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1. Introduction  

A financial derivative is a contract whose value is determined, or “derived”, 

from the price of a different financial asset, known as the underlying asset of the 

financial derivative. The underlying asset can be any type of financial asset, but 

common ones include stocks, indices, commodities, currencies, interest rates, and 

bonds. Financial derivatives are used by all financial institutions as well as companies 

that operate in different industries.  

Financial derivatives have two major purposes: hedging and speculation. 

Hedging means minimizing or eliminating the risk of the price movement of an asset. 

This is done by taking a position in an asset that moves in the opposite direction of the 

asset being hedged, such as a financial derivative whose value increases when the 

price of the underlying asset decreases. Investors who are using financial derivatives 

for hedging purposes are looking to reduce exposure to the underlying asset.  

For example, the majority of an airline company’s expense come from fuel 

costs so as the price of oil rises, the company becomes less profitable. In order to 

reduce the risk that its costs will increase, the company could purchase a financial 

derivative that increases in value when the price of oil rises. In the event that the price 

of oil increases, the airline’s expenses will increase but the losses will be at least 

partially offset by the increase in the value of the derivative contract.  

Speculation, on the other hand, is when an investor wants to increase exposure 

to an asset. There are many reasons that an investor would choose to gain exposure to 



3 

 

an asset by purchasing a financial derivative rather than the underlying asset. The most 

common reason is that financial derivatives can increase leverage allowing a small 

move in the price of the underlying asset to provide a much larger movement in the 

price of the derivative. Another reason is that the upfront cost of a derivative contract 

is a fraction of the cost of the underlying asset, allowing an investor to gain exposure 

to an asset without incurring a large cost.  

Although financial derivatives are commonly used by businesses in all 

industries, pricing financial derivatives remains difficult. The pricing of a derivative is 

not straightforward because its value is a function of the price of the underlying asset, 

which is inherently random and therefore unpredictable. This randomness creates the 

need for mathematical modeling of the underlying asset.    

The goal of this paper is to show the significance of the mathematics involved 

in pricing financial derivatives. It is interesting that a product that was originally 

developed for practical reasons posed such a difficulty in pricing that a variety of 

branches of mathematics including probability, differential equations, and stochastic 

calculus are necessary.   

This exploration of the pricing of financial derivatives will begin with the 

stochastic modeling of asset prices, which is used to model the price movement of a 

financial derivative’s underlying asset. Ito’s lemma will then be applied to derive the 

partial differential equation that models the movement of the price of the financial 

derivative. The analytical solution to the partial differential equation for European call 

options will be found using a transformation of variables and the solution of the well-
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studied heat equation.  In addition to an analytical solution, two alternative methods 

for pricing financial derivatives, a binomial tree model and Monte Carlo simulations, 

are explored. The flexibility, complexity, and accuracy of each of these methods are 

also analyzed. 

2.  Stochastic Asset Pricing Model 

The price of a financial derivative is dependent on the price of the underlying 

asset, which is inherently uncertain. If the movement of a financial security could be 

accurately predicted, it would obtain the fair price immediately, eliminating the 

possibility of profiting from its movement. Therefore, there must be a random 

component in the model for the price of a security.  

In order to create this model that allows for random movement of asset prices, 

some simplifying assumptions about the assets must be made. The first assumption is 

that the returns on an asset are lognormally distributed. The lognormal distribution is 

chosen because its properties work well with the types of calculations that will be 

necessary in modeling the price of an asset over time. For example, the lognormal 

distribution is stable under multiplication. This is important because when calculating 

cumulative returns, many return factors are multiplied together. Because of this 

stability under multiplication, the cumulative returns will also follow a lognormal 

distribution. Therefore, returns will be lognormally distributed over all subdivisions of 

the time interval T.  
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Another assumption that we make is that an asset’s prices can be modeled 

using a stochastic process. A stochastic process is a random process indexed by time. 

Stochastic processes are used to describe the distribution of the possible values that a 

variable can take on after a certain amount of time. The specific stochastic process that 

will be used is called geometric Brownian motion, the details of which will be 

addressed later.  

In order to illustrate why a stochastic model is chosen instead of a 

deterministic model, consider the following example. Suppose the return on an asset 

after one time period is 𝑒𝑟, where r is a random variable that follows a normal 

distribution with mean µ and variance 𝜎2. Therefore, 𝑒𝑟~ lnN(µ, 𝜎2) follows a 

lognormal distribution with mean µ and variance 𝜎2. The price of an asset, with a 

known initial price of 𝑆0, after one period is then 

𝑆1 =  𝑆0𝑒𝑟 

And similarly, 𝑆0 can be solved for by dividing by 𝑒𝑟 

𝑆0 =  
𝑆1

𝑒𝑟
 

Because we have assumed that 𝑒𝑟 ~ lnN(µ, 𝜎2), the expected value of 𝑆1 is  

𝐸(𝑆1) = E(𝑆0𝑒𝑟)  = 𝑆0𝐸(𝑒𝑟) =  𝑆0𝑒µ+
𝜎2

2  
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This shows that the rate that an asset is expected to accrue at is 𝑒µ+
𝜎2

2 . The properties 

of the lognormal distribution tell us that  
1

𝑒𝑟 ~ lnN(-µ, 𝜎2). Then the expected 

discounted value of 𝑆1 is 

𝐸(𝑆0) = 𝐸 (
𝑆1

𝑒𝑟
)  = 𝑆1𝐸 (

1

𝑒𝑟
) =

𝑆1

𝑒−µ+
𝜎2

2

=  𝑆1𝑒µ−
𝜎2

2  

Which shows that the asset is discounted at a rate of 𝑒µ−
𝜎2

2 , a different rate than the 

asset accrues at. This simple example shows the basic reasoning behind the need to 

model asset prices with stochastic processes rather than deterministic models.  

2.1 Asset Price Model 

Let the price of an asset be represented by 

 𝑆𝑡 =  𝑆0𝑒r𝑡+ 𝜎𝑊𝑡 (1) 

where W(t) ~ N(0,t). In this representation, 𝑆0𝑒𝑟𝑡 is the deterministic, or nonrandom, 

component of the equation. 𝜎𝑊(𝑡) is the stochastic component that provides the 

random movement necessary to account for the difference in the accrual and 

discounting rate. This is the most general representation of a stochastic process.  

To find the distribution of the return on an asset that moves according to (1), 

the equation can be rearranged to show that. 

ln (
𝑆𝑡

𝑆0
) = r𝑡 +  𝜎𝑊𝑡  
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Because W(t) ~ N(0,t), it follows that r𝑡 +  𝜎𝑊𝑡 ~ N(r𝑡, 𝜎2𝑡). Therefore, 

because ln (
𝑆𝑡

𝑆0
) = r𝑡 +  𝜎𝑊𝑡, then ln (

𝑆𝑡

𝑆0
) ~ N(r𝑡, 𝜎2𝑡). This shows that the 

continuous interest rate adjusted for time is normally distributed.  

Taking the derivative of (1) with respect to time give the differential equation 

𝑑𝑆𝑡

𝑑𝑡
=  𝑆0𝑒r𝑡+ 𝜎𝑊𝑡(r +  𝜎

𝑑𝑊𝑡

𝑑𝑡
) 

Note that 𝑆0𝑒r𝑡+ 𝜎𝑊𝑡 =  𝑆𝑡 so the equation can be rewritten as 

𝑑𝑆𝑡

𝑑𝑡
=  𝑆𝑡(r +  𝜎

𝑑𝑊𝑡

𝑑𝑡
) 

After multiplying by 𝑑𝑡 and dividing by 𝑆𝑡, the resulting equation is 

 𝑑𝑆𝑡

𝑡
=   r𝑑𝑡 +  𝜎𝑑𝑊𝑡 (2) 

This is the equation for geometric Brownian motion, equation that will be used for the 

change in the price of an asset.  

2.2 History of Brownian Motion in Derivative Pricing Theory 

 The first research to suggest using stochastic processes to model the price 

movement of financial securities was done by Bachelier in 1900. In his doctoral thesis, 

Theory of Speculation, it was proposed that Brownian motion be used to model future 

asset price movements. While this was the first breakthrough in using rigorous 

mathematical methods to price financial derivatives, there remained some flaws in the 

theory. The most glaring being that the arithmetic Brownian motion model allowed 
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securities to take on a negative value, which is not possible in real markets. This 

ability for prices to be negative is due to the assumption that stock prices follow a 

normal distribution. Despite this revolutionary suggestion, Bachelier’s work was lost 

in time. It was not cited in any of the later work done by Black, Scholes, and Merton 

in the 1970s who would eventually be named the founders of derivative pricing. How 

this great work went unrecognized for so long remains a mystery.   

