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1 Topology: Basic Ideas

Topology is a field of mathematics that studies basic properties of a space or object,

such as connectedness or the presence of “holes” in the space, that are preserved under

continuous deformation.

In a sense, topology can be thought of as an abstract geometry that has a looser idea

of what it means to be the “same.” In geometry, two shapes or objects are the “same,”

or congruent, if one is an exact copy of the other: edges have the same length, meet at

the same angles, sides have the same area, and volumes also match. In topology, things

are different. In topology, two objects are the “same,” or homeomorphic, if one can be

continuously deformed into the other. In technical terms, a homeomorphism is a contin-

uous, one-to-one and onto function with a continuous inverse, and if a homeomorphism

exists between two spaces, they are homeomorphic. But what exactly does that mean?

Take an object. Any object that you can imagine. Now imagine that that object is

made of an incredibly elastic or pliable material. You can fold the object, straighten it,

stretch it, compress it,1 or any such process. The things you are not allowed to do are

cut or remove part of the object, as well as gluing anything to the object, or the object

to itself. Any object into which you can turn your original object under these rules is

homeomorphic to the original object.

There is a classic joke among mathematicians that a topologist cannot tell his dough-

nut from his coffee mug, because they are homeomorphic. Figure 1 shows the home-

omorphism. As another example, triangles are homeomorphic to a circle. In fact, all

simple polygons are homeomorphic to a circle: It is easy to see by simply smoothing

out every corner and curving every side. That is to say that nearly all objects studied in

1It should be noted that you cannot compress any part of the object to an object of lower dimension:
No volume to an area, area to a line, or line to a point. This is, in a way, a sort of gluing, which is not
allowed. You may compress a volume to something so thin it may seem like an area, but it must still have
volume.

1



basic geometry are topologically equivalent.

Figure 1: Accessed from rioranchomathcamp.com on February 28, 2013

But then the question is raised: What objects are not homeomorphic? For starters, a

doughnut (or torus, as it is called) is not homeomorphic to a circle– the volume inside

the torus cannot be removed. As another example, an “8” is not homeomorphic to a

circle. In order to morph an “8” into a circle, you would need to remove the center

point, and then glue the ends together.

It is easy to visualize this morphing process for the objects we have described. But

how do we determine with mathematical rigor whether two spaces are homeomorphic?

Unfortunately, often the only way to do so is to actually show the homeomorphism– to

construct a continuous, one-to-one and onto function with a continuous inverse from one

space to the other. For “simple” spaces, this is not necessarily difficult, but what of elab-

orate spaces? For that matter, what about spaces that exist in 4 or higher dimensions?

They would be especially problematic as we could not even visualize the morphing.

Fortunately, while it may be difficult to determine if two spaces are homeomorphic,

it is often much easier to determine if two spaces are not homeomorphic. This is because

of what are known as topological properties (sometimes topological invariants)– proper-

ties of a space that are preserved by homeomorphisms. That is to say that if a space has a

certain property, then any space homeomorphic to it also has that property. Finding two

spaces that share such a property is not enough to conclude they are homeomorphic, be-

cause homeomorphic spaces must share all topological properties. For example, a fairly

intuitive topological property is path-connectedness. We say a space is path-connected
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if we can take any two points in the space and “draw” a path from one to the other that

stays entirely within the space. Both the circle and an “8” are path-connected, but as

previously discussed, the circle and “8” are not homeomorphic. But in contrast, if we

have two spaces and find a topological property that they do not share, then we can know

that they are not homeomorphic. For example, if we take a circle and remove any point

from it, the resulting space will still be connected. On the other hand, if we remove the

center point of the “8,” the resulting space is not connected.

Much of topology is concerned with finding topological invariants and drawing con-

clusions about a space as a result of that space having or lacking given properties. These

conclusions can sometimes inform facts about the real world. For example, the some-

what humorously named “hairy ball theorem” leads us to the conclusion that at any

given time, there must be at least one point on the surface of the Earth where the wind is

not blowing. There is also the Borsak-Ulam Theorem, which allows us to conclude that

at any time, there must be a pair of antipodal points on the surface of the Earth which

have the same temperature.

However, rather than deriving any such conclusions, we will be constructing a cer-

tain topological invariant: the (simplicial) homology groups.

2 Algebraic Topology and Homology: An Overview

Algebraic Topology was actually begun by Henri Poincarè nearly two decades before

general topology (Point-Set Topology) became a field of math on its own; in fact, it

was initially called analysis situs [4]. However, it too dealt with underlying structure of

spaces which are not dependent on specific distances or angles as in geometry. When

it became apparent that the two were studying similar phenomena (properties of spaces

preserved by homeomorphisms), they came together under a common name. Poincarè
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thought the point-set developments to be a “disease” which would later be cured [4], but

it would seem that he was incorrect.

The idea that started Algebraic Topology was one that most, if not all mathemati-

cians exploit: to take a new thing that is not well understood, and turn it into a problem

from another, well-developed field. Algebra was a field of math fairly well understood

by this time, so by creating an algebraic structure on spaces and understanding what

that structure means, certain information about the space can be gleaned. Of course, we

want this algebraic structure to be topologically invariant, or it would not actually be

yielding any information about the topological structure of the space.

