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Abstract 

Myers, Mason T., April 2021, Chemistry 

Combining Primary Specificity Screenings for Drug Discovery Targeting T-box 

Antiterminator RNA 

Director of Thesis: Jennifer V. Hines 

As the threat of antibiotic resistant infections and outbreaks looms, there has been 

a reinvigorated interest in identifying new therapeutics to target alternative targets in 

species primed for developing resistance. One such target is the antiterminator sequence 

of the T-box riboswitch, an important regulatory motif that acts as an ‘on’ switch for 

important protein synthesis genes in Gram-positive bacteria. The antiterminator is 

kinetically favored in transcription of T-box regulated genes, but is thermodynamically 

unfavored to its counterpart terminator sequence, which contains many of the same 

nucleotides and prevents gene expression through transcription termination or enveloping 

the Shine-Dalgarno sequence, preventing translation. The antiterminator is stabilized 

through interaction with the acceptor end of uncharged tRNA, and as such is responsive 

to the cellular concentration ratio of charged and uncharged tRNA. As a 

thermodynamically unstable and highly conserved regulatory element, the T-box 

antiterminator has been the focus of drug-design efforts to create ligands that would 

preclude or destabilize tRNA binding to the antiterminator, disrupting protein biogenesis 

ultimately leading to cell death. 

In an effort to devise a new primary, high-moderate throughput compound 

screening to find small molecules which bind to the antiterminator mechanism of the T-

box riboswitch with high specificity, this thesis investigates a hybrid assay combining 
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computational and experimental techniques. Computational docking of libraries of 

compounds using a receptor grid developed from the antiterminator NMR solution 

structure (PDB: 1N53) is used to identify a selection of compounds with favorable 

chemical features which bind to the antiterminator with high selectivity and strong 

bonding values. These compounds can then be tested in a single temperature fluorescence 

assay against three similar, but structurally disparate models based on the T-box 

antiterminator to identify ligand affinity and binding specificity, important aspects of 

drug discovery research. Agreement between computational and experimental techniques 

will lead to the identification of common structures or trends in the molecules tested 

which effectively bind and modulate the antiterminator structure, enhancing the 

foundational knowledge required for pharmacophore development of a T-box 

antiterminator inhibitor. 

Two compound libraries, the  MedChemExpress FDA-approved plus library and 

the ZINC database natural metabolite subset, were tested using this combined assay 

approach.  In addition, a selection of laboratory compounds known to bind RNA were 

also tested in an inverse sequence of the assay, completing fluorescence screenings 

followed by computational assays. Of the candidate molecules identified in 

computational screenings , four compounds were tested in the experimental assays, two 

from each library.  One of these compounds, amodiaquine, was found bind to the T-box 

antiterminator with structure -dependent specificity, and the compounds screened from 

the laboratory ‘training’ set all had structure-dependent specificity. The results of this 

project indicate that while specificity is not well determined by computational screening 

of a compound library, annotation of compound interaction by receptor regions improves 
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prediction of relative ligand binding strengths. In addition, the quinoline ring system 

appears to be an intriguing moiety for RNA drug design, appearing in multiple 

compounds that bind the antiterminator to affect its structure in a model-dependent 

manner. In sum, the results of this assay support the combination of computational and 

experimental assays to better predict RNA-small molecule binding in drug-discovery 

efforts targeting the T-box riboswitch.
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1. Introduction 

Antibiotic resistance is a growing risk to public health, afflicting two million in the 

United States annually (Centers for Disease Control and Prevention, 2018). As such, the 

search for novel treatments for these conditions has become more urgent. Within 

Table I List of abbreviations 

Abbreviation Definition 
Abbreviation 
(Continued) Definition 

A adenosine MW molecular weight 

AARS aminoacyl-tRNA synthetase N  variable nucleobase 

ASO antisense oligonucleotide NMR 
nuclear magnetic 
resonance 

C cytosine OPLS 
Optimized Potentials 
for Liquid Simulations 

DNA deoxyribonucleic acid OSC 
Ohio Supercomputer 
Center 

EDTA 
ethylenediaminetetraacetic 
acid PDB Protein Database 

EM electron microscopy QPlogS 
predicted aqueous 
solubility 

FDA 
Food and Drug 
Administration RFU 

relative fluorescence 
unit 

FRET 
fluorescence (or Forster) 
resonance energy transfer RNA ribonucleic acid 

G guanine RNase ribonuclease 

HTVS 
High-Throughput Virtual 
Screen SP  Standard Precision 

KD dissociation constant TAA 
tris(3-
aminopropyl)amine 

logP partition coefficient TAMRA tetramethylrhodamine 
MCE MedChemExpress tRNA transfer RNA 
MD molecular dynamics U uracil 

MMFF 
Merck Molecular Force 
Field ZINC 

ZINC is not 
commercial (database) 

MOPS 

3-(N-
morpholino)propanesulfonic 
acid    
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bacterial RNA (ribonucleic acid, the functionalized, single-stranded equivalent of DNA), 

riboswitches are intriguing targets for drug discovery because they innately bind small 

molecules and are often linked with functions that affect the bacteria’s survival (Deigan 

et al, 2011).  Finding small molecules that disrupt the native function of riboswitches 

would be advantageous in antibiotic drug design as riboswitches are often well conserved 

and regulate multiple genes. One riboswitch structure that is highly conserved (its 

sequence is consistent) among infectious bacteria is the antiterminator sequence of the T-

box riboswitch (Green et al., 2010). 

1.1 The T-box Riboswitch  

Regulation of genes in response to environmental and metabolic stimuli is an 

essential function of noncoding RNAs such as riboswitches. The T-box riboswitch is an 

important 5'-end mRNA structure that determines expression of protein synthesis genes 

such as aminoacyl-tRNA synthetases (AARSs) – enzymes that combine amino acids to 

their cognate uncharged (unattached to amino acid) tRNAs - through transcriptional or 

translational control. The amino acid-bound (charged) tRNAs are the building blocks of 

protein synthesis. The T-box structure adopts two different conformations in its 3'-end 

dependent upon its binding to charged or uncharged tRNA, forming either the terminator 

or antiterminator structure (Figure 1.1). When attached to charged tRNA, the stabilized 

terminator helix prohibits downstream polymerization by RNA polymerase 

(transcription) or ribosomes (translation) that constructs AARSs. When attached to 
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uncharged tRNA, the kinetically formed antiterminator helix (Fig. 1) is stabilized and 

permits readthrough, thus synthesizing AARSs (Green et al., 2010). 

The antiterminator mechanism of the T-box riboswitch is highly conserved among 

Gram-positive bacteria (Deigan et al, 2011), meaning its sequence is maintained among a 

number of species such as the families Streptococcus and Staphylococcus, many of which 

can cause serious illnesses. Riboswitches can also be bound by non-native molecules 

such as antibiotic aminoglycosides (Aghdam et al., 2014), showing that selectivity of 

small molecules to the antiterminator is feasible (Fauzi et al., 2005). If the T-box can be 

bound at the antiterminator to block its native function, protein production would stall 

and survivability of infectious bacteria containing the T-box would be limited. The 

 
Figure 1.1  The T-box riboswitch (blue) is responsive to the cellular ratio of charged and uncharged tRNA 
(purple), with antitermination resulting in readthrough stabilized by full tRNA-binding. 
 
 
 

Antiterminator

Readthrough
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prevalence and function of T-box riboswitches in infectious bacteria as well as their 

recurrence in multiple genes of the bacteria make them intriguing targets for novel drug 

development (Liu et al., 2015). In addition, since the T-box sequence is found mostly in 

prokaryotic organisms, the risk that drugs targeting this sequence would react with 

human nucleic acid sequences is greatly reduced. 

1.2 Structure and mechanism of the T-box Riboswitch 

The initial discovery and detailing of the T-box sequence characterized the tyrS 

gene T-box riboswitch of a hay bacteria, B. subtilis (Henkin et al., 1992). This T-box 

sequence controls the production of AARS enzymes which attached tyrosine to tRNA, 

allowing tyrosine to be attached onto growing proteins in the bacteria. Complementary T-

 
Figure 1.2 Primary sequence and secondary structure of the T-box antiterminator highlighting 
conserved sequences (Suddala et al., 2019) Highly conserved (>80% sequence identity) residues are 
illustrated in orange, and moderately conserved residues (50-80% sequence identity) residues are 
illustrated in yellow. Structure constructed in mFold web server. 
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box riboswitches have been found for every amino acid in multiple bacterial species and 

have been identified using bioinformatic techniques such as comparative genomic 

analyses (Vitreschak et al., 2008). While parts of the overall sequence vary from species 

to species, many key regions of the riboswitch have been identified as being highly 

conserved, meaning part of the RNA sequence is retained in a high percentage of the 

species that have been analyzed (Figure 1.2) (Suddala et al., 2019).  

 Variations in the primary sequence (the sequential order of bases, e.g. UUAUCG) 

of RNA lead to alterations in the secondary structure (the folding of RNA upon itself 

from base pairing). However, even though the primary sequence of the T-box riboswitch 

is not completely conserved, there are two common modules of secondary structural 

motifs that exist in every T-box. T-boxes are comprised of two main regions bound 

together by variable linkers, those regions being the upstream Stem I and the downstream 

antiterminator/terminator domain (Zhang et al., 2015). The conservation of these two 

regions is essential for T-box function, as both regions are utilized in tRNA recognition 

and binding (Gutiérrez-Preciado et al., 2009).  

 Three-dimensional structure of RNA sequences provides information on the 

flexibility and conformation of the RNA and is found using techniques such as X-ray 

crystallography or nuclear magnetic resonance (NMR) spectroscopy, and these structures 

can be modeled using bioinformatic approximation. Using NMR spectroscopy, both Stem 

I (Wang et al., 2010, and Wang et al., 2011) and the antiterminator (Gerdeman et al., 

2003) have been characterized, and using crystallography Stem I bound to its 

corresponding tRNA has also been defined (Zhang, et al., 2013). More recently, some 

efforts have been made to model an entire T-box riboswitch-tRNA complex using X-ray 
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scattering analyses, and the resulting model shows the entire complex as a planar, circular 

region (Chetnani et al, 2017, and Fang et al., 2017), and further cryo-EM and cocrystal 

structures have revealed the riboswitch is composed of three regions that clamp tRNA 

(Battaglia, et al., 2019) and a central spine of tRNA to T-box stacking in riboswitches 

bound to uncharged tRNA lends the complex its stability (Li et al., 2019).  

There are some questions and points of contention still remaining in structural studies of 

the T-box riboswitch. While there are models of the entire T-box-tRNA complex, these 

models are either considered ‘molecular envelopes,’ and are not resolved as definitively 

as NMR and crystallography experiments or are subject to discrepancies between the 

different structures. The total structure of the T-box leader region, unbound and in 

complex with  tRNA, has yet be resolved.  

Out of an array of molecules present within a cell, the T-box riboswitch 

effectively binds a corresponding tRNA to monitor the ratio of amino acid-bound and 

unbound tRNAs, turning the riboswitch off or on to transcribe AARS genes for protein 

production, respectively (Green et al., 2010). The mechanism for the specific binding of 

tRNA has been elucidated, as well as its role in antitermination/termination. The 

upstream Stem I region of the T-box contains a sequence called the specifier, which 

contains a single stranded segment that contains an anticodon, three bases complementary 

to the tRNA codon, a segment three single stranded bases that are unique to each tRNA 

type (Green et al., 2010). The specifier sequence is responsible tRNA identification by 

specifically binding the complementary tRNA to its correct T-box riboswitch.   

