,™ direction is shown in Figure 4-53 for a yoke angle
of 30° and shaft speed of 1500 rpm. There are two harmonics, which occur at frequencies
of 225 Hz and 450 Hz. What looks like a harmonic at zero Hz is indeed the steady state
value of the a, component at a given yoke angle. The steady state value increases linearly

with the yoke angle.
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Figure 4-53: Amplitude spectrum of the reaction force component along the “a,* direction from the

main shaft at the thrust roller bearing to the pump case (6 = 30°)
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The harmonics at 225 Hz and 450 Hz increase parabolically with the yoke angle as can

be illustrated in Figure 4-54.
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Figure 4-54: Amplitude spectrum of the “a,* component of the reaction force from the main shaft at

the thrust roller bearing to the pump case as a function of the yoke angle

Figure 4-55 shows the amplitude spectrum of the “as* component of the reaction force

at the thrust roller bearing at a yoke angle of 30° and shaft speed of 1500 rpm. This

component has three major harmonics at 225, 350, and 450 Hz respectively. What it looks

like as a harmonic at zero Hz is in reality the steady state value of the az; component at a

given yoke angle. The steady state value of the a; component decreases parabolically with

the yoke angle as can be seen in Figure 4-56 and that may explain in part the noise heard

when testing the pump at zero degrees yoke angle.
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Figure 4-55: Amplitude spectrum of the reaction force component along the “az* direction from the

main shaft at the thrust roller bearing to the pump case (8 = 30°)

The amplitude of the harmonics at 225, 350, and 450 Hz increases parabolically with

the yoke angle.
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Figure 4-56: Amplitude spectrum of the “a;* component of the reaction force from the main shaft at

the thrust roller bearing to the pump case as a function of the yoke angle
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4.3.3 Reaction forces on the case from yoke axis of rotation at the suction port

Figure 4-57 shows the “a;* component of the reaction force at the yoke axis of rotation
(suction port side) for yoke angles of 5°, 10°, 20°, 30°, 40° and shaft speed of 1500 rpm.
This force component fluctuates in a sinusoidal fashion and is independent of the yoke

angle.
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Figure 4-57: Reaction force component along the “a;“ direction from the yoke to the case of the pump

at the suction port

Figure 4-58 shows the amplitude spectrum of the “a;* component of the reaction force

from the yoke axis of rotation at the suction port to the pump. This component has one
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harmonic that occurs at a frequency of 25 Hz. The amplitude of this fundamental
harmonic is independent of the yoke angle as can be depicted in Figure 4-59. Therefore,
since this component is independent of the yoke angle, it can be said that this component

contribute to the noise heard at zero yoke angle.
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Figure 4-58: Amplitude spectrum of the reaction force component along the “a;* direction from the

yoke axis of rotation to the pump case at the suction port (6 = 30°)
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Figure 4-59: Amplitude spectrum of the “a;* component of the reaction force from the yoke to the

pump case (suction portside) as a function of the yoke angle
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The variation of the “a,* component of the force from the yoke to the pump case at the
suction port is shown in Figure 4-60. The mean magnitude of this component increases
with time because of the increased pressure differential that has to be carried out by the

pump to deliver oil from the LPA to the HPA. This component fluctuates about the mean

value with nine major pulsations for each revolution of the main shaft.
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Figure 4-60: Reaction force component along the “a,* direction from the yoke to the case of the pump

at the suction port

Figure 4-61 shows the variation of the mean value of the reaction force at the suction port

calculated over a period of one second. The mean value of the “a,* component increases



174

linearly with the yoke angle. On the other hand, the value of the component along the “as*
direction decreases as the yoke angle increases. Overall, the average value of the

magnitude of this reaction increases proportionally with the yoke angle.
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Figure 4-61: Average value of the components of the reaction force from the yoke to the case of the

pump at the suction port

The “a* component of the force from the yoke to the pump case has four major
harmonics at 25, 225, 200, and 250 Hz respectively as can be seen in Figure 4-63. What
seems like a harmonic at 0 Hz is indeed the steady state value of the “a,*“ component. This
steady value increases linearly with the yoke. Initially, the fundamental harmonic at 25 Hz
decreases with the yoke angle until reaching a minimum at 20°. After that, it increases
again as the yoke angle increases. The remaining harmonics at 225, 200, and 250 Hz

increase parabolically and slowly with the yoke angle.
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Figure 4-62: Amplitude spectrum of the reaction force component along the “a,* direction from the

yoke axis of rotation to the pump case at the suction port (0 = 30°)
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Figure 4-63: Amplitude spectrum of the “a,* component of the reaction force from the yoke to the

pump case (suction portside) as a function of the yoke angle

Figure 4-64 shows the variation of the “az* component of the force from the yoke to
the pump case with time. This component fluctuates about the mean value with nine major

pulsations due to the limited number of pistons.
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Figure 4-64: Reaction force component along the “a;* direction from the yoke to the case of the pump

at the suction port

The amplitude spectrum of the force component from the yoke to the case at the
suction port along the “az* direction is shown in Figure 4-65 for a yoke angle of 30° and

shaft speed of 1500 rpm.

The “as* component has four major harmonics at frequencies of 25, 225, 200, and 250
Hz respectively as can be seen in Figure 4-65 and Figure 4-66. What appears as a
harmonic at zero Hz is actually the steady state value of the “as* component. This steady

state value decreases slowly as the yoke angle increases from 5° to 40. This explains in
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part the reason of the noise heard at zero degrees yoke angle. The fundamental harmonic,
which occurs at a frequency of 25 Hz, remains unchanged as the yoke angle changes. The
harmonics at frequencies of 225, 200, and 250 Hz increase parabolically and slowly with

the yoke angle.
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Figure 4-65: Amplitude spectrum of the reaction force component along the “az* direction from the

yoke axis of rotation to the pump case at the suction port (6 = 30°)
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Figure 4-66: Amplitude spectrum of the “a;* component of the reaction force from the yoke to the

pump case (suction portside) as a function of the yoke angle
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Figure 4-67 shows the magnitude of the reaction force from the yoke to the pump case at

the suction port.
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Figure 4-67: magnitude of the reaction force from the yoke to the case of the pump at the suction port

Figure 4-68 shows the amplitude spectrum of the magnitude of the reaction force from
the yoke at the suction side. The first highest harmonics occur at frequencies of 25, 225,
50, 450, and 350 Hz respectively. What it looks like a harmonic at zero Hz is in fact the
steady state value of the magnitude of the reaction force at the suction port. This steady

state value increases linearly with the yoke angle. The fundamental harmonic at 25 Hz
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decreases linearly with the yoke angle as illustrated in Figure 4-69. The second harmonic

at 225 Hz increases parabolically and slowly with the yoke angle. The remaining

harmonics are independent of the yoke angle.
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Figure 4-68: Amplitude spectrum of the magnitude of the reaction force from the yoke axis of rotation
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Figure 4-69: Amplitude spectrum of magnitude of the reaction force from the yoke to the pump case

(suction portside) as a function of the yoke angle
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4.3.4 Reaction forces on the case from yoke axis of rotation at the discharge port
Figure 4-70 to Figure 4-72 show the variation of the reaction force from the yoke to
the pump case at the yoke axis of rotation (Discharge side) at a shaft speed of 1500 rpm.
The force components at the discharge side behave in a similar fashion as those at the
suction side. In addition, these components have a pulse every 40° of the main shaft

rotation.
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Figure 4-70: Reaction force component along the “a,* direction from the yoke to the case of the pump

at the discharge port
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Figure 4-71: Reaction force component along the “as;* direction from the yoke to the case of the pump

at the discharge port
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Figure 4-72: Magnitude of the reaction force from the yoke to the case of the pump at the discharge

port
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Figure 4-73 shows the variation of the average value (calculated over a period of one
second) of the components of the reaction force from the yoke to the pump case with the
yoke angle. The value of the average of the component along the “a,* direction increases
linearly with the yoke angle at a relatively rapid rate. On the other hand, the value along
the “asz* direction decreases slowly with the yoke angle. Overall, the average value of the

magnitude of this force increases very slowly with the yoke angle.
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Figure 4-73: Average values of the components of the reaction force from the yoke to the pump case at

the discharge port vs. yoke angle

Generally, the amplitude of the harmonics of the force from the yoke to the pump case
at the discharge port increases with the yoke angle as can be noticed from Figure 4-74 and
Figure 4-75. What appears as a harmonic at zero Hz is indeed the steady state value of
“a* component. This steady state value increases linearly with the yoke angle. The

fundamental harmonic at 25 Hz and the second harmonic at 225 Hz increase parabolically



184

with the yoke angle. The remaining smaller harmonics at 200, 250, and 350 Hz are nearly

independent of the yoke angle.
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Figure 4-74: Amplitude spectrum of the “a,* component of the reaction force from the yoke axis of

rotation to the pump case at the discharge port (6 = 30°)
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Figure 4-75: Amplitude spectrum of the “a,* component of the reaction force from the yoke to the

pump case (discharge portside) as a function of the yoke angle

The amplitude spectrum of the “as* component of the force from the yoke to the pump

case at the discharge port side is shown in Figure 4-76. It has two major harmonics at 25
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Hz, and 225 Hz. What it looks like, as a harmonic at zero Hz is actually the steady state
value of the “a3 component. The steady state value decreases parabolically and slowly
with the yoke angle.
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Figure 4-76: Amplitude spectrum of the “a;* component of the reaction force from the yoke axis of

rotation to the pump case at the discharge port (6 = 30°)

The fundamental harmonic at 25 Hz decreases very slowly with the yoke angle as can
be seen in Figure 4-77. The second harmonic at 225 Hz increases parabolically with the
yoke angle. The remaining higher frequency harmonics are nearly independent of the yoke

angle.



186

2000

8046 7967
7624

8000 L
e —— 7091
7000 \\\\\\\Eiﬁa
4

6000

F4 ¢0Hz
g 5000 H25Hz
z 225Hz,
2 4000 ¢ 450 Hz
- 3000 350Hz
250 Hz
2000 1350 1343 1294 1224 - 200 Hz
1000 .44\#F4*444___TF‘44‘4‘4T““““!
NESn e e SEs==cas==F
0 10 20 30 40 50

Yoke angle, degrees

Figure 4-77: Amplitude spectrum of the “a;* component of the reaction force from the yoke to the

pump case (discharge portside) as a function of the yoke angle

4.3.5 Reaction force on the case from the ram

Figure 4-78 to Figure 4-80 shows the variation of the reaction force from ram to the
pump case as a function of yoke angle at a shaft speed of 1500 rpm. The average value of
the magnitude of the force at the ram is computed over a period of 1 second. The average
value increases as the yoke angle increases until reaching a maximum at 15° as can be
seen in Figure 4-81. Then it decreases until reaching a minimum at 35°. Beyond a yoke

angle of 35°, the average value increases again.
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Figure 4-78: Reaction force from the ram along the “a,* direction
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Figure 4-79: Reaction force from the ram along the “as* direction
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Figure 4-80: Magnitude of the reaction force from the ram
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Figure 4-81: Average value of the magnitude of the force at the ram

Figure 4-82 shows the amplitude spectrum of the reaction force at the ram as a function of
the yoke angle. There are three major harmonics at 25, 200, and 250 Hz respectively. The
amplitude of the fundamental harmonic at 25 Hz increases with the yoke angle until
reaching a maximum at 15°. After that, it decreases until reaching a minimum at 35°.
Beyond 35°, the amplitude resumes to increase as the yoke angle increases. The amplitude
of the harmonics at 200 Hz and 250 Hz increases with the yoke angle until reaching a
maximum at 20°. After that, it decreases until reaching a minimum at 30°. Beyond 30°, the

amplitude resumes to increase as the yoke angle increases.
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Figure 4-82: Amplitude spectrum of the reaction force component along the “a,* direction at the ram

(upper graph for 6 = 30°)

Figure 4-83 shows the amplitude spectrum of the reaction force at the ram along the “as*

direction. This component has three major harmonics at 25, 200, and 250 Hz respectively.

These harmonics vary with the yoke angle in the same way as the component along the

“a,“ direction varies.
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Figure 4-83: Amplitude spectrum of the reaction force component along the “az* direction at the ram

(upper graph for 6 = 30°)

Figure 4-84 shows the amplitude spectrum of the magnitude of the reaction force at the

ram. There are three major harmonics at 50, 100, and 225 Hz. What it looks like a

harmonic at zero Hz is indeed the steady state value of the reaction force. The harmonics

of the magnitude of the reaction force at the ram vary with the yoke angle as the

component along the “a, direction does.
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CHAPTER 5:SUMMARY AND CONCLUSIONS

This chapter summarizes the presented analytical work and dynamic modeling of the
bent axes pump, which is connected to LPA at the suction port and HPA at the discharge

port. In addition, it presents the conclusions and recommendations for future research.

5.1 Summary

The objective of this research is to find the dominating harmonics that create the noise
in the bent axis pump. The pump will be working within the circuit of a hydraulic hybrid
vehicle. Knowing the sources of noise enables taking the appropriate decisions in terms of
design, control strategy, and the implementation of anti-noise techniques and procedures

either to the pump or to the hydraulic system to reduce the noise level to acceptable levels.

This study derived a dynamic mathematical model of a bent axis pump with the
purpose of finding the variation of pressure head, flow rate, and dynamic forces acting on
the pump’s case as a function of the angular rotations of both the main shaft and the yoke.
The forces acting on the pump’s case due to the interaction with the moving internal parts

of the pump were determined both in the time and frequency domains.

A Kkinematic analysis was implemented to find velocities, accelerations, angular
velocities, and angular accelerations for each part of the pump. Then, the equation of

motion for each part as well as the whole system has been determined using Newtonian

194
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mechanics. Consequently, the forces acting on the pump case are determined numerically

using Mathematica™ in the time and frequency domains.

The theoretical model was created using Mathematica™ and is examined against well
know conditions of the rotation of the main shaft and the yoke and compared against a

CAD model created using ADAMS/View software.

The theoretical model of the piston pressure and flow rate was also solved numerically
against well know conditions of the rotation of the main shaft and the yoke. The geometric

data of an actual variable displacement pump was used in getting the numerical solutions.

Although the numerical solution of the mathematical model is implemented at main
shaft speed of 1500 rpm for yoke angles of 5°, 10°, 20°, 30°, and 40° respectively, one has
to keep in mind that this model can solve for any conditions of main shaft rotation and

yoke angular positions no matter how they vary with time.

5.2 Conclusions
The following conclusions are based on the analytical and modeling work presented in

this study:

Kinematics of the pump components
e The kinematic model was able to predict the variations of the angular velocities
and accelerations and the velocities and the accelerations of the center of gravity of

the entire pump’s parts starting from the main shaft up to the yoke.
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For the case when the main shaft rotates at a constant angular velocity at a fixed
angular position of the yoke, the angular rotation of the barrel is the same as the
angular rotation of the main shaft.

For a given yoke angle the piston displacement with respect to the barrel varies
sinusoidally with the main shaft rotation.

For the piston and the connecting rod, there is a matching between the
mathematical model and the ADAMS model along the “a;* and “a,* directions for
both velocity and acceleration. Although there is some phase shift between the
mathematical model and ADAMS model along the “as* direction, the trend is the
same and the maximum and minimum of both models have the same values. In

addition, the “as* component is about 3% of either the “a;* or the “a,* component.

Hydrodynamics

All equations necessary to solve for the piston pressure and pump flow rate as a
function of main shaft and yoke rotations have been derived, tested, and verified at
a constant angular speed (1500 rpm) of the main shaft and yoke angles ranging
from 5° to 40°. The model was able to predict the variations of pressure profile and
flow rate.

At zero degrees yoke angle, the piston displacement is always zero regardless of
barrel rotation. Therefore, there will be no flow rate due to piston kinematics,
except for the leakage flow through the clearances between the mating parts. Upon
transition from the BDC at the suction port to the discharge port, there is a sharp

pulse of oil flow in the cylinder coming from the HPA. Similarly, there is also a
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pulse as the oil flows from the cylinder to the LPA as the cylinder switches from
the discharge to the suction port at the TDC.

The cylinder flow rate increases as the yoke angle increases due to increased piston
displacement.

The fundamental cylinder flow harmonic occurs at a frequency of 25 Hz at 1500
rpm of the main shaft and for all angular yoke rotations under investigation and
increases linearly with the yoke angle because of the higher piston displacement
with increased yoke angle.

The mean pump flow rate increases as the yoke angle increases due to increased
piston displacement. The pump flow rate has a repeating flow ripple about the
mean flow rate with a frequency equals to nine times the frequency of rotation of
the main shaft. The harmonics of the pump flow rate are very small and negligible
for all yoke angles.

As the yoke angle decreases, the jumps in pressure beyond the LPA or HPA
pressures at the points of transitions between the ports decrease accordingly
because compression or expansion of the oil near the TDC and BDC is getting
smaller.

The overshoot at the TDC or undershoot at the BDC in piston pressure increases
with the yoke angle. At angles of 30° and 40°, the pressure undershoot is below
zero gage pressure which might cause cavitation of the pump as the barrel rotates
from suction to discharge port.

The piston pressure harmonics vary very slowly and parabolically with the yoke

angle.
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Reaction forces on the case from the main shaft at the ball bearing

This force has two components that are normal to the axis of the main shaft. All
components alternate about the mean value with a frequency that is nine times the
frequency of rotation of the main shaft. The mean value along the “a;* direction increases
parabolically with the yoke angle. The component along the “a,* direction increases
linearly with the yoke angle. The component along the “a;* direction has very small and

negligible harmonics.

The component along the “a,* direction has two major harmonics at 225 Hz and 450

Hz. The amplitude of these harmonics increases parabolically with the yoke angle.

Reaction forces on the case from the main shaft at the thrust rolling bearing

Both components along the “a;*“ and “a, directions behave in a similar fashion as the
components at the radial ball bearing, but they are out of phase by 180°. The component
along the “a;“ direction increases parabolically with the yoke angle. The component along
the “ax* direction increases linearly and steeply with the yoke angle, while the “az“
component decreases parabolically with the yoke angle. Overall, the magnitude of the

force increases linearly with the yoke angle.

The reaction force component along the “a;* direction has very small and negligible
harmonics for all yoke angles. The “a,* component has two major harmonics at
frequencies of 225 Hz, and 450 Hz. The amplitude of these harmonics increase

parabolically with the yoke angle.
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The “az* component of the reaction force at the thrust roller bearing has three major
harmonics at 225, 350, and 450 Hz respectively. The amplitude of these harmonics

increases parabolically with the yoke angle.

Reaction forces on the case from yoke axis of rotation at the suction port

The “a;* component of the reaction force at the yoke axis of rotation (suction port
side) fluctuates in a sinusoidal fashion and is independent of the yoke angle. This
component has one harmonic that occurs at a frequency of 25 Hz. The amplitude (60 N) of
this fundamental harmonic is independent of the yoke angle. Therefore, it can be

concluded that this component contribute in part to the noise heard at zero yoke angle.

The mean value of the “a,* component increases linearly with the yoke angle. This
component fluctuates about the mean value with nine major pulsations for each revolution
of the main shaft. The value of the component along the “as“ direction decreases as the
yoke angle increases. Overall, the average value of the magnitude of this reaction

increases proportionally with the yoke angle.

The first four major harmonics of the “a,™ component occur at 25, 225, 200, and 250
Hz respectively. The amplitude of the fundamental harmonic at 25 Hz decreases with the
yoke angle up to a yoke angle of 20°. After that, it increases again as the yoke angle
increases. The remaining harmonics at 225, 200, and 250 Hz increase parabolically and

slowly with the yoke angle.

The first four harmonics of “as*component occurs at 25, 225, 200, and 250 Hz. The

fundamental harmonic, which occurs at a frequency of 25 Hz, remains nearly constant as
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the yoke angle changes. The harmonics at frequencies of 225, 200, and 250 Hz increase

parabolically and slowly with the yoke angle.

Reaction forces on the case from yoke axis of rotation at the discharge port

The force components at the discharge side behave in a similar fashion as those at the
suction side. The value of the average of the component along the “a, direction increases
linearly with the yoke angle at a relatively rapid rate. On the other hand, the value along
the a3 direction decreases slowly with the yoke angle. Overall, the average value of the
magnitude of this force increases very slowly with the yoke angle. The fundamental
harmonic at 25 Hz and the second harmonic at 225 Hz increase parabolically with the
yoke angle. The remaining smaller amplitude harmonics are nearly independent of the

yoke angle.

The fundamental harmonic of the “as* component occurs at a frequency of 25 Hz and
decreases very slowly with the yoke angle. The second harmonic at 225 Hz increases
parabolically with the yoke angle. The remaining high frequency harmonics are nearly

independent of the yoke angle.

Reaction force on the case from the ram
The average value of the magnitude of this force increases as the yoke angle increases
until reaching a maximum at 15°. Then it decreases until reaching a minimum at 35°.

Beyond a yoke angle of 35°, the average value increases again.

The “a,* component has three major harmonics at 25, 200, and 250 Hz respectively. The

amplitude of the fundamental harmonic at 25 Hz increases with the yoke angle until
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reaching a maximum at 15°. After that, it decreases until reaching a minimum at 35°.
Beyond 35°, the amplitude resumes to increase as the yoke angle increases. The amplitude
of the harmonics at 200 Hz and 250 Hz increases with the yoke angle until reaching a
maximum at 20°. After that, it decreases until reaching a minimum at 30°. Beyond 30°, the

amplitude resumes to increase as the yoke angle increases.

The “az* component has three major harmonics at 25, 200, and 250 Hz respectively. These
harmonics vary with the yoke angle in the same way as the component along the “a,

direction varies.