There are two main types of groups (the algebraic structure we will be working

with; see Section 3 for information on groups) that developed in algebraic topology:

homotopy groups and homology groups. The homotopy groups (especially the first

homotopy group, otherwise known as the fundamental group) are very interesting, and

merit their own discussion. However, to give a proper treatment of even the fundamental

group would take too long. Instead, we focus our attention on the homology groups.

A fully rigorous development of homology groups (or, to be more precise, simplicial

homology groups) will be presented over the course of the remaining sections. For now,

we simply give an overview of the basic ideas.

Suppose you have a sphere, and draw a loop on the surface of it. Notice that no

matter how you draw the loop, part of the surface of the sphere is “inside” the loop

(if you happen to draw an equatorial loop on the sphere, you can still consider one

hemisphere to be “inside” while the other is “outside”). Compare this to a torus. Figure

2 shows how things are not quite the same as on the sphere. The loop labelled c is just

like all loops on the sphere: it encloses a region of the torus itself. However, the loops a

and b are different. Instead of enclosing a part of the torus, they enclose a hole. These

loops are more interesting than the loop c, since in a way, c “has” to be there. a and b
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only exist because of the specific structure of the torus.

Figure 2: Accessed from www.britannica.com on April 3rd, 2013

Now, suppose we had another loop, call it a′, which runs parallel to a, but is slightly

tighter, by running closer to the center hole of the torus. This loop also encloses a hole

in the torus. However, the hole that it encloses is the same hole that a encloses. a′ does

not give any information about the torus that we do not get from a, and therefore we

would like to consider them to be the “same” loop. How do we do that? Notice that if

we take the loops a and a′ together, they enclose a band on the surface of the torus. We

already noted that the loop c was “uninteresting” because it enclosed part of the surface

of the torus, and so by extension, we should say that having both of these loops together

is “uninteresting.” Note that taking the loops a and b together does not enclose a region

on the surface of the torus. This is good, because we want these loops to be distinct–

they enclose different holes of the torus.

There are obviously more intricacies to homology groups; for example, we can gen-

eralize the idea of a loop (or as we will call it, a cycle) to different dimensions and

have homology groups in different dimensions. But that is the basic premise: finding

“interesting” cycles on a space, and ignoring all uninteresting cycles. Making this math-

ematically rigorous, however, will require a lot of effort, and will start with something

that at first will seem completely unrelated. It will, however, be exactly what we need to

define the homology groups. The culmination of this work will be the computation of

the homology groups of a class of topological spaces known as surfaces. In addition, we
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will reverse the process– taking certain groups, and constructing a space that has that as

its (first) homology group.

3 Algebraic Background

Before delving into the long construction of homology theory, it is important to discuss

some underlying algebraic concepts which, while not a focus, must be known. Since this

is not the focus, treatment of this subject will be brief, and no theorems will be presented.

All definitions in this section have been taken from Fraleigh [6], with modifications as

it is deemed fit.

Definition 1. Let S be a set. A binary operation ∗ is a function mapping S × S into S.

For each (a, b) ∈ S × S, we will denote ∗((a, b)) by a ∗ b.

Definition 2. A group (G, ∗) is a set G, closed under a binary operation ∗ such that the

following hold:

1. (G, ∗) is associative; that is, for all a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.
2. There is an element e ∈ G called the identity element such that for all a ∈ G,

e ∗ a = a ∗ e = a.

3. For each element a ∈ G, there is an element a−1 ∈ G called the inverse of a, such

that a ∗ a−1 = a−1 ∗ a = e.

When it is clear from context what the operation of a particular group is, it is usually

referred to merely by the set on which it is defined in order to simplify notation. For

example, a group that is very frequently used is the integers under the normal addition.

We refer to this group as Z rather than (Z,+). Technically this is an abuse of notation,

but it is standard.

The idea of a group can be difficult to understand at first because it is such an abstract

concept. However, groups do appear in the real world. But before these examples can
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be introduced, a special type of group must first be defined.

Definition 3. Given a set A, a permutation of A is a function φ : A → A that is both

one-to-one and onto.

Definition 4. The permutation group of A is the collection of all permutations of A

under the operation of composition of functions.

At first these definitions still seem incredibly abstract, but that abstractness is simply

mathematical rigor applied to something that can be observed naturally. To help under-

stand, imagine having 4 objects, say, a circle, square, triangle, and an X. They can be

arranged in any order. Say to start they are in the order given previously. That is, the

circle is the first object, and the X is the last. Now give them a different order. Take

the object in, say, the 4th position (in this case, the X), and move it to the first position.

Now the X is first, the circle second, the square third, and the triangle fourth.

This rearrangement was a permutation of the positions of the objects. To see how

this aligns with the definition given, suppose this permutation is denoted φ1. If 1, 2, 3

and 4 denote the position of each object. Thus, φ1(1) denotes the new position of the

object originally in position 1 (the circle) after undergoing the permutation. That is,

φ1(1) = 2. Similarly, φ1(2) = 3, φ1(3) = 4 and φ1(4) = 1.