The end of tRNA that binds amino acids has a conserved “acceptor” NCCA 

sequence, where N is a variable nucleobase (A,C,G,U) determined by the amino acid to 
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which the tRNA corresponds (Grundy et al., 1994). The acceptor end binds the T-box 

riboswitch downstream of Stem I, at the seven-nucleotide bulge of the antiterminator, 

which contains UGGN sequence at its 5' end that base pairs to the tRNA with N 

complementary to the relevant tRNA (Grundy et al., 1994). The discriminator base in 

tRNA also confers specificity to the antiterminator bulge, which supports the function of 

the bulge as another specifier in the T-box riboswitch (Grundy et al., 1994). Complexing 

of tRNA to the T-box system also affects the selection of antiterminator or terminator 

conformation (Gerdeman et al, 2002). Absent of intermolecular interactions, the 

terminator structure is thermodynamically favored over the antiterminator structure 

(Gerdeman et al., 2002, and Jentzsh et al., 2011). Binding tRNA overcomes this 

thermodynamic disadvantage to favor the antiterminator structure (Gerdeman et al, 

2002). However, thermodynamic analysis indicates that base-pairing alone does not 

overcome the stability difference between the terminator and antiterminator (Hines, et al., 

2010).  Structural modification - hypothesized to be an induced fit, where binding of the 

tRNA alters the antiterminator structure- occurs in the antiterminator upon tRNA binding, 

and coaxial stacking of tRNA and the new tRNA-antiterminator helix assist in stabilizing 

the antiterminator to be favored over the terminator, allowing the production of AARS 

genes (Hines, et al., 2010).   

 As displayed by kinetic analyses, the binding of tRNA to the T-box complex 

occurs in two steps, the recruitment of tRNA by Stem I followed by stabilization of the 

antiterminator (Suddala, et al., 2018, and Zhang, et al., 2018). This two-step binding 

mechanism allows for the competition of amino acid-bound and -unbound tRNAs to both 

bind the T-box riboswitch, allowing the riboswitch to “monitor” the conditions of the cell 
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and only produce new AARSs when the ratio of unbound to bound tRNA is high, leading 

to more probable tRNA stabilization of the antiterminator structure.  

1.3 Ligand identification and binding to the T-box riboswitch. 

While the native function of the T-box riboswitch is to bind corresponding 

tRNAs, a number of other molecules have been found to effectively bind regions of the 

T-box as well. Focusing on the antiterminator mechanism, the molecules that bind this 

RNA other than tRNA can be sorted into two classes: cofactors and drug candidate 

molecules. Cofactors are biologically relevant molecules that bind a riboswitch and are 

either requisite to its activity or enhances the activity rate. Drug candidate molecules are 

either naturally occurring or synthesized chemicals that may bind riboswitch and 

modulate its activity.   

 In early studies of molecular interactions with the T-box riboswitch, it was noted 

that a possible divalent (+2 charge) metal binding pocket could be present in the 

antiterminator mechanism of the T-box riboswitch (Means et al., 2005).  Direct 

investigation into this possibility found that a diffuse magnesium binding site is present 

in a highly conserved region of the antiterminator (Jack et al., 2008), and that magnesium 

facilitates and improves the complete binding of the acceptor end of tRNA to the 

antiterminator, supporting an induced-fit model of tRNA binding as described above 

(Means et al., 2009). 

 Based on attempts to replicate tRNA binding to the T-box riboswitch in vitro, 

outside of a living cell, it is believed that an unknown protein cofactor is needed for 

proper binding to occur (Putzer et al., 2002). While the protein identity is still unknown, 

the polyamine spermidine has been shown to be an effective substitute by replicating 
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tRNA binding in vitro (Liu et al., 2018). At low concentrations, spermidine binds the 

antiterminator above the tRNA acceptor region and alters the flexibility of the region to 

encourage tRNA binding (Liu et al., 2018). Further research is needed to identify the 

protein that spermidine is emulating.  

A number of synthetic and natural molecules have been assayed with the 

antiterminator mechanism to identify how they bind the antiterminator and what effects 

they have on antiterminator-tRNA binding. Aminoglycosides are a class of positively 

charged molecules that have previously been shown to bind ribosomal RNA. 

Furthermore, a study possible T-box antiterminator model RNA interaction with 

aminoglycosides that eight compounds in this class bound the antiterminator with 

micromolar dissociation constants (Means et al., 2005). It was also shown that the 

aminoglycosides bind the antiterminator through electrostatic interaction, with a possible 

mixture of specific and nonspecific binding, possibly binding in the bulge region. The 

difference in binding between the aminoglycosides also suggests a possible amenable 

RNA pocket or divalent metal binding site. However, it was later determined 

aminoglycosides do not have strong drug potential as they bind in the same area and 

manner as magnesium (Anupam et al., 2008). It was found to displace four monovalent 

ions suggesting the aminoglycoside binds in the divalent magnesium site on the 

antiterminator, as aminoglycosides often bind in metal-ion pockets in RNA. The location 

of the binding site was found to be at the 5' end of the bulge. Interestingly, it was also 

determined that the aminoglycoside neomycin-B was even found to enhance tRNA 

binding (Anupam et al., 2008). Studies on aminoglycosides altered the direction of drug 

discovery for the antiterminator towards identify molecules with little to no positive 
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charge, as solely electrostatic contacts could have nonspecific and/or stabilizing effects 

on the antiterminator.  

 Synthetic molecules designed to be favorable for binding to the antiterminator 

mechanism have been synthesized by the Bergmeier Lab at Ohio University (Means, et 

al., 2006, and Acquaah-Harrison et al., 2010). These molecules have a triazole or 

oxazolidinone backbone and are designed to have side chains that could interact with the 

antiterminator through hydrogen bonds or hydrophobic interactions. Both oxazilidinone 

and triazole compounds have been identified in previous studies as capable backbones for 

RNA-binding drugs as (Hilimire et al., 2017, and Shaw et al., 2011). A series of 

combined oxazilidinone-triazole backbone compounds have been synthesized as well 

(Armstrong et al., 2020). Many of these compounds have been found to bind the 

antiterminator, and some have even interrupted tRNA binding and stabilization of the 

antiterminator (Zhou et al, 2012, and Armstrong et al., 2020). Research into these 

molecules is ongoing with new compounds being synthesized as well as binding behavior 

and inhibition activity being further characterized. 

 In addition to research on the antiterminator mechanism as a drug target, the Stem 

I region has also been a drug discovery target. This research has used the NMR-derived 

structure of the B. subtilis T-box Stem I as a computational model on which to simulate 

compound binding, and resulted in the discovery a number of molecules that tightly 

bound Stem I. Furthermore, these results were corroborated in vivo by blocking mRNA 

and translation of tRNA synthetase genes in bacterial assays, supporting the accuracy of 

computational screening (Frohlich et al., 2019). 
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1.4 RNA drug discovery and design  

While developing therapeutics targeting RNA has been of interest for more than a 

decade, progress in identification and design of RNA inhibitors has lagged behind 

research ability to identify potential targets (Connelly, et al., 2016). Messenger and 

noncoding RNAs have highly structured elements, many of which are important to the 

function of the RNA (Warner et al., 2018). The unique space in such ordered regions is 

amenable to compound binding, which can be seen in the native function of certain non-

coding RNAs such as riboswitches. The potential for RNA as a target for small molecule 

therapeutics is of growing interest, and the development of methods and the identification 

of important physicochemical properties which provide binding affinity and specificity 

will be of great importance for the development of this field. 

A number of methods have been developed to identify small-molecule RNA 

binding. This includes computational and experimental approaches including biochemical 

screening, cell-based screening, structure-based docking, and sequence-based design 

(Shao, et al., 2020). Biochemical screenings screen compounds against an RNA target or 

targets with the ligand-target interaction indicated by a spectroscopic or chemical change. 

Spectroscopic approaches include fluorescence resonance energy transfer (FRET) (Means 

et al., 2005), fluorescent indicator displacement (Tran et al., 2012), and mass 

spectrometry (Rizvi et al., 2020). Such methods benefit from having scalability, capable 

of medium and high throughput assays and good accuracy but are sensitive to structural 

perturbation by their probes for fluorescence assays and can have limited sensitivity in 

the case of mass spectrometry (Yu et al., 2020). Cell-based screening techniques collect a 

phenotypic readout, such as reporter expression or cell survival as a response to 
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incubation with the compound of interest. This technique has been effective and efficient 

in the identification of seminal RNA-binding compounds such as Ribocil (Narasimhan et 

al., 2005), though it suffers from indirect identification of drug targeting which leaves 

more investigation to be performed to identify the molecular mechanism of the 

phenotypic response. Structured-based virtual screening methods make use of known 

three-dimensional structures of RNA, such as those determined in crystallographic, 

NMR, and cryo-EM studies, as a target for computational docking of libraries of small 

molecules. Computational dockings can be completed on a single conformer of the RNA 

or can be coupled with molecular dynamics (MD) to test the compounds against a 

dynamic ensemble of the RNA target (Shao et al., 2020). Molecular docking enables 

rapid sampling of a large variety of potential ligands but is hindered by low hit rates and 

the accuracy of computational predictions must be considered with scrutiny. Sequence-

based approaches such as Inforna (Disney et al., 2016) consider the secondary-structural 

information of RNA targets rather than their three-dimensional structure. Known small 

molecule-RNA motifs are compiled in a library which is compared against a sequence of 

interest to provide a score of the fitness between the motif and RNA molecule. This can 

lead to rational drug design by selecting a strong pair or creating a modular ligand 

combining two binding partners with a linker, but the method is limited to the known 

binder database, so only certain sequences can be targeted effectively. In computational 

methods rational and fragment-based drug design can be employed to develop ligands as 

drug candidates (Shao, et al. 2020). Rational design is the approach to develop ligands 

using structural information of the target and using desired physicochemical properties to 

match the target, often developed and tested in a structure-activity series. Fragment based 
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design is a rapid method focused on testing many small groups and moieties against a 

target to identify high affinity groups which can be retroactively linked together into a 

larger selective molecule. Both methods rely upon the use of small compounds with 

desirable properties to target RNA. 

Two main categories of chemicals have been employed as RNA-targeted drug 

design has developed: complementary oligonucleotides and druglike molecules. 

Oligonucleotide development of complementary or antisense oligonucleotides (ASOs) 

can bind and inhibit the translation of mRNA, as in the case of the retinitis 

oligonucleotide Vitravene, it can inhibit the activity of an RNA such as splicing 

(Spinraza, Nusinersen), or can engage in splicing activities by engaging endogenous 

siRNA pathways (Juru et al., 2020). Although ASO-drug development is a promising 

expansion of RNA-drug targeting, there are significant challenges to their adoption and 

widespread use. Owing to their size and large negative charges, ASOs struggle in 

delivery into cells (Shao et al., 2020) as well as non-hepatic tissues and are unable to 

cross the blood-brain barrier unless directly injected into the spinal canal (Juru et al. 

2020). ASOs are also subject to catabolism by RNases (Yu et al. 2020) and can cause 

immunological responses (Juru et al., 2020).  

Drug-like molecules are less inhibited by their chemical qualities, tending to be 

orally available and with good cellular mobility. Molecules are said to be “drug-like” if 

they have physicochemical properties that align well with previously identified 

therapeutic chemicals, providing a shorthand for their potential to share desirable 

properties with these chemicals (Warner et al., 2018). One of the most commonly used 

metrics for tagging molecules as drug-like, developed from retrospective analysis of 
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approved therapeutics and drug candidates, is Lipinski’s Rule of Five (Lipinski, 2004). 

The parameters for the Rule of Five are that the compounds have a molecular weight 

lower than five hundred, have a partition coefficient (logP) less than or equal to five, 

have up to five hydrogen bond donors, and as many as 10 hydrogen bond acceptors. At 

the time of the inception of the Rule of Five, 90% of orally active drugs achieving phase 

II clinical status aligned with these benchmarks (Lipinski, 2004). As a consequence of the 

historical priority of protein-targeted drug design, the standard for drug-likeness is mostly 

characterized by a field of compounds optimized to associate with peptides, and it is 

possible that RNA-binding compounds have different structural and kinetic properties 

that would violate traditional drug-like standards (Warner et al., 2018). However, all 

compounds considered for drug design are still governed by the constraints of 

bioavailability, and as such drug-likeness remains a strong metric to consider in RNA 

drug discovery research.  