5.3 Recommendations and Future Work

The study presented in this dissertation represents the infrastructure for further work
that is related to bent axis pump design, analysis, performance, and application to
hydraulic hybrid vehicles. The application and extension of concepts presented in this
study would significantly benefit the analysis of the structures that would be connected to
the pump within a hydraulic system. Some of the recommendations for future work

include:

e Knowing the constraints at all joints in the pump structure and the forces in the
time domain as obtained from the current study, a transient finite element model
could be implemented for both the pump’s case and the pump’s internal parts.

e With all forces at the joints within the structure of the pump being determined, a
vibration analysis could be conducted to the structure to which the pump is
mounted. Therefore, the mounts to which the pump is tied can be designed

effectively.
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Given the forces on the pump case as obtained from the mathematical model, a
vibration and acoustic finite element analysis of the pump may be performed to
find the effect of the different forces that act on the pump case on noise level

variations created by the pump.
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APPENDIX B: MATHEMATICA NOTEBOOK TO SOLVE THE EQUATIONS OF

MOTION OF THE PUMP

(*Equations of Motion of parts of bent axis piston pump*)
(*Rotation matrix functions*)

MatrixForm[Tx[€_] : = RotationMatrix[€, {1, 0, 0}]7;
MatrixForm[Ty[Q._] : = RotationMatrix[€, {0, 1, 0}]"];

MatrixForm[Tz[Q._] : = RotationMatrix[©, {0, 0, 1}]"];

(*Derivative wrt time of the rotation matrix functions*)
dTx[Q_, t ]:=Dt[Tx[Q], t];

dTy[Q_, t ]:=Dt[Ty[Q], t];

MatrixForm[dTz[Q2_,t ]:=Dt[Tz[Q], t]];

(*Rolling Bearing Friction Model

d = bore diameter of thrust bearing (mm)

D = outside diameter of thrust bearing (mm)

dm = pitch circle diameter of thrust bearing (mm)

fo = index for bearing type and lubrication type

type = a variable that defines type of bearing

type = 1 for Deep groove ball bearings

type = 2 for Tapered roller bearings

type = 3 for Needle roller bearings

type = 4 for Thrust ball bearings

T = oil operating temperature

v = oil viscosity in mm?/s

Mv = load independent component of frictional moment (N.m)

Fr = radial load component of bearing reaction

Fa = axial load component of bearing reaction

f1 = index taking into account magnitude of load

P1 = governs radial load-depending frictional moment Mm, takes into account that Mm changes with load
angle

Mm = radial load dependent component of frictional moment (N.mm)
fa = index, depending on axial load Fa and lubricating condition*)

Friction[revx_, typex_, dx_, Dx_, Tempx_, Frx_, Fax_, Cox_] : = Module[{Friction, dm, Mv, Mm, Ma, fo,
f1, P1},

v[Temp_] = 92.31*Exp[0.025Temp]; fo[type_] = Which[type = =1, 2, type = = 2, 4.5, type = = 3, 5.25,
type = =4, 1.5];

fl[type_, Fr_, Co_, Faxial_] = Which[type = =1, 0.005 - 0.009 (0.6*Fr/C0)"0.5, type = = 2, 0.0004, type =
=3, 0.0005, type = = 4, 0.0012 (Faxial/C0)"0.33]; P1[type_, Fr_, Faxial ] = Which[type ==1, Fr, type = =
2, 0.8*Cot[a0] Faxial, type = = 3, Fr, type = = 4, Faxial];

dm[diam_, DIAM_] = (diam + DIAM)/2;

Mv[rev_, type , Temp_, diam_, DIAM_] = If[y[Temp]*rev=2000, 1*" -
10*fo[type]*(v[Temp]*rev)™(2/3)*dm[diam, DIAM]"3, 160*" - 10*fo[type]*dm[diam, DIAM]"3];
Mm[type_, Fr_, Faxial_, diam_, DIAM_, Co_] = fl[type, Fr, Co, Faxial]*P1[type, Fr, Faxial]*dm[diam,
DIAM]/1000;
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Ma[type_, Faxial_, diam_, DIAM_] = Which[type==1, 0, type==2, (9*" - 6)*Faxial*dm[diam, DIAM],
type==3, 0, type==4, (9*" - 6)*Faxial*dm[diam, DIAM]];

Friction[rev_, type_, diam_, DIAM_, Temp_, Fr_, Faxial_, Co_] = Mv[rev, type, Temp, diam, DIAM] +
Mml[type, Fr, Faxial, diam, DIAM, Co] + Ma][type, Faxial, diam, DIAM] ; Friction[revx, typex, dx, DX,
Tempx, Frx, Fax, Cox]]

SetDirectory["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models"]
(*Orifice area*)

FileOrificeArea = OpenRead["AoRF.nb"];

ArFR[¢_] = Read[FileOrificeArea];

Close[FileOrificeArea];

(*Solid area between successive cylinders*)

FileSolidArea = OpenRead["Asolid.nb"];

Share[AsFR[¢_] = Read[FileSolidArea]];

Close[FileSolidArea];

Needs["PlotLegends™]

Plot[AsFR[¢]*1000000, {¢, 0, 2Pi}, AxesOrigin—-{0, 0}, AxesLabel->{"¢ (rad)", "Aia (MM?)"},
BoundaryStyle—Thick, PlotStyle—Thick, LabelStyle—Directive[Bold], Ticks—{{0, Pi/2, Pi, 3Pi/2, 2Pi}}]

(*Constant Inputs*)

Ac : = Cylinder cross sectional area;

Ace : = Exit cross sectional area of the cylinder;

Ap : = Cross sectional area of the piston;

ARAM : = Cross sectional area of the ram;

AIAC : = Moment of inertia of actuating link around axis system attached to its CG and parallel to the
principal axes of the part;

ATinz : = Input torque to the main shaft;

AT78 : = area of discharge/suction exit to HPA/LPA at yoke axis (Point 78 and 79);
B : = Oil bulk modulus;

Col : = The static load rating of the ball bearing of the main shaft;

Co2 : = The static load rating of the thrust roller bearing of the main shaft;

Co4 : = The static load rating of the thrust ball bearing at the barrel;

Cp = One half the radial clearance between the piston and the cylinder;

D1 : = Outside diameter of the ball bearing at the main shaft; (*mm*)

d11 : = Bore diameter of the ball bearing at the main shaft; (*mm®*)

D2 : = Outside diameter of the thrust bearing at the main shaft; (*mm¥*)
d2 : = Bore diameter of the thrust bearing at the main shaft; (*mm®*)
D3 : = Outside diameter of the needle bearing at the barrel; (*mm*)

d3 : = Bore diameter of the needle bearing at the barrel ; (*mm*)

D4 : = Outside diameter of the thrust ball bearing at the barrel; (*mm¥*)

d4 : = Bore diameter of the thrust ball bearing at the barrel; (*mm¥*)
DG : = Distance from upper end of actuating link (D) to its CG;

DF : = Distance from center of spherical joint between piston and connecting rod and the bottom end of the
cylindrical cavity for a zero yoke angle (Figure 3-15);

g : = Acceleration of gravity;

h : = Fluid film thickness between valve plate and the barrel;

Ims11 = Moment of inerital of main shaft along b, direction;

Ims12 = Product moment of inerital of main shaft (b;. b,);

Ims13 = Product moment of inerital of main shaft (b;. bs);

Ims22 = Moment of inerital of main shaft along b, direction;

Ims23 = Product moment of inerital of main shaft (b,. bs);

Ims33 = Moment of inerital of main shaft along bs direction;
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lim111 = Moment of inerital of 1% intermediate shaft along c, direction;
lim113 = Product moment of inerital of 1* intermediate shaft (c,. c3);
lim122 = Moment of inerital of 1% intermediate shaft along c, direction;
lim133 = Moment of inerital of 1* intermediate shaft along c; direction;
lim211 = Moment of inerital of 2" intermediate shaft along c, direction;
lim213 = Product moment of inerital of 2" ntermediate shaft (c.. c3);
lim222 = Moment of inerital of 2" ntermediate shaft along c, direction;
1im233 = Moment of inerital of 2" intermediate shaft along c; direction;
los11 = Moment of inerital of barrel along d; direction;

los12 = Product moment of inerital of barrel (dy. d,);

los13 = Product moment of inerital of barrel (d;. ds);

los22 = Moment of inerital of barrel along d, direction;

l0s23 = Product moment of inerital of barrel (d,. ds);

los33 = Moment of inerital of barrel along d; direction;

Ip11 = Moment of inerital of piston along d; direction;

Ip33 = Moment of inerital of piston along d; direction;

Ic11 = Moment of inerital of 1¥ cross along f, direction;

Ic12 = Product moment of inerital of 1% cross (f,. f,);

Ic13 = Product moment of inerital of 1% cross (f,. f3);

Ivpll : = Moment of inerital of yoke-valve plate along h; direction;
Ivp12 = Product moment of inerital of yoke-valve plate (h;. h,);

Ivp13 = Product moment of inerital of yoke-valve plate (h;. hs);

Ivp22 = Moment of inerital of yoke-valve plate along h, direction;
Ivp23 = Product moment of inerital of yoke-valve plate (h,. hs);

Ivp33 = Moment of inerital of yoke-valve plate along hs direction;

IP : = Distance from CG of second intermediate shaft to center of second cross;
Lac : = Length of actuating link;

LCo : = Length of oil cylindrical cavity at zero yoke angle (Figure 3-15);

LC2 : = Length of the convergent part of the cylindrical cavity (Figure 3-14);

LCIMo : = Contact length between first and second intermediate shafts at zero yoke angle;

LCR : = Length of the connecting rod;

LIM1 : = Distance from the center of the first cross to the far edge of the first intermediate shaft along the
“c3* direction,;

Lis : = Length of input shaft of the CVJ (Figure 3-9);

Lp : = Length of piston that is in the cylinder when axial displacement is zero;

Lpl = Distance from the spherical joint between the piston and the connecting rod to the piston’s face;
LPtoCR : = Distance from the left face of the piston to the common point between the piston and the
connecting rod;

LYtoVP : = Distance along the “ds* direction from the yoke axis of rotation to the barrel valve plate
interface;

L3 : = 55/1000;

L4 :=51.67/1000;

MAC = Mass of the actuating link;

Mcl : = Mass of the first cross;

Mc2 : = Mass of the second cross;

MCR : = Mass of the connecting rod;

MH : = Mass of gas in the HPA,;

ML : = Mass of gas in the LPA;

Mim1 : = Mass of the first intermediate shaft;

Mim2 : = Mass of the second intermediate shaft;

MMS : = Mass of the main shaft;

Mos : = Mass of the barrel-output shaft assembly;

Mp : = Mass of piston;

MRAM : = Mass of the ram;

Mvp : = Mass of the valve plate-yoke assembly;



nrated : = Rated speed of pump, rpm;

PlossH : = Pressure losses between the discharge port and the HPA;
PlossL : = Pressure losses between the suction port and the LPA,;
PmaxL = Maximum gas pressure in the LPA

PmaxH = Maximum gas pressure in the HPA;

PPH : = Pre-charge pressure in the HPA,

PPL : = Pre-charge pressure in the LPA,

r : = Pitch circle radius at the barrel side;

R : = Pitch circle radius at the main shaft side;

RN : = Gas constant of nitrogen, J/kg°K;

R1 : = Radius of the outer land of the port plate (Figure 2-5);
R2 : = QOutside radius of the discharge/suction port (Figure 2-5);
R3 : = Inside radius of the discharge/suction port (Figure 2-5);

R4 : = Radius of the inner land of the port plate (Figure 2-5);
rAC : = Radius of pin between the yoke and the actuating link;
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rC1 : = Distance from the center of the first or the center of the second cross to point 3 on the first cross or

point 29 on the second cross;

rC2 : = Distance from the center of the first or second cross to point 23 on the first cross or point 27 on the

second cross;
rCP1 : = Radius of the cross section of pin 3-4 that is attached to the input shaft at the first cross or the
output shaft at the second cross;

rCP2 : = Radius of the cross section of pin 23-24 that is attached to the first or second intermediate shafts at

point 23;

rCP3 : = Radius of the cross section of pin 23-24 that is attached to the first or second intermediate shafts at

point 24;

RCRL : = Radius of the left end of the connecting rod;

RCRR : = Radius of the right end of the connecting rod;

rp : = The piston radius;

rY : = Radius of the yoke’s pin at its axis of rotation;

Ry : = Distance from center of rotation of yoke to center of first or second cross;

rlz : = Distance from left end of main shaft to the ball bearing ;

r2z : Distance from left end of main shaft to the thrust bearing;

r3z : = Distance from left end of main shaft to the CG of the 1* cross along the a; direction;

r5z : = Distance from left end of main shaft to the ConRod spherical joint along the a; direction;
rCtoY67x = See nomenclature ;

rLPAtoY78x : = See nomenclature;

rim1z : = Distance from CG of 1% cross to CG of 1% intermediate shaft along c; direction;

rOSz : = Distance from yoke axis of rotation to CG of barrel along d direction;

rwWmsz : = Distance from left end of main shaft to its CG along the as direction;

rWP : = Distance from ConRod spherical joint to CG of piston along d5 direction;

rACtoY66x : = See nomenclature;

rACtoY66y : = See homenclature;

rACtoY66z : = See nomenclature;

rB3FtoBz : = Distance from yoke axis of rotation to 1% needle bearing of the barrel along ds direction;
rB3StoBz : = Distance from yoke axis of rotation to 2" needle bearing of the barrel along d; direction;
rB4toBz : = Distance from yoke axis of rotation to thrust ball bearing of the barrel along d5 direction;
rvpx = Distance from yoke axis of rotation to CG of yoke-valve plate along h; direction;

rvpz = Distance from yoke axis of rotation to CG of yoke-valve plate along h; direction;

rCR : = See nomenclature;

T : = Operating oil temperature, °C;

Tg : = Temperature of gas in the HPA or LPA at pre-charge, °K;

Vfixed : = Volume of oil at end of the cylinder cavity (conical portion) (Figure 3-14);

a0 : = Nominal contact angle of the thrust bearing at the main shaft;

¢ : = Kidney angle of the valve plate;

v5 : = See nomenclature;
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€ : = Inclination angle of the cylinder along which the ram slides;

1C1 = Friction coefficient at the pins of the first or second cross;

wpim = Friction coefficient between the first and second intermediate shafts;

1Y = Friction coefficient at the right/left pins of the yoke at its axis of rotation;
HACtoY = Friction coefficient at the pin between the yoke and the actuating link;
uCtoRAMOI0 = Friction coefficient between the ram and the cylinder walls at point 90;
6L = Angular rotation of the line of action of the reaction force from the LPA/HPA from the negative “a3*
direction;

p = Oil density;

¢ = Angular rotation of the main shaft about its axis of rotation;

6 = Angular rotation of the yoke about its axis of rotation;

(*Main shaft - Kinematic*)
(*Transformation matrix of B frame wrt A frame*)
MatrixForm[T1[¢x_] = Tz[¢X]];

(*Angular velocity of the rotating frame of reference expressed in B frame wrt to A frame¥*)
Simplify[MatrixForm[WABB]Jt_, ¢x_] = T1[¢x].D[T1[¢x]", t11];

(*Angular velocity and angular acceleration of main shaft in vector form*)
Simplify[MatrixForm[BwMS = {WABBI[t, ¢][[3, 2]], WABBIt, ¢][[1, 3]], WABBIt, #1[[2, 1]1}1];
Simplify[MatrixForm[BaMS = Dt[BwMS, t]]];

(*Position vectors of forces acting on main shaft*)
MatrixForm[Arl = {0, 0, r1z}]; (*Ball bearing at point 1*)
MatrixForm[Ar2 = {0, 0, r2z}]; (*Thrust bearing at point 2*)
MatrixForm[Br3 = {0, - rC1, r3z}]; (*pin 3 of 1st cross*)
MatrixForm[Br4 = {0, rC1, r3z}]; (*pin 4 of 1st cross*)

MatrixForm[ArCR1 = T1[¢]" {0, - R, r5z}]; (*1st ConRod*)
MatrixForm[ArCR2 = T1[¢ + 2*Pi/9]".{0, - R, r5z}]; (*2nd ConRod*)
MatrixForm[ArCR3 = T1[¢ + 4*Pi/9]" {0, - R, r5z}]; (*3rd ConRod*)
MatrixForm[ArCR4 = T1[¢ + 6*Pi/9]" {0, - R, r5z}]; (*4th ConRod*)
MatrixForm[ArCR5 = T1[¢ + 8*Pi/9]" {0, - R, r5z}]; (*5th ConRod*)
MatrixForm[ArCR6 = T1[¢ + 10*Pi/9]".{0, - R, r5z}]; (*6th ConRod*)
MatrixForm[ArCR7 = T1[¢ + 12*Pi/9]".{0, - R, r5z}]; (*7th ConRod*)
MatrixForm[ArCR8 = T1[¢ + 14*Pi/9]".{0, - R, r5z}]; (*8th ConRod*)
MatrixForm[ArCR9 = T1[¢ + 16*Pi/9]".{0, - R, r5z}]; (*9th ConRod*)

MatrixForm[Arwms = {0, 0, rwmsz}];

(*First Intermediate shaft angular rotation®*)
(* Orthogonally constraint between the yoke axes*)
6 = ArcTan[Tan[¢]*Cos[6/2]];

(*First Intermediate shaft transformation matrix*)

(*Attach coordinate system clc2c3 to 1st intermediate shaft*)
(*c2 is aligned with axis of output yoke of 1st joint.*)

(*c3 is aligned with axis of intermediate shaft*)
MatrixForm[T2[o_] = TX[c]];

MatrixForm[T3 = Simplify[Tz[5]]1/.(1/Sqrt[Sec[¢#]*2]—>Cos[#]);
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(*Transformation matrix between A and C frames*)
MatrixForm[Tim1 = Simplify[T3.T2[6/2]])/.(1/Sqrt[Sec[¢]*2]>Cos[¢]);

(*Angular velocity of 1*' intermediate shaft expressed in C frame in skew symmetric form*)
MatrixForm[WACC = Simplify[Tim1.Dt[Tim1, t]"]];

(*Angular velocity of 1st intermediate shaft expressed in C frame in vector form*)
MatrixForm[Cwim1 = FullSimplify[{WACCI[3, 2]], WACCI[1, 3]], WACCI[2, 1]1}1];

MatrixForm[Awiml = Simplify[N[Tim1".Cwim1]]];

AwimlADAMS = Import["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica
models\\Kinematic data from adams at 30 degrees\\Angular velocity\\AngVelFirstintermediate.csv"];
AwimlADAMSmag = ListInterpolation[Awim1ADAMSI[[AII, 5]], {Awim1ADAMS[[AIl, 111}];

(*Angular acceleration of 1st intermediate shaft expressed in C frame in vector form*)
MatrixForm[Caim1 = Simplify[Dt[Cwiml, t]]];

MatrixForm[Aaiml = N[Tim1".Caiml]];

Aaim1ADAMS = Import["C:\\Users\\noor\\DocumentsWABH\\Dissertation\\Mahematica
models\\Kinematic data from adams at 30 degrees\\Angular acceleration\\AngAccFirstintermediate.csv"];
Aaim1lADAMSz = Listinterpolation[Aaim1ADAMS[[AII, 3]], {Aaim1ADAMSI[AI, 1]1};
Aaim1lADAMSYy = ListInterpolation[Aaim1ADAMSI[AI, 4]], {AaimlADAMS[[AII, 1]1}];

(*First Intermediate shaft*)
(* Position vector of CG of 1st intermediate shaft expressed in C frame wrt center of 1st cross*)
MatrixForm[Crim1 = {0, 0, rim1z}];

(* Velocity of CG of 1st intermediate shaft expressed in C frame*)
MatrixForm[CVim1 = Cwim1xCrim1];

(*Acceleration of CG of 1st intermediate*)

Simplify[MatrixForm[Caim1 = Cwim1x(Cwim1xCriml) + Caim1xCrim1]];

Simplify[MatrixForm[Aaim1 = Simplify[Tim1".Caim1]]];

(*First Intermediate shaft*)

Lim = 2*Ry*Cos[6/2]; (*Intermediate shaft length*)

(*Position vectors of the reaction forces wrt center of 1st cross*)
MatrixForm[Cr23 = { - rC2, 0, 0}];

MatrixForm[Cr24 = - Cr23];

(*First Cross coordinate system, f;f,f3*)

(*1. f1 is parallel to b1*)

(*2. f2 is parallel to c2*)

MatrixForm[fl = T1[a][[11]];

MatrixForm[f2 = Tim1[[2]])/.(1/Sqrt[Sec[¢]*2]>Cos[¢]);
MatrixForm([f3 = Simplify[f1xf2]]/.Cos[¢] Sqrt[Sec[¢]*]-1;

(*First Cross rotation matrix*)
MatrixForm[Tcl = {f1, f2, f3}];

(*Angular velocity of 1st cross *)
MatrixForm[wcl = Tcl.Transpose[Dt[Tcl, t]]];
MatrixForm[Fwel = N[Simplify[{wcl[[3, 2]], wcl[[1, 3]], wcl[[2, 1]1}.(1/Sart[Sec[#]*]-Cos[s])11];
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MatrixForm[Awcl = Simplify[N[Tcl".Fwcl]]];

Export["C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Velocities and
Accelerations\Awc1.csv”, Table[{t, Awcl[[1]], Awcl[[3]], - Awcl[[2]]}, {t, O, 0.04, 0.0001}]];

AwclADAMS = Import["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Angular velocity\AngVelFirstCross.csv'];

AwclADAMSX = ListInterpolation[ Awc1ADAMSI[AII, 2]], {AwclADAMS[[AI, 1]11}];

AwclADAMSz = Listinterpolation[Awc1ADAMS[[AII, 3]], {AwclADAMS[[AII, 1]11}];

AwCclADAMSYy = ListInterpolation[Awc1ADAMSI[AII, 4]], {AwcIADAMS[[AI, 1]11}];

(*Angular acceleration of 1st cross in vector form expressed in F frame¥*)
MatrixForm[Facl = Chop[Dt[Fwcl, t]]];

MatrixForm[Aacl = Chop[Tcl".Facl]];

AaclADAMS = Import["C:\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Angular acceleration\\AngAccFirstCross.csv"];

AaclADAMSX = ListInterpolation[AacIADAMS[[AII, 2]], {AacIADAMS[[AII, 111}];
AaclADAMSz = ListInterpolationfAacLADAMSI[AII, 3]], {AacLADAMSI[AII, 111}
AaclADAMSYy = Listinterpolation[AacLADAMSI[AII, 4]], {AaclADAMS[[AII, 111}];

(*Position vectors of forces acting on FBD of 1st cross in terms of F frame wrt its
origin¥*)

MatrixForm[Fr3 = {0, - rC1, 0}];

MatrixForm[Fr4 = - Fr3];

Fr23={-rC2, 0, 0};

Fr24 = - Fr23;

(*Second Intermediate Shaft*)

(*Relative velocity of 2nd intermediate shaft wrt 1st intermediate shaft expressed in C frame*)
SetAttributes[Ry, Constant]

MatrixForm[CVim2im1 = {0, 0, Dt[Lim, t]}];

(*Position vector of CG of 2nd intermediate shaft wrt center of 1st cross expressed in C frame*)
MatrixForm[Crim2 = {0, 0, Lim - IP}];

(*Velocity of CG of 2nd intermediate shaft expressed in C frame*)
MatrixForm[CVim2 = Simplify[CVim2im1 + Cwim1xCrim2]];

(*Acceleration of CG of 2nd intermediate shaft expressed in C frame*)

SetAttributes[{IP}, Constant]

MatrixForm[Caim2 = Simplify[Dt[CVim2im1, t] + Cwimlx(CwimlxCrim2) + CaimlxCrim2 +
2Cwim1xCVim2im1]];

(*Second Intermediate Shaft*)
(*Moment of inertia of 2nd intermediate shaft*)
MatrixForm[Clim2 = {{lim211, 0, 1im213}, {0, 1im222, 0}, {lim213, 0, 1im233}}];

(*Let origin of C frame be at center of 1st cross*)

(*Position vectors of forces acting on 2nd intermediate shaft*)
MatrixForm[Cr27 = { - rC2, 0, Lim}];

MatrixForm[Cr28 = {rC2, 0, Lim}];
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(*Output Shaft coordinate system, d1d2d3%*)
(*Attach coordinate system d1d2d3 to output shaft of 2nd joint*)
(* d1 is aligned with axis of output yoke of 2nd joint*)

(* d3 is aligned with axis of output shaft of 2nd joint*)

(*d1d2d3 and ala2a3 are related by*)

MatrixForm[T4[¢x_] = Tz[¢x]];

MatrixForm[Dos = Simplify[T4[¢].T2[6/2]]];

(*Output Shaft rotation matrix*)
(*coordinate frame ele2e3*)
Simplify[MatrixForm[Tos[6x_, ¢x_] = T4[¢x].T2[Ox/2].T2[6x/21]];

(*Angular velocity and angular acceleration of output shaft expressed in d frame*)

MatrixForm[WADD = Tos[6, ¢].Dt[Tos[6, ¢]", t]];

MatrixForm[Dwos = Simplify[{WADDI[3, 2]], WADDI[1, 3]], WADDI[2, 1]11}11;
MatrixForm[Daos = Dt[Dwos, t]];

(*Second Cross coordinate system, i1i2i3*)

(* il is parallel to d1*)

(*i2 is parallel to c2*)

MatrixForm[il = Simplify[Tos[6, ¢][[1]1]1];

MatrixForm[i2 = Tim1[[2]])/.(1/Sqrt[Sec[¢]"2])-Cos[¢];
MatrixForm[i3 = Simplify[i1xi2]]/.Cos[#] Sqrt[Sec[¢]*]-1;

(*Rotation matrix of 2nd cross*)

MatrixForm[Tc2 = Simplify[{il, i2, i3}])/.{1/Sqrt[Sec[#]*2]—-Cos[#], Cos[¢] Sart[ Sec[¢]*]-1};
(*Angular velocity and angular acceleration of 2nd cross expressed in | frame*)
MatrixForm[Wc2 = Tc2.Dt[Tc2", t]];

MatrixForm[lwc2 = Simplify[{Wc2[[3, 2]], Wc2[[1, 3]], We2[[2, 111}.(1/Sqrt[ Sec[¢]*])—Cos[4]]];
MatrixForm[lac2 = Simplify[Dt[lwc2, t]]];

MatrixForm[Awc2 = N[Simplify[Tc2".1wc2]]];
Awc2ADAMS = Import["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Angular velocity\\AngVelSecondCross.csv"];

Awc2ADAMSX = ListInterpolation[Awc2ADAMSJ[AII, 2]], {Awc2ADAMSI[AI, 1]1};
Awc2ADAMSz = Listinterpolation[Awc2ADAMS[[AII, 3]], {Awc2ADAMSI[AII, 111};
Awc2ADAMSY = Listinterpolation[Awc2ADAMSI[AII, 4]], {Awc2ADAMSI[AI, 1]1};

MatrixForm[Aac2 = N[Simplify[Tc2".1ac2]]];
Aac2ADAMS = Import["C:\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Angular acceleration\\AngAccSecondCross.csv'];

Aac2ADAMSX = ListInterpolation[Aac2ADAMSI[[AII, 2]], {Aac2ADAMSJ[[AII, 1]1};
Aac2ADAMSz = ListInterpolation[Aac2ADAMS[[AII, 3]], {Aac2ADAMS[[AII, 1]1}];
Aac2ADAMSYy = ListInterpolation[Aac2ADAMSI[AII, 4]], {Aac2ADAMSJ[[AIL, 1]1};

(*Second Cross*)
(*Position vector of point 27 of pin on 2nd cross wrt its CG expressed in | frame*)
MatrixForm[Ir27 = { - rC2, 0, 0}];

(*Position vector of CG of 2nd cross wrt center of 1st cross*)
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MatrixForm[Crl = {0, 0, Lim}];

(*Velocity and acceleration of CG of 2nd cross expressed in C frame*)
MatrixForm[CVc2 = Simplify[CVim2im1 + CwimlxCrl]];

SetAttributes[{rC2}, Constant]

MatrixForm[Cac2 = Simplify[Dt[CVim2im1, t] + Cwimlx(CwimlxCrl) + Caim1xCrl +
2CwimlxCVim2im1]];

(*Moment of inertia of 2nd cross*)

MatrixForm[lic2 = {{lc11, 0, 0}, {0, Ic12, 0}, {0, 0, Ic13}}];

