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We study the tangent TG and cotangent bundles T ∗G of a Lie group G which

are also Lie groups. Our main results are to show that on TG the canonical Jacobi

endomorphism field S is parallel with respect to the canonical Lie group connection

Lie group and that dually on the cotangent bundle of G the canonical symplectic

form is parallel with respect to the canonical connection.

We next prove some theorems for Lie algebra extensions in which we can obtain

a group representation for the extended algebra from the representation of the lower

dimensional algebra. We also determine the Lie algebra of the automorphism group

of three well known Lie algebras.

Finally we study the Hamilton-Jacobi separability of conformally flat metrics and

find a metric, Lagrangian and geodesics for the solvable codimension one nilradical

six dimensional Lie Algebras where one exists.
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Chapter 1

TG and T*G as Lie groups

In this chapter we bring together the differential geometric structure of the tangent

and cotangent bundles of a smooth manifold and the canonical symmetric connection

of any Lie group. More precisely let G be a finite dimensional Lie group and let

TG and T ∗G denote the tangent and cotangent bundles of G. Then as we explain in

Sections 1.4 and 1.5 the bundles TG and T ∗G are themselves Lie groups. In Section

1.1 we review the geometric structure enjoyed by tangent and cotangent bundles in

general. Section 1.3 reviews the definition and some of the main properties of the

canonical symmetric connection of any Lie group. Our main results in sections 1.4 and

1.6 are to show that on TG the canonical Jacobi endomorphism field is parallel with

respect to canonical connection and that dually on T ∗G the canonical symplectic form

is parallel with respect to the canonical connection. Thus T ∗G carries a canonical

symplectic connection.

It is true that there is some danger of confusion with regard to our lifting formulas

for TM and T ∗M . However, we have designed this chapter in such a way that we never

1
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simultaneously discuss TM and T ∗M or TG and T ∗G. The summation convention

on repeated indices applies throughout.

1.1 Vector fields on Manifolds

Suppose the M is an m−manifold and that ϕt is a 1-parameter group of diffeo-

morphisims of M, that is to say ϕ : R×M → M such that ϕs(ϕt(x)) = ϕs+t(x) and

ϕ0(x) = x for all x ∈ M . There is a vector field associated to ϕ which we denote by

Xϕ and which is characterized by the property that

Xϕf(x) =
d

dt
(f ◦ ϕt(x))

∣∣∣∣
t=0

(1.1)

for all smooth functions f on M . Now we recall that an integral curve γ(t) of a

vector field X on M is a curve on M such that for all smooth functions f on M with

γ(t0) = x, we have

Xf(x) =
d

dt
(f ◦ γ(t))

∣∣∣∣
t=0

. (1.2)

Proposition 1.1.1 For a fixed x ∈ M , the curves t 7→ ϕt(x) (orbits of x under the

action of ϕ) are integral curves of Xϕ.



3

Proof: We note that

d

dt
(f ◦ ϕt(x))

∣∣∣∣
t=0

=
d

dτ
(f ◦ ϕτ ◦ ϕt0(x))

∣∣∣∣
τ=0

(τ = t− t0)

=
d

dτ
(f ◦ ϕτ (ϕt0(x)))

∣∣∣∣
τ=0

= Xϕf(ϕt0(x)).

In view of (1.2) this last condition says that t 7→ ϕt(x) is an integral curve of X.

�

Notice that if we think of the vector field X as being specified by an equiva-

lence class of curves ϕt(x), gives us a representative from each class at each x ∈ M .

Hence we write X(x) = [ϕt(x)]. Also it is precisely the group property that makes

Proposition 1.1.1 work.

Now let ϕ : M 7→ N be a map of smooth manifolds. We denote the induced

bundle map from TM to TN by Tϕ. Although there is always such a vector bundle

morphism, it does not in general induce a map of vector fields on M to vector fields

on N; indeed this situation occurs only in special case where ϕ is a diffeomorphism.

However, it is meaningful to speak of a vector field X on M being ϕ − related to a

vector field Y on N . In this case

ϕ∗X = Y (1.3)
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at each point in M . We can rewrite this condition more conveniently as

X(f ◦ ϕ) = (Y f) ◦ ϕ (1.4)

for all smooth f : N 7→ R. Here we note that both quantities in (1.4) are regarded

as defining functions on M . Using this criterion of ϕ -relatedness of vector fields, we

now show:

Proposition 1.1.2 The Lie bracket of ϕ -related vector fields are ϕ -related.

Proof: Let X1, X2 be ϕ -related to Y1, Y2 respectively. Let f : N 7→ R. Then

X2(f ◦ ϕ) = (Y2f) ◦ ϕ

since X2, Y2 are ϕ -related. But Y1f is a function on N , hence

X2(Y1f ◦ ϕ) = Y2(Y1f) ◦ ϕ

⇒ X2(X1(f ◦ ϕ)) = Y2(Y1f) ◦ ϕ

since X1, Y1 are ϕ -related. Hence

X1X2(f ◦ ϕ)−X2(X1(f ◦ ϕ)) = Y1(Y2f) ◦ ϕ− Y2(Y1f) ◦ ϕ

that is

[X1, X2](f ◦ ϕ) = ([Y1, Y2]f) ◦ ϕ
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and so by (1.4), we have that [X1, X2] and [Y1, Y2] are ϕ -related.

�

1.2 Vector Fields on a Lie Group

We specialize next to the case where M = G is a Lie group. Of course the previous

developments remains true, but now we have much more structure available. The key

to understanding the structure of Lie groups is the following fact [13, 28]:

Theorem 1.2.1 The following four sets are in one-to-one natural correspondence:

1. TIG the set of tangent vectors to G at the identity I

2. The set of left invariant vector fields on G

3. The set of right invariant vector fields on G

4. The one-parameter subgroups of G.

Next we define the multiplication on TG and show that TG is a group. In this Section

we denote an element in TG by a tilde (v), for example Ã ∈ TAG. We also use the

maps LA, RA : G → G, left and right translation by an element A in the Lie group

G, respectively. Those two maps induce another two on TG, namely,

TLA, TRA : TG → TG,

Lemma 1.2.1 The product Ã.B̃ := LA∗B̃ + RB∗Ã on TG, makes TG a group.

Proof: We note the following:
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• TG is closed under this product: LA∗B̃, RB∗Ã ∈ TABG, and so does their sum.

• We denote Ĩ = 0I for the identity element of TG, where I is the identity in G.

Then

Ã.Ĩ = LA∗Ĩ + RI∗Ã

= LA∗0I + Ã

= Ã.

Similarly, we have Ĩ .Ã = Ã.

• Next we show that the inverse element Ã
−1

= −LA−1∗RA−1∗Ã. We assume that

B̃ is the inverse of Ã in TG, then we have

0I = Ã.B̃ = LA∗B̃ + RB∗Ã

⇒ LA∗B̃ = −RB∗Ã and A.B = I

Also 0I = B̃.Ã = LB∗Ã + RA∗B̃

⇒ LB∗Ã = −RA∗B̃ and B.A = I

⇒ B = A−1 and

B̃ = −LA−1∗RA−1∗Ã.

• Finally we check associativity: we take Ã, B̃, C̃ ∈ TG and we want to show that

(
Ã.B̃

)
.C̃ = Ã.

(
B̃.C̃

)
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so we consider

(
Ã.B̃

)
.C̃ =

(
LA∗B̃ + RB∗Ã

)
.C̃

= LA.B∗C̃ + RC∗

(
LA∗B̃ + RB∗Ã

)
= LB∗LA∗C̃ + RC∗LA∗B̃ + RC∗RB∗Ã

= LA∗

(
LB∗C̃ + RC∗B̃

)
+ RB.C∗Ã

= LA∗

(
B̃.C̃

)
+ RB.C∗Ã

= Ã.
(
B̃.C̃

)
.

�

The following theorems are mentioned in [32] but we do not consider the account given

there to be satisfactory because the proof is only given in terms of local coordinates.

Theorem 1.2.2 If X is a left invariant vector field on G, then its vertical lift Xv is

left invariant on TG.

Proof: If X is left invariant vector field on G, then we have X(A) = [ϕt(A)] for all

A ∈ G. Also since X is left invariant on G, we have

[S.ϕt(A)] = [ϕt(S.A)]. (∀S, A ∈ G) (1.5)

But the equivalence class of curves, Φt(Ã) associated with Xv on TG is

Φt(Ã) = Ã + t.X(A). Ã ∈ TAG (1.6)
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We note next that Φ0(Ã) = Ã and

Φs(Φt(Ã)) = Φs(Ã + t.X(A))

= Ã + t.X(A) + s.X(A)

= Ã + (t + s).X(A)

= Φs+t(Ã),

that is to say, that Φt(Ã) is a 1-parameter group of diffeomorphisms on TG. We

would like to show Xv is left invariant, that is, the equivalence class of curves
[
Φt(Ã)

]
associated with Xv, satisfies (1.5). So we pick any two elements Ã, B̃ in TAG, TBG

respectively, and consider

B̃.Φt(Ã) = B̃.(Ã + t.X(A))

= LB∗

(
Ã + t.X(A)

)
+ RA∗B̃

= LB∗Ã + t.LB∗X(A) + RA∗B̃

= LB∗Ã + RA∗B̃ + t.X(BA) (Since X is left− invariant)

= B̃.Ã + t.X(B.A)

= B̃.A + t.X(B.A)

= Φt(B̃.Ã).

By applying (1.5) on TG, we may conclude that Xv is left invariant on TG.

�
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Theorem 1.2.3 If X is a left invariant vector field on G, then its complete lift Xc

is left invariant on TG.

Proof: We first note that if ϕ : G → G is a smooth map, so is Tϕ : TG → TG, in

particular Tϕx : TxG → Tϕ(x)G for each x ∈ G. To see how Tϕx is defined, we take

an element Ã ∈ TG and a smooth map F : G → R. Then we have

(
TϕxÃ

)
F = Ã(F ◦ ϕ)(x)

Now we take X to be left invariant vector field on G, with equivalence classes X(A) =

[ϕt(A)] for A ∈ G as before. Then its complete lift Xc on TG has the equivalence

classes Xc(Ã) = [Tϕt(Ã)] for Ã ∈ TAG.

Now we want to show that Ã.Tϕt(B̃) = Tϕt(Ã.B), so we take any smooth map

F : TG → R, any x ∈ G, and consider

(
Ã.Tϕt(B̃)(x)

)
F = Ã.

(
B̃.(F ◦ ϕt)(x)

)
= Ã.B̃. (F ◦ ϕt) (x)

= ÃB. (F ◦ ϕt) (x)

= Tϕt(Ã.B)(x)F.

Since x and F were arbitrarily chosen we have Ã.Tϕt(B̃) = Tϕt(Ã.B), and by (1.5)

we obtain the result that Xc is left invariant.

�
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1.3 The Canonical Connection on a Lie Group

In this Section we shall outline the main properties of the canonical symmetric

connection ∇ on a Lie group G [9, 10]. In fact ∇ is defined on left invariant vector

fields X and Y by

∇XY =
1

2
[X,Y ] (1.7)

and then extended to arbitrary vector fields by making ∇ tensorial in the X argument

and satisfy the Leibnitz rule in the Y argument. It can be shown that ∇ is symmetric

and that the curvature tensor on left invariant vector fields is given by

R(X, Y )Z =
1

4
[Z, [X,Y ]]. (1.8)

Furthermore, G is a symmetric space in the sense that R is a parallel tensor field. It

follows from (1.7) that ∇ is flat if and only if the Lie algebra g of G is nilpotent of

order two. The Ricci tensor Rij of ∇ is symmetric and bi-invariant. In fact, if {Xi}

is a basis of left invariant vector fields then

[Xi, Xj] = Ck
ijXk (1.9)

where Ck
ij are the structure constants and relative to this basis the Ricci tensor Rij

is given by

Rij =
1

4
C l

jmCm
il (1.10)
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from which the symmetry of Rij becomes apparent. Indeed, Rij is obtained by trans-

lating to the left or right one quarter of the Killing form. Since Ri
jkl is a parallel tensor

field and Rij is symmetric, it follows that Ricci gives rise to a quadratic Lagrangian

which may, however, not be regular. In fact the Lagrangian is regular if and only if

g is semi-simple because of Cartan’s criterion.

