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We consider the inference problem of a finite mixture model based on data from

multiple samples, each of which is from a mixture of two common components. Under

the assumption that the ratio of the two component densities takes a known paramet-

ric form, we obtain maximum semiparametric likelihood estimates of the parameters

via EM or MM algorithms, and establish the large sample results for those estimators.

We then develop empirical likelihood ratio-based statistics for constructing confidence

intervals for and testing statistical hypotheses on mixing proportions. We show that

the statistics are asymptotically chi-square distributed. In addition, a goodness-of-

fit test is proposed for testing the density ratio assumption. Simulation studies are

carried out to evaluate the performances of the proposed statistics and tests.
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Chapter 1

The Problem of Interest,

Literature Review, and

Preliminaries

We first introduce the problem of interest, then briefly review the important re-

search area of statistics − finite mixture models. We have two focuses. One is data,

that is, whether the data consist of a single sample or multiple samples, and if the

latter, whether training samples are available. The other is the method adopted to

attack the problem, that is, whether the method is parametric, nonparametric or

semiparametric. In the third section, we introduce the so-called density ratio model

that naturally arises in the context of logistic regression. Next, we introduce the tool

of (semiparametric) empirical likelihood which is often used to summarize information

contained in given samples. To solve the resulting optimization problem in this dis-
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sertation work, we next in section five introduce the EM and MM algorithms. Finally,

we raise problems that motivate the research and outline the main work completed

in this research.

1.1 The Problem of Interest

Assume that random variables X1, X2, · · · , XK have distributions mixed by two

common components in different proportions; that is, Xk has a cumulative distribu-

tion function Hk(x) = λkF (x)+(1−λk)G(x), k = 1, · · · , K. Denote the correspond-

ing densities of F (x), G(x) and Hk(x) by f(x), g(x) and hk(x), respectively.

We assume that a sample is available from each mixture distribution and the K

samples are jointly independent. Specifically, we make the following assumptions:

(A1) for each k, xk1, xk2, · · · , xknk
are iid with CDF Hk(x), and

(A2) the K samples are jointly independent.

For ease of reference, this model is referred to as a K2M model.

In order to identify the component distributions, further assumptions must be

made. To avoid a distributional assumption about the two components, we further

assume that

log

{
g(x)

f(x)

}
= β1 + ϕ(x; β2), (1.1.1)

where the function ϕ(x; β2) is known, arbitrary up to a parameter β2, and differen-

tiable w.r.t β2. To avoid the problem of irregularity as noted by Zou, Fine and Yandell

(2002), we assume that, there exists at least one value of x such that ϕ(x; β2) 6= 0.
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For example, in the case of ϕ(x; β2) = βT2 x, β2 can not be zero. (1.1.1) is termed the

density ratio model (Anderson, 1979; Qin, 1998). The K2M model is generally not

identifiable when K = 1. In the sequel, we assume that K > 1. Identifiability of the

parameters in the K2M model is then guaranteed by the theorem three of Gilbert,

et al (1999). Under the assumption of the K2M model, we may write

dHk(x) = [λk + (1− λk)ω(x; β)]dF (x), k = 1, · · · , K, (1.1.2)

where ω(x; β) = exp[β1 + ϕ(x; β2)] and β = (β1, β
T
2 )T . (1.1.2) can be treated as a

biased sampling problem (Vardi, 1982) with weights

ωk(x;λ, β) = λk + (1− λk)ω(x; β), k = 1, · · · , K.

Special cases of the K2M model that were studied in the literature are the fol-

lowing.

Model 2: K = 3, λ1 = 1, λ2 = 0, λ3 = λ,

Model 3: K = 2, λ1 = 1, λ2 = λ,

Model 4: λ1, λ2, · · · , λK are all known.

Model 2 was first proposed by Hosmer (1973). Under density ratio assumption

(1.1.1), it was again studied by Anderson (1979), Qin (1999) and Zhang (2002).

Model 3 is also a special case of Model 2. Without the density ratio assumption

(1.1.1), Model 3 was considered by Smith and Vounatsou (1997). Zou, Fine and
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Yandell (2002) and Fine et al (2004) studied model 4 in the genetics context.

The primary interest is, under the K2M model with K samples, to estimate the

mixing proportions λk’s and to make inference about them. Since we have imposed

the density ratio assumption, the assumption in turn calls for an evaluation of its

goodness of fit.

1.2 Finite Mixture Models

Suppose that there are g populations G1, G2, · · · , Gg mixed up in some manner so

that a randomly selected item from the superpopulation G has a distribution showing

multimodality. Specifically, suppose that the g populations have density functions of

fi(x; θi), i = 1, 2, · · · , g, respectively. LetD denote the indicator function taking value

i if a randomly selected item from the superpopulation is in fact from subpopulation i.

Then πi = p(D = i) is the proportion of Gi in the superpopulation. Consequently, the

density of an observation in the superpopulation, f(x; θ, π), is the convex combination

of the individual densities; that is,

f(x; θ, π) =

g∑
i=1

πifi(x; θi),

where θ denotes the vector of unknown parameters of θ1, θ2, · · · , θg and π is the vector

of πi’s, and
g∑
i=1

πi = 1 and πi > 0 (i = 1, 2, · · · , g).
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If a sample from the superpopulation G is available and parametric assumptions

about the individual densities are made, one can estimate the unknown parameters

πi’s and θi’s. Inference about the mixing proportions πi’s and inference about the

number of components are often of interest in practice. For comprehensive review,

see, for example, the monograph of McLachlan and Peel (1999).

In some classification problems, data from one or more subpopulations may be

available. Such data are usually referred to as training data. Hosmer (1973) stud-

ied a two-component mixture model with data from the superpopulation and data

from each of the two subpopulations. The data structure essentially appears as the

following:

x1, x2, · · · , xn0 , iid ∼ F (x),

y1, y2, · · · , yn1 , iid ∼ G(y),

z1, z2, · · · , zn2 , iid ∼ H(z) = λF (z) + (1− λ)G(z).

Assuming normality for both component densities, Hosmer (1973) estimated the pro-

portion of male and the proportion of female fish in a population of halibut from

univariate data. The model was later studied by Murry and Titterington (1978) us-

ing bayesian and kernel methods, and Hall and Titterington (1984) by grouping data.

Anderson (1979) studied the same problem with the density ratio model postulated

to connect the two underlying densities. Recently, Qin (1999) revisited this problem

under Anderson’s assumption by making use of empirical likelihood. The compu-

tational issue of Hosmer’s model under Anderson’s assumption was investigated by

Zhang (2002), who proposed a semiparametric EM algorithm, along with the logistic
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regression for estimating unknown parameters. In a different context, Heller and Qin

(2001) studied this model using a nonparametric method. They made no assumption

at all about the component densities or their relationship. Instead, they introduced a

parameter to connect the two component densities. Specifically, let θ = p(Y1 > X1).

One can show, under independence of X and Y , that θ =
∫
Ḡ(x)dF (x), where

Ḡ(x) = 1 − G(x). Since no distributional assumption was made, Heller and Qin

used a pairwise rank-based likelihood method to perform inference on λ and θ.

Training samples may not be available from both subpopulations, as in Smith and

Vounatsou (1997). Their work was motivated by the fact that many biomedical assays

involve classifying samples into two groups according as whether some output (e.g.,

parasite density) exceeds a given cutoff. Many such assays do not classify all samples

correctly because there is an overlap between the distributions of the output for the

two groups. Often, however, a sample from the distribution of true negative (that is,

the control) is available but there is no gold standard − a perfect classifier − for the

true positive, which can only be identified with by using the assay itself, and then

with uncertainty. This problem arises in parasite epidemiology (Smith et al, 1994).

Clinical malaria can be diagnosed by the presence of parasites and fever. However,

in endemic area, children can tolerate malaria parasites without the development of

any signs of disease and they may have fever for other causes. In their analysis,

Smith and Vounatsou considered a mixture of two components with an uncategorized

sample from the mixture and a categorized sample from one of the two components.

They assumed that the risk of positivity is known to be a monotonic function of the

output, the larger, the more indicative of a positive. They proposed four different
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methods to estimate the mixing proportion and their methods were used to analyze

data from a study that quantifies the capacity of mouse cells in culture to transfer

small molecules between one another. The same model was discussed by Vounatsou

et al (1998) in the bayesian framework using the Gibbs sampler. The first step of

their method is similar to that of Hall (1981); that is, both samples are grouped

subjectively into 6 to 10 categories.

In the situation that there is no training sample available, Choi (1979) considered

a 2-sample two-component mixture model. Two samples are each from one of the

two mixtures so that there is no membership information available, which is different

from the above situations where membership information is available and information

about at least one subpopulation is available. As explained by Choi (1979), mixture

models are of relevance in a life testing situation, where there are two causes for

failure which act in a mutually exclusive manner. The density of the random variable

representing failure or survival time can be modelled as h(x;φ) = πf1(x; θ1) + (1 −

π)f2(x; θ2), where fi(x; θ) is the density for failure time solely due to cause i (i = 1, 2).

Choi (1979) used the above model to compare the toxicity of two chemical agents used

in chemotherapy. It was assumed that death was attributable either to toxicity of the

agent or to regrowth of the tumor; the toxicity death usually precedes the passage

due to regrowth. Following Choi (1979), the density of the time to death under

chemical agent k is hk(x;φk) = πkf1(x; θ1) + (1 − πk)f2(x; θ2), (k = 1, 2), where

φk = (πk, θ
T
1 , θ

T
2 )T . Testing whether the two mixtures are identical is equivalent to

testing whether H0 : π1 = π2 holds. For univariate normal and exponential densities,

Choi presented four methods for testing H0, the homogeneity of the two mixing
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proportions. Two were parametric tests based on the asymptotic normality of two

unbiased estimators of π1− π2, while the other two were nonparametric based on the

U and Kolmogorov-Smirnov statistics respectively. The same model was studied by

McLachlan et al (1982). In order to test the equality of the two mixing proportions,

with normal assumptions about both component densities, a likelihood ratio test was

put forward. Their test has more power, at least asymptotically, and also it can

handle multivariate data. Since the null hypothesis H0 is specified in the interior of

the parameter space, regularity conditions do not break down as with null hypotheses

concerning the number of distinct components in the mixture. McLachlan et al (1982)

analyzed data representing survival times in weeks for two sets of rats which were given

dosages of cytoxan at a concentration of 60 mg/kg. The second set was given the

full dosage once weekly, while the first received half the dosage twice weekly. They

compared the toxicity of the chemical agent at the two dosage levels, assuming that

f1 and f2 are both normal with different means and different variances.

In the context of tuberculous infection, Nagelkerke et al (2001) studied mixtures of

M. tuberculosis (TB) and non-specific tuberculin reactions− environmental mycobac-

teria (EM). Their primary purpose is to estimate tuberculosis infection prevalence.

To meet this end, the marginal distribution of indurations needs to be separated into

its component distributions. Here induration is a skin reaction of variable size caused

by allergy to some kind of chemical agent. When EM infections are uncommon and

the prevalence of TB infection high, the distribution of indurations in response to

tuberculin often has two clear modes, one near 0 mm, and one somewhere between 14

and 20 mm of induration size. The author assumed that all non-infected individuals
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have indurations ≤ 1 mm and consequently that indurations greater than 1 mm are

caused either by infection with EM or by infection with TB. The advantage of this is

that only mixtures of two distribution need to be considered.

For separating a mixture into its component distributions, some knowledge of, or

assumptions about, the two distributions is required. Without any restrictions on

the distributions, the problem may not have a unique solution. Thus, some prior

knowledge on the two distributions has to be obtained or assumed. Based on these

considerations, Nagelkerke et al (2001) postulated a logistic model for the probability

of a TB infection given an observed induration x

p(TB|x)
p(EM|x)

= exp(αk + βx), k = 1, 2, · · · , K,

where αi’s are population-specific “prevalence” parameters and β is the common

odds ratio across all K populations. By Bayes’ rule, this is in fact equivalent to the

following semiparametric model:

gk(x) = fk(x) exp(α∗k + βx), k = 1, 2, · · · , K,

where α∗k = αk + log πk

1−πk
and πk = p(TB in population k), the prevalence of TB

in population k, and fk(x) = fk(x|EM) and gk(x) = fk(x|TB) are the underlying

densities of EM and TB in population k, respectively.

Nagelkerke et al (2001) analyzed a data set consisting of 42 samples, each of

which is from one of 42 mixtures. They estimated the parameters in the framework

of contingency tables using Poisson log-likelihood. Neuenschwander et al (2000) used
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a Bayesian approach to finite mixture analysis of the same data. They made varying

assumptions about the two component densities. The assumptions range from the

assumption that both belong to a fully parameterized class of distributions (e.g.,

Weibull, gamma or log-normal) to the “vague” assumption that the distribution of TB

infections is log-concave, and no assumptions regarding the EM distribution are made.

Their most general assumption is that both distributions are log-concave. MCMC

methods using the Metropolis algorithm were used for estimating all parameters.

Recently, Zou, Fine and Yandell (2002) and Fine, et al (2004) considered a rat

study of the genetics of tumor development. The observations arose from K (≥ 2)

discrete mixtures consisting of L (≥ 2) components. In the genetics set-up, K is

the number of genotypes at the flanking markers and L is the number of possible

genotypes at the locus between the markers. Each observation originates in one of

the K mixtures and the label of the mixture generating the datum is known. The

mixing probabilities are also known and may vary among the K mixtures, while the

L component distributions are common to all mixtures. The standard analyses for

such problems posit parametric models for the component distributions (Doerge et

al, 1997). Since standard approaches to estimation involve parametric assumptions

for the component distributions and may be sensitive to model misspecification, Zou,

Fine and Yandell (2001), in the case of L = 2, used a semiparametric method by

assuming a density ratio model for the two component densities, while Fine, et al

(2004) took a fully nonparametric arguments for general L in their study.
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1.3 Density Ratio Model

If two densities are related in such a way that the ratio of them takes a known and

arbitrary form, then they are said to follow a density ratio model. For two densities

f(x) and g(x), the density ratio model is represented by

g(x)

f(x)
= exp(β1 + ϕ(x; β2)), (1.3.1)

where (β1, β
T
2 )T is the parameter and ϕ is a smooth function taking a known form.

The density ratio model (1.3.1) arises naturally from the logistic regression model.

Following Kay and Little (1987) and Qin and Zhang (1997), suppose we have data

concerning an explanatory variable X and a binary response variable Y taking values

0 and 1. Denote the conditional density functions of X given Y = j (j = 0, 1) by

f(x) and g(x), respectively. Consider the assumption that the log-ratio of the two

densities is a linear function of x; that is, log[ g(x)
f(x)

] = β∗1 + βT2 x. Since, by Bayes’ rule,

log
p(Y = 1|x)
p(Y = 0|x)

= log
g(x)

f(x)
+ log

π

1− π
,

where π = p(Y = 1), we have that

log
p(Y = 1|x)
p(Y = 0|x)

= β∗1 + βT2 x+ log
π

1− π
= β1 + βT2 x,

where β1 = β∗1 +log π
1−π . Thus, if the log-ratio of the conditional densities of X given

Y is linear in x, the logistic model is correct for the conditional distribution of Y given
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X = x. The same argument extends to the general case of (1.3.1), which includes,

as special cases, the biased sampling problem, the multiplicative-intercept risk model

(Hsieh, et al, 1985; Weinberg, et al, 1993; Zhang, 2000) which is an extension of

the odds-linear model (Weinberg and Sandler, 1991; Wacholder and Weinberg, 1994),

and some familiar generalized linear models such as the logistic, the probit, and the

c-loglog models with case-control data. In application, the function ϕ(x; β) can take a

form as simple as βx (Qin and Zhang, 1997), which includes many familiar densities,

such as two normal densities with the same variance and two exponential densities, as

special cases, or a slightly complicated form as β2φ(x), which includes the exponential

family as a special case.

1.4 Empirical Likelihood

Without assumptions about the distribution underlying a data set, Art Owen,

in a series of papers (Owen 1988, 1990, 1991), has proposed a strategy based on

the multinomial likelihood function. Assume we have a data set of iid observations

X1, X2, · · · , Xn. The data points may be, essentially, of any Euclidean dimension, say

d. Then the empirical likelihood of the data {X1, X2, · · · , Xn} is defined as L(F ) =∏n
i=1 pi, where pi = dF (Xi), i = 1, 2, · · · , n, are the jumps of the distribution of F at

data points, summing to unity. Inference may be based on

<(θ) = sup{
n∏
i=1

npi ; T (F ) = θ,

n∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, · · · , n.},

the so called profile empirical likelihood ratio function. The constraint T (F ) = θ may
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take the form of E[g(X; θ)] = 0; that is, g(x; θ) is an M -functional. In this case,

<(θ) = sup{
n∏
i=1

npi |
n∑
i=1

pig(Xi; θ) = 0, pi ≥ 0,
n∑
i=1

pi = 1}

Assume that E[g(X; θ0)] = 0, and V ar[g(X; θ0)] is finite and has rank q > 0. Then

as shown by Qin and Lawless (1994), −2 log<(θ) → χ2
q in distribution as n→∞.

Using this fact, we can test the hypothesis about θ or construct a confidence region

for θ. For example, the empirical likelihood ratio-based 1 − α confidence region

is of the form {θ| − 2 log<(θ) ≤ χ2
q(1 − α)}. The empirical likelihood ratio-based

test of the null hypothesis that θ = θ0 rejects when −2 log<(θ0) is greater than an

appropriate critical χ2 value. Qin and Lawless (1994) discussed how to link estimating

equations and the empirical likelihood, and developed methods of combining auxiliary

information about parameters.

An essential advantage of the empirical likelihood is that any side information

can be taken into account in terms of constraints, subject to which the empirical

likelihood is maximized. For a comprehensive review of empirical likelihood, see Hall

and La Scala (1990) and Owen’s recent monograph (Owen 2001).

Owen’s empirical likelihood has been extended to the semiparametric setting by

Qin (1993, 1998, 1999, 2000), Qin and Zhang (1997), Qin, Leung and Shao (2002),

Qin and Leung (2005), and Qin and Zhang (2005), among others. Semiparametric

empirical likelihood has been used in the context of goodness-of-fit tests (Qin and

Zhang 1997; Zhang 1999, 2001), mixture models (Qin 1999; Zhang 2002; Qin and

Leung 2005), complex survey (Qin et al, 2002), truncated data (Li, et al, 1997), and



14

other contexts. Qin (1993) established the connection of semiparametric empirical

likelihood to the biased sampling problem. It’s well known that parametric likelihood

of high dimensional data can be written as the product of marginal likelihood and

conditional likelihood. A similar result about semiparametric empirical likelihood is

established by Qin and Zhang (2005) in some useful contexts.