Now perform a new permutation. Take the square (Currently in position 3), and

switch it with the triangle (in position 4). If we call this new permutation φ2, then we

have φ2(3) = 4 and φ2(4) = 3. Further, the X (position 1) and circle (position 2) did

not move. Thus, φ2(1) = 1 and φ2(2) = 2.

However, what if we considered this permutation as a permutation of the original

positions? We can accomplish this by composing our permutations. Let φ = φ2 ◦ φ1.

Originally, the circle was in position 1. After applying φ, we see: φ(1) = φ2(φ1(1)) =

φ2(2) = 2. As expected, the circle is now in position 2. Similarly, we find that φ(2) = 4,
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φ(3) = 3 and φ(4) = 1. Thus, we have taken 2 permutations, composed them, and

produced a new permutation. As such, composition induces a binary operation on the

collection of permutations. Further, properties of (one to one and onto, in one case)

functions guarantee the other properties of groups necessarily hold, so this collection

forms a group. Typically, this group in particular is denoted S4.

For a slightly more complicated example of a real world permutation group, consider

the Rubik’s Cube. Suppose you have a solved Rubik’s Cube, and pick a side to fix. That

is, for whichever color is fixed, the center square on the side facing you will always

be that color. Imagine assigning to each of the 54 squares a number. Now, suppose

you rotate the right side of the cube counter-clockwise by 90◦ (such that squares that

were previously on the top of the cube are now facing you). You see that some of the

squares have shifted positions. Perhaps square number 3 is now in the position that

square number 12 once occupied. Thus, we have permuted the squares of the Rubik’s

Cube.

Notice that we could have rotated the left side of the cube. Or even the top, bottom,

front, or back. We also could have rotated the right two sides of the cube, but this would

have been equivalent to a rotation of the left side of the cube. We also could have rotated

the right side by 180◦ or 270◦, but that would be equivalent to two or three 90◦ rotations.

Similarly, we could have rotated the right side clockwise by 90◦, but this is equivalent to

a 270◦ counter-clockwise rotation (which, as previously discussed, is three 90◦ counter-

clockwise rotations). Thus we see that any permutation on the Rubik’s Cube can be

generated by (often very long) combinations of the six basic permutations: 90◦ counter-

clockwise rotations of the right, left, top, bottom, front, and back. It should be noted that

solution algorithms for the Rubik’s Cube are based on this and its remaining underlying

group structure.

Something should be observed about both S4 and the Rubik’s Cube’s group. In the
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latter, for example, notice that performing a right rotation followed by a top rotation

will yield a different permutation than first performing a top rotation followed by a

right rotation. A similar phenomenon can be observed in S4. The reason this occurs is

because (almost) all permutation groups lack a certain property: their operation is not

commutative.

Definition 5. Let (G, ∗) be a group and a, b ∈ G. If a ∗ b = b ∗ a, then it is said that

a and b commute. If for all a, b ∈ G, a and b commute, it is said that G is an Abelian

Group.

As homology groups will necessarily be Abelian, it will be assumed at any groups

discussed are Abelian, unless it is specifically mentioned that we are dealing with a

non-Abelian group (such as S4 or the Rubik’s Cube group). Further, it is common when

dealing with Abelian groups to let “+” denote the group operation.

There are still are concepts of importance left to be addressed. First, consider S4

once more. Suppose we only performed permutations that left the X in the fourth posi-

tion. Then combining any two of these permutations will result in another permutation

that leaves the X alone. Further, these elements are still associative, have an identity

(the permutation that moves no object does not move the X in particular), and each have

an inverse which leaves the X alone. Thus we see that there is a group “within” S4 such

that combining any two elements within it produces another element within it. This is

what is known as a subgroup.

Definition 6. Let (G, ∗) be a group and H ⊂ G. If ∗ induces a closed operation on H

(that is, for all if a, b ∈ H , a ∗ b ∈ H), and H along with the operation induced by ∗

forms a group itself, then H is a subgroup of G, and we write H < G.

It should be noted that G is a subgroup of itself. This will be important later.
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Now suppose in addition to our four objects in S4, we had another three objects. But

instead of considering permutations of all seven objects together, we only considered

permutations which permute the first four objects with each other, and the new three

object with each other, but never permute the first set with the second set. What we

essentially get is a new group that has two subgroups which do not interact with each

other. That is the idea of the direct sum of groups.

Definition 7. LetG1, G2, . . . , Gn be abelian groups. The groupG1⊕G2⊕. . .⊕Gn = G,

called the direct sum of the groups Gi, has elements of the form (g1, g2, . . . , gn), where

gi ∈ Gi. Further, the operation is defined such: if (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ G,

then (a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).2

Again consider S4. Suppose that instead of a circle, square, triangle, and X, we

had an oval, rectangle, pentagon, and Z. Would the resulting permutation groups be any

different? We should hope not, or there would be an incredibly large number of groups

possessing identical structure. Thus, we introduce the concept of an isomorphism.