 In order to correct for the possibility of negative stock prices, Samuelson used 

a modified version of Bachelier’s model by letting future stock prices follow a 

lognormal, rather than a normal, distribution. This version of Brownian motion is 

called geometric Brownian motion. In this model, changes in price are proportional to 

the assets price rather than using absolute price changes as in Bachelier’s model. The 

proportional rather than absolute change is where the name geometric Brownian 

motion comes from.  

 A number of attempts were made to price financial derivatives but all of the 

methods either required unrealistic assumptions or were dependent on arbitrary 

parameters. It was not until Black, Scholes, and Merton applied Ito’s Lemma, which 

will be discussed in the next section, that an unbiased derivative pricing method was 

discovered. This unbiased model is known as the Black-Scholes equation, one of the 

most famous equations in finance.  

 The geometric Brownian motion modeling of asset prices is far from a perfect 

representation of reality. The stochastic component of an asset price follows a normal 

distribution making large swings in modeled prices very unlikely. However, in real 
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financial markets large swings in price are more common than a normal distribution 

would predict. Turner and Weigel found that price drops of more than three standard 

deviations from the mean are three times more likely in financial markets than a 

normal distribution would predict. Another issue is that the model assumes a constant 

volatility. This does not necessarily hold true in practical applications. Despite the 

presence of issues, geometric Brownian motion is the still the most common method 

used in the industry and it is used in the Black-Scholes equation, which is the 

foundation for financial derivatives pricing.  

3. Ito’s Lemma 

 Although modeling price movements with geometric Brownian motion is the 

best and most widely accepted practice, its properties make it difficult to analyze. 

Geometric Brownian motion is continuous but it has unbounded variation. Unbounded 

variation means that no matter how small an interval is considered the function will 

not become a smooth curve. Because of this characteristic, Brownian motion cannot 
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be integrated using a Reimann-Stieltjes integral.  The notion of unbounded variation is 

depicted in Figure 1.  

 

 

Figure 1: Example of the unbounded variation of fractal motion. 

  

Kiyosi Ito was the first to address the need for a stochastic integral in 1944. Ito 

derived a method of integrating and differentiating time dependent functions of a 

stochastic process. The method later became known as Ito’s Lemma. The definition of 

the derivative of a stochastic process was a key component of Black, Scholes, and 

Merton’s ability to solve for the analytical price of a financial derivative.  

 



11 

 

3.1 Derivation of Ito’s Lemma  

Ito’s Lemma states that for all T > 0  

              𝑓(𝑊(𝑇), 𝑇) − 𝑓(𝑊(0), 0) 

= ∫ 𝑓𝑡(𝑊(𝑡), 𝑡)𝑑𝑡
𝑇

0

+ ∫ 𝑓𝑥(𝑊(𝑡), 𝑡)𝑑𝑊(𝑡)
𝑇

0

+  
1

2
∫ 𝑓𝑥𝑥(𝑊(𝑡), 𝑡)𝑑𝑡

𝑡

0

 

And if we write 𝑓 = 𝑓(𝑊(𝑡), 𝑡) 

𝑑𝑓 = 𝑓𝑡𝑑𝑡 +  𝑓𝑥𝑑𝑊 +
1

2
𝑓𝑥𝑥𝑑𝑡. 

Where 𝑊(𝑡) is a standard Brownian motion. 

In order to prove this statement, we start by partitioning 𝑓(𝑊(𝑇), 𝑇) −  𝑓(𝑊(0), 0) by 

П = {𝑡0 = 0, 𝑡1, … , 𝑡𝑛 = 𝑇}. We will also assume that the partition is uniform, that is 

𝑡𝑖+1 −  𝑡𝑖 is the same for all 𝑖. Then it is clear that  

𝑓(𝑊(𝑇), 𝑇) −  𝑓(𝑊(0), 0) = ∑ 𝑓(𝑊(𝑡𝑖+1), 𝑡𝑖+1) − 𝑓(𝑊(𝑡𝑖
𝑛−1
𝑖=0 ), 𝑡𝑖). 

By computing the Taylor expansion of this function the equation becomes 

𝑓(𝑊(𝑇), 𝑇) −  𝑓(𝑊(0), 0) = ∑ 𝑓(𝑊(𝑡𝑖+1), 𝑡𝑖+1) − 𝑓(𝑊(𝑡𝑖

𝑛−1

𝑖=0

), 𝑡𝑖) 

= ∑ 𝑓(𝑊(𝑡𝑖), 𝑡𝑖)

𝑛−1

𝑖=0

(𝑡𝑖+1 − 𝑡𝑖) +  ∑ 𝑓𝑥(𝑊(𝑡𝑖), 𝑡𝑖)(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖))

𝑛−1

𝑖=0

 

+
1

2
∑ 𝑓𝑥𝑥(𝑊(𝑡𝑖), 𝑡𝑖)(𝑊(𝑡𝑖+1

𝑛−1

𝑖=0

) − 𝑊(𝑡𝑖))2 +  ∑ 𝑂(

𝑛−1

𝑖=0

(𝑡𝑖+1 − 𝑡𝑖)(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖))) 
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+ ∑ 𝑂((𝑡𝑖+1 − 𝑡𝑖)
2)

𝑛−1

𝑖=0

+ ∑ 𝑂((𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖))3)

𝑛−1

𝑖=0

 

 

We then take the limit of the function as 𝑛 → ∞, which intuitively represents making 

the partition has infinitely small intervals. We see that the first term converges 

immediately to a Riemann integral  

 

∑ 𝑓(𝑊(𝑡𝑖), 𝑡𝑖)

𝑛−1

𝑖=0

(𝑡𝑖+1 − 𝑡𝑖)  →  ∫ 𝑓𝑡(𝑊(𝑡), 𝑡)𝑑𝑡
𝑇

0

 (3) 

The second term also converges immediately as 𝑛 → ∞ because this is the definition 

of the Ito integral.  

 

∑ 𝑓𝑥(𝑊(𝑡𝑖), 𝑡𝑖)(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖))

𝑛−1

𝑖=0

 →  ∫ 𝑓𝑥(𝑊(𝑡), 𝑡)𝑑𝑊(𝑡)
𝑇

0

  

The convergence of the third term is not immediate. However, it is clear that in order 

for  

1

2
∑ 𝑓𝑥𝑥(𝑊(𝑡𝑖), 𝑡𝑖)(𝑊(𝑡𝑖+1

𝑛−1

𝑖=0

) − 𝑊(𝑡𝑖))2 →  ∫ 𝑓𝑥𝑥(𝑊(𝑡), 𝑡)(𝑑𝑊(𝑡))2
𝑇

0

 

to be true as it is in Ito’s Lemma, it needs to be shown that 𝑑𝑊2 = 𝑑𝑡. This 

relationship is intuitive when the properties of 𝑊(𝑡), which is a Weiner process, are 

considered. The standard deviation of 𝑊(𝑡) is proportional to  √𝑡. Therefore it is 

intuitive that (𝑑𝑊)2 = 𝑑𝑡.  

It is known that  



13 

 

𝑑𝑋 = 𝑟𝑑𝑡 −  𝜎𝑑𝑊 ≈ 𝑟(𝑡 + 𝜀 − 𝑡) +  𝜎(𝑊𝑡+𝜀 − 𝑊𝑡) 

And  

(𝑑𝑊)2 ≈ (𝑊𝑡+𝜀 − 𝑊𝑡)2 ≈ 𝑊𝑡+𝜀
2 − 2𝑊𝑡𝑊𝜀 + 𝑊𝑡

2 

By rewriting the right hand side of this equation as  

𝑊𝑡+𝜀
2 − 2𝑊𝑡𝑊𝜀 + 𝑊𝑡

2  ≈ (𝑊𝑡+𝜀
2 − 𝑊𝑡

2) + 2(𝑊𝑡
2 − 𝑊𝑡+𝜀𝑊𝑡) 

And because  

 (𝑊𝑡+𝜀
2 − 𝑊𝑡

2) = 𝑑𝑊2  

Then  

(𝑑𝑊)2 ≈ 𝑑𝑊2 + 2𝑊𝑡(𝑊𝑡 − 𝑊𝑡+𝜀) 

It is clear that  

(𝑊𝑡 − 𝑊𝑡+𝜀) =  −(𝑊𝑡+𝜀 − 𝑊𝑡) =  −𝑑𝑊 

Equation for 𝑑𝑊2 then becomes 

(𝑑𝑊)2 ≈ 𝑑𝑊2 − 2𝑊𝑡𝑑𝑊 

According to Ito 

𝑑𝑊2 = 2𝑊𝑑𝑊 + 𝑑𝑡 

By substituting this value for 𝑑𝑊2 then it is clear that  

(𝑑𝑊)2 = 𝑑𝑡. 
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Now that it has been established that 𝑑𝑊2 = 𝑑𝑡 we can conclude that the third term 

does indeed converge to the equation stated in Ito’s Lemma.   