Since our starting point is the Lie algebra g of a Lie group it is of interest to ask

how the ideals of g are related to ∇. To this end we shall quote the following result

[17].

Proposition 1.3.1 Let ∇ denote a symmetric connection on a smooth manifold M .

Necessary and sufficient conditions that there exist a submersion from M to a quotient

space Q such that ∇ is projectable to Q are that there exists an integrable distribution

D on M that satisfies:

(i) ∇XY belongs to D whenever Y belongs to D and X is arbitrary.

(ii) R(Z,X)Y belongs to D whenever Z belongs to D and X and Y are arbitrary

vector fields on M .

Corollary 1.3.2 Every ideal h of g gives rise to a quotient space Q consisting of the

leaf space of the integrable distribution determined by h and ∇ on G projects to Q.
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1.4 The tangent bundle of a Lie group TG

On TG the left invariant vector fields are the vertical and complete lifts

Xv
1 , Xv

2 , ..., Xv
n, Xc

1, X
c
2, ..., X

c
n (1.11)

of the left invariant vector fields {Xi} on G as we proved in the previous section.

They determine a Lie algebra g̃. We describe it in terms of the brackets

[
Xc

i , X
c
j

]
= Ck

ijX
c
k[

Xv
i , Xv

j

]
= 0 (1.12)[

Xc
i , X

v
j

]
= Ck

ijX
v
k .

Since TG is a Lie group it has a canonical connection ∇̃. It is defined on vertical and

complete lifts of a left invariant vector fields on G. So we have

∇̃Xv
i
Xv

j =
1

2

[
Xv

i , Xv
j

]
= 0

∇̃Xv
i
Xc

j =
1

2

[
Xv

i , Xc
j

]
=

1

2
[Xi, Xj]

v = (∇Xi
Xj)

v

∇̃Xc
i
Xv

j =
1

2

[
Xc

i , X
v
j

]
=

1

2
[Xi, Xj]

v = (∇Xi
Xj)

v (1.13)

∇̃Xc
i
Xc

j =
1

2

[
Xc

i , X
c
j

]
=

1

2
[Xi, Xj]

c = (∇Xi
Xj)

c .

Next we find the nonzero components of the curvature tensor R̃ on the vector fields
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(1.11) of TG, using (1.8), and (1.12). We show here the six possible cases:

R̃(Xv
i , Xv

j )Xv
k =

1

4

[
Xv

k , [Xv
i , Xv

j ]
]

= 0

R̃(Xv
i , Xv

j )Xc
k =

1

4

[
Xc

k, [X
v
i , Xv

j ]
]

= 0

R̃(Xc
i , X

v
j )Xv

k =
1

4

[
Xv

k , [Xc
i , X

v
j ]

]
= [Xv

k , [Xi, Xj]
v] = 0

R̃(Xc
i , X

v
j )Xc

k =
1

4

[
Xc

k, [X
c
i , X

v
j ]

]
=

1

4
[Xc

k, [Xi, Xj]
v] (1.14)

=
1

4
[Xk, [Xi, Xj]]

v = (R(Xi, Xj)Xk)
v

R̃(Xc
i , X

c
j )X

v
k =

1

4

[
Xv

k , [Xc
i , X

c
j ]

]
=

1

4
[Xv

k , [Xi, Xj]
c]

=
1

4
[Xk, [Xi, Xj]]

v = (R(Xi, Xj)Xk)
v

R̃(Xc
i , X

c
j )X

c
k =

1

4

[
Xc

k, [X
c
i , X

c
j ]

]
=

1

4
[Xc

k, [Xi, Xj]
c]

=
1

4
[Xk, [Xi, Xj]]

c = (R(Xi, Xj)Xk)
c .

Remark 1.4.1 The center of g̃ has a basis consisting of vertical and complete lifts

in the center of g, that is, Z (g̃) = 〈Z(g)c ∪ Z(g)v〉 ≡ Z̃(g).

Proof: If Xi ∈ Z(g), then [Xi, Xj] = Ck
ijXk = 0 for all j = 1, 2, ..., n. By (1.12) we

have

[
Xc

i , X
c
j

]
= [Xi, Xj]

c = 0[
Xc

i , X
v
j

]
= [Xi, Xj]

v = 0[
Xv

i , Xc
j

]
= [Xi, Xj]

v = 0[
Xv

i , Xv
j

]
= 0.
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So Xc
i , X

v
i ∈ Z(g̃).

On the other hand, if Xc
i ∈ Z(g̃) ⇒

[
Xc

i , X
c
j

]
=

[
Xc

i , X
v
j

]
= 0 for all j. But again by

(1.12) we have that [Xi, Xj] = 0 for all j, that is Xi ∈ Z(g). Similarly if Xv
i ∈ Z(g̃)

then Xi ∈ Z(g) and hence we obtain the result.

�

Remark 1.4.2 The lower central series for g is defined to be

g0 = g

gi = [g, gi−1] i = 1, 2, ...

Then by (1.12) and the above definition the lower central series for g̃ will be

g̃0 = g̃

g̃i = [g̃, g̃i−1] i = 1, 2, ...

and g̃i is generated by the vertical and complete lifts of gi to TG. The derived series

for g is defined to be

g0 = g

gi = [gi−1, gi−1] i = 1, 2, ...
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For the same reason we get

g̃0 = g̃

g̃i = [g̃i−1, g̃i−1] i = 1, 2, ...

and g̃i is generated by the vertical and complete lifts of gi to TG.

Theorem 1.4.1 g̃ is decomposable if and only if g is decomposable.

Proof: If g is decomposable then g is isomorphic to g1 ⊕ g2. But in that case g̃ is

isomorphic to g̃1 ⊕ g̃2 and so g̃ is decomposable.

For the converse note that a projection π : g̃ → g is defined on the basis of g̃, and

can be extended by linearity, as follows

π(Xv
i ) = 0

π(Xc
i ) = Xi.

Note that π is a Lie algebra homomorphism since

π([Xv
i , Xv

j ]) = 0

= [π(Xv
i ), π(Xv

j )],

and
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π([Xc
i , X

v
j ]) = π([Xi, Xj]

v)

= 0.

But

[π(Xc
i ), π(Xv

j )] = [π(Xc
i ), 0]

= 0

Hence π([Xc
i , X

v
j ]) = [π(Xc

i ), π(Xv
j )],

π([Xc
i , X

c
j ]) = π([Xi, Xj]

c)

= [Xi, Xj].

But

[π(Xc
i ), π(Xc

j )] = [Xi, Xj].

Hence π([Xc
i , X

c
j ]) = [π(Xc

i ), π(Xc
j )].

Now suppose that g̃ is decomposable so that g̃ is isomorphic to h1 ⊕ h2. Then

since π is surjective g is spanned by a basis of π(h1) together with a basis of π(h2)

and π(h1), π(h2) / g. Since [h1, h2] = 0, then [π(h1), π(h2)] = 0. If there is an element

x ∈ π(h1)∩π(h2), then π−1(x) ∈ h1∩h2 = 0 ⇒ x = 0. Hence g = π(h1)⊕π(h2), that
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is, g is decomposable.

�

The tangent bundle TG like any tangent bundle possesses a canonical field of

endomorphisms denoted by S, and sometimes known as the Jacobi endomophism [6].

Its local expression is ∂
∂ui ⊗ dxj. In the next Lemma we quote the main properties

enjoyed by S on a general tangent bundle TM . In the Lemma L denotes the Lie

derivative operator.

Lemma 1.4.1 If X is a vector field on M then:

(i) S(Xv) = 0.

(ii) S(Xc) = Xv

(iii) LXcS = 0

(iv) LXvS = 0.

We remark that conditions (i) and (ii) of the last Lemma may be taken as the defini-

tion of S, so it is characterized by its effect on vertical and complete lifts . For much

more thorough accounts we refer to [6, 32].

Theorem 1.4.2 The canonical field of endomorphisms S is parallel with respect to

the canonical connection ∇̃ on TG.

Proof: We need to show that ∇̃XcS = ∇̃XvS = 0 for all complete and vertical vector

fields on TG. We discuss here the four possible cases.
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•

(
∇̃XvS

)
Y v = ∇̃Xv

(
SY v

)
− S

(
∇̃XvY v

)
= ∇̃Xv

(
0
)
− S

(
0
)

= 0

•

(
∇̃XvS

)
Y c = ∇̃Xv

(
SY c

)
− S

(
∇̃XvY c

)
= ∇̃Xv

(
Y v)− S

(
∇XY

)v

= 0

•

(
∇̃XcS

)
Y v = ∇̃Xc

(
SY v

)
− S

(
∇̃XcY v

)
= ∇̃Xv

(
0
)
− S

(
∇XY

)v

= 0
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•

(
∇̃XcS

)
Y c = ∇̃Xc

(
SY c

)
− S

(
∇̃XcY c

)
= ∇̃Xv

(
Y v

)
− S

(
∇XY

)c

=
(
∇XY

)v −
(
∇XY

)v

= 0.

�
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1.5 The cotangent bundle of a Lie group T ∗G

We will use notation similar to the previous section. We denote elements of

T ∗G with Greek letters based at the the corresponding English letter, for example

α ∈ T ∗
AG. We also use the maps L∗

A, R∗
A : T ∗

I G → T ∗
AG.

Lemma 1.5.1 The product α.β := L∗
A−1β + R∗

B−1α on T ∗G, makes it a group.

Proof: We note the following:

• T ∗G is closed under this product, L∗
A−1β, R∗

B−1α ∈ T ∗
ABG, and so is their sum.

• We denote I = 0∗
I for the identity element of T ∗G, where I is the identity in G.

α.I = L∗
A−1I + R∗

Iα

= L∗
A−10∗

I + α

= α

Similarly, we have I.α = α.

• Next we show that the inverse element α−1 = −L∗
AR∗

Aα. We assume that β is
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the inverse of α in T ∗G, then we have

0∗
I = α.β = L∗

A−1β + R∗
B−1α

⇒ L∗
A−1β = −R∗

B−1α and A.B = I

Also 0I = β.α = L∗
B−1α + R∗

A−1β

⇒ L∗
B−1α = −R∗

A−1β and B.A = I

⇒ B = A−1 and

β = −L∗
AR∗

Aα.

• Finally we check the associativity: we take α, β, γ ∈ T ∗
AG, T ∗

BG, T ∗
CG respec-

tively, we want to show that

(α.β) .γ = α. (β.γ)

so we consider

(α.β) .γ = (L∗
A−1β + R∗

B−1α) .γ

= L∗
(A.B)−1γ + R∗

C−1 (L∗
A−1β + R∗

B−1α)

= L∗
B−1.A−1γ + L∗

A−1R∗
C−1β + R∗

C−1R∗
B−1α
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= L∗
A−1 (L∗

B−1γ + R∗
C−1β) + R∗

(B.C)−1α

= L∗
A−1 (β.γ) + R∗

(B.C)−1α

= α. (β.γ)

�

Theorem 1.5.1 Let X be a left invariant vector field on G, let α be its corresponding

Maurer-Cartan left invariant form, then its vertical lift αv to T ∗G is a left invariant

vector field on T ∗G.