Definition 8. Let (G, ∗) and (H,×) be groups. We call a function ψ : G → H an

isomorphism if ψ is one to one, onto, and for all a, b ∈ G, ψ(a ∗ b) = ψ(a) × ψ(b).

If there exists an isomorphism between G and H , we say G and H are isomorphic and

write G ∼= H .

Thus we have that S4 as we originally defined it and this “new” S4 are isomorphic.

It should be noted that though in this example these two representations of S4 “looked”

very similar, it is not always the case that isomorphic groups “look” the same. For

example, (R,+), the real numbers under addition, is isomorphic to (R+,×), the positive

real numbers under multiplication, via the isomorphism ψ(x) = ex. Lastly note that as

2Slightly more generality can be gained by allowing the groups to be non-Abelian, but because a
different term is used for this, and we will not be working with non-Abelian groups, this is not addressed.
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isomorphisms form an equivalence relation, people will often refer to two isomorphic

groups as being the same group: “This group is that group” rather than “this group is

isomorphic to that group.” While technically this is an abuse of terminology, it is a

widespread practice and little care will be given to ensure this distinction is made.

Sometimes there are maps that, like isomorphisms, preserve structure, but do not

preserve the “size” of the groups. Still, these maps can provide useful information, and

will be quite essential for developing homology groups.

Definition 9. Let G,H be groups, with operations notated by juxtaposing elements. A

map ϕ : G→ H is a homomorphism if for all a, b ∈ G, ϕ(ab) = ϕ(a)ϕ(b).

There are two very important subgroups associated with homomorphisms.

Definition 10. Let ϕ : G → H be a homomorphism. The kernel of ϕ, ker ϕ = {g ∈

G | ϕ(g) = e}, where e is the identity in H. The image of ϕ, im ϕ = {h ∈ H | ∃g ∈

G s.t. ϕ(g) = h}. It is known that ker ϕ < G and im ϕ < H .

There are two more important ideas left to discuss, but both of them go together. To

begin, fix a non-zero positive integer n. If we divide any integer by n, then there are

a limited number of possibilities for the remainder. In fact, if we let r = m mod n,

where m mod n denotes the remainder of
m

n
, then r ∈ {0, 1, . . . , n− 1}. We can also

see that if r1 = m1 mod n and r2 = m2 mod n, then (m1 +m2) mod n = (r1 + r2)

mod n. For example, if n = 7, m1 = 10 and m2 = 6, then m1 + m2 = 16, and 16

mod 7 = 2. But r1 = 3 and r2 = 6, so r1 + r2 = 9, and 9 mod 7 = 2.

Thus we suspect that there is some group structure here. That is in fact the case. But

before we can define the group structure, another object must be defined.

Definition 11. Let G be a group and H < G. If a ∈ G, then we define a +H = {g ∈

G | ∃h ∈ H s.t. g = a+ h} as the coset of H containing a.
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Definition 12. Let G be a group and H < G. We denote by G/H the factor group of G

by H , whose elements are the cosets of H . The operation on G/H is defined as such: if

a +H, b +H ∈ G/H , then (a +H) + (b +H) = (a + b) +H .3 We also say that this

is the group obtained by modding H out of G

It might be difficult to see at first, but the above example describes a factor group. In

this case, G will be Z and H is nZ, the multiples of n. Note that if m1,m2 ∈ Z, and if

n | (m2−m1), then m1 and m2 are in the same coset of nZ. For if m2−m1 = nk1 and

m1 = a+nk2, then m2 = nk1+(a+nk2) = a+n(k1+ k2). Thus we see that the only

unique cosets are those of the form rZ where r ∈ {0, 1, . . . , n− 1}. It is no coincidence

that this set coincides with the set of possible remainders.

4 Geometric Independence and Simplices

Constructing the simplicial homology groups takes some work. To start, we have a

definition:

Definition 13. A set A = {x0, x1, . . . , xk} of k + 1 points in Rn is geometrically in-

dependent if no k − 1 dimensional hyperplane contains all of them [4]. Otherwise, if

all points of A do lie on a k − 1 dimensional hyperplane, we say A is geometrically

dependent.

Definition 13 essentially says that if A is geometrically independent, each of the

points of A are in their own dimension. For an example, see Figure 3. In (a), the set

{a0, a1, a2} is geometrically independent. All points lie on the same plane, but not the

same line, which is a 1-dimensional hyperplane. By contrast, in (b), the set {b0, b1, b2}

is geometrically dependent, because all points are collinear.
3Usually, in order for this operation to be well-defined, the subgroup H need have another property

known as normality. But in Abelian groups, all subgroups are normal, so this is ignored.
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Figure 3: Scanned from Croom, page 8 [4]
.

There are a couple of equivalent definitions of geometric independence which may

prove useful later.

Proposition 1. A set A = {x0, x1, . . . , xk} of k+1 points is geometrically independent

if and only if for p ≤ k no p+ 1 of the points lie on a hyperplane of dimension less than

or equal to p− 1.