1

2
∑ 𝑓𝑥𝑥(𝑊(𝑡𝑖), 𝑡𝑖)(𝑊(𝑡𝑖+1

𝑛−1

𝑖=0

) − 𝑊(𝑡𝑖))2 →  
1

2
∫ 𝑓𝑥𝑥(𝑊(𝑡), 𝑡)(𝑑𝑊(𝑡))2

𝑇

0

 

           =  
1

2
∫ 𝑓𝑥𝑥(𝑊(𝑡), 𝑡)𝑑𝑡.

𝑇

0

 

 

We have now shown that all of the terms on the right hand side of Ito’s Lemma 

converge from terms of the Taylor expansion. It remains to show that the higher order 

terms will approach 0 as 𝑛 → ∞. 

|∑ 𝑂(

𝑛−1

𝑖=0

(𝑡𝑖+1 − 𝑡𝑖)(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)))| < |𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)|0≤𝑖≤𝑛
𝑠𝑢𝑝  ∑(𝑡𝑖+1 − 𝑡𝑖)

𝑛−1

𝑖=0

 

< 𝑇 |𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)| → 𝑇 ∗ 0 = 0≤𝑖≤𝑛
𝑠𝑢𝑝 0  

 

The same process can be used to show that the last two terms also converge to 0 as 

𝑛 → ∞. 

∑ 𝑂((𝑡𝑖+1 − 𝑡𝑖)2) <

𝑛−1

𝑖=0

|𝑡𝑖+1 − 𝑡𝑖|0≤𝑖≤𝑛
𝑠𝑢𝑝  ∑(𝑡𝑖+1 − 𝑡𝑖)

𝑛−1

𝑖=0

< 𝑇 |𝑡𝑖+1 − 𝑡𝑖|0≤𝑖≤𝑛
𝑠𝑢𝑝 → 

      𝑇 ∗ 0 = 0 

And 
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∑ 𝑂((𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖))3)

𝑛−1

𝑖=0

< |𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)|0≤𝑖≤𝑛
𝑠𝑢𝑝 ∑(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖))2 

𝑛−1

𝑖=0

 

   →  0  

 

Because the remaining terms all approach 0, we can conclude that  

              𝑓(𝑊(𝑇), 𝑇) − 𝑓(𝑊(0), 0) 

= ∫ 𝑓𝑡(𝑊(𝑡), 𝑡)𝑑𝑡
𝑇

0

+  ∫ 𝑓𝑥(𝑊(𝑡), 𝑡)𝑑𝑊(𝑡)
𝑇

0

+  
1

2
∫ 𝑓𝑥𝑥(𝑊(𝑡), 𝑡)𝑑𝑡

𝑡

0

. 

 

3.2 Application of Ito’s Lemma  

 Let F(St, t) be the price of a financial derivative of the underlying asset with 

price St. Because F is a function of t and St which follows a stochastic process of the 

form 𝑟𝑑𝑡 +  𝜎𝑑𝑊𝑡 as described in equation (1) Ito’s lemma can be used to find the 

equation for the change in F.  

 
𝑑𝐹 = (µ𝑆𝑡

𝜕𝐹

𝜕𝑡
+  

𝜕𝐹

𝜕𝑡
+  

1

2
𝜎2𝑆𝑡

2 𝜕2𝐹

𝜕𝑆𝑡
2) 𝑑𝑡 + (𝜎𝑆𝑡

𝜕𝐹

𝜕𝑆𝑡
) 𝑑𝑊𝑡 (4) 

 Equation (4) can be used to describe the price movement of any type of 

financial derivative. However, we will focus on how it is used to price options of 

stocks. 
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4. Introduction to Options 

One of the most common types of financial derivative are options. An option is 

a contract between two or more parties that gives the buyer the right but not the 

obligation, or the “option”, to buy or sell the underlying asset to the seller at an agreed 

upon price, known as the strike price. Each contract comes with an expiration date 

after which the contract expires and the seller of the option is no longer contractually 

obliged to buy/sell the underlying asset from/to the buyer of the option. In order to 

obtain the right to buy/sell the underlying asset from/to the seller of the option, the 

buyer of the option must pay the seller an upfront fee, known as the option’s premium. 

This premium will be referred also be referred to as the “price” or “fair value” of an 

option because it represents the cost of the option to the buyer.  

There are two types of basic options, calls and puts. A call is a derivative 

contract that gives the buyer the right, but not the obligation, to buy the underlying 

stock at the strike price.  This means that the higher the stock price is above the strike 

price, the move valuable the contract is.  

A put is essentially the opposite of a call. It gives the buyer the right, but not the 

obligation, to sell the underlying stock at the strike price. Similarly to the call option, 

the put gains value as the price of the stock drops further below the strike price.  

There are, in general, two different styles of options: European and American. 

The difference lies in when the buyer of the option is allowed to exercise the right to 

buy or sell the underlying security. European options can only be exercised at maturity 
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while American options can be executed at any time before the expiration of the 

option contract. Because of this difference, American and European options with the 

same characteristics usually have different prices.  

At maturity, the price of American and European options behave in the same 

manner. For both types of options, if the stock price is above the strike price of a call 

the buyer of the contract can buy the underlying stock from the seller of the option at 

the strike price and sell it at the market price. This gives the buyer of the call option a 

guaranteed profit of S-K, where S is the price of the underlying stock and K is the 

strike price. Analogously for put options, if the stock price is below the strike price at 

maturity the buyer of the contract can buy the underlying asset at the market price and 

sell it to the seller of the option at the strike price for a profit of K-S.  

Some terminology that is commonly used in the financial industry when talking 

about options are “in the money”, “at the money”, and “out of the money”. If an 

option is in the money, it means exercising the option would result in positive payout. 

At the money means that the underlying asset is trading at the strike price and 

exercising the option would cause the buyer to make exactly $0. Out of the money 

means that exercising the option would cause the buyer to lose money. When an 

option is out of the money at maturity, the buyer of the option will not exercise the 

contract because it would cause a loss in addition to the premium they paid for the 

option.   

The profit for calls and puts at expiration with a strike price of $40 are below. 
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Figure 1: Graph of profit for a put with a strike price of $40. 
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While the value of an option at maturity is simple to determine, the value of 

options before expiration is less obvious due to the uncertainty about where the stock 

price will be at expiration. There are two components to the price of an option at any 

given time. The intrinsic value, which is what the option would be worth if it was 

exercised immediately, and the time value, which is the additional money an investor 

is willing to pay based on the probability that the value of the option will increase 

before maturity. 

Pricing the intrinsic value of an option is straightforward because both the strike 

price and market price of the underlying asset are known. The difficulty of pricing 

options comes from pricing the time value because it must account for the distribution 

of prices that the underlying asset can have during the time before maturity.  The 

factors that affect the time value of an option are the current stock price, the strike 

price, the risk free interest rate, the volatility of the underlying asset, and the time until 

the option’s maturity.  We will focus more on how to determine the price of an option 

later in this analysis.  

Purchasing a single option can allow the buyer to bet on the price of as stock 

going either up or down. However, by combining options with different characteristics 

an investor can create the opportunity to profit from a variety of different outcomes. 

Some examples include: the price of an asset will stay within a specific range during 

the life of an option, the price of an asset experience a large movement but the 

direction of the swing in price is not known, of the price of the asset will move very 

little by the expiration of the option.     
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One such construction of a combination of options is referred to as straddle. The 

payoff diagram is shown below.  

 

Figure 3: Graph of profit for straddle position constructed 

from one put option and one call option both with a strike 

price of $40. 