Proof: Using Similar notations of (1.5), we note that the equivalence class of curves

Φt(α) associated with αv on T ∗G is given by:

Φt(β) = β + t.α(A) β ∈ T ∗
AG (1.15)

We note first that Φ0(β) = β, and

Φs(Φt(β)) = Φs(β + t.α(A))

= β + t.α(A) + s.α(A)

= β + (t + s).α(A)

= Φs+t(β),

that is to say, that Φt(β) is a 1-parameter group of diffeomorphisms on T ∗G. We

would like to show αv is left invariant, that is the equivalence class of curves [Φt(β)]
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associated with αv, satisfies (1.5). So we pick elements α, β ∈ T ∗
AG; γ ∈ T ∗

CG, and

consider

γ.Φt(β) = γ.(β + t.α(A))

= L∗
C−1(β + t.α(A)) + R∗

A−1γ

= L∗
C−1β + t.L∗

C−1α(A) + R∗
A−1γ

= L∗
C−1β + R∗

A−1γ + t.α(C.A) (Since α is left− invariant)

= γ.β + t.α(C.A)

= Φt(γ.β).

By applying (1.5) on T ∗G, we get that αv is left invariant on T ∗G.

�

Theorem 1.5.2 Let X be a left invariant vector field on G, then its complete lift Xc

to T ∗G is left invariant on T ∗G.

Proof: We first note that if ϕ : G → G is a smooth map, then so is T ∗ϕ : T ∗G → T ∗G,

in particular T ∗ϕA : T ∗
AG → T ∗

ϕ(A)G for each A ∈ G. To see how T ∗ϕA is defined, we

take an element α ∈ T ∗G and vector field Y ∈ TG, then we have

(T ∗ϕAα) Y = (ıY α)ϕ(A).

Now we take X to be left invariant vector field on G, with equivalence classes X(A) =

[ϕt(A)] for A ∈ G as before, then its complete lift Xc on T ∗G has the equivalence
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classes Xc(α) = [T ∗ϕt(α)] for α ∈ T ∗
AG. Now we want to show that β.T ∗ϕt(α) =

T ∗ϕt(β.α), so we take any vector field Y ∈ TG, and consider

(
β.T ∗ϕt(α)

)
Y =

(
L∗

B−1T ∗ϕt(α) + R∗
(ϕt(A))−1β

)
Y

=
(
L∗

B−1 ◦ T ∗ϕt(α)
)
Y +

(
R∗

(ϕt(A))−1β
)
Y

=
(
L∗

B−1ıY α
)
ϕt(A) + R∗

(ϕt(A))−1

(
ıY β

)
(B)

= ıY

(
L∗

B−1α
)
(B.ϕt(A)) + ıY

(
R∗

(ϕt(A))−1β
)
(B.ϕt(A))

= ıY

(
L∗

B−1α + R∗
(ϕt(A))−1β

)
(B.ϕt(A))

= ıY

(
β.α

)
(ϕt(B.A))

=
(
T ∗ϕt(β.α)

)
Y.

Since Y was arbitrarily chosen we have β.T ∗ϕt(α) = T ∗ϕt(β.α), and by (1.5) we get

the result that Xc is left invariant on T ∗G.

�
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1.6 The canonical connection ∇∗ on T ∗G

On T ∗G the left invariant vector fields are the complete lifts of left invariant vector

fields, and the vertical lifts of the Maurer-Cartan left invariant forms on G, namely:

Xc
1, X

c
2, ..., X

c
n, (α

1)v, (α2)v, ..., (αn)v. (1.16)

They determine a Lie algebra g. We describe it by means of the brackets

[
Xc

i , X
c
j

]
= [Xi, Xj]

c = Ck
ijX

c
k[

(αi)v, (αj)v
]

= 0 (1.17)[
Xc

i , (α
j)v

]
= −Cj

ik(α
k)v.

Since T ∗G is a Lie group it has a canonical connection that we denote by ∇∗. Its

values on complete and vertical lifts are as follows:

∇∗
(αi)v(αj)v =

1

2

[
(αi)v, (αj)v

]
= 0

∇∗
(αi)vXc

j =
1

2

[
(αi)v, Xc

j

]
=

1

2
Ci

jk(α
k)v

∇∗
Xc

i
(αj)v =

1

2

[
Xc

i , (α
j)v

]
= −1

2
Cj

ik(α
k)v (1.18)

∇∗
Xc

i
Xc

j =
1

2

[
Xc

i , X
c
j

]
=

1

2
Ck

ijX
c
k.

The following Lemma gives the values of the covariant derivatives of the one-

forms {π∗αi, dX̂i} in T ∗G. Here the notation X̂ means that the vector field X on G

is regarded as defining a real-valued function on T ∗G that is linear in the fiber. In
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coordinates X̂ = X ipi.

Lemma 1.6.1

∇∗
Xc

k
(π∗αj) = −1

2
Cj

kiπ
∗αi

∇∗
(αk)v(π

∗αj) = 0

∇∗
Xc

k
dX̂j =

1

2
Ci

kjdX̂i (1.19)

∇∗
(αk)vdX̂j = −1

2
Ck

ijπ
∗αi.

Proof: The left invariant vector fields on T ∗G are {Xc
1, X

c
2, ..., X

c
n, (α

1)v, (α2)v, ..., (αn)v}

and their dual forms are {π∗α1, π∗α2, ..., π∗αn, dX̂1, dX̂2, ..., dX̂n} that is

< Xc
i , dX̂j > = 0

< Xc
i , π

∗αj > = δj
i

< (αi)v, π∗αj > = 0

< (αi)v, dX̂j > = δi
j.

We use these facts to derive the lemma: thus

• Xc
k < Xc

i , π
∗αj >= 0

< ∇∗
Xc

k
Xc

i , π
∗αj > + < Xc

i ,∇∗
Xc

k
π∗αj >= 0

1
2
C l

ki < Xc
l , π

∗αj > + < Xc
i ,∇∗

Xc
k
π∗αj >= 0

1
2
Cj

kiX
c
j + < Xc

i ,∇∗
Xc

k
π∗αj >= 0

∴ ∇∗
Xc

k
(π∗αj) = −1

2
Cj

kiπ
∗αi.
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• (αk)v < Xc
i , π

∗αj >= 0

< ∇∗
(αk)vX

c
i , π

∗αj > + < Xc
i ,∇∗

(αk)vπ
∗αj >= 0

1
2
Ck

il < (αl)v, π∗αj > + < Xc
i ,∇∗

(αk)vπ
∗αj >= 0

< Xc
i ,∇∗

(αk)vπ
∗αj >= 0.

Similarly

(αk)v < (αi)v, π∗αj >= 0

< ∇∗
(αk)v(α

i)v, π∗αj > + < (αi)v,∇∗
(αk)vπ

∗αj >= 0

< (αi)v,∇∗
(αk)vπ

∗αj >= 0.

Hence we obtain the result that

∇∗
(αk)v(π

∗αj) = 0.

• Xc
k < (αi)v, dX̂j >= 0

< ∇∗
Xc

k
(αi)v, dX̂j > + < (αi)v,∇∗

Xc
k
dX̂j >= 0

− 1
2
Ci

kl < (αk)l, dX̂j > + < (αi)v,∇∗
Xc

k
dX̂j >= 0

− 1
2
Ci

kj+ < (αi)v,∇∗
Xc

k
dX̂j >= 0

∴ ∇∗
Xc

k
dX̂j = 1

2
Ci

kjdX̂i.

• (αk)v < (αi)v, dX̂k >= 0

< ∇∗
(αk)v(α

i)v, dX̂k > + < (αi)v,∇∗
(αk)vdX̂k >= 0

< (αi)v,∇∗
(αk)vdX̂k >= 0.

Similarly

Xc
k < Xc

i , dX̂j >= 0

< ∇∗
Xc

k
Xc

i , dX̂j > + < Xc
i ,∇∗

Xc
k
dX̂j >= 0

1
2
C l

ki < Xc
l , dX̂j > + < Xc

i ,∇∗
Xc

k
dX̂j >= 0
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< Xc
i ,∇∗

Xc
k
dX̂j >= 0

∴ ∇∗
(αk)vdX̂j = −1

2
Ck

ijπ
∗αi.

�

Next we find the nonzero components of the curvature tensor R on the vector fields

(1.16) of T ∗G, using (1.8), and (1.17). We show here the six possible cases:

R((αi)v, (αj)v)(αk)v =
1

4

[
(αk)v, [(αi)v, (αj)v]

]
= 0

R((αi)v, (αj)v)Xc
k =

1

4

[
Xc

k, [(α
i)v, (αj)v]

]
= 0

R(Xc
i , (α

j)v)(αk)v =
1

4

[
(αk)v, [Xc

i , (α
j)v]

]
= −1

4
Cj

il

[
(αk)v, (αl)v

]
= 0

R(Xc
i , (α

j)v)Xc
k =

1

4

[
Xc

k, [X
c
i , (α

j)v]
]

= −1

4
Cj

il

[
Xc

k, (α
l)v

]
(1.20)

=
1

4
Cj

ilC
l
kr(α

r)v

R(Xc
i , X

c
j )(α

k)v =
1

4

[
(αk)v, [Xc

i , X
c
j ]

]
=

1

4
C l

ij

[
(αk)v, Xc

l

]
=

1

4
C l

ijC
k
lr(α

r)v

R(Xc
i , X

c
j )X

c
k =

1

4

[
Xc

k, [X
c
i , X

c
j ]

]
=

1

4
[Xc

k, [Xi, Xj]
c]

=
1

4
[Xk, [Xi, Xj]]

c =
1

4
C l

ijC
r
klX

c
r .

On T ∗G we have the canonical one form θ = pidxi, from which we get the canon-

ical two form by taking exterior derivative: dθ = dpi ∧ dxi. The following Lemma

summarizes all the formulae concerning T ∗M that we shall need.

Lemma 1.6.2 For the canonical one form θ on T ∗G we have the following:

(i) θ
(
αv

)
= 0
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(ii) θ
(
Xc

)
= X̂

(iii) Y c
(
X̂

)
= [̂Y,X]

(iv) dθ
(
αv, βv

)
= 0

(v) dθ
(
αv, Xc

)
= π∗ < α,X >

(vi) dθ
(
Xc, Y c

)
= [̂X, Y ]

(vii) Lαvθ = π∗α

(viii) LXcθ = 0

(ix) LαvX̂ = π∗ < X, α >

(x) LXcŶ = 1
2
[̂X, Y ].

Lemma 1.6.3 For the canonical 1-form θ on T ∗G we have the following:

(i) ∇∗
Xcθ = 0

(ii) ∇∗
αvθ = π∗α.

Proof: We discuss the four possible cases:

(i)

(
∇∗

Xcθ
)
Y c = ∇∗

Xc(θY c)− θ(∇∗
XcY c)

= ∇∗
XcŶ − 1

2
θ
(
[X, Y ]c

)
=

1

2
[̂X, Y ]− 1

2
[̂X, Y ]

= 0.
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(ii)

(
∇∗

Xcθ
)
αv = ∇∗

Xc(θαv)− θ(∇∗
Xcαv)

= 0.

(iii)

(
∇∗

(αi)vθ
)
Xc

j = ∇∗
(αi)v(θXc

j )− θ(∇∗
(αi)vXc

j )

= ∇∗
(αi)vX̂j −

1

2
Ci

jkθ((α
k)v)

= π∗ < Xj, α
i > −0

= δi
j.