Proof. Note that one direction of this proof is trivial. If we know that no p + 1 of the

points lie on a hyperplane of dimension less than or equal to p− 1, then in particular we

know that all k + 1 of the points do not lie on a hyperplane of dimension k − 1.

To prove the other implication, suppose the converse. Suppose there exists Ap ⊂ A

such that |Ap| = p + 1 and all points of Ap lie on a hyperplane of dimension less

than or equal to p− 1, call it H∗. Without loss of generality, let dimH = p− 1 and let

Ap = {x0, x1, . . . , xp}. Lastly, letH∗ have basisB∗ = {b1, b2, . . . , bp−1} and translation

vector v.

Now, for all xj ∈ A\Ap, there exists bj ∈ Rn such that xj = hj + bj for some

hj ∈ H∗. Define a new hyperplane, H , with basis B = B∗ ∪ {bp+1, bp+2, . . . , bk} and

translation vector v. Note that |B| = k − 1.

Clearly A ⊂ H , as for xj ∈ Ap, H∗ ⊂ H , and for xj ∈ A\Ap :
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xj = hj + bj = v +

p−1∑
i=1

ai,jbi + bj for ai,j ∈ R

which is in H . Further, dimH = k − 1. Thus, A is geometrically dependent.

In a sense, Proposition 1 says that a set is geometrically independent if and only

if any subset of it is geometrically independent. This is, however, a self-referential

statement, so it does not make a good definition. The next proposition provides a more

useful defintion.

Proposition 2. A set A = {x0, x1, . . . , xk} of points in Rn is is geometrically inde-

pendent if and only if the set of vectors {x1 − x0, x2 − x0, . . . , xk − x0} is linearly

independent.

The proof of Proposition 2 involves a lot of linear algebra and provides little new

insight, so it is skipped. The statement is more useful, though, because it lends itself

readily to the well-developed theory of linear algebra.

Definition 14. Let A = {x0, x1, . . . , xk} be a set of points. The k-simplex, σk, spanned

byA is the set of all x ∈ Rn for which there exist nonnegative real numbers λ0, λ1, . . . , λk

such that

x =
k∑
i=0

λixi and
k∑
i=0

λi = 1.

The numbers λi are the barycentric coordinates of the point x. The points ai are the

vertices of σk [4].

We see that a 0-simplex is a single point, a 1-simplex is a line segment, a 2-simplex

is a triangle with interior, and a 3-simplex is a tetrahedron with interior. Higher dimen-

sional simplices cannot be easily visualized, but for the results presented here, only 0-,
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1-, and 2-simplices will be needed. Note, 1-simplices will sometimes be referred to as

edges.

Proposition 3. Let A = {x0, x1, . . . , xk} be vertices for a k-simplex σk. Then for each

x ∈ σk, λ0, λ1, . . . , λk, the barycentric coordinates of x, are unique.

Proof. Suppose x has another set of barycentric coordinates, λ′0, λ
′
1, . . . , λ

′
k. Consider

k∑
i=0

(λi − λ′i)(xi − x0) =
k∑
i=0

(λixi − λ′ixi + λix0 − λ′ix0)

Now, by definition, we have that the first two terms must sum to x. Further, be-

cause barycentric coordinates must sum to 1, the last two terms must sum to x0. Thus∑k
i=0 (λi − λ′i)(xi − x0) = x−x+x0−x0 = 0 And since the set {x1− x0, x2− x0, . . . , xk − x0}

is linearly independent by Proposition 2, we must have that for each i, λi − λ′i = 0, or

λi = λ′i.

Notice that if we have a k-simplex, σk and for a given vertex xi, if we consider only

points of σk whose ith coordinate is 0, those points themselves form a simplex. The idea

is addressed below.

Definition 15. A simplex σn is a face of a simplex σk, n ≤ k if every vertex of σn is

also a vertex of σk [4].

We will shortly prove a property of simplices, but first, a definition.

Definition 16. We say a set X is convex if for any two points a, b ∈ X , the line segment

connecting a and b is contained in X . That is, if x = ta + (1 − t)b, where 0 ≤ t ≤ 1,

x ∈ X . If A ⊂ Rn, we say X is the convex hull of A if it is the smallest convex set such

that A ⊂ X .

Proposition 4. A k-simplex σk is the convex hull of its set of vertices.
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Proof. We must first prove σk is convex. To do so, take a, b ∈ σk. Let a =
∑k

i=0 λixi

and b =
∑k

i=0 λ
′
ixi. If x = ta+ (1− t)b, 0 ≤ t ≤ 1, then

x =
k∑
i=0

tλixi +
k∑
i=0

(1− t)λ′ixi

or

x =
k∑
i=0

(tλi + (1− t)λ′i)xi

As t, (1 − t), λi, and λ′i are all nonnegative, λ′′i = (tλi + (1 − t)λ′i) is nonnegative.

Further, since λi and λ′i sum to 1 and t+ (1− t) = 1, λ′′i are barycentric coordinates for

x. Thus x ∈ σk

Now, let Xα br an arbitrary convex set containing the vertices of σk and let X =⋂
Xα. We wish to show σk = X . That X ⊂ σk is trivial, as X is the intersection of all

convex sets containing the vertices of σk, and σk is merely one such convex set.