This strategy is created by buying one at the money call and one at the money 

put. A straddle would be used when an investor believes that the price of the 

underlying will experience a large swing but does not have an opinion on the direction 

of the movement.  

5. Black-Scholes Model 

 The first popular use of the Ito integral in pricing financial derivatives was by 

Fischer Black, Myron Scholes, and Robert Merton. It used the “replicating portfolio” 
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borrowing and lending at the risk free rate and owning the underlying asset. The 

number of shares owned and the amount money borrowed or lent at the risk free rate 

are constantly adjusted so that the change in the price of the portfolio is equal to the 

change in the price of the derivative.   

 By using these assumptions, a partial differential equation (4) for the change in 

the price of a financial derivative is created. While the PDE is for the change in the 

price of any financial derivative, solutions do not exist for all possible financial 

derivatives. Black, Scholes, and Merton leveraged other branches of mathematics in 

order to use this PDE to solve for the price of a call option, for which Scholes and 

Merton were awarded a Nobel Prize in economics. This equation, now known as the 

Black-Scholes call price equation is the most famous result of financial derivative 

pricing research.   

5.1 Derivation of Black-Scholes Partial Differential Equation  

 Based on the Black-Scholes assumption of a replicating portfolio, the price of a 

derivative can be expressed as some weightings of the underlying asset, 𝑤𝑆, and the 

risk free asset, 𝑤𝐴. This can be expressed as  

 𝐹 = 𝑤𝑆𝑆 +  𝑤𝐴𝐴  

Where F is the value of the replicating portfolio. From this equation it can be seen that 

𝑤𝐴 =  
𝐹 − 𝑤𝐴𝑆

𝐴
. 

The change in the price of the portfolio can be written as  
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 𝑑𝐹 =   𝑤𝑆𝑑𝑆 +  𝑤𝐴𝑑𝐴 (5) 

 Let At represent the price of a risk free asset at time t. Then we can use the 

representation of the price of an asset that was determined equation (1) to calculate the 

price of the risk free asset as  

𝐴𝑡 =  𝐴0𝑒µ𝑡+ 𝜎𝑊(𝑡) 

 However, because this the risk free asset, there is no volatility in the return. 

This means that σ = 0 so the resulting equation for the price of the risk free asset is 

𝐴𝑡 = 𝐴0 𝑒
𝜇𝑡 

Because this is a special asset, we give this rate a new name, 𝑟, which represents the 

risk free rate. The price of the risk free asset at time 𝑡 is then 

𝐴𝑡 = 𝐴0 𝑒
𝑟𝑡 

The differential of which is 

𝑑𝐴𝑡 =  𝐴𝑡𝑟𝑑𝑡 

After substituting 𝑤𝐴 and 𝑑𝐴𝑡 into equation (5) the equation is now 

𝑑𝐹 =  𝑤𝑆𝑑𝑆 + (𝐹 − 𝑤𝑆𝑆)𝑟𝑑𝑡 

Using the equation for 𝑑𝑆 from (2) the resulting equation is  

𝑑𝐹 = 𝑤𝑆(µ𝑆𝑑𝑡 +  𝜎𝑆𝑑𝑊𝑡) + (𝐹 − 𝑤𝑆𝑆)𝑑𝑡  

By rearranging the equation, the result is  
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𝑑𝐹 = (𝑤𝑆𝑆(µ −  𝑟) +  𝑟𝐹)𝑑𝑡 + (𝑤𝑆𝜎𝑆)𝑑𝑊𝑡 

Now we have two representations of 𝑑𝐹. We know from the properties of an Ito 

process that the 𝑑𝑡 and 𝑑𝑊𝑡 terms of the two equations must be equal. By setting 

corresponding terms equal to each other and simplifying we find   

𝑤𝑆 =  
𝛿𝐹

𝛿𝑆
 

And  

𝜕𝐹

𝜕𝑆
𝑆(µ − 𝑟) +  𝑟𝐹 =   µ𝑆

𝜕𝐹

𝜕𝑃
+  

𝜕𝐹

𝜕𝑡
+  

1

2
𝜎2

𝜕2𝐹

𝜕𝑆
 

By expanding the left hand side of the equation, the equation becomes 

µ𝑆
𝜕𝐹

𝜕𝑆
− 𝑟𝑆

𝜕𝐹

𝜕𝑆
+  𝑟𝐹 =   µ𝑆

𝜕𝐹

𝜕𝑃
+ 

𝜕𝐹

𝜕𝑡
+  

1

2
𝜎2

∂2𝐹

𝜕𝑆
 

The term µ𝑆
𝛿𝐹

𝛿𝑆
 appears on both sides of the equation so it can be cancelled out. This is 

an important step because µ, the return on the underlying asset, drops out of the 

equation. Without µ in the equation, all of the variables can be observed in the market, 

eliminating the need for arbitrary parameters and estimations of average asset returns. 

The fully simplified version of the equation, known as the Black-Scholes partial 

differential equation, is: 

𝑟𝑆
𝜕𝐹

𝜕𝑆
+  

𝜕𝐹

𝜕𝑡
+ 

1

2
𝜎2𝑆2

𝜕2𝐹

𝜕𝑆2
−  𝑟𝐹 = 0. 
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 The step where µ drops out of the equation shows one of the most important 

breakthroughs that Black and Scholes made. Prior to their work, all research done on 

options pricing resulted in equations that depended on some arbitrary factor such as 

return on the underlying asset, discount factors based on the risk of the underlying, or 

the shape of a utility function. In addition to its dependence on only observable 

variables, there are no restriction on the structure of F. Because of this flexibility, the 

Black-Scholes partial differential equation can be used for any type of derivative.  

5.2 Derivation of Call Option Price from Black-Scholes PDE 

While the Black-Scholes PDE is able to model the price of any financial 

derivative, solutions do not exist for all types, the PDE has a solution for the price of a 

European call option. In order to find the equation for the price of the call option, the 

Black-Scholes PDE must be transformed. By using changes of variables, the PDE can 

be transformed into the form of what is known as the heat equation. The heat equation 

has been studied extensively and under the correct conditions it is both solvable and 

stable. European call options have initial and boundary conditions for which the heat 

equation is solvable.  

 In order to find the solution to the Black-Scholes PDE, it must first be 

transformed from its original form 

 
𝑟𝑆

𝜕𝐹

𝜕𝑆
+  

𝜕𝐹

𝜕𝑡
+  

1

2
𝜎2𝑆2

𝜕2𝐹

𝜕𝑆2
−  𝑟𝐹 = 0 

 

(6) 
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Into a version of the heat equation. A number of change of variables will be used to 

transform the PDE into  

𝜕𝑢

𝜕𝜏
=  

1

2
𝜎2

𝜕2𝑢

𝜕𝑥2
 

The first change of variables that will be made is  

𝐹 = 𝑢(𝑆, 𝑡)𝑒𝑟𝑡 

The goal of this transformation is to eliminate the 𝑟𝐹 term in equation (6). From the 

equation of 𝐹 and using the product rule  

𝜕𝐹

𝜕𝑡
=

𝜕𝑢

𝜕𝑡
𝑒𝑟𝑡 + 𝑟𝑢𝑒𝑟𝑡 =

𝜕𝑢

𝜕𝑡
𝑒𝑟𝑡 + 𝑟𝐹   

By rearranging this equation we find that 

𝜕𝑢

𝜕𝑡
𝑒𝑟𝑡 =

𝜕𝐹

𝜕𝑡
− 𝑟𝐹   

The terms on the right hand side are present in equation (6) so the equation becomes 

 𝜕𝑢

𝜕𝑡
𝑒𝑟𝑡 + 𝑟𝑆

𝜕𝐹

𝜕𝑆
+  

1

2
𝜎2𝑆2

𝜕2𝐹

𝜕𝑆2
= 0 

 

(7) 

Successfully eliminating the 𝑟𝐹 term.  

The next change of variables that will be made is  

𝑆 =  𝑒𝑦 
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This change of variables combined with the previous allow us to solve for the 

remaining terms in equation (7) in terms of 𝑢 and 𝑦. First, it is clear that  

 𝜕𝐹

𝜕𝑆
=

𝜕𝑢

𝜕𝑆
𝑒𝑟𝑡   

 

(8) 

However this form of the differential does not eliminate any variables when 

substituted back into equation (7). We will multiply the right hand side by 1 in order to 

make the substitution more useful. 