A continued challenge in the drug design of RNA-binding molecules is specificity 

and selectivity (Connelly et al., 2016). A difficult task in producing biomolecule targeting 

compounds is to tune the binding specificity of the candidate compound to avoid binding 

undesirable targets (narrow selectivity) while allowing for coverage of the target of 

interest (broad selectivity) (Huggins et al., 2012). The aim of drug development is to 

identify small molecules that strongly binds its target but does not bind to other similar 

macromolecules as to interfere with body functions in the host (Ryde et al., 2016). This is 

pronounced in RNA-targeted drug discovery, where it is necessary to achieve high 

binding affinity and selectivity with the challenge of targeting a macromolecule 

composed of 4 possible monomeric units with many similar RNA motifs within a cell 
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(Warner et al., 2018). Aminoglycosides offer effective broad-spectrum antibiotic activity 

through their binding of ribosomal RNA, but this limits their ability as a scaffold as their 

selectivity between different RNAs is low (Juru et al., 2020), and ribosomal targeted 

RNA-binding compounds are considered a poor training set for drug development due to 

the uniquely high concentration of their target in cells (Warner et al., 2018). Additionally, 

highly basic and intercalating compounds also offer poor prospects for selectivity as they 

interact with phosphates and nucleobases respectively, both of which are essential 

components to every monomeric unit within an RNA molecule (Warner et al., 2018). As 

such, the available space for ligands targeting RNA with high specificity is constrained 

both their physical properties as well as the scaffolds upon which they are developed.  

In a study of previously identified RNA-targeted bioactive ligands and FDA-

approved small molecule drugs, it has been found that such RNA-binding compounds 

often exist in a unique physicochemical space: compliance to medicinal chemistry rules 

and unique structural groups and overall shape (Morgan et al., 2017). Compared to FDA-

approved small molecules, which mostly target proteins, RNA-binding ligands have been 

found to have a greater content of nitrogen and rings, specifically heterocycles, while 

containing fewer oxygens, sp3 hybridized carbons, and stereocenters (Morgan et al. 

2017). This original study was expanded and developed into a community accessible 

library, and chemoinformatic analysis of this larger database of bioactive RNA ligands 

again indicated unique physicochemical traits of RNA ligands compared to FDA 

compounds (Morgan et al., 2019). In these studies, it was found that both monovalent and 

multivalent RNA-binding compound tend to have a positive charge per every 250-350 

atomic mass units, indicating a significant role charge and electrostatics play in ligand-
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RNA interaction (Morgan et al., 2017). It has been noted that RNA-binding ligands have 

higher topological polar surface areas and positively charged surface areas compared to 

other drug sets (Aboul-ela, 2010). Other RNA-targeting studies have supported the 

physicochemical properties present in RNA-binding small molecules such as an 

expanded number of heteroaromatic rings (Rizvi et al., 2019) as well as a greater fraction 

of aromatic atoms and a lower fraction of sp3 carbons compared to FDA compounds 

(Haniff et al., 2020). small molecules are that they appear more likely to assume a rod-

like shape than FDA compounds, and in turn are less likely to be sphere-like (Morgan et 

al., 2017). The possible privileged RNA-binding space indicated by such 

physicochemical traits in known RNA binders has fueled the scaffold-based drug design 

approach, which focuses on optimization of previously recognized moieties to target a 

specific RNA structure (Juru et al., 2020). Identification of these recognized structures 

can be completed through many pathways, such as adaptation of DNA-binding molecules 

(Zapp et al., 1997), or high throughput virtual screening of RNA dynamic ensembles 

(Stelzer et al., 2011). Numerous scaffolds have been identified and investigated including 

aminoglycosides, oxazolidinones, imidazole, and aminoquinolones (Juru et al., 2020), 

and opportunity remains to expand this collection with further study of RNA-molecule 

binding.  

Previous research in T-box antiterminator drug discovery has used rational drug 

design to develop structure-activity series using known RNA-binding scaffolds, and 

specificity has been addressed by testing ligand effects (binding, inhibition) against 

models of the antiterminator with similar sequences (Means et al., 2006).  A 

bioinformatic study was completed to investigate thermodynamic differences between the 
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T-box riboswitch terminator and antiterminator structures across a range of different 

target AARS genes in different bacterial species (Jentzsh et al., 2011). It was found that 

the free energy difference was similar across all species, but that glycyl T-box 

riboswitches might be better targets for drug development as the energy difference 

between terminator and antiterminator is great enough that a molecule could bind the 

antiterminator to preclude tRNA binding but not prevent the formation of terminator 

through stabilization (Jentszh et al., 2011). The antiterminator structure forms prior to 

tRNA interaction with the T-box and structural rearrangement may occur in the 

antiterminator upon tRNA binding, which would support an induced-fit model of this 

interaction (Green et al., 2010). These two modes of antiterminator structure and the 

thermodynamic gap between the terminator and antiterminator support the development 

of drugs to target the antiterminator and preclude tRNA binding or destabilizing the 

antiterminator-tRNA complex.  

 Previous research into the antiterminator selection of modified tRNAs showed 

that the binding of functionally active sequence AM1A fell into two categories, 

functionally relevant acceptor binding and a kissing loop interaction, while the reduced 

function variant, AMC11U, showed only the functionally relevant interaction (Fauzi et al. 

2005). The results indicated the in vitro selectivity for the acceptor end of tRNA by the 

T-box antiterminator and that there are structural and dynamic components to selection, 

as shown by the different selectivity identified between AM1A and AMC11U. This 

suggests that specificity can be determined between antiterminator RNA models. The 

potential to drug the antiterminator led to the synthesis and experimentation to test the 

binding characteristics of a small library of 4,5-disubstituted oxazolidinones (Means et 
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al., 2006). To investigate the ability of these compounds to overcome the challenges 

binding affinity and specificity pose to RNA drug discovery, FRET experiments were 

completed using AM1A and AMC11U, two similar two model antiterminator RNAs 

differing only at a single nucleotide polymorphism. The investigation of ligand-RNA 

binding and specificity could then be evaluated by comparing fluorescence modulation of 

the two models in the presence of the oxazolidinones. Two compounds showing large 

differences between modulation of AM1A and AMC11U structures, validating the 

possibility of creating compounds that are highly specific to the T-box antiterminator 

(Means et al., 2006). An additional fluorescence method that has been employed to 

indicate specificity differences in antiterminator-ligand interaction is the use of 5' end 

single-dye bound RNAs in a steady state fluorescence assay (Means et al., 2007). This 

method, also known as a terminal target labeling assay, operates with the supposition that 

ligand binding influences the conformation and dynamics of the bound RNA, such that 

the bound dye experiences dose-dependent fluorescence modulation (Hermann, 2016). 

This method was expanded to include a third model, known as AMcontrol, which does not 

include the acceptor-binding seven-nucleotide bulge of the antiterminator to indicate if a 

ligand may have an effect on the bulge region, yielding moderate binding site information 

in a relatively straightforward assay. 

Computational studies have also been employed to develop theories on the 

compound binding sites to the antiterminator structure using the NMR-derived solution 

structure (PDB:1N53) using molecular docking and dynamics simulations (Liu et al., 

2016). The use of computational and fluorescence methods has been developed to 

provide a primary screening of potential ligands for the T-box antiterminator. In an effort 
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to preliminarily characterize the specificity of ligands for the antiterminator and to 

provide key structural insights for development of a pharmacophore model. These two 

disparate methods, computational molecular docking and a terminal target labelling 

assay, were combined into a hybrid method that investigates theoretical energetic 

differences and fluorescent modulation of the binding of ligands to three models of the T-

box antiterminator, AM1A, AMC11U, and AMControl (Figure 1.3).

 
Figure 1.3 Secondary structure and sequences of 5' terminal dye-bound antiterminator models AM1A, 

AMC11U, AMControl. 
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2. Screening Design 

In preparation for this hybrid study, a project workflow was devised to integrate 

computational molecular docking into the moderate-throughput fluorescence terminal 

target labelling screening (Figure 2.1).  Each section in bold is expanded upon below as a 

discussion of the important aspects and principles of each step in the combination assay. 

2.1 Computational Setup and Evaluation 

2.1.1 User input: Compounds from research groups, papers, or libraries are 

selected according to selected parameters such as having druglike features, containing 

select functional groups, being a select size or weight, or being similar to other 

molecules. If these libraries are available in a Maestro (Schrödinger) readable file format, 

Figure 2.1 A project workflow was devised for the combination assay  
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they will be downloaded for the computational procedure. If the molecules need to be 

constructed, they will be created and have their structural energy minimized using the 

basic minimization tool (MMFF) in Spartan 10 and exported in .mol2 file format for 

further use. An example of a previous library identified are compounds from literature 

produced by Dr. Mir Hosseini (University of Strasbourg) that are aliphatic and contain 

aromatic amines showing structural similarity to either polyamines or histidine-like 

compounds. In this study, the MedChemExpress (MCE) FDA-Approved Drug Library, a 

collection of 2483 marketed drugs, and the ZINC natural compounds (natural-products + 

for-sale + named), containing 2962 compounds, were selected (Irwin et al., 2003). Both 

libraries provided their own .sdf file, which is compatible with Schrödinger software. 

2.1.2 Computation: The compounds are processed through the OPLS_2005 force 

field – a coverage enhanced version of OPLS_2001 (Kaminski et al., 2001) – using the 

ligprep program in Maestro (Schrödinger) to develop all possible states of the compounds 

at the pH conditions of experimental screening – pH=6.5±0.2 for the terminal target 

labelling assays - and produce all possible isomers/tautomers of the compounds. The 

compounds may additionally be analyzed using Molecular Descriptors, a program which 

identifies properties of the ligands with its own terms as well as QikProp terms, such as 

molar mass or violations of Lipinski’s Rule of Five. An antiterminator receptor grid has 

been developed using the NMR-solution structure of B. subtilis TyrS (PDB:1N53; 

Gerdeman et al., 2003), which has been optimized using the Glide module in 

Schrödinger. This model does not contain the UUCG tetraloop at the top of the A2 helix, 

since it is not a part of the conserved element of the antiterminator. In addition, the 

antiterminator is mutated at variable bulge nucleotide from U to A to match the 
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experimental functional model AM1A. There is also an ongoing effort to develop 

homology models of AMC11U and AMControl- two variants of the antiterminator with 

slightly different sequences, a cytosine to uracil substitution at the 11th position and 

deletion of bulge region, respectively - using Molecular Dynamics simulation. The 

compounds and grid (AM1A, and possibly AMC11U and AMControl as well) are added to the 

same project as the ligands and then computational molecular docking is completed, 

which will show optimal locations for molecule-RNA interactions and also give an output 

of estimated interaction energies and distance from residues, which can be exported as a 

.csv file. The docking is completed using the Glide program (Freisner et al, 2004) in 

Maestro with either the standard precision protocol (SP) or using high-throughput virtual 

screening (HTVS). Glide (grid-based ligand docking with energetics) docking uses 

exhaustive search techniques to “funnel” ligand conformations through a number of tests 

and refinements and can be further optimized following conformational refinement with a 

minimization using Monte Carlo (random sampling) algorithms. It then reports scores for 

ligand docking poses, including the Schrödinger software proprietary values GlideScore 

and Glide Emodel. Glide Emodel is a useful predictive binding score, as it combines the 

energy-grid score, GlideScore, and internal strain energy, yielding the most accurate 

prediction of binding affinity for the program.  The number of optimal poses output for 

each ligand can be selected. Having multiple poses can be used to identify the 

consistency of binding and energy trends for each ligand, provide a qualitative metric of 

specificity in the docking procedure. Aforementioned computational chemistry 

procedures in the combination assay were completed at the Ohio Supercomputer Center 

(OSC).  
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Following docking, the output file (.maegz) was imported to a personal computer 

and was processed through the interaction fingerprints program in the Discovery and 

QSAR module in the academic licensed Maestro. This provides a count of ligand 

interactions to residues, similar to per residue interaction scores from the docking, but 

provides a quick score of the number of favorable interactions a ligand has to each ligand 

based off of empirical values.  