(*Position vectors of forces acting on 2nd cross wrt its CG*)
MatrixForm[1r28 = - Ir27];

MatrixForm[1r29 = {0, - rC1, 0}];

MatrixForm[1r30 = - Ir29];

(*Barrel - Output Shaft Assembly*)

(*Attach coordinate frame D to center of rotation of yoke*)

MatrixForm[Drl = {0, 0, Ry}]; (*CG of 2nd cross wrt yoke axis of rotation*)
MatrixForm[DrOS = {0, 0, rOSz}]; (*Position vector of CG of barrel wrt point K*)

(*Velocity of CG of output shaft express wrt A frame*)
MatrixForm[AVos = Simplify[Chop[Tos[#6, ¢]".(DwosxDrOS)]]];
(*Acceleration of output shaft*)

MatrixForm[Aaos = Simplify[Chop[Tos[6, ¢]*.(Dwosx(DwosxDrOS) + DaosxDrOS)]]];

(*Moment of inertia of output shaft*)
MatrixForm[Dlos = {{los11, los12, 10s13}, {los12, 10s22, 10523}, {10513, 10523, 10s33}}];

(*Piston displacement*)

@o[686_] : = Module[{ @0}, @o[0_]: =6+ ArcSin[(r - R Cos[d] - (Ry + Lis) Sin[6])/LCR]; ¢o[66]]
IF[66_, ¢ ] : = Module[{IF}, IF[0_, ¢ ]:=- Ry - (Lis + Ry) Cos[6] + R Cos[¢] Sin[f] + Sqrt[LCR? -
Sin[6]? (Lis + Ry)? - r* + 2r R (1 - 2 Cos[¢]° Sin[6/2]%) + R? (Sin[6]° Cos[¢]° - 1) + 2(Lis +
Ry)Cos[#]Sin[d](r - R Cos[ 6])]; IF[66, ¢4]];

Z[60_, ¢¢_] : = Module[{Z, IH}, IH : =- Ry + LCR Cos[ ¢o[6] - 6] - (Lis + Ry) Cos[6] + R Sin[6]; Z[6_,
¢_]1: = Chop[IH - IF[6, ¢]1; Z[66, ¢¢]]

ZD[tt_, ii_] = Module[{ZD}, ZD[t_, i_] = Dt[Z[6, ¢ + 2*Pi*(i - 1)/9], t, Constants—{r, R, Lis, Ry, LCR, i};
ZD[tt, ii]];

ZDD]tt_, ii_] = Module[{ZDD}, ZDD[t_, i_] = Dt[Z[6, ¢ + 2*Pi*(i - 1)/9], {t, 2}, Constants~{r, R, Lis, Ry,
LCR, i}]; ZDD[tt, ii]];

(*Barrel - Output Shaft Assembly - Position vectors*)

(*Position vectors at points 29 and 30 wrt yoke center of rotation*)
Ar29 = (Tos[6, ¢]".Drl + Tc2".1r29)/.(1/Sqrt[Sec[¢]*2])—»Cos[4];

Ar30 = (Tos[6, ¢]".Drl + Tc2".1r30)/.(1/Sqrt[Sec[#]*2])—»Cos[¢];

(*Position vector of reaction force from thrust ball bearing at end of barrel*)
DrB4toB = {0, 0, rB4toBz};
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(*Position vectors of reaction forces from piston and oil film between barrel and piston at points 31 to
39 (-DFBtoP, i) wrt yoke axes of rotation*)

Dr31 = Simplify[{0, - r, Ry + IF[6, ¢] + rWP}];

Dr32 = Simplify[{0, - r, Ry + IF[6, ¢ + 2Pi/9] + rWP}];

Dr33 = Chop[Simplify[{0, - r, Ry + IF[6, ¢ + 4Pi/9] + rWP}/.Cos[Pi/18 - ¢]"2—(1 - Sin[Pi/18 - #]"2)1];
Dr34 = Simplify[{0, - r, Ry + IF[6, ¢ + 6Pi/9] + rWP}];

Dr35 = Simplify[{0, - r, Ry + IF[6, ¢ + 8Pi/9] + rWP}];

Dr36 = Simplify[{0, - r, Ry + IF[6, ¢ + 10Pi/9] + rWP}];

Dr37 = Simplify[{0, - r, Ry + IF[6, ¢ + 12Pi/9] + rWP}];

Dr38 = Simplify[{0, - r, Ry + IF[6, ¢ + 14Pi/9] + rWP}];

Dr39 = Simplify[{0, - r, Ry + IF[6, ¢ + 16Pi/9] + rWP}];

(*Position vectors of reaction forces between discharge/suction port of valve plate and solid area
located between each successive cylinder on barrel at points 69 to 77*)
DrBStoVP = {0, - r, LYtoVP};

(*Velocity & acceleration of piston wrt barrel expressed in D frame*)
SetAttributes[{iil}, Constant]

MatrixForm[DVpblt_, ii1_] = Simplify[Chop[{0, O, - ZD[t, ii1]}]]1;
MatrixForm[Dapb[t_, iil_] = Simplify[Chop[{0, 0, - ZDDIt, ii1]}]1];

AVpb1ADAMS = Import["C:\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica
models\\Kinematic data from adams at 30 degrees\\Velocity\\VelPistonToBarrel.csv"];

AVpb1ADAMSz = ListInterpolation[AVpb1ADAMSI[AII, 2]], {AVpb1ADAMS[[AII, 1]1}];
AVpb1ADAMSYy = ListInterpolation[AVpb1ADAMSI[AII, 3]], {AVpb1ADAMSI[AIL, 111}
AVpb1lADAMSMag = ListIinterpolation[AVpb1ADAMSI[AII, 4]], {AVpb1ADAMS[[AII, 1]11}];

(*Angular velocity of piston expressed in D frame*)
MatrixForm[Dwp = Dwos];

(*Position vector of CG of ball joint between piston and ConRod wrt center of yoke axis of rotation*)
MatrixForm[Drp[6_, ¢_, mm_] ={0, - r, IF[6, ¢ + 2Pi*(mm - 1)/9] + Ry}];

(*Position vector of CG of piston wrt center of ball joint between piston and ConRod*)
DrwP = {0, 0, rWP};

(*Position vector of reaction force from barrel to piston*)
DrBtoP = {0, 0, rWP};

(*Velocity of CG of piston*)
MatrixForm[DVpI[t_, jj_]1 = DVpb[t, jj] + Dwpx(Drp[é, ¢, jj] + DrWwP)];

AVp[t_, j_] = Simplify[Tos[6, ¢ + 2Pi*(j - 1)/9]".DVp[t, 1]

AVplADAMS = Import["C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPistonl.csv"];

AVp2ADAMS = Import["C:\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPiston2.csv"];
AVp3ADAMS = Import["C:\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPiston3.csv"];
AVp4ADAMS = Import["C:\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPiston4.csv"];
AVp5ADAMS = Import["C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPiston5.csv"];
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AVpBADAMS = Import["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPiston6.csv"];
AVp7ADAMS = Import["C:\\Users\\noor\\DocumentsWABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPiston7.csv"];
AVPSADAMS = Import["C:\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPiston8.csv"];
AVPIADAMS = Import["C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Velocity\\VelPiston9.csv"];

AVplADAMSX = ListInterpolation[AVpLADAMS[[AIl, 2]], {AVp1ADAMSI[[AI, 111};
AVplADAMSz = ListInterpolation[AVp1ADAMSJ[AII, 3]], {AVp1lADAMS[[AIl, 1]1}];
AVplADAMSYy = ListInterpolation[AVpLADAMS[[AIl, 4]], {AVp1ADAMSI[AI, 111};
AVplADAMSMag = ListInterpolation[AVpLADAMS[[AII, 5]], {AVp1ADAMSI[AII, 111};
AVp2ADAMSX = ListInterpolation[AVp2ADAMS[[AII, 2]], {AVp2ADAMSI[AI, 111};
AVp2ADAMSz = ListInterpolation[AVp2ADAMSI[AII, 3]], {AVp2ADAMS[[AIl, 1]1}];
AVp2ADAMSYy = Listinterpolation[AVp2ADAMSI[AII, 4]1, {AVp2ADAMSI[AII, 1]1}];
AVp3ADAMSX = ListInterpolation[AVp3ADAMSI[AII, 2]1, {AVp3ADAMSI[AII, 1]1}];
AVpP3ADAMSz = ListinterpolationfAVp3ADAMS[[AII, 3]], {AVp3ADAMSIAII, 111};
AVp3ADAMSYy = ListInterpolation[AVp3ADAMSI[AII, 4]], {AVp3ADAMSI[AII, 1]1};
AVp4ADAMSX = ListInterpolation[AVp4ADAMSI[AII, 2]1, {AVp4ADAMSI[AII, 1]1};
AVp4ADAMSz = Listinterpolation[AVp4ADAMS[[AII, 3]], {AVp4ADAMSIAII, 111};
AVp4ADAMSY = ListInterpolation[AVp4ADAMS[[AII, 4]], {AVp4ADAMS[[AII, 111};
AVp5ADAMSX = ListInterpolation[AVp5ADAMS[[AII, 2]], {AVp5ADAMS[[AII, 111}
AVp5ADAMSz = Listinterpolation AVp5SADAMSI[AI, 3]], {AVpSADAMSI[AI, 111};
AVp5ADAMSY = ListInterpolation[AVpSADAMS[[AII, 4]], {AVp5ADAMS[[AII, 111};

AVpP6ADAMSX = ListInterpolation[AVp6ADAMSI[AII, 2]1, {AVp6 ADAMSI[AII, 1]1}];
AVP6ADAMSz = ListinterpolationfAVp6ADAMS[[AII, 3]], {AVp6ADAMSIAII, 111};
AVpP6ADAMSYy = ListInterpolation[AVp6ADAMSI[AII, 4]], {AVp6 ADAMSI[AII, 1]1}];
AVp7ADAMSX = ListInterpolation[AVp7ADAMSI[AII, 2]1, {AVp7ADAMSI[AII, 1]1}];
AVp7ADAMSz = Listinterpolation[AVp7ADAMS[[AII, 3]], {AVp7ADAMSI[AII, 111};
AVp7ADAMSYy = ListInterpolation[AVp7ADAMSI[AII, 4]], {AVp7ADAMSI[AII, 1]1};
AVpBADAMSX = ListInterpolation[AVpSBADAMS[[AII, 2]], {AVp8ADAMS[[AII, 111};
AVp8ADAMSz = Listinterpolation AVpSADAMSI[AII, 3]], {AVpSBADAMSI[AI, 111};
AVp8ADAMSYy = ListInterpolation[AVpSBADAMS[[AII, 4]], {AVp8ADAMS[[AII, 111};
AVpPIADAMSX = ListInterpolation[AVpOADAMS[[AII, 2]], {AVpOADAMS[[AII, 111};
AVpPIADAMSz = ListinterpolationAVpIADAMSI[AIL, 3]], {AVpIADAMSI[AI, 111};
AVpPIADAMSY = ListInterpolation[AVpOADAMS[[AII, 4]], {AVpOADAMS[[AII, 111};

(*The Piston*)
(*Moment of inertia of piston*)
MatrixForm[DIp = {{lIp11, 0, 0}, {0, Ip11, 0}, {0, 0, Ip33}}I;

(*Angular velocity and Acceleration of piston*)

MatrixForm[Dap = Simplify[Dt[Dwos, t]]];

MatrixForm[Dap[6x_, ¢x_, kk_] = Chop[Dapb[t, kk] + Dwpx(Dwpx(Drp[6x, ¢X, kk] + DrWP)) +
Dapx(Drp[6x, ¢x, kk] + DrwP)]];

Aap[6_, ¢ , kk ]=Tos[6, ¢ + 2Pi*(kk - 1)/9]".Dap[6, ¢, kK];
AaplADAMS = Import["C:\\Users\\noor\\Documents\\AB H\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston1.csv"];

Aap2ADAMS = Import["C:\\Users\\noor\\Documents\\AB H\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston2.csv"];
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Aap3ADAMS = Import["C:\\Users\\noor\\DocumentsWABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston3.csv"];
Aap4ADAMS = Import["C:\\Users\\noor\\DocumentsWABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston4.csv"];
Aap5ADAMS = Import["C:\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston5.csv"];
Aap6ADAMS = Import["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston6.csv"];
Aap7ADAMS = Import["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston7.csv"];
Aap8ADAMS = Import["C:\\Users\\noor\\DocumentsWABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston8.csv"];
Aap9ADAMS = Import["C:\\Users\\noor\\DocumentsWABH\\Dissertation\\Mahematica models\\Kinematic
data from adams at 30 degrees\\Acceleration\\AccPiston9.csv"];

AaplADAMSX = ListInterpolation[AaplADAMS[[AII, 2]], {AaplADAMSI[AII, 111}];
AaplADAMSz = ListInterpolation[AaplADAMSI[AII, 3]], {AaplADAMSI[AII, 1]1}1;
AaplADAMSYy = ListInterpolation[AaplADAMS[[AII, 4]], {AaplADAMS[[AII, 111}];
AaplADAMSMag = ListInterpolation[AaplADAMS[[AII, 5]], {AaplADAMS[[AII, 111}];
Aap2ADAMSX = ListInterpolation[Aap2ADAMS[[AII, 2]], {Aap2ADAMS[[AII, 111}];
Aap2ADAMSz = ListInterpolation[Aap2ADAMSI[AII, 3]], {Aap2ADAMSI[AII, 111}
Aap2ADAMSYy = Listinterpolation[Aap2ADAMS[[AII, 4]], {Aap2ADAMS[[AII, 1]11}];
Aap2ADAMSMag = ListInterpolation[Aap2ADAMSI[AII, 5]], {Aap2ADAMSI[AI, 1]1};
Aap3ADAMSx = Listinterpolation[Aap3ADAMS[[AII, 2]], {Aap3ADAMS[[AII, 1]11}];
Aap3ADAMSz = Listinterpolation[Aap3ADAMSI[AII, 3]], {Aap3ADAMSI[AI, 1]1};
Aap3ADAMSYy = Listinterpolation[Aap3ADAMS[[AII, 4]], {Aap3ADAMS[[AII, 1]11}];
Aap3ADAMSMag = ListInterpolation[Aap3ADAMS[[AII, 5]], {Aap3ADAMS[[AII, 111}];
AapdADAMSX = ListInterpolation[AapdAADAMS[[AII, 2]], {AapAADAMS[[AII, 111}];
AapdADAMSz = Listinterpolation[Aap4ADAMSI[AIL, 3]], {Aap4ADAMSI[AIL, 1]11}1;
Aap4dADAMSYy = ListInterpolation[Aap4AADAMS[[AII, 4]], {AapAADAMS[[AII, 111}];
AapdADAMSMag = ListInterpolation[Aap4ADAMS[[AII, 5]], {AapAADAMS[[AII, 111}];
Aap5ADAMSX = ListInterpolation[AapSADAMS[[AII, 2]], {Aap5ADAMS[[AII, 111}];
Aap5ADAMSz = ListInterpolation[Aap5SADAMSI[AII, 3]], {Aap5ADAMSI[AIl, 1]11};
AapS5ADAMSYy = Listinterpolation[AapSADAMS[[AII, 4]], {Aap5ADAMS[[AII, 1]11}];
AapS5ADAMSMag = ListInterpolation[AapSADAMSI[AII, 5]], {AapSADAMSI[AII, 1]1};
Aap6 ADAMSX = Listinterpolation[Aap6 ADAMS[[AII, 2]], {Aap6 ADAMS[[AII, 1]11}];
Aap6ADAMSz = Listinterpolation[Aap6 ADAMSI[AII, 3]], {Aap6 ADAMSI[AI, 1]11};
Aap6 ADAMSY = Listinterpolation[Aap6 ADAMS[[AII, 4]], {Aap6 ADAMS[[AII, 1]11}];
Aap6ADAMSMag = ListInterpolation[Aap6 ADAMS[[AII, 5]], {Aap6 ADAMS[[AII, 111}];
Aap7ADAMSX = ListInterpolation[Aap7ADAMS[[AII, 2]], {Aap7ADAMS[[AII, 111}];
Aap7ADAMSz = Listinterpolation[Aap7ADAMSI[AII, 3]], {Aap7ADAMSI[AII, 111}
Aap7ADAMSYy = ListInterpolation[Aap7ADAMS[[AII, 4]], {Aap7ADAMS[[AII, 111}];
Aap7ADAMSMag = ListInterpolation[Aap7 ADAMS[[AII, 5]], {Aap7ADAMS[[AII, 111}];
Aap8ADAMSX = Listinterpolation[Aap8ADAMS[[AII, 2]], {Aap8ADAMS[[AII, 1]11}];
Aap8ADAMSz = Listinterpolation[Aap8ADAMS[[AII, 3]], {Aap8ADAMSI[AII, 111};
Aap8ADAMSYy = ListInterpolation[Aap8ADAMSI[AII, 4]], {Aap8ADAMSI[[AII, 111}];
Aap8ADAMSMag = Listinterpolation[Aap8ADAMSJ[AII, 5]], {Aap8ADAMS[[AII, 1]1}];
Aap9ADAMSX = ListInterpolation[Aap9ADAMSI[AII, 2]], {Aap9ADAMSI[[AIL, 111};
Aap9ADAMSz = Listinterpolation[Aap9ADAMS[[AII, 3]], {Aap9ADAMSI[AII, 111};
Aap9ADAMSYy = ListInterpolation[Aap9ADAMSI[AII, 4]], {Aap9ADAMSI[[AII, 1]1}];
Aap9ADAMSMag = ListInterpolation[Aap9ADAMSI[AIl, 5]1, {Aap9ADAMSI[[AII, 1]1};

(*Connecting Rod - Position vectors*)
(*position vector of point B wrt point A*)
MatrixForm[BrB = {0, - R, 0}];



226

(*Position vector of point E wrt point A*)
MatrixForm[ArE[6x_, ¢x_] = Simplify[Chop[{0, 0, Lis} + Tim1".{0, 0, Lim} + Tos[6x, #x]".{O0, - r, IF[6X,
oxI3HII;

(*Position vector of E wrt B*)
MatrixForm[ArEB[6x_, ¢x_] = Simplify[Chop[ArE[6X, ¢x] - T1[¢x]".BrB]II;

(*Velocity of point B*)
MatrixForm[AVB[¢x_] = Simplify[Chop[T1[¢X]"].(BwMSxBrB)]1I;

MatrixForm[AaB[¢x_] = Simplify[Chop[T1[¢X]".(BwMSx(BwMSxBrB) + BaMSxBrB)]1];

(*Connecting Rod - Velocity*)
(*Position vector of CG of ConRod wrt to its left end*)

ArCRG[Ox_, ¢px_] = T1[¢x]".BrB + rCR*ArEB[6X, ¢x]/LCR,;

(*Velocity of CG of ConRod*)
AVCR]tt_, ii_] = Module[{AVCR}, AVCR[t_, i_] = Dt[ArCRGJ6, ¢ + 2Pi (i - 1)/9], t, Constants—{r, R,
Lis, Ry, LCR, i}]; AVCRItt, ii]];

AVCR1ADAMS = Import["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica
models\\Kinematic data from adams at 30 degrees\\Velocity\\WVelConRod1.csv"];

AVCR1ADAMSX = ListInterpolation[AVCRIADAMS[[AII, 2]], {AVCR1IADAMS[[AIl, 1]]};
AVCR1ADAMS? = Listlnterpolation[AVCR1IADAMS[[AII, 3]], {AVCRLADAMS[[AIl, 1]1}];
AVCR1ADAMSy = ListInterpolation[AVCR1IADAMS[[AII, 4]], {AVCR1ADAMS[[AIl, 1]]};
AVCR1ADAMSMag = ListInterpolation[AVCRIADAMS[[AII, 5]], {AVCR1IADAMS[[AII, 1]]};

(*Acceleration of ConRod*)

AaCRJtt_, ii_] = Module[{AaCR}, AaCR[t_, i_] = Dt[ArCRGJ6, ¢ + 2Pi (i - 1)/9], {t, 2}, Constants—{r, R,
Lis, Ry, LCR, i}]; AaCR{tt, ii]];

AaCR1ADAMS = Import["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica
models\\Kinematic data from adams at 30 degrees\\Acceleration\\AccConRod1.csv"];

AaCR1ADAMSX = ListInterpolation[AaCR1IADAMSI[AII, 2]], {AaCR1IADAMS[[AII, 1]1}];
AaCR1ADAMSz = ListInterpolation[AaCR1IADAMS[[AII, 3]], {AaCRLADAMSI[[AII, 1]1}1;
AaCR1ADAMSYy = Listinterpolation[AaCR1IADAMSI[AII, 4]], {AaCRLADAMSI[AII, 111};
AaCR1ADAMSMag = Listinterpolation[AaCR1IADAMSI[AIL, 5]], {AaCR1ADAMSI[AII, 111};

(*Valve Plate - Yoke assembly*)
(*Attach coordinate system h1h2h3 to valve plate*)
MatrixForm[Tvp = Tx[d]];

(*Angular velocity (skew symmetric form) of valve plate*)
MatrixForm[wvp = Simplify[Tvp.Transpose[Dt[Tvp, t]1]1;

(*Angular velocity and angular acceleration (vector form) of valve plate*)
Simplify[MatrixForm[Hwvp = {wvp[[3, 2]], wvp[[1, 311, wvp[[2, 111}1];
MatrixForm[Havp = Dt[Hwvp, t]];

(*Position vector of CG of valve plate*)
MatrixForm[Hrvp = {rvpx, O, rvpz}];

(*Velocity of CG of valve plate*)
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MatrixForm[HVvp = HwvpxHrvp];

(*Acceleration of CG of valve plate*)
MatrixForm[Havp = Hwvpx(HwvpxHrvp) + HavpxHrvp];

(*Moment of inertia of valve plate*)
MatrixForm[HIvp = {{lvp1l, lvp12, Ivp13}, {Ivpl2, Ivp22, lvp23}, {Ivpl3, Ivp23, Ivp33}};

(*Displacement of ram (derivation based on displacement mechanism.nb)*)
x = L3(Cos[y5 + €] - Cos[y5 + € + 0]) + Sqrt[Lac? - (L4 - L3 Sin[y5 + ¢ + 6])?] - Sqrt[Lac’ - (L4 - L3 Sin[y5
+&])’];

(*Velocity of ram*)

SetAttributes[{L3, &, Lac, y5, L4}, Constant]

xD : = Simplify [Dt[x, t]];

AVram = Simplify[{0, - Sin[e], - Cos[e]}*xD] ;

AaRAM = Dt[AVram, t] ;

CD:=-(L4-L3Sin[y5 + ¢+ 0]) - Sqrt[Lac? - (L4 - L3 Sin[y5 + & + 6])?]Tan[y5 + ¢ + 6];
A®AC = Simplify[(xD/CD)*{ - 1, 0, 0}];

(*Angular acceleration of actuating link*)
2aAC = DI[AwWAC, t];

(*Distance from CG of actuating link to instant center of rotation*)
v8 = - ArcSin[(L4 - L3 Sin[y5 + ¢ + 6] )/Lac];

CG := Sqrt[DG”2 + CD”2 - 2*DG*CD*Sin[y8]];

v4 = ArcSin[DG*Cos[y8]/CG];

(*Velocity of CG of actuating link*)

AVAC = Simplify[AoAC*CG]x{0, - Sin[e - y4], - Cos[e - y4]};
SetAttributes[{L3, ¢, Lac, y5, DG, EH}, Constant]

AaAC = Dt[AVAC, t];

(*Barrel - Output Shaft Assembly*)

LC1[66 ] : = Module[{LC1, CG, GF}, yo = ArcSin[(r - R)/LCR]; y1 : = ArcTan[r/EH]; EF : = Sqrt[r*2 +
EHN2];

GF[Ox_] : = 2*EF*Sin[6x/2]; CG[6x_] : = (DF - LCR Cos[ ¢o[#x]] + LCR Cos[yo]) Cos[6x] - GF[6X]
Sin[yl - 6x/2] - (-r + R + LCR Sin[ ¢o[6x]]) Sin[6x]; LC1[6x_] : = CG[#X] - LC2 - Lpl; LC1[64]]

Vmin[66_] : = Module[{Vmin},
Vmin[#x_] : = Chop[LC1[6x]*Ac + Vfixed]; Vmin[66]]

Lmin[66_] : = Module[{Lmin}, Dce : = Sqrt[4*Ace/Pi]; Dc : = Sqrt[4*Ac/Pi]; Le : = LC2*Dce/(Dc - Dce);
Lmin[6x_] : = ((2*Ac/9)*(LC2 + Le)"2 - (2*Ace/9)*Le"2 + Ac*LC1[Ax]*(LC1[#x]/2 + LC2 + Le) -
Vmin[6x]*Le)/Vmin[6x]; Lmin[66]]

Lv[66_, ¢¢ ] : = Module[{LVv}, Lv[Ox_, ¢x_]: = (Vmin[Ox]*Lmin[6X] + Ac*Z[0X, ¢x]*(Z[0X, ¢X]/2 +
LC1[6x] + LC2))/(Vmin[6x] + Ac*Z[6x, ¢x]); LV[66, p¢]]