1.5 EM and MM Algorithms

Maximum likelihood is the dominant form of estimation in applied statistics. Be-

cause closed-form solutions to likelihood equations are the exception rather than the

rule, numerical methods for finding maximum likelihood estimates are of paramount

importance. At the heart of the EM algorithm is some notion of missing data. Data

can be missing in the ordinary sense of a failure to record certain observations on

certain cases. Data can also be missing in a theoretical sense. An EM starts from

constructing so-called the complete likelihood. That is, one pretends that there is

no missing data and construct a likelihood based on both the observed data and the

missing data. When the complete data likelihood gets maximized, any missing value

will be filled in with some appropriate procedure. Specifically, an EM algorithm con-

sists of two steps. The E step finds a way to impute the missing values, usually by

taking expectation. After filling in the missing values in the E step, a usually simpler

surrogate function to the original likelihood is maximized in the M step. The price

we pay for this simplification is that the EM algorithm is iterative and usually slow.

One of the notable advantage of the EM algorithm is its numerical stability. Any
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EM algorithm leads to a steady increase in the likelihood of the observed data. In

addition, EM algorithms handle parameter constraints gracefully. Any constraints

are handled in M step. For a comprehensive review, see “The EM algorithm and

extensions” by McLachlan (1997).

The MM algorithm is another useful optimization tool in mathematics and statis-

tics, which has not been widely recognized by statisticians. As stated in Lange’s

new monograph (Lange, 2004), the MM algorithm is an extension of the EM algo-

rithm. In maximization problems, the first M stands for “minorize” and the second

for “maximize”. When it is successful, the MM algorithm replace a difficult opti-

mization problem by a simpler one. Simplicity can be attained by avoiding large

matrix inversions, linearizing a optimization problem, separating the variables and

dealing with constraint optimization problem nicely, and so on. As for the EM algo-

rithm, simplification is paid with iteration and slowness of convergence. On the other

hand, the MM algorithm shares the similar properties as with the EM algorithm, for

example, numerical stability.

Here is an introduction of the MM algorithm. When an objective function, say

f(x), is hard to maximize, it can be replaced by a carefully chosen surrogate function,

denoted by g(x|x(m)) satisfying

1. f(x) ≥ g(x|x(m)) for all x ∈ D, the domain of f(x),

2. f(x(m)) = g(x(m)|x(m)),

where x(m) is the current iterate and g is called the minorizing function of f . This

method is called MM algorithm which is useful especially in solving high dimensional
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problems. The construction of the surrogate function is toward the goal of making

the parameters as isolated to each other as possible.

The MM algorithm for maximization problems has a nice ascent property; that

is, f(x(m) < f(x(m+1)), which makes the algorithm numerically stable though it is

usually slow. Minorization has many properties, one of which is the additivity. That

is, if g1 and g2 are minorizing functions of f1 and f2, respectively, then g1 + g2 is a

minorizing function of f1 + f2.

In statistics, one often deals with the problem of maximizing a log-likelihood

function. The log-likelihood can be written as the sum of usually nonlinear terms.

Each nonlinear term can be minorized by a surrogate function. By the additivity

property of MM algorithm, the log-likelihood can be replaced by a simpler function.

1.6 Motivations and an Outline of This Research

K-sample mixtures with training sample(s) have been widely considered by many

researchers using alternative methods. K-sample mixtures without training samples

arise in many contexts such as life testing, epidemiology and genetics, yet, to my

knowledge, have not received much attention, which is the fact that motivates me to

study mixtures. Although nonparametric methods, such as grouping (Hall, 1981) and

pairwise rank based methods (Heller and Qin, 2002), may be possible, I go with semi-

parametric methods which basically assume the validity of the density ratio model.

This topic is different from Zou, Fine and Yandell (2002) in that the mixing pro-

portions in my setting are unknown. Zou’s known proportions were derived from
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well-known genetics assumptions. By proposing mixture models with unknown mix-

ing proportions, we provide a way to test the proportions, thus possibly some genetics

assumptions. This is a second motivation.

Goodness of fit of models should generally be assessed after model fitting. To make

valid inferences, the density ratio model should pass a goodness-of-fit test. There

has been no formal goodness-of-fit test proposed for K-mixtures in the literature,

therefore, it is a third motivation for me to choose this research topic.

A fourth motivation is to make inference about the difference of two proportions.

Suppose two groups of subjects are administered with different treatments. A gene of

interest may be normally or abnormally expressed. This can be viewed as a 2-sample

two-component mixture model problem. The effects of treatments can be compared

in terms of the difference of the two proportions that the gene is abnormally expressed

in the two groups. A comparison of death rates due to toxicity for two chemical agents

is another example. Note that the comparison of proportions here is different from

the comparison of usual population proportions based on two samples in that the

group identifier of each observation taken from each mixture is missing, which clearly

complicates the comparison.

Following an empirical likelihood-based procedure, in Chapter two, we obtain the

maximum semiparametric likelihood estimators for the parameters. The large sample

results will be given. Since the empirical likelihood method is computer-intensive,

the computational issue is discussed in Chapter three. Instead of the usual choice of

Newton-Raphson method, we consider two alternatives − the EM method and the

MM method. Problems of inference on interest parameters are studied in Chapter
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four. Since our methodology is based on the density ratio model, inference should

be drawn only when this assumption is valid. Chapter five considers the goodness-

of-fit problem of our model. We follow the idea of Qin and Zhang (1997), Zhang

(2001, 2002b) to develop a Kolmogorov-Smirnov-type statistic for testing the fit of

our model. Chapter six concludes the research and points out possible future work.

1.7 Some Notations

The following equations or notation will be used throughout.

θ = (λ, β, α) θ0 = (λ0, β0, 0) λ0 = (λ10, · · · , λK0) β0 = (β10, β20)

l(λ, β) = the profile log-likelihood Qn =
1

n

∂l

∂θ
S =

∂2l

∂θθT

ρnk =
nk
n

ρk = lim
n→∞

ρnk, for k = 1, 2, · · · , K

ρn = (ρn1, · · · , ρnK)T ρ = (ρ1, ρ2, · · · , ρK)T

ek = (0, · · · , 0, 1, 0, · · · , 0)T , the kth element being 1, for k = 1, 2, · · · , K

ξ =
1

n

K∑
k=1

nk(1− λk0) φ = lim
n→∞

ξ =
K∑
k=1

ρk(1− λk0)

Ĥk(x)is the ECDF of xk1, · · · , xknK

(1.7.1)



19

ωk(t;λk0, β0) = λk0 + (1− λk0)ω(t; β0)

r(t;λ0, β0) = 1 + ξ[ω(t; β0)− 1] =
K∑
k=1

ρnkωk(t;λk0, β0)

R(t;λ0, β0) = lim
n→∞

r(t;λ0, β0) = 1 + φ[ω(t; β0)− 1]

g(t;λ0, β0) =
ω(t; β0)− 1

r(t;λ0, β0)

G(t;λ0, β0) = lim
n→∞

g(t;λ0, β0) =
ω(t; β0)− 1

R(t;λ0, β0)

l1(λ, β, α) = −
n∑
i=1

log[1 + αg(ti;λ, β))]

l2(λ, β, α) = −
n∑
i=1

log[r(ti;λ, β)] +
K∑
k=1

nk∑
j=1

log[ωk(xkj;λ, β)]

l(λ, β, α) = l1(λ, β, α) + l2(λ, β, α)

(1.7.2)

τ(t) =

∫ t

−∞

[1− ω(x; β0)]
2

R(x;λ0, β0)
dF

ηk(t) =

∫ t

−∞

[1− ω(x; β0)]
2

ωk(x;λk0, β0)
dF

ψ1k(t) =

∫ t

−∞

∂ω(x; β0)

∂β

1

ωk(x;λk0, β0)
dF

ψ2k(t) =

∫ t

−∞

∂ω(x; β0)

∂β

∂ω(x; β0)

∂βT
1

ωk(x;λk0, β0)
dF

ς1(t) =

∫ t

−∞

∂ω(x; β0)

∂β

1

R(x;λ0, β0)
dF

ς2(t) =

∫ t

−∞

∂ω(x; β0)

∂β

∂ω(x; β0)

∂βT
1

R(x;λ0, β0)
dF

τ = τ(∞) ηk = ηk(∞) ψ1k = ψ1k(∞) ψ2k = ψ2k(∞) ς1 = ς1(∞) ς2 = ς2(∞)



Chapter 2

Semiparametric Estimation of the

K2M Model and Asymptotics

We start working on the problem of interest presented in the previous chapter. We

first construct the nonparametric likelihood of our data. By separating the likelihood

into a first part containing n nuisance parameters and a second part containing finite

parameters, we form the so-called empirical likelihood that corresponds to the first

part of the partition. The empirical likelihood is first maximized subject to some

constraints that reflect our knowledge about the data. Then a profile likelihood is

formed by plugging the maximizer just obtained back in the original nonparamet-

ric likelihood. Computation and inference will essentially be based on this profile

likelihood.

20
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2.1 Empirical Likelihood-based Semiparametric Es-

timators

Following the problem setting in Section 1.1, let t = (xk1, · · · , xknk
; · · · ; xK1,

· · · , xKnK
) denote the combined data, λ = (λ1, · · ·λK)T , and β = (β1, β2)

T . Based on

the observed data t and the density ratio assumption (1.1.1), the likelihood can be

written as

L(λ, β, F ) =
K∏
k=1

nk∏
j=1

ωk(xkj;λ, β)dF (xkj)

=
n∏
i=1

pi

K∏
k=1

nk∏
j=1

ωk(xkj;λ, β),

where pi = dF (ti), i = 1, · · · , n with pi > 0 and
∑
pi = 1. The log-likelihood is

l(λ, β, F ) =
n∑
i=1

log(pi) +
K∑
k=1

nk∑
j=1

log[ωk(xkj;λ, β)] (2.1.1)

which can be maximized in two steps as follows.

Step 1. For fixed (λ, β), one maximizes the empirical log-likelihood
∑n

i=1 log(pi),

subject to the constraints

n∑
i=1

pi = 1,
n∑
i=1

pi[ω(ti, β)− 1] = 0, pi > 0, (2.1.2)
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where ω(t; β) is given in (1.1.2). This gives (Qin and Lawless, 1994)

pi =
1

n

1

1 + η[ω(ti; β)− 1]
, i = 1, · · · , n, (2.1.3)

where η is the Lagrange multiplier, which is determined by

1

n

n∑
i=1

ω(ti; β)− 1

1 + η[ω(ti; β)− 1]
= 0, i = 1, · · · , n. (2.1.4)

We change the variables (λ, β, η) to (λ, β, α), where

α = η −
K∑
k=1

ρk(1− λk). (2.1.5)

Then pi can be written as

pi =
1

n

1

r(ti;λ, β)

1

1 + α[ω(ti; β)− 1]/r(ti;λ, β)
, (2.1.6)

where r(t;λ, β) = 1 + ξ[ω(t; β) − 1], i = 1, · · · , n and ξ = 1
n

∑K
k=1 nk(1 − λk). The

constrained equation (2.1.4) now becomes

1

n

n∑
i=1

g(ti;λ, β)

1 + αg(ti;λ, β)
= 0, (2.1.7)

where

g(t;λ, β) =
ω(t; β)− 1

r(t;λ, β)
. (2.1.8)

The major advantage of changing variable is that, the log-likelihood (2.1.1) can be
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written in a form from which a useful partial likelihood is naturally generated. This

will be remarked in Section (2.2). Another advantage of changing variable is the fact

that

E

[
1

n

n∑
i=1

g(ti;λ0, β0)

]
=

1

n
E

[ K∑
k=1

nk∑
j=1

g(xkj;λ0, β0)

]

=
K∑
k=1

nk
n
Eg(xkj;λ0, β0)

=
1

n

K∑
k=1

nk

∫
g(t;λ0, β0)ωk(t;λ0, β0)dF (t)

=

∫ {
1

n

K∑
k=1

nk[λk0 + (1− λk0)ω(t; β0)]

}
g(t;λ0, β0)dF (t)

=

∫
[1 + ξ(ω(t; β0)− 1)]g(t;λ0, β0)dF (t)

=

∫
r(t;λ0, β0)

ω(t; β0)− 1

r(t;λ0, β0)
dF (t)

= 0,

and thus, by the central limit theorem,

1

n

n∑
i=1

g(ti;λ0, β0) =
K∑
k=1

nk
n

1

nk

nk∑
j=1

g(xkj;λ0, β0)

=
K∑
k=1

nk
n

[
µk +Op(n

−1/2
k )

]

= Op(n
−1/2),

(2.1.9)

where µk = E(g(Xk;λ0, β0)). A result of almost sure convergence can be obtained by
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using the law of the iterated logarithm:

1

n

n∑
i=1

g(ti;λ0, β0) =
K∑
k=1

nk
n

1

nk

nk∑
j=1

g(xkj;λ0, β0)

=
K∑
k=1

nk
n

[
µk +O(n

−1/2
k (log log nk)

1/2)

]

=
K∑
k=1

nk
n
O(n

−1/2
k (log log nk)

1/2) (a.s.).

(2.1.10)

By similar arguments as in Qin and Lawless (1994), we can show that, under certain

conditions, the constraint equation (2.1.7) uniquely determines an differentiable im-

plicit function α = α(λ, β) in an neighborhood of (λ0, β0), the true value of (λ, β).

Plugging (2.1.6) in (2.1.1) gives the profiled log-likelihood

l(λ, β, α(λ, β)) = l1(λ, β, α(λ, β)) + l2(λ, β),

where

l1(λ, β, α(λ, β)) = −
n∑
i=1

log[1 + α(λ, β)g(ti;λ, β)],

l2(λ, β) = −
n∑
i=1

log[r(ti;λ, β)] +
K∑
k=1

nK∑
j=1

log[ωk(xkj;λ, β)].

(2.1.11)

Step 2. Maximize l(λ, β, α(λ, β)) with respect to (λ, β). We have the following score
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equations

∂l

∂λ
=
∂l2
∂λ

−
n∑
i=1

α(λ, β)∂g(ti;λ)/∂λ+ ∂α(λ, β)/∂λg(ti;λ, β)

1 + α(λ, β)g(ti;λ, β)
= 0,

∂l

∂β
=
∂l2
∂β

−
n∑
i=1

α(λ, β)∂g(ti;λ)/∂β + ∂α(λ, β)/∂βg(ti;λ, β)

1 + α(λ, β)g(ti;λ, β)
= 0,

which are equivalent to

∂l

∂λ
=
∂l2
∂λ

−
n∑
i=1

α(λ, β)∂g(ti;λ)/∂λ

1 + α(λ, β)g(ti;λ, β)
= 0,

∂l

∂β
=
∂l2
∂β

−
n∑
i=1

α(λ, β)∂g(ti;λ)/∂β

1 + α(λ, β)g(ti;λ, β)
= 0.

(2.1.12)

Let (λ̃, β̃) be a solution to the above system of equations in the neighborhood of the

true value of (λ0, β0). We call (λ̃, β̃) a maximum semiparametric likelihood estimator

(MSLE) of (λ, β). The main results are presented in the following series of theorems.

2.2 Strong Consistency and Asymptotic Normal-

ity of (λ̃, β̃, α̃)

The main theorem in this section establishes the root-n consistency of the semi-

parametric estimators. This result will be further used to prove the root-n consis-

tency of the semiparametric estimators of the distributions F (x), G(x), and Hk(x),

k = 1, 2, · · · , K. To show the root-n consistency, we first give two lemmas. The first

lemma shows that the Lagrange multiplier is close to zero when the parameter values

are close to their true values at an appropriate rate. All proofs will be given in the
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section of proofs.

Lemma 2.2.1. Assume that g(x; θ) is first-order continuously differentiable in a

neighborhood of the true value θ0, and g3 and ||∂g/∂θ|| are bounded by some in-

tegrable function in a neighborhood of θ, where ||.|| is the Euclidean norm. Then,

α = α(λ, β) = O(n−1/3) (a.s.), uniformly about θ = (λ, β) in B(θ0) = {θ; ||θ−θ0|| ≤

n−1/3}.

The following lemma will be used to prove the existence of an maximum semi-

parametric likelihood estimator.

Lemma 2.2.2. Under the assumptions in Lemma (2.2.1), on the surface of the ball

B(θ0) = {θ; ||θ − θ0|| ≤ n−1/3}, with probability 1,

1. l1(λ, β, α(λ, β)) < l1(λ0, β0, α(λ0, β0)),

2. l2(λ, β) < l2(λ0, β0), and thus

3. l(λ, β, α(λ, β)) < l(λ0, β0, α(λ0, β0)),

when n is large enough.

Remark 2.2.1. If we enlarge the parameter space and treat λ, β, and α jointly as

independent parameters, a Taylor expansion of l(λ, β, α) on the surface of the ball

B(θ0, 0) = {(θ, α); ||(θ, α)− (θ0, 0)||} is

l(λ, β, α) = l(λ0, β0, α0)+
K∑
k=1

O((nk log log nk)
1/2)un−1/3+

1

2
uT e11un

1/3+o(n1/3) (a.s.),

where ||u|| = 1. Then, similar arguments can be made since e11 is negative definite.
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Remark 2.2.2. The second part of Lemma (2.2.2) suggests that inference may be

based on l2, a partial likelihood as studied in Zou, Fine and Yandell (2002), Zou

and Fine (2002), and Qin and Zhang (2005). When this partial likelihood is used in

estimation and inference, efficiency loss needs to be assessed via, for example, checking

the relative efficiency of the partial likelihood-based estimator to the estimator under

the full likelihood.

Now, we state the main results: the existence and strongly consistency of a local

maximum likelihood estimator of θ0 = (λ0, β0).

Theorem 2.2.3. In addition to the conditions of Lemma (2.2.1), we assume that

1. g(x; θ) is second-order continuously differentiable in an O(n−1/3) neighborhood

of θ0,

2. as n =
∑K

k=1 nk →∞, nk

n
→ ρk > 0, k = 1, · · · , K, and

3. 0 < λk < 1, k = 1, · · · , K, and at least two λk’s are not same.