2.1.3 Evaluation: After docking simulations have been completed, compounds are 

selected for fluorescence experimentation if they meet chosen criteria of strong binding 

scores, druglike properties, low charge and consistently binding in one region of the 

antiterminator according to interaction fingerprinting (A1, A2, bulge). Additional 

compounds were selected that spanned across the regions if they had exceptionally strong 

binding Emodel values. Charge was an important initial criterion for selection. Molecules 

with little to no positive charge are better candidates for specific binding to the 

antiterminator, as compounds that bind electrostatically (through charged elements) to 

RNA can be nonspecific (Liu et al., 2016) and electrostatic interactions have been found 

to either not affect or enhance tRNA binding to the T-box antiterminator (Anupam et al., 

2008).  

Some other criteria that are likely to be used are Glide Emodel, pose consistency, 

molar mass, and interaction number. The Glide Emodel is a composite score from 

computational docking that indicates the favorability of a compound-target interaction 

pose and is used to indicate strength of interactions (Freisner et al, 2004). Compounds are 

selected based on the more stringent of two cutoff criteria, those being either the top 10% 

of Emodel scores or scores less than or equal to -100 kJ/mol. The poses of each model 
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interaction indicate specificity of binding, as it can be determined if the compound 

consistently binds to a similar area of the antiterminator and with similar interaction 

types. This can be evaluated quantitatively by comparing the fingerprint interaction 

scores of each antiterminator region. Compounds that have only two distinct binding 

positions or consistent placement of all poses were selected for further evaluation. As 

indicated in Lipinski’s Rule of Five, drug-like molecules often contain certain molecular 

properties, and as such compounds were filtered out if they showed in rule of five 

violations according to their molecular descriptors output. Interactions strength by type 

are estimated and reported in the docking spreadsheet as per residue (nucleobase) 

interaction scores by interaction type, such as salt bridges, hydrogen bonds, and pi 

stacking. In conjunction with pose information, the scores will help to determine 

predicted bond locations. Additional criteria that can be considered are selecting 

molecules based off of their shape (Morgan et al., 2017) or interaction type (Padroni et 

al., 2020). Compounds that fulfill all requirements of computational evaluation were 

selected and purchased if commercially available. Upon arrival, the compounds were 

prepared for fluorescence assays via dilution to a micromolar concentration and were 

stored in conditions in accordance with their MSDS in preparation for the fluorescence 

experiment series. 

2.2 Experimental Design and Analysis 
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2.2.1 Fluorescence Experimentation (Control screen): A control screen for 

autofluorescence or matrix effects on the unlabeled antiterminator RNA was completed 

for each ligand tested. This assay was completed for at most 2 ligands per procedure, 

with the following conditions in each reading well of 384-well microplate: 55 mM MOPS 

buffer, pH= 6.5, 50 mM NaCl, 0.01 mM EDTA. In addition, a row was tested which 

contained 100 nm unlabeled AM1A to evaluate if there were any fluorescence effects in 

the presence of the RNA. Test wells contained 10 µM of the ligand. Control and treated 

wells were first prepared in a mixing plate and then 20 µL of each mixture were 

transferred to a microplate (Table 2.1) and read in a Spectramax 5 fluorimeter. 

The reading wells were placed in alternate rows and columns as it was found in 

previous unpublished research in the Hines Lab that the Spectramax 5 fluorimeter 

systematically fluctuates fluorescence readings between adjacent columns and rows.  

2.2.2 Analysis (Control Screen): The control screen was used to identify whether 

the tested compounds would present other fluorescence effects in the following assays. 

As such, if the fluorescence of the control and test wells had similar RFU values to the 

blank wells (usually less than 0.5) then the compound would be tested in the 

reproducibility assay.  

Table 2.1 Reading plate loading procedure for control screen. X denotes empty well, L(#) denotes a selected 
compound. 

 1 2 3 4 5 6 7 8 9 10 11  18 19 

A X X X X X X X X X X X … X X 

B X MOPS 
Control 1 x MOPS 

Control 2 x MOPS 
Control 3 x L1 x L1 X … L2 X 

C X X X X X X X X X X X … X X 

D 
X 

Unlabeled 
AM1A 

Control 1 
x 

Unlabeled 
AM1A 

Control 2 
x 

Unlabeled 
AM1A 

Control 3 
x L1 x L1 X … L2 X 

E X X X X X X X X X X X … X X 
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2.2.3 Fluorescence Experimentation (Reproducibility screen):  A primary 

fluorescence screening of potential ligands was completed with AM1A in a steady-state 

fluorescence assay (Liu et al., 2015). The conditions for the assay were: 55 mM MOPS 

buffer, pH= 6.5, 50 mM NaCl, 0.01 mM EDTA, 100 nM 5'-tetramethylrhodamine 

(TAMRA) labeled AM1A. Experimental wells additionally contained 10 µM of the 

compound being tested. Control and treated wells were placed in a microplate (Table 2.2) 

and read in a Spectramax 5 fluorimeter. A replicate row was then assayed in a second 

iteration of preparation.   

2.2.4 Analysis (Reproducibility Screen): For the primary screening the mean 

fluorescence for each ligand+AM1A well were normalized against the mean of controls 

in its corresponding row (Rep1/Control1). The replicate screenings were graphed with the 

propagated error as the first replicate on the x axis and the second replicate on the y axis 

(Figure 2.2). This method provides a quick visual indication of reproducible results, as 

those with high reproducibility fall on the line of identity (x=y). In Figure 2.2, 

compounds 1 and 2 (L1 and L2) show high reproducibility and would be selected for the 

secondary specificity screening. However, only compounds with significant deviation 

Table 2.2 Reading plate loading procedure for primary screen. X denotes empty well, L(#) denotes a 
selected compound. Rows B and D would have been completed at separate times. 

 1 2 3 4 5 6 7 8 9 10 11  18 19 

A X X X X X X X X X X X … X X 

B X Control 
1 x Control 

2 x Control 
3 x L1 x L1 X … L2 X 

C X X X X X X X X X X X … X X 

D X Control 
1 x Control 

2 x Control 
3 x L1 x L1 X … L2 X 

E X X X X X X X X X X X … X X 
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from zero have a strong effect on the antiterminator’s structure, which means compound 

2 may not be a strong binding candidate. Compounds 3 and 4 (L3 and L4) would not be 

selected due to unacceptable deviation from the line of identity or large error bars 

respectively. 

2.2.5 Fluorescence Experimentation (Specificity Screen) The secondary 

specificity assay of intriguing targets selected from the primary assay are tested under the 

same reaction conditions as described in the primary screening, but also with other 5-

TAMRA labeled AM models: AMcontrol and AMC11U. Each model is tested once, in a 

single row with up to two ligands. AMcontrol does not contain the functionally relevant 

bulge region of the antiterminator, and AMC11U and have reduced functionality compared 

 
Figure 2.2 Reproducibility and ligand ability indication can be quickly assessed by comparing replicate value 

against a line of identity. Normalized fluorescence values were used. 
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to AM1A due to a C to U transition at the 11th position, which is in the bulge of the 

antiterminator. 

2.2.6 Analysis (Specificity Screen) For the secondary screening, the mean 

normalized fluorescence and propagated error of each compound were compared between 

models. AMControl and AMC11U were compared against AM1A, the functionally relevant 

model (Figure 2.3). AMControl does not contain the bulge region crucial to the function of 

the antiterminator and therefore its comparison to AM1A indicates the importance of the 

bulge in structural modulation by compound-RNA binding. AMC11U contains a similar 

bulge to AM1A, so this provides a narrower view of ligand specificity. Compounds with 

significantly different normalized fluorescence values between models (not lying within 

error on the line of identity) were considered as showing binding specificity between 

model RNAs, and further research may be conducted in Hines Lab to elucidate their 

binding affinity (associated with Kd) and effect on the antiterminator mechanism.  

The results of the analysis of experimental data were then compared against the 

docking experiment results to identify which compounds showed agreement in binding 

Table 2.3 Reading plate loading procedure for secondary screen. X denotes empty well, L(#) denotes a 
selected compound. Each model RNA is tested prepared and tested separately. 

 1 2 3 4 5 6 7 8 9 10 11   18 19 

A x x x x x x x x x x x … x x 

B 
X Ctrl 

AM1A x Ctrl 
AM1A x Ctrl 

AM1A x 
L1 

X 
L1 

X … 
L2 

X 
AM1A AM1A AM1A 

C x x x x x x x x x x x … x x 

D 
X 

Ctrl 
X 

Ctrl 
X 

Ctrl 
X 

L1 
x 

L1 
X … 

L2 
X 

AMC11U AMC11U AMC11U AMC11U AMC11U AMC11U 

E x x x x x x x x x x x … x x 

F 
X 

Ctrl 
X 

Ctrl 
X 

Ctrl 
X 

L1 
X 

L1 
X … 

L2 
X 

AMControl AMControl AMControl AMControl AMControl AMControl 

  x x x x x x x x x x x … x x 
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energies to fluorescence modulation and pose location to modulation of the different 

antiterminator models. Trends in functional groups, important residue interactions or 

types of molecules whose computational and experimental results both show favorable 

binding and specificity were then identified. These areas of agreement can serve as 

parameters for searching other libraries of compounds or to synthesize molecules that 

contain effective elements identified in the assay (combinatorial synthesis). Effectively, 

the results of one round of experimentation and analysis can help inform what parameters 

should be set for the next round, yielding an iterative process that will more effectively 

identify antiterminator-specific binding compounds with each cycle.   

 

 
Figure 2.3 Specificity is assessed comparing normalized fluorescence values between antiterminator models. 

Error bars are propagated error values. 
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3. Results – FDA-Approved Library 

3.1 Computational preparation and docking yields potential antiterminator ligands in an 

FDA drug-repositioning library with high interaction scores and positional consistency. 

 The MedChemExpress, abbreviated to MCE, (New Jersey) FDA-Approved Drug 

Library Plus is a commercially available collection of compounds previously approved 

for therapeutic use as both a physical compound library and a computational library as a 

spatial data file (.sdf). The compounds in the library have a wide range of targets, 

including bacteria, protein channels, fungi, viruses, and protein receptors. The MCE 

library was used in the initial implementation of the hybrid assay workflow (Figure 3.1). 

The data file for the library compounds was collected and three-dimensional models of 

the compound, including tautomers and stereoisomers, were generated using LigPrep 

 
Figure 3.1 The computational process to identify strong ligand candidates to the T-box antiterminator 
identified ten ligands out of the original MCE FDA library. 
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program in Maestro with the OPLS_2005 force field in pH conditions 7.0 ±  0.5. The 

LigPrep program yielded 3556 total potential ligands. However, 40 compounds 

amounting to approximately 1.6% of the original library, were dropped during the 

LigPrep process, not returning any structure which is common in computational 

chemistry library studies (Brooks et al., 2011).  

 Following the construction of the three-dimensional library of compounds in 

experimental conditions, the molecular descriptors for the compounds were collected 

using the Molecular Descriptors program in Maestro. Compounds violating Lipinski’s 

rule of five were removed, reducing the library down to 2070 compounds, representing a 

vast majority of the original library. As this is a library of previously approved FDA 

compounds, it is unsurprising that most compounds fit within the parameters of the rule 

of five (Figure 3.2). Interestingly, 3 compounds, fidamoxicin, talaporfin, and tenapanor, 

were found to have violated all parameters of the rule of five, as they are extended 

 
Figure 3.2 MCE compounds mostly fell within the bounds of Lipinski’s rule of five, but some compounds 
did not, an indication of the potential of therapeutics to exist outside of druglike space.  
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molecules and macrocycles with multiple hydrogen bond donors and acceptors. This is 

still a large library to complete a multi-pose docking simulation to the antiterminator, so 

the compound library was first docked to the grid of the antiterminator with only a single 

pose per ligand using the high-throughput virtual screening (HTVS) protocol in Glide 

docking program in Maestro. The compounds with the lowest 10% of Emodel values, 

split to collect the top 3.3% per region of the antiterminator (A1, Bulge, and A2) as 

determined by the Interaction Fingerprint program in Maestro, were selected for further 

multi-pose ligand docking. Some compounds had multiple enantiomers or protonation 

states present in the pH conditions of the simulation, so these states were included as well 

to give a holistic representation of potential poses, yielding 297 compounds overall to be 

tested in the multi-pose docking.  