VOIL[06_, ¢¢ ] : = Module[{VOIL}, VOIL[Ox_, #x_] : = Vmin[6x] + Ac*Z[0x, ¢x]; VOIL[66, ¢¢]]
VOILDItt_, ii_] = Module[{VOILD}, VOILD[t_, i_] = Dt[VOIL[6, ¢ + 2*Pi*(i - 1)/9], t, Constants—{i}];
VOILD[tt, ii]];

(*Oil Control Volume*)
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(*External forces acting on oil control volume¥*)
(*1. Force from piston to control volume at points 40 to 48 denoted as —DFOILtoPi with respective position
vectors®)

DrOILtoP1 = Drp[#6, ¢, 1] + {0, 0, Lp1};
DrOILtoP2 = Drp[#, ¢, 2] + {0, 0, Lp1};
DrOILtoP3 = Drp[6, ¢, 3] + {0, 0, Lp1};
DrOILtoP4 = Drp[6, ¢, 4] + {0, 0, Lp1};
DrOILtoP5 = Drp[#, ¢, 5] + {0, 0, Lp1};
DrOILtoP6 = Drp[6, ¢, 6] + {0, 0, Lp1};
DrOILtoP7 = Drp[6, ¢, 7] + {0, O, Lp1};
DrOILtoP8 = Drp[#, ¢, 8] + {0, 0, Lp1};
DrOILtoP9 = Drp[#6, ¢, 9] + {0, 0, Lp1};

(*2. Weight of oil column*)

MatrixForm[AWOIL1 = {0, p*g*VOIL[6, ¢], 0}];
MatrixForm[AWOIL2 = {0, p g VOIL[#, ¢ + 2*Pi/9], 0}];
MatrixForm[AWOIL3 = {0, p g VOIL[#, ¢ + 4*Pi/9], 0}];
MatrixForm[AWOIL4 = {0, p g VOIL[#, ¢ + 6*Pi/9], 0}];
MatrixForm[AWOIL5 = {0, p g VOIL[#, ¢ + 8*Pi/9], 0}];
MatrixForm[AWOIL6 = {0, p g VOIL[#, ¢ + 10*Pi/9], 0}];
MatrixForm[AWOIL7 = {0, p g VOIL[#6, ¢ + 12*Pi/9], 0}];
MatrixForm[AWOIL8 = {0, p g VOIL[6, ¢ + 14*Pi/9], 0}];
MatrixForm[AWOIL9 = {0, p g VOIL[6, ¢ + 16*Pi/9], 0}];

(*3.Reaction forces from barrel to control volumes at points 49 to 57 denoted as —-DFOILt0Bi.*)
(*Position vectors of forces from oil control volume in the cylinder at points 49 to 57%*)
DrOILtoB[6x_, ¢x_]: ={0, 0, Z[6X, ¢x] + LCL[OX] + LC2 - Lv[6X, ¢X] + Lpl};
DrOILtoB1 : = Dr31 + DrOILtoBJ#, ¢] - DrWP;

DrOILtoB2 : = Dr32 + DrOILtoB[#, ¢ + 2*Pi/9] - DrWP;

DrOILtoB3 : = Dr33 + DrOILtoB[#, ¢ + 4*Pi/9] - DrWP;

DrOILtoB4 : = Dr34 + DrOILtoB[#, ¢ + 6*Pi/9] - DrWP;

DrOILtoB5 : = Dr35 + DrOILtoB[#, ¢ + 8*Pi/9] - DrWP;

DrOILtoB6 : = Dr36 + DrOILtoB[#, ¢ + 10*Pi/9] - DrWP;

DrOILtoB7 : = Dr37 + DrOILtoB[#, ¢ + 12*Pi/9] - DrWP;

DrOILtoB8 : = Dr38 + DrOILtoB[#, ¢ + 14*Pi/9] - DrWP;

DrOILtoB9 : = Dr39 + DrOILtoB[#, ¢ + 16*Pi/9] - DrWP;

(*4. Force due to pressure on discharge or suction orifice at points 80 to 88 denoted as - DFOILtoVPi.
The corresponding position vector is DrOILtoVP*)

(*Linear momentum of the control volume*)
DLMcvl = p*DVpblt, 1]*VOILDIt, 1];
DLMcv2 = p*DVpblt, 2]*VOILDIt, 2];
DLMcv3 = p*DVpb[t, 3]*VOILDIt, 3];
DLMcv4 = p*DVpblt, 4]*VOILDIt, 4];
DLMcv5 = p*DVpb[t, 5]*VOILDIt, 5];
DLMcv6 = p*DVpb[t, 6]*VOILDIt, 6];
DLMcv7 = p*DVpb[t, 7]*VOILDIt, 7];
DLMcv8 = p*DVpb[t, 8]*VOILDIt, 8];
DLMcv9 = p*DVpb[t, 9]*VOILDIt, 9];

(*Net rate of linear momentum through the control surface of oil control volume*)

DLMcsl = p*Ac*DVpblt, 1]*(DVpbl[t, 1].{0, 0, - 1} + (Ac/ArFR[¢])*(DVpbl[t, 1].{0, 0, 1}));
DLMcs2 = p*Ac*DVpblt, 2]*(DVpb[t, 2].{0, 0, - 1} + (Ac/ArFR[¢ + 2*Pi/9])*(DVpblt, 2].{0, 0, 1}));
DLMcs3 = p*Ac*DVpblt, 3]1*(DVpb[t, 3].{0, 0, - 1} + (Ac/ArFR[¢ + 4*Pi/9])*(DVpblt, 3].{0, 0, 1}));
DLMcs4 = p*Ac*DVpblt, 4]*(DVpb[t, 4].{0, 0, - 1} + (Ac/ArFR[¢ + 6*Pi/9])*(DVpblt, 4]1.{0, 0, 1}));
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DLMcs5 = p*Ac*DVpbl[t, 5]*(DVpblt, 5].{0, 0, - 1} + (Ac/ArFR[4 + 8*Pi/9])*(DVpblt, 5].{0, 0, 1}));

DLMcs6 = p*Ac*DVpbl[t, 6]*(DVpblt, 6].{0, 0, - 1} + (Ac/ArER[¢ + 10*Pi/9])*(DVpblt, 6].{0, 0, 1}));
DLMcs7 = p*Ac*DVpb[t, 7]*(DVpblt, 7].{0, 0, - 1} + (Ac/ArER[¢ + 12*Pi/9])*(DVpbl[t, 7].{0, 0, 1}));
DLMcs8 = p*Ac*DVpbl[t, 8]*(DVpblt, 8].{0, 0, - 1} + (Ac/ArER[¢ + 14*Pi/9])*(DVpblt, 8].{0, 0, 1}));
DLMcs9 = p*Ac*DVpbl[t, 9]*(DVpb[t, 9].{0, 0, - 1} + (AC/ArFR[¢ + 16*Pi/9])*(DVpb[t, 9].{0, 0, 1})):

DrOILtoVP = {0, - r, LYtoVP};

Filel = OpenRead["POIL.nb"];
PD = Read[Filel];

PS = Read[Filel];
POIL1[t_] = Read[Filel];
POIL2[t_] = Read[Filel];
POIL3[t_] = Read[File1];
POILA[t_] = Read[File1];
POIL5[t_] = Read[Filel];
POIL6[t_] = Read[Filel];
POIL7[t_] = Read[File1];
POIL8[t_] = Read[Filel];
POIL9[t_] = Read[Filel];
Pb[¢_] = Read[Filel];
Close[Filel];

(*Barrel - Output Shaft Assembly*)
PD1 = PD[[1]];
PS1 = PS[[1]];

(*Point of application of hydraulic forces*)
RoutD = (5 PD1 (R1% + 2 R1 R2 + 3R2%) + (R1 - R2)? (3 R1? + 4 R1 R2 + 3 R2?) p BwMS[[3]]%)/(5 (2 PD1
(R1 +2R2) + (R1- R2)? (R1 + R2) p BwMSI[[3]]);

RoutS = (5 PS1 (R1% + 2 R1 R2 + 3R2%) + (R1 - R2)? (3 R1? + 4 R1 R2 + 3 R2?) p BwMS[[3]]%)/(5 (2 PS1
(R1+2R2) + (R1-R2)* (R1 + R2) p BwuMS[[3]]1));

RinD = (30 PD1 R3 (2 R3 + R4) - 2 (R3 - R4)? (4 R3? + 7 R3 R4 + 4 R4?) p BwMS[[3]]°)/(90 PD1 R3 - 15
(R3 - R4)? (R3 + R4) p BwMS[[3]]%);

RinS = (30 PS1 R3 (2 R3 + R4) - 2 (R3 - R4)? (4 R3? + 7 R3 R4 + 4 R4?) p BwMSJ[[3]]%)/(90 PS1 R3 - 15
(R3 - R4)? (R3 + R4) p BwMS[[3]]%);

(*Position vectors of hydrodynamic forces*)
HrIND = { - RinD, 0, LYtoVP};

HrINS = {RinS, 0, LYtoVP};

HrOUTD ={ - RoutD, 0, LYtoVP};

HrOUTS = {RoutS, 0, LYtoVP},

(*Main Shaft - Frictional Moment at Ball bearing at point (1)*)
nms = Simplify[BwMS[[3]]];

(*Radial load component of bearing reaction*)

Frl = (AFB1toMSx"2 + AFB1toMSy”2)"0.5;

(*Total frictional moment of the bearing (N.m)*)

AMB1toMSz = Friction[nms, 1, d11, D1, 40, Fr1, 0, Col] ;

(*Main Shaft - Frictional Moment at Thrust bearing, point (2)*)
(*Radial load component of bearing reaction*)
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Fr2 = (AFB2toMSx"2 + AFB2toMSy”~2)"0.5;

(*Axial load component of bearing reaction*)

Fa2 = AFB2toMSz;

AMB2toMSz = Friction[nms, 2, d2, D2, 40, Fr2, Fa2, Co2] ;
(*MBz = total frictional moment of bearing (N.m)*)

(*Main Shaft - Forces*)

ATin = {0, 0, ATinz}; (*input torque*)

AFB1toMS = {AFB1toMSx, AFB1toMSy, 0}; (*Ball bearing reaction*)

AMB1toMS = Simplify[ - AMB1toMSz*Sign[BwMS]]; (*Ball bearing Frictional moment*)

AFB2toMS = {AFB2toMSx, AFB2toMSy, AFB2toMSz}; (*Thrust bearing reaction*)
AMB2toMS = Simplify[ - AMB2toMSz*Sign[BwMS]]; (*Thrust bearing Frictional moment*)

AWms = {0, g*MMS, 0};

(*First Intermediate shaft - Forces*)
(*1. Reaction forces and moments from 1st cross at points (23) and (24)*)
(*2. Reaction force and torque from 2nd intermediate shaft at point (25)*)

MatrixForm[CFIM2toIM125 = {0, 0, FIM2toIM125z}] ; (*reaction from 2nd intermediate shaft to 1st
intermediate at (25)*)

MatrixForm[CMIM2toIM125 = {0, 0, - MIM2toIM125z}] ; (*Reaction torque from 2nd intermediate shaft
to 1st intermediate shaft*)

MatrixForm[AWim1 = {0, g Mim1, 0}];

(*First Cross - Forces*)

(*1. Reaction forces from main shaft at points (3) and (4)*)
FFMStoC13 = {FFMStoC13x, 0, FFMStoC13z};
FFMStoC14 = - FFMStoC13;

(*Frictional moments from main shaft at right and left pins of 1st cross at points (3) and (4)*)
MMStoC13 = uC1*rCP1*Sqrt[FFMStoC13x"2 + FFMStoC13z/2];

MMStoC14 = MMStoC13;

FMMStoC13 = Simplify[MMStoC13*{0, - Sign[Fwcl[[2]]], 0}];

FMMStoC14 = Simplify[MMStoC14*{0, - Sign[Fwcl[[2]]], 0}];

(*Reaction forces from 1st intermediate shaft at points (23) and (24)*)
FFIM1toC123 = {0, FIM1toC123y, FIM1toC123z};
FFIM1toC124 = - FFIM1toC123;

(*Frictional moments from 1st intermediate shaft at points (23) and (24)*)
MIM1toC123 : = uC1*rCP2*Sqrt[FIM1toC123y"2 + FIM1toC123z"2];
MIM1toC124 : = uC1*rCP3*Sqrt[FIM1toC124y"2 + FIM1toC124z"2];
FMIM1toC123 = - MIM1toC123*Sign[Fwcl[[1]]]*{1, 0, 0};

FMIM1toC124 = - MIM1toC124*Sign[Fwcl[[1]]]*{1, 0, 0};

AWcl = {0, g Mc1, 0}; (*Weight of 1st cross*)

(*Second Intermediate Shaft - Forces*)
(*1. Reaction forces and torques from 1st intermediate shaft at point (25)*)
(*2. Reaction forces and moments from 2nd cross at points (27) and (28)*)



231

(* - CFIM2tolM125%)

(* - CMIM2toIM125%)

(* - IFIM2toC227*)

(* - IFIM2t0oC228*)

(* - IMIM2toC227%)

(* - IMIM2toC228*)
AWiIm2 = {0, g*Mim2, 0},

(*Second Cross - Forces*)

(*1. Reaction forces and moments from 2nd intermediate shaft at the pins (points 27 and 28)*)
(*2. Reaction forces and moments from output shaft at the pins (points 29 and 30)*)

(*3. Weight of 2nd cross*)

MatrixForm[IFIM2toC227 = {0, FIM2toC227y, FIM2toC227z}];
MIM2toC227 = uC1*rCP2*Sqrt[FIM2toC227y"2 + FIM2toC2272"2];
MatrixForm[IMIM2toC227 = MIM2toC227*{ - Sign[lwc2[[1]]], O, 0}1;
MatrixForm[IFIM2toC228 = - IFIM2toC227];

MIM2toC228 = uC1*rCP2*Sqrt[FIM2toC228y"2 + FIM2toC2282"2];
MatrixForm[IMIM2toC228 = MIM2toC228*{ - Sign[lwc2[[1]]], O, 0}1;
MatrixForm[IFOStoC229 = {FOStoC229x, 0, FOStoC229z}];
MOStoC229 = uC1*rCP1*Sqrt[FOStoC229x"2 + FOStoC229z2];
MatrixForm[IMOStoC229 = MOStoC229*{0, - Sign[lwc2[[2]]], O}];
MatrixForm[IFOStoC230 = - IFOStoC229];

MOStoC230 = uC1*rCP1*Sqrt[FOStoC230x"2 + FOStoC230z2];
MatrixForm[IMOStoC230 = MOStoC230*{0, - Sign[lwc2[[2]]], O}];
MatrixForm[AWC2 = {0, Mc2*g, 0}];

(*Barrel - Output Shaft Assembly - Forces*)

(*1.Reaction forces from 2nd cross at points 29 and 30 denoted as - IFOStoC229 and - IFOStoC230 with
respective position vectors: 1r29 and 1r30*)

(*2.Frictional moment from 2nd cross at points 29 and 30 denoted as - IMOStoC229 and - IMOStoC230%)
(*3.Reaction forces from piston and oil film between barrel and piston at points 31 to 39 denoted by -
DFBtoPi, i =1, 2, ...9%)

(*4.Weight of output shaft - barrel assembly*)

AWos = {0, Mos g, 0};

(*5.Force from oil column in cylinder at points 49 to 57 denoted as DFOILtoB, i*)

(*6.Frictional moment due to fluid film between barrel and valve plate*)

(*7.Hydrodynamic forces HFVPtoBoutD, HFVPtoBinD, HFVPtoBinS, HFVPtoBoutS due to oil film
between VP & barrel at points 59, 60, 61, and 62*)

(*8.Frictional moment form journal bearing at point 58*)

(*9.Reaction force from thrust ball bearing at end of barrel at point 65 denoted by DFB4toB*)
(*10.Frictional moment from thrust ball bearing at end of barrel at point 65 denoted by DMB4toB¥*)
(*11.Reaction forces between discharge/suction port of VP & solid area located between each successive
cylinder on barrel at points 69 to 77. These forces denoted as - DFBStoVP, ii =1, 2, ...9%)

(*Barrel - Output Shaft Assembly - Forces*)

(*Force from needle bearing (point 58) to barrel*)
DFB3FtoB = {FB3FtoBx, FB3FtoBy, 0};
DFB3StoB = {FB3StoBx, FB3StoBy, 0};

(*Position vector of journal bearing reaction*)
DrB3FtoB = {0, 0, rB3FtoBz};

DrB3StoB = {0, 0, rB3StoBz};
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FB3FtoBr = Sqrt[FB3FtoBx"2 + FB3FtoBy"2];
FB3StoBr = Sqrt[FB3StoBx"2 + FB3StoBy"2];

MB3FtoBz = Friction[nms, 3, d3, D3, 40, FB3FtoBr, 0, 1];
MB3StoBz = Friction[nms, 3, d3, D3, 40, FB3StoBr, 0, 1];

(*Frictional moment component at end of barrel at point 58*)
DMB3FtoB = MB3FtoBz*{0, 0, - Sign[Dwos[[3]111};
DMB3StoB = MB3StoBz*{0, 0, - Sign[Dwos[[3]111};

(*Frictional moment at thrust bearing at end of barrel (point 65)*)

Fa4 = FB4toBz;

(*Value of frictional moment of thrust ball bearing*)

MBA4toBz = Friction[nms, 4, d4, D4, 40, 0, FB4toBz, Co4];

(*Frictional moment opposes direction of angular velocity component along d3 direction of barrel*)
DMB4toB = - Sign[Dwos[[3]]]*MB4toBz {0, 0, 1};

(*Hydrodynamic force normal to interface between valve plate and barrel*)
MatrixForm[HFVPtoBoutD = {0, 0, - (£*(R1 - R2)/12)*2*PD1*(R1 + 2 R2) + p*BwMS[[3]]"2(R1 +
R2)*(R1 - R2)"2}];

MatrixForm[HFVPtoBoutS = - ({*(R1 - R2)/12)
{0, 0, 2*PS1*(R1 + 2 R2) + p*BwMSJ[[3]]*2(R1 + R2)*(R1 - R2)"2}];

MatrixForm[HFVPtoBinD = - ({*(R3 - R4)/12)
{0, 0, 6*PD1*R3 - p*BwMS[[3]]"2(R3 + R4)*(R3 - R4)"2}];

MatrixForm[HFVPtoBIinS = - ({*(R3 - R4)/12)
{0, 0, 6*PS1*R3 - p*BwMS[[3]]*2(R3 + R4)*(R3 - R4)"2}];

Export["'C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\HFVPtoBinS.csv", Table[{t, HFVPtoBinS[[3]]}, {t, O, 1, 0.0001}]];
Export["'C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\HFVPtoBinD.csv", Table[{t, HFVPtoBinD[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
PistonsW\HFVPtoBoutS.csv", Table[{t, HFVPtoBoutS[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
PistonsW\HFVPtoBoutD.csv", Table[{t, HFVVPtoBoutD[[3]]}, {t, O, 1, 0.0001}]];

(*Shear moment at outer land for both discharge and suction ports*)

shearout = 1/4 R1 (R1 + R2) h £ (- PD1 - PS1 + 2 (R1 - R2) R2 p BwMS[[3]]%);
(*Shear moment at inner land for both discharge and suction ports*)

shearin = 1/12 (R3 + R4) h £ (3 PD1 R3 + 3 PS1 R3 + 2 (- R3% + R4%) p BwMSI[[3]]):
(*Total moment due to fluid film between barrel and valve plate*)
MatrixForm[DMVPtoB = - {0, 0, shearout + shearin}*Sign[Dwos[[3]]11];

Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DMVPtoB.csv", Table[{t, DMVPtoB[[3]]}, {t, O, 1, 0.0001}]];

(*The Piston - Forces*)

(*1. Reaction forces from ConRod to piston denoted by: - AFPtoCRi, i = 1 to 9%)

(*2. Frictional moment from ConRod to piston denoted by - AMPtoCRi at points (14) to (22)*)
(*3. Pressure force from hydraulic oil*)

MatrixForm[DFOILtoP1 = {0, 0, - POIL1[t][[1]]*Ap}];
MatrixForm[DFOILtoP2 = {0, 0, - POIL2[t][[1]]*Ap}];



MatrixForm[DFOILtoP3 = {0, 0, - POIL3[t][[1]]*Ap}];
MatrixForm[DFOILtoP4 = {0, 0, - POILA[t][[1]1*Ap}];
MatrixForm[DFOILtoP5 = {0, 0, - POILS[t][[1]1*Ap}];
MatrixForm[DFOILtoP6 = {0, 0, - POILG[t][[1]1*Ap}];
MatrixForm[DFOILtoP7 = {0, 0, - POIL7[t][[1]]1*Ap}];
MatrixForm[DFOILtoP8 = {0, 0, - POIL8[t][[1]1*Ap}];
MatrixForm[DFOILtoP9 = {0, 0, - POILI[t][[1]]1*Ap}];

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP1.csv", Table[{t, - POIL1[t][[1]]*Ap}, {t, O, 1, 0.0001}];
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP2.csv", Table[{t, - POIL2[t][[1]]*Ap}, {t, 0, 1, 0.0001}];
Export["C:\\Users\\noor\\Documents\\VABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP3.csv", Table[{t, - POIL3[t][[1]]*Ap}, {t, 0, 1, 0.0001}1];
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP4.csv", Table[{t, - POILA[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP5.csv", Table[{t, - POIL5[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP6.csv", Table[{t, - POIL6[t][[1]]*Ap}, {t, 0, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP7.csv", Table[{t, - POIL7[t][[1]]*Ap}, {t, 0, 1, 0.0001}];
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP8.csv", Table[{t, - POIL8[t][[1]]*Ap}, {t, 0, 1, 0.0001}];
Export["'C:\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoP9.csv", Table[{t, - POILO[t][[1]]*Ap}, {t, 0, 1, 0.0001}];

(*Frictional force between barrel and piston*)
(*Viscous force on one piston*)

FBtoP1z = - Pi*y[T]*rp*DVpbl[t, 1][[3]]*Lp/Cp;
FBtoP2z = - Pi*y[T]*rp*DVpbl[t, 2][[3]]*Lp/Cp;
FBtoP3z = - Pi*y[T]*rp*DVpbl[t, 3][[3]]*Lp/Cp;
FBtoP4z = - Pi*y[T]*rp*DVpbl[t, 4][[3]]*Lp/Cp;
FBtoP5z = - Pi*y[T]*rp*DVpblt, 5][[3]]*Lp/Cp;
FBtoP6z = - Pi*y[T]*rp*DVpblt, 6][[3]]*Lp/Cp;
FBtoP7z = - Pi*y[T]*rp*DVpb[t, 7][[3]]*Lp/Cp;
FBtoP8z = - Pi*y[T]*rp*DVpblt, 8][[3]]*Lp/Cp;
FBtoP9z = - Pi*y[T]*rp*DVpblt, 9][[3]]*Lp/Cp;

(*3. Reaction force from barrel to piston*)

MatrixForm[DFBtoP1 = {FBtoP1x, FBtoPly, FBtoP1z}];
MatrixForm[DFBtoP2 = {FBtoP2x, FBtoP2y, FBtoP2z}];
MatrixForm[DFBtoP3 = {FBtoP3x, FBtoP3y, FBtoP3z}];
MatrixForm[DFBtoP4 = {FBtoP4x, FBtoP4y, FBtoP4z}];
MatrixForm[DFBtoP5 = {FBtoP5x, FBtoP5y, FBtoP5z}];
MatrixForm[DFBtoP6 = {FBtoP6x, FBtoP6y, FBtoP6z}];
MatrixForm[DFBtoP7 = {FBtoP7x, FBtoP7y, FBtoP7z}];
MatrixForm[DFBtoP8 = {FBtoP8x, FBtoP8y, FBtoP8z}];
MatrixForm[DFBtoP9 = {FBtoP9x, FBtoP9y, FBtoP9z}];

(*4. Weight of piston*)
AWp = {0, g*Mp, 0};

(*Connecting Rod - Forces*)
(*1. Weight of ConRod*)
AWCR = {0, MCR*g, 0};
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(*2. Reaction force from cup at main shaft side at points (5) to (13)*)
AFMStoCR1 = {AFMStoCR1x, AFMStoCR1y, AFMStoCR1z};
AFMStoCR2 = {AFMStoCR2x, AFMStoCR2y, AFMStoCR2z};
AFMStoCR3 = {AFMStoCR3x, AFMStoCR3y, AFMStoCR3z};
AFMStoCR4 = {AFMStoCR4x, AFMStoCR4y, AFMStoCR4z};
AFMStoCR5 = {AFMStoCR5x, AFMStoCR5y, AFMStoCR5z};
AFMStoCR6 = {AFMStoCR6x, AFMStoCR6y, AFMStoCR6z};
AFMStoCR7 = {AFMStoCR7x, AFMStoCR7y, AFMStoCR7z};
AFMStoCR8 = {AFMStoCR8x, AFMStoCR8y, AFMStoCR8z};
AFMStoCR9 = {AFMStoCR9x, AFMStoCR9y, AFMStoCR9z};