Under these assumptions, with probability 1, l(λ, β, α(λ, β)) has a local maximum in

an O(n−1/3) neighborhood of (α0, β0). Moreover, the maximizer (λ̃, β̃) and α̃ = α(λ̃, β̃)

satisfy the score equations (2.1.12) and the constraint equation (2.1.7) respectively,

and as n→∞,

√
n


λ̃− λ0

β̃ − β0

α̃− 0

 → N(0, U), (2.2.1)
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where U is given in the section of proofs.

Remark 2.2.3. The first part of the theorem (2.2.3) implies that the maximum semi-

parametric likelihood estimator is strongly consistent.

2.3 CDF Estimators and a Graphical Diagnostic

Based on the observed data, F , G, and Hk(x) can be estimated by

F̃ (x) =
n∑
i=1

p̃iI(ti ≤ x), G̃(x) =
n∑
i=1

p̃iω(ti; β̃)I(ti ≤ x), and

H̃k(x) =
n∑
i=1

p̃i[λ̃k + (1− λ̃k)ω(ti; β̃)]I(ti ≤ x), k = 1, · · · , K,

respectively. We can prove that

K∑
k=1

nk[H̃k(x)− Ĥk(x)] = 0, (2.3.1)

where Ĥk(x) is the empirical CDF of Hk(x).

To seek asymptotic expressions for F̃ (t), G̃(t), and H̃k(t), first denote

F1(t) =
1

n

n∑
i=1

1

r(ti;λ0, β0)
I(ti ≤ t),

F2(t) =

∫ t

−∞

(
G(x;λ0, β0)ρ

T ,− φ

R(x;λ0, β0)

∂ω(x; β)

∂βT
,−G(x;λ0, β0)

)
dF (x) S−1Qn,

G1(t) =
1

n

n∑
i=1

ω(ti; β0)

r(ti;λ0, β0)
I(ti ≤ t),

G2(t) =

∫ t

−∞

(
G(x;λ0, β0)ρ

T ,− φ

R(x;λ0, β0)

∂ω(x; β)

∂βT
,−G(x;λ0, β0)

)
dG(x) S−1Qn,
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Hk1(t) =
1

n

n∑
i=1

ωk(ti;λ0, β0)

r(ti;λ0, β0)
I(ti ≤ t),

Hk2(t) =

∫ t

−∞

(
G(x;λ0, β0)ρ

T ,− φ

R(x;λ0, β0)

∂ω(x; β)

∂βT
,−G(x;λ0, β0)

)
dHk(x) S

−1Qn,

where φ and ρ are defined in (1.7.1), and G and R in (1.7.2).

Theorem 2.3.1. Under regularity conditions,

F̃ (t) = F1(t)− F2(t) + op(n
−1/2),

G̃(t) = G1(t)−G2(t) + op(n
−1/2),

H̃k(t) = Hk1 −Hk2 + op(n
−1/2), for k = 1, 2, · · · , K.

Theorem 2.3.2. Under the condition as in Theorem (2.2.3), as n→∞, we have

1.
√
n [F̃ (x)− F (x)] → BF (x),

2.
√
n [G̃(x)−G(x)] → BG(x), and

3.
√
n [H̃k(x)−Hk(x)] → BHk

(x), for each k,

where BF (x), BG(x), and BHk
(x) are mean zero Gaussian processes with continuous

paths and respective covariance structures ΣF , ΣG, and ΣHk
specified later in the proof

section.

The covariance function, ΣF , can be consistently estimated by Σ̃F with consistent

estimates in place of theoretical quantities in ΣF . The resulting plug-in formulas

are tedious and are omitted. A 95% confidence interval for F (x), based on normal
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theory, is F̃ (x)±1.96n−1/2Σ̃F , with any upper limit exceeding 1 replaced by 1. Similar

statements can be made for ΣG and ΣHk
.

To see whether or not H̃k(x) is a good estimate for Hk(x), a natural diagnostic

is to plot (Ĥk(x), H̃k(x)), k = 1, · · · , K. Substantial difference in any one of the K

plots would indicate inadequacy of the density ratio model (1.1.1).

2.4 Proofs

In this section, we give detailed proofs of our results.

2.4.1 Proof of Lemmas (2.2.1) and (2.2.2)

The proof of Lemmas (2.2.1) is similar to that of Owen (1990). Suppose that θ

satisfies ||θ − θ0|| ≤ n−1/3. Let Zn = maxi |g(ti; θ)|. Following Owen’s method, we

can show that, with probability 1, Zn = o(n1/3) under our conditions. Now

0 =

∣∣∣∣ 1n
n∑
i=1

g(ti; θ)

1 + αg(ti; θ)

∣∣∣∣
=

1

n

∣∣∣∣ n∑
i=1

g(ti; θ)− α
n∑
i=1

g2(ti; θ)

1 + αg(ti; θ)

∣∣∣∣
≥ |α|

n

n∑
i=1

g2(ti; θ)

1 + αg(ti; θ)
− 1

n

∣∣∣∣ n∑
i=1

g(ti; θ)

∣∣∣∣
≥ |α|S

1 + |α|Zn
− 1

n

∣∣∣∣ n∑
i=1

g(ti; θ)

∣∣∣∣,

(2.4.1)
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where S = 1
n

∑n
i=1 g

2(ti; θ). By Taylor expansion,

1

n

n∑
i=1

g(ti; θ) =
1

n

n∑
i=1

g(ti; θ0) +
1

n

n∑
i=1

∂g(ti; θ∗)

∂θ
(θ − θ0), (2.4.2)

the last term being O(n−1/3) by our conditions and the strong law of large numbers,

the first term by (2.1.10) being negligible, and θ∗ satisfying θ∗ = cθ0 + (1 − c)θ, for

some c ∈ (0, 1). It follows from (2.4.1) and (2.4.2) that

|α|S
1 + |α|Zn

= O(n−1/3).

Therefore, |α| = O(n−1/3) uniformly about θ in the O(n−1/3) neighborhood of θ0,

since Zn = o(n1/3) and S converges to a finite quantity almost surely. The proof of

Lemma (2.2.1) is completed.

Now, let’s prove Lemma (2.2.2). Proof of part 1: Following the lines as in

Qin (1999), we can show, using Taylor expansion, the law of the iterated loga-

rithm, and the result of |α| = O(n−1/3) in the ball B(θ0), that l1(λ, β, α(λ, β)) <

l1(λ0, β0, α(λ0, β0)), (a.s.) on the surface of B(θ0). Proof of part 2: Following Qin

(1993) and using the law of the iterated logarithm and the strong law of large num-

bers, on the surface of the ball B(θ0) = {θ; ||θ − θ0||}, we have, almost surely, that
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l2(λ, β) equals

l1(λ0, β0)−
K∑
k=1

nk∑
j=1

1

r(xkj; θ0)

∂r(xkj; θ0)

∂θT
un−1/3 +

K∑
k=1

nk∑
j=1

1

ωk(xkj; θ0)

∂ωk(xkj; θ0)

∂θT
un−1/3

− 1

2
uT

K∑
k=1

nk∑
j=1

{
− 1

r2(xkj; θ0)

∂r(xkj; θ0)

∂θ

∂r(xkj; θ0)

∂θT
+

1

r(xkj; θ0)

∂2r(xkj; θ0)

∂θθT

}
un−1/3

− 1

2
uT

K∑
k=1

nk∑
j=1

{
1

ωk(xkj; θ0)

∂ωk(xkj; θ0)

∂θ

∂ωk(xkj; θ0)

∂θT
− 1

ωk(xkj; θ0)

∂2ωk(xkj; θ0)

∂θθT

}
un−1/3

= l2(λ0, β0) +
K∑
k=1

O((nk log log nk)
1/2)un−1/3 +

1

2
uT e11un

1/3 + o(n1/3),

where ||u|| = 1 and e11 is defined in (2.4.6). When using the law of the iterated

logarithm, we note that the two means of the two first order terms are both zero. From

the expression of the covariance matrix V in (2.4.7), we can see that −e11 − δe12e
T
12

is positive definite. The negative definiteness of e11 follows since δe12e
T
12 is positive

definite. Thus, l2(λ, β) < l2(λ0, β0), (a.s.) on the surface of B(θ0). Proof of part 3:

First we note that l(λ, β, α(λ, β)) = l1(λ, β, α(λ, β)) + l2(λ, β), where l1 and l2 are

given in (2.1.11). The result naturally follows.

2.4.2 Proof of Theorem (2.2.3)

The existence of a maximum semiparametric likelihood estimator in the O(n−1/3)

neighborhood of (λ0, β0) follows directly from part 3 of Lemma (2.2.2). To prove

the normality, we start with the first and second order derivatives of the profile log-
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likelihood (2.1.1).

∂l

∂λ
|θ0 = ρn

n∑
i=1

ω(ti; β0)− 1

r(ti;λ0, β0)
−

K∑
k=1

nk∑
j=1

ω(xkj; β0)− 1

ωk(xkj;λ0, β0)
ek,

∂2l

∂λ∂λT
|θ0 = ρnρ

T
n

n∑
i=1

[ω(ti; β0)− 1]2

r2(ti;λ0, β0)
−

K∑
k=1

nk∑
j=1

[ω(xkj; β0)− 1]2

ω2
k(xkj;λ0, β0)

eke
T
k ,

∂2l

∂λ∂βT
|θ0 = ρn

n∑
i=1

1

r2(ti;λ0, β0)

∂ω(ti; β0)

∂βT
−

K∑
k=1

nk∑
j=1

1

ω2
k(xkj;λ0, β0)

ek
∂ω(xkj; β0)

∂βT
,

∂l

∂β
|θ0 = −ξ

n∑
i=1

1

r(ti;λ0, β0)

∂ω(ti; β0)

∂β
+

K∑
k=1

nk∑
j=1

1− λk
ω2
k(xkj;λ0, β0)

∂ω(xkj; β0)

∂β
,

∂2l

∂β∂βT
|θ0 = −ξ

n∑
i=1

[
∂2ω(ti; β0)

∂β∂βT
1

r(ti;λ0, β0)
−

{
∂ω(ti; β0)

∂β

}⊗2
ξ

r2(xkj;λ0, β0)

]

+
K∑
k=1

nk∑
j=1

[
∂2ω(xkj; β0)

∂β∂βT
1− λk

ωk(xkj;λk0, β0)
−

{
∂ω(xkj; β0)

∂β

}⊗2
(1− λk)

2

ω2
k(xkj;λk0, β0)

]
,

∂l

∂α
|θ0 = −

n∑
i=1

g(ti;λ0, β0),

∂2l

∂α2
|θ0 =

n∑
i=1

g2(ti;λ0, β0),

∂2l

∂α∂λ
|θ0 = −

n∑
i=1

∂g(ti;λ0, β0)

∂λT
= −ρn

n∑
i=1

[ω(ti; β0)− 1]2

r2(ti;λ0, β0)
,

∂2l

∂α∂βT
|θ0 = −

n∑
i=1

∂g(ti;λ0, β0)

∂βT
= −

n∑
i=1

1

r2(ti;λ0, β0)

∂ω(ti; β0)

∂βT
.
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Let

Qn =
1

n

∂l

∂θ
|θ0 =


1
n
∂l
∂λ

1
n
∂l
∂β

1
n
∂l
∂α


θ0

, (2.4.3)

Sn =
1

n

∂2l

∂θ∂θT
|θ0 =


1
n

∂2l
∂λ∂λT

1
n

∂2l
∂λ∂βT

1
n

∂2l
∂λ∂α

1
n

∂2l
∂β∂λT

1
n

∂2l
∂β∂βT

1
n

∂2l
∂β∂α

1
n

∂2l
∂α∂λT

1
n

∂2l
∂α∂βT

1
n
∂∂2l
∂∂α2


θ0

. (2.4.4)

Denote the (i, j) element of Sn by snij, we have

sn11 =
1

n
ρnρ

T
n

K∑
k=1

nk∑
j=1

[ω(ti; β0)− 1]2

r2(ti;λ0, β0)
− 1

n

K∑
k=1

nk∑
j=1

[ω(xkj; β0)− 1]2

ω2
k(xkj;λ0, β0)

eke
T
k

→ ρρT
K∑
k=1

ρk

∫
[ω(t; β0)− 1]2

R2(t;λ0, β0)
ωk(x;λk0, β0)dF −

K∑
k=1

ρk
[ω(t; β0)− 1]2

ω2
k(x;λ0, β0)

eke
T
k dF

=

∫
[1− ω(x; β0)]

2

[
ρρT

R(x;λ0, β0)
−

K∑
k=1

ρk
ωk(x;λ0, β0)

eke
T
k

]
dF ≡ s11,

sn12 →
∫ [

ρ

R(x;λ0, β0)
−

K∑
k=1

ρk
ωk(x; β0)

ek

]
∂ω(x; β0)

∂βT
dF ≡ s12,

sn13 → −
∫

[ω(x; β0)− 1]2

R(x;λ0, β0)
ρdF ≡ s13,

sn22 →
∫ [ K∑

k=1

ρkλk(1− λk)

ωk(x;λ0, β0)
− φ(1− φ)

R(x;λ0, β0)

]
∂2ω(x; β0)

∂β∂βT
dF ≡ s22,

sn23 → −
∫

1

R(x;λ0, β0)

∂ω(x; β0)

∂β
dF ≡ s23,

sn33 →
∫

[ω(x; β0)− 1]2

R(x;λ0, β0)
dF ≡ s33.
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Write

Qn =


Qn1

Qn2

Qn3

 ,

where

Qn1 =
1

n

∂l

∂λ
|θ0

=
1

n

{ K∑
k=1

nk∑
j=1

[ω(xkj; β0)− 1]

r(ti;λ, β)xkj
ρn +

K∑
k=1

nk∑
j=1

1− ω(xkj; β0)

ωk(xkj;λk0, β0)
ek

}

Qn2 =
1

n

∂l

∂β
|θ0

=
1

n

{
−

K∑
k=1

nk∑
j=1

1

r(xkj;λ0, β0)
ξ
∂ω(xkj; β0)

∂β
+

K∑
k=1

nk∑
j=1

1− λk
ωk(xkj;λk0, β0)

∂ω(xkj; β0)

∂β

}

Qn3 =
1

n

∂l

∂α
|θ0

=
1

n

{
−

K∑
k=1

nk∑
j=1

g(xkj;λ0, β0)

}

Rewrite Qn as

Qn =
1

n

K∑
k=1

nk∑
j=1

qk(xkj),

where

qk(xkj) = −


1−ω(xkj ;β0)

r(xkj ;λ0,β0)
ρn − 1−ω(xkj ;β0)

ωk(xkj ;λk0,β0)
ek

ξ
r(xkj ;λ0,β0)

∂ω(xkj ;β0)

∂β
− 1−λk

ωk(xkj ;λk0,β0)

∂ω(xkj ;β0)

∂β

g(xkj;λ0, β0)

 , k = 1, 2, · · · , K.

Write

Qn = ρn1Q
(1)
n + ρn2Q

(2)
n + · · ·+ ρnKQ

(K)
n
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where

Q(k)
n =

1

nk

nk∑
j=1

qk(xkj), k = 1, 2, · · · , K.

By CLT, it holds true that

√
nk(Q

(k)
n − µ(k)) −→ N(0, V (k)), k = 1, 2, · · · , K,

where

µ(k) = E[qk(Xk)] =

∫
qk(x)ω(x; β0)dF, and V (k) = var(qk(Xk)).

It’s easy to show that

√
n(Qn − µ) −→ N(0, V ),

where

µ =
K∑
k=1

ρnkµ
(k) =

∫ K∑
k=1

ρnkqk(x)ωk(x;λk0, β0)dF = 0, and,

V =
K∑
k=1

ρnkV
(k).

Noting that V (k) is symmetric, write it as


v

(k)
11 v

(k)
12 v

(k)
13

v
(k)T

12 v
(k)
22 v

(k)
23

v
(k)T

13 v
(k)T

23 v
(k)
33

 ,
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where

v
(k)
11 = var

{
1− ω(Xk; β0)

r(Xk;λ0, β0)
ρ− 1− ω(Xk; β0)

ωk(Xk;λk0, β0)
ek

}
= E

{
1− ω(Xk; β0)

r(Xk;λ0, β0)
ρ− 1− ω(Xk; β0)

ωk(Xk;λk0, β0)
ek

}⊗2

−
{
E

[
1− ω(Xk; β0)

r(Xk;λ0, β0)
ρ

]}⊗2

= ρρn
TE

{[
1− ω(Xk; β0)

r(Xk;λ0, β0)

]2}
− ρeTkE

{
[1− ω(Xk; β0)]

2

r(Xk;λ0, β0)ωk(Xk;λk0, β0)

}
−

ekρ
TE

{
[1− ω(Xk; β0)]

2

r(Xk;λ0, β0)ωk(Xk;λk0, β0)

}
+ ekek

TE

{[
1− ω(Xk; β0)

ωk(Xk;λk0, β0)

]2}
−

ρnρ
T

{
E

[
1− ω(Xk; β0)

r(Xk;λ0, β0)

]}2

.

Similar expressions can be developed for other v
(k)
ij ’s.

Note that V is symmetric. Write V as


v11 v12 v13

vT12 v22 v23

vT13 vT23 v33

 , where

v11 =
K∑
k=1

ρnkv
(k)
11

=
K∑
k=1

ρkρρ
TE

{
[1− ω(Xk; β0)]

2

r2(Xk;λ0, β0)

}
−

K∑
k=1

ρkρe
T
kE

{
[1− ω(Xk; β0)]

2

r(Xk;λ0, β0)ωk(Xk;λk0, β0)

}
−

K∑
k=1

ρkekρ
TE

{
[1− ω(Xk; β0)]

2

r(Xk;λ0, β0)ωk(Xk;λk0, β0)

}
+

K∑
k=1

ρkeke
T
kE

{
[1− ω(Xk; β0)]

2

ω2
k(Xk;λk0, β0)

}
−

K∑
k=1

ρkρρ
T
n

{
E

[
1− ω(Xk; β0)

r(Xk;λ0, β0)

]}2
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= ρρT
∫

[1− ω(x; β0)]
2

r(x;λ0, β0)
dF − ρρT

∫
[1− ω(x; β0)]

2

r(x;λ0, β0)
dF

− ρρT
∫

[1− ω(x; β0)]
2

r(x;λ0, β0)
dF +

K∑
k=1

ρkeke
T
k

∫
[1− ω(x; β0)]

2

ωk(x;λk0, β0)
dF

−
K∑
k=1

ρnkρρ
T

[∫
1− ω(x; β0)

r(Xk;λ0, β0)
ωk(x;λk0, β0)dF

]2

= −ρρT
∫

[1− ω(x; β0)]
2

r(x;λ0, β0)
dF +

K∑
k=1

ρnkeke
T
k

∫
[1− ω(x; β0)]

2

ωk(x;λk0, β0)
dF

−
K∑
k=1

ρkρρ
T

[∫
1− ω(x; β0)

r(x;λ0, β0)
ωk(x;λk0, β0)dF

]2

.