A Glide docking of these top compounds was completed, recording up to 5 poses 

per ligand, which yielded 1465 total poses. Interaction counts were again generated for 

these poses using the Interaction Fingerprint program, and the total interactions for each 

antiterminator region were again used to sort poses into by the highest interaction totals 

for each region. Compounds with the most negative Emodel value, indicating the best 

interaction energy, of binding to the antiterminator for each compound, were then 

evaluated for consistent poses. This was completed by collecting the top 5% of poses by 

Emodel, annotated with the region for which they appear to be selective, and determining 

if more than one additional pose appears with to have more interactions in one of the 

other regions. The majority of these poses had the most interactions with the bulge, 
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numbering 38, while 28 interacted mostly with A1, and 6 interacted mostly with A2 

(Figure 3.3).  

 Lastly, logP values (partition coefficient for octanol to water) values estimated in 

the Molecular Descriptors evaluation were used to determine which top-binding 

compounds could be ordered for use in the experimental screening series, as they need to 

be aqueous-soluble to yield reproducible results in the 5'-TAMRA-RNA experiments 

(unpublished results). Ten compounds were identified that were selective for one region 

of AM1A, were in the top 5% of Glide Emodel values (most negative) and had a logP 

value lower than 2.5 (Table 3.1). Of this set, acebutolol and palbociclib were ordered for 

use in experimental testing. In addition, amodiaquine, another compound in the MCE 

library, was also ordered as it had been previously identified as a compound with an 

exceptionally negative Glide Emodel value of -176.44, the strongest predicted bonding 

value in the multi pose compound docking, almost 20 units greater than the next strongest 

 
Figure 3.3 The majority of strong antiterminator interaction poses determined in multi-pose docking 
occurred in the bulge region. 
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Emodel value. However, amodiaquine was not initially consider in for experimental 

screenings as its ligand poses bonded in more than one region in the multi-pose docking, 

either to helices A1 or A2. Ultimately, amodiaquine was additionally selected for 

screening due to its strong binding energy and to act as an indicator of the value of 

selecting consistently posed compounds. Amodiaquine and Acebutolol had their strongest 

binding energies when in poses interacting with A1, while palbociclib had the strongest 

binding interaction with the bulge (Figure 3.4). Intriguingly, all three of these compounds 

interacted with the antiterminator through electrostatic interactions of protonated amines 

and contained an aromatic moiety. These compounds were the first to be tested in the 

experimental fluorescence screening series. 

Table 3.1 Ten compounds from the MCE library were identified to have favorable characteristics to 
be tested in experimental screenings. 

Compound Region Glide Emodel LogP 

Avapritinib A1 -116 1.9 
Belotecan A1 -112 1.6 
Acebutolol A1 -107 1.43 

Tebipenem pivoxil A1 -102 2.3 
Palbociclib Bulge -150 1.8 
Isoprenaline Bulge -107 1.4 

Sotalol Bulge -115 0.2 
DL-epinephrine Bulge -111 1.4 

Almotriptan A2 -95 1.6 

Varencicline A2 -74 0.8 
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Figure 3.4 The interactions of the top poses of acebutolol (A), palbociclib (B) and amodiaquine (C) with the 
antiterminator, as well as the array of poses for each compound are displayed.  
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3.2 Experimental screenings of FDA compounds indicate binding specificity in 

amodiaquine interactions with the antiterminator. 

Amodiaquine, acebutolol, and palbociclib were ordered and prepared for 

fluorescence experiments. Unfortunately, palbociclib had solubility issues at the 

concentration required for these experiments, 10 µM, and as such it was not tested 

further. Acebutolol and amodiaquine were first tested against the reaction buffer and 

unlabeled AM1A in the control assay to test for disruptive fluorescence effects. Neither 

compounds showed greater fluorescence, measured with the arbitrary RFU value, than 

the background within error (Figure 3.5). As such, the compounds were then tested in the 

AM1A reproducibility assay.  

 
 
Figure 3.5 Amodiaquine and acebutolol did not appear to have autofluorescence or RNA 
fluorescence effects. All compounds were tested in the reaction buffer, and + denotes mixtures with 
unlabeled AM1A. 
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The AM1A reproducibility assay is a measure of the ligand ability and 

reproducible fluorescence values of the compounds interacting with 5'-TAMRA-AM1A. 

Acebutolol and amodiaquine produced consistent results for two averaged replicates, 

within error (Figure 3.6). However, the fluorescence modulation observed for the two 

compounds were distinct, with amodiaquine producing stronger deviation from 

fluorescence controls than acebutolol. This suggests that the amodiaquine has a stronger 

binding affinity to AM1A than acebutolol, or that acebutolol binds to AM1A in a manner 

that does not perturb the structural environment of the antiterminator, maintain a similar 

fluorescence to controls. With reproducible results determined for both compounds, 

amodiaquine and acebutolol were next screened against all three models of the 

antiterminator in the specificity assay.  

 
Figure 3.6 The reproducibility assay indicates consistent results for AM1A interaction with 
amodiaquine and acebutolol. 
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As an indicator of antiterminator model ligand specificity, the fluorescence 

specificity assay tests each compound (10 µM) against AM1A, AMC11U, and AMControl 

(100 nm) to determine differences in fluorescence modulation, reported as a normalized 

value. The fluorescence modulation for acebutolol was similar within error between all 

three antiterminator models (Figure 3.7). Acebutolol minorly affected the TAMRA 

fluorescence, with the greatest modulation observed in interaction with AM1A (0.919 ± 

0.052). On the other hand, amodiaquine showed differences between each ligand model, 

with the greatest modulation observed in AMC11U (0.761± 0.048), followed by AM1A 

(0.818 ± 0.028), and with the least modulation observed in AMControl (0.924±0.080). The 

lower fluorescence modulation in the bulge-free model AMControl is intriguing, as this 

model is the most sequentially and structurally distinct antiterminator model. While the 

immediate consideration is if the presence of the bulge is important for amodiaquine-

 
 
Figure 3.7 The fluorescence specificity assay antiterminator model-specific modulation with 
amodiaquine, and nonspecific modulation with acebutolol. 
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RNA interaction, it is also worth noting that the structure the helices in AM1A are more 

pinched than the usual A-form RNA, and as such the overall structure of AM1A and 

C11U are expected to be distinct from AMControl.
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4. Results- ZINC Natural Metabolite Library 

4.1 Computational preparation and docking of the ZINC library determined a subset of 

soluble, high affinity and positionally consistent compounds 

 The ZINC (recursive acronym of ZINC is not commercial) database is an 

annotated repository for commercially available compounds, maintaining structural, 

chemical, and retailer information on compounds, as well as two-dimensional structural 

files in multiple formats. Within the ZINC database, a number of subsets of compounds 

have been curated, including the “natural-products” set of secondary metabolites. This 

subset was selected for investigation as a number of antibiotics have are either natural 

products or derivatives of natural products, such as aminoglycosides (Costales et al., 

2020). The natural product library contains 48164 purchasable compounds, which would 

be computationally costly to generate ligands and docking poses for such a large library. 

 
Figure 4.1 The computational process to identify strong ligand candidates to the T-box antiterminator 
identified eight ligands out of the ZINC natural metabolite library. 
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As such, the subset was further refined by filtering by the terms “for-sale” and “named”, 

reducing the library size to 2962 compounds, similar in scale to the MCE FDA-plus 

library. This refined ZINC natural product library was then screened in the hybrid assay 

workflow (Figure 4.1). The data file for the library compounds was collected and three-

dimensional structures, stereoisomers, and tautomers were generated using the LigPrep 

program in Maestro with the OPLS_2005 force field in pH conditions 7.0 ±  0.5. The 

LigPrep program yielded 3332 total potential ligands, with no dropped compounds.  

 Following the construction of the three-dimensional library of compounds in 

experimental conditions, the molecular descriptors for the compounds were collected 

using the Molecular Descriptors program in Maestro. A different refinement path was 

completed for this library as compared to the MCE library, but both started with the 

selection of druglike compounds. Compounds violating Lipinski’s rule of five were 

removed, reducing the library down to 2446 compounds, retaining the majority of the 

 
Figure 4.2 ZINC compounds mostly fell within the bounds of Lipinski’s rule of five, with no compounds 
violating all parameters.  
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library (Figure 4.2). It was observed that a number of compounds in this library had 

negative or no charge, which both of which are not favored in RNA-drug targeting due to 

electrostatic repulsion against the phosphate backbone and no salt-bridging to improve 

affinity, respectively (Figure 4.3) Compounds with charges of +1 and +2, a total of 502 

structures, were selected for multi-pose docking. Lastly chiral compounds with more than 

2 undefined stereocenters were removed to avoid the complications of replicating 

stereospecificity with compounds in the experimental assays, reducing the number of 

compounds down to 489 structures. 

A Glide docking of the selected compounds was completed recording up to 5 

poses per ligand, yielding 2231 total poses. Interaction counts were again generated for 

these poses using the Interaction Fingerprint program, and the total interactions for each 

antiterminator region were again used to sort poses by the highest interaction totals for 

each region. Compounds with the most negative Emodel value, indicating the best 

 
Figure 4.3 Many of the druglike compounds identified in the ZINC library were filtered out as they did not 
contain favorable charges for RNA-binding.  
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interaction energy, of binding to the antiterminator for each compound, were then 

evaluated for consistent poses.  

The compounds were sorted by the number of interactions to each region, and the 

top 20% of compounds for each region were annotated with the top region. The now 

annotated ligands were now sorted by Emodel, and the top 20% of Emodel compounds 

were filtered to remove compounds with strong interactions in multiple regions. 

Compounds were also included that did not preferentially bind to one region, but 

consistently interacted with the antiterminator across two regions. Nonduplicate 

compounds were finally selected by their solubility, this time determined by a more direct 

value of solubility, the Molecular Descriptors predicted solubility, QPlogS. Eight 

compounds were identified that were selective for one region of AM1A, were in the top 

20% of Glide Emodel values (most negative) and had a QPlogS value greater than -0.5 

(Table 4.1). Of this set, 2,4-diaminobutyrate and L-phenylalaninamide were ordered for 

use in experimental testing. These compounds both bound to the A2 and bulge regions 

Table 4.1 Eight compounds from the ZINC library were identified to have favorable characteristics to 
be tested in experimental screenings. 

Compound Region 
Glide 
Emodel QPLogS 

Chimonanthin 
A1 and 
Bulge -130 0.36 

Spectinomycin 
Bulge and 
A2 -125 0.07 

Oxilofrine 
Bulge and 
A2 -110 -0.47 

2,4-Diaminobutyrate 
Bulge and 
A2 -104 1.74 

L-phenylalaninamide 
Bulge and 
A2 -96.6 1.32 

Phenylpropanolamine Bulge -94.7 -0.13 
Desglymodrine Bulge -93.9 -0.47 
Phenylpropanolamine Bulge -93.6 -0.09 
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through hydrogen bond or salt bridges between their two amines and the backbone of 

AM1A (Figure 4.4). 

 

 

 
Figure 4.4 The interactions of the top poses of 2,4-diaminobutyrate (A), and L-phenylalaninamide (B) with 
the antiterminator, as well as the array of poses for each compound are displayed.  
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4.2 Experimental screenings of ZINC compounds indicated nonspecific interactions with 

the antiterminator.  