𝜕𝐹

𝜕𝑆
=

𝜕𝑢

𝜕𝑆
𝑒𝑟𝑡  (

𝜕𝑆

𝜕𝑦
) (

𝜕𝑦

𝜕𝑆
)  

From the definition of S we know that  

𝜕𝑆

𝜕𝑦
= 𝑆  or equivalently  

𝜕𝑦

𝜕𝑆
=  

1

𝑆
 

By substituting this new value into equation (8) and noting that  

(
𝜕𝑆

𝜕𝑦
) (

𝜕𝑢

𝜕𝑆
) =  

𝜕𝑢

𝜕𝑦
 

Equation (8) becomes 

𝜕𝐹

𝜕𝑆
=

𝜕𝑢

𝜕𝑦
𝑒𝑟𝑡  

1

𝑆
 

From this equation we can solve for the second partial derivative of 𝐹 with respect to 

𝑆 by using the product rule. 
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𝜕2𝐹

𝜕𝑆2
=

𝜕

𝜕𝑆
(

𝜕𝐹

𝜕𝑆
) =  −

1

𝑆2
 
𝜕𝑢

𝑑𝑦
𝑒𝑟𝑡 +  

1

𝑆
 

𝜕2𝑢

𝜕𝑢𝜕𝑆
 

By using the same method as the previous equation, multiplying by 1 on the right hand 

side and noting that 
𝜕𝑦

𝜕𝑆
=  

1

𝑆
 

𝜕2𝐹

𝜕𝑆2
=  −

1

𝑆2
 
𝜕𝑢

𝑑𝑦
𝑒𝑟𝑡 + 

1

𝑆
 

𝜕2𝑢

𝜕𝑦𝜕𝑆
 (

𝜕𝑆

𝜕𝑦
) (

𝜕𝑦

𝜕𝑆
) =  −

1

𝑆2
 
𝜕𝑢

𝑑𝑦
𝑒𝑟𝑡 +  

1

𝑆2

𝜕2𝑢

𝜕𝑦2
 𝑒𝑟𝑡 

Substituting these new values into equation (7) the PDE becomes 

𝜕𝑢

𝜕𝑡
𝑒𝑟𝑡 + 𝑟

𝜕𝑢

𝜕𝑦
𝑒𝑟𝑡  + 

1

2
𝜎2𝑒𝑟𝑡 ( − 

𝜕𝑢

𝑑𝑦
+  

𝜕2𝑢

𝜕𝑦2
) = 0  

After dividing both sides of the equation by 𝑒𝑟𝑡 and collecting like terms the equation 

becomes 

𝜕𝑢

𝜕𝑡
+ (𝑟 −

1

2
𝜎2)

𝜕𝑢

𝜕𝑦
 +  

1

2
𝜎2

𝜕2𝑢

𝜕𝑦2
= 0 

We now have a constant coefficient equation. In order to make the initial condition 

into a terminal condition, we will make the substitution 

𝜏 = 𝑇 − 𝑡 

From this equation it is clear that 

𝑑𝜏 =  −𝑑𝑡  or equivalently  
𝜕𝑡

𝜕𝜏
=  −1 

This allows the substitution  
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𝜕𝑢

𝜕𝑡
= −

𝜕𝑢

𝜕𝜏
  

The Black-Scholes PDE is now 

−
𝜕𝑢

𝜕𝜏
+ (𝑟 −

1

2
𝜎2)

𝜕𝑢

𝜕𝑦
 +  

1

2
𝜎2

𝜕2𝑢

𝜕𝑦2
= 0 

The final step that is needed in order to finish the transformation into the heat equation 

is to eliminate the linear term. The substitution that will allow this is 

𝑦 = 𝑥 − (𝑟 −  
1

2
𝜎2) 𝜏 

The first derivative of 𝑦 in terms of 𝑥 show 

𝜕𝑦

𝜕𝑥
= 1 

And therefore 

𝜕𝑢

𝜕𝑦
=

𝜕𝑢

𝜕𝑥
 

Because both 𝑦 and 𝑥 are functions of 𝜏, 𝑥 can replace 𝑦 in the PDE  

−
𝜕𝑢

𝜕𝜏
+ (𝑟 −

1

2
𝜎2)

𝜕𝑢

𝜕𝑦
 +  

1

2
𝜎2

𝜕2𝑢

𝜕𝑥2
= 0 

And also into the solution to 
𝜕𝑆

𝜕𝜏
 

𝜕𝑆

𝜕𝜏
=  𝑒𝑦

𝜕𝑦

𝜕𝜏
= 𝑆

𝜕𝑦

𝜕𝜏
= 𝑆 (

𝜕𝑥

𝜕𝜏
− (𝑟 −  

1

2
𝜎2)) 
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Multiplying both sides of the equation by (
𝜕𝑥

𝜕𝑆
) (

𝜕𝑢

𝜕𝑥
) gives  

𝜕𝑆

𝜕𝜏
=  

𝜕𝑆

𝜕𝜏
(

𝜕𝑥

𝜕𝑆
) (

𝜕𝑢

𝜕𝑥
) =  

𝜕𝑢

𝜕𝜏
  

𝑆 (
𝜕𝑥

𝜕𝜏
− (𝑟 −  

1

2
𝜎2)) (

𝜕𝑥

𝜕𝑆
) (

𝜕𝑢

𝜕𝑥
) = 𝑆 (

𝜕𝑢

𝜕𝜏
− (𝑟 −  

1

2
𝜎2)

𝜕𝑢

𝜕𝑥
) (

1

𝑆
)   

=
𝜕𝑢

𝜕𝜏
− (𝑟 −  

1

2
𝜎2)

𝜕𝑢

𝜕𝑥
                                                                             

Showing that 

𝜕𝑢

𝜕𝜏
=  

𝜕𝑢

𝜕𝜏
− (𝑟 −  

1

2
𝜎2)

𝜕𝑢

𝜕𝑥
 

By making this final substitution into the PDE, the linear term in eliminated.  

−
𝜕𝑢

𝜕𝜏
+ 

1

2
𝜎2

𝜕2𝑢

𝜕𝑥2
= 0 

Which is exactly the heat equation that the transformations were intended to find 

𝜕𝑢

𝜕𝜏
=  

1

2
𝜎2

𝜕2𝑢

𝜕𝑥2
 

For a European call conditions after the transformation of variables are  

𝑢(𝑥, 𝜏) = max (𝑒
𝑥−(𝑟−

𝜎2

2
)𝜏

− 𝐾)𝑒−𝑟𝜏 

−∞ < 𝑥 < ∞, 0 ≤ 𝜏 < 𝑇 

The well-known solution to the heat equation is  



30 

 

𝑢(𝑥, 𝜏) =  
1

√4𝜋 (
1
2 𝜎2) 𝜏

∫ exp (−
(𝑥 − 𝑐)2

4 (
1
2 𝜎2) 𝜏

) 𝑔(𝑐)𝑑𝑐
∞

−∞

 

Where 𝑔(𝑐) is the terminal condition of the financial derivative. The condition for the 

European call option can be written as  

𝑢(𝑥, 𝑇) = {
𝑒𝑥−𝑟𝑇+ 

𝜎2

2
𝜏 − 𝐾𝑒−𝑟(𝑇−𝜏) , x > ln(𝐾) + (𝑟 −

𝜎2

2
) 𝜏

0, x ≤ 0

 

By substituting this condition into the solution to the heat equation  

               

𝑢(𝑥, 𝜏) =  
1

√2𝜋𝜎2𝜏
∫ exp (−

(𝑥 − 𝑐)2

2𝜎2𝜏
) 𝑒

(𝑥−𝑟𝑇+
𝜎2

2
𝜏)

𝑑𝑐 − 
∞

ln(𝐾)+(𝑟−
𝜎2

2
)𝜏

 

𝐾𝑒−𝑟(𝑇−𝜏)

√2𝜋𝜎2𝜏
∫ exp (−

(𝑥 − 𝑐)2

2𝜎2𝜏
)

∞

ln(𝐾)+(𝑟−
𝜎2

2
)𝜏

𝑑𝑐 

 

This expression can be simplified and the resulting solution to the partial differential 

equation is precisely the Black-Scholes equation for the price of a call option.  