Similarly for other vij’s.

v12 = ξρ

∫
1− ω(x; β0)

r(x;λ0, β0)

∂ω(x; β0)

∂βT
dF

+
K∑
k=1

ρk(1− λk)ek

∫
1− ω(x; β0)

ωk(x;λk0, β0)

∂ω(x; β0)

∂βT
dF

− ξρ
K∑
k=1

ρk

∫
1− ω(x; β0)

r(x;λ0, β0)
ωk(x;λk0, β0)dF

∫
∂ω(x; β0)

∂βT
ωk(x;λk0, β0)

r(x;λ0, β0)
dF,

v13 =
K∑
k=1

ρkρ

[∫
g(x;λ0, β0)ωk(x;λk0, β0)F

]2

,

v22 = −ξ2

∫ {
∂ω(x; β0)

∂β

}⊗2
1

r(x;λ0, β0)
dF +

K∑
k=1

∫ {
∂ω(x; β0)

∂β

}⊗2
ρk(1− λk)

2

ωk(x;λk0, β0)
dF

−
K∑
k=1

ρk

∫
∂ω(x; β0)

∂β
ωk(x;λk0, β0)dF

∫
∂ω(x; β0)

∂βT
1

r(x;λ0, β0)
ωk(x;λk0, β0)dF,

v23 = −ξ
K∑
k=1

ρk

∫
∂ω(x; β0)

∂β

1

r(x;λ0, β0)
dF

∫
g(x;λ0, β0)ωk(x;λk0, β0)dF,

v33 =

∫
r(x;λ0, β0)g

2(x;λ0, β0)dF −
K∑
k=1

ρk

[
g(x;λ0, β0)ωk(x;λk0, β0)dF

]2

.

Following the arguments in Qin (1993,1999), the asymptotic normality (2.2.3) of
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(λ̃, β̃, α̃) is shown by noting that


λ̃− λ0

β̃ − β0

α̃− 0

 = −S−1
n Qn + op(n

−1/2) (2.4.5)

along with the Slutsky’s theorem, where Sn and Qn are given in (2.4.4) and (2.4.3).

It’s easy to see that the asymptotic covariance matrix U in (2.2.3) is S−1V S−1. In

the following lines, we show that U can be expressed block diagonally. We first show

the following lemmas (Special cases for which λk = 0 or 1 will be used in various

situations).

Lemma 2.4.1.
∫ s

−∞G(x;λ0, β0)ωk(x;λ0, β0)dF = G(s)− F (s) + (1− λk − φ)τ(s).

Lemma 2.4.2.

∫ s

−∞

ωk(x;λ0, β0)ωl(x;λ0, β0)

R(x;λ0, β0)
dF = G(s) + (1− λk − λl − ξ)[G(s)− F (s)]

+ (1− λl − φ)(1− λk − φ)τ(s).

Lemma 2.4.3.
∫ s

−∞
ωk(x;λ0,β0)
R(x;λ0,β0)

∂ω(x;β0))
∂β

dF (x) = 1−φ−λk

φ
ς1(s).
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Proof of Lemma (2.4.1). Note that

R(x;λ0, β0) = 1 + φ[ω(x; β0)− 1],

ωk(x;λk0, β0) = λk + (1− λk)(ω(x; β0)− 1),∫ s

−∞
[ω(x; β0)− 1]dF = G(s)− F (s),

G(x;λ0, β0) =
ω(x; β0)− 1

R(x;λ0, β0)
.

Now,

∫ s

−∞
G(x;λ0, β0)ωk(x;λ0, β0)dF

=

∫ s

−∞

ω(x; β0)− 1

R(x;λ0, β0)
[1 + (1− λk)(ω(x; β0)− 1)]dF

=

∫ s

−∞

ω(x; β0)− 1

R(x;λ0, β0)

[
r(x;λ0, β0)− φ(ω(x; β0)− 1)

]
dF + (1− λk)

∫ s

−∞

(ω(x; β0)− 1)2

R(x;λ0, β0)
dF

= G(s)− F (s) + (1− λk − φ)

∫ s

−∞

[ω(x; β0)− 1]2

R(x;λ0, β0)
dF.

The proof of other Lemmas is similar and thus omitted. By Lemma 2.4.2,

v11 = −ρρT
∫

[ω(x; β0)− 1]2

R(x;λ0, β0)
dF +

K∑
k=1

ρkeke
T
k

∫
[ω(x; β0)− 1]2

ωk(x;λ0, β0)
dF

−
K∑
k=1

ρkρρ
T (1− λk − φ)

[∫
[ω(x; β0)− 1]2

R(x;λ0, β0)
dF

]2

,

v12 = −ρ
∫
∂ω(x; β0)

∂βT
1

R(x;λ0, β0)
dF +

K∑
k=1

ρkek

∫
∂ω(x; β0)

∂βT
1

ωk(x;λ0, β0)
dF

− ρ
K∑
k=1

ρk(1− λk − φ)2

∫
[ω(x; β0)− 1]2

R(x;λ0, β0)
dF

∫
∂ω(x; β0)

∂βT
1

R(x;λ0, β0)
dF,
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v13 =
K∑
k=1

ρkρ[

∫
G(x;λ0, β0)ωk(x;λ0, β0)dF ]2

=
K∑
k=1

ρkρ(1− λk − φ)2

[∫
[ω(x; β0)− 1]2

R(x;λ0, β0)
dF

]
,

v22 = −φ2

∫
∂ω(x; β0)

∂β

∂ω(x; β0)

∂βT
1

R(x;λ0, β0)
dF

+
K∑
k=1

ρk(1− λk)

∫
∂ω(x; β0)

∂β

∂ω(x; β0)

∂βT
1

ωk(x;λ0, β0)
dF

−
K∑
k=1

ρk(1− λk − φ)2

{∫
∂ω(x; β0)

∂β

1

R(x;λ0, β0)

}⊗2

,

v23 = −φ
K∑
k=1

ρk

∫
∂ω(x; β0)

∂β

ωk(x;λ0, β0)

R(x;λ0, β0)
dF (1− λk − φ)

∫
[ω(x; β0)− 1]2

R(x;λ0, β0)
dF

=
K∑
k=1

ρk(1− λk − φ)2

∫
∂ω(x; β0)

∂β

1

R(x;λ0, β0)
dF

∫
[ω(x; β0)− 1]2

R(x;λ0, β0)
dF,

v33 =

∫
[ω(x; β0)− 1]2

R(x;λ0, β0)
dF −

K∑
k=1

ρk(λk + φ− 1)2

[∫
[ω(x; β0)− 1]2

R(x;λ0, β0)
dF

]2

.

Write

S =

 e11 e12

eT12 e22


where

e11 =

 s11 s12

sT12 s22

 , e12 =

 s13

s23

 , e22 = s33. (2.4.6)

Write

V =

 u11 u12

uT12 u22


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where

u11 =

 a b

c d


with

a = −ρρT τ + diag(ρ)diag(η)− ρρT
K∑
k=1

ρk(1− λk − φ)2τ 2,

b = −ρςT1 + rbind(ρkψ
T
1k, k = 1, 2, · · · , K)− ρ

K∑
k=1

ρk(1− λk − φ)2τς1,

c = −ς1ρT + cbind(ρkψ1k, k = 1, 2, · · · , K)− ςT1 τ
K∑
k=1

ρk(1− λk − φ)2ρT ,

d = −φ2ς2 +
K∑
k=1

ρk(1− λk)
2ψ2k −

K∑
k=1

ρk(1− λk − φ)2ς1ς
T
1 ,

u12 =

 ρ
∑K

k=1 ρk(1− λk − φ)2τ 2

∑K
k=1 ρk(1− λk − φ)2ς1τ

 , u22 = τ −
K∑
k=1

ρk(1− λk − φ)2τ 2.

It’s easy to see that

V =

 −e11 − δe12e
T
12 −δe12s33

−δeT12s33 s33 − δs2
33

 , (2.4.7)
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where δ =
∑K

k=1 ρnk(1− λk − ξ)2. The inverse of the matrix S is

S−1 =

 s−1
D 0

0 s−1
33 e

T
12s

−1
D e12

 +

 0 −s−1
D e12s

−1
33

−eT12s−1
D s−1

33 s−1
33



where sD = e11 − e12s
−1
33 e

T
12. Tedious matrix multiplication gives

S−1V =

 −s−1
D e11 −s−1

D e12

eT12s
−1
D e11s

−1
33 − δeT12 eT12s

−1
D e12s

−1
33 + 1− s33

 ,

U = S−1V S−1 =

 Σ11 Σ12

ΣT
12 σ22


with

Σ11 = −s−1
D e11s

−1
D + s−1

D e12s
−1
33 e

T
12s

−1
D ,

Σ12 = −s−1
D e12s

−1
33 e

T
12s

−1
D e12s

−1
33 + s−1

D e11s
−1
D e12s

−1
33 − s−1

D e12s
−1
33 ,

σ22 = eT12s
−1
D e12s

−1
33 e

T
12s

−1
D e12s

−2
33 + eT12s

−1
D e12s

−2
33 − eT12s

−1
D e11s

−1
D e12s

−2
33

+ eT12s
−1
D e12s

−1
33 + s−1

33 − δ.

These can be further simplified as

Σ11 = −s−1
D (e11 − e12s

−1
33 e

T
12)s

−1
D = −s−1

D sDs
−1
D = −s−1

D ,

Σ12 = s−1
D (−e12s

−1
33 e

T
12 + e11 − sD)s−1

D e12s
−1
33 = s−1

D (sD − sD)s−1
D e12s

−1
33 = 0,
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σ22 = eT12s
−1
D (e12s

−1
33 e

T
12 + sD − e11)s

−1
D e12s

−2
33 + s−1

D eT12s
−1
D e12s

−1
33 + s−1

33 − δ

= s−1
33 e

T
12s

−1
D e12s

−1
33 + s−1

33 − δ.

Therefore,

U =

 Σ11 0

0 σ22

 , (2.4.8)

where

Σ11 = −s−1
D = −e−1

11 − e−1
11 e12(s33 − eT12e

−1
11 e12)

−1eT12e
−1
11 ,

σ22 = −s−1
33 e

T
12Σ11e12s

−1
33 + s−1

33 − δ;

that is, (λ̃, β̃) and α̃ are asymptotically independent.

2.4.3 Proof of Theorem (2.3.1)

Denote

γ(t; θ) =
1

r(t;λ, β) + α[ω(t; β)− 1]
, Γ(t; θ) =

1

R(t;λ, β) + α[ω(t; β)− 1]
,

where θ = (λ, β, α) and denote θ0 = (λ0, β0, 0). To show that F̃ (t) has the claimed

representation, we first expand it into a Taylor series. Using the established large

sample result, we can show that the remaining term in the Taylor series are negligible

in probability.
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We can write F̃ (t) = 1
n

∑n
i=1 γ(ti; θ̃)I(ti ≤ t). Expanding F̃ (t) at θ0 yields

F̃ (t) =
1

n

n∑
i=1

γ(ti; θ̃)I(ti ≤ t)

=
1

n

n∑
i=1

γ(ti; θ0)I(ti ≤ t) +
1

n

n∑
i=1

∂γ

∂θ̃
(ti; θ0)I(ti ≤ t)(θ̃ − θ0) +R1n(t)

=
1

n

n∑
i=1

1

r(ti;λ0, β0)
I(ti ≤ t)− r1(t)

TS−1Qn +R2n(t),

where R1n(t), i = 1, 2, satisfy supt∈(−∞,+∞) |Rin(t)| = op(n
−1/2), and as n→∞,

1

n

n∑
i=1

∂γ

∂θ̃
(ti; θ0)I(ti ≤ t) → r1(t),

where

r1(t) =

∫ [ K∑
k=1

ρkωk(u;λ0, β0)

]
∂Γ

∂θ̃
(u; θ0)I(u ≤ t)dF (u), a.s.

=

∫
R(u;λ0, β0)

∂γ

∂θ̃
(u; θ0)I(u ≤ t)dF (u)

=

∫ t

−∞
R(− 1

R2

∂R

∂λT
,− 1

R2

∂R

∂βT
,−ω − 1

R2
)dF

=

∫ t

−∞
(GρT ,− φ

R

∂ω

∂βT
,−G)TdF

=


[G(t)− F (t)− φτ(t)]ρ

−φς1(t)

−G(t) + F (t) + φτ(t)

 .
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Similarly, we have

G̃(t) =
1

n

n∑
i=1

γ(ti; θ̃)ω(ti; β̃)I(ti ≤ t)

=
1

n

n∑
i=1

γ(ti; θ0)ω(ti; β0)I(ti ≤ t)

+
1

n

n∑
i=1

[
∂γ(ti; θ0)

∂θ̃
ω(ti; β0) +

∂ω(ti; β0)

∂θ̃
γ(ti; θ0)

]
I(ti ≤ t)(θ̃ − θ0) +R1n(t)

=
1

n

n∑
i=1

ω(ti; β0)

r(ti;λ0, β0)
I(ti ≤ t)− uT1 (t)S−1Qn +R2n(t),

where R1n(t), i = 1, 2, satisfy supt∈(−∞,+∞) |Rin(t)| = op(n
−1/2), and as n→∞,

1

n

n∑
i=1

[
∂γ(ti; θ0)

∂θ̃
ω(ti; β0) +

∂ω(ti; β0)

∂θ̃
γ(ti; θ0)

]
I(ti ≤ t) → u1(t), where

u1(t) =

∫ [ K∑
k=1

ρkωk(u;λ0, β0)

][
∂γ(u; θ0)

∂θ̃
ω(u; β0) +

∂ω(u; β0)

∂θ̃

1

r(u;λ0, β0)
)

]
I(u ≤ t)dF (u)

=

∫
R(u;λ0, β0)

[
∂γ(u; θ0)

∂θ̃
ω(u; β0) +

∂ω(u; β0)

∂θ̃

1

r(u;λ0, β0)
)

]
I(u ≤ t)dF (u)

=

∫ t

−∞

[
R(− 1

R2

∂R

∂λT
,− 1

R2

∂R

∂βT
,−ω − 1

R2
)Tω + (0,

∂ω

∂βT
, 0)T

]
dF

=

∫ t

−∞
(GρT ,− φ

R

∂ω

∂βT
,−G)TdG

=


[G(t)− F (t) + (1− φ)τ(t)]ρ

(1− φ)ς1(t)

−G(t) + F (t)− (1− φ)τ(t)

 .
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Finally, we write

H̃k(t) =
1

n

n∑
i=1

γ(ti; θ̃)ωk(ti; λ̃, β̃)I(ti ≤ t)

=
1

n

n∑
i=1

γ(ti; θ0)ωk(ti;λ0, β0)I(ti ≤ t)

+
1

n

n∑
i=1

[
∂γ(ti; θ0)

∂θ̃
ωk(ti;λ0, β0) +

∂ωk(ti;λ0, β0)

∂θ̃
γ(ti; θ0)

]
I(ti ≤ t)(θ̃ − θ0) +R1n(t)

=
1

n

n∑
i=1

ωk(ti;λ0, β0)

r(ti;λ0, β0)
I(ti ≤ t)− vT1k(t)S

−1Qn +R2n(t),

(2.4.9)

where Rin(t), i = 1, 2, satisfy supt∈(−∞,+∞) |Rin(t)| = op(n
−1/2), and as n→∞,

1

n

n∑
i=1

[
∂γ(ti; θ0)

∂θ̃
ωk(ti;λ0, β0) +

∂ωk(ti;λ0, β0)

∂θ̃
γ(ti; θ0)

]
I(ti ≤ t) → v1k(t), where,

v1k(t) =

∫ t

−∞

[ K∑
l=1

ρlωl(u;λ0, β0)

][
∂γ(u; θ0)

∂θ̃
ωk(t) +

∂ωk(t)

∂θ̃

1

r(u;λ0, β0)
)

]
dF (u)

=

∫ t

−∞
R

(
−ωk
R2

∂R

∂λT
+

1− ω

R
ek,−

ωk
R2

∂R

∂βT
+

1

R

∂ωk
∂βT

,−ωk(ω − 1)

R2

)T

dF

=

∫ t

−∞

(
−ωk
R

∂R

∂λT
,−ωk

R

∂R

∂βT
,−ωk(ω − 1)

R

)T

dF

=

∫ t

−∞

(
GρT ,− φ

R

∂ω

∂βT
,−G

)T

dHk

=


[G(t)− F (t) + (1− λk − φ)τ(t)]ρ

(1− λk − φ)ς1(t)

−G(t) + F (t)− (1− λk − φ)τ(t)

 .

Proof of Theorem (2.3.2).
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Let r2(t) = −r1(t)TS−1 and let

εFk (xkj; t) =
I(xkj ≤ t)

r(xkj;λ0, β0)
−

∫ t

−∞

ωk(x;λ0, β0)

R(x;λ0, β0)
dF (x),

then

F̃ (t) =
1

n

K∑
k=1

nk∑
j=1

1

r(xkj;λ0, β0)
I(xkj ≤ t) + r2(t)Qn + op(n

−1/2)

=
1

n

K∑
k=1

nk∑
j=1

[
εFk (xkj; t) +

∫ t

−∞

ωk(x;λ0, β0)

R(x;λ0, β0)
dF (x)

]
+ r2(t)Qn + op(n

−1/2)

=
1

n

K∑
k=1

nk∑
j=1

[
εFk (xkj; t) + r2(t)qk(xkj)

]
+

1

n

∫ t

−∞

K∑
k=1

nk∑
j=1

ωk(x;λ0, β0)

R(x;λ0, β0)
dF (x) + op(n

−1/2)

=
1

n

K∑
k=1

nk∑
j=1

[
εFk (xkj; t) + r2(t)qk(xkj)

]
+ F (t) + op(n

−1/2).