To prove σk ⊂ X , we will prove that for any arbitrary Xα, σk ⊂ Xα. The idea is to

show that all of the n-faces of σk ⊂ Xα by induction on n. Clearly the 0-faces are in

Xα as they are the vertices. Further, all 1-faces are in Xα, as a 1-face is a line segment

connecting two vertices, and σk is convex.

Let σ2 be a 2-face of σk. Without loss of generality, suppose σ2’s vertices are

x0, x1, x2. Let x ∈ σ2 and let x = λ0x0 + λ1x1 + λ2x2. Now fix λ0 and let λ1, λ2

vary between 0 and 1 − λ0 (such that λ0 + λ1 + λ2 = 1. See Figure 4). Let x′′ be the

point where λ1 = 0 and x′ be the point where λ2 = 0.

Clearly x′, x′′ are on (distinct) 1-faces of σk and thus x′, x′′ ∈ Xα. ButXα is convex,

and x lies on the line segment connecting x′, x′′, so x ∈ Xα.

For higher dimensional faces, the proof is similar. Fix all k− 2 of the coordinates of

the point, and let the last two vary. Proceed as before.
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Figure 4

Note that an individual simplex can only produce a few spaces, even under homeo-

morphisms. Therefore, we next look to joining many simplices together.

Definition 17. Two simplices, σn and σm are properly joined provided that either σm ∩

σn = ∅ or σm ∩ σn is a face of both σn and σm [4].

Figure 5: Scanned from Croom, page 9 [4]

Figure 6: Scanned from Croom, page 9 [4]

Figure 5 shows examples of simplices that are properly joined, while Figure 6 gives

examples that are not.
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Definition 18. A (geometric or simplicial) complex is a finite family K of simplices

which are properly joined and have the property that each face of a member of K is

also a member of K. The dimension of K is the largest integer r such that K has an

r-simplex. The union of K with the Euclidean subspace topology is denoted by |K| and

is called the geometric carrier of K or the polyhedron associated with K, or sometimes

the underlying space of K [4].

Polyhedra are relatively simple to visualize, and most common topological spaces

are polyhedra, so homology theory initially developed through them [4]. It is this classic

path of development that we are traveling.

Before moving on, one more notion needs to be made precise.

Definition 19. Let X be a topological space. If there is a geometric complex K such

that |K| is homeomorphic toX , thenX is a triangulable space, andK is a triangulation

of X [4].

We will only be working with triangulable spaces, though we will take spaces known

to be triangulable, and then triangulate them.

5 Oriented Complexes

Definition 20. An oriented n-simplex, n ≥ 1 is obtained from an n-simplex, σn =

〈xo . . . xn〉 by choosing an ordering for its vertices. The equivalence class of even per-

muations of the chosen ordering determines the positively oriented simplex +σn while

the equivalence class of odd permutations determines the negatively oriented simplex

−σn. An oriented complex is obtained from a complex by assigning an orientation to

each of its simplices [4].

Orienting simplices in a sense gives us a direction to move around the vertices.
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Figure 7: Scanned from Croom, page 12 [4]

For example, if we had an oriented 1-simplex, +σ1 = 〈a0a1〉, then 〈a0a1〉 is moving

“forward” through the simplex, while 〈a1a0〉 would be moving “backward.” Similarly

for an oriented 2-simplex, σ2 = 〈a0a1a2〉, 〈a0a1a2〉 is moving forward while 〈a2a1a0〉 is

moving backward. Note that in this case, these are not the only representations of ±σ2.

For example, we also have +σ2 = 〈a1a2a0〉 and −σ2 = 〈a0a2a1〉. In fact, as we see in

Figure 7 that any ordering that goes through the vertices counter-clockwise will be +σ2

and any going clockwise will be−σ2. For higher dimensional simplices, it is difficult to

use geometric intuition to distinguish orientations, but we will not be dealing with such

simplices.

Definition 21. Let K be an oriented complex with simplices σp+1 and σp whose dimen-

sions differ by 1. We associate to each pair (σp+1, σp) an incidence number [σp+1, σp],

which is defined as follows: If σp is not a face of σp+1, then [σp+1, σp] = 0. Otherwise,

label the vertices of σp such that +σp = 〈x0 . . . xp〉. Let v be the vertex of σp+1 not in

σp. Thus we must have that +σp+1 = ±〈vx0 . . . xp〉. If +σp+1 = +〈vx0 . . . xp〉, then

[σp+1, σp] = 1. If +σp+1 = −〈vx0 . . . xp〉, then [σp+1, σp] = −1 [4].

We need incidence numbers to prove the next theorem, which will be of critical

importance to defining the homology groups in the next section.

Theorem 5.1. Let K be an oriented complex, σp an oriented p-simplex of K and σp−2

a (p− 2)-face of σp. Then
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∑
σp−1∈K

[σp, σp−1][σp−1, σp−2] = 0.