(iv)

(
∇∗

(αi)vθ
)
(αj)v = ∇∗

(αi)v(θ(αj)v)− θ(∇∗
(αi)v(αj)v)

= 0.

�

Theorem 1.6.1 The canonical two-form dθ on T ∗G is parallel with respect to the

canonical connection on T ∗G.

Proof: We show the six possible cases here.
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(i)

(
∇∗

(αk)vdθ
)
(Xc

i , X
c
j ) = ∇∗

(αk)v

(
dθ(Xc

i , X
c
j )

)
− dθ

(
∇∗

(αk)vX
c
i , X

c
j

)
−dθ

(
Xc

i ,∇∗
(αk)vX

c
j

)
= ∇∗

(αk)v
̂[Xc

i , X
c
j ]−

1

2
Ck

ildθ
(
(αl)v, Xc

j

)
−1

2
Ck

jldθ
(
Xc

i , (α
l)v

)
= C l

ijL(αk)vX̂l −
1

2
Ck

ilπ
∗ < αl, Xj > +

1

2
Ck

jlπ
∗ < Xi, α

l >

= C l
ijδ

k
l −

1

2
Ck

ilδ
l
j +

1

2
Ck

jlδ
l
i

= Ck
ij −

1

2
Ck

ij +
1

2
Ck

ji

= 0.

(ii)

(
∇∗

Xc
k
dθ

)
(Xc

i , X
c
j ) = ∇∗

Xc
k

(
dθ(Xc

i , X
c
j )

)
− dθ

(
∇∗

Xc
k
Xc

i , X
c
j

)
− dθ

(
Xc

i ,∇∗
Xc

k
Xc

j

)
= ∇∗

Xc
k

̂[Xc
i , X

c
j ]−

1

2
dθ

(
[Xk, Xi]

c, Xc
j

)
− 1

2
dθ

(
Xc

i , [Xk, Xj]
c
)

=
1

2
̂[

Xk, [Xc
i , X

c
j ]

]
− 1

2
̂[

[Xk, Xi], Xc
j

]
− 1

2
̂[

Xi, [Xk, Xj]
]

= 0.
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(iii)

(
∇∗

(αk)vdθ
)
(Xc

i , (α
j)v) = ∇∗

(αk)v

(
dθ(Xc

i , (α
j)v)

)
− dθ

(
∇∗

(αk)vX
c
i , (α

j)v
)

−dθ
(
Xc

i ,∇∗
(αk)v(α

j)v
)

= −∇∗
(αk)vδ

j
i −

1

2
Ck

ildθ
(
(αl)v, (αj)v

)
= 0.

(iv)

(
∇∗

Xc
k
dθ

)
(Xc

i , (α
j)v) = ∇∗

Xc
k

(
dθ(Xc

i , (α
j)v)

)
− dθ

(
∇∗

Xc
k
Xc

i , (α
j)v

)
−dθ

(
Xc

i ,∇∗
Xc

k
(αj)v

)
= −∇∗

Xc
k
δj
i −

1

2
C l

kidθ
(
Xc

l , (α
j)v

)
+

1

2
Cj

kldθ
(
Xc

i , (α
l)v

)
=

1

2
C l

kiδ
j
l −

1

2
Cj

klδ
l
i

= 0.

(v)

(
∇∗

(αk)vdθ
)
((αi)v, (αj)v) = ∇∗

(αk)v

(
dθ((αi)v, (αj)v)

)
− dθ

(
∇∗

(αk)v(α
i)v, (αj)v

)
−dθ

(
(αi)v,∇∗

(αk)v(α
j)v

)
= 0.
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(vi)

(
∇∗

Xc
k
dθ

)
((αi)v, (αj)v) = ∇∗

Xc
k

(
dθ((αi)v, (αj)v)

)
− dθ

(
∇∗

Xc
k
(αi)v, (αj)v

)
−dθ

(
Xc

k,∇∗
(αk)v(α

j)v
)

= 0.

It follows that ∇∗ on T ∗G is an example of a symplectic connection.

�

For more information about symplectic connections we refer the reader to [2, 3].



Chapter 2

Representation theorems for Lie

algebras and Lie groups

If a Lie algebra has a trivial center then the adjoint representation is faithful.

Then by exponentiating the adjoint matrices with parameters and multiplying all

the exponentiated adjoint matrices together we can obtain a representation for the

corresponding matrix Lie group. In fact if we have a faithful representation of a Lie

algebra g as a subalgebra of gl(p, R) for some p that is not necessarily the dimension

of g, the same method works to produce a subgroup of GL(p, R) whose Lie algebra

is isomorphic to g.

However, when there is a non-trivial center we have to use some other techniques

to get a matrix representation for g. The fact such a representation always exists

follows from Ado’s theorem [13, 31] The classification of Lie algebras involves families

depending on parameters. Typically a given Lie algebra belongs to a family of Lie

algebras which depends on several parameters. There are a few Lie algebras which

34
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do not belong to such families and which may or may not have a trivial center. For

generic values the Lie algebra may have a trivial center whereas typically for certain

non-generic values there may be a non-trivial center. It seems that there is no way to

take a limit when the parameters take special values and the algebra has a non-trivial

center.

If we start from a linear Lie group G we can get a representation for the corre-

sponding Lie algebra g in two very different ways. Usually in this dissertation we

denote a typical element in such a group by S. The element S depends on the coor-

dinates on G. A Lie algebra matrix representation can be found by differentiating S

with respect to the coordinates involved and evaluating at the identity.

The other way to obtain a representation is via the Maurer-Cartan form. Let dS

be the differential of the matrix S. Then by calculating S−1dS and dSS−1 we obtain

left and right invariant Maurer-Cartan forms (see A.3) which are g-valued. We can

choose a basis for left or right invariant forms from the entries of S−1dS or dSS−1 and

by dualizing this basis we obtain a basis for the left or right invariant vector fields

(see A.5) and we can check whether we have obtained the required Lie algebra.

The process of finding representations for Lie algebras that have a non-trivial

center is difficult. Part of the goal of the program of my adviser Professor G. Thomp-

son is to find representations for all known Lie algebras and to formulate a number

of Theorems that give the representations in various cases [10, 11, 14, 26]. In the

Theorems below we consider the very special cases of such representations involving

Heisenberg algebras.
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2.1 Heisenberg extensions

We start with an n-dimensional Lie algebra g with structure equations [ei, ej] =

Ck
ijek, so 1 ≤ k ≤ n. We assume only that one vector in g, which without loss of

generality we take to be en, is not in the derived algebra [g, g] of g. We introduce two

more vectors {en+1, en+2} satisfying: [en+1, ei] = [en+2, ei] = 0 (1 ≤ i ≤ n − 1), the

Heisenberg bracket [en+1, en] = en+2 and [en+1, en+2] = [en+2, en] = 0. In other words

we want to extend the algebra g by two dimensions in such a way that there is only

one new non-zero bracket, a Heisenberg bracket.

We claim that the extended (n + 2)-dimensional space is a Lie algebra. As such

we must check the following triples, to ensure that the Jacobi identity is satisfied.

For 1 ≤ i, j, k ≤ n we have:

[[ei, ej], ek] + [[ek, ei], ej] + [[ej, ek], ei] = 0

[[ei, ej], en+1] + [[en+1, ei], ej] + [[ej, en+1], ei] = 0

[[ei, ej], en+2] + [[en+2, ei], ej] + [[ej, en+2], ei] = 0

[[ei, en+1], en+2] + [[en+2, ei], en+1] + [[en+1, en+2], ei] = 0.

Of these four conditions the first follows from the fact that g is a Lie algebra and the

third and fourth because en+2 commutes with every vector. In the second identity,

the expression on the left hand side reduces to Ck
ij[ek, en+1]: however, this term is

also zero because of the assumption that en is not in [g, g]. We obtain a Lie algebra

extension g′ of g. In fact 〈en+1, en+2〉 forms a two-dimensional ideal and g′ splits over

this ideal.

The next issue that we address is that if we know a matrix representation for g,
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can we find a representation for g′? We shall denote the matrix Lie groups associated

to g and g′ by G and G′, respectively.

Theorem 2.1.1 Let S be the matrix of a representation for G in GL(p, R). Then S
′

is the matrix representation of G′ in GL(p + 2, R) where S
′
is given by:

S ′ =



1 w 0 0 y

0 1 0 0 z

0 0

0 0 S

0 0


Proof: We give two proofs here. The first one is based on Maurer-Cartan forms and

the second one on the matrix Lie algebra associated with the extended representation.

(i) Note that

dS
′
=



0 dw 0 0 dy

0 0 0 0 dz

0 0

0 0 dS

0 0


and
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(S
′
)−1 =



1 −w 0 0 wz − y

0 1 0 0 −z

0 0

0 0 S−1

0 0


so that

dS
′
.(S

′
)−1 =



0 dw 0 0 −zdw + dy

0 0 0 0 dz

0 0

0 0 dS.S−1

0 0


.

So the new independent Maurer-Cartan forms are dz and dy−zdw. But d(dz) =

0 =⇒ Cn+1
ij = 0. Similarly d(dy − zdw) = −dz.dw =⇒ Cn+2

n,n+1 = 1 and thus we

obtain the result.

(ii) Let xi be the variables “corresponding” to ei (1 ≤ i ≤ n − 1) and w, z, y

“correspond” to en, en+1, en+2, respectively. Let M
′
i = ∂

∂xi

∣∣∣
I
S

′
, so we have
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M
′

i =



0 0 0 0 0

0 0 0 0 0

0 0

0 0 Mi

0 0


, M

′

w =



0 1 0 0 0

0 0 0 0 0

0 0

0 0 Mw

0 0



M
′

y =



0 0 0 0 1

0 0 0 0 0

0 0

0 0 0

0 0


, M

′

z =



0 0 0 0 0

0 0 0 0 1

0 0

0 0 0

0 0


Note that [M

′
i , M

′
j ] = Ck

ijM
′
i ; 1 ≤ i < j ≤ n.

[M
′
y, M

′
i ] = 0; 1 ≤ i ≤ n− 1.

[M
′
i , M

′
z] = 0; 1 ≤ i ≤ n− 1.

[M
′
w, M

′
z] = M

′
y.

[M
′
y, M

′
z] = 0.

Thus our proof is finished.

�

Remark 2.1.1 It is a bit difficult to find suitable terminology that describes the con-

struction of the previous Theorem. In this dissertation it will be referred to simply as

a “Heisenberg extension”.
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2.2 One-dimensional extension to a three-dimensional

Heisenberg nilradical

Again let g be a Lie algebra. A nil ideal of g is an ideal m of g such that ad X is

nilpotent for each X ∈ m. An ideal m of g is a nil ideal if and only if m, as an algebra,

is nilpotent. Any Lie algebra g has a unique maximal nil ideal which contains every

nil ideal. We call it the nilradical of g. The Lie algebra g is nilpotent if and only if g

is equal to its own nilradical.

Among the simplest of all Lie algebras are algebras that have a codimension one

abelian nilradical. We now want to begin to study the next simplest kind of algebra,

namely, in which the codimension one nilradical is isomorphic to a direct sum of a

three-dimensional Heisenberg and an abelian Lie algebra. Of the low-dimensional Lie

algebras, algebras 7-11 in dimension four [25], algebras 19-29 in dimension five [25]

and algebras 13-38 in dimension six [22] are of this type. Ultimately our goal is to find

a representation for this kind of algebra in terms of an algebra with a codimension

one abelian nilradical. If we quotient by the one-dimensional ideal that is the center

of the nilradical we obtain an algebra with a codimension one abelian nilradical or,

equivalently, we have a non-split one-dimensional extension of the codimension one

abelian nilradical algebra.