The last equality is due to the fact that

K∑
k=1

nk∑
j=1

ωk(x;λ0, β0)

R(x;λ0, β0)
= n

K∑
k=1

ρnkωk(x;λ0, β0)
1

R(x;λ0, β0)
= n.

By the criteria of Billingsley (1968, p. 128), we can show that
√
n(F̃ (t)−F (t) →

B(t) weakly in D[−∞,+∞], where B(t) is a mean zero Gaussian process with con-

tinuous paths and covariance structure

Σ(s, t) =
K∑
k=1

ρkcov(εFk (Xk; s) + r2(s)qk(Xk), ε
F
k (Xk; t) + r2(t)qk(Xk)), s ≤ t.
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Let u2(t) = −u1(t)
TS−1 and let

εGk (xkj; t) =
ω(xkj; β0)

r(xkj;λ0, β0)
I(xkj ≤ t)−

∫ t

−∞

ωk(x;λ0, β0)

R(x;λ0, β0)
ω(x; β0)dF (x),

then

G̃(t) =
1

n

K∑
k=1

nk∑
j=1

ω(xkj; β0)

r(xkj;λ0, β0)
I(xkj ≤ t) + u2(t)Qn + op(n

−1/2)

=
1

n

K∑
k=1

nk∑
j=1

[
εGk (xkj; t) +

∫ t

−∞

ωk(x;λ0, β0)

R(x;λ0, β0)
ω(x; β0)dF (x)

]
+ u2(t)Qn + op(n

−1/2)

=
1

n

K∑
k=1

nk∑
j=1

[
εGk (xkj; t) + u2(t)qk(xkj)

]
+

1

n

∫ t

−∞

K∑
k=1

nk∑
j=1

ωk(x;λ0, β0)

R(x;λ0, β0)
dG(x) + op(n

−1/2)

=
1

n

K∑
k=1

nk∑
j=1

[
εGk (xkj; t) + u2(t)qk(xkj)

]
+G(t) + op(n

−1/2).

The last equality is due to the fact that

K∑
k=1

nk∑
j=1

ωk(x;λ0, β0)

R(x;λ0, β0)
= n

K∑
k=1

ρnkωk(x;λ0, β0)
1

R(x;λ0, β0)
= n.

By the criteria of Billingsley (1968, p. 128), we can show that
√
n(G̃(t)−G(t) →

B(t) weakly in D[−∞,+∞], where B(t) is a mean zero Gaussian process with con-

tinuous paths and covariance structure

Σ(s, t) =
K∑
k=1

ρkcov(εGk (Xk; s) + u2(s)qk(Xk), ε
G
k (Xk; t) + u2(t)qk(Xk)), s ≤ t.
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Let v2k(t) = −vT1k(t)S−1 and let

εHk
l (xlj; t) =

ωk(xlj;λ0, β0)

r(xlj;λ0, β0)
I(xlj ≤ t)−

∫ t

−∞

ωk(x;λ0, β0)

R(x;λ0, β0)
ωl(x;λ0, β0)dF (x), l = 1, 2, · · · , K,

then

H̃k(t) =
1

n

K∑
l=1

nl∑
j=1

ωk(xlj;λ0, β0)

r(xlj;λ0, β0)
I(xlj ≤ t) + vT2k(t)Qn + op(n

−1/2)

=
1

n

K∑
l=1

nl∑
j=1

[
εHk
l (xlj; t) +

∫ t

−∞

ωk(x)ωl(x)

R(x;λ0, β0)
dF (x)

]
+ vT2k(t)Qn + op(n

−1/2)

=
1

n

K∑
l=1

nl∑
j=1

[
εHk
l (xlj; t) + vT2k(t)ql(xlj)

]
+

1

n

∫ t

−∞

K∑
l=1

nl∑
j=1

ωl(x)dHk(x)

R(x;λ0, β0)
+ op(n

−1/2)

=
1

n

K∑
l=1

nl∑
j=1

[
εHk
l (xlj; t) + vT2k(t)qk(xlj)

]
+Hk(t) + op(n

−1/2)

= H1k(t) +Hk(t) + op(n
−1/2), (2.4.10)

where we have denoted ωk(x;λ0, β0) by ωk(x) to save space. The last equality is due

to the fact that

K∑
l=1

nk∑
j=1

ωk(x;λ0, β0)

R(x;λ0, β0)
= n

K∑
l=1

ρnkωk(x;λ0, β0)
1

R(x;λ0, β0)
= n.

By the criteria of Billingsley (1968, p. 128), we can show that
√
n(H̃k(t)−Hk(t) →

B(t) weakly in D[−∞,+∞], where B(t) is a mean zero Gaussian process with con-
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tinuous paths and covariance structure

Σk(s, t) =
K∑
l=1

ρlcov(εHk
l (Xl; s) + v2k(s)ql(Xl), ε

Hk
l (Xl; t) + v2k(t)ql(Xl)), s ≤ t.



Chapter 3

EM and MM Algorithms for the

K2M Model and Its Special Cases

3.1 MM Algorithms for Model 2 and Model 3

We first consider Model 2. An EM algorithm has been proposed by Zhang (2002).

An MM algorithm can be developed as follows. Note that the profiled log-likelihood

(Qin and Zhang, 1997) is

lp(λ, β1, β2) = −n log(n)−
n∑
i=1

log{1 + η[exp(β1 + ϕ(ti; β2))− 1]}

+

n2∑
j=1

[β1 + ϕ(x2j; β2)] +

n3∑
k=1

log[λ+ (1− λ) exp(β1 + ϕ(x3k; β2)],

where η is the Lagrange multiplier. Zhang (2002) has shown that, η = [n2 + n3(1 −

λ)]/n when lp achieves its maximum.

52
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A minorizing function for log[λ+ (1− λ) exp(β1 + ϕ(x3k; β2)] is

λ(m)

λ(m) + (1− λ(m)) exp(β
(m)
1 + ϕ(x3k; β

(m)
2 ))

log

{
λ(m) + (1− λ(m)) exp(β

(m)
1 + ϕ(x3k; β

(m)
2 ))

λ(m)
λ

}
+

(1− λ(m)) exp(β
(m)
1 + ϕ(x3k; β

(m)
2 ))

λ(m) + (1− λ(m)) exp(β
(m)
1 + ϕ(x3k; β

(m)
2 ))

log

{
λ(m) + (1− λ(m)) exp(β

(m)
1 + ϕ(x3k; β

(m)
2 ))

(1− λ(m)) exp(β
(m)
1 + ϕ(x3k; β

(m)
2 ))

· (1− λ) exp(β1 + ϕ(x3k; β2))

}
.

A minorizing function for − log{1 + η[exp(β1 + ϕ(ti; β2))− 1]} is

− log{1 + η(m)[exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))− 1]}

− η[exp(β1 + ϕ(ti; β2))− 1]− η(m)[exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))− 1]

1 + η(m)[exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))− 1]

.

Therefore, a minorizing function for l(λ, β1, β2) is

n2∑
j=1

[β1 + ϕ(x2j; β2)] +

n3∑
k=1

{
λ(m)

λ(m) + (1− λ(m)) exp(β
(m)
1 + ϕ(x3k; β

(m)
2 ))

log(λ)

+
(1− λ(m)) exp(β

(m)
1 + ϕ(x3k; β

(m)
2 ))

λ(m) + (1− λ(m)) exp(β
(m)
1 + ϕ(x3k; β

(m)
2 ))

log[(1− λ) exp(β1 + ϕ(x3k; β2))]

}
−

n∑
i=1

η[exp(β1 + ϕ(ti; β2))− 1]

1 + η(m)[exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))− 1]

+ c,

which is denoted by g(θ|θ(m)), where θ = (λ, β1, β2), η
(m) = (n2 + n3(1− λ(m))/n and

c is a constant.

Maximization of g(θ|θ(m)) is completed as follows. Let (λ(m+1), η(m+1), β
(m+1)
1 , β

(m+1)
2
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be the next iterate which satisfies

λ(m+1) =
1

n3

n3∑
k=1

λ(m)

λ(m) + (1− λ(m)) exp(β
(m)
1 + ϕ(x3k; β

(m)
2 ))

,

η(m+1) = (n2 + n3(1− λ(m+1))/n,

n2 + n3(1− λ(m+1))− η(m+1)

n∑
i=1

exp(β
(m+1)
1 + ϕ(ti; β

(m+1)
2 ))

1 + η(m)[exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))− 1]

= 0,

n2∑
j=1

x2j +

n3∑
k=1

x3k −
n3∑
k=1

λ(m)

λ(m) + (1− λ(m)) exp(β
(m)
1 + ϕ(x3k; β

(m)
2 ))

x3k

− η(m+1)

n∑
i=1

exp(β
(m+1)
1 + ϕ(ti; β

(m+1)
2 ))

1 + η(m)[exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))− 1]

ti = 0,

where β
(m+1)
1 and β

(m+1)
2 can be obtained from the last two equations.

Remark 3.1.1. λ(m) and η(m) in the last two equations can be replaced by λ(m+1) and

η(m+1).

Remark 3.1.2. β
(m+1)
1 can be written in terms of β

(m+1)
2 , while β

(m+1)
2 can be obtained

by first cancelling β
(m+1)
1 from the last two equations and solving an equation of this

form
∑n

i=1 ci exp[ϕ(ti; β
(m+1)
2 )] = 0, where ci’s are known.

Next, we apply MM algorithm to Model 3. Similar to the arguments above, the

iteration equations are

λ(m+1) =
1

n2

n2∑
j=1

λ(m)

λ(m) + (1− λ(m)) exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))

,

η(m+1) = n2(1− λ(m+1))/n,
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n∑
i=1

η [exp(β
(m+1)
1 + ϕ(ti; β

(m+1)
2 ))− 1]

1 + η(m)[exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))− 1]

= n2(1− λ(m+1)),

n∑
i=1

η ti [exp(β
(m+1)
1 + ϕ(ti; β

(m+1)
2 ))− 1]

1 + η(m)[exp(β
(m)
1 + ϕ(ti; β

(m)
2 ))− 1]

=

n2∑
j=1

(1− λ(m)) x2j exp(β
(m)
1 + ϕ(x2j; β

(m)
2 ))

λ(m) + (1− λ(m)) exp(β
(m)
1 + ϕ(x2j; β

(m)
2 ))

.

Similar to Zhang (2002), an EM algorithm can be proposed for Model 3.

3.2 EM and MM Algorithms for the K2M Model

Before we apply EM and MM algorithms to the K2M model, we first take a look

at how MM algorithm works for K-sample two-component normal mixtures. The

corresponding EM algorithm was proposed by McLachlan et al (1982).

3.2.1 An MM Algorithm for K-Sample Normal Mixtures

Suppose that the densities of the two components in assumption A1 take para-

metric forms: f(x; θ1) and g(x; θ2). Based on a set of samples, the log-likelihood

is

l(θ) =
K∑
k=1

nk∑
j=1

log{λkf(xkj; θ1) + (1− λk)g(xkj; θ2)}. (3.2.1)

where θ = (θT1 , θ
T
2 )T .

At iteration m, each summand of (3.2.1) can be minorized by

gkj =
λ

(m)
k f(xkj; θ

(m)
1 )

Hk(xkj; θ(m))
log

{
Hk(xkj; θ

(m))

λ
(m)
k f(xkj; θ

(m)
1 )

λkf(xkj; θ1)

}
+
λ

(m)
k f(xkj; θ

(m)
2 )

Hk(xkj; θ(m))
log

{
Hk(xkj; θ

(m))

λ
(m)
k f(xkj; θ

(m)
2 )

(1− λk)f(xkj; θ2)

}
,
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where Hk(x; θ
(m)) = λ

(m)
k f(x; θ

(m)
1 ) + (1− λ

(m)
k )g(x; θ

(m)
2 ).

By the additive property of minorization, l(θ) is minorized by

g(θ|θ(m)) =
K∑
k=1

nk∑
j=1

{
λ

(m)
k f(xkj; θ

(m)
1 )

Hk(xkj; θ(m))
log[λkf(xkj; θ1)]

+
λ

(m)
k f(xkj; θ

(m)
2 )

Hk(xkj; θ(m))
log[(1− λk)f(xkj; θ2)]

}
+ c,

where c is a constant.

Maximizing the surrogate function g(θ|θ(m) leads to the following equations:

λk =
1

nk

nk∑
j=1

λ
(m)
k f(xkj; θ

(m)
1 )

Hk(xkj; θ(m))
, (3.2.2)

K∑
k=1

nk∑
j=1

{
λ

(m)
k f(xkj; θ

(m)
1 )

Hk(xkj; θ(m))
· ∂log f(xkj; θ1)

∂θ1

}
= 0, (3.2.3)

K∑
k=1

nk∑
j=1

{
(1− λ

(m)
k )g(xkj; θ

(m)
2 )

Hk(xkj; θ(m))
· ∂log g(xkj; θ2)

∂θ2

}
= 0. (3.2.4)

Let’s further consider the situation where f and g are normal densities with param-

eters θ1 = (µ1,Σ1) and θ2 = (µ2,Σ2), respectively. Then the equation (3.2.3) yields

0 =
K∑
k=1

nk∑
j=1

λ
(m)
k f(xkj; µ

(m)
1 , Σ

(m)
1 )

Hk(xkj; θ(m))
{−Σ−1

1 (xkj − µ1)},

0 =
K∑
k=1

nk∑
j=1

λ
(m)
k f(xkj; µ

(m)
1 , Σ

(m)
1 )

Hk(xkj; θ(m))
{−1

2
Σ−T1 +

1

2
Σ−T1 (xkj − µ1)(xkj − µ1)

TΣ−T1 },

which give

µ
(m+1)
1 =

∑K
k=1

∑nk

j=1

λ
(m)
k f(xkj ; µ

(m)
1 , Σ

(m)
1 )

Hk(xkj ;θ(m))
xkj∑K

k=1

∑nk

j=1

λ
(m)
k f(xkj ; µ

(m)
1 , Σ

(m)
1 )

Hk(xkj ;θ(m))

,
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Σ
(m+1)
1 =

∑K
k=1

∑nk

j=1

λ
(m)
k f(xkj ; µ

(m)
1 , Σ

(m)
1 )

Hk(xkj ;θ(m))
(xkj − µ1)(xkj − µ1)

T∑K
k=1

∑nk

j=1

λ
(m)
k f(xkj ; µ

(m)
1 , Σ

(m)
1 )

Hk(xkj ;θ(m))

.

Similarly, the equation (3.2.4) yields

µ
(m+1)
2 =

∑K
k=1

∑nk

j=1

λ
(m)
k f(xkj ; µ

(m)
2 , Σ

(m)
2 )

Hk(xkj ;θ(m))
xkj∑K

k=1

∑nk

j=1

λ
(m)
k f(xkj ; µ

(m)
2 , Σ

(m)
2 )

Hk(xkj ;θ(m))

,

Σ
(m+1)
2 =

∑K
k=1

∑nk

j=1

λ
(m)
k f(xkj ; µ

(m)
2 , Σ

(m)
2 )

Hk(xkj ;θ(m))
(xkj − µ2)(xkj − µ2)

T∑K
k=1

∑nk

j=1

λ
(m)
k f(xkj ; µ

(m)
2 , Σ

(m)
2 )

Hk(xkj ;θ(m))

.

(3.2.5)

Remark 3.2.1. When K = 2, the iteration equations are the same as those obtained

by McLachlan (1981) with EM algorithm.

Remark 3.2.2. When Σ1 = Σ2 = Σ, the (m+ 1)th iteration produces

Σ(m+1) =
1

n

{ K∑
k=1

nk∑
j=1

λ
(m)
k f(xkj; µ

(m)
1 , Σ(m))

Hk(xkj; θ(m))
(xkj − µ1)(xkj − µ1)

T

+
(1− λ

(m)
k )f(xkj; µ

(m)
2 , Σ(m))

Hk(xkj; θ(m))
(xkj − µ2)(xkj − µ2)

T

}
.

3.2.2 An EM Algorithm for the K2M Model

Define indicators Ykj, k = 1, 2, ..., K, j = 1, 2, ..., nK as

Ykj =


0 if Xkj is from drawn F (x);

1 if Xkj is drawn from G(x).
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The likelihood of the complete data (Xkj, Ykj), k = 1, 2, ..., j = 1, 2, ..., nK is

Lc(θ, F ) =
K∏
k=1

nk∏
j=1

[p(Ykj = ykj)dH(xkj|Ykj = ykj)]

=
K∏
k=1

nk∏
j=1

[λ
1−ykj

k (1− λk)
ykjdF (xkj)u(xkj)

ykj ]

= [
n∏
i=1

pi][
K∏
k=1

nk∏
j=1

λ
1−ykj

k (1− λk)
ykj ][

K∏
k=1

nk∏
j=1

u(xkj)
ykj ],

where (t1, t2, ..., tn) consist of all samples and pi = dF (ti), i = 1, 2, ..., n, are nonnega-

tive jumps with total mass unity. Let ψ = (θ, F ), and

lc(ϕ) =
K∑
k=1

nk∑
j=1

[ykj log(1−λk)+(1−ykj) log(λk)]+
n∑
i=1

log(pi)+
K∑
k=1

nk∑
j=1

ykj[β1+ϕ(xkj; β2)],

which is linear in the unobservable data ykj, k = 1, 2, ..., K, j = 1, 2, ..., nk. The EM

algorithm is an iterative method. Let ψ(m) = (θ(m), F (m)) = (β
(m)
1 , β

(m)
2 , λ(m), F (m))

be the mth iterate. On the next iteration, the EM algorithm takes two steps.