𝐹(𝑆, 𝑡) = 𝑆𝑁 (
ln (

𝑆
𝐾

) +  (𝑟 +
𝜎2

2
)𝜏

𝜎√𝜏
) − 𝐾𝑒−𝑟𝑇𝑁 (

ln (
𝑆
𝐾

) + (𝑟 −
𝜎2

2
) 𝜏

𝜎√𝜏
). 
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6. Alternative Methods for Pricing Derivatives 

 While there is a closed form solution to the Black-Scholes equation for the price 

of a European call option, most financial derivatives do not have conditions that allow 

the existence of a solution. This lack of solutions for leaves a need for alternative 

methods of pricing more complex financial derivatives. The most common method 

used in practice is a Monte Carlo simulation. This method avoids the need for 

analytical solution by leveraging the processing power of modern computers. 

Alternatively, binomial trees can be used to price financial derivatives. These trees 

allow for an analytical solution but are computationally expensive. 

6.1 Convergence of Binomial Tree To Black-Scholes Equation 

One way to determine the fair value of one a more complex option is by using 

a binomial tree to model the movement of the price of the underlying asset. The 

binomial tree allows for conditions that are more complex than simply execution at 

maturity to be placed on the derivatives. This is important because most derivatives 

have more restrictions than European options and cannot be priced by using the Black-

Scholes PDE.  

Although this is a technique that is typically used for more complex 

derivatives, the Black-Scholes call price can be derived from the binomial tree. In 

addition to being accurate, the binomial tree method is generally considered to be 

easier than using the Black-Scholes equation. We will now show the derivation of a 

call price from a binomial tree. 
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The binomial tree for a call option that matures in T units of time will have n 

steps each with a length of T/n. We will define the change in price after each step as 

either an upward movement, 𝑢, or a downward movement, 𝑑. We will let these 

movements have magnitudes such that from a beginning price one upward movement 

followed by one downward or one downward movement followed by an upward 

movement will both result in the beginning price. These values are   

𝑢 = 𝑒
𝜎√𝑇

𝑛, 𝑑 =  𝑒
−𝜎√𝑇

𝑛 

But we will continue to refer to them as 𝑢 and 𝑑 for simplicity.  

 After n steps, the price of the underlying security will be 𝑆0𝑢𝑗𝑑𝑛−𝑗 where 𝑗 is the 

number of upward movements. The payoff of the call option with strike 𝐾 will be 

max (𝑆0𝑢𝑗𝑑𝑛−𝑗 − 𝐾, 0).  

 From the definition of a binomial distribution, we know that the probability of 𝑗 

upward movements and 𝑛 − 𝑗 downward movements is 

𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1 

Where 𝑝 is the probability of an upward movement.  

Because the probability of having 𝑗 upward movements is known, we can 

calculate the expected value of max (𝑆0𝑢𝑗𝑑𝑛−𝑗 − 𝐾, 0). 

𝐸(max(𝑆0𝑢𝑗𝑑𝑛−𝑗 − 𝐾, 0)) = ∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1

𝑛

𝑗=0

max (𝑆0𝑢𝑗𝑑𝑛−𝑗 − 𝐾, 0) 
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The expected value of the call option represents a future cash flow so it must be 

discounted back to the present value. We will use the risk free rate 𝑟 for this 

discounting. The fair value of a call price is then 

𝑐 = 𝑒−𝑟𝑇 ∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1

𝑛

𝑗=0

max(𝑆0𝑢𝑗𝑑𝑛−𝑗 − 𝐾, 0). 

We know that the payoff of a call option is nonzero when the price of the underlying 

security is greater than the strike price at maturity. This occurs when 

𝑆0𝑢𝑗𝑑𝑛−𝑗 > 𝐾 

By taking the natural log of both sides the relationship becomes 

 
ln (

𝑆0

𝐾
) > −𝑗 ln(𝑢) − (𝑛 − 𝑗) ln(𝑑). (9) 

 

Because we have already defined 𝑢 and 𝑑, the values can be substituted into the (9) 

resulting in 

ln (
𝑆0

𝐾
) > −𝑗σ

𝑇

𝑛
− (𝑛 − 𝑗) (−𝜎

𝑇

𝑛
). 

After simplification, this becomes 

ln (
𝑆0

𝐾
) > −2𝑗σ

𝑇

𝑛
+ 𝑛𝜎√

𝑇

𝑛
. 
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The goal of this relationship is to find how many upward movements 𝑗 are necessary 

for the call option to end in the money at maturity. Solving the inequality for 𝑗 will 

give this number 

𝑗 >
𝑛

2
−

ln (
𝑆0

𝐾 )

2𝜎√𝑇
𝑛

. 

Let this quantity be denoted by 𝛼. Then the price of a call option can be written as  

   𝑐 = 𝑒−𝑟𝑇 ∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1(𝑆0𝑢𝑗𝑑𝑛−𝑗 − 𝐾)

𝑗>𝛼

 

=  𝑒−𝑟𝑇 [𝑆0 ∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1𝑢𝑗𝑑𝑛−𝑗

𝑗>𝛼

− 𝐾 ∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1

𝑗>𝛼

 ] 

We know from statistics that as the number of binomial trials approaches infinity, the 

number of successes approaches a normal distribution with mean 𝑛𝑝 and standard 

deviation √𝑛𝑝(1 − 𝑝).  The second term in the equation is the probability that the 

number of successes will be greater than 𝛼. Then as the number of trails approaches 

infinity, or in this case the number of steps in the binomial tree approaches infinity, the 

value of the second term is  

∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1

𝑗>𝛼

= 𝑁 (
𝑛𝑝 − 𝛼

√𝑛𝑝(1 − 𝑝)
) 

where 𝑁 is the cumulative probability distribution function for the standard normal 

distribution. By replacing 𝛼, the equation becomes 
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∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1

𝑗>𝛼

= 𝑁 (
ln (

𝑆0

𝐾 )

2𝜎√𝑇√𝑝(1 − 𝑝)
+

√𝑛 (𝑝 −
1
2)

√𝑝(1 − 𝑝)
) 

In “Option pricing: A simplified approach”, Cox, Ross, and Rubinstein define 𝑝 as 

𝑝 =
𝑒

𝑟𝑇
𝑛 − 𝑒−𝜎√𝑇 𝑛⁄

𝑒𝜎√𝑇 𝑛⁄ − 𝑒−𝜎√𝑇 𝑛⁄
. 

This value of 𝑝 is chosen because Cox, Ross and Rubinstein assumed that stock 

operated in a risk neutral world. In this world, an investor is indifferent between an 

investment in a risk free asset and a risky asset because both assets have the same 

expected return. This value of 𝑝 makes the return on a stock equal to the risk free rate, 

matching the assumptions of a risk neutral world.  

For this value of 𝑝, as 𝑛 approaches infinity 𝑝(1 − 𝑝) approaches 
1

4
 and √𝑛 (𝑝 −

1

2
) 

approaches  

(𝑟 −
𝜎2

2 )√𝑇

2𝜎
. 

These can limits be shown by using the Taylor expansion 

𝑒𝑥 =  ∑  
𝑥𝑛

𝑛!

∞

𝑛=0

 

By substituting these values into the equation, the second term in the price of a call 

option simplifies to  
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∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1

𝑗>𝛼

=  𝑁 (
ln (

𝑆0

𝐾 ) + (𝑟 −
𝜎2

2 ) 𝑇

𝜎√𝑇
). 

In order to solve for  

∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1𝑢𝑗𝑑𝑛−𝑗

𝑗>𝛼

 

We will define  

𝑝∗ =
𝑝𝑢

𝑝𝑢 + (1 − 𝑝)𝑑
 

And then  

1 − 𝑝∗ =
𝑝𝑑

𝑝𝑢 + (1 − 𝑝)𝑑
. 

By substituting these values into the first term of the equation for the price of a call 

option  

                             ∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1𝑢𝑗𝑑𝑛−𝑗

𝑗>𝛼

 

= (𝑝𝑢 + (1 − 𝑝)𝑑)𝑛 ∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
(𝑝∗)𝑗(1 − 𝑝∗)𝑛−𝑗

𝑗>𝛼

 

The expected return on a stock for one unit of time is 𝑝𝑢 + (1 − 𝑝)𝑑. As mentioned 

previously, in the Cox-Ross-Rubenstein paper it is assumed that stocks prices move in 

a risk-neutral world. Because of this assumption, it follows that the expected return on 

a stock is equal to the risk free rate so one can write   
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𝑒
𝑟𝑇

𝑛 = 𝑝𝑢 + (1 − 𝑝)𝑑. 