L-phenylalaninamide and 2,4-diaminobutyrate were ordered and prepared for 

fluorescence experiments. The compounds were tested in the fluorescence control assay, 

and neither compound displayed greater fluorescence increases beyond the background 

well fluorescence within error (Figure 4.5). As such, the compounds were then tested in 

the AM1A reproducibility assay.   

 
Figure 4.5 2,4-diaminobutyrate and L-phenylalaninamide did not appear to have autofluorescence 
or RNA fluorescence effects. All compounds were tested in the reaction buffer, and + denotes 
mixtures with unlabeled AM1A. 
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In the AM1A reproducibility assay, 2,4-diaminobutyrate appeared to have a 

reproducible minor fluorescence modulation of AM1A, while L-phenylalaninamide 

showed a lesser modulation, albeit with a  larger error (Figure 4.6) The results of 2,4-

diaminobutyrate mixed with AM1A does deviate from the background fluorescence, 

suggesting that there is some interaction or modulatory effect occurring between it and 

AM1A. On the hand, L-phenylalaninamide displayed no fluorescence modulation within 

error with AM1A, meaning it may have a null effect on AM1A structure or does not 

interact with the antiterminator. Both compounds were subsequently tested in the 

fluorescence specificity assay. 

 
Figure 4.6 The reproducibility assay indicates consistent results for AM1A interaction with 2,4-
diaminobutyrate and L-phenylalaninamide 
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2,4-diaminobutyre and L-phenylalaninamide were screened against 5' TAMRA-

labelled AM1A, AMC11U, and AMControl to determine differences in fluorescence 

modulation. Both compounds exhibited normalized fluorescence values similar within 

error between all three antiterminator models (Figure 4.7). Both compounds only display 

minor modulation in TAMRA-RNA fluorescence compared to controls for each model, 

with the greatest modulation observed in interaction with AM1A for both compounds 

(0.976±0.028 for 2,4-diaminobutyrate, 0.970± 0.070 for L-phenylalaninamide. As both 

compounds were predicted in computational simulations to interact with the bulge, it is 

interesting that there was no observed fluorescence specificity between the bulge free 

model AMControl and the bulge containing models in either compound. 

 

 
Figure 4.7 The fluorescence specificity assay showed nonspecific effects for both 2,4-
diaminobutyrate and L-phenylalaninamide. 
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5. Results – Lab Compound Training Set 

 In addition to compounds selected from computational library screening a number 

of other compounds were also tested using the terminal target labelling assays. These 

compounds were then computationally docked to the antiterminator structure, allowing 

investigation into how reversing the project workflow might affect results. Broadly, these 

additional compounds can be separated into categories, polycyclic heterocycles and 

aliphatic polyamines (Table 5.1).  

The nitrogenous heterocycles were previously identified as potential candidates 

for another RNA target investigated in the Hines Lab (unpublished results) and were 

Table 5.1 Seven additional compounds were tested in the experimental screenings, categorized into 
polyamines and polycyclic heterocycles. 

 

Compound Type Structure MW (g/mol)

Tris(3-aminopropyl)amine Polyamine 188.31

Spermidine Polyamine 145.25

Spermine Polyamine 202.34

Tilorone Polycyclic Heterocycle 483.47

Chloroquine Polycyclic Heterocycle 319.87

Hydroxychloroquine Polycyclic Heterocycle 335.87

Primaquine Polycyclic Heterocycle 259.35
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tested in this project to see if their structure would be favorable for binding another RNA 

structure. As well, the model-specific results observed in screening amodiaquine 

encouraged screening these compounds, as many of them also have a quinoline ring. 

Quinoline, a nitrogenous heteroatomic cycle, has a number of derivative compounds used 

in therapeutic treatments. In fact, quinoline derivatives have been used in the treatment of 

malaria, rheumatic diseases, lupus, and as an anticancer treatment (Al-Bari, 2015). Some 

9-aminoquinoline compounds are also known to exert antiviral effects, including 

inhibition of HIV replication (Savarino et al., 2003). The diverse pharmacological effects 

of quinoline compounds, including decreased DNA, RNA, and protein expression (Al-

Barie, 2015) could implicate quinoline derivatives as having promiscuous binding 

activity in cellular environments. Polyamines have previously been identified as being 

able to represent an unknown cofactor in in vitro transcription assays using the T-box 

antiterminator (Liu et al. 2016). Investigating both sets of these compounds provided 

insight into using the assay to identify structure-activity relationships. 

5.1 Experimental screenings of polyamines displayed antiterminator model-specific 

fluorescence modulation.  

Spermidine and spermine are known to bind the antiterminator, and Tris(3-

aminopropyl)amine (abbreviated to TAA) was identified in a previous literature search of 

polyamines and docked to the antiterminator in a computational study. The compounds 

were tested in the fluorescence control assay, and no fluorescence increases beyond the 

background well signal was observed within error (Figure 5.1). The polyamines were 

then screened for a reproducible signal with AM1A.  
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In the AM1A reproducibility assay, all three compounds were reproducible within 

error (Figure 5.2). While the larger error present in the first replicate makes interpretation 

dubious, it appears that spermine has the greatest modulation on AM1A structure, 

followed by spermidine then TAA. With acceptable values in the reproducibility 

screening, the polyamines were then tested in the specificity screening.  

 
Figure 5.2 The reproducibility assay indicates consistent results for the polyamines. 
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Figure 5.1. The polyamines did not display autofluorescence effects. All compounds were tested in 
the reaction buffer, and + denotes mixtures with unlabeled AM1A. 
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While spermidine showed no differences within error between AM models, 

spermine and TAA displayed differences in fluorescence modulation between the 

AMC11U and AM1A, while no differences were displayed within error between AM1A 

and AMControl (Figure 5.3). An interesting trend among the polyamines is that the greatest 

fluorescence modulation in all antiterminator models was observed in spermine, followed 

by TAA, and finally in spermidine. This trend correlates to the expected charge state of 

these compounds in the assay conditions, as spermine is expected to have a +4 charge, 

TAA is able to have both +3 and +4 states, and spermidine has a +3 charge at pH = 6.5.  

5.2 Experimental screenings of polycyclic heterocycles identified antiterminator model-

specific fluorescence in all compounds  

In the fluorescence control assay, and no fluorescence increases beyond the 

background well signal was observed within error except for primaquine in the reaction 

buffer (Figure 5.4). However, as the mixture of AM1A with primaquine fell within error 

 
Figure 5.3 The fluorescence specificity assay indicates specific effects between AM1A and 
AMC11U for TAA and spermine 
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of background fluorescence, primaquine was included with the rest of the compounds 

when screened for a reproducible signal with AM1A. In the AM1A reproducibility assay, 

all compounds displayed reproducible signals within error (Figure 5.5). The compounds 

containing a quinoline ring - chloroquine, hydroxychloroquine, and primaquine- all had 

lower modulation values than tilorone.  

The heterocyclic compounds were screened in the specificity assay (Figure 5.6). 

Hydroxychloroquine and primaquine showed similar modulation between AM1A and 

AMC11U, and a lower modulation in AMControl. Chloroquine however, showed greater 

fluorescence modulation in AM1A than the other two models. Tilorone displayed greater 

overall fluorescence modulation in all antiterminator models than the quinoline 

compounds, with similar values in AM1A and AMControl and greater fluorescence 

modulation in AMC11U.   

 
Figure 5.4 The polycyclic heterocycle compounds were screened in the fluorescence control assay. 
All compounds were tested in the reaction buffer, and + denotes mixtures with unlabeled AM1A. * 
denotes that a small amount of hydrochloric acid (0.29 mM) was added to the controls for tilorone 
to match solubility conditions for the compound. 
 

Ba
ck
gro
un
d

Ch
lor
oq
uin
e

Pr
im
aq
uin
e

Pr
im
aq
uin
e+

Hy
dro
xy
ch
lor
oq
uin
e

Hy
dro
xy
ch
lor
oq
uin
e+

Ch
lor
oq
uin
e+

Til
oro
ne
*

Til
oro
ne
*

0.0

0.2

0.4

0.6

R
FU



 
 
  

 65 

5.5 Training set compounds were computationally docked to AM1A.  

Following completion of experimental screening of the training set compounds 

their structure data files were collected from the PubChem database and three-

 
Figure 5.5 The reproducibility assay indicates consistent results for the polyamines. 
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Figure 5.6 The fluorescence specificity assay indicates specific effects between AM1A and 
AMC11U for TAA and spermine 
 

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.5

0.6

0.7

0.8

0.9

1.0

1.1

AM1A FluorescenceNormalized

C
om

pa
ri

so
n 

Fl
uo

re
sc

en
ce

N
or

m
al

iz
ed

AMC11U

AMControl

Primaquine

Hydroxychloroquine

Chloroquine

Tilorone



 
 
  

 66 

dimensional structures of the compounds were generated using the LigPrep program in 

Maestro. The attributes of the compounds were detailed using the Molecular Descriptors, 

and the compounds were then docked to the antiterminator using the Glide program in 

Maestro. The output file from Glide docking was then processed in the Interaction 

Fingerprint program to identify the ligand-RNA interactions by residue and classify the 

compounds by the top binding region (Table 5.2). The polyamines displayed the best 

Emodel values and preferentially bound the bulge and helix A2. The polycyclic 

heterocycles had less negative, weaker Emodel values, and had greater variety in region 

binding. 

Table 5.2 Seven additional compounds were tested in the experimental screenings, categorized into 
polyamines and polycyclic heterocycles. 

Compound Charge Top binding Region 
Top Emodel 
Value 

Tris(3-aminopropyl)amine 3,4 Bulge, A2 -259 
Spermidine 3 Bulge -186 
Spermine 4 Bulge, A2 -260 
Tilorone 2 A2 -138 
Chloroquine 2 Bulge -116 
Hydroxychloroquine 2 A1 -161 
Primaquine 1 A2 -90.4 
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6 Results comparison of computational studies to fluorescence results 

6.1 Development and docking for a computational AMControl model 

 To develop a larger vista of how docking scores translate to fluorescence binding 

modulation in the antiterminator studies, a model of AMControl was developed in Maestro 

(Figure 6.1).  As a simple A-form helix, the model was developed using the Builder tool 

in Maestro by sequence, excluding the UUCG tetraloop to match the AM1A NMR 

solution structure. The RNA was then corrected to include the G-U wobble pair at the 

sixth position in PyMol, and lastly a grid was developed for molecular docking to the 

sequence, with similar parameters to the AM1A grid.  

Following the generation of its grid, all compounds previously tested in the 

fluorescence experiments were docked to AMControl. The predicted binding compound 

 
Figure 6.1 Computational structures of AM1A (left) and AMControl (right) were prepared using Protein Prep 
Wizard and Grid Generation in Maestro. 
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energies were then compared between the two antiterminator models. Generally, the 

Emodel values determined for poses to AMControl were more negative than the compounds 

pose docked to AM1A (Figure 6.2). 

6.2 Comparison of computational and Emodel values reveals trends in predictive value of 

computational docking by region. 

 Comparison of normalized fluorescence scores for compound interaction with 

AM1A and AMControl to Glide Emodel values for docking poses of the compounds to the 

models of the antiterminator sequences reveal trends in fluorescence modulation by 

predictive region, as identified by the sum interaction fingerprints for each region in 

AM1A (Figure 6.3). While the data sets are small for A2 and A1 selective compounds, it 

appears the moderate differences in Emodel values for ligands binding these regions lead 

to greater differences in fluorescence modulation, as these compounds displayed greater 

shifts in fluorescence modulation over slight changes in Emodel value. The A2 binding 

compounds showed the greatest sensitivity to glide Emodel scoring, as difference in 

approximately 40 units for this value lead to a difference of .25 in normalized 

fluorescence values when tested against AM1A, and a difference of approximately 60 

units in the Emodel of binding to AMControl lead to a difference of 0.3 in normalized 

fluorescence. The A1 binding compounds were less sensitive than A2 compounds, but 

still generally displayed increased fluorescence modulation as the Emodel value 

calculated for compounds binding this region decreased. The bulge + A2 region binding 

compounds appeared the least sensitive to predicted binding Emodel values, as a 

comparison between the two “endpoints” of these compounds revealed that a difference 

in nearly 160 Emodel units only produced a difference of 0.12 in normalized fluorescence 
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values for AM1A, and a difference of approximately 210 Emodel units only produced a 

difference of 0.15 in normalized fluorescence between the same compounds in AMControl. 