E-step. The conditional expectation of lc(ϕ) given the observed data x = {xkj, k =

1, 2, ..., K, j = 1, 2, ..., nk}, is

Q(ψ;ψ(m) = Eψ(m) [lc(ψ)|x] = l
(m)
1 (λ) + λ

(m)
2 (β1, β2, F ),

where

l
(m)
1 (λ) =

K∑
k=1

nk∑
j=1

[(1− y
(m)
kj log(λk) + y

(m)
kj log(1− λk)],
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l
(m)
2 (β1, β2, F ) =

n∑
i=1

log(pi) + β1

K∑
k=1

nk∑
j=1

y
(m)
kj +

K∑
k=1

nk∑
j=1

y
(m)
kj ϕ(xkj; β2)

with y
(m)
kj , k = 1, 2, ..., K, j = 1, 2, ..., nk, being

Eψ(m)(Ykj|x) = pψ(m)(Ykj = 1|xkj)

=
(1− λ

(m)
k ) exp(β

(m)
1 + ϕ(xkj; β

(m)
2 ))

λ
(m)
k + (1− λ

(m)
k ) exp(β

(m)
1 + ϕ(xkj; β

(m)
2 ))

=
exp(β∗1 + ϕ(xkj; β

(m)
2 )

1 + exp(β∗1 + ϕ(xkj; β
(m)
2 )

,

where β∗1 = β
(m)
1 + log

1−λ(m)
k

λ
(m)
k

.

M -step. The surrogate function Q(ψ;ψ(m)) is maximized w.r.t. ψ and the maxi-

mizer is denoted ϕ(m+1) = (β
(m+1)
1 , β

(m+1)
2 , λ(m+1), F (m+1)). It’s easy to see that

λ
(m+1)
k = 1− ȳ

(m)
k = 1− 1

nk

nk∑
j=1

y
(m)
kj , k = 1, 2, ..., K

maximize l
(m)
1 (λ).

In order to maximize l
(m)
2 (β1, β2, F ), we follow Qin and Zhang (1997). First, for

fixed (β1, β2),
∑n

i=1 log(pi) is maximized subject to constraints
∑n

i=1 pi = 1, pi ≥

0,
∑n

i=1 pi[u(ti)− 1] = 0. The use of Lagrange procedure yields the maximizer

p
(m+1)
i =

1

n

1

1 + ξ(m)[u(ti)− 1]
, i = 1, 2, ..., n, (3.2.6)
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where the lagrange multiplier ξ(m) satisfies the equation

1

n

n∑
i=1

u(ti)− 1

1 + ξ(m)[u(ti)− 1]
= 0.

Next we maximize

l
(m)
2 (β1, β2) = l

(m)
2 (β1, β2, F

(m+1))

=
n∑
i=1

log(p
(m+1)
i ) + β1

K∑
k=1

nk∑
j=1

y
(m)
kj +

K∑
k=1

nk∑
j=1

y
(m)
kj ϕ(xkj; β2)

= − n log(n)−
n∑
i=1

log[1 + ξ(m)(u(ti)− 1)] + β1

K∑
k=1

nk∑
j=1

y
(m)
kj

+
K∑
k=1

nk∑
j=1

y
(m)
kj ϕ(xkj; β2)

over (β1, β2) . The maximizer (β
(m+1)
1 , β

(m+1)
2 ) satisfies the system of score equations

∂l
(m)
2

∂β1

= −
n∑
i=1

ξ(m)u(ti)

1 + ξ(m)[u(ti)− 1]
+

K∑
k=1

nk∑
j=1

y
(m)
kj = 0, (3.2.7)

∂l
(m)
2

∂β2

= −
n∑
i=1

ξ(m)u(ti)ti
1 + ξ(m)[u(ti)− 1]

+
K∑
k=1

nk∑
j=1

y
(m)
kj

∂ϕ

∂β2

= 0, (3.2.8)

It can be shown that equation (3.2.7) along with equation (3.2.6) implies that

ξ(m) =
1

n

K∑
k=1

nk∑
j=1

y
(m)
kj .

The E-step and M -step alternate until convergence is achieved.

In the special case where ϕ(x; β2) = βT2 x, Following Zhang (2002), we can make use
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of the standard logistic software to solve the system of equations (3.2.7) and (3.2.8).

The procedure is as follows. Suppose the current iterate is (β
(m)
1 , β

(m)
2 , λ

(m)
k , ), k =

1, 2, .... The next iterate is to calculate (β
(m+1)
1 , β

(m+1)
2 , λ

(m+1)
k , ), k = 1, 2, ... in the

following order. First calculate

y
(m)
kj =

exp(β∗1 + β
(m)
2 xkj)

1 + exp(β∗1 + β
(m)
2 xkj)

, where β∗1 = β
(m)
1 + log(

1− λ
(m)
k

λ
(m)
k

), and

λ
(m+1)
k = 1− ȳk

(m) = 1− 1

nk

nk∑
j=1

y
(m)
kj .

Then with the help of standard software for logistic regression, (β∗1 , β
(m+1)
2 ) solves the

system

n∑
i=1

exp(β∗1 + β
(m+1)
2 ti)

1 + exp(β∗1 + β
(m+1)
2 ti)

=
K∑
k=1

nk∑
j=1

y
(m)
kj ,

n∑
i=1

exp(β∗1 + β
(m+1)
2 ti)

1 + exp(β∗1 + β
(m+1)
2 ti)

ti =
K∑
k=1

nk∑
j=1

y
(m)
kj xkj,

which are the score equations of a logistic regression. Recall that the standard logistic

procedure works for paired data (x, y), where y can be any values between 0 and 1. For

our case, the paired data are (xkj, ykj), where k = 1, 2, · · · , K and j = 1, 2, · · · , nk.

The EM algorithm is completed by setting β
(m+1)
1 = β∗1 − log ξ(m)

1−ξ(m) , where ξ(m) =

1
n

∑K
k=1

∑nk

j=1 y
(m)
kj .



62

3.2.3 An MM Algorithm for the K2M Model

To apply the MM algorithm to the K2M model, we first write the empirical

log-likelihood of the observed data.

l =
n∑
i=1

log(pi) +
K∑
k=1

nk∑
j=1

log[λk + (1− λk) exp(β1 + ψ(xkj; β2))].

The function l is minorized by

Q(θ|θ(m)) =
∑n

i=1 log(pi) +
∑K

k=1

∑nk

j=1{
λ
(m)
k

λ
(m)
k +(1−λ(m)

k ) exp(β
(m)
1 +β

(m)
2 xkj)

log(λk)

+
(1−λ(m)

k ) exp(β
(m)
1 +β

(m)
2 xkj)

λ
(m)
k +(1−λ(m)

k ) exp(β
(m)
1 +ψ(xkj ;β2))

[log(1− λk) + β1 + ψ(xkj; β2)]}.

Denote the current iterate as θ(m). At next iteration, instead of maximizing the func-

tion l(θ), where θ = (a, b, λT , F )T , subject to
∑n

i=1 pi = 1, pi ≥ 0,
∑n

i=1 pi[exp(β1 +

ψ(ti; β2))−1] = 0, we maximize the surrogate function Q(θ|θ(m)), subject to the same

conditions. Construct the lagrangian

m = Q(θ|θ(m))− ζ(
n∑
i=1

pi − 1)− nη
n∑
i=1

pi[exp(β1 + ψ(ti; β2))− 1]. (3.2.9)

Then the first order conditions are

0 =
∂m

∂β1

=
K∑
k=1

nk∑
j=1

(1− λ
(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

λ
(m)
k + (1− λ

(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

− nη

n∑
i=1

pi exp(β1 + ψ(ti; β2)), (3.2.10)
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0 =
∂m

∂β2

=
K∑
k=1

nk∑
j=1

(1− λ
(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

λ
(m)
k + (1− λ

(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

xkj

− nη
n∑
i=1

piti exp(β1 + ψ(ti; β2)), (3.2.11)

0 =
∂m

∂λk
=

1

λk

nk∑
j=1

λ
(m)
k

λ
(m)
k + (1− λ

(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

− 1

1− λk

nk∑
j=1

(1− λ
(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

λ
(m)
k + (1− λ

(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

, (3.2.12)

0 =
∂m

∂pi
=

1

pi
− ζ − nη[exp(β1 + ψ(ti; β2))− 1], (3.2.13)

0 =
∂m

∂ζ
= 0, that is

n∑
i=1

pi − 1 = 0 (3.2.14)

0 =
∂m

∂η
= 0, that is

n∑
i=1

pi exp(β1 + ψ(ti; β2)) = 1. (3.2.15)

The equations (3.2.13), (3.2.14) and (3.2.15) imply that

ζ = n, (3.2.16)

pi =
1

n

1

1 + η(exp(β1 + ψ(ti; β2))− 1)
. (3.2.17)

Equations (3.2.10) and (3.2.15) produce

η =
1

n

K∑
k=1

nk∑
j=1

(1− λ
(m)
k ) exp(β

(m)
1 + β

(m)
2 xkj)

λ
(m)
k + (1− λ

(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

, (3.2.18)
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which implies that 0 ≤ η ≤ 1. Solving equation (3.2.12) gives

λk =
1

nk

nk∑
j=1

λ
(m)
k

λ
(m)
k + (1− λ

(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

, k = 1, 2, ..., K. (3.2.19)

The equation (3.2.18) is equivalent to

η =
1

n
[n−

K∑
k=1

λ
(m)
k

nk∑
j=1

1

λ
(m)
k + (1− λ

(m)
k ) exp(β

(m)
1 + ψ(xkj; β

(m)
2 ))

], (3.2.20)

Equations (3.2.19) and (3.2.20) produce

η =
1

n

K∑
k=1

nk(1− λk). (3.2.21)

Solving equations (3.2.10) and (3.2.11) gives the next iterates β
(m+1)
1 and β

(m+1)
2 .

Remark 3.2.3. To generate β
(m+1)
1 and β

(m+1)
2 , Remark 3.1.2 applies here.

3.3 Simulation Studies

We will study through simulations how well the proposed methods behave for

different mixtures. For each estimate, the average asymptotic variance and empirical

variance will be reported. Specifically, we study normal, exponential, and poisson

mixtures. We focus ourselves on the case of K = 3. From each mixture, a sample of

size 150 or 250 is simulated. 1000 simulations are run. In each run, we compute the

model-based estimate and its standard error for each parameter and report the average

values based on all 1000 runs. For comparison, the empirical standard deviation is
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also provided. The simulation result is reported in Table (3.1). In Table (3.1), we have

considered six cases with different pairs of distributions, different mixing proportions,

and different sample sizes. Specifically, the following cases are considered.

Case 1: f is N(0, 1) and g is N(2, 1); Case 2: f is N(0, 1) and g is N(1, 1);

Case 3: f is Exp(1) and g is Exp(3); Case 4: f is Exp(1) and g is Exp(1.5);

Case 5: f is Pois(1) and g is Pois(3); Case 6: f is Pois(1) and g is Pois(1.5).

The results show that the empirical or sample standard deviations match the

asymptotic version well, except for some cases. The limited simulation also shows

that, when a mixing proportion is closer to 0 or 1, the precisions of all estimates are

higher. In the table, “-” stands for divergence.

3.4 Real Examples

Examples are based on data sets of Anderson (1979), McLachlan et al (1982),

Smith and Vounatsou (1997), and Nagelkerke et al (2001).

Example 3.4.1. Anderson (1979) simulated a small data set containing three sam-

ples, of which one sample is from the mixture of 0.25N(2, 1) + 0.75N(0, 1), and the

other two are from the two components separately.

Specifically, Anderson generated these three samples: 1.15, 0.25, 2.31, 2.44, 3.28,

3.44; 0.74, −0.50, 1.08, 1.34, −0.74, 0.15; −0.23, 0.71, 0.92, −0.53, −0.68, 1.04, 0.61,

−0.88, −0.61, 0.59, 2.96, 2.59; randomly from N(2, 1), N(0, 1), and 0.25N(2, 1) +

0.75N(0, 1), respectively.
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Table 3.1: A simulation: estimation of mixture proportions from 1000 samples.

λ̃1 λ̃2 λ̃3

Cases λ1 λ2 λ3 n ave var1 var2 ave var1 var2 ave var1 var2

1 .99 .00 .25 150 .984 .020 .019 .009 .019 .017 .255 .045 .041
250 .986 .018 .012 .007 .012 .014 .255 .042 .037

.35 .50 .75 150 .293 .136 .268 .460 .132 .173 .728 .226 .253
250 .309 .119 .149 .480 .100 .109 .754 .167 .145

2 .99 .00 .25 150 .924 .094 .126 .068 .094 .123 .283 .115 .118
250 .935 .101 .112 .057 .090 .067 .278 .086 .101

.35 .50 .75 150 .339 .270 .261 .495 .201 .189 .744 .159 .144
250 .328 .239 .254 .483 .180 .177 .741 .149 .141

3 .99 .00 .25 150 .985 .077 .088 .061 .028 .041 .288 .069 .057
250 .951 .055 .068 .011 .019 .031 .249 .053 .047

.35 .50 .75 150 .333 .143 .175 .509 .201 .144 .797 .211 .158
250 .281 .105 .154 .471 .157 .164 .774 .189 .127

4 .99 .00 .25 150 .512 .428 .402 .660 .257 .245 .699 .127 .131
250 - - - - - - - - -

.35 .50 .75 150 - - - - - - - - -
250 - - - - - - - - -

5 .99 .00 .25 150 .942 .067 .057 .014 .026 .003 .249 .066 .054
250 .953 .055 .036 .01 .019 .022 .248 .053 .055

.35 .50 .75 150 .348 .214 .221 .528 .151 .146 .816 .181 .177
250 - - - - - - - - -

6 .99 .00 .25 150 - - - - - - - - -
250 - - - - - - - - -

.35 .50 .75 150 .445 .312 .336 .534 .272 .251 .791 .145 .163

.35 .50 .75 250 .405 .301 .323 .523 .250 .247 .795 .144 .158

ave: average of λ̃, var1: empirical variance of λ̃, ave2: average of σ̃λ̃
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The results are listed in Table 3.2. As we can see, The parametric method −

EM(normal) is fastest. It’s interesting that it gives the worst answer. Also, the EM

and MM methods are compatible based on our semiparametric mixture model 1 and

2, the proposed EM and/or MM algorithms give the same estimation of 0.189 for the

mixing proportion, which is the same as those in Qin (1999) and Zhang (2002).

Table 3.2: Tolerance ε = 10−10; Pentium 4 CPU 2.53GHz 504 Mb of RAM

θ̂ startings EM(1) EM(2)∗ MM(1) MM(2) EM(normal)

λ̂1 0.1 1 - 1 1 0.664

λ̂2 0.2 0 - 0 0 0

λ̂3 0.3 0.189 0.189 0.189 0.189 0.165

β̂1 -0.5 1.94 1.94 1.94 1.94 -

β̂2 -1 -1.75 -1.75 -1.75 -1.75 -
iterations - 52 - 572 586 32

CPU time(sec.) - 1.05 - 1.11 0.75 0.03

∗See Zhang (2002)

In the table, EM(1) and EM(normal) stand for EM algorithms for model 1 and

normal mixtures, respectively.

Example 3.4.2. Smith and Vounatsou (1997) analyzed data from a study that quan-

tifies the capacity of mouse cells in culture to transfer small molecules between one

another. They considered a mixture of two components with an uncategorized sample

from the mixture and a categorized sample from one of the two components.

Smith and Vounatsou proposed four methods for their problem. We fit a 2-mixture

model for the same problem. The two mixing proportions are found to be 0 and 0.73,

which are very close to their best results. The standard error for the two estimates

are 0.02 and 0.07, respectively.
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Example 3.4.3. McLachlan et al (1982) analyzed data representing survival times in

weeks for two sets of rats which were given dosages of cytoxan at a concentration of 60

mg/kg. The second set was given the full dosage once weekly, while the first received

half the dosage twice weekly. They compared the toxicity of the chemical agent at the

two dosage levels, assuming that f and g are both normal with different means and

different variances. Two samples of respective size 40 and 44 are available, each from

a mixture of two homogeneous normal components.

Without the normality assumption, our EM and MM algorithms give estimations

of 0.80 and 0.27 for the two mixing proportions, which are close to McLachlan’s result.

We noted that standard errors were not able to compute. This might be due to the

problem that the density ratio model is not valid for the data. Numeric results show

that β1 and β2 are estimated by 1094.7 and −139.0, respectively.

Example 3.4.4. Nagelkerke et al (2001) studied 42 populations (year by age), each

of which is a mixture of two types of infection - Mycobacterium tuberculosis (TB) or

environmental mycobacteria (EM). Mantoux tests are used for establishing tuberculous

infection. The test results for year 1965 to 1995, after excluding some cases, are

viewed as samples from mixtures of two distributions. The ratios of the two component

densities for different populations are the same up to a population specific constant.

We analyze the same data by treating the two components to be homogeneous

across all populations. Here are our results based on the semiparametric model (S),

a fully parametric normal mixture model (P), and Nagerlkerke’s results (in parenthe-

ses).
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year85:

(S) 0.136 0.217 0.610 0.922 0.995 1.000

(P) 0.289 0.357 0.641 0.872 0.924 0.940

(0.164 0.243 0.604 0.892 0.960 0.971)

year90:

(S) 0.128 0.367 0.692 0.936 0.825 0.893

(P) 0.331 0.561 0.746 0.928 0.850 0.903

(0.214 0.474 0.749 0.969 0.882 0.937)

year95:

(S) 0.037 0.046 0.414 0.960 0.900 1.000

(P) 0.542 0.448 0.654 0.977 0.923 0.991

(0.043 0.050 0.389 0.903 0.850 0.945)

We take the year 1995 results for interpretation. In year 1995, six populations of

different age groups are subject to the mantoux test. The infection rates due to TB

are 0.037, 0.046, 0.414, 0.960, 0.900, 1.000, respectively, based on our methods. The

histograms of the data for the year 90 are shown in Figure (3-1). The fitted CDF’s

and the non-parametric CDF’s are shown in Figure (3-2), where ECDF stands for

Empirical Cumulative Distribution Function, and SCDF stands for Semiparametric

Cumulative Distribution Function. The two graphs well support each other. On the

one hand, the histograms for the first two age groups are flat when the induration

size is greater than 4, while others show a clear second mode around induration size
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17. On the other hand, the fitted cumulative distribution curves match the empirical

counterparts well except for the first two age groups. We will report the goodness of

fit result in Chapter 5.
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Figure 3-1: Histograms of the six tuberculin data for 1990.
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Figure 3-2: Fitted CDF’s and the non-parametric CDF’s for 1990 tuberculin data.

Example 3.4.5. The WHO diagnostic criteria for diabetes mellitus were determined

in part by evidence that in some populations the plasma glucose level 2-h after an oral

glucose load is a mixture of two distinct distributions. Thompson et al (1998) model
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the two underlying distributions as generalized linear models and the mixture proba-

bilities as logistic regression models. The population is divided into 4 subpopulations.