(*3. Reaction from piston to ConRod at points (14) to (22)*)
AFPtoCR1 = {AFPtoCR1x, AFPtoCR1y, AFPtoCR1z};
AFPtoCR2 = {AFPtoCR2x, AFPtoCR2y, AFPtoCR2z};
AFPtoCR3 = {AFPtoCR3x, AFPtoCR3y, AFPtoCR3z};
AFPtoCR4 = {AFPtoCR4x, AFPtoCR4y, AFPtoCR4z};
AFPtoCR5 = {AFPtoCR5x, AFPtoCR5y, AFPtoCR5z};
AFPtoCR6 = {AFPtoCR6x, AFPtoCR6Yy, AFPtoCR62};
AFPtoCR7 = {AFPtoCR7x, AFPtoCR7y, AFPtoCR7z};
AFPtoCR8 = {AFPtoCR8x, AFPtoCR8y, AFPtoCR8z};
AFPtoCR9 = {AFPtoCR9x, AFPtoCR9y, AFPtoCR9z};

(*Valve Plate - Yoke - Forces*)

(*1. Reaction forces at axis of rotation of yoke at points 67 and 68 and their respective position
vectors*)

AFCtoY67 = {FCtoY67x, FCtoY67y, FCtoY67z};

ArCtoY67 = { - rCtoY67x, 0, 0};

AFCtoY68 = {0, FCtoY68y, FCtoY68z};

ArCtoY68 = - ArCtoY67,

(*Value of frictional moments at axis of yoke at points 67 and 68*)
(*MCtoY67x = uY*rY*Sqrt[FCtoY67y"2 + FCtoY672/2]
MCtoY68x = Y *rY*Sqrt[FCtoY68y"2 + FCtoY682/2]*)

(*2. Friction moment at axis of yoke at points 67 and 68*)
(*AMCtoY67 = MCtoY67x*{ - Sign[Hwvp[[1]]], O, 0}
AMCtoY68 = MCtoY68x*{ - Sign[Hwvp[[1]]], O, 0}*)
(*Valve Plate - Yoke - Forces*)

(*3.Reaction force from actuating link at point 66 and its respective position vector*)
AFACtoY66 = {0, FACtoY66P*Sin[e - 8] + FACtoY66N*Cos[e - 8], FACtoY66P*Cos[e - y8] -
FACtoY66N*Sin[e - y8]};

(*HrACtoY66 = {rACtoY66x, rACtoY66y, rACtoY66z}; *)

(*Value of frictional moment component at common axis of yoke and actuating link at points 66*)
(*MACtoY66x = uACtoY*rAC*Sqrt[AFACtoY66[[2]]*2 + AFACtoY66[[3]]"2]*)

(*4. Frictional moment vector from actuating link at point 66*)

(*AMACtoY66 = MACtoY66x*{ - Sign[AwAC[[1]]], 0, 0}*)

(*5. Reaction force from needle bearing at end of barrel at point 58 denoted as - DFB3FtoB and -
DFB3StoB*)

(*6. Frictional moment form needle bearings at point 58 denoted as - DMB3FtoB and - DMB3StoB¥*)

(*7. Weight of valve plate - yoke assembly*)
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AWvp = {0, Mvp*g, 0};

(*8.Reaction force from thrust ball bearing at end of barrel at point 65, - DFB4toB*)
DFB4toB = {0, 0, FB4toBz};

(*9.Frictional moment at thrust ball bearing (point 65) denoted by -DMB4toB*)

(*10. Hydrodynamic forces : - HFVPtoBoutD, - HFVPtoBinD, - HFVPtoBinS, and - HFVPtoBoutS
due to oil film between valve plate and barrel at points 59, 60, 61, and 62 respectively.*)

(*11.Frictional moment due to fluid film between barrel and valve plate denoted as - DMVPtoB*)

(*12.Reaction forces between discharge/suction port of valve plate and solid area located between each
successive cylinder at points 69 to 77 respectively*)
DFBStoVP1 = {0, 0, Pb[#][[L]]*AsFR[#]};

DFBStoVP2 = {0, 0, Pb[¢ + 2*Pi/9][[1]]*AsFR[¢ + 2*Pi/9]};
DFBStoVP3 = {0, 0, Pb[¢ + 4*Pi/9][[1]]*AsFR[¢ + 4*Pi/9]};
DFBStoVP4 = {0, 0, Pb[¢ + 6*Pi/9][[1]]*AsFR[¢ + 6*Pi/9]};
DFBStoVP5 = {0, 0, Pb[¢ + 8*Pi/9][[1]]*AsFR[¢ + 8*Pi/9]};
DFBStoVP6 = {0, 0, Pb[¢ + 10*Pi/9][[1]]*AsFR[¢ + 10*Pi/9]};
DFBStoVP7 = {0, 0, Pb[¢ + 12*Pi/9][[1]]*AsFR[¢ + 12*Pi/9]};
DFBStoVP8 = {0, 0, Pb[¢ + 14*Pi/9][[1]]*AsFR[¢ + 14*Pi/9]};
DFBStoVP9 = {0, 0, Pb[¢ + 16*Pi/9][[1]]*AsFR[¢ + 16*Pi/9]};

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP1.csv", Table[{t, DFBStoVP1[[3]]}, {t, O, 1, 0.0001}1];
Export["'C:\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP2.csv", Table[{t, DFBStoVP2[[3]]}, {t, 0, 1, 0.0001}]];
Export["'C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP3.csv", Table[{t, DFBStoVP3[[3]]}, {t, 0, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP4.csv", Table[{t, DFBStoVP4[[3]]}, {t, 0, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP5.csv", Table[{t, DFBStoVP5[[3]]}, {t, O, 1, 0.0001}1];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP6.csv", Table[{t, DFBStoVP6[[3]]}, {t, O, 1, 0.0001}1];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP7.csv", Table[{t, DFBStoVP7[[3]]}, {t, 0, 1, 0.0001}]];
Export["'C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP8.csv", Table[{t, DFBStoVP8[[3]]}, {t, 0, 1, 0.0001}]];
Export["'C:\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBStoVP9.csv", Table[{t, DFBStoVPI[[3]]}, {t, 0, 1, 0.0001}]];

(*13. Reaction force from fluid inside hose between LPA and suction exit at yoke axis of rotation at
point 78%)

AFLPAtoY78 = A78*PS1 {0, - Sin[6L], Cos[6L]};

ArLPAtoY78 = { - rLPAtoY78x, 0, 0};

(*14. Reaction force from fluid inside hose between HPA and discharge exit at yoke axis of rotation at
point 79%)

AFHPAtoY79 = PD1*A78*{0, - Sin[6L], Cos[6L]};

ArHPAtoY79 = - ArLPAtoY78;

Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\AFLPAtoY78.csv", Table[{t, AFLPAtoY78[[2]], AFLPAtoY78[[3]]}, {t. O, 1, 0.0001}]];
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Export["C:\\Users\\noor\\Documents\\VABH\\Dissertation\\Mahematica models\\Pressure Force on
PistonsWAFHPAtoY79.csv", Table[{t, AFHPAtoY79[[2]], AFHPAtoY79[[3]1}, {t, O, 1, 0.0001}]];

(*15. Force due to pressure on discharge or suction orifice at points 80 to 88 as well as its position
vector*)

DFOILtoVP1 = {0, 0, Pb[g][[1]1}*ArFR[#];

DFOILtoVP2 = {0, 0, Pb[¢ + 2*Pi/9][[1]]*ArFR[¢ + 2*Pi/9]};

DFOILtoVP3 = {0, 0, Pb[¢ + 4*Pi/9][[1]]*ArFR[¢ + 4*Pi/9]};

DFOILtoVP4 = {0, 0, Pb[¢ + 6*Pi/9][[1]]*ArFR[¢ + 6*Pi/9]};

DFOILtoVP5 = {0, 0, Pb[¢ + 8*Pi/9][[1]]*ArFR[¢ + 8*Pi/9]};

DFOILtoVP6 = {0, 0, Pb[¢ + 10*Pi/9][[1]]*ArFR[¢ + 10*Pi/9]};

DFOILtoVP7 = {0, 0, Pb[¢ + 12*Pi/9][[1]]*ArFR[¢ + 12*Pi/9]};

DFOILtoVP8 = {0, 0, Pb[¢ + 14*Pi/9][[1]]*ArFR[¢ + 14*Pi/9]};

DFOILtoVP9 = {0, 0, Pb[¢ + 16*Pi/9][[1]]*ArFR[¢ + 16*Pi/9]};
DFOILtoVP1z = Interpolation[Table[{t, DFOILtoVP1[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoVP1 = {0, 0, DFOILtoVP1z[t]};

DFOILtoVP2z = Interpolation[Table[{t, DFOILtoVP2[[3]]}, {t, 0, 1, 0.0001}]];
DFOILtoVP2 = {0, 0, DFOILtoVP2z[t]};

DFOILtoVP3z = Interpolation[Table[{t, DFOILtoVP3[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoVP3 = {0, 0, DFOILtoVP3z[t]};

DFOILtoVP4z = Interpolation[Table[{t, DFOILtoVP4[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoVP4 = {0, 0, DFOILtoVP4z[t]};

DFOILtoVP5z = Interpolation[Table[{t, DFOILtoVP5[[3]]}, {t, 0, 1, 0.0001}]];
DFOILtoVP5 = {0, 0, DFOILtoVP5z[t]};

DFOILtoVP6z = Interpolation[Table[{t, DFOILtoVP6][[3]]}, {t, 0, 1, 0.0001}]];
DFOILtoVP6 = {0, 0, DFOILtoVP6z[t]};

DFOILtoVVP7z = Interpolation[Table[{t, DFOILtoVP7[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoVP7 = {0, 0, DFOILtoVP7z[t]};

DFOILtoVP8z = Interpolation[Table[{t, DFOILtoVP8[[3]]}, {t, 0, 1, 0.0001}]];
DFOILtoVP8 = {0, 0, DFOILtoVP8z[t]};

DFOILtoVP9z = Interpolation[Table[{t, DFOILtoVPI[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoVP9 = {0, 0, DFOILtoVP9z[t]};

Export["'C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP1.csv", Table[{t, DFOILtoVP1[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP2.csv", Table[{t, DFOILtoVP2[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP3.csv", Table[{t, DFOILtoVP3[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP4.csv", Table[{t, DFOILtoVP4[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP5.csv", Table[{t, DFOILtoVVP5[[3]]}, {t, O, 1, 0.0001}]1;
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP6.csv", Table[{t, DFOILtoVP6[[3]]}, {t, O, 1, 0.0001}]1;
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP7.csv", Table[{t, DFOILtoVP7[[3]]}, {t, O, 1, 0.0001}]];
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Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP8.csv", Table[{t, DFOILtoVP8[[3]]}, {t, 0, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoVP9.csv", Table[{t, DFOILtoVPI[[3]]}, {t, O, 1, 0.0001}1];

(*Oil Control Volume - Sum of Forces*)
DFOILtoB1 = - DFOILtoP1 + Tos[d, ¢]. AWOIL1 - DFOILtoVP1 - DLMcv1 - DLMcs];

DFOILtoB2 : = - DFOILtoP2 + Tos[6, ¢ + 2*Pi/9]. AWOIL2 - DFOILtoVP2 - DLMcv2 - DLMcs2;
DFOILtoB3 : = - DFOILtoP3 + Tos[6, ¢ + 4*Pi/9]. AWOIL3 - DFOILtoVP3 - DLMcv3 - DLMcs3;
DFOILtoB4 : = - DFOILtoP4 + Tos[6, ¢ + 6*Pi/9]. AWOIL4 - DFOILtoVP4 - DLMcv4 - DLMcs4;
DFOILtoB5 : = - DFOILtoP5 + Tos[6, ¢ + 8*Pi/9]. AWOIL5 - DFOILtoVP5 - DLMcv5 - DLMcs5;
DFOILtoB6 : = - DFOILtoP6 + Tos[6, ¢ + 10*Pi/9]. AWOILG - DFOILtoVP6 - DLMcv6 - DLMcs6;
DFOILtoB7 : = - DFOILtoP7 + Tos[6, ¢ + 12*Pi/9]. AWOIL7 - DFOILtoVP7 - DLMcv7 - DLMcs7;
DFOILtoB8 : = - DFOILtoP8 + Tos[6, ¢ + 14*Pi/9]. AWOILS - DFOILtoVP8 - DLMcv8 - DLMcsS;
DFOILtoB9 : = - DFOILtoP9 + Tos[6, ¢ + 16*Pi/9]. AWOIL9 - DFOILtoVP9 - DLMcv9 - DLMcs9;

DFOILtoB1x = Interpolation[Table[{t, DFOILtoB1[[1]]}, {t, O, 1, 0.0001}]];
DFOILtoB1y = Interpolation[Table[{t, DFOILtoB1[[2]]}, {t, O, 1, 0.0001}]];
DFOILtoB1z = Interpolation[Table[{t, DFOILtoB1[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoB1 = {DFOILtoB1x][t], DFOILtoB1y][t], DFOILtoB1z[t]};

DFOILtoB2x = Interpolation[ Table[{t, DFOILtoB2[[1]]}, {t, O, 1, 0.0001}]];
DFOILtoB2y = Interpolation[ Table[{t, DFOILtoB2[[2]]}, {t, O, 1, 0.0001}]1;
DFOILtoB2z = Interpolation[Table[{t, DFOILtoB2[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoB2 = {DFOILtoB2x[t], DFOILtoB2y[t], DFOILtoB2z[t]};

DFOILtoB3x = Interpolation[Table[{t, DFOILtoB3[[1]]}, {t, O, 1, 0.0001}]1;
DFOILtoB3y = Interpolation[Table[{t, DFOILtoB3[[2]]}, {t, O, 1, 0.0001}]];
DFOILtoB3z = Interpolation[Table[{t, DFOILtoB3[[3]]}, {t, 0, 1, 0.0001}]];
DFOILtoB3 = {DFOILtoB3x][t], DFOILtoB3y][t], DFOILtoB3z[t]};

DFOILtoB4x = Interpolation[Table[{t, DFOILtoB4[[1]]}, {t, O, 1, 0.0001}]];
DFOILtoB4y = Interpolation[Table[{t, DFOILtoB4[[2]]}, {t, O, 1, 0.0001}]];
DFOILtoB4z = Interpolation[Table[{t, DFOILtoB4[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoB4 = {DFOILtoB4x[t], DFOILtoB4y][t], DFOILtoB4z[t]};

DFOILtoB5x = Interpolation[Table[{t, DFOILtoB5[[1]]}, {t, O, 1, 0.0001}]1;
DFOILtoB5y = Interpolation[Table[{t, DFOILtoB5[[2]]}, {t, O, 1, 0.0001}]1;
DFOILtoB5z = Interpolation[Table[{t, DFOILtoB5[[3]]}, {t, 0, 1, 0.0001}]];
DFOILtoB5 = {DFOILtoB5x][t], DFOILtoB5y][t], DFOILtoB5z[t]};

DFOILtoB6x = Interpolation[Table[{t, DFOILtoB6[[1]]}, {t, 0, 1, 0.0001}]];
DFOILtoB6y = Interpolation[Table[{t, DFOILtoB6[[2]]}, {t, O, 1, 0.0001}]];
DFOILtoB6z = Interpolation[Table[{t, DFOILtoB6[[3]]}, {t, 0, 1, 0.0001}]];
DFOILtoB6 = {DFOILtoB6x[t], DFOILtoB6y[t], DFOILtoB6Z[t]};

DFOILtoB7x = Interpolation[Table[{t, DFOILtoB7[[1]]}, {t, O, 1, 0.0001}]1;
DFOILtoB7y = Interpolation[Table[{t, DFOILtoB7[[2]]}, {t, O, 1, 0.0001}]1;
DFOILtoB7z = Interpolation[Table[{t, DFOILtoB7[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoB7 = {DFOILtoB7x[t], DFOILtoB7y[t], DFOILtoB7z[t]};

DFOILtoB8x = Interpolation[Table[{t, DFOILtoB8[[1]]}, {t, O, 1, 0.0001}]1;
DFOILtoB8y = Interpolation[Table[{t, DFOILtoB8[[2]]}, {t, O, 1, 0.0001}]1;
DFOILtoB8z = Interpolation[Table[{t, DFOILtoB8[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoB8 = {DFOILtoB8x[t], DFOILtoB8y[t], DFOILtoB8z[t]};

DFOILtoB9x = Interpolation[Table[{t, DFOILtoB9[[1]]}, {t, O, 1, 0.0001}]1;
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DFOILtoB9y = Interpolation[Table[{t, DFOILtoB9[[2]]}, {t, O, 1, 0.0001}]1;
DFOILtoB9z = Interpolation[Table[{t, DFOILtoB9[[3]]}, {t, O, 1, 0.0001}]];
DFOILtoB9 = {DFOILtoB9x[t], DFOILtoB9y][t], DFOILtoB9Z[t]};

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB1.csv", Table[{t, DFOILtoB1[[1]], DFOILtoB1[[2]], DFOILtoB1[[3]]}, {t, O, 1,
0.0001}]];

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB2.csv", Table[{t, DFOILtoB2[[1]], DFOILtoB2[[2]], DFOILtoB2[[3]]}, {t, O, 1,
0.0001}1];

Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB3.csv", Table[{t, DFOILtoB3[[1]], DFOILtoB3[[2]], DFOILtoB3[[3]]}, {t, O, 1,
0.0001}1];

Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB4.csv", Table[{t, DFOILtoB4[[1]], DFOILtoB4[[2]], DFOILtoB4[[3]]}, {t, O, 1,
0.0001}]];

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB5.csv", Table[{t, DFOILtoB5[[1]], DFOILtoB5[[2]], DFOILtoB5[[3]1]}, {t, O, 1,
0.0001}]];

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB6.csv", Table[{t, DFOILtoB6[[1]], DFOILtoB6[[2]], DFOILtoB6[[3]1]}, {t, O, 1,
0.0001}1];

Export["'C:\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB7.csv", Table[{t, DFOILtoB7[[1]], DFOILtoB7[[2]], DFOILtoB7[[3]]}, {t, O, 1,
0.0001}1];

Export["'C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB8.csv", Table[{t, DFOILtoB8[[1]], DFOILtoB8[[2]], DFOILtoB8[[3]1]}, {t, O, 1,
0.0001}]];

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFOILtoB9.csv", Table[{t, DFOILtoB9[[1]], DFOILtoB9[[2]], DFOILtoB9[[31]}, {t, O, 1,
0.0001}]];

(*Displacement Mechanism (Actuating Link)_Forces*)
(*1. Reaction force from the pin of ram at point 90 with its respective position vector as measured
from yoke axis of rotation*)

AFRAMt0AC90 = {0, FRAMtoAC90z*Sin[e - y8] + FRAMtoAC90y*Cos[e - y8], FRAMtoACI0z*Cosle -
8] - FRAMtoAC90y*Sin[e - y8]};

ArRAMLtoAC90 = {0, - L3*Sin[y5 + ] - Lac*Sin[e - y8], L3*Cos[y5 + 6] - Lac*Cos|e - y8]};

(*2. Reaction force from yoke at point 66 denoted as - AFACtoY66%*)
(*Position vector of AFACtoY66 as measured from yoke axis of rotation*)
ArACtoY66 = {rACtoY66Xx, - L3*Sin[y5 + 6], L3*Cos[y5 + 6]};

(*3. Weight of actuating link and corresponding position vector*)
AWAC = {0, MAC*g, 0};
ArWAC = {0, - L3*Sin[6 + v5] - (Lac - DG)*Sin[e - ¥8], L3*Cos[8 + 5] - (Lac - DG)*Cos[e - y8]};

(*The ram - Forces*)

(*1. Reaction force from the pin between ram and actuating link at point 90 denoted as -
AFRAMtoAC90%*)

(*2. Reaction force from the ram cylinder interface at point 90%)

AFCtoRAM90 = {0, uCtoRAM90*NCtoRAM90*Sin[e] - NCtoRAM90*Cos]e],
uCtoRAM90*NCtoRAM90*Cos[e] + NCtoRAM90*Sin[e]};



(*3. Weight of ram*)
AWRAM = {0, MRAM*g, 0},

(*4. Cylinder pressure force on ram*)
AFPtoRAM = PRAM*ARAM*{0, Sin[e], Cos[e]};

(*The Piston - Sum of forces*)

ForceP1 = - AFPtoCR1 + Tos[6, ¢]".(DFOILtoP1 + DFBtoP1) + AWp - Mp*(Tos[6, ¢]".Dap[6, ¢, 1]);

ForceP2 = - AFPtoCR2 + Tos[6, ¢ + 2*Pi/9]".(DFOILtoP2 + DFBtoP2) + AWp - Mp*(Tos[6, ¢ +
2*Pi/9]".Dapl[#, ¢, 2]);

ForceP3 = - AFPtoCR3 + Tos[6, ¢ + 4*Pi/9]".(DFOILtoP3 + DFBtoP3) + AWp - Mp*(Tos[6, ¢ +
4*Pi/9]".Dap[6, ¢, 3]);

ForceP4 = - AFPtoCR4 + Tos[6, ¢ + 6*Pi/9]".(DFOILtoP4 + DFBtoP4) + AWp - Mp*(Tos[6, ¢ +
6*Pi/9]".Dap[0, ¢, 4]);

ForceP5 = - AFPtoCR5 + Tos[6, ¢ + 8*Pi/9]".(DFOILtoP5 + DFBtoP5) + AWp - Mp*(Tos[#6, ¢ +
8*Pi/9]".Dapl#, ¢, 5]);

ForceP6 = - AFPtoCR6 + Tos[6, ¢ + 10*Pi/9]".(DFOILtoP6 + DFBtoP6) + AWp - Mp*(Tos[6, ¢ +
10*Pi/9]".Dapl#, ¢, 6]);

ForceP7 = - AFPtoCR7 + Tos[6, ¢ + 12*Pi/9]".(DFOILtoP7 + DFBtoP7) + AWp - Mp*(Tos[6, ¢ +
12*Pi/9]".Dap[6, ¢, 7]);

ForceP8 = - AFPtoCR8 + Tos[6, ¢ + 14*Pi/9]".(DFOILtoP8 + DFBtoP8) + AWp - Mp*(Tos[6, ¢ +
14*Pi/9]".Dapl#, ¢, 8]);

ForceP9 = - AFPtoCR9 + Tos[6, ¢ + 16*Pi/9]".(DFOILtoP9 + DFBtoP9) + AWp - Mp*(Tos[6, ¢ +

16*Pi/9]".Dapl[6, ¢, 9]);

FxP1 = ForceP1[[1]];
FxP2 = ForceP2[[1]];
FxP3 = ForceP3[[1]];
FxP4 = ForceP4[[1]];
FxP5 = ForceP5[[1]];
FxP6 = ForceP6[[1]];
FxP7 = ForceP7[[1]];
FxP8 = ForceP8[[1]];
FxP9 = ForceP9[[1]];

FyP1 = ForceP1[[2]];
FyP2 = ForceP2[[2]];
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FyP3 = ForceP3[[2]];
FyP4 = ForceP4[[2]];
FyP5 = ForceP5[[2]];
FyP6 = ForceP6[[2]];
FyP7 = ForceP7[[2]];
FyP8 = ForceP8[[2]];
FyP9 = ForceP9[[2]];

FzP1 = ForceP1[[3]];
FzP2 = ForceP2[[3]];
FzP3 = ForceP3[[3]];
FzP4 = ForceP4[[3]];
FzP5 = ForceP5[[3]];
FzP6 = ForceP6[[3]];
FzP7 = ForceP7[[3]];
FzP8 = ForceP8[[3]];
FzP9 = ForceP9[[3]];

(*The Piston - Sum of moments*)
(*Moments about the common point between ConRod and piston (points 14 to 22)*)
AMPtoCR1 = {0, 0, 0};
AMPtoCR2 = {0, 0, 0};
AMPtoCR3 = {0, 0, 0};
AMPtoCR4 = {0, 0, 0};
AMPtoCR5 = {0, 0, 0};
AMPtoCR6 = {0, 0, 0};
AMPtoCR7 = {0, 0, 0};
AMPtoCR8 = {0, 0, 0};
AMPtoCR9 = {0, 0, 0};

MomentP1 : = DrBtoPxDFBtoP1 + DrWPx(Tos[6, ¢].AWp) - DIp.Dap - DrWPx(Mp*Dapl#6, ¢, 1]) - Tos[6,
¢].AMPtoCR1;

MomentP2 : = DrBtoPxDFBtoP2 + DrWPx(Tos[6, ¢ + 2*Pi/9].AWp) - DIp.Dap - DrWPx(Mp*Dap[#, ¢,
2]) - Tos[6, ¢ + 2*Pi/9].AMPtoCR2;

MomentP3 : = DrBtoPxDFBtoP3 + DrWPx(Tos[6, ¢ + 4*Pi/9].AWp) - DIp.Dap - DrWPx(Mp*Dap[#, ¢,
3]) - Tos[H, ¢ + 4*Pi/9].AMPtoCR3;