Proof. The following proof is taken from Croom ([4]), though there are 2 cases at the

end of the proof which he leaves as an exercise.

Label the vertices of σp−2 as x0, . . . xp−2 such that +σp−2 = 〈x0 . . . xp−2〉. Since

σp−2 is a face of σp, there are two additional vertices, a, b, and we may assume without

loss of generality that +σp = 〈abx0 . . . xp−2〉.

Nonzero terms in the sum will only occur when both [σp, σp−1] and [σp−1, σp−2] are

nonzero. That is, when σp−1 is a face of σp and σp−2 is a face of σp−1. This only happens

for two (p− 1)-simplices, namely:

σp−11 = 〈ax0 . . . xp−2〉, σp−12 = 〈bx0 . . . xp−2〉.

The proof now results in 4 cases, determined by the orientations of σp−11 and σp−12 .

Case 1. Suppose

+σp−11 = +〈ax0 . . . xp−2〉, +σp−12 = +〈bx0 . . . xp−2〉.

Then

[σp, σp−11 ] = −1, [σp−11 , σp−2] = +1,

[σp, σp−12 ] = +1, [σp−12 , σp−2] = +1,

so the sum of the products as indicated in the theorem is 0, as desired.

Case 2. Suppose

+σp−11 = +〈ax0 . . . xp−2〉, +σp−12 = −〈bx0 . . . xp−2〉.
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Then

[σp, σp−11 ] = −1, [σp−11 , σp−2] = +1,

[σp, σp−12 ] = −1, [σp−12 , σp−2] = −1,

so the desired sum is 0.

Case 3. Suppose

+σp−11 = −〈ax0 . . . xp−2〉, +σp−12 = +〈bx0 . . . xp−2〉.

Then

[σp, σp−11 ] = +1, [σp−11 , σp−2] = −1,
[σp, σp−12 ] = +1, [σp−12 , σp−2] = +1,

so once more, the sum we are seeking is 0.

Case 4. Suppose

+σp−11 = −〈ax0 . . . xp−2〉, +σp−12 = −〈bx0 . . . xp−2〉.

Then

[σp, σp−11 ] = +1, [σp−11 , σp−2] = −1,
[σp, σp−12 ] = −1, [σp−12 , σp−2] = −1,

so in this last case, the desired sum is 0.

As previously stated, Theorem 5.1 will be key to defining homology groups, which

we will be doing shortly.
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6 Defining Homology Groups

We are very near to defining the homology groups. To make the final push to this

definition, we must first define another class of groups.

Definition 22. Let K be an oriented complex. A p-chain on K is a function c from the

family of oriented p-simplices of K to the integers, such that c(−σp) = −c(σp). Under

the operation of addition of their values, the p-chains form a group, Cp(K), called the

group of p-chains ofK. For a given p-simplex σp, the elementary chain c corresponding

to σp is the function defined such that c(+σp) = 1 and c(τ p) = 0 for all other oriented

simplices τ p [11].

Usually, σp is used to denote its corresponding elementary chain, as otherwise no-

tation can become cluttered. Though this is an abuse, we will adopt it. It should also

be noted that for p < 0 and p > dimK, Cp(K) is the trivial group. Thus, we are only

concerned with p-chains if K has p-simplices.

Chain groups can loosely be thought of as linear combinations of simplices. With

this in mind, it is easy to see that if K has n oriented p-simplices, then

Cp(K) ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸
n times

.

However, triangulations of a space are never unique, and so chain groups cannot be

topologically invariant. In order to get groups that are topologically invariant, we need

one more thing.

Definition 23. If σp is an elementary p-chain, p ≥ 1, the boundary of σp, denoted ∂(σp)

is defined by

∂(σp) =
∑

σp−1∈K

[σp, σp−1]σp−1.
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The boundary operator can easily be extended to a homomorphism ∂ : Cp(K) →

Cp−1(K) by linearity. The boundary of any 0-chain is defined to be 0.

Since there is a boundary operator for each p, we should note the boundary operator

∂p, but since it is usually easy to know which operator should be used by context, we

omit it for the sake of convenience.

There is a seemingly alternative but quickly equivalent definition of the boundary

that will generally be more useful for computing boundaries. If σk = 〈x0 . . . xk〉 is

an oriented k-simplex, then 〈x0 . . . x̂i . . . xk〉 denotes the k − 1 face of σk obtained by

removing the ith face. Then

∂(σk) =
k∑
i=0

(−1)i〈x0 . . . x̂i . . . xk〉. (1)

Thus, for a 1-simplex σ1, we see that ∂(σ1) = 〈x1〉 − 〈x0〉 and for a 2-simplex σ2,

∂(σ2) = 〈x1x2〉 − 〈x0x2〉 + 〈x0x1〉. This latter case especially helps clarify why it is

called the boundary operator. Using Figure 8, we see that the boundary operator lets us

“travel” around the boundary of σ2. Through 〈a1a2〉, then backwards through 〈a0a2〉,

and finally through 〈a0a1〉.