The sample sizes are 300, 276, 161, and 182, respectively.

We analyze the same data by treating the two components to be homogeneous

across all populations. The mixing proportions based on normal mixtures are esti-

mated to be 0.634, 0.429, 0.712, 0.548, while based on our methods, the estimates

are 0.753, 0.988, 0.474, 0.761. The results from the two methods are quite different.

From the histograms, we can see the normal mixtures fit well.
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Figure 3-3: Histograms of the 2-h plasma glucose data.



Chapter 4

Statistical Inference on Parameters

In this chapter, we consider the inference problem about our parameter of inter-

est. All inferences are based on the assumption that ϕ(x; β2) 6= 0 for some x, since

otherwise there will exist the so called irregularity likelihood problem, as noted in

the work of Zou, Fine and Yandell (2002), who consider inferences based on a partial

likelihood without the restriction of β2 6= 0 in the case of ϕ(x; β2) = βT2 x.

4.1 Confidence Intervals

Confidence intervals can be constructed by using the normal theory for large

samples or by inverting likelihood ratio statistics. It is also a good practice to use

bootstrap methods for small samples, which will not be considered here.

72
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4.1.1 A Normal-theory-based Confidence Region for λ

Consider an individual proportion, λ1 say. The 95% confidence interval reads:

λ̃1 ± 1.96

√ ˜
var(λ̃1),

where the variance of λ̃1, var(λ̃1), is extracted from the asymptotic variance matrix

U in (2.2.1), which is estimated consistently using the plug-in principle.

A 95% joint confidence interval for λ = (λ1, · · · , λK)T can be formed by inverting

the χ2
K quantity

(λ̃− λ)T Σ̃λ̃ (λ̃− λ),

where Σλ̃ is the variance of λ̃ and is extracted from the asymptotic variance matrix

U in (2.2.1), which is estimated using the plug-in principle.

4.1.2 A Likelihood Ratio-based Confidence Region for λ

Alternatively, we can construct a confidence interval for λ by inverting the semi-

parametric empirical likelihood ratio test statistic

R(λ) = 2[sup
λ,β

l(λ, β, α(λ, β))− sup
β
l(λ, β, α(λ, β))]. (4.1.1)

This is based on the following theorem (4.1.1).

Theorem 4.1.1. Under the conditions of (2.2.3), R(λ) = 2[supλ,β l(λ, β, α(λ, β)) −

supβ l(λ, β, α(λ, β))] → χ2
K, when H0 : λ = λ0 is true.
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A proof of this result is given in the proof section. Therefore, a 95% confidence

interval for λ is constructed as

{λ|R(λ) ≤ χ2
K(1− 0.95)}. (4.1.2)

4.1.3 A Normal-theory-based Confidence Interval for β2

The 95% confidence interval for β2 is:

β̃2 ± 1.96

√ ˜
var(β̃2),

where the variance of β̃2 is extracted from the asymptotic variance matrix U in (2.2.1),

which is estimated by the plug-in principle.

4.1.4 A Likelihood Ratio-based Confidence Interval for β2

Alternatively, we can construct a confidence interval for β2 by inverting the semi-

parametric empirical likelihood ratio test statistic

R(β2) = 2[sup
λ,β

l(λ, β, α(λ, β))− sup
λ,β1

l(λ, β, α(λ, β))]. (4.1.3)

Theorem 4.1.2. Let β20 be the true value of β and p = dim(β2). Under the condi-

tions of (2.2.3), R(β20) → χ2
p.



75

Therefore, a 95% confidence interval for β2 is constructed as

{β2|R(β2) ≤ χ2
p(1− 0.95)}. (4.1.4)

4.2 Empirical Likelihood Ratio Tests

An empirical likelihood ratio test ofH0 : λ = λ0 againstH1 : λ 6= λ0 is based on the

Theorem (4.1.1). For given significance level 0.05, reject H0 if R(λ0) > χ2
K(1− 0.05).

Similarly, an empirical likelihood ratio test of H0 : β2 = β20 vs H1 : β2 6= β20 is

based on the Theorem (4.1.2). For given significance level 0.05, reject H0 if R(β20) >

χ2
p(1− 0.05).

4.3 Simulation Studies

In this section, we first demonstrate the distribution of the semiparametric em-

pirical likelihood ratio statistics through Q-Q plots, then we study the proposed

confidence intervals/regions through simulations. We will, for different situations, be

focused on the length and coverage of confidence intervals. Powers of the likelihood

ratio-based χ2-tests will not be reported.

4.3.1 Q-Q plots for Empirical Likelihood Ratio Statistics

For large sample sizes, we have shown that empirical likelihood ratio statistics

for λ and β are both χ2 distributed. In this section, we demonstrate the small-to-
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medium-sized sample property of those statistics via Q-Q plots. The procedure is as

follows. we generate a set of three samples, each from one of the K mixtures, then

use the proposed semiparametric method with these samples, and finally calculate

the empirical likelihood ratio statistic. Repeating this procedure 1000 times to have

1000 replicates of the the likelihood ratio statistic. A Q-Q plot is then constructed

by plotting the quantiles of those values against the standard χ2 quantiles.

we consider three normal mixtures: 0.10N(0, 1)+0.90N(2, 1), 0.50N(0, 1)+0.50N(2, 1)

and 0.90N(0, 1)+0.10N(2, 1). We generate 1000 sets of three samples of size 100 each

from the three mixtures respectively. It’s easy to see that β1 = −2 and β2 = 2. For

n1 = n2 = n3 = 100, at the true value λ1 = 0.10, λ2 = 0.50 and λ3 = 0.90, the

Q-Q plot for the 1000 replications of R(λ) versus the standard χ2
3 is shown in Figure

(4.3.1). At the true value β2 = 2, the Q-Q plot for the 1000 replications of R(β2)

versus the standard χ2
1 is shown in Figure (4-2). The χ2 approximation to each of the

two statistics appears satisfactory.

4.3.2 Coverage of Confidence Intervals

To evaluate the empirical likelihood ratio-based confidence regions for the mixing

proportions λ and the parameter β2, we consider three normal mixtures: λ1N(0, 1)+

(1 − λ1)N(µ2, 1), λ2N(0, 1) + (1 − λ2)N(µ2, 1) and λ3N(0, 1) + (1 − λ3)N(µ2, 1).

For comparison we also consider fully parametric inferences; that is, F and G are

N(µ1, σ
2) and N(µ2, σ

2), respectively. For the mixing proportions, confidence in-

tervals are calculated semiparametrically (S) and parametrically (P). We report the
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Figure 4-1: Q-Q plot for λ

simulation results in Table (4.1), where the nominal coverage level is 90%.

To evaluate the likelihood ratio test statistic for the parameter β2, We consider

two sets of proportions and two values for µ2: 0.5 and 2.0 so that β2 equals 0.5 and

2.0, respectively. We generate 1000 sets of three samples from the three mixtures

respectively. For comparison we also consider the fully parametric case that F and G

are N(µ1, σ
2) and N(µ2, σ

2), respectively. The value of β2 is µ2−µ1. For β2, under a

nominal coverage of 90%, confidence intervals are calculated semiparametrically (S)

and parametrically (P). We report the simulation results in Table (4.2).
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Table 4.1: Average length, midpoint and coverage for λ1 from 1000 samples.

Method λ Cov.(%) Av. Len. Av. Midpt.
n1 = n2 = n3 = 100

S 0.50, 0.60, 0.70 86.3 0.3544 0.4975
P 0.50, 0.60, 0.70 88.4 0.3316 0.4989
S 0.30, 0.60, 0.70 87.5 0.3284 0.2851
P 0.30, 0.50, 0.70 89.1 0.3113 0.2925
S 0.10, 0.40, 0.70 89.7 0.2905 0.1104
P 0.10, 0.40, 0.70 90.3 0.2853 0.0994
S 0.10, 0.50, 0.90 87.8 0.2962 0.0895
P 0.10, 0.50, 0.90 89.2 0.2901 0.1051

Cov. = Coverage, Av. Len. = Average Length, Av. Midpt. = Average Midpoint

Table 4.2: Average length, midpoint and coverage for β2 from 1000 samples

β2 λ Method Cov.(%) Av. Len. Av. Midpt.
n1 = n2 = n3 = 100

0.5 0.40, 0.50, 0.60 S 86.2 0.4441 0.5154
0.5 0.40, 0.50, 0.60 P 88.3 0.4211 0.4985
0.5 0.10, 0.50, 0.90 S 86.0 0.3986 0.4881
0.5 0.10, 0.50, 0.90 P 91.4 0.3590 0.4918
2.0 0.40, 0.50, 0.60 S 87.7 1.2436 2.0123
2.0 0.40, 0.50, 0.60 P 92.3 1.0183 2.0117
2.0 0.10, 0.50, 0.90 S 88.9 1.1953 2.0024
2.0 0.10, 0.50, 0.90 P 91.1 0.9703 1.9902

Cov. = Coverage, Av. Len. = Average Length,Av. Midpt. = Average Midpoint
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Figure 4-2: Q-Q plot for β2

4.4 Proofs

4.4.1 Proof of Theorem (4.1.2)

. Let ξ̃ = (λ̃− λ0, β̃1 − β10, α̃− 0)T . We have

 β̃2 − β20

ξ̃

 =



β̃2 − β20

λ̃− λ0

β̃1 − β10

α̃− 0


=



0 0 Ip 0

IK 0 0 0

0 1 0 0

0 0 0 1





λ̃− λ0

β̃1 − β10

β̃2 − β20

α̃− 0



= −



0 0 Ip 0

IK 0 0 0

0 1 0 0

0 0 0 1


S−1Qn + op(n

−1/2).
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Let λ̂ and β̂1 maximize l(λ, β1, β20, α(λ, β1, β20)). We have ∂l
∂λ

= ∂l
∂β1

= ∂l
∂α

= 0,

all evaluated at (λ̂, β̂1, β20, α̂), where α̂ = α(λ̂, β̂1, β20). Expanding the above at

θ0 = (λ0, β10, β20, 0) yields

ξ̂ ≡


λ̂− λ0

β̂1 − β10

α̂− 0

 = −C−1


∂l
∂λ

∂l
∂β1

∂l
∂α

 + op(n−1/2),

where

C =


∂2l

∂λ∂λT
∂2l

∂λ∂β1

∂2l
∂λ∂α

∂2l
∂β1∂λT

∂2l
∂β1∂β1

∂2l
∂β1∂α

∂2l
∂α∂λT

∂2l
∂α∂β1

∂2l
∂α2

 ,

all partial derivatives being evaluated at θ0. DenoteQ1n = 1
n
∂l
∂β2

andQ2n = ( 1
n
∂l
∂λ
, 1
n
∂l
∂β1
, 1
n
∂l
∂α

)T ,

both evaluated at θ0. Note that

 β20 − β̃2

ξ̂ − ξ̃

 =

 0

ξ̂

−

 β̃2 − β20

ξ̃



= −

 0 0

0 C−1


 Q1n

Q2n

 +



0 0 Ip 0

IK 0 0 0

0 1 0 0

0 0 0 1


S−1Qn + op(n

−1/2)
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= −

 0 0

0 C−1





0 0 Ip 0

IK 0 0 0

0 1 0 0

0 0 0 1


Qn +



0 0 Ip 0

IK 0 0 0

0 1 0 0

0 0 0 1


S−1Qn + op(n

−1/2)

=

[ 0 0

0 C−1





0 0 Ip 0

IK 0 0 0

0 1 0 0

0 0 0 1


S



0 0 Ip 0

IK 0 0 0

0 1 0 0

0 0 0 1



−1

−

 Ip 0

0 IK+2


]  β̃2 − β20

ξ̃

 + op(n
−1/2)

=

 −Ip

C−1b

 (β̃2 − β20) + op(n
−1/2),

where bT = (sT13, s
T
23, s

T
43), and



λ̂− λ̃

β̂1 − β̃1

β20 − β̃2

α̂− α̃


=



0 IK 0 0

0 0 1 0

Ip 0 0 0

0 0 0 1



 β20 − β̃2

ξ̂ − ξ̃

 .
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From Taylor expansion, l(λ̂, β̂1, β2, α̂) equals

l(λ̃, β̃1, β̃2, α̃) +
n

2
((λ̂− λ̃)T , β̂1 − β̃1, (β20 − β̃2)

T , α̂− α̃)S



λ̂− λ̃

β̂1 − β̃1

β20 − β̃2

α̂− α̃


+ op(1)

=
n

2
((β20 − β̃2)

T , (ξ̂ − ξ̃)T )

 s33 bT

b C


 β20 − β̃2

ξ̂ − ξ̃

 + op(1)

=
n

2

[ −Ip

C−1a

 (β̃2 − β20)

]T  s33 bT

b C

 [ −Ip

C−1a

 (β̃2 − β20)

]
+ op(1)

=
n

2
(β̃2 − β20)

T [s33 − bTCT b](β̃2 − β20) + op(1).

Therefore, l(λ̂, β̂1, β20, α̂) − l(λ̃, β̃1, β̃2, α̃) converges to −1
2
χ2
p+1 in distribution, since

the asymptotic variance of
√
n(β̃2 − β20) is −(s33 − bTCT b)−1.

4.4.2 Proof of Theorem (4.1.1)

. Let ξ̃ = (β̃ − β0, α̃− 0)T . We have

 λ̃− λ0

ξ̃

 = −S−1Qn + op(n
−1/2) =

 s11 c12

cT12 c22


 Q1n

Q2n

 .

where

c12 = (s12, s13), c22 =

 s22 s23

s32 s33

 ,
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and

Q1n =
1

n

∂l

∂λ
, Q2n = (

1

n

∂l

∂β
,
1

n

∂l

∂α
)T ,

both evaluated at θ0. Denote the maximizer of l(λ0, β, α(λ0, β)) by β̂, which satisfies

∂l

∂β
(λ̂0, β̂, α̂) =

∂l

∂α
(λ̂0, β̂, α̂) = 0,

where α̂ = α(λ̂, β̂1, β20). Expanding the above equations at θ0 = (λ0, β0, 0) yields

ξ̂ ≡

 β̂ − β0

α̂− 0

 = −c−1
22 Q2n + op(n

−1/2).

Note that

 λ0 − λ̃

ξ̂ − ξ̃

 =

 0

ξ̂

−

 λ̃− λ0

ξ̃



= −

 0 0

0 c−1
22


 Q1n

Q2n

 +

 s11 c12

cT12 c22


−1  Q1n

Q2n

 + op(n
−1/2)

=

{ 0 0

0 c−1
22


 s11 c12

cT12 c22

−

 IK 0

0 Ip+2

}  λ̃− λ0

ξ̃

 + op(n
−1/2)

=

 −IK

c−1
22 c

T
12

 (λ̃− λ0) + op(n
−1/2),
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Expanding l(λ̂0, β̂, α̂) at (λ̃, β̃, α̃) yields

l(λ̂0, β̂, α̂)− l(λ̃, β̃, α̃) =
n

2
(λ̂0 − λ̃)T , β̂ − β̃)T , α̂− α̃)S


λ̂0 − λ̃

β̂ − β̃

α̂− α̃

 + op(1)

=
n

2
((λ0 − λ̃)T , (ξ̂ − ξ̃)T )

 s11 c12

cT12 c22


 λ0 − λ̃

ξ̂ − ξ̃

 + op(1)

=
n

2

[ −IK

c−1
22 c

T
12

 (λ̃− λ̃)

]T  s11 c12

cT12 c22

 [ −IK

c−1
22 c

T
12

 (λ̃− λ̃)

]
+ op(1)

=
n

2
(λ̃− λ̃)T (s11 − c12c

−1
22 c

T
12)(λ̃− λ̃) + op(1)

which converges to−1
2
χ2
p+1 in distribution, since the asymptotic variance of

√
n(λ̃−λ0)

is −(s11 − c12c
−1
22 c

T
12)

−1.



Chapter 5

A Kolmogrov-Smirnov-type GOF

Test for the Density Ratio Model

5.1 Introduction

The estimation and inference procedure rely on whether or not the underlying

model is valid. An invalid model basically leads to inconsistent estimators. The

validity of a model can be assessed by goodness-of-fit tests. In this chapter, we propose

an omnibus test which is of Kolmogorov-Smirnov (K-S) type. We first establish

a weak convergence result, based on which a KS test is then proposed. The KS

statistic measures the discrepancy between the empirical version and the model based

estimates of the population distribution. The asymptotic analytic distribution of the

test statistic is not available so the critical value and p-value are obtained through the

bootstrap procedure. Finally, small sample properties are studied via simulation and

real examples are presented. DenoteDn(t) =
√
n(H̃1(t)−Ĥ1(t), · · · , H̃K(t)−ĤK(t))T .
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We first develop the weak convergence result.

5.2 Weak Convergence of Dn(t)

The construction of the K-S goodness-of-fit test is based on the following weak

convergence theorem.

Theorem 5.2.1. Under Model (I) and suitable regularity conditions, as n→∞,

√
n



H̃1(t)− Ĥ1(t)

H̃2(t)− Ĥ2(t)

...

H̃K(t)− ĤK(t)


→



W1(t)

W2(t)

...

WK(t)


≡ W (t) (5.2.1)

weakly in D[−∞,∞], where W (t) is a Gaussian process with mean zero and covari-

ance structure Σ(t, s), t ≤ s given in the proof.

5.3 A Kolmogorov-Smirnov Goodness-of-Fit Test

For large sample sizes, if the density ratio model is valid, both the model-based

semiparametric estimator H̃k(x) and the model-free empirical estimator of Ĥk(x)

should be close to Hk(x), since both are consistent. Therefore, a formal goodness-of-

fit test of the semiparametric density ratio model can be constructed based on some

sort of distance. We consider the well known K-S type distance.
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5.3.1 The K-S Test Statistic: ∆n

For the classical K-S statistic, the construction is straightforward. For our case,

however, the K distances involved should be combined to form a statistic in such a

way that each distance contributes a suitable proportion to the constructed statistic.

To construct such a statistic, we use the weighted average of those distances. For

ease of exposition, we focus our attention on the test

H0 : log
g(x)

f(x)
= β1 + β2x vs H1 : Not H0. (5.3.1)

Let ∆nk(x) =
√
n[H̃k(x)−Ĥk(x)] and ∆nk = sup−∞≤x≤∞ |∆nk(x)|, for k = 1, 2, · · · , K.