Let g be a Lie algebra of dimension n − 1 that has an abelian nilradical ideal of

codimension one, that is, of dimension n− 2. We suppose that a basis for g is given

by {e2, e3, ..., en} where en is not in the nilradical. Then g has only the following

non-zero brackets and the non-zero structure constants are contained in the matrix
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Cj
i :

[ei, en] = Cj
i ej. (2 ≤ i, j ≤ n)

We introduce a new vector e1 that gives an extended algebra g
′

that will have the

following extra brackets:

• [eα, eβ] = e1 for fixed α 6= β between 2 and n− 1 inclusive

• [e1, ei] = 0; 2 ≤ i ≤ n− 1

• [e1, e2n] = λiei; 1 ≤ i ≤ n− 1.

Next we check the Jacobi identity on this algebra and find the sufficient conditions

for the extension.

• [[ei, ej], e1] + [[e1, ei], ej] + [[ej, e1], ei] = 0

• [[ei, eα], e1] + [[e1, ei], eα] + [[eα, e1], ei] = 0

• [[eβ, eα], e1] + [[e1, eβ], eα] + [[eα, e1], eβ] = 0

• [[en, eα], e1] + [[e1, en], eα] + [[eα, e1], en] = λβeβ ⇒ λβ = 0

• [[en, eβ], e1] + [[e1, en], eβ] + [[eβ, e1], en] = λαeα ⇒ λα = 0

• [[eβ, eα], en] + [[en, eβ], eα] + [[eα, en], eβ] = 0 ⇒ λkek − Cβ
β e1 − Cα

αe1 = 0 with a

sum over k. So for i 6= 1; λi = 0 and λ = λ1 = Cα
α + Cβ

β . Hence we can assume

that [e1, en] = λe1; λ = Cα
α + Cβ

β .

• [[en, eα], ei] + [[ei, en], eα] + [[eα, ei], en] = Ck
i [ek, eα] = 0. So for i 6= α, 2 ≤ i ≤ n,

we have: Cβ
i = 0. Similarly we get:



42

• [[en, eβ], ei] + [[ei, en], eβ] + [[eβ, ei], en] = Ck
i [ek, eβ] = 0 so for i 6= β, 2 ≤ i ≤ n,

we have, Cα
i = 0.

This shows that ad(en) must have the form

−ad(en) =



Cα
α + Cβ

β ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 ∗

0 ∗

0 0 0 Cα
α 0 0 Cα

β 0 0

0 ∗

0 ∗

0 0 0 Cβ
α 0 0 Cβ

β 0 0

0 ∗

0 ∗.



Since ad∗(en) = −
(
ad(en

)t
, it follows that eα, eβ must be chosen so that eα, eβ span

an ad∗(en)-invariant subspace. We summarize the preceding discussion by means of

the following Theorem.

Theorem 2.2.1 Let g be a Lie algebra of dimension n−1 that has an abelian nilrad-

ical ideal of codimension one and such that ad∗(en) has a two-dimensional invariant

subspace where en is not in the nilradical. Then g has a non-split one-dimensional

extension to an algebra with a codimension one nilradical isomorphic to a direct sum

of a three-dimensional Heisenberg and an abelian Lie algebra.
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2.3 Absorption Lemma

Let us apply the theory of the previous section starting with a three-dimensional

Lie algebra so as to obtain a four-dimensional Lie algebra that has a three-dimensional

Heisenberg nilradical. The extended algebra will have the following brackets and note

that e1 spans the center of the nilradical of the extended algebra, which is an ideal:

[e2, e3] = e1

[e1, e4] = λe1

[e2, e4] = α1e1 + β1e2 + γ1e3

[e3, e4] = α2e1 + β2e2 + γ2e3.

In this extension process we refer to the following Lemma that has been mentioned

in [21] in a much more general form: unfortunately no proof is given and we hope

later on to prove the Lemma in that more general form.

Lemma 2.3.1 Without loss of generality we may assume that α1, α2 = 0

Proof: To see that we introduce the change of basis

e1 = e1, e2 = e2, e3 = e3, e4 = α2e2 − α1e3 + e4.
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So the new brackets will be

[e2, e3] = e1

[e1, e4] = [e1, α2e2 − α1e3 + e4]

= α2[e1, e2]− α1[e1, e3] + [e1, e4]

= λe1

[e2, e4] = [e2, α2e2 − α1e3 + e4]

= α2[e2, e2]− α1[e2, e3] + [e2, e4]

= −α1e1 + α1e1 + β1e2 + γ1e3

= β1e2 + γ1e3

[e3, e4] = [e3, α2e2 − α1e3 + e4]

= α2[e3, e2]− α1[e3, e3] + [e3, e4]

= −α2e1 + α2e1 + β2e2 + γ2e3

= β2e2 + γ2e3

�

Remark 2.3.1 The Lemma clearly has an obvious generalization as follows. Let g

be an algebra of dimension 2n + 2 with a basis {e0, ei, en+i, e2n+1} where 1 ≤ i ≤ n

and non-zero brackets:

[ei, en+i] = e0 (1 ≤ i ≤ n)

[ei, e2n+1] = Ca
i ea + Cie0 (1 ≤ a ≤ 2n)

[en+i, e2n+1] = Da
i ea + Die0 (1 ≤ a ≤ 2n).
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The change of basis in which only e2n+1 is modified, being replaced by e2n+1+
∑n

i=1(Diei−

Cien+i), allows us to assume without loss of generality that Ci = Di = 0.

The Lemma allows us to establish a one-one correspondence between the generic

three-dimensional solvable Lie algebras, they have two-dimensional abelian nilradi-

cals, and the algebras of dimension four that have a Heisenberg nilradical. Again the

numbering refers to [25].
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3D co-dimension one abelian nilradical 4D co-dimension one Heisenberg nilradical

A3.2 A4.7

[e1, e3] = e1 [e2, e3] = e1

[e2, e3] = e1 + e2 [e1, e4] = 2e1

[e2, e4] = e2

[e3, e4] = e2 + e3

A3.3 A4.9; (b = 1)

[e1, e3] = e1 [e2, e3] = e1

[e2, e3] = e2 [e1, e4] = 2e1

[e2, e4] = e2

[e3, e4] = e3

A3.4 A4.8

[e1, e3] = e1 [e2, e3] = e1

[e2, e3] = −e2 [e2, e4] = e2

[e3, e4] = −e3

Aa
3.5 Ab

4.9

[e1, e3] = e1 [e2, e3] = e1

[e2, e3] = ae2 [e1, e4] = (1 + b)e1

[e2, e4] = e2

[e3, e4] = be3
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3D co-dimension one abelian nilradical 4D co-dimension one Heisenberg nilradical

A3.6 A4.10

[e1, e3] = −e2 [e2, e3] = e1

[e2, e3] = e1 [e2, e4] = −e3

[e3, e4] = e2

Aa
3.7 Aa

4.11

[e1, e3] = ae1 − e2 [e2, e3] = e1

[e2, e3] = e1 + ae2 [e1, e4] = 2ae1

[e2, e4] = ae2 − e3

[e3, e4] = e2 + ae3

Remark 2.3.2 We note that there is only one choice for the Heisenberg bracket when

we extend from three to four dimensions. We might have more than one choice in

higher dimensions (three choices if we want to extend four to five dimensions). Our

choice is subject to the co-adjoint condition discussed in Theorem 2.2.1. Thus the

simple pattern exhibited above in extending from three to four dimensions will not be

valid in higher dimensions. Nonetheless we hope eventually to develop an inductive

that will enable us to analyze algebras that have a co-dimension one nilradical that

is isomorphic to the direct sum of a three-dimensional Heisenberg and an abelian Lie

algebra.



Chapter 3

Automorphism group of special Lie

algebras

For any Lie algebra g its group of automorphisms itself is a Lie group. Its Lie

algebra is of the space of derivations of g under the operation of commutator and

consists of inner automorphisms, namely, essentially the adjoint matrices, and outer

automorphisms. We determine the Lie algebra of the automorphism group of certain

well known Lie algebras. In this Chapter we have made extensive use of Maple to find

the dimension and pattern and for those algebras, even though in the end it plays no

direct role in the proofs.

48



49

3.1 Automorphism group of the 2n+1 dimensional

Heisenberg algebra

Let H be the 2n + 1 dimensional Heisenberg Lie algebra with basis

{e0, e1, e2, ..., en, en+1, en+2, ..., e2n} and nonzero brackets

[ei, ei+n] = e0, 1 ≤ i ≤ n

that is, the non-zero structure constants are C0
i,i+n = 1 for 1 ≤ i ≤ n.

The Lie algebra of the group of automorphisms consist of derivations D that

satisfy the Leibnitz rule which can be written in the following three ways:

D[ei, ej] = [Dei, ej] + [ei, Dej]

Ck
ijD

m
k em = Cm

kjD
k
i em + Cm

ikDj
kem

Ck
ijD

m
k = Cm

kjD
k
i + Cm

ikDj
k. (3.1)

Now we discuss all the possible cases to determine the pattern of D.

• m 6= 0, (3.1) becomes

C0
ijD

m
0 = 0 ∀i, j ⇒ Dm

0 = 0 ∀m 6= 0

• 1 ≤ i, j ≤ n, (3.1) becomes

0 = −Dj+n
i + Di+n

j

Dj+n
i = Di+n

j
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• n < i, j ≤ 2n, (3.1) becomes

0 = Dj−n
i −Di−n

j

0 = Dj−n
i = Di−n

j

• 1 ≤ i ≤ n < j ≤ 2n, j − i 6= n, (3.1) becomes

0 = Dj−n
i + Di+n

j

Dj−n
i = −Di+n

j

• j = i + n, (3.1) becomes

D0
0 = Di

i + Di+n
i+n 1 < i ≤ n.

Hence the D matrix has the form:



λ D1
2 . . . . . . D1

2n+1

0

... −Ctr + λI B

... A C

0


where A, B are symmetric n× n matrices, and C is an arbitrary n× n matrix.
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An example below when n = 3, see A.6



d4,4 + d7,7 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7

0 d4,4 + d7,7 − d5,5 −d6,5 −d7,5 d2,5 d3,5 d4,5

0 −d5,6 d4,4 + d7,7 − d6,6 −d7,6 d3,5 d3,6 d4,6

0 −d5,7 −d6,7 d4,4 d4,5 d4,6 d4,7

0 d5,2 d6,2 d7,2 d5,5 d5,6 d5,7

0 d6,2 d6,3 d7,3 d6,5 d6,6 d6,7

0 d7,2 d7,3 d7,4 d7,5 d7,6 d7,7



.

Remark 3.1.1 In the Propositions below we have used 7×7 matrices, but the reason

is to demonstrate the pattern when n = 3. In fact it can be extended to arbitrary n.
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Proposition 3.1.1 The dimension of Aut(H)=(n + 1)(2n + 1). In the Lie algebra

of Aut(H) there are 2n inner automorphisms, namely the ad(ei), 1 ≤ i ≤ 2n.





0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,



0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, ...,



0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




There are n + 1 semisimple outer automorphisms for which a basis consists of:





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,



0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,
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

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 0



, ...,



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1





.

The derivations that are neither semisimple, nor inner are of dimension 2n + 4
(

n
2

)
.

They are of two kinds each of dimensions n, 2
(

n
2

)
, respectively, and the others come

from their transposes:

• Tho ones that come from every Heisenberg bracket [ei, ei+n] = e0, 1 ≤ i ≤ n.

Each matrix has a one in the ith row and i + nth column, and zeros elsewhere,

that is, their rank is one.