In comparison of the two compound models, it is evident that compounds that bound to 

A2 region displayed similar trends in AM1A and AMControl, while A1 compounds where 

slightly less sensitive in when interacting with AMControl, and bulge/A2 models, with the 

bulge representing the G-U wobble pair only in AMControl, were slightly more sensitive 

than when interacting with AM1A. It is interesting that the structural differences between 

the two antiterminator models resulted in different correlations between region binding 

compound Emodel interaction values, and it is encouraging that in both cases, stronger 

Emodel values, which are predictive computational values of interactions, corresponded 

to stronger fluorescence modulation values when compounds were evaluated by predicted 

region of interaction.  It is also worth noting that the same trends were noted in using 

both the mean values of Glide Emodel (6.3A and 6.3B) and the most negative, optimal 

Glide Emodel values (6.3C and 6.3D), suggesting these top scores may have similar 

predictive value to multi-pose docking. 
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Figure 6.2 Compounds were docked to both AM1A and AMControl. Interactions with AMControl had greater 
mean Emodel values than compounds docked to AM1A for all compounds (Top) and were generally higher 
by region as well (bottom). Error bars are standard deviation for all ligand pose Emodel values. 
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Figure 6.3 Comparison of normalized fluorescence in AM1A and AMControl reveals predictive value by region for both 
mean Emodel (A and B) and Top Emodel values (C and D). 
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7. Conclusion 

Figure 7.1 Compilation of results determined in the combined assay.  
 

Compound 

Interaction 
Fingerprint 
Region 

Normalized 
Fluorescence 
(AM1A) 

Normalized 
Fluorescence 
(AMC11U) 

Normalized 
Fluorescence 
(AMControl) Specificity 

Glide 
Emodel 
(AM1A) 

Glide 
Emodel 
(AMControl) 

Acebutolol A1 0.918±0.051 0.921±0.060 0.944±0.090 AM1A ≈ AMC11U -102 -129 

      AM1A ≈ AMControl   
      AMC11U ≈ AMControl   
Amodiaquimodne A1, A2 0.818±0.028 0.760±0.048 0.924±0.080 AM1A < AMC11U -168 -179 

      AM1A > AMControl   
      AMC11U > AMControl   
Chloroquine A2, Bulge 0.863±0.013 0.925±0.043 0.972±0.054 AM1A < AMC11U -116 -161 

      AM1A < AMControl   
      AMC11U ≈ AMControl   
2,4-Diaminobutyrate A2, Bulge 0.975±0.028 0.994±0.050 0.992±0.047 AM1A ≈ AMC11U -92.4 -92.9 

      AM1A ≈ AMControl   
      AMC11U ≈ AMControl   
Hydroxychloroquine A1 0.752±0.061 0.796±0.036 0.929±0.024 AM1A ≈ AMC11U -161 -189 

      AM1A > AMControl   
      AMC11U > AMControl   
L-phenylalaninamide A2, Bulge 0.97±0.07 0.94±0.03 0.99±0.07 AM1A ≈ AMC11U -100 -105 

      AM1A ≈ AMControl   
      AMC11U ≈ AMControl   
Primaquine A2 0.856±0.045 0.834±0.029 0.956±0.075 AM1A ≈ AMC11U -90.4 -107 

      AM1A > AMControl   
      AMC11U > AMControl   
Spermidine A2, Bulge 0.980±0.064 0.927±0.026 0.979±0.031 AM1A < AMC11U -186 -224 

      AM1A ≈ AMControl   
      AMC11U > AMControl   
Spermine A2, Bulge 0.855±0.056 0.783±0.052 0.846±0.078 AM1A < AMC11U -260 -306 

      AM1A ≈ AMControl   
      AMC11U > AMControl   
Tilorone A2  0.61±0.02 0.53±0.03 0.62±0.04 AM1A < AMC11U -138 -171 

      AM1A ≈ AMControl   
      AMC11U > AMControl   
Tris(3-
aminopropyl)amine A2, Bulge 0.911±0.033 0.866±0.021 0.926±0.050 AM1A < AMC11U -259 -316 

      AM1A ≈ AMControl   
      AMC11U > AMControl   
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The conjunction of computational and experimental work on the antiterminator is 

an exciting piece of the puzzle in research on this RNA and looks to have potential to 

yield effective predictions on binding, and hopefully, eventual drug capability. The data 

and analysis in this thesis worked to combine the methods of previous research to refine 

the approach to primary screenings of candidate compounds that may bind the T-box 

antiterminator. The anticipated outcome of this thesis project was the optimization of an 

iterative primary high-moderate throughput screening for antiterminator drug candidate 

compounds. The implementation of this process also provided a small library of 

compounds which have variable affinities and specificities to the models of the T-box 

antiterminator.  

While no concrete relationship between experimental binding specificity and 

computational modeling was determined, a few trends were noted that relate the two 

processes together. It appears as though the binding regions, composed of important RNA 

secondary structural motifs within the antiterminator, to which compounds bind in 

computational docking displayed a correlation between Glide Emodel and degree of 

fluorescence modulation in the 5'-TAMRA labelled antiterminator models. If this trend is 

scalable to larger libraries, this would allow for an initial indication of relative strength 

between compounds that bind to the same region of the T-box riboswitch. This study also 

indicated that the strongest single ligand poses for a compound, as determined by the 

most negative Glide Emodel value, displays a similar correlation as the mean Glide 

Emodel value with fluorescence modulation in the experimental screenings. This could 

mean that larger libraries could be screened at a lower storage cost by collecting a single 

pose or fewer poses for determining candidate compounds, and that compounds that 
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bound more than on region in the computational docking may need to be reconsidered as 

candidate compounds.  

In addition to the trends described above, this project identified eight out of the 

eleven compounds tested as having some model-specific effects as determined in the 

fluorescence specificity screening. All of these compounds have at least one amine 

present which participated in hydrogen bonding or electrostatic interaction with the 

antiterminator and can be grouped into two categories of compounds: polyamines and 

polycyclic heterocycles. The polyamines spermine, spermidine, and Tris(3-

aminopropyl)amine showed similar specificities, having greater effects on AMC11U than 

the other two models. The polycyclic heterocycles had more heterogeneity in their 

specific effects on fluorescence in the dye-bound models, though in general the quinoline 

compounds had a stronger effect on AMC11U and AM1A than AMControl, while tilorone 

had a greater effect on AMC11U than the other two models, similar to the polyamines. 

Polycyclic heterocycles have previously been implicated as valuable scaffolds for small-

molecule RNA-binding compounds (Juru et al., 2021), which has been supported in the 

results of this project. Additionally, these results suggest quinoline rings may be another 

scaffold that should be considered in structure-activity studies for RNA-binding 

compounds. As previously discussed, RNA-binding ligands often contain nitrogens, 

aromatic rings, and a positive charge. These physicochemical traits paired with the 

multiple physiological effects produced by quinoline derivatives suggest it may have a 

general affinity for RNA, which could be exploited in future drug development schemes. 

The results of this project should be further corroborated with more intensive, 

moderate to low-throughput studies which can more definitively identify binding 
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differences between compounds and antiterminator models. Dose response studies, 

fluorescence anisotropy assays, and in vitro transcription assays have all been previously 

used in the Hines lab to identify ligand effects on compounds, though dose responses 

assay would be the most efficient to implement to study multiple antiterminator model 

RNAs. Such studies can be used to determine Kd values and sigmoidal response curves to 

provide a definitive comparison different RNA-ligand binding affinity. To this end, 

following completion of computational and fluorescence studies of amodiaquine and 

hydroxychloroquine they were subsequently tested against the TAMRA-antiterminator 

RNAs in a dose-response screening, testing across multiple magnitudes of concentration 

(Figure 7.1). These preliminary results appear promising as the different antiterminator 

models display different curve responses to compound concentrations. These studies will 

need to be completed with a greater concentration range and with more intermediate 

concentrations to better define the sigmoidal curve and plateaus, as well as to determine 

the reproducibility of results. 
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The computational filtering and analysis developed in this study could also be 

expanded. A homology model of AMC11U using the solution structure of AM1A as a basis 

model could be developed such that each antiterminator model could be represented in 

silico as well as in experimental methods for comparison between models and between 

computational and experimental results. As previously stated, results from the 

compounds tested in fluorescence experiments in this project indicate that the strongest 

pose was as strong of a predictor of fluorescence modulation as the mean of all poses, 

opening the door for larger libraries to be tested as well as reconsideration of compounds 

with strong Glide Emodel values and inconsistent poses identified in the MCE and ZINC 

 
Figure 7.1 Initial dose response studies of amodiaquine and hydroxychloroquine with TAMRA-
antiterminator models displayed fluorescence differences consistent with single-concentration screenings. 
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libraries tested. Additional libraries should as be tested, such as the soluble fragments 

library from MedChemExpress or the logP < -1 tranche from ZINC. While specificity is 

not well determined by computational docking and analysis to the T-box antiterminator, 

this project has shown that annotation of important regions and compound-RNA 

interactions in computational studies can be used to indicate relative strengths of 

compound binding. This can assist in efficient ranking of compound potential for 

experimental studies, aiding in antiterminator drug discovery research.
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8. Methods 

8.1 RNA preparation 

 5'-TAMRA labelled model RNAs were ordered from Dharmacon Inc (Colorado). 

The RNAs were dissolved in distilled, deionized water and dialyzed against a dialysis 

buffer: 10 mM MOPS, 0.01 mM EDTA, pH=6.5). The RNAs were dialyzed against a 

liter of the buffer for 8 hours, followed by a second liter of buffer for an additional 16 

hours. The concentration of each RNA was measured using absorbance at 260 nm and 

calculated with the extinction coefficient provided from Dharmacon. The purified RNA 

stocks were wrapped in aluminum foil and stored at -20 °C.  

RNA Sequence Extinction 

coefficient 

(M-1cm-1) 

Concentration 

of Stock 

(µM) 

AM1A TAM-

GAGGGUGGAACCGCGCUUCGGCGUCCCUC 

 298680 112.9 

AMC11U TAM-

GAGGGUGGAAUCGCGCUUCGGCGUCCCUC 

 301980 93.6 

AMControl TAM-GAGGGGCGCUUCGGCGUCCCUC  229980 106 

 

8.2 Compound Preparation 

 Compounds tested in fluorescence assays were ordered from a number of 

companies. Upon arrival, the compounds were stored in conditions recommended in their 

SDS until they were diluted. Compounds were diluted in distilled, deionized water to a 
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concentration below their maximum solubility, between 1 and 50 µM. Following 

dilution, compounds were stored at -20 °C. 