Denote the K-S statistic as ∆n, which is defined as

∆n =
1

K

K∑
k=1

ρnk∆nk. (5.3.2)

Remark 5.3.1. An optimal choice of the weights is open. By optimal, we mean that

the choice has to be made so that the power of the proposed K-S test approaches to 1

for given an alternative as n gets large. To overcome this difficulty, we will propose

some alternative goodness-of-fit tests in the future.

For the proposed test, a large value of ∆n indicates that the density ratio model

is inappropriate. Note that, by the Continuous Mapping Theorem (Billingsley, 1968),
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we have

lim
n→∞

P (∆n ≥ δ1−q) = lim
n→∞

P (
1

K

K∑
k=1

ρnk sup
−∞≤t≤∞

√
n|∆nk(t)| ≥ δ1−q)

= P (
1

K

K∑
k=1

ρk sup
−∞≤t≤∞

|Wk(t)| ≥ δ1−q)

= q,

thus, the q-quantile of ∆n can be obtained through the limiting process when n is

large. Since there is no explicit benchmark available, a resampling procedure such as

bootstrap has to be called for.

5.3.2 A Bootstrap Procedure for Approximating the P -value

A bootstrap procedure is used to approximate the critical value of the proposed

Kolmogorov-Smirnov-type goodness-of-fit test. We have developed semiparametric

estimators H̃k(x) for the mixtures Hk(x), k = 1, 2, · · · , K, which can be shown

to be more efficient than their nonparametric counterparts, therefore, in stead of

Ĥ1(x), · · · , ĤK(x), the empirical distribution, we generate bootstrap samples from

H̃1(x), · · · , H̃K(x), respectively. To be specific, we go with the following loop.

STEP 1. Generate a bootstrap sample for each k = 1, 2, · · · , K.

Let x∗k1, x
∗
k2, · · · , x∗knk

be a random sample from H̃k(x). Assume further that

x∗11, x
∗
12, · · · , x∗1n1

, x∗21, x
∗
22, · · · , x∗2n2

, · · · , x∗K1, x
∗
K2, · · · , x∗KnK

are jointly independent.

Let t∗1, t
∗
2, · · · , t∗n be the pooled bootstrap sample, where n = n1 + n2 + · · ·+ nK .

STEP 2. Repeat the estimation procedure proposed in Chapter two.
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With the generated data in Step 1, repeat the empirical likelihood-based semi-

parametric procedure proposed in Chapter two to get the bootstrap version esti-

mates of the parameters and the cumulative distribution functions. To be specific,

let (λ̃∗, β̃∗, α̃∗) be solutions to the bootstrap version score equations. Then the boot-

strap version estimates of F (x), G(x) and Hk(x) for k = 1, 2, · · · , K, are constructed

as

F̃ ∗(x) =
n∑
i=1

p̃∗i I(t
∗
i ≤ x)

=
1

n

n∑
i=1

1

γ(t∗i ; λ̃
∗, β̃∗)

1

1 + α̃∗[ω(t∗i ; β̃
∗)− 1]/γ(t∗i ; λ̃

∗, β̃∗)
I(t∗i ≤ x),

G̃∗(x) =
n∑
i=1

p̃∗iω(t∗i ; β̃
∗)I(t∗i ≤ x), and

H̃∗
k(x) =

n∑
i=1

p̃∗i [λ̃
∗
k + (1− λ̃∗k)ω(t∗i ; β̃

∗)]I(t∗i ≤ x), k = 1, · · · , K,

where

p̃∗i =
1

n

1

r(t∗i ; λ̃
∗, β̃∗)

1

1 + α̃∗[ω(t∗i ; β̃
∗)− 1]/r(t∗i ; λ̃

∗, β̃∗)
,

where the functions r(t;λ, β) and ω(t; β) are defined in Chapter two.

The empirical distribution function Ĥ∗
k(x), is formed corresponding to the boot-

strap sample x∗k1, x
∗
k2, · · · , x∗knk

.

Step 3. Calculate ∆∗
nk, the bootstrap version of ∆nk.

We define the bootstrap version of ∆nk(x) and ∆nk as

∆∗
nk(x) =

√
n[H̃∗

k(x)− Ĥ∗
k(x)]

∆∗
nk = sup

−∞≤x≤∞
|∆∗

nk(x)|,
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Step 4. Calculate ∆∗
n, the bootstrap version of ∆n.

We weight ∆∗
nk, k = 1, 2, · · · , K, to get the bootstrap version of ∆∗

n as

∆∗
n =

1

K

K∑
k=1

ρnk∆
∗
nk.

Step 5. Repeat the above procedure B = 1000 times to get ∆∗b
n , b = 1, 2, · · · , B.

The quantile of ∆n is then approximate by that of ∆∗b
n , b = 1, 2, · · · , B. We use

the following

#{∆∗b
n ≥ ∆n}
B

to approximate the P-value of the test, where ∆n is the observed value of the test

statistic based on the original samples.

5.3.3 The Power under Local Alternatives

Suppose the two densities in the density ratio model indeed are related by

log
g(x)

f(x)
= β1 + β2x+ γx2. (5.3.3)

We consider the normal densities for both g(x) and f(x) and K = 2 or 3. Given

β2, for some choices of γ, the corresponding β1 can be determined. The power of

the test (5.3.1) under the above local alternative can be simulated as in the following

procedure:

1. For given λk’s and β2, for each choice of γ, generate a set of K samples, each

from H1(x), H2(x),· · · ,HK(x).
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2. Use the estimation procedure in Chapter two on the data generated above, and

find the P -value as described in last subsection. A P -values smaller than a

nominal significance level, say 0.05, indicates rejection of hypothesis (5.3.1).

3. Repeat the first two steps r = 1000 times and find the number of rejections in

the r simulations, say r0. The power is approximated by r0/r.

5.3.4 A Comparison of Powers: K-S Test against t Test

If the model (5.3.3) is true, then testing the density ratio assumption amounts to

testing that γ = 0. We compare the power of the proposed K-S test with that of the

t test. The t statistic, T , is constructed as follows:

T =
√
n
γ̃

σ̃γ
,

where σ̃γ is the large sample standard deviation of γ̃, with unknown quantities re-

placed by consistent estimates. Under the null hypothesis that γ = 0, T is approxi-

mately normally distributed. The critical value of T is thus the standard quantile for

a given significance level. On the other hand, the distribution of T is unknown under

the alternative that γ 6= 0, therefore, to find the power of the t test, we shall use

simulation methods. Specifically, We take f(x) to be the standard normal density,

and β2 to be fixed as 0.5, so that, under the model (5.3.3), g(x) is a normal density

N(µ, σ2) with

µ =
β2

1− 2γ
, σ2 =

1

1− 2γ
.
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We report the achieved significance levels and powers in Table (5.1), for given

mixing proportions λ1 = 0.2 and λ2 = 0.7. In the table, ∆ is the K-S type GOF

statistic, and T is the t statistic. When the density ratio assumption is true, the

achieved significance levels are close to the nominal level. The farther the γ is away

from 0, the greater the power of the test to detect the departure. Also, the power of

the test is, as expected, less than that of the t test.

Table 5.1: Powers for testing γ = 0 when ψ(x; β2) = β2x+ γx2 with β2 = 0.5

γ sample sizes Levels ∆ T
0.0 n1 = n2 = 100 0.10 0.145 0.142
0.0 n1 = n2 = 100 0.05 0.081 0.073
0.0 n1 = n2 = 100 0.01 0.021 0.012
0.0 n1 = n2 = 150 0.10 0.156 0.137
0.0 n1 = n2 = 150 0.05 0.134 0.129
0.0 n1 = n2 = 150 0.01 0.029 0.025
-1.0 n1 = n2 = 100 0.10 0.577 0.621
-1.0 n1 = n2 = 100 0.05 0.486 0.511
-1.0 n1 = n2 = 100 0.01 0.289 0.324
-1.0 n1 = n2 = 150 0.10 0.833 0.887
-1.0 n1 = n2 = 150 0.05 0.703 0.748
-1.0 n1 = n2 = 150 0.001 0.501 0.601

5.4 Examples

Example 5.4.1. We continue the example of Nagelkerke et al (2001) studied in

Chapter 3.

We evaluated the goodness-of-fit of the semiparametric model to the three year

data. We found that the p-values for the three years are 0.044, 0.221 and 0.002,

respectively. Therefore, the model fits well for year 90 data only.



93

Example 5.4.2. We continue the example of Thompson et al (1998) discussed in

Chapter 3.

The p-value for the data is 0.017. Therefore, the model doesn’t fit well based on

our proposed test.

5.5 Proofs

Proof of theorem (5.2.1). According to (2.4.10), it suffices to show that
√
n(H11(t)+

H1(t)−Ĥ1(t), · · · , H1K(t)+HK(t)−ĤK(t))T → W (t) weakly in D[−∞,∞]. It’s easy

to see that, for k = 1, 2, · · · , K, E{
√
n[H1k(t) +Hk(t)− Ĥk(t)]} = 0. Moreover,

cov(
√
n{H̃i(t)− Ĥi(t)},

√
n{H̃j(s)− Ĥj(s)})

= ncov({H̃i(t)−Hi(t)} − {Ĥi(t)−Hi(t)}, {H̃j(s)−Hj(s)} − {Ĥj(s)−Hj(s)})

= ncov({H̃i(t)−Hi(t)}, {H̃j(s)−Hj(s)})− ncov({H̃i(t)−Hi(t)}, {Ĥj(s)−Hj(s)})

− ncov({Ĥi(t)−Hi(t)}, {H̃j(s)−Hj(s)}) + ncov({Ĥi(t)−Hi(t)}, {Ĥj(s)−Hj(s)}),
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and

cov({H̃i(t)−Hi(t)}, {H̃j(s)−Hj(s)})

= cov(
1

n

K∑
k=1

nk∑
l=1

[
εHi
k (xkl; t) + v2i(t)qk(xkl)

]
,
1

n

K∑
k=1

nk∑
l=1

[
ε
Hj

k (xkl; s) + v2j(s)qk(xkl)

]
)

=
1

n2

K∑
k=1

nkcov(εHi
k (Xk; t) + v2i(t)qk(Xk), ε

Hj

k (Xk; s) + v2j(s)qk(Xk))

cov({H̃i(t)−Hi(t)}, {Ĥj(s)−Hj(s)}) =
1

n
cov(εHi

j (Xj; t) + v2i(t)qk(Xj), I(Xj ≤ s))

cov(Ĥi(t)−Hi(t), {H̃j(s)−Hj(s)) =
1

n
cov(ε

Hj

i (Xi; s) + v2j(s)qi(Xj), I(Xi ≤ t))

cov({Ĥi(t)−Hi(t)}, {Ĥj(s)−Hj(s)}) =
1

ni
{Hi(t ∧ s)−Hi(t)Hk(s)}I(i = j),

where I(A) is the indicator function of A.

Therefore, for any i, j = 1, 2, · · · , K, cov(
√
n{H̃i(t)−Ĥi(t)},

√
n{H̃j(s)−Ĥj(s)}) =

E{Wi(s)Wj(t)}. This, together with the CLT for sample means and the Cramer-

Wold device, implies that the finite dimensional distribution of
√
n{H1k + Hk(t) −

Ĥk(t)} converges weakly to those of W (t). Thus, in order to show weak conver-

gence of (H̃1(t)− Ĥ1(t), · · · , H̃K(t)− ĤK(t))T , it is enough to show that the process

{
√
n{H1k + Hk(t) − Ĥk(t)}, t ∈ [−∞,∞]} is tight in D[−∞,∞]. However, this can

be proved by the tightness criteria in Billingsley (1968, Ch.3). This completes the

proof.

Another way to express the variance structure is to use the Theorem (2.3.1),

according to which, it suffices to show that
√
n(H11(t)− Ĥ1(t)−H12(t), · · · , HK1(t)−

ĤK(t) − HK2(t))
T → W (t) weakly in D[−∞,∞]. It’s easy to see that, for k =

1, 2, · · · , K, E(
√
n[Hk1(t) − Ĥk(t) − Hk2(t)]) = 0. To calculate cov(

√
n[Hk1(s) −
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Ĥk(s)−Hk2(s)],
√
n[Hl1(t)− Ĥl(t)−Hl2(t)]), we proceed as follows.

cov(
√
n[Hk1(s)− Ĥk(s)−Hk2(s)],

√
n[Hl1(t)− Ĥl(t)−Hl2(t)])

= cov(
√
n[Hk1(s)− Ĥk(s)],

√
n[Hl1(t)− Ĥl(t)])− cov(

√
n[Hk1(s)− Ĥk(s)],

√
n[Hl2(t)])

− cov(
√
n[Hl1(t)− Ĥl(t)],

√
n[Hk2(s)]) + cov(

√
n[Hk2(s)],

√
n[Hl2(t)]),

and

cov(
√
n[Hk1(s)− Ĥk(s)],

√
n[Hl1(t)− Ĥl(t)])

= n
K∑
m=1

nmcov

{[
ωk
nr

− I(m = k)

nk

]
I(Xm ≤ s),

[
ωl
nr

− I(m = l)

nl

]
I(Xm ≤ t)

}

= n
K∑
m=1

nm

∫ s∧t

−∞

[
ωk
nr

− I(m = k)

nk

][
ωl
nr

− I(m = l)

nl

]
ωmdF

− n
K∑
m=1

nm

∫ s

−∞

[
ωk
nr

− I(m = k)

nk

]
ωmdF

∫ t

−∞

[
ωl
nr

− I(m = l)

nl

]
ωmdF

= −
∫ s∧t

−∞

ωkωl
r

dF +
1

ρk
Hk(s ∧ t)I(k = l)−

K∑
m=1

ρm

∫ s

−∞

ωkωm
r

dF

∫ t

−∞

ωlωm
r

dF

+Hl(t)

∫ s

−∞

ωkωl
r

dF +Hk(s)

∫ t

−∞

ωlωk
r

dF − 1

ρk
Hk(s)Hk(t)I(k = l)



96

= −G(s ∧ t)− (1− ξ − λk − λl)(G(s ∧ t)− F (s ∧ t))− (1− ξ − λk)(1− ξ − λl)τ(s ∧ t)

+Hl(t)[−G(s)− (1− ξ − λk − λl)(G(s)− F (s))− (1− ξ − λk)(1− ξ − λl)τ(s)]

−
K∑
m=1

ρm[−G(s)− (1− ξ − λk − λm)(G(s)− F (s))− (1− ξ − λk)(1− ξ − λm)τ(s)]

[−G(t)− (1− ξ − λl − λm)(G(t)− F (t))− (1− ξ − λl)(1− ξ − λm)τ(t)]

+
1

ρk
[Hk(s ∧ t)−Hk(s)Hk(t)]I(k = l).

Using (2.4.9), we have

cov(
√
n[Hk1(s)− Ĥk(s)],

√
n[Hl2(t)])

=


[G(t)− F (t) + (1− λl − φ)τ(t)]ρ

(1− λl − φ)ς1(t)

−G(t) + F (t)− (1− λl − φ)τ(t)



T

S−1


a

b

c

 ,

where

a = −ρn[G(s)− F (s) + (1− ξ − λk)τ(s)] + [G(s)− F (s)]ek + ρnτ(1− λk − ξ)Hk(s)

− ρnτ

K∑
m=1

ρm(1− ξ − λm)[G(s) + (1− λk − λm − ξ)(G(s)− F (s))]

b = −(1− λk − ξ)ς1(s) + ς1(1− λk − ξ)Hk(s)

− ς1

K∑
m=1

ρm(1− ξ − λm)[G(s) + (1− λk − λm − ξ)(G(s)− F (s))]

c = τ(1− λk − ξ)Hk(s)− τ
K∑
m=1

ρm(1− ξ − λm)[G(s) + (1− λk − λm − ξ)(G(s)− F (s))],
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and

cov(
√
n[Hk2(s)],

√
n[Hl2(t)])

=


[G(s)− F (s) + (1− λk − φ)τ(s)]ρ

(1− λk − φ)ς1(s)

−G(s) + F (s)− (1− λk − φ)τ(s)



T

S−1V S−1


[G(t)− F (t) + (1− λl − φ)τ(t)]ρ

(1− λl − φ)ς1(t)

−G(t) + F (t)− (1− λl − φ)τ(t)



=

 [G(s)− F (s) + (1− λk − φ)τ(s)]ρ

(1− λk − φ)ς1(s)


T

Σ11

 [G(t)− F (t) + (1− λl − φ)τ(t)]ρ

(1− λl − φ)ς1(t)


+ σ22[−G(s) + F (s)− (1− λk − φ)τ(s)]2, using (2.4.8).



Chapter 6

Conclusions and Future Research

In this dissertation work, we discussed K mixtures from each of which a sample is

available. we have developed an empirical likelihood-based estimation and inference

procedure for parameters of interest. By noting that, under semiparametric models,

estimation and inference may be more robust than those under parametric models and

more efficient than those under nonparametric models, we impose in our procedure

an assumption that the two component densities differ by a parametric multiplicative

factor. This assumption is called a density ratio model or exponential tilting model,

which includes many pairs of familiar densities as special cases. K mixtures are useful

in a variety of contexts such as Genetics and Life testing. In Genetics, the mixing

proportions may be found under some genetic assumptions. Zou, et al (2002) con-

sidered this situation with known mixing proportions using empirical likelihood. Our

procedure considered the more general case. Moreover, we proposed EM/MM algo-

rithms to estimate unknown quantities and a formal goodness of fit test to check the

validity of the postulated density ratio model. We noted that the Newton-Raphson

98
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method is not a good choice for high dimensional problem, although it’s well known

for its quadratic convergence rate. Besides the KS goodness of fit procedure, other

procedures of goodness of fit are possible. We will consider the following questions in

the future.

• Base estimation and inference on the partial likelihood and study the relative

efficiency of partial likelihood-based estimators to corresponding estimators un-

der the full empirical likelihood;

• Develop alternative GOF tests, such as the information test and the χ2 test;

Develop a global test under the setting of Zou, Fine and Yandell (2002);

• Study the effect of misspecification of ϕ(x; β2);

• Use two-sample two-component mixture models to tackle the verification bias

problem in diagnostic medicine;

• Find applications of the K-sample 2(3)-component mixture models in quantita-

tive genetics.
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