0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, ...,



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




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• The other kind are matrices of rank 2, they come from a pair of distinct Heisen-

berg brackets [ei, ei+n] = e0, [ej, ej+n] = e0, 1 ≤ i < j ≤ n. They split into two

kinds:

1. The first has Di
j = −1, Dj+n

i+n = 1 and zeros elsewhere:



0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0



,



0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0



,



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0



.

2. The second has Di
j+n = 1, Dj

i+n = 1 and zeros elsewhere:



0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



.
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3.2 Automorphism group of the standard

n-dimensional Filiform Lie algebra

Let g be the standard n-dimensional filiform Lie algebra, n ≥ 4, with basis

{e1, e2, ..., en} and the following nonzero brackets:

[e1, e2] = e3, [e1, e3] = e4, ..., [e1, en−1] = en.

We apply (3.1) to obtain the following conditions:

D1
i = 0, 2 ≤ i ≤ n (3.2)

Di+1
i+1 = D1

1 + Di
i, 2 ≤ i ≤ n− 1 (3.3)

Dm
i+1 = Dm−1

i , 2 ≤ i ≤ n− 1, 2 ≤ m ≤ n, m 6= i + 1. (3.4)

Proposition 3.2.1 There are n − 1 inner automorphisms, namely ad(ei), 1 ≤ i ≤

n− 1.

For example when n = 5 we have



0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0



,



0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0


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

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0



,



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0



.

Proposition 3.2.2 There are n outer automorphisms, namely,



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



,



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0




D1
1

D2
2

D1
1 + D2

2

2D1
1 + D2

2

3D1
1 + D2

2


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

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



.

Theorem 3.2.1 The dimension of the Lie algebra of Aut(g) is 2n− 1. Moreover the most

general matrix of a derivation of g is of the following form:



D1
1 0 0 0 0 0

D2
1 D2

2 0 0 0 0

D3
1 Dn

n−1 D1
1 + D2

2 0 0 0

... Dn
n−2

. . . 2D1
1 + D2

2 0 0

Dn−1
1 Dn

3
. . . Dn

n−2
. . . 0

Dn
1 Dn

2 Dn
3 Dn

n−2 Dn
n−1 (n− 2)D1

1 + D2
2


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3.3 Automorphism group of the n-dimensional

standard solvable Lie algebra

Let g be an n-dimensional solvable algebra, n ≥ 4, with basis e1, e2, ..., en and the

following nonzero brackets:

[e1, e2] = e2 + e3, [e1, e3] = e3 + e4, ..., [e1, en−2] = en−2 + en−1, [e1, en−1] = en.

By analogy with the standard filiform algebra of the previous Section we refer to this algebra

as the “standard solvable algebra” although our terminology is not standard! We apply (3.1)

to get the following conditions:

D1
i = 0, 1 ≤ i ≤ n

Dn−1
n−1 = Dn

n

Di
i = Dn

n−2 + Dn
n−1 + Dn

n, 2 ≤ i ≤ n− 2

Dn−1
i = Dn

i + Dn
i+1, 2 ≤ i ≤ n− 2

Dn−2
i = Dn

i + 2Dn
i+1 + Dn

i+2, 2 ≤ i ≤ n− 3

Dm+1
i+1 = Dm

i , 3 ≤ m ≤ n− 3, 2 ≤ i ≤ n− 3, i 6= m.

We have solved the previous system of equations and we able to formulate the results in

terms of the following Theorem.

Theorem 3.3.1 The dimension of the Lie algebra of Aut(g) = 2n− 2. Moreover the most

general matrix of a derivation of g is of the following form:
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

0 0 0 . . . 0

D2
1 A2 0 0 . . . 0

D3
1 A3 A2 0

. . . . . . . . .
...

...
...

. . . . . . . . . 0

Dn−2
1 An−2 An−3 . . . A3 A2 0 0

Dn−1
1 B2 B3 . . . Bn−3 Bn−2 Dn

n 0

Dn
1 Dn

2 Dn
3 . . . Dn

n−3 Dn
n−2 Dn

n−1 Dn
n



A2 = Dn
n2 + Dn

n−1 + Dn
n

A2 = Dn
n−3 + 2Dn

n−2 + Dn
n−1

...

An−2 = Dn
2 + 2Dn

3 + Dn
4

B2 = Dn
2 + Dn

3

B3 = Dn
3 + Dn

4

...

Bn−2 = Dn
n−2 + Dn

n−1.

Remark 3.3.1 In the examples above the derivations are either nilpotent or semi-simple.

We are not sure if this property holds in general and we intend to study this question in the

future.



Chapter 4

Hamilton-Jacobi separability and

Lie group Lagrangian systems

This Chapter begins with some results about Hamilton-Jacobi separability. It has to be

admitted that this topic takes us in a different direction from most of the other material in

this dissertation. In the subsequent Section we sketch the main ideas from the geometric

formulation of Euler-Lagrange dynamical systems. We also consider the inverse problem

for Lagrangian dynamical systems and the very special case of the geodesic equations of the

canonical symmetric connection belonging to any Lie group G that we studied in Chapter

1.

60
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4.1 Separability of conformally flat metrics

For a Riemannian manifold, the Levi-Civita criterion for the separability of the Hamilton-

Jacobi equation for the Hamiltonian H(xi, pj) is that in the separation coordinates (xi, pi)

∂H

∂pi

∂H

∂pj

∂2H

∂xi∂xj
− ∂H

∂pi

∂H

∂xj

∂2H

∂xi∂pj
− ∂H

∂xi

∂H

∂pj

∂2H

∂pi∂xj
+

∂H

∂xi

∂H

∂xj

∂2H

∂pi∂pj
= 0 (4.1)

for i 6= j, i, j = 1, 2, ..., n (see for example [16] and we note that (4.1) is symmetric in i and

j.

The geometric meaning, if any, of Levi-Civita’s criterion is difficult to find. Ideally one

would like to have a coordinate-free way to characterize separable systems but we seem to

be very far from achieving it.

We will use the the Levi-Civita criterion to prove the following theorem.

Theorem 4.1.1 The only separable conformally flat metrics are Liouville metrics.

Proof: The Hamiltonian for a conformally flat metric takes the form

H = e2f (p2
1 + ... + p2

n) (4.2)

where f = f(x1, ..., xn). The proof is a brute calculation, showing that (4.1) gives exactly

Liouville’s conditions on f . We will use the comma, in f,i to denote ∂f
∂xi

. We note that

∂H
∂xi

= 2f,iH = 2f,ie
2f (p2

1 + ... + p2
n)

∂2H
∂xi∂xj

= 2f,jie
2f (p2

1 + ... + p2
n) + 4f,if,je

2f (p2
1 + ... + p2

n) = 2e2f (p2
1 + ... + p2

n)(f,ij + 2f,if,j)

∂H
∂pi

= 2e2fpi

∂2H
∂xi∂pj

= 4f,ie
2fpj and ∂2H

∂pj∂pi
= 0.
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Substituting these quantities in (4.1) will give

4e4fpipj(2f,ije
2f (p2

1 + ... + p2
n) + 4f,if,je

2f (p2
1 + ... + p2

n))

−16e4fpif,j(p2
1 + ... + p2

n)f,ie
2fpj − 16e6ff,ipj(p2

1 + ... + p2
n)pif,j = 0.

So

8e6fpipj(f,ij − 2f,if,j) = 0

and hence we obtain the following condition, which is just what is needed to say that the

metric is of Liouville type:

f,ij = 2f,if,j .

�

Let (M, g) be a pseudo-Riemannian manifold of dimension n. We shall use | to denote

covariant derivatives rather a semi-colon. A symmetric tensor Lij is said to be a special

conformal Killing tensor or SCKT if it satisfies the condition, see for example [7],

Lij|k =
1
2
(f|igjk + f|jgik). (4.3)

Theorem 4.1.2 Let K be a Killing vector field for a metric and let α be its dual one-form.

Then α2 satisfies the SCKT equation if and only if α is parallel.

Proof: It is clear that if α is parallel then α2 has constant trace f . Indeed f = g(α, α) and

so if X is an arbitrary vector field then Xf = 0. Hence each side of 4.3 zero.

Conversely, we assume now that Lij = αiαj satisfies the SCKT equation. Since α is a
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Killing one-form we have

αi|j + αj|i = 0. (4.4)

Taking the covariant derivative of Lij we get

Lij|k = αi|kαj + αiαj|k.

We let f be the trace of Lij , that is,

f = gmnLmn = gmnαmαm.

But Lij satisfies (4.3) so we have

2(αi|kαj + αiαj|k) = gik(gmn(αm|jαn + αmαn|j) + gjk(gmn(αm|iαn + αmαn|i)

and since we are summing over m and n this equation reduces to

αi|kαj + αiαj|k = gikg
mnαm|jαn + gjkg

mnαm|iαn

or

αi|kαj + αiαj|k = gikα
n
|jαn + gjkα

n
|iαn. (4.5)

Permuting i, j and k in (4.5) we obtain

αk|iαj + αkαj|i = gijα
n
|kαn + gkiα

n
|jαn (4.6)

αi|jαk + αiαk|j = gkjα
n
|iαn + gijα

n
|kαn. (4.7)
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Adding (4.5), (4.6) and (4.7), and by using (4.4), we obtain

0 = 2(gikα
n
|jαn + gkjα

n
|iαn + gijα

n
|kαn)

= gik(αnαn)|j + gkj(αnαn)|i + gij(αnαn)|k

= gikf,j + gkjf,i + gijf,k.

Finally we take a trace by multiplying through by gik to obtain

(n + 2)fj = 0

and hence

fj = 0.

Thus f is constant and hence Lij|k = 0. Hence for an arbitrary vector field X, ∇Xα2 = 0,

or

α.∇Xα = 0.

Thus, without loss of generality,

∇Xα = 0,

that is, α is parallel.

�
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4.2 Elements of Lagrangian systems

In this section we are going to briefly formulate the theory of Lagrangian systems on a

general tangent bundle TM that is not necessarily a Lie group. We use the canonical Jacobi

endomorphism S that we introduced in Chapter 1 and the Liouville vector field ∆ = ui ∂
∂ui .

A Lagrangian L : TM → R. There is an exact two-form associated to L defined by

ω = d
(
dL ◦ S

)
.

The two-form ω is known as the Cartan two-form of the Euler-Lagrange system. It is a

symplectic form if L is non-degenerate. The Cartan two-form determines a vector field Γ,

that is called the Euler-Lagrange vector field that is defined by [5, 18, 12]

ιΓω = −d(∆L− L).

The energy associated with a Lagrangian is defined by

E = ∆L− L

where ∆ = ui ∂
∂ui .

Another way to look at Lagrangian theory is as the pullback under the inverse of the

Legendre transformation in which the canonical two-form on T ∗M pulls back to ω on TM .

The inverse problem of Lagrangian dynamics consists of finding necessary and sufficient

conditions for a system of second order ordinary differential equations to be the Euler-

Lagrange equations of a regular Lagrangian function and in case they are, to describe

all possible such Lagrangians. Work had begun on the problem even at the end of the
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nineteenth century but by far the most important contribution is the 1941 article of Douglas

[8].