8.3 Unlabeled-AM1A control screen 

A control screen of the ligands in the reaction buffer and with unlabeled AM1A 

was completed first in the fluorescence screening series to test for autofluorescence 

effects. The dialyzed AM1A stock was first thawed on ice and diluted into an 

intermediate solution containing 200 nM AM1A, 10 mM MOPS, pH = 6.5. This 

intermediate was denatured at 90 °C for 90 seconds and then renatured at room 

temperature over a half hour. A second solution was made to test for fluorescence effects 

in the reaction matrix containing 10 mM MOPS, pH = 6.5. The diluted ligand stocks 

stored at -20 °C were thawed at 4 °C and stored on ice. These ligands were then diluted to 

an intermediate concentration of 0.1 mM. Lastly, a reaction buffer was prepared 

containing 50 mM MOPS, 50 mM NaCl, and 10 µM EDTA, pH = 6.5. To test for ligand 

autofluorescence or fluorescence interaction with AM1A, the ligands and reaction buffer 

were mixed with AM1A such that final concentration was 10 µM for the ligands, 100 nM 

AM1A, 55 mM MOPS (pH=6.5), 50 mM NaCl, and 0.01 mM EDTA, pH=6.5. The 

reaction matrix test set contained the same conditions, except no AM1A was included in 

the mixture. Reagents were added together to a final volume of 30 µL in a 96-well 

mixing plate and placed on a shaker at 800 rpm for 1 minute. The samples were then 

transferred (20 µL) into a Corning (New York) 384-well low volume, round bottom plate 

and covered with AlumnaSeal. The plate was then briefly centrifuged to remove air 

bubbles and placed in the plate reader to incubate for 10 minutes at 25 °C, with the seal 

removed halfway through incubation.  
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Assayed wells were arranged on the plate such that each RNA model 

corresponded to single row and every other column and row was skipped to mitigate 

differences in fluorescence due to well location as seen in previous experiments. The 

TAMRA-labeled AM1A was excited at 543 nm and emission read at 590 nm in a 

Spectramax 5 (California) plate reader. 

8.4 5'-TAMRA-AM1A replicate screen 

 Reproducibility of a binding response was analyzed by first completing a replicate 

study using 5'-TAMRA labeled AM1A. The AM1A stock was first thawed on ice and 

diluted into an intermediate solution containing 200 nM TAMRA-AM1A, 10 mM 

MOPS, pH = 6.5. This intermediate was aliquoted into two tubes, with one denatured at 

90 0C for 90 seconds before renaturing at room temperature over a half hour while the 

other was stored on ice. The ligands were mixed with RNAs and reaction buffer (same 

concentrations as control assay) such that final concentration was 10 µM for the ligands, 

100 nM TAMRA-AM1A, 55 mM MOPS (pH=6.5), 50 mM NaCl, and 0.01 mM EDTA, 

pH=6.5. Control wells contained the above mixture, but without any ligand. Reagents 

were added together to a final volume of 30 µL in a 96-well mixing plate and placed on a 

shaker at 800 rpm for 1 minute. The samples were then transferred (20 µL) into a 

Corning (New York) 384-well low volume, round bottom plate and covered with 

AlumnaSeal. The plate was then briefly centrifuged to remove air bubbles and placed in 

the plate reader to incubate for 10 minutes at 25 °C, with the seal removed halfway 

through incubation.  

Assayed wells were organized such that each RNA model corresponded to single 

row and every other column and row was skipped to mitigate differences in fluorescence 
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due to well location as per previous experiments. The TAMRA-labeled AM1A was 

excited at 543 nm and emission read at 590 nm in a Spectramax 5 (California) plate 

reader. This procedure was completed a second time with the second aliquot of the 

TAMRA-AM intermediate to obtain and compare experiment replicate data.  

8.5 5'-TAMRA-RNA specificity screen and dose response 

 Binding specificity was compared using 5'-TAMRA labeled RNA models. All 

antiterminator model RNAs were previously dialyzed and stored in 10 mM MOPS, 

pH=6.5 dilution buffer. The RNA models were thawed on ice and individually denatured 

at 90 0C for 90 seconds before renaturing at room temperature over a half hour. The 

denaturing and subsequent mixing and reading of each antiterminator model RNA was 

completed individually for optimal accuracy and to reduce risks of photobleaching. The 

ligands were mixed with RNAs and buffer such that final concentration was 10 µM for 

the ligands, 100 nM for the TAMRA-labeled RNA, 55 mM MOPS (pH=6.5), 50 mM 

NaCl, and 0.01 mM EDTA, pH=6.5. Control wells contained the above mixtures, but 

without any ligand. Reagents were added together to a final volume of 30 µL in a 96-well 

mixing plate and placed on a shaker at 800 rpm for 1 minute. The samples were then 

transferred (20 µL) into a Corning (New York) 384-well low volume, round bottom plate 

and covered with AlumnaSeal. The plate was then briefly centrifuged to remove air 

bubbles and placed in the plate reader to incubate for 10 minutes at 25 °C, with the seal 

removed halfway through incubation. 

Assayed wells were organized such that each RNA model corresponded to single 

row and every other column and row was skipped to mitigate differences in fluorescence 
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due to well location as per previous experiments. The TAMRA-labeled RNA was excited 

at 543 nm and emission read at 590 nm in a Spectramax 5 (California) plate reader. 

 Fluorescence dose response assays followed the same protocol as the specificity 

screen, with multiple concentrations of a single compound tested with the antiterminator 

models (up to eight concentrations per row) instead of replicates of 10 µM. The 

concentrations tested for amodiaquine were: 500 µM, 100 µM, 50 µM, 25 µM, 12.5 µM, 

2 µM, and 100 nm. The concentrations tested for hydroxychloroquine were: 1 mM, 500 

µM, 100 µM, 50 µM, 25 µM, 12.5 µM, 2 µM, and 100 nm. The compound 

concentrations were prepared in a dilution series.  

8.6 Ligand preparation for computational studies 

Compound libraries were collected and imported to the user documents folder at 

the Ohio Supercomputer Center (OSC). At the OSC, these files were exported to Maestro 

(Schrödinger) and minimized in their 3D structure using LigPrep. All ligands were 

prepared using the OPLS_2005 forcefield in the pH range 7.0 ± 0.5 to capture all 

protonation states near experimental conditions. Default settings in LigPrep were 

otherwise retained. This procedure was slightly modified for the ZINC library, with 

compounds only able to form produce up to 4 stereoisomers per compound to mitigate 

the computational cost of compounds with more than 2 chiral centers. LigPreps were 

completed using the Owens cluster at the OSC. 

8.7 Molecular descriptors 

 Using the Molecular Descriptors application program in Schrödinger, the 

molecular descriptors of the compound library ligands were collected. The -out files from 

LigPrep (.mae) were exported to Maestro (Schrödinger) at the OSC. The QikProp 
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properties selected to identify were chirality count, Ruleoffive (Lipinski violations), 

solubility (either LogP or QPLogS), and Mol_MW (molecular weight). No semiempirical 

calculations or topological properties were selected. Molecular descriptor jobs were 

completed using the Owens cluster at the OSC, and the -out files were exported to a 

personal MacBook to analyze using Maestro (academic license). Ligands with desirable 

descriptors were collected and imported to the OSC for use in molecular docking.  

8.8 Molecular Docking 

 Ligand dockings were completed using the Glide module in Maestro 

(Schrödinger). Ligands selected from the molecular descriptors protocol were docked to a 

grid of the NMR-solution structure of AM1A (Gerdeman et al., 2002). This grid does not 

contain the UUCG tetraloop at the top of Helix A2, which is not part of the conserved 

element and was therefore not a target for drug discovery efforts. The high throughput 

virtual screening (HTVS) mode was used in Schrödinger, with up to 5 ligand poses 

possible per compound. Per residue-interaction scores were selected to be written for 

each docking pose for analysis. No post-docking minimization was completed. Ligand 

dockings were completed using the Owens cluster at the OSC. Maestro out files (.maegz) 

were exported to a personal Macbook for analysis. 

8.9 Interaction Fingerprinting 

 Interaction Fingerprints in the Discovery Informatics and QSAR module of 

Maestro (Schrödinger) were used for analysis of ligand poses from computational 

docking experiments. Defaults were maintained, and the interaction fingerprint was 

written to the project table. This procedure was completed on a personal computer. The 

project table from this procedure was exported to a personal computer for analysis using 
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Microsoft Excel, as it contained molecular descriptor, docking, and interaction fingerprint 

information.  

8.10 Computational development of AMC model and Grid 

 A model of AMControl, the bulge free model of the T-box antiterminator, was 

developed in Maestro, using the Build Biopolymer from Sequence function in the Build 

tool in Maestro. The model was built as an A-form RNA, as its structure follows standard 

Watson-Crick base pairs for all base-pairs except for the G-U wobble at the sixth 

position, and the secondary strand was automatically assigned by the software. The 

sequence input for the A strand was GAGGGGCGC, with the UUCG tetraloop excluded 

to match the AM1A structure. The structure was exported to PyMol at the OSC as a PDB 

file, and the complementary to G6 (C4 in the B strand of the RNA) was converted to a U 

using the Mutagenesis tool. This corrected AMControl structure was exported as a PDB file 

and loaded in Maestro for preparation.  

 The AMControl structure was optimized for grid preparation using the Protein 

Preparation Wizard in Maestro. No heteroatom states were generated in the preprocess, 

otherwise defaults were retained in the preprocess. Following preprocessing hydrogens 

and heavy atoms were refined. A Grid of this processed model was then developed using 

the Receptor Grid Generation program in the Glide module of Maestro. The receptor 

definition was deselected, aromatic hydrogens were selected to count as hydrogen bond 

donors, halogens were selected to count as halogen bond acceptors, and the OPLS_2005 

force field was selected in the Receptor tab. The grid was developed centroid to the RNA 

residues A2-G8 in the A chain and C2-U8 in the B chain, excluding both terminal base 

pairs, with the dock size £ 20 Å in the Site tab. Additionally the ligand diameter 
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midpoints were selected to lie within 18 Å of the center of the grid on all axes. The grid 

was then generated with all other settings default. Molecular docking to this AMControl  

model operated identically to the AM1A molecular dockings, with the AMControl grid 

selected instead.  
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9. Calculations and Data Analysis 

9.1 Collection of Region Interactions 

 Following completion of Interaction Fingerprinting of a Molecular Docking 

procedure, the project table of the docking file was exported as a .csv file. This was 

imported to Microsoft Excel. For AM1A, compound interactions were totaled using the 

SUM function to collect all interactions for the helix A1 (residues A1-A5, B21-B25 in 

1N53), the bulge (residues A6-A12), and helix A2 (residues A13-A16, B17-B20). These 

sums were added as additional columns to the project table for analysis of region 

selectivity for ligand poses. 

9.2 Fluorescence Normalization 

 In the fluorescence reproducibility assay and specificity assay the measure of 

ligand strength, demonstrated through fluorescence modulation of 5'-TAMRA-labeled 

antiterminator models, was analyzed as a normalized value to allow swift comparison 

between compounds and models. Following import of the Softmax file of fluorescence 

data from an experiment to Excel, normalized fluorescence was calculated by the 

following formula:  

𝐹! =
𝐹$"
𝐹$#

 

 Where FN is the normalized fluorescence value, 𝐹$" is the mean of all treated wells 

containing the ligand and the model RNA, and 𝐹$#  is the mean of the control wells, 

containing the reaction buffer and antiterminator model only. Normalized fluorescence 

values then used for plotting results in Graphpad Prism.  
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9.3 Error Propagation 

 In comparison of control well fluorescence as well as comparison of Glide 

Emodel values from computational results, the standard deviation of the mean for these 

values was suitable to demonstrate error. In the reproducibility assay and specificity 

assay however, standard deviation was not an appropriate indication of error for 

normalized fluorescence values, as two mean values were used in their calculation. 

Instead, the error of the means for the ligand well fluorescence values and control well 

fluorescence values were calculated by the following equation:  

𝛿𝐹$ = 𝐹! ∗ '(
𝛿𝐹"
𝐹$"
)
%

+ +
𝛿𝐹#
𝐹$#
,
%

 

 

Where 𝛿𝐹" is the standard deviation of ligand-containing mixture fluorescence values, 

𝐹$"is the mean of the ligand-containing mixture fluorescence values, 𝛿𝐹#  is the standard 

deviation of control antiterminator model fluorescence values, and 𝐹$#  is the mean of the 

control fluorescence values.  These error propagation values were calculated in Excel and 

were used in plotting the results of specificity and reproducibility screenings, displayed 

as error bars on the x-axis and y-axis using GraphPad Prism. 
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