MomentP4 : = DrBtoPxDFBtoP4 + DrWPx(Tos[6, ¢ + 6*Pi/9].AWp) - DIp.Dap - DrWPx(Mp*Dap[6, ¢,
4]) - Tos[6, ¢ + 6*Pi/9].AMPtoCR4;

MomentP5 : = DrBtoPxDFBtoP5 + DrWPx(Tos[6, ¢ + 8*Pi/9].AWp) - DIp.Dap - DrWPx(Mp*Dap[6, ¢,
5]) - Tos[6, ¢ + 8*Pi/9].AMPtoCR5;

MomentP6 : = DrBtoPxDFBtoP6 + DrWPx(Tos[6, ¢ + 10*Pi/9].AWp) - DIp.Dap - DrWPx(Mp*Dap[6, ¢,
6]) - Tos[O, ¢ + 10*Pi/9].AMPtoCR6;

MomentP7 : = DrBtoPxDFBtoP7 + DrWPx(Tos[6, ¢ + 12*Pi/9].AWp) - DIp.Dap - DriWPx(Mp*Dapl#6, ¢,
7]) - Tos[6, ¢ + 12*Pi/9]. AMPtoCR7;

MomentP8 : = DrBtoPxDFBtoP8 + DrWPx(Tos[#6, ¢ + 14*Pi/9].AWDp) - DIp.Dap - DrWPx(Mp*Dap[6, ¢,
8]) - Tos[H, ¢ + 14*Pi/9]. AMPtoCRS;

MomentP9 : = DrBtoPxDFBtoP9 + DrWPx(Tos[#6, ¢ + 16*Pi/9].AWDp) - DIp.Dap - DrWPx(Mp*Dap[6, ¢,
9]) - Tos[H, ¢ + 16*Pi/9]. AMPtoCRY;

MxP1 = MomentP1[[1]];
MxP2 = MomentP2[[1]];
MxP3 = MomentP3[[1]];
MxP4 = MomentP4[[1]];
MxP5 = MomentP5[[1]];
MxP6 = MomentP6[[1]];
MxP7 = MomentP7[[1]];
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MxP8 = MomentP8[[1]];
MxP9 = MomentP9[[1]];

MyP1 = MomentP1[[2]];
MyP2 = MomentP2[[2]];
MyP3 = MomentP3[[2]];
MyP4 = MomentP4[[2]];
MyP5 = MomentP5[[2]];
MyP6 = MomentP6[[2]];
MyP7 = MomentP7[[2]];
MyP8 = MomentP8[[2]];
MyP9 = MomentP9[[2]];

solP1 = NSolve[{FxP1 = =0, FyP1 = =0, FzP1 = =0, MxP1 = = 0, MyP1 = = 0}, {AFPtoCR1x, FBtoP1x,
FBtoPly, AFPtoCR1y, AFPtoCR1z }];

solP2 = NSolve[{FxP2==0, FyP2==0, FzP2==0, MxP2==0, MyP2==0}, {AFPtoCR2x, FBtoP2x, FBtoP2y,
AFPtoCR2y, AFPtoCR2z }];

s0lP3 = NSolve[{FxP3==0, FyP3==0, FzP3==0, MxP3==0, MyP3==0}, {AFPtoCR3x, FBtoP3x, FBtoP3y,
AFPtoCR3y, AFPtoCR3z }];

s0lP4 = NSolve[{FxP4==0, FyP4==0, FzP4==0, MxP4==0, MyP4==0}, {AFPtoCR4x, FBtoP4x, FBtoP4y,
AFPtoCR4y, AFPtoCR4z }];

solP5 = NSolve[{FxP5==0, FyP5==0, FzP5==0, MxP5==0, MyP5==0}, {AFPtoCR5X, FBtoP5x, FBtoP5y,
AFPtoCR5y, AFPtoCR5z }];

solP6 = NSolve[{FxP6==0, FyP6==0, FzP6==0, MxP6==0, MyP6==0}, {AFPtoCR6X, FBtoP6x, FBtoP6y,
AFPtoCR6y, AFPtoCR6z }];

solP7 = NSolve[{FxP7==0, FyP7==0, FzP7==0, MxP7==0, MyP7==0}, {AFPtoCR7x, FBtoP7x, FBtoP7y,
AFPtoCR7y, AFPtoCR7z }];

solP8 = NSolve[{FxP8==0, FyP8==0, FzP8==0, MxP8==0, MyP8==0}, {AFPtoCR8x, FBtoP8x, FBtoP8y,
AFPtoCR8y, AFPtoCR8z }];

s0lP9 = NSolve[{FxP9==0, FyP9==0, FzP9==0, MxP9==0, MyP9==0}, {AFPtoCR9x, FBtoP9x, FBtoP9y,
AFPtoCR9y, AFPtoCR9z }];

FBtoP1x = Evaluate[FBtoP1x]/.solP1[[1]];

FBtoP1ly = Evaluate[FBtoP1y]/.solP1[[1]];

AFPtoCR1x = Chop[Evaluate[AFPtoCR1x]/.solP1[[1]1];
AFPtoCR1y = Evaluate[AFPtoCR1y]/.solP1[[1]];
AFPtoCR1z = Evaluate[AFPtoCR1z]/.solP1[[1]];

FBtoP2x = Evaluate[FBtoP2x]/.solP2[[1]];

FBtoP2y = Evaluate[FBtoP2y]/.solP2[[1]];

AFPtoCR2x = Chop[Evaluate[AFPtoCR2x]/.solP2[[1]]];
AFPtoCR2y = Evaluate[AFPtoCR2y]/.solP2[[1]];
AFPtoCR2z = Evaluate[AFPtoCR2z]/.s0lP2[[1]];

FBtoP3x = Evaluate[FBtoP3x]/.solP3[[1]];

FBtoP3y = Evaluate[FBtoP3y]/.solP3[[1]];

AFPtoCR3x = Chop[Evaluate[AFPtoCR3x]/.solP3[[1]]];
AFPtoCR3y = Evaluate[AFPtoCR3y]/.solP3[[1]];
AFPtoCR3z = Evaluate[ AFPtoCR3z]/.solP3[[1]];

FBtoP4x = Evaluate[FBtoP4x]/.solP4[[1]];

FBtoP4y = Evaluate[FBtoP4y]/.solP4[[1]];

AFPtoCR4x = Chop[Evaluate[AFPtoCR4x]/.solPA[[1]]];
AFPtoCR4y = Evaluate[ AFPtoCRA4y]/.solP4[[1]];
AFPtoCR4z = Evaluate[AFPtoCR4z]/.solP4[[1]];



FBtoP5x = Evaluate[FBtoP5x]/.solP5[[1]];

FBtoP5y = Evaluate[FBtoP5y]/.solP5[[1]];

AFPtoCR5x = Chop[Evaluate[ AFPtoCR5x]/.solP5[[1]]];
AFPtoCR5y = Evaluate[AFPtoCR5y]/.solP5[[1]];
AFPtoCR5z = Evaluate[ AFPtoCR5z]/.s0lP5[[1]];

FBtoP6x = Evaluate[FBtoP6x]/.solP6[[1]];

FBtoP6y = Evaluate[FBtoP6y]/.solP6[[1]];

AFPtoCR6x = Chop[Evaluate[AFPtoCR6x]/.s0lP6[[1]]];
AFPtoCR6y = Evaluate[ AFPtoCR6y]/.s0lP6[[1]];
AFPtoCR6z = Evaluate[ AFPtoCR6z]/.s0lP6[[1]];

FBtoP7x = Evaluate[FBtoP7x]/.solP7[[1]];

FBtoP7y = Evaluate[FBtoP7y]/.solP7[[1]];

AFPtoCR7x = Chop[Evaluate[ AFPtoCR7x]/.solP7[[1]]];
AFPtoCR7y = Evaluate[AFPtoCR7y]/.solP7[[1]];
AFPtoCR7z = Evaluate[AFPtoCR7z]/.solP7[[1]];

FBtoP8x = Evaluate[FBtoP8x]/.solP8[[1]];

FBtoP8y = Evaluate[FBtoP8y]/.solP8[[1]];

AFPtoCR8x = Chop[Evaluate[AFPtoCR8Xx]/.solP8[[1]1];
AFPtoCR8y = Evaluate[ AFPtoCR8y]/.solP8[[1]];
AFPtoCR8z = Evaluate[ AFPtoCR8z]/.solP8[[1]];

FBtoP9x = Evaluate[FBtoP9x]/.solP9[[1]];

FBtoP9y = Evaluate[FBtoP9y]/.solP9[[1]];

AFPtoCR9x = Chop[Evaluate[AFPtoCR9x]/.solP9[[1]1];
AFPtoCR9y = Evaluate[AFPtoCR9y]/.solP9[[1]];
AFPtoCR9z = Evaluate[AFPtoCR9z]/.s0lP9[[1]];

AFBtoP1 = Tos[6, ¢]".DFBtoP1,;
AFBtoP2 = Tos[#6, ¢]".DFBtoP2;
AFBtoP3 = Tos[6, ¢]".DFBtoP3;
AFBtoP4 = Tos[6, ¢]".DFBtoP4;
AFBtoP5 = Tos[6, ¢]".DFBtoP5;
AFBtoP6 = Tos[6, ¢]".DFBtoP6;
AFBtoP7 = Tos[6, ¢]".DFBtoP7;
AFBtoP8 = Tos[#6, ¢]".DFBtoPS8;

AFBtoP9 = Tos[6, ¢]".DFBtoP9;

Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP1.csv", Table[{t, DFBtoP1[[1]], DFBtoP1[[2]], DFBtoP1[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP2.csv", Table[{t, DFBtoP2[[1]], DFBtoP2[[2]], DFBtoP2[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP3.csv", Table[{t, DFBtoP3[[1]], DFBtoP3[[2]], DFBtoP3[[3]]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP4.csv", Table[{t, DFBtoP4[[1]], DFBtoP4[[2]], DFBtoP4[[3]]}, {t, O, 1, 0.0001}]];
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Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP5.csv", Table[{t, DFBtoP5[[1]], DFBtoP5[[2]], DFBtoP5[[311}, {t, 0, 1, 0.0001}11;
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP6.csv", Table[{t, DFBtoP6[[1]], DFBtoP6[[2]], DFBtoP6[[3]1]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP7.csv", Table[{t, DFBtoP7[[1]], DFBtoP7[[2]], DFBtoP7[[3]1]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP8.csv", Table[{t, DFBtoP8[[1]], DFBtoP8[[2]], DFBtoP8[[3]1]}, {t, O, 1, 0.0001}]];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Pressure Force on
Pistons\DFBtoP9.csv", Table[{t, DFBtoP9[[1]], DFBtoP9[[2]], DFBtoP9[[311}, {t, O, 1, 0.0001}11;

(*Connecting Rod - Sum of forces*)

ForceCR1 : = AWCR + AFMStoCR1 + AFPtoCR1 - MCR*AaCR]t, 1];
ForceCR2 : = AWCR + AFMStoCR2 + AFPtoCR2 - MCR*AaCR]t, 2];
ForceCR3 : = AWCR + AFMStoCR3 + AFPtoCR3 - MCR*AaCR]t, 3];
ForceCR4 : = AWCR + AFMStoCR4 + AFPtoCR4 - MCR*AaCR]t, 4];
ForceCR5 : = AWCR + AFMStoCR5 + AFPtoCR5 - MCR*AaCR]t, 5];
ForceCR6 : = AWCR + AFMStoCR6 + AFPtoCR6 - MCR*AaCRt, 6];
ForceCR7 : = AWCR + AFMStoCR7 + AFPtoCR7 - MCR*AaCR][t, 7];
ForceCR8 : = AWCR + AFMStoCR8 + AFPtoCR8 - MCR*AaCRt, 8];
ForceCR9 : = AWCR + AFMStoCR9 + AFPtoCR9 - MCR*AaCR]t, 9];

FXCR1 = ForceCR1[[1]];
FXCR2 = ForceCR2[[1]];
FXCR3 = ForceCR3[[1]];
FXCR4 = ForceCRA4[[1]];
FXCRS5 = ForceCR5[[1]];
FXCRG6 = ForceCR6[[1]];
FXCR7 = ForceCR7[[1]];
FXCR8 = ForceCR8[[1]];
FXCR9 = ForceCRI[[1]];

FyCR1 = ForceCR1[[2]];
FyCR2 = ForceCR2[[2]];
FyCR3 = ForceCR3[[2]];
FyCR4 = ForceCR4[[2]];
FyCR5 = ForceCR5[[2]];
FyCR6 = ForceCR6[[2]];
FyCR7 = ForceCR7[[2]];
FyCR8 = ForceCR8[[2]];
FyCR9 = ForceCRI9[[2]];

FzCR1 = ForceCR1[[3]];
FzCR2 = ForceCR2[[3]];
FzCR3 = ForceCR3][[3]];
FzCR4 = ForceCR4[[3]];
FzCR5 = ForceCR5][[3]];
FzCR6 = ForceCR6][[3]];
FzCR7 = ForceCR7[[3]];
FzCR8 = ForceCR8J[3]];
FzCR9 = ForceCRI[[3]];
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s0lCR1 = NSolve[{FxCR1==0, FyCR1==0, FzCR1==0}, {AFMStoCR1x, AFMStoCR1y, AFMStoCR1z }];

s0lCR2 = NSolve[{FxCR2==0, FyCR2==0, FzCR2==0}, {AFMStoCR2x, AFMStoCR2y, AFMStoCR2z }];
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s0ICR3 = NSolve[{FXCR3==0, FyCR3==0, FzCR3==0}, {AFMStoCR3x, AFMStoCR3y, AFMStoCR3z }];
s0lCR4 = NSolve[{FXCR4==0, FyCR4==0, FzCR4==0}, {AFMStoCR4x, AFMStoCR4y, AFMStoCR4z };
s0ICR5 = NSolve[{FXCR5==0, FyCR5==0, FzCR5==0}, {AFMStoCR5x, AFMStoCR5y, AFMStoCR5z };
s0lCR6 = NSolve[{FXCR6==0, FyCR6==0, FzCR6==0}, {AFMStoCR6X, AFMStoCR6y, AFMStoCR6z };
s0lCR7 = NSolve[{FXCR7==0, FyCR7==0, FzCR7==0}, {AFMStoCR7x, AFMStoCR7y, AFMStoCR7z };
s0lCR8 = NSolve[{FXCR8==0, FyCR8==0, FzCR8==0}, {AFMStoCR8X, AFMStoCR8y, AFMStoCR8z };
s0lCR9 = NSolve[{FXCR9==0, FyCR9==0, FzCR9==0}, {AFMStoCR9x, AFMStoCR9y, AFMStoCR9z };

AFMStoCR1x = Evaluate[ AFMStoCR1x]/.solCR1[[1]];
AFMStoCR1y = Evaluate[AFMStoCR1y]/.solCR1[[1]];
AFMStoCR1z = Evaluate AFMStoCR1z]/.solCR1[[1]];

AFMStoCR2x = Evaluate[ AFMStoCR2x]/.solCR2[[1]];
AFMStoCR2y = Evaluate[AFMStoCR2y]/.solCR2[[1]];
AFMStoCR2z = Evaluate[AFMStoCR2z]/.s0lCR2[[1]];

AFMStoCR3x = Evaluate[AFMStoCR3x]/.s0lCR3[[1]];
AFMStoCR3y = Evaluate[ AFMStoCR3y]/.solCR3[[1]];
AFMStoCR3z = Evaluate[AFMStoCR3z]/.s0lCR3[[1]];

AFMStoCR4x = Evaluate[AFMStoCR4x]/.solCRA[[1]];
AFMStoCR4y = Evaluate[AFMStoCR4y]/.solCRA4[[1]];
AFMStoCR4z = Evaluate[ AFMStoCR4z]/.solCRA[[1]];

AFMStoCR5x = Evaluate AFMStoCR5x]/.solCR5[[1]];
AFMStoCR5y = Evaluate[ AFMStoCR5y]/.solCR5[[1]];
AFMStoCR5z = Evaluate AFMStoCR5z]/.solCR5[[1]];

AFMStoCR6x = Evaluate[AFMStoCR6x]/.s0lCR6[[1]];
AFMStoCR6y = Evaluate[ AFMStoCR6y]/.solCR6[[1]];
AFMStoCR6z = Evaluate[AFMStoCR62z]/.s0lCR6[[1]];

AFMStoCR7x = Evaluate[AFMStoCR7x]/.solCR7[[1]];
AFMStoCR7y = Evaluate[AFMStoCR7y]/.solCR7[[1]];
AFMStoCR7z = Evaluate[AFMStoCR72]/.solCR7[[1]];

AFMStoCR8x = Evaluate[ AFMStoCR8x]/.solCR8[[1]];
AFMStoCR8y = Evaluate[ AFMStoCR8y]/.solCR8[[1]];
AFMStoCR8z = Evaluate[ AFMStoCR82]/.s0ICR8[[1]];

AFMStoCR9x = Evaluate[AFMStoCR9x]/.solCRI[[1]];
AFMStoCR9y = Evaluate[AFMStoCR9y]/.solCRI[[1]];
AFMStoCR9z = Evaluate[AFMStoCR9z]/.s0lCRI[[1]];

AFMStoCR1x = Interpolation[Table[{t, AFMStoCR1x}, {t, 0, 1, 0.0001}]];
AFMStoCR1y = Interpolation[Table[{t, AFMStoCR1y}, {t, O, 1, 0.0001}]];
AFMStoCR1z = Interpolation[Table[{t, AFMStoCR1z}, {t, 0, 1, 0.0001}]];

AFMStoCR2x = Interpolation[Table[{t, AFMStoCR2x}, {t,
AFMStoCR2y = Interpolation[Table[{t, AFMStoCR2y}, {t,

/1, 0.0001}]];
1, 0.0001}]];

o o



AFMStoCR2z = Interpolation[Table[{t, AFMStoCR2z}, {t, 0, 1, 0.0001}]];

AFMStoCR3x = Interpolation[Table[{t, AFMStoCR3x}, {t, 0, 1, 0.0001}]];
AFMStoCR3y = Interpolation[Table[{t, AFMStoCR3y}, {t, 0, 1, 0.0001}]];
AFMStoCR3z = Interpolation[ Table[{t, AFMStoCR3z}, {t, 0, 1, 0.0001}1];

AFMStoCR4x = Interpolation[Table[{t, AFMStoCR4x}, {t, 0, 1, 0.0001}]];
AFMStoCRA4y = Interpolation[Table[{t, AFMStoCR4y}, {t, 0, 1, 0.0001}]];
AFMStoCR4z = Interpolation[ Table[{t, AFMStoCR4z}, {t, 0, 1, 0.0001}1];

AFMStoCR5x = Interpolation[Table[{t, AFMStoCR5x}, {t, 0, 1, 0.0001}]];
AFMStoCRb5y = Interpolation[Table[{t, AFMStoCR5y}, {t, 0, 1, 0.0001}]];
AFMStoCR5z = Interpolation[Table[{t, AFMStoCR5z}, {t, 0, 1, 0.0001}]];

AFMStoCR6x = Interpolation[Table[{t, AFMStoCR6x}, {t, 0, 1, 0.0001}]];
AFMStoCR6y = Interpolation[Table[{t, AFMStoCR6y}, {t, 0, 1, 0.0001}]];
AFMStoCR6z = Interpolation[ Table[{t, AFMStoCR6z}, {t, 0, 1, 0.0001}]];

AFMStoCR7x = Interpolation[Table[{t, AFMStoCR7x}, {t, 0, 1, 0.0001}]];
AFMStoCR7y = Interpolation[Table[{t, AFMStoCR7y}, {t, 0, 1, 0.0001}]];
AFMStoCR7z = Interpolation[ Table[{t, AFMStoCR7z}, {t, 0, 1, 0.0001}]];

AFMStoCR8x = Interpolation[Table[{t, AFMStoCR8x}, {t, 0, 1, 0.0001}]];
AFMStoCR8y = Interpolation[Table[{t, AFMStoCR8y}, {t, 0, 1, 0.0001}]];
AFMStoCR8z = Interpolation[Table[{t, AFMStoCR8z}, {t, 0, 1, 0.0001}]];

AFMStoCR9x = Interpolation[Table[{t, AFMStoCR9x}, {t, 0, 1, 0.0001}]];
AFMStoCR9y = Interpolation[Table[{t, AFMStoCR9y}, {t, 0, 1, 0.0001}]];
AFMStoCR9z = Interpolation[ Table[{t, AFMStoCR9z}, {t, O, 1, 0.0001}]];

AFMStoCR1 = {AFMStoCR1x][t], AFMStoCR1y[t], AFMStoCR1z[t]};
AFMStoCR2 = {AFMStoCR2x][t], AFMStoCR2y([t], AFMStoCR2z[t]};
AFMStoCR3 = {AFMStoCR3x[t], AFMStoCR3y][t], AFMStoCR3z[t]};
AFMStoCR4 = {AFMStoCR4x[t], AFMStoCR4y[t], AFMStoCR4z[t]};
AFMStoCR5 = {AFMStoCR5x[t], AFMStoCR5y[t], AFMStoCR5z[t]};
AFMStoCR6 = {AFMStoCR6x[t], AFMStoCR6Y[t], AFMStoCR6z[t]};
AFMStoCR7 = {AFMStoCR7x[t], AFMStoCR7y[t], AFMStoCR7z[t]};
AFMStoCR8 = {AFMStoCR8x([t], AFMStoCR8y[t], AFMStoCR8z[t]};
AFMStoCR9 = {AFMStoCR9x[t], AFMStoCR9y[t], AFMStoCR9z[t]};

s4 = OpenWrite["FConRod.nb"]
Write[s4, AFMStoCR1[[1]]]
Write[s4, AFMStoCR1[[2]]]
Write[s4, AFMStoCR1[[3]]]
Write[s4, Norm[AFMStoCR1]]
Write[s4, AFPtoCR1[[1]]]
Write[s4, AFPtoCR1[[2]]]
Write[s4, AFPtoCR1[[3]]1},
Write[s4, Norm[AFPtoCR1]]}
Close[s4]

(*Connecting Rod - moments*)
AMMStoCR1 = {0, 0, 0};
AMMStoCR?2 = {0, 0, 0};
AMMStoCR3 = {0, 0, 0};
AMMStoCR4 = {0, 0, 0};
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AMMStoCRS5 = {0, 0, 0}:;
AMMStoCR6 = {0, 0, 0}:
AMMStoCR7 = {0, 0, 0}:
AMMStoCRS = {0, 0, 0}:
AMMStoCR9 = {0, 0, 0}:

(*Second Intermediate Shaft - Sum of forces*)
AWiIm2 = {0, 0, 0};

(*MatrixForm[ForcelM2 : = - Tim1".CFIM2toIM125 + Tc2".( - IFIM2toC227 - IFIM2toC228) + AWim2 -

Tim1™.(Mim2*Caim2)]; *)

CFIM2toIM125 = Tim1.AWim2 - Mim2*Caim2;
FIM2toIM125z = CFIM2tolM125[[3]]

(*Second Intermediate Shaft - Sum of moments*)

IMIM2toC227 = {0, 0, 0};

IMIM2toC228 = {0, 0, 0};

(*Sum of the moments of forces acting on 2nd intermediate shaft about center of 2nd cross*)

MomentIM2 = Chop[ - CMIM2toIM125 - 2Cr27x(Tim1.(Tc2".IFIM2toC227)) + Crim2x(Tim1.AWim2) -
Clim2.Caiml - Crim2x(Mim2*Caim2)];

(*Second Cross - sum of moments about center of 2nd cross*)
IMOStoC229 = {0, 0, 0};
IMOStoC230 = {0, 0, 0};

MomentC2 = Ir27xIFIM2toC227 + IMIM2toC227 + Ir28xIFIM2toC228 + IMIM2toC228 +
Ir29x1FOStoC229 + IMOStoC229 + 1r30xIFOStoC230 + IMOStoC230 - Ilc2.1ac2;

FIM2t0C227z = ( - 0.5IMIM2toC227 - 0.5IMIM2toC228 - Ir29xIFOStoC229 - 0.5IMOStoC229 -
0.5IMOStoC230 + 0.511c2.1ac2)[[2]]/1r27[[1]];

FOStoC229z = ( - Ir27xIFIM2toC227 - 0.5IMIM2toC227 - 0.5IMIM2toC228 - 0.5IMOStoC229 -
0.5IMOStoC230 + 0.511c2.1ac2)[[1]]/1r29[[2]];

(*Barrel - Output Shaft Assembly - sum of forces*)
ForceOS = Tos[#, ¢].(Tc2".( - IFOStoC229 - IFOStoC230)) + DFOILtoB1 + DFOILtoB2 + DFOILtoB3 +

DFOILtoB4 + DFOILtoB5 + DFOILtoB6 + DFOILtoB7 + DFOILtoB8 + DFOILtoB9 - DFBtoP1 -
DFBtoP2 - DFBtoP3 - DFBtoP4 - DFBtoP5 - DFBtoP6 - DFBtoP7 - DFBtoP8 - DFBtoP9 - DFBStoVP1 -
DFBStoVP2 - DFBStoVP3 - DFBStoVP4 - DFBStoVP5 - DFBStoVP6 - DFBStoVP7 - DFBStoVPS -