Then this can be substituted into the equation  

∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1𝑢𝑗𝑑𝑛−𝑗

𝑗>𝛼

= 𝑒𝑟𝑇 ∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
(𝑝∗)𝑗(1 − 𝑝∗)𝑛−𝑗

𝑗>𝛼

 

This equation is now another binomial distribution but in this case, the probability of 

an upward movement is 𝑝∗. We will again use the fact that a binomial distribution 

approaches a normal distribution as the number of trials goes to infinity to conclude 

that  

∑
𝑛!

(𝑛 − 𝑗)! 𝑗!
𝑝𝑗(1 − 𝑝)𝑛−1𝑢𝑗𝑑𝑛−𝑗

𝑗>𝛼

= 𝑒𝑟𝑇𝑁 (
𝑛𝑝∗ − 𝛼

√𝑛𝑝∗(1 − 𝑝∗)
) 

Replacing α with its value, the expression becomes  

𝑒𝑟𝑇𝑁 (
ln (

𝑆0

𝑘
)

2𝜎√𝑇√𝑝∗(1 − 𝑝∗)
+

√𝑛 (𝑝∗ −
1
2)

√𝑝∗(1 − 𝑝∗)
) 

The final step is to replace the 𝑝∗in the term. In order to make this substitution, we 

will use the fact that as 𝑛 approaches infinity, 𝑝∗(1 − 𝑝∗) approaches 
1

4
 and 

√𝑛 (𝑝∗ −
1

2
) approaches  

(𝑟 +
𝜎2

2 )√𝑇

2𝜎
. 
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These limits are solved for using the same Taylor series expansion method as used in 

simplifying the expressions in the second term. By substituting these values into the 

expression, we find that 

𝑒𝑟𝑇𝑁 (
ln (

𝑆0

𝑘
) +  (𝑟 +

𝜎2

2 )𝑇

𝜎√𝑇
) 

Now that we have all of the pieces of the equation simplified, each term can be put 

together to get the Black-Scholes equation 

𝑐 = 𝑆0𝑁 (
ln (

𝑆0

𝑘
) +  (𝑟 +

𝜎2

2 )𝑇

𝜎√𝑇
) − 𝐾𝑒−𝑟𝑇𝑁 (

ln (
𝑆0

𝐾 ) + (𝑟 −
𝜎2

2 ) 𝑇

𝜎√𝑇
). 

6.1.2 Examples of Pricing Options with a Binomial Tree 

The most basic option to price with a binomial tree is a European call option. 

Below is a simple binomial tree with four steps for visualization. This tree models a 

European call with the parameters specified in Figure 5.  
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Figure 5: Example of binomial tree to price a European 

option. 

 

In the illustration, the price of the underlying stock is shown in the top box. In 

each step the price either increases by 𝑢 or decreases by 𝑑 which are both defined as in 

the Cox, Ross, and Rubenstein research. The shaded box underneath the stock price is 

the present value of the call option at the corresponding step. 

Rather than drawing binomial trees by hand, the trees are modeled using a 

computer program. An example of a program that computes the value of a European 

option with a binomial tree is shown below in Figure 6.  

1

0.75 164.8721

77.53203

0.5 145.4991

59.18076

0.25 128.4025 128.4025

43.90384 41.80449

0 113.3148 113.3148

31.68104 29.35803

100 100 100

22.27695 19.99143 17.41092

88.24969 88.24969

13.25157 10.96903

77.88008 77.88008

6.742366 4.722121

Current Price 100 68.72893

Risk Free Rate 0.03 2.636792

Volatility 0.25 60.65307

Strike Price 90 0.600848

Time to Maturity 1

Number of Steps 4
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Figure 6: Sample code for option pricing using a binomial tree. 

 

The binomial tree method can be applied to other types of options as well. The 

only piece of the program or tree that needs to be modified is the terminal condition. 

For call options this condition is max (𝑆 − 𝐾, 0). The example below provides a 

visualization of how to price a straddle position with the binomial method. The 

terminal condition in this tree is max(𝑆 − 𝐾, 𝐾 − 𝑆). This binomial tree in particular 

has 8 steps and is used to price a 1 year straddle position constructed by buying one 

call and one put each with a strike of 100 on a security with a current price of 100, 

volatility of 25% and a risk free rate of 3%.  

 

Function myCall(S, r, sigma, X, t, n) 

 
 

 

     u = Exp(sigma * (t / n) ^ (1 / 2)) 

     d = 1 / u 

     pu = (Exp(r * t / n) - d) / (u - d) 

     pd = 1 – pu 

 
 

     For i = 0 To n 

          mySum = mySum + Exp(-r * t) * 

                 Application.WorksheetFunction.Max(S*u^(n-i) 

      * d^i - X, 0)* 

      Application.WorksheetFunction.Combin(n,i) 

      *pu^(n-i) * pd^i 
     

     Next 

 
 

     myCall = mySum 
 

 

End Function 
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In the nonterminal nodes, the present value of the option is calculated as the 

present value of the expected value of the option in the next step based on 𝑝𝑢 and 

𝑝𝑑which are also calculated according to the Cox, Ross, Rubenstein method. The 

possible values of the option is calculated by going through the tree backwards until 

time 0 is reached and the fair value of the option is found.  
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The accuracy of the calculated value can be showing that it is equal to the 

value the equation 

 
𝑐 = ∑ max(𝑆0𝑢𝑛−𝑖𝑑𝑖 − 𝐾, 𝐾 − 𝑆0𝑢𝑛−𝑖𝑑𝑖) 𝑝𝑢

𝑛−𝑖𝑝𝑑
𝑖 (

𝑛
𝑖

)

𝑛

𝑖=0

 (10) 

The value for this calculation can be done by creating a computer program. The 

program follows the same process as the one used to model a European call with the 

binomial tree but with a different terminal condition. Figure 6 shows an example of 

VBA code that calculates the value for 𝑐 in Equation (10). For the parameters used in 

the visualized example of a straddle position, the program returns a price of $17.2064 

matching the value calculated by iterating steps in the binomial tree.  

 

Figure 7: Sample code for pricing a straddle position with a binomial tree. 

 

Function myStraddle(S, r, sigma, X, t, n) 

 
 

 

     u = Exp(sigma * (t / n) ^ (1 / 2)) 

     d = 1 / u 

     pu = (Exp(r * t / n) - d) / (u - d) 

     pd = 1 – pu 

 
 

     For i = 0 To n 

          mySum = mySum + Exp(-r * t) * 

                 Application.WorksheetFunction.Max(S*u^(n-i) 

                 * d^i - X, X - S*u^(n-i)* d^i)* 

      Application.WorksheetFunction.Combin(n,i) 

      *pu^(n-i) * pd^i 
     

     Next 

 
 

     myStraddle = mySum 
 

 

End Function 
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  The convergence of the binomial tree model to the Black-Scholes 

equation can be shown empirically as well. Below is a graph illustrating this 

convergence as the number of nodes in the tree increases.  

 

 

Figure 8: Convergence of binomial model to Black-Scholes price. 

 

The same structure of the binomial tree can be used to price a variety of 

options. For European options or positions constructed from a combination of 

European options, the only change that needs to be made to the binomial tree is the 

equation used to price the value of the option at the terminal nodes of the tree.  

This shows how easily the binomial tree can be modified to price a variety of 

options. However, the flexibility of using a binomial tree to price derivatives cannot 

fully shown by using only positions created from only European options. Because 
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European options can only be executed at maturity, the advantages of the iterative 

calculation of the derivative price is not fully leveraged. Additionally, there is no 

advantage to using a binomial tree to price a European option because the Black-

Scholes equation is computationally faster than the binomial tree. This computational 

complexity is due to the many combinatorial calculations that are made with very 

large numbers.  

The true value of the ability to price derivatives using a binomial tree comes 

from its flexibility. Because the price of the derivative is calculated at each node in the 

tree, there is the ability to make a decision at each point in time. By allowing for the 

ability to make decisions to be made at each node, it is able to price derivatives whose 

value depends on the path of the price of the underlying security.   

American options are the classic example price path dependent derivatives.  

Because American options can be executed before expiration, the value of the option 

at each nonterminal node is the maximum of the payoff from early exercise, 𝑆𝑖 − 𝐾, 

and the present value of the option at that node if early exercise were not allowed.   