One aspect of the inverse problem which until recently was little explored is the very

special case of the geodesic equations of the canonical symmetric connection belonging to

any Lie group G. Thompson has investigated the situation for Lie groups of dimension

two and three [29], and together with Ghanam and Miller of dimension four [10]. It was

found in [29] that in all these cases the geodesics were the Euler -Lagrange equations of

a suitable Lagrangian defined on an open subset of the tangent bundle TG. In the next

Section we examine the inverse problem for the canonical Lie group connection focussing on

the existence of a metric Lagrangian and the non-uniqueness aspect of the inverse problem.
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4.3 Bi-Lagrangian systems

Let us consider the case where M = G, a Lie group. The Lie group G acts on itself by

left and right translations LA, RA : G → G. These actions induce actions on the tangent

bundle of the Lie group TG, namely TLA, TRA : TG → TG. A Lagrangian L : TG → R is

said to be right invariant if

L ◦ TRA = L ∀A ∈ G

and similarly left invariant if we use left translations. It is called bi-invariant if it is both

right and left invariant.

Proposition 4.3.1 The connection ∇ on G is bi-invariant.

Proof: Let X, Y be any left-invariant vector fields on G. Consider then by definition:

L∗(∇XY ) = (L∗∇)L∗XL∗Y

(L∗∇)XY = L∗

(1
2
[X, Y ]

)
=

1
2
[L∗X, L∗Y ]

=
1
2

[X, Y ]

where the penultimate equality follows from Proposition 1.1.2, which implies that (L∗∇) =

∇, since∇ is unique. Hence∇ is left-invariant. Similarly the connection∇ is right-invariant,

hence we have the result.

�

Remark 4.3.1 Notice that the factor of 1
2 could be replaced by any other constant but only

the value of 1
2 gives a connection with zero torsion. The fact that the connection is unique



68

follows from a series of difficult exercises in [13].

Corollary 4.3.2 If ϕ is a left or right translation then the geodesic spray Γ is preserved

under Tϕ, that is

(Tϕ)∗Γ = Γ

and (Tϕ−1)∗L (and for that matter (Tϕ)∗L) is also a Lagrangian for Γ.

�

Considering (Tϕ)∗L as a Lagrangian for ∇, we have four possibilities:

• L is left invariant; that is (Tϕ)∗L = L for all left translations.

• L is right invariant; that is (Tϕ)∗L = L for all right translations.

• L is bi-invariant; that is (Tϕ)∗L = L for all right and left translations.

• (Tϕ)∗L 6= L which is also interesting because then we will have an alternative La-

grangian for Γ.

In other words the group G acts on the left and right on the space of Lagrangians for Γ.

If the fourth possibility occurs then Γ will be an example of a bi-Lagrangian system or

perhaps, more accurately, a multi-Lagrangian system. Such a situation represents rather

extreme phenomena within in the context of the inverse problem.

We take up next the question of when ∇ is the Levi-Civita connection of a metric.

It is known that in the case where the metric is Riemannian the necessary and sufficient

conditions for a group G to admit a metric is that G should be the product of a compact

and an abelian group [20]. More generally one can pose the question of whether a given

connection, not necessarily the canonical connection, is the Levi-Civita connection of some

metric. The answer is provided by the following Theorem [9, 29].
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Theorem 4.3.1 The necessary and sufficient conditions for a connection to be a Levi-

Civita connection are that the following system of linear equations for unknown g stabilize

and that it admit a non-singular solution, R denoting the curvature tensor of the connection:

gR + (gR)t = 0 (4.8)

g∇R + (g∇R)t = 0 (4.9)

g∇2R + (g∇2R)t = 0. (4.10)

...

�

In Theorem 4.3.1 the symbol gR would be written in coordinates as gimRm
jkl and ∇R would

be denoted Rm
jkl|n. If the hypotheses of the theorem hold one obtains the family of all

possible compatible metrics by integrating a Frobenius-integrable distribution. For the

canonical Lie group connection only the conditions from the curvature itself are important

because the covariant derivatives are zero. We used MAPLE to implement these conditions

for a class of six-dimensional Lie algebras described below. Notice that the every curvature

matrix in the Lie algebra of the holonomy group must have even rank if there is going to be

a metric associated to a particular algebra. All the examples we are aware of of bi-invariant

Lagrangians are metric Lagrangians [23].

An example that can be found in [10] is the four-dimensional algebra A4,8 for which the

non-zero brackets are:

[e2, e3] = e1, [e2, e4] = e2, [e3, e4] = −e3.
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In this example and the others that follow we use a matrix S to denote the group represen-

tation:

S =



1 0 xew y

0 e−w 0 x

0 0 ew z

0 0 0 1


.

The right invariant forms are given by dw, dx + xdw, dz − zdw and dy − zdx − xzdw and

the corresponding right invariant vector fields are given by

W =
∂

∂w
− x

∂

∂x
+ z

∂

∂z
, X =

∂

∂x
+ z

∂

∂y
, Y =

∂

∂y
, Z =

∂

∂z
.

The geodesic equations are

ẅ = 0, ẍ = −ẇẋ, ÿ = ż(ẋ + xẇ), z̈ = żẇ.

It turns out that a metric is given by

g = xdwdz − dydw + dxdz.

Notice, however, that g can be re-written in either of the following two equivalent forms

using left and right invariant forms, respectively:

g = dw(xdz − dy) + (ewdx)(e−wdz)

g = (dz − zdw)(xdw + dx)− dw(dy − zdx− xzdw).
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Even if a metric exists for the canonical connection on a Lie group it may not be bi-

invariant. In fact if the metric is bi-invariant then each left or right invariant vector field

is a Killing vector field. We have examined Mubarakzyanov’s list of 99 classes of solvable

codimension one nilradical six dimensional Lie algebras [22]. Examining all 99 cases required

considerable effort and was complicated by the fact that the algebras depend on parameters

that have to be handled interactively. Their group representations are given in [14]. We

found only five algebras that have a metric, namely, A6.82, A6.89, A6.90, A6.91, A6.93 with the

value α = 0. Here they are discussed in more detail.

Aα,λ,λ1
6.82 (α = 0) : The nonzero brackets are, following Mubarakzyanov’s notation here and

in the other cases: [e2, e4] = e1, [e3, e5] = e1, [e2, e6] = λe2, [e3, e6] = λ1e3, [e4, e6] =

λe4, [e5, e6] = λ1e5 and

S =



1 eλwz eλ1wq 0 0 p

0 eλw 0 0 0 x

0 0 eλ1w 0 0 y

0 0 0 e−λw 0 z

0 0 0 0 eλ1w q

0 0 0 0 0 1



.
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The right-invariant vector fields are: {Dp, Dx, Dy, Dz + xDp, Dq + yDp,−λ1qDq + λxDx +

λ1yDy − λzDz + Dw}. The metric as a matrix is given by

g =



0 0 0 0 0 −aλ1

0 0 0 aλ1
λ 0 0

0 0 0 0 a 0

0 aλ1
λ 0 0 0 0

0 0 a 0 0 0

−aλ1 0 0 0 0 b



where a, b are arbitrary constants. The Lagrangian is

L = aq̇ẏ − aλ1ṗẇ + aλ1qẏẇ +
aλ1

λ
ẋż + aλ1zẋẇ + bẇ2

and the geodesics are

p̈ = q̇ẏ+ẋż+(λ(zẋ+xż)+λ1(yq̇+qẏ))ẇ, ẍ = λẋẇ, ÿ = λ1ẏẇ, z̈ = −λżẇ, q̈ = −λ1q̇ẇ, ẅ = 0.

Remark 4.3.2 The metric g is not bi-invariant since

L−xDp+Dzg = aλ1dxdw 6= 0.
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Aαsν0
6.89 (α = 0) : The nonzero brackets are [e2, e4] = e1, [e3, e5] = e1, [e2, e6] = se2, [e3, e6] =

ν0e5, [e4, e6] = −se4, [e5, e6] = −ν0e3. The group representation S is given by

S =



1 0 xesw − cos (wν0) q − p sin (wν0) − sin (wν0) q + p cos (wν0) y

0 e−sw 0 0 0 x

0 0 esw 0 0 z

0 0 0 cos (wν0) sin (wν0) p

0 0 0 − sin (wν0) cos (wν0) q

0 0 0 0 0 1



.

The right-invariant vector fields are: {2Dy, 2Dz,−Dp − qDy, Dx + zDy, Dq − pDy, ν0qDp −

ν0pDq − sxDx + szDz + Dw}.

The metric is given by

g =



0 0 0 0 0 −as

0 0 0 a 0 0

0 0 as
ν0

0 0 0

0 a 0 0 0 0

0 0 0 0 as
ν0

0

−as 0 0 0 0 b



.

The Lagrangian is

L =
as

ν0
ṗ2 − asqṗẇ +

as

ν0
q̇2 + aspq̇ẇ + aẋż − asẏẇ + asxżẇ + bẇ2
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and the geodesics are

p̈ = ν0q̇ẇ, q̈ = −ν0ṗẇ, ẍ = −sẋẇ, ÿ = −ν0pṗẇ − ν0qq̇ẇ + ẋż + sxżẇ, z̈ = sżẇ, ẅ = 0.

Remark 4.3.3 The metric g is not bi-invariant since

LDx+zDyg = adqdz 6= 0.

Aαν0
6.90(α = 0, ν0 6= 1) : The nonzero brackets are: [e2, e4] = e1, [e3, e5] = e1, [e2, e6] =

e4, [e3, e6] = ν0e5, [e4, e6] = e2, [e5, e6] = −ν0e3.

The group representation S is given by

S =



1 0 ewx − cos (wν0) q − p sin (wν0) − sin (wν0) q + p cos (wν0) y

0 e−w 0 0 0 x

0 0 ew 0 0 z

0 0 0 cos (wν0) sin (wν0) p

0 0 0 − sin (wν0) cos (wν0) q

0 0 0 0 0 1



.

The right-invariant vector fields are: {2Dy,−2
1
2 Dx− 2−

1
2 xDy +2−

1
2 Dz, Dq− 2pDy, 2

1
2 Dx−

2−
1
2 xDy + 2−

1
2 Dz, Dp, ν0qDp − ν0pDq − xDx + (ν0p

2 − ν0q
2)Dy + zDz + Dw}. The metric
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is given by

g =



0 0 0 0 0 −aν0

0 −aν0 0 0 0 0

0 0 a 0 0 0

0 0 0 aν0 0 0

0 0 0 0 a 0

−aν0 0 0 0 0 b



.

The Lagrangian is

L = aṗ2 − 2aν0qṗẇ + aq̇2 + aν0ẋż − aν0zẋẇ − aν0ẏẇ + bẇ2

and the geodesics are

p̈ = ν0q̇ẇ, q̈ = −ν0ṗẇ, ẍ = −ẋẇ, ÿ = −2ṗq̇ − 2ν0qq̇ẇ − ẋż + zẋẇ, z̈ = żẇ, ẅ = 0.

Remark 4.3.4 The metric g is not bi-invariant since

LDq−2pDyg = −2aν0(dpdy + dydp) 6= 0.
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A6.91 : The nonzero brackets are [e2, e4] = e1, [e3, e5] = e1, [e2, e6] = e4, [e3, e6] = e5, [e4, e6] =

e2, [e5, e6] = −e3. The group representation S is given by

S =



1 y −x q −z p

0 ew 0 0 0 x

0 0 e−w 0 0 y

0 0 0 cos (w) − sin (w) z

0 0 0 sin (w) cos (w) q

0 0 0 0 0 1



.

The right-invariant vector fields: {4Dp,−2xDp +Dx−Dy, 2
1
2 Dq, 2xDp +Dx +Dy, 2

3
2 qDp−

2
1
2 Dz, (−z2 + q2)Dp + zDq + xDx − yDy − qDz + Dw}. The metric is given by

g =



0 0 0 0 0 −a

0 −a 0 0 0 0

0 0 a 0 0 0

0 0 0 a 0 0

0 0 0 0 a 0

−a 0 0 0 0 b



The Lagrangian is

L = −aṗẇ + aq̇2 − 2azq̇ẇ + 2ayẋẇ + 2aẋẏ + bż2 + bẇ2
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and the geodesics are

p̈ = −2żẏ + 2ẋẏ + 2yẋẇ − 2zżẇ, q̈ = żẇ, ẍ = ẋẇ, ÿ = −ẏẇ, z̈ = −q̇ẇ, ẅ = 0.