DFBStoVP9 + Tos[6,¢].Tvp".(HFVPtoBoutD + HFVPtoBinD + HFVPtoBinS + HFVPtoBoutS) +
DFB3FtoB + DFB3StoB + DFB4toB + Tos[6, ¢].AWos - Tos[6, ¢].(Mos*Aaos);
FB4toBz = ( - DFOILtoB1 - DFOILtoB2 - DFOILtoB3 - DFOILtoB4 - DFOILtoB5 - DFOILtoB6 -

DFOILtoB7 - DFOILtoB8 - DFOILtoB9 + DFBtoP1 + DFBtoP2 + DFBtoP3 + DFBtoP4 + DFBtoP5 +
DFBtoP6 + DFBtoP7 + DFBtoP8 + DFBtoP9 + DFBStoVP1 + DFBStoVP2 + DFBStoVP3 + DFBStoVP4 +

DFBStoVP5 + DFBStoVP6 + DFBStoVP7 + DFBStoVVP8 + DFBStoVP9 - Tos[6, ¢].Tvp®.(HFVPtoBoutD

+ HFVPtoBinD + HFVPtoBInS + HFVPtoBoutS) - DFB3FtoB - DFB3StoB - Tos[6, ¢].AWos + Tos[#,
¢].(Mos*Aaos))[[3]];
FB4toBz = Interpolation[Table[{t, FB4toBz}, {t, 0, 1, 0.0001}]];
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(*Barrel - Output Shaft Assembly - sum of moments about axis of rotation of yoke*)
DMB3FtoB = {0, 0, 0};

DMB3StoB = {0, 0, 0};

DMB4toB = {0, 0, 0};

MomentOS = - Tos[6, ¢].(Ar29x(Tc2".IFOStoC229)) - Tos[6, ¢].(Ar30x(Tc2".IFOStoC230)) -

Dr31xDFBtoP1 - Dr32xDFBtoP2 - Dr33xDFBtoP3 - Dr34xDFBtoP4 - Dr35xDFBtoP5 - Dr36xDFBtoP6 -
Dr37xDFBtoP7 - Dr38xDFBtoP8 - Dr39xDFBtoP9 + DrOSx(Tos[#, ¢].AWos) + Tos[6,

¢].Tvp".(HrOUTDxHFVPtoBoutD) + Tos[#, ¢]. Tvp'.(HIINDxHFVPtoBinD) + Tos[#6,

#].Tvp".(HrINSxHFVPtoBinS) + Tos[6, 4]. Tvp".(HTOUTSxHFVPtoBoutS) + DMVPtoB +

DrB3FtoBxDFB3FtoB + DrB3StoBxDFB3StoB + DrB4toBxDFB4toB -
{DrBStoVP[[2]]*(DFBStoVP1[[3]] + DFBStoVP2[[3]] + DFBStoVP3[[3]] + DFBStoVP4[[3]] +
DFBStoVP5[[3]] + DFBStoVP6[[3]] + DFBStoVP7[[3]] + DFBStoVP8[[3]] + DFBStoVPI[[3]]), 0, 0} +
{DrOILtoB1[[2]]*DFOILtoB1[[3]] - DrOILtoB1[[3]]*DFOILtoB1[[2]], DrOILtoB1[[3]]*DFOILtoB1[[1]],
- DrOILtoB1[[2]]*DFOILtoB1[[1]]} + {DrOILtoB2[[2]]*DFOILtoB2[[3]] -
DrOILtoB2[[3]]*DFOILtoB2[[2]], DrOILtoB2[[3]]*DFOILtoB2[[1]], - DrOILtoB2[[2]]*DFOILtoB2[[1]]}
+ {DrOILtoB3[[2]]*DFOILtoB3[[3]] - DrOILtoB3[[3]]*DFOILtoB3[[2]],
DrOILtoB3[[3]]*DFOILtoB3][[1]], - DrOILtoB3[[2]]*DFOILtoB3[[1]]} +
{DrOILtoB4[[2]]*DFOILtoB4[[3]] - DrOILtoB4[[3]]*DFOILtoB4[[2]], DrOILtoB4[[3]]*DFOILtoB4[[1]],
- DrOILtoB4[[2]]*DFOILtoB4[[1]]} + {DrOILtoB5[[2]]*DFOILtoB5[[3]] -
DrOILtoB5[[3]]*DFOILtoB5[[2]], DrOILtoB5[[3]]*DFOILtoB5[[1]], - DrOILtoB5[[2]]*DFOILtoB5[[1]]}
+ {DrOILtoB6[[2]]*DFOILtoB6[[3]] - DrOILtoB6[[3]]*DFOILtoB6[[2]],
DrOILtoB6[[3]]*DFOILtoB6[[1]], - DrOILtoB6[[2]]*DFOILtoB6[[1]]} +
{DrOILtoB7[[2]]*DFOILtoB7[[3]] - DrOILtoB7[[3]]*DFOILtoB7[[2]], DrOILtoB7[[3]]*DFOILtoB7[[1]],
- DrOILtoB7[[2]]*DFOILtoB7[[1]]} + {DrOILtoB8[[2]]*DFOILtoB8[[3]] -
DrOILtoB8[[3]]*DFOILtoB8[[2]], DrOILtoB8[[3]]*DFOILtoB8[[1]], - DrOILtoB8[[2]]*DFOILtoB8[[1]]}
+ {DrOILtoB9[[2]]*DFOILtoB9[[3]] - DrOILtoB9[[3]]*DFOILtoB9[[2]],
DrOILtoB9[[3]]*DFOILtoB9[[1]], - DrOILtoB9[[2]]*DFOILtoBI[[1]]} - Mos*(DrOSx(Tos[6, ¢].Aaos)) -
Dlos.Daos;

MzOS = MomentOS][[3]];
solBarrelMz = Solve[{Mz0OS==0}, {FOStoC229x}];

FOStoC229x = Evaluate[FOStoC229x]/.solBarrelMz[[1]];
FOStoC229x = Interpolation[Table[{t, FOStoC229x}, {t, 0, 1, 0.0001}]];

IFOStoC229 = {FOStoC229x]t], 0, FOStoC229z};
IFOStoC230 = - IFOStoC229;

MomentC2 = Ir27xIFIM2toC227 + IMIM2toC227 + Ir28xIFIM2toC228 + IMIM2toC228 +
Ir29x1FOStoC229 + IMOStoC229 + 1r30xIFOStoC230 + IMOStoC230 - llc2.1ac2;

MzC2 = MomentC2[[3]];
sollIC2Mz = NSolve[{MzC2==0}, {FIM2toC227y}];
FIM2toC227y = Evaluate[FIM2toC227y]/.sollC2Mz[[1]];

MomentIM2 = Chop[ - CMIM2tolM125 - 2Cr27x(Tim1.(Tc2".IFIM2toC227)) + Crim2x(Tim1.AWim2) -
Clim2.Caiml - Crim2x(Mim2*Caim2)];
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MzIM2 = MomentIM2[[3]];
solIM2Mz = Solve[{MzIM2==0}, {MIM2toIM125z2}];

ByteCount[MIM2tolM125z = Evaluate[MIM2toIM125z]/.s0lM2Mz[[1]]]

(*First Intermediate shaft - Sum of moments about CG of 1st cross*)
FMIM1toC123 = {0, 0, 0};
FMIM1toC124 = {0, 0, 0};

(*Moment of inertita of 1st intermediate shaft*)
MatrixForm[Clim1 = {{lim111, 0, lim113}, {0, lim122, 0}, {lim113, 0, lim133}}];
MomentIM1 = (Tim1".Cr23)x( - Tc1".FFIM1toC123) + (Tim1".Cr24)x( - Tc1".FFIM1toC124) +

Tim1".CMIM2tolM125 - (Tim1".Crim1)xAWim1 - Tim1".(Clim1.Caiml) -Tim1".Crim1)x(Mim1*Aaiml);

MyIM1 = MomentIM1[[2]];
MzIM1 = MomentIM1[[3]];

solMyMzIM1 = NSolve[{MyIM1==0, MzIM1==0}, {FIM1toC123z, FIM1toC123y}];

FIM1toC123z = Evaluate[FIM1toC123z]/.solMyMzIM1[[1]];
FIM1toC123y = Evaluate[FIM1toC123y]/.solMyMzIM1[[1]];

(*First Cross - Sum of moments about center of 1st cross*)
FMMStoC13 = 0;
FMMStoC14 = 0;

(*Moment of inertia of 1st cross*)
MatrixForm[Flcl : = {{lc11, 0, 0}, {0, Ic11, 0}, {0, 0, 1c13}}]

MomentC1 : = Fr3xFFMStoC13 + Fr4xFFMStoC14 + FMMStoC13 + FMMStoC14 + Fr23xFFIM1toC123
+ FMIM1toC123 + Fr24xFFIM1toC124 + FMIM1toC124 - Flcl.Facl;

MxC1 = MomentC1[[1]];

MzC1 = MomentC1[[3]];

s0IMxMzC1 = NSolve[{MxC1==0, MzC1==0}, {FFMStoC13x, FFMStoC13z}];

FFMStoC13x = Evaluate[FFMStoC13x]/.solMxMzC1[[1]];
FFMStoC13z = Evaluate[FFMStoC13z]/.solIMxMzC1[[1]];

(*Main Shaft - Sum of Moments about center of 2nd bearing*)
AMB1toMS = {0, 0, 0};
AMB2toMS = {0, 0, 0};

(*Moment of inertia of main shaft*)
Blms = {{Ims11, Ims12, Ims13}, {Ims12, Ims22, Ims23}, {Ims13, Ims23, Ims33}};

MomentMS = ATin + (Arl - Ar2)xAFB1toMS - (T1[¢]".Br3 - Ar2)x(Tcl".FFMStoC13) - (T1[¢]".Br4 -

Ar2)x(Tc1".FFMStoC14) - (ArCR1 - Ar2)xAFMStoCR1 - (ArCR2 - Ar2)xAFMStoCR2 - (ArCR3 -
Ar2)xAFMStoCR3 - (ArCR4 - Ar2)xAFMStoCR4 - (ArCRS5 - Ar2)xAFMStoCR5 - (ArCR6 -
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Ar2)xAFMStoCR6 - (ArCR7 - Ar2)xAFMStoCR7 - (ArCR8 - Ar2)xAFMStoCRS8 - (ArCR9 -
Ar2)xAFMStoCR9 + (ArWms - Ar2)xAWms - T1[¢]".(BIms.BaMS);

MxMS = MomentMS[[1]];
MyMS = MomentMS[[2]];

SolMxMyMS = NSolve[{MxMS==0, MyMS==0}, {AFB1toMSx, AFB1toMSy}]

AFB1toMSx = Evaluate[AFB1toMSx]/.SoIMxMyMSJ[1]];
AFB1toMSy = Evaluate[AFB1toMSy]/.SoIMxMyMSI[[1]];

(*Main Shaft - Sum of Forces*)

AFB2toMS = - AFB1toMS + Tc1".FFMStoC13 + Tcl".FFMStoC14 + AFMStoCR1 + AFMStoCR2 +
AFMStoCR3 + AFMStoCR4 + AFMStoCR5 + AFMStoCR6 + AFMStoCR7 + AFMStoCR8 +
AFMStoCR9 - AWms;

AFB2toMSx = Interpolation[Table[{t, AFB2toMS[[1]]}, {t, 0, 1, 0.0001}]];

AFB2toMSy = Interpolation[Table[{t, AFB2toMS[[2]]}, {t, 0, 1, 0.0001}]];

AFB2toMSz = Interpolation[Table[{t, AFB2toMS[[3]]}, {t, 0, 1, 0.0001}]];
AFB2toMS = {AFB2toMSx[t], AFB2toMSy[t], AFB2toMSz[t]};

(*Displacement Mechanism (Actuating Link) - Sum of moments about point 90%)
MomentAC90 = Chopl[ - (ArACtoY66 - ArRAMtoAC90)xAFACtoY66 + (ArWAC -
ArRAMtoAC90)xAWAC - (ArWAC - ArRAMtoAC90)x(MAC*AaAC) - AIAC.AaAC];

MxAC90 = Simplify[MomentAC90[[1]]]
soIMxAC90 = Solve[{MxAC90-=0}, {FACtoY66N}]
FACtoY66N = Evaluate[FACtoY66N]/.soIMxAC90[[1]];

(*Displacement Mechanism (Actuating Link) - Sum of moments about point 66*)
MomentAC66 = Chop[(ArRAMtoAC90 - ArACtoY66)xAFRAMt0ACI0 + (ArWAC -
ArACtoY66)xAWAC - (ArWAC - ArACtoY66)x(MAC*AaAC) - AIAC.AaAC];

MxAC66 = Simplify[MomentAC66[[1]]]
solMxAC66 = Solve[{MxAC66==0}, {FRAMtoAC90y}]
FRAMtoAC90y = Evaluate[FRAMtoAC90y]/.solMxXAC6E6][[1]];

AMCtoY67 = {0, 0, 0};

AMCtoY68 = {0, 0, 0};

AMACtoY66 = {0, 0, 0};

MomentVPplusOS = Tos[#, ¢].((ArCtoY68 - ArCtoY67)xAFCtoY68) + Tos[6, ¢].((ArACtoY66 -
ArCtoY67)xAFACtoY66) + Tos[6, #].((Tvp"Hrvp - ArCtoY67)xAWvp) + Tos[6, ¢].((ArHPAtoY79 -

ArCtoY67)xAFHPAtoY79) + Tos[6, ¢].((ArLPAtoY78 - ArCtoY67)xAFLPAtoY78) + (DrOILtoVP -
Tos[6, ¢].ArCtoY67)x(DFOILtoVP1 + DFOILtoVP2 + DFOILtoVP3 + DFOILtoVVP4 + DFOILtoVP5 +

DFOILtoVP6 + DFOILtoVP7 + DFOILtoVP8 + DFOILtoVP9) - Tos[6, ¢].((Tvp'.Hrvp -

ArCtoY67)x(Tvp".(Mvp*Havp))) - Tos[8, #].(Tvp™.(HIvp.Havp)) - Tos[6, ¢].((Ar29 -
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ArCtoY67)x(Tc2".IFOStoC229)) - Tos[6, ¢].((Ar30 - ArCtoY67)x(Tc2".IFOStoC230)) - (Dr31 - Tos[6,

¢].ArCtoY67)xDFBtoP1 - (Dr32 - Tos[6d, ¢].ArCtoY67)xDFBtoP2 - (Dr33 - Tos[6, ¢].ArCtoY67)xDFBtoP3
- (Dr34 - Tos[6, ¢].ArCtoY67)xDFBtoP4 - (Dr35 - Tos[6, ¢].ArCtoY67)xDFBtoP5 - (Dr36 - Tos[#,
¢].ArCtoY67)xDFBtoP6 - (Dr37 - Tos[d, ¢].ArCtoY67)xDFBtoP7 - (Dr38 - Tos[6, ¢].ArCtoY67)xDFBtoP8
- (Dr39 - Tos[6, ¢].ArCtoY67)xDFBtoP9 + (DrOS - Tos[#6, ¢].ArCtoY67)x(Tos[6, ¢].AWos) + (DrOILtoB1
- Tos[#, #].ArCtoY67)xDFOILtoB1 + (DrOILtoB2 - Tos[6, ¢].ArCtoY67)xDFOILtoB2 + (DrOILtoB3 -
Tos[6, ¢].ArCtoY67)xDFOILtoB3 + (DrOILtoB4 - Tos[8, ¢].ArCtoY67)xDFOILtoB4 + (DrOILtoB5 -
Tos[6, ¢].ArCtoY67)xDFOILtoB5 + (DrOILtoB6 - Tos[d, ¢].ArCtoY67)xDFOILtoB6 + (DrOILtoB7 -
Tos[6, ¢].ArCtoY67)xDFOILtoB7 + (DrOILtoB8 - Tos[d, ¢].ArCtoY67)xDFOILtoB8 + (DrOILtoB9 -
Tos[6, ¢].ArCtoY67)xDFOILtoB9 - Mos*((DrOS - Tos[#, ¢].ArCtoY67)x(Tos[6, ¢].Aaos)) - Dlos.Daos;

MxVPplusOS = MomentVPplusOS[[1]];
MyVPplusOS = MomentVPplusOS[[2]];

MzVPplusOS = MomentVPplusOS[[3]];
solMomentVPplusOS = NSolve[{MxVPplusOS==0, MyVPplusOS==0, MzVPplusOS==0}, {FCtoY68y,
FCtoY68z, FACtoY66P}];

FCtoY68y = Evaluate[FCtoY 68y]/.solMomentVPplusOS[[1]];
FCtoY68z = Evaluate[FCtoY 68z]/.soIMomentVPplusOS[[1]];
FACtoY66P = Evaluate[FACtoY66P]/.solMomentVPplusOS[[1]];

FCtoY68y = Interpolation[Table[{t, FCtoY68y}, {t, 0, 1, 0.0001}]]
FCtoY68z = Interpolation[Table[{t, FCtoY68z}, {t, 0, 1, 0.0001}]]
FACtoY66P = Interpolation[Table[{t, FACtoY66P}, {t, 0, 1, 0.0001}]]

AFCtoY68 = {0, FCtoY68y]t], FCtoY68z[t]}
AFACtoY66 = {0, FACtoY66P[t]*Sin[e - y8] + FACtoY66N*Cos[e - y8], FACtoY66P[t]*Cos[e - 8] -
FACtoY66N*Sin[e - 8]}

ForceVPplusOS = Tos[6, ¢].(AFCtoY67 + AFCtoY68 + AFACtoY66 + AWvp + AFLPAtoY78 +
AFHPAtoY79 - Tvp™.(Mvp*Havp) + AWos - Mos*Aaos - Tc2™.(IFOStoC229 + IFOStoC230)) +

DFOILtoVP1 + DFOILtoVP2 + DFOILtoVP3 + DFOILtoVP4 + DFOILtoVP5 + DFOILtoVP6 +
DFOILtoVP7 + DFOILtoVP8 + DFOILtoVP9 + DFOILtoB1 + DFOILtoB2 + DFOILtoB3 + DFOILtoB4 +
DFOILtoB5 + DFOILtoB6 + DFOILtoB7 + DFOILtoB8 + DFOILtoB9 - DFBtoP1 - DFBtoP2 - DFBtoP3 -
DFBtoP4 - DFBtoP5 - DFBtoP6 - DFBtoP7 - DFBtoP8 - DFBtoP9;

AFCtoY67 = - AFCtoY68 - AFACtoY66 - AWvp - AFLPAtoY78 - AFHPAtoY79 + Tvp™.(Mvp*Havp) -

AWos + Mos*Aaos + Tc2".(IFOStoC229 + IFOStoC230) - Tos[6, ¢]".(DFOILtoVP1 + DFOILtoVP2 +

DFOILtoVP3 + DFOILtoVP4 + DFOILtoVP5 + DFOILtoVP6 + DFOILtoVVP7 + DFOILtoVP8 +
DFOILtoVP9 + DFOILtoB1 + DFOILtoB2 + DFOILtoB3 + DFOILtoB4 + DFOILtoB5 + DFOILtoB6 +
DFOILtoB7 + DFOILtoB8 + DFOILtoB9 - DFBtoP1 - DFBtoP2 - DFBtoP3 - DFBtoP4 - DFBtoP5 -
DFBtoP6 - DFBtoP7 - DFBtoP8 - DFBtoP9);

FCtoY67x = Interpolation[Table[{t, AFCtoY67[[1]]}, {t, O, 1, 0.0001}]];

FCtoY67y = Interpolation[Table[{t, AFCtoY67[[2]]}, {t, O, 1, 0.0001}]];

FCtoY67z = Interpolation[Table[{t, AFCtoY67[[3]]}, {t, O, 1, 0.0001}]];

AFCtoY67 = {FCtoY67x]t], FCtoY67y][t], FCtoY67z[t]};

(*Displacement Mechanism (Actuating Link) - Sum of forces*)
ForceAC = AFRAMtoAC90 - AFACtoY66 + AWAC - MAC*AaAC;



FzAC = ForceAC[[3]]
FyAC = ForceAC[[2]]

s0lFZAC = Solve[{FyAC==0}, {FRAMtoAC90z}]
FRAMtoAC90z = Evaluate[FRAMtoAC90z]/.solFZAC[[1]];

(*Ram - Sum of Forces*)
ForceRam = - AFRAMtoAC90 + AFCtoRAM90 + AWRAM + AFPtoRAM - MRAM*AaRAM,;

FyRam = ForceRam[[2]]
FzRam = ForceRam[[3]]

solForceRam = NSolve[{FyRam==0, FzZRam==0}, {NCtoRAM90, PRAM}];
NCtoRAM90 = Evaluate[NCtoRAM90]/.solForceRam[[1]];
PRAM = Evaluate[PRAM]/.solForceRam[[1]];

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\Mahematica models\WAFB1toMSx.xls",
Chop[Table[{t, - AFB1toMS[[1]]}, {t, 0, 0.12, 0.0001}]1];
Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\WAFB1toMSy.xls",
Chop[Table[{t, - AFB1toMS[[2]]}, {t, 0, 0.12, 0.0001}]1];
Export["'C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\NAFB1toMSmag.xIs",
Chop[Table[{t, Norm[AFB1toMS]}, {t, 0, 0.12, 0.0001}111;
Export["'C:\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica modelsNAFB2toMSx.xIs",
Chop[Table[{t, - AFB2toMS[[1]]}, {t, 0, 0.12, 0.0001}]1];

Export["C:\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\WAFB2toMSy.xls",
Chop[Table[{t, - AFB2toMS[[2]]}, {t, 0, 0.12, 0.0001}]]];
Export["C:\\Users\\noor\\Documents\WNABH\\Dissertation\\Mahematica models\NAFB2toMSz.xIs",
Chop[Table[{t, - AFB2toMS[[31]}, {t, 0, 0.12, 0.0001}1]];
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\AFB2toMSmag.xIs"
Chop[Table[{t, Norm[AFB2toMS]}, {t, 0, 0.12, 0.0001}]1];

Export["'C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica modelsNAFCtoY67x.xls",
Chop[Table[{t, - AFCtoY67[[1]]}, {t, 0, 0.12, 0.0001}]]]
Export["'C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica modelsNAFCtoY67y.xls",
Chop[Table[{t, - AFCtoY67[[2]]}, {t, 0, 0.12, 0.0001}]]]
Export["'C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\AFCtoY67z.xIs",
Chop[Table[{t, - AFCtoY67[[3]]}, {t, 0, 0.12, 0.0001}1]]
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica modelsWAFCtoY 67mag.xIs",
Chop[Table[{t, Norm[AFCtoY67]}, {t, 0, 0.12, 0.0001}]1]

Export["C:\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\WAFCtoY 68y.xIs",
Chop[Table[{t, - AFCtoY68[[2]]}, {t, 0, 0.12, 0.0001}]]]
Export["'C:\\Users\\noor\\Documents\NABH\\Dissertation\\Mahematica models\\AFCtoY68z.xIs",
Chop[Table[{t, - AFCtoY68[[3]]}, {t, 0, 0.12, 0.0001}]]]
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\WAFCtoY 68mag.xIs",
Chop[Table[{t, Norm[AFCtoY68]}, {t, 0, 0.12, 0.0001}]1]
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\N\AFCtoRAM90y.xIs",
Chop[Table[{t, - AFCtoRAM90[[2]1}, {t, 0, 0.12, 0.0001}]]]
Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica modelsWAFCtoRAM90z.xIs",
Chop[Table[{t, - AFCtoRAM90[[3]1}, {t, 0, 0.12, 0.0001}]]]

Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica modelsWAFCtoRAM90mag.xls",

Chop[Table[{t, Norm[AFCtoRAM90]}, {t, 0, 0.12, 0.0001}]]]
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DFTofAFB1toMSx = Take[Abs[Fourier[Table[AFB1toMS[[1]], {t, 0, 1, 1/(1024)}], FourierParameters—{ -

1, 1311, {1, 256}];
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ListLinePlot[DFTofAFB1toMSX, PlotRange—All, AxesLabel-{"Frequency (Hz)", "AFB1toMSx (N)"},
LabelStyle—Directive[Bold], PlotStyle—Thick]

Export["C:\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models\DFTofAFB1toMSx.xls",
DFTofAFB1toMSx];

s3 = OpenWrite["Fcase.nb"]
Write[s3, AFB1toMS[[1]]]
Write[s3, AFB1toMS[[2]]]
Write[s3, Norm[AFB1toMS]]
Write[s3, AFB2toMS[[1]]]
Write[s3, AFB2toMS[[2]]]
Write[s3, AFB2toMS[[3]]]
Write[s3, Norm[AFB2toMS]]
Write[s3, AFCtoY67[[1]]]
Write[s3, AFCtoY67[[2]]]
Write[s3, AFCtoY67[[3]]]
Write[s3, Norm[AFCtoY67]]
Write[s3, AFCtoY68[[2]]]
Write[s3, AFCtoY68[[3]]]
Write[s3, Norm[AFCtoY68]]
Write[s3, AFCtoRAMI0[[2]]]
Write[s3, AFCtoRAMO90[[3]]]
Write[s3, Norm[AFCtoRAM90]]
Close[s3]
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APPENDIX C: MATHEMATICA NOTEBOOK TO SOLVE FOR THE ORIFICE