Figure 9 illustrates how the ability to execute before maturity can be worked 

into a binomial tree valuation of options. The binomial tree on the top is being used to 

price an American put option. The value of the put option at the terminal nodes is 

max(𝐾 − 𝑆𝑇 , 0). Working backwards through the tree the value of an option at time 

0.5 is the maximum of the present value of the expected value of the option at that 

time or the payoff for executing the put. Executing the option would result in a payoff 
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of $5.595496 while the option would have been worth $0.870155 so it is more 

profitable to execute than to hold it until expiration.  

The tree on the bottom shows how to derive the price for a European put with 

the same inputs. The difference between the two trees is highlighted in red. The 

difference in this node causes the American option to be worth much more than the 

European option. This again highlights the importance of the flexibility of the 

binomial tree model because a small change in the structure of the derivative can 

cause a large change in its fair value.  

 

Figure 9: Comparison of binomial trees for American and European put options. 

1

American Put 0.5 66.34482

0

0 57.5955

5.595496

50 50

6.20326 2

43.40617

7.309943

37.68192

S 50 14.31808

r 0.05

σ 0.2

K 52 1

t 1

n 2 European Put 0.5 66.34482

0

0 57.5955

0.870155

50 50

3.650479 2

43.40617

7.309943

37.68192

14.31808
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6.2 Monte Carlo Simulation to Price Options 

Another alternative way to price derivatives is to use a Monte Carlo 

simulation. Monte Carlo simulations are computer programs that provide a large 

number of different outcomes for a given scenario. These outcomes are called sample 

paths. The results of these sample paths can be used in a few different ways. The most 

common is to make a calculation based on the outcome of each sample path. These 

calculations are then averaged to find the expected value of the calculation based on 

the assumed probability distribution of all possible outcomes. This type of analysis is 

useful for applications where there is uncertainty in the outcome of an event and a 

decision needs to be made depending on which outcome occurs. In the case of 

financial derivatives, the uncertain event is the price of the underlying security at the 

time of maturity and the decision to be made is the price an investor is willing to pay 

for the derivative.  

In a Monte Carlo simulation used to price a derivative, the simulation first 

generates a large number of possible price paths for the underlying security. This is 

done by using the assumption the price of an asset can be modeled by a geometric 

Brownian motion process and that returns follow a lognormal distribution. It is 

necessary to use a large number of sample paths, typically at least 1000, to ensure that 

each path has only a small influence on the average in order to prevent a few extreme 

sample paths from skewing the results. For pricing options, these sample paths are 

created by generating a random number and using it in the stochastic portion of the 
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equation for geometric Brownian motion to determine the price of the underlying 

security at expiration.  

For each path, the final price of the underlying security is used to calculate the 

price of the option. The present value of that financial derivative is then calculated by 

discounting the value of the option by the risk free rate. These present values represent 

the fair price of the option for each path. The average of option’s price in each sample 

path is the fair price for that option. Below is an example of a MATLAB script that 

can be used to price a straddle position. As the number of sample paths increases, the 

fair value calculated by the program approaches the price that the Black-Scholes 

equation gives.  

 

Figure 10: Sample code for pricing an option with a Monte Carlo simulation. 

 

nSim = 1000000; 

r = .03; 

sigma = .25; 

strike = 100; 

initS = 100; 

t = 1; 

  

randNums= normrnd(0,1, [1 nSim]); 

  

for i = 1:nSim 

prices(1,i)  = initS * exp((r - 0.5*sigma^2)*t+ 

randNums(1, i)*sigma*sqrt(t)); 

 

    value(1,i) = max(strike - prices(1,i), 

   prices(1,i) - strike); 

   

     optionPrice(1,i) = value(1,i) / exp(-r*t); 

end 

 

averagePrice = mean(optionPrice) 
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The Monte Carlo simulation method for pricing financial derivatives is 

commonly used in the industry. Similarly to the binomial tree method, it allows for a 

large amount of flexibility. However, the binomial tree is only able to handle the 

addition of decisions over the life of a derivative because all of the other variables, 

such as the volatility of the underlying asset and the risk free rate, are static over the 

life of the derivative. In addition to the capabilities of a binomial tree, the Monte Carlo 

simulation is able to allow these variables to change over time. 

6.3 Comparing of Methods of Pricing Derivatives 

Each method of pricing financial derivatives has its advantages and 

disadvantages. The most important characteristics to consider are each method’s 

computational complexity, accuracy, and flexibility. Depending on what the use of the 

calculated price will be, one method may be preferred over another due.  

A method’s computational complexity is an important characteristic to 

consider when choosing which method to use. The Black-Scholes equation is the 

simplest computation. It requires only the ability to compute exponentials and use the 

standard normal cumulative distribution function. The Monte Carlo simulation follows 

the Black-Scholes equation in terms of computational complexity. It does not involve 

any computationally difficult functions but it requires a large number, up to millions, 

of iterations. The binomial model is the most computationally demanding because it 

requires the calculation of combinations. For binomial trees with more than 

approximately 1000 nodes, the combinatorial calculations involved are too large for 

even modern computers to compute.  
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The most accurate methods for pricing options is the Black-Scholes equation 

because this is the analytical price of an option. The other method’s accuracies are 

compared to the result that the Black-Scholes equation gives. The Monte Carlo 

simulation is the next most accurate followed by the binomial model. Below is a chart 

showing the convergence of the models to the price given by the Black-Scholes 

equation. Note that there are not values for the binomial model with more than 1000 

nodes. The computational complexity is too great for the computer to handle as 

mentioned above. However, we have shown that the binomial tree method does 

converge to the Black-Scholes equation price as the number of nodes approaches 

infinity. Therefore, in the event that a computer has the ability to handle the 

computation, the binomial price model would be more accurate than a Monte Carlo 

simulation. 

 

 

Figure 11: Speed of convergence of pricing methods to Black-Scholes price. 

 

n Binomial Model Price Monte Carlo Price

2 17.4960 47.4629

10 19.2550 26.5176

100 19.6922 21.2230

1000 19.7366 19.3600

10000 - 19.7625

100000 - 19.7423

BS Model Price   19.7415
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 A method’s flexibility, or its ability to handle different types of financial 

derivatives, is an important characteristic. While the Black-Scholes equation is the 

most accurate and least computationally demanding for simple European options, it is 

not able to handle the conditions of more complicated financial derivatives. For 

example, it cannot account for early exercise in American option or a variable risk free 

interest rate. The binomial model is more flexible than the Black-Scholes equation 

because it allows for decisions at each node. However, the Monte Carlo simulation is 

the most flexible. It is able to allow for both decisions at intermediate steps as well as 

variable values for the parameters.  

 

7 Conclusion  

Financial derivatives are an integral part of both business activities and the 

financial markets. As the largest financial security market, estimated to be more than 

$1.2 quadrillion, the ability to price financial derivatives is a necessity. However, 

pricing financial derivatives is not a straightforward task because the value of the 

derivatives is dependent on the movement of an underlying security which is 

inherently random.  

As it has been shown, for even the simplest financial derivatives, European 

options, a significant amount of sophisticated mathematical molding is necessary to 

find an analytical solution for its fair value. First, the price of the underlying asset is 

modeled using a stochastic process, geometric Brownian motion. Because geometric 

Brownian motion has unbounded variation, Reimann-Stieltjes integral cannot be used. 
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Instead, Ito’s lemma, the foundation of stochastic calculus, must be used to find the 

equation that models the underlying asset’s movement.  

Based on the model for the movement of the underlying asset’s price, one can 

find a partial differential equation describing the fair value of a financial derivative. 

After a transformation of variables, this partial differential equation can be represented 

in the form of the extensively studied heat equation. The heat equation has a well-

known solution that is used to find the equation for the fair price of a call option, 

known as the Black-Scholes equation.  

While the call option has a closed solution, not all financial derivatives have 

conditions that allow for the existence of a solution. This creates a need for alternative 

methods of pricing financial derivatives. Binomial trees and Monte Carlo simulations 

are two other methods that can be used. For European call options, both methods 

converge to the price given by the Black-Scholes equation. Both of these methods are 

more flexible in handling conditions than the Black-Scholes equation. The flexibility 

is not leveraged when using these methods to price European options. However, the 

ability to handle complex conditions is extremely important for pricing other, less 

straightforward types of financial derivatives.  

New types of financial derivatives are always being created. This creates a 

constant need to modify existing pricing techniques and to develop new methods for 

calculating the fair value of new financial derivatives.  Further work can be done on 

the pricing of novel financial derivatives by expanding on the basic foundations 

presented here.    
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