Remark 4.3.5 The metric g is not bi-invariant since

L−2xDp+Dx−Dyg = −2adxdw 6= 0.

A6.93(α = 0) : The nonzero brackets are [e2, e4] = e1, [e3, e5] = e1, [e2, e6] = e4+ν0e5, [e3, e6] =

ν0e4, [e4, e6] = e2 − ν0e3, [e5, e6] = −ν0e2.

We showed the existence of a metric g using only the Lie algebra. Unfortunately we do

not have a group or even a vector field representation for the algebra [14], so we are unable

to compute the metric concretely in coordinates.

Remark 4.3.6 The algebra A6.91(α = 0) can be thought of a special case of the algebra

A6.90(α = 0) if we let ν0 = 1

Remark 4.3.7 The algebra A6.90(α = 0) is isomorphic the algebra A6.89(α = 0) if we use

the change of basis

e2 =
1√
2

(
e2 + e4

)
, e4 =

1√
2

(
− e2 + e4

)

Suppose that ∇ is the Levi-Civita connection of a metric that is not bi-invariant. Then

clearly it is possible to apply a Legendre transformation. As such one would obtain a multi-

Hamiltonian description of the corresponding Hamiltonian system. It remains also to study

the complete integrability properties of these systems.
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We conclude with the example of the Heisenberg group

S =


1 x z

0 1 y

0 0 1

 .

The geodesic equations are easily found to be

ẍ = 0, ÿ = 0, z̈ = ẋẏ.

The connection is flat as can easily be seen by defining z̄ = z − xy
2 . As such a metric is

given by

g = dx2 + dy2 + (dz − y

2
dx− x

2
dy)2

and the corresponding Lagrangian is given by L = ẋ2 + ẏ2 + (ż − y
2 ẋ− x

2 ẏ)2. On the other

hand if we act on the right by an element of the group


1 a c

0 1 b

0 0 1


we find the following transformed but equivalent Lagrangian:

L = ẋ2 + ẏ2 + (ż + bẋ− y + b

2
ẋ− x + a

2
ẏ)2.

where a, b and c are constants.
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12, 1-124.



81

[19] D. Lovelock ;H. Rund. [1975], Tensors, Differential forms, and Variational Principles.

Dover.

[20] J. Milnor. [1976], Curvatures of Left Invariant Metrics on Lie Groups. Adv. Math.

(21), 293-329.

[21] G. Mubarakzyanov. [1963], On solvable Lie algebras. Izv. Vysshikh Uchebn. Zavedneii

Mat, 1(32) 114-123.

[22] G. Mubarakzyanov. [1963], Classification of Solvable Lie Algebras in dimension six

with one non-nilpotent basis element. Izv. Vysshikh Uchebn. Zavedneii Mat, 4(35)

104-116.

[23] Z. Muzsnay. [2005]. An invariant variational principle for canonical flows on Lie

groups. Journal of Mathematical Physics, 44, 112902, 11 pp.

[24] A. Nijenhuis. [1951], Xn−1 forming sets of eigenvectors. Proc. Kon. Ned. Akad.

Amsterdam, 54, 200-212.

[25] J. Patera, R.T. Sharp, P. Winternitz and H. Zassenhaus. [1976], Invariants of real low

dimension Lie algebras. J. Math. Phys, 17, 986-994.

[26] M. Rawashdeh [2005], Representations for six dimensional Lie algebras with a codi-

mension two nilradical and the inverse problem for the associated cananical form.

Doctoral dissertation, The University of Toledo.

[27] W. Sarlet, M. Crampin and E. Martinez. [1979].The integrability conditions in the

inverse problem of the calculus of variations for second-order ordinary differential

equations. Acta. Appl. Math, 54 (1998), 233–273.



82

[28] M. Spivak. [1979], A Comprehensive Introduction to Differential Geometry. Publish

or Perish.

[29] G. Thompson. [1996], Metrics compatible with a symmetric connection in dimension

three. J. Geom. Phys. 31, 1–17.

[30] G. Thompson. [2003], Variational connections on Lie groups. Differential Geometry

and its Applications, 18, 255-270.

[31] V.S. Varadarajan. [1962], Lie Algebras, Lie groups and their Representations. Prentice

Hall.

[32] K. Yano, S. Ishihara. [1973], Tangent and Cotangent Bundles. Marcel Dekker, New

York.



Appendix A

Maple Routines

We are listing some Maple procedures that were written during the course of research.

A.1 Levi-Civita

A procedure to implement the Levi-Civita separability criterion for a Hamiltonian

function H. The inputs are H and the dimension of the space n.

83
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> LeviCivita:=proc(H,n) local A,alg_cond,i,j;

> alg_cond:=[ ];

> for i from 1 to n do

> for j from i+1 to n do

> A:=simplify(diff(H,p||i)*diff(H,p||j)*diff(H,x||i,x||j)

> -diff(H,p||i)*diff(H,x||j)*diff(H,x||i,p||j)

> -diff(H,x||i)*diff(H,p||j)*diff(H,p||i,x||j)

> +diff(H,x||i)*diff(H,x||j)*diff(H,p||i,p||j));

> if not(A in alg_cond) then <br> alg_cond:=[op(alg_cond), A];

> fi;

> od;

> od;

> map(factor,alg_cond);

> end:

A.2 Euler Lagrange Equation

This is a procedure to find the Euler-Lagrange equations

d

dt

( ∂L

∂ui

)
=

∂L

∂xi

for a given Lagrangian function L(xi, ui), where ui = ẋi, and i = 1, 2, ..., n. The inputs

are L(xi, ui), n and the output consists of the geodesics in the form f i = ẍi
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> EL:= proc(L,n) local i,Z,eq,soln:

> for i from 1 to n do

> Z[i]:=add(u||m*diff(L,x||m,u||i)+

> f||m*diff(L,u||m,u||i),m=1..n)-diff(L,x||i)

> od:

> eq:=convert(Z,set):

> soln:=solve(eq,seq(f||i,i=1..n)):

> assign(soln):

> end:

A.3 L forms

This procedure produces a basis for the right invariant Maurer-Cartan forms, for

a Lie group with matrix group representation S. The input for this procedure is the

matrix dS.S−1. This is important because later we want to use the forms to get their

dual vector fields and hence a Lie algebra vector field representation.
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> L_forms:=proc(V) local n,Z,T,V_to_vector,k,i,j,vector_to_coefficient,cond,C,C1;

> n:=frameBaseDimension();

> V_to_vector:=Matrix(n^2,1):

> k:=0:

> for i from 1 to n do

> for j from 1 to n do

> k:=k+1;

> V_to_vector[k,1]:=V[i,j]:

> od:

> od:

> vector_to_coefficient:=array(1..(n^2),1..n):

> for i from 1 to (n^2) do

> for j from 1 to n do

> vector_to_coefficient[i,j]:=coeff_list(V_to_vector[i,1],[[j]]);

> od:

> od:

> cond:=[]:

> for i from 1 to (n^2) do

> C:=convert((linalg[row](vector_to_coefficient,i)),’list’):

> Z:=convert(Vector[row](n),’list’);

> C1:=v_zip( C,frameBaseForms(),plus):
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> if ((C <>Z) and (not(C1 in cond))) then

> if nops(cond)=0 then

> cond:=[op(cond), C1];

> elif

> linear_combo(C1,cond)=[] then

> cond:=[op(cond), C1];

> fi:

> fi:

> od:

> convert(cond,’list’);

> end:
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A.4 dual vectors

This procedures takes a list of vector fields in Vessiot format and gives the dual 1-forms.

> dual_vectors:=proc(V) local

> n,i,j,vector_to_coefficient,G,New_form;

> n:=frameBaseDimension();

> vector_to_coefficient:=array(1..n,1..n);

> for i from 1 to n do

> for j from 1 to n do

> vector_to_coefficient[j,i]:=coeff_list(V[i],[[j]]):

> od:

> od:

> G:=convert(inverse(vector_to_coefficient),Matrix):

> for i from 1 to n do

> New_form[i]:=v_zip( convert(LinearAlgebra[Row](G,i),’list’),frameBaseForms(),plus):

> od:

> convert(New_form,’list’);

> end:
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A.5 L vectors

This procedure takes a list of one-forms in Vessiot format and gives a list of the dual

vector fields.

> L_vectors:=proc(F) local n,i,j,vector_to_coefficient,G,Vec;

> n:=frameBaseDimension();

> vector_to_coefficient:=array(1..n,1..n);

> for i from 1 to n do

> for j from 1 to n do

> vector_to_coefficient[i,j]:=coeff_list(F[i],[[j]]):

> od:

> od:

> G:=convert(inverse(vector_to_coefficient),’Matrix’):

> for i from 1 to n do

> Vec[i]:=evalV(add(LinearAlgebra[Column](G,i)[k]

> *frameBaseVectors()[k],k=1..n));

> od:

> convert(Vec,’list’);

> end:

A.6 Heisenberg automorphism group

In this section we outline a routine written to implement the algebraic conditions of

equation (3.1). In this example we have the 7 dimensional Heisenberg algebra but in fact

we can specify the choice of the structure constants Ci
jk and the dimension of the algebra

n.
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> restart;

> n:=7:

> d:=matrix(n,n):

> C:=array(1..n,1..n,1..n):

> for i from 1 to n do

> for j from 1 to n do

> for k from 1 to n do C[i,j,k]:=0: od:

> od:

> od:

> C[2,5,1]:=1:C[5,2,1]:=-1:C[3,6,1]:=1:

> C[6,3,1]:=-1:C[4,7,1]:=1:C[7,4,1]:=-1:

> eq:=:

> for i from 1 to n do

> for j from 1 to n do

> for m from 1 to n do

> eq1:=add(C[i,j,k]*d[m,k],k=1..n)=add(C[k,j,m]*d[k,i],k=1..n)

> +add(C[i,k,m]*d[k,j],k=1..n);

> eq:=op(eq),eq1;

> od;

> od;

> od;

> D_var:=:

> for i from 1 to n do

> for j from 1 to n do <br>D_var:=op(D_var),d[i,j];

> od;

> od;

> solve(eq,D_var):

> assign(op(%));

> print(d);
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A.7 Forms to Geodesics

This procedure takes the input from L forms routine or you can input your list of right

invariant forms in Vessiot format as a list. We call it ”T” The output is a list of geodesics

where ui is the time derivative of the corresponding Frame Independent Variable specified

in coord in it at the beginning of your maple worksheet.

> Forms_to_Geo:=proc(T) local n,forms_to_coefficient,i,j,u,F,G,eq;

> n:=frameBaseDimension();

> forms_to_coefficient:=array(1..n,1..n);

> for i from 1 to n do

> for j from 1 to n do

> forms_to_coefficient[i,j]:=coeff_list(T[i],[[j]]):

> od:

> od:

> u:=[u||1,u||2,u||3,u||4,u||5,u||6]:

> F:=evalm(forms_to_coefficient&*u);

> for i from 1 to n do

> G[i]:=simplify((add(u||m*diff(F[i],frameIndependentVariables()[m]),m=1

..n))+(add(f||m*diff(F[i],u||m),m=1..n)));

> od:

> eq:=convert(G,set);

> solve(eq,{seq(f||i,i=1..n)}):

> end:
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