AREA AND THE SOLID AREA BETWEEN SUCCESSIVE CYLINDERS

(*Constant Inputs*)
SetDirectory["C :\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models"]

L45 = Length of notch groove base (Figure 3-20);
R2 : = QOutside radius of the discharge/suction port (Figure 2-5);
R3 : = Inside radius of the discharge/suction port (Figure 2-5);

#1 : = See Figure 3-17;
#2 - = See Figure 3-17;
#3 : = See Figure 3-17;
@4 : = See Figure 3-17;
#5 : = See Figure 3-17;
#6 = See Figure 3-17;

¢7 : = See Figure 3-17;
#8 : = See Figure 3-17;
#9 : = See Figure 3-17;

Al : = See Figure 3-29;
A2 : = See Figure 3-29;
A3 : = See Figure 3-29;
A4 : = See Figure 3-29;
A5 : = See Figure 3-29;
A6 : = See Figure 3-29;
A7 : = See Figure 3-29;
A8 : = See Figure 3-29;
A9 : = See Figure 3-29;
A10 : = See Figure 3-29;
A1l : = See Figure 3-29;
A12 : = See Figure 3-29;
A13 : = See Figure 3-29;

{D : = Angle between two successive cylinders;

{c : = Angle between center lines of the circular ends of the bottom of the cylindrical cavity (Figure 3-32);
£1 : = Angular position of center line of circular end of discharge port with respect to the TDC (Figure 3-32);
£ : = Kidney angle of the valve plate;

(*Orifice area*)
Rk = (R2 - R3)/2;
Aorl = 0.00002*(2Pi*Rk + R2*/c + R3*(c);

C1=(R2°+6 R2R3 + R3?;
C2 = Sqrt[(3 R2 + R3)(R2 + 3 R3)]
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L16 = Sqrt[(1/(8(R2 + R3)?) Sin[(¢ - ¢2)/2]* (2 C1% + C2% (R2 - R3)* + C2 (R2 - R3) (C2 (R2 - R3) Cos[ic +
¢ +¢2] + 2 C1 Sin[{c + ¢ + ¢2])))];

L17 = Sqrt[ 1/(16(R2 + R3)?) (( C1 (Cos[1] - Cos[¢c/2 + ¢2]) + (R2 - R3)C2( Sin[¢1] + Sin[¢c/2 + $2]))"2
+ C1 (Sin[¢c/2 + ¢2] - Sin[¢1]) + 2 (R2 - R3)C2)7;

Aor2[¢_] = (LA5*L16/L17)"2/4 + Aorl;

(*Coordinates of point (5)*)
Aor3[¢¢_] : = Module[{Aor3, L12, 61}, L12 = \[Sqrt](0.5(R2* - 6 R2 R3 + R3” + (R2 + R3)* Cos[¢ - {1 +
£c/2))); 61 = 2*ArcSin[L12/(2*RK)]; Aor3[¢_] = Simplify[Rk”2 (61 - Sin[61]) + Aor2[¢3]]; Aor3[¢4]];

Aor3F : = ReadList["C :\\Users\\noor\\Documents\\ABH\\Dissertation\\Mahematica models\\Aor3.txt",
Number, RecordLists—True];

func3 : = ao + al xx + a2 xx"2 + a3 xx"3;

FindFit[Aor3F, func3, {ao, al, a2, a3}, {xx}I;

fit3 = func3/.%;

Aor3fit[¢_] =0.0000323178 - 0.000379348 ¢ + 0.00132973 ¢2 - 0.000954045 ¢3;

Aord[¢_] = Aor3fit[4];

Aor5[¢¢ ] : = Module[{Aor5, 62}, 62 = ¢ + £c/2 - £1; Aor5[¢ ] = Pi*Rk"2 + 0.5*(R2"2 - R3"2)*62 + Aorl
+ L4572/4; Aor5[¢e]]

Aor5F[¢_] = 0.0000570751 + 0.000242107 ( - 0.506844 + ¢)

62P = ¢6 + (cl2 - {1;
AorB[¢_] = Pi*RKA2 + 0.5%(R22 - R32)*52P + Aorl + L45°2/4 + Aorl

Aor7[¢e_] : = Module[{Aor7, 63}, 63 = Pi - ({1 - £c/2 + ¢); Aor7[¢_] : = Aorl + LA5"2/4 + Pi*RK"2 +
0.5*(R272 - R3"2)*63; Aor7[¢¢]]

Aor7F[¢_] = 0.0000570751 + 0.000242107 (2.634749 - ¢)

Aor8[¢¢_]: = Module[{Aor8, L12, 61}, L12 =\[Sqrt](0.5%(R2° - 6 R2 R3 + R3’ - (R2 + R3)? Cos[{1 - {c/2
+ ¢])); Rk = (R2 - R3)/2; 61 = 2*ArcSin[L12/(2*RK)]; Aor8[¢_] = Simplify[Rk"2 (61 - Sin[61]) + Aorl];
Aor8[¢4]]

Aor8F : = ReadList["C :\\Users\\noor\\Documents\ABH\\Dissertation\\Mahematica models\\Aor8.txt",
Number, RecordLists— True]

func8 : =ao00 + all x1 + a22 x1°2 + a33 x1"3;
FindFit[Aor8F, func8, {ao0o, all, a22, a33}, {x1}];
fit8 = func8/.%;

Aorsfit[¢_] = - 0.0176193 + 0.020274 ¢ - 0.00766259 $2 + 0.000954142 ¢3;

Ar[¢_] = Piecewise[{{Aorl, ¢1 - Pi< = ¢p<¢2 - Pi}, {Aor2[¢ + Pi], ¢2 - Pi< = ¢p<¢3 - Pi}, {Aor3fit[¢ + Pi],
3 - Pi< = ¢p<¢5 - Pi}, {Aor5F[¢ + Pi], ¢5 - Pi< = ¢p<¢6 - Pi}, {Aor6[¢ + Pi], ¢6 - Pi< = ¢<¢7 - Pi},
{Aor7F[¢ + Pi], ¢7 - Pi< = ¢<¢8 - Pi}, {Aor8fit[¢ + Pi], #8 - Pi< = ¢p<¢9 - Pi}, {Aorl, ¢1< = ¢<¢2},
{Aor2[¢], ¢2< = ¢p<¢3}, {Aor3fit[¢], p3< = ¢p<¢S}, {A0rSF[¢], ¢5< = p<¢6}, {A0r6[¢], ¢b< = ¢<¢7},
{Aor7F[¢], p7< = ¢p<¢8}, {Aor8fit[¢], #8< = p<¢9}, {Aorl, ¢p9< = ¢p<Pi}}];

Needs["FourierSeries™]
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s = OpenWrite["AoRF.nb"]
Write[s, ArFR[¢_] = NFourierTrigSeries[Ar[¢], ¢, 40, AccuracyGoal—3, PrecisionGoal-3]]
Close[s]

(*Solid area between succesive cylinders*)
Ass2[p¢_] = Module[{Ass2, 64}, 64 =- 1 - (cl2 + (D + ¢; Ass2[¢_] : = 0.5*%04*(R2/2 - R3"2); Ass2[od]];

Asl = 0.5%(R2/2 - R3"2)*( - {1 - [c/2 + (D + A2);
As3[¢¢_] : = Module[{As3, 61, 64}, 61 : = 2*ArcSin[Sqrt[0.5*(R2% - 6 R2 R3 + R3% + (R2 + R3)? Cos[1 -
£cl2 - oD(R2 - R3)]; 64 : = - 1 - [c/2 + (D + ¢; As3[¢_] : = 0.5*64*(R2/2 - R372) - 0.25%(R2 - R3)%*(61 -
Sin[61]); As3[#4]]

Rk = (R2 - R3)/2;
Asd : = 0.5%(¢D - {c)*(R2"2 - R3"2) - Pi*RK2;

As5[¢¢_] : = Module[{As5, 61, 64}, 61 : = 61 = 2 ArcSin[Sqrt[R2% - 6 R2 R3 + R3% - (R2 + R3)? Cos[(1 -
£e/2 + ¢D + ¢11/(Sqrt[2] (R2 - R3))]; 64 = - {1 - {c/2 - ¢ + Pi; As5[¢_] : = 0.5%54%(R22 - R3"2) - 0.25%(R2
- R3)**(41 - Sin[61]); As5[¢¢]]

Asb[p¢_] : = Module[{As6, 64}, 64 : = Pi - ({1 + {c/2 + ¢); Asb[¢_] : = 0.5%54*(R2"2 - R3"2); As6[¢¢]]

AsHalf[¢_] = Piecewise[{{Asl, 0=<¢<A2}, {Ass2][¢], A2<¢<A3}, {As3[¢], A3<p<a4}, {As4, Ad<p<Ab},
{As5[¢], A5<¢<A6}, {As6[¢], A6< = ¢p<AT}, {Asl, A7<¢<Pi}}];

As[¢_] : = AsHalf[¢] + AsHalf[¢ + Pi];
s1 = OpenWrite["Asolid.nb"];

Write[s1, Chop[NFourierTrigSeries[As[¢], ¢, 40, AccuracyGoal—3, PrecisionGoal-3]]];
Close[s1];
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APPENDIX D: MATHEMATICA NOTEBOOK TO SOLVE FOR THE PISTON

PRESSURE

SetDirectory["C :\\Users\\noor\\Documents\WABH\\Dissertation\\Mahematica models"]

(*Orifice area*)

FileOrificeArea = OpenRead["AoRF.nb"];
ArFR[¢_] = Read[FileOrificeArea];
Close[FileOrificeArea];

Ac : = Cylinder cross sectional area;
Ace : = Exit cross sectional area of the cylinder;

B : = Oil bulk modulus;
DF : = Distance from center of spherical joint between piston and connecting rod and the bottom end of the

cylindrical cavity for a zero yoke angle (Figure 3-15);

LC2 : = Length of the convergent part of the cylindrical cavity (Figure 3-14);

LCR : = Length of the connecting rod;

Lis : = Length of input shaft of the CVJ (Figure 3-9);

Lp : = Length of piston that is in the cylinder when axial displacement is zero;

LPtoCR : = Distance from the left face of the piston to the common point between the piston and the
connecting rod;

MH : = Mass of gas in the HPA,;
ML : = Mass of gas in the LPA,

nrated : = Rated speed of pump, rpm;

PlossH : = Pressure losses between the discharge port and the HPA,;
PlossL : = Pressure losses between the suction port and the LPA;
PmaxL = Maximum gas pressure in the LPA

PmaxH = Maximum gas pressure in the HPA;

PPH : = Pre-charge pressure in the HPA,

PPL : = Pre-charge pressure in the LPA,

r : = Pitch circle radius at the barrel side;
R : = Pitch circle radius at the main shaft side;
RN : = Gas constant of nitrogen, J/kg°K;

Ry : = Distance from center of rotation of yoke to center of first or second cross;
Tg : = Temperature of gas in the HPA or LPA at pre-charge, °K;

Vfixed : = Volume of oil at end of the cylinder cavity (conical portion) (Figure 3-14);

o = Oil density;
g = Acceleration of gravity;

¢1 : = See Figure 3-17;
#2 : = See Figure 3-17;
#3 : = See Figure 3-17;
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¢4 : = See Figure 3-17;
#5 : = See Figure 3-17;
#6 = See Figure 3-17;

¢7 : = See Figure 3-17;
#8 : = See Figure 3-17;
#9 : = See Figure 3-17;

¢ = Angular rotation of the main shaft about its axis of rotation;
6 = Angular rotation of the yoke about its axis of rotation;

(*The Piston displacement*)
(o[66_] : = Module[{ o}, o[6_] : = 6+ ArcSin[(r - R Cos[6] - (Ry + Lis) Sin[f])/LCR]; ¢o[6]]

IF[66_,¢¢_]: = Module[{IF},IF[6_,¢_]:=- Ry - (Lis + Ry) Cos[6] + R Cos[¢] Sin[6] + Sqrt[LCR? - Sin[6]?
(Lis + Ry)” - r* +2r R (1 - 2 Cos[¢]” Sin[6/2]) + R* (Sin[¢]* Cos[¢]” - 1) + 2(Lis + Ry)Cos[g]Sin[6](r - R
Cos[ d)]; IF[66,94]];

Z[06_¢¢_] : = Module[{Z,IH},IH : = - Ry + LCR Cos[ ¢o[¢] - 6] - (Lis + Ry) Cos[¢] + R Sin[¢]; Z[6_,¢_] -
= Chop[IH - IF[6,4]]; Z[66,¢4]]

LC1[66_] : = Module[{LC1,CG,GF},yo = ArcSin[(r - R)/LCR]; v1: = ArcTan[r/EH]; EF : = Sqrt[r*2 +
EHN2];

GF[6x_] : = 2*EF*Sin[6x/2]; CG[6x_] : = (DF - LCR Cos[ @o[6x]] + LCR Cos[yo]) Cos[6x] - GF[6X]
Sin[yl - 6x/2] - (- r + R + LCR Sin[ @o[6x]]) Sin[6x]; LC1[6x_] : = CG[6#x] - LC2 - Lpl; LC1[64]]

Vmin[66_] : = Module[{Vmin},Vmin[6x_] : = Chop[LC1[6x]*Ac + Vfixed]; Vmin[66]]

Lmin[66_] : = Module[{Lmin},Dce : = Sqrt[4*Ace/Pi]; Dc : = Sqrt[4*Ac/Pi]; Le : = LC2*Dce/(Dc - Dce);
Lmin[6x_] : = ((2*Ac/9)*(LC2 + Le)"2 - (2*Ace/9)*Le"2 + Ac*LC1[0x]*(LC1[#x]/2 + LC2 + Le) -
Vmin[6x]*Le)/Vmin[6x]; Lmin[66]]

Lv[66_,¢¢ ] : = Module[{Lv},Lv[Ox_,¢x_] : = (VmIn[6x]*Lmin[6X] + Ac*Z[6Ox,dX]*(Z[6x,¢x]/2 + LC1[6X]
+ LC2))/(Vmin[6x] + Ac*Z[6x,¢x]); Lv[66,64]]

VOIL[06_,¢¢ ] : = Module[{VOIL},VOIL[6X_,¢x_]:=Vmin[6x] + Ac*Z[6x,¢X]; VOIL[66,6¢]]

VOILD[tt_,ii_] = Module[{VOILD},VOILD[t_,i_] = Simplify[Dt[VOIL[8,¢ + 2*Pi*(i -
1)/9],t,Constants—{i}]]; VOILD[tt,ii]];

VPH = MH*RN*Tg/PPH; (*precharge volume of HPA*)
VPL = ML*RN*Tg/PPL; (*precharge volume of LPA*)

PminL = PPL/0.9; (*minimum pressure of LPA*)
PminH = PPH/0.9; (*minimum pressure of HPA*)

(*Gas volume at tmin operating pressure*)
VmaxH = ((PPH/PminH)*VPHA1.4)N(1/1.4); (*HPA*)
VmaxL = ((PPL/PminL)*VPL"1.4)N(1/1.4); (*LPA*)

(*Gas volume at max operating pressure*)
VminH = ((PPH/PmaxH)*VPH"1.4)~(1/1.4); (*HPA¥)
VminL = ((PPL/PmaxL)*VPL"1.4)"(1/1.4); (*LPA*)

(*Boundary pressure*)



UnitL1[x_] = (1 - Clip[(1/(¢2 - ¢1))Sin[x - (61 + ¢2)/2]1)/2;
Unit22[x_] = (1 + Clip[(1/(¢2 - ¢1))Sin[x - (¢1 + ¢2)/2]1)/2;

PHI[t_] = PminH*(VmaxH/VH[t])"1.4;
VL[t ]=VmaxH + VminL - VH[t];
PL[t_] = PminL*(VmaxL/VL[t])"1.4;
PD = PHJt] + PlossH + 101325;

PS = PL[t] - PlossL + 101325;

Pb[xx_] = Unit11[xx]*PD + Unit22[xx]*PS;
Cd=0.62

QDSL[t_] = - CA*ArFR[¢]*Sign[POILL[t] - Pb[#]]*Sqrt[2*Abs[POIL1[t] - Pb[#]1/p];
QDS2[t_] = - CA*ArFR[¢ + 2*Pi/9]*Sign[POIL2[t] - Pb[¢ + 2*Pi/9]]*Sqrt[2*Abs[POIL2[t] - Pb[¢ +
é*ggggt]ﬁ]:; - CA*ArFR[¢ + 4*Pi/9]*Sign[POIL3][t] - Pb[¢ + 4*Pi/9]]*Sqrt[2*Abs[POIL3][t] - Pb[4 +
gggfgt]ﬁ]:; - CA*ArFR[¢ + 6*Pi/9]*Sign[POILA[t] - Pb[¢ + 6*Pi/9]]*Sqrt[2*Abs[POILA[t] - Pb[ +
g*ggggt]ﬁ]:; - CA*ArFR[¢ + 8*Pi/9]*Sign[POIL5[t] - Pb[ + 8*Pi/9]]*Sqrt[2*Abs[POIL5][t] - Pb[4 +
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8*Pi/9]]/p]; QDSB[t_] = - CA*ArFR[¢ + 10*Pi/9]*Sign[POILGI] - Pb[¢ + 10*Pi/9]]*Sqrt[2*Abs[POILE[t] -

Pb[¢ + 10*Pi/9]]/p];

QDST7[t_] = - CA*ArFR[¢ + 12*Pi/9]*Sign[POIL7[t] - Pb[¢ + 12*Pi/9]]*Sqrt[2*Abs[POIL7[t] - Pb[4 +

12*Pi/91]/p];

QDSB8I[t_] = - CA*ArFR[¢ + 14*Pi/9]*Sign[POILS[t] - Pb[¢ + 14*Pi/9]]*Sqrt[2*Abs[POILS[t] - Pb[4 +

14*Pil9T]/p];

QDSOIt_] = - CA*ArFR[4 + 16*Pi/9]*Sign[POILI[t] - Pb[¢ + 16*Pi/9]]*Sqrt[2*Abs[POILI[t] - Pb[4 +

16*Pi/9]]/p];
nms = 60D[¢,t]/(2Pi);

nva[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp][ - 0.003403 Abs[POIL1[{] -
Pb[¢]]/1000000]/100;

nv2[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp][ - 0.003403 Abs[POIL2[t] - Pb[¢ +

2Pi/9]]/1000000]/100;

nv3[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp[ - 0.003403 Abs[POIL3[t] - Pb[¢ +

4Pi/9]]/1000000]/100;

nvA[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp][ - 0.003403 Abs[POILA[t] - Pb[¢ +

6Pi/9]]/1000000]/100;

nv5[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp][ - 0.003403 Abs[POIL5[t] - Pb[¢ +

8Pi/9]]/1000000]/100;

nv6[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp][ - 0.003403 Abs[POIL6[t] - Pb[¢ +

10Pi/9]]/1000000]/100;

nv7[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp][ - 0.003403 Abs[POIL7[t] - Pb[¢ +

12Pi/9]]/1000000]/100;

nv8[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp][ - 0.003403 Abs[POIL8[t] - Pb[¢ +

14Pi/9]]/1000000/100;

nvO[t_] = (89.10 + 39.0242 (nms/nrated) - 27.725 (nms/nrated)?)*Exp][ - 0.003403 Abs[POILI[t] - Pb[¢ +

16Pi/9]]/1000000/100;

Q1[t_] = QDSI[t]*nv1[t];
Q2[t_] = QDS2[t]*nv2[t];
Q3[t_] = QDS3[t]*nv3[t];
Q4[t_] = QDSA[t]*nvA[t];
Q5[t_] = QDSS[t]*nvs[t];
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Q6[t_] = QDS6[{]*ve[t];
Q7[t_] = QDST[{]*nv7[t];
Q8[t_] = QDS8[t]*nva[t];
QI[t_] = QDSI[t]*nvo[t];

QTTD[t_] = (Abs[QL[]] + Abs[Q2[]] + Abs[Q3[t]] + Abs[QA[t]] + Abs[Q5[t]] + Abs[Q6[t]] + Abs[QT[t]]
+ Abs[QB[t]] + Abs[QOJt]])/2;

(*Solve the differential equation of the oil pressure in the ith cylinder*)

egs = {POILLt] = = (B/VOIL[6,4])*(Q1[t] - VOILD[t,1]),POIL2'[t] = = (B/VOIL[6,¢ + 2*Pi/9])*(Q2][{] -
VOILDIt,2]),POIL3[t] = = (B/VOIL[6,4 + 4*Pi/9])*(Q3[t] - VOILDI[t,3]),POILAt] = = (B/VOIL[8,$ +
6*Pi/9])*(Q4[t] - VOILD[t,4]),POIL5[t] = = (B/VOIL[6,¢ + 8*Pi/9])*(Q5[t] - VOILD[t,5]),POILETt] = =
(B/VOIL[6,4 + 10*Pi/9])*(Q6[t] - VOILD[t,6]),POIL7'[t] = = (B/VOIL[6,¢ + 12*Pi/9])*(Q7][{] -
VOILDIt,7]),POIL8[t] = = (B/VOIL[6,4 + 14*Pi/9])*(Q8[t] - VOILDI[t,8]),POILt] = = (B/VOIL[6,4 +
16*Pi/9])*(QI[t] - VOILD[t,9]),VH[t]= - QTTD[t]};

besl = {POIL1[0] = = PmaxL,POIL2[0] = = PmaxL,POIL3[0] = = PmaxL,POIL4[0] = = PmaxL,POIL5[0]
= = PmaxL,POIL6[0] = = PminH,POIL7[0] = = PminH,POIL8[0] = = PminH,POIL9[0] = = PminH,VH[0] =
=VmaxH};

sol =
NDSolve[{eqgs,bcs1},{POIL1,POIL2,POIL3,POIL4,POIL5,POIL6,POIL7,POIL8,POILY,VH},{t,0,1},MaxS
teps— Infinity,AccuracyGoal—5,PrecisionGoal—5];

Needs["PlotLegends™]
DFTPallPistons = Take[Abs[Fourier[Table[PallPistons[[1]]/1000000,{t,0,1,1/1024}],FourierParameters—{ -

1,1311.{1.256}];

ListLinePlot[DFTPallPistons,PlotRange— All, AxesLabel-{"Frequency (Hz)","Pressure of all pistons
(MPa)"},LabelStyle—Directive[Bold],PlotStyle— Thick]

Export["C :\Users\\noor\\DocumentsWABH\\Dissertation\\Mahematica
models\\Pressure AllPistonsHarmonics10.xIs",DFTPallPistons];

Q1 = Interpolation[Table[{t,Evaluate[Q1[t]/.sol]*60000},{t,0,1,0.0001}]];
Q2 = Interpolation[Table[{t,Evaluate[Q2[t]/.sol]*60000},{t,0,1,0.0001}]];
Q3 = Interpolation[Table[{t,Evaluate[Q3]t]/.s0l]*60000},{t,0,1,0.0001}]];
Q4 = Interpolation[ Table[{t,Evaluate[Q4[t]/.sol]*60000},{t,0,1,0.0001}]];
Q5 = Interpolation[Table[{t,Evaluate[Q5]t]/.sol]*60000},{t,0,1,0.0001}]];
Q6 = Interpolation[Table[{t,Evaluate[Q6]t]/.s0l]*60000},{t,0,1,0.0001}]];
Q7 = Interpolation[Table[{t,Evaluate[Q7][t]/.s0l]*60000},{t,0,1,0.0001}]];
Q8 = Interpolation[Table[{t,Evaluate[Q8]t]/.s0l]*60000},{t,0,1,0.0001}]];
Q9 = Interpolation[Table[{t,Evaluate[Q9][t]/.s0l]*60000},{t,0,1,0.0001}]];

s = OpenWrite["POIL.nb"]

Write[s,Evaluate[PD/.sol]]

Write[s,Evaluate[PS/.sol]]

Write[s,Evaluate[POIL1[t]/.sol]]
Write[s,Evaluate[POIL2[t]/.sol]]
Write[s,Evaluate[POIL3[t]/.sol]]
Write[s,Evaluate[POIL4[t]/.sol]]
Write[s,Evaluate[POIL5[t]/.sol]]
Write[s,Evaluate[POIL6[t]/.s0l]]
Write[s,Evaluate[POIL7[t]/.sol]]
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Write[s,Evaluate[POIL8[t]/.sol]]
Write[s,Evaluate[POIL9[t]/.sol]]
Write[s,Evaluate[Pb[¢]/.sol]]
Close[s]

s2 = OpenWrite["QOIL.nb"]
Write[s2,Q1[t]]
Write[s2,Q2[t]]
Write[s2,Q3[t]]
Write[s2,Q4[t]]
Write[s2,Q5[t]]
Write[s2,Q6[t]]
Write[s2,Q7[t]]
Write[s2,Q8[t]]
Write[s2,Q9[t]]
Close[s2]