Figure 8: Scanned from Croom, page 12 [4]

We now proceed to a key theorem that will allow homology groups to exist.
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Theorem 6.1. Let K be an oriented complex and p ≥ 2. Then for any p-chain cp,

∂ ◦ ∂(cp) = 0. To be more precise, ∂∂ : Cp(K)→ Cp−2(K), diagramed by

Cp(K)
∂→ Cp−1(K)

∂→ Cp−2(K)

is the trivial homomorphism [4].

Proof. This proof is taken from Croom [4]. Since any p-chain is a linear combination of

elementary p-chains, it suffices to prove that for each elementary p-chain, σp, ∂∂(σp) =

0. Notice that

∂∂(σp) = ∂

 ∑
σp−1
i ∈K

[σp, σp−1i ]σp−1i

 =
∑

σp−1
i ∈K

∂([σp, σp−1i ]σp−1i )

=
∑
σp−1
i

∑
σp−2
j

[σp, σp−1i ][σp−1i , σp−2j ]σp−2j .

If we reverse the order of summatation and pull σp−2j out one summation, we obtain

∂∂(σp) =
∑

σp−2
j ∈K

σp−2j

∑
σp−1
i ∈K

[σp, σp−1i ][σp−1i , σp−2j ]

 .

But Theorem 5.1 guarantees that
∑

σp−1
i ∈K [σp, σp−1i ][σp−1i , σp−2j ] = 0 for each σp−2j ,

so ∂∂(σp) =
∑

σp−2
j ∈K (0 · σp−2j ) = 0.

Corollary 6.2. The image of ∂p+1 is contained in the kernel of ∂p. That is, since both

are subgroups of Cp(K), im ∂p+1 < ker ∂p

Proof. Let cp ∈ im ∂p+1 < Cp(K). Thus ∃cp+1 such that ∂(cp+1) = cp. But then

0 = ∂(∂(cp+1)) = ∂(cp). Thus ∂(cp) = 0, so cp ∈ ker ∂p.

With this in mind, we are finally ready to define the homology groups.
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Definition 24. Let K be an oriented complex. For each p, we define the group of

p-cycles, Zp(K) to be the kernel of ∂p. That is, Zp(K) = ker ∂p. The group of p-

boundaries, Bp(K) to be the image of ∂p+1. That is, Bp(K) = im ∂p+1. Corollary 6.2

guarantees Bp(K) < Zp(K), so we define the pth homology group, Hp(K) to be the

factor group of Zp(K) by Bp(K). That is,

Hp(K) = Zp(K)/Bp(K).

After so much construction, it would be good to now take a step back and consider

what we have accomplished. For instance, what exactly are cycles? They are easiest

to describe in the one-dimensional case, because despite all of the mathematical rigor

necessary to make all definitions precise, it turns out that 1-cycles are just loops.4 While

there are different ways to think of loops, one is that they are one-dimensional objects (in

a topological sense) which enclose a two-dimensional space, or an area. With this way

of thinking, we then expand it to see that 2-cycles are two-dimensional objects which

enclose a three-dimensional space, or a volume. In the zero-dimensional case it is more

difficult to see, but because “enclosing” a one-dimensional space simply entails being

the endpoints of that space, and any given point can be both “endpoints” of a loop, every

0-chain is a 0-cycle.

However, that these cycles enclose a higher dimensional space is not enough. Con-

sider a sphere. Any 1-cycle on a sphere will enclose an area that is also on the sphere

(this fact, though presented differently, is actually the result of a theorem known as the

Jordan Separation Theorem). Compare this with the torus, seen in Figure 9. Notice the

cycles labeled a and b. Unlike any 1-cycle on a sphere, these cycles enclose space that is

not a part of the torus itself. These cycles are more interesting. The cycles on the sphere,

in a sense “need” to be there, but these ones on the torus exist because of the specific

4Strictly speaking, they are the image of loops
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structure of the torus. That is why we have the boundaries. Boundaries are essentially

those cycles which are on the surface of the sphere. They enclose an area that is a part

of the space, and because they are not interesting, we mod them out.

Figure 9: Accessed from www.britannica.com on April 3rd, 2013

Boundaries also serve another purpose. Suppose that there was another cycle that,

like the cycle b in Figure 9 encloses part of the visible hole of the torus. Should this cycle

be considered distinct from b? This cycle does not detail any new information about the

torus, so it would not make sense to consider it as distinct. How then can we make this

distinguishment more quantifiable? Notice however that together, these cycles enclose

a “band” of the torus. In fact, the group structure detects this. The fact that they enclose

a two-dimensional space which is a part of the torus means that together they form a

boundary.

Definition 25. LetK be an oriented complex. We call the elements ofHp(K) (the cosets

of Bp(K)) the homology classes of cycles. If z1, z2 ∈ Zp(K), we say that z1 and z2 are

homologous if they belong to the same homology class. That is, if z1 − z2 ∈ Bp(K).

We use the notation z1 ' z2 to show z1 and z2 are homologous.

It should be noted that we can and will say chains are homologous, even though we

technically only defined cycles as being homologous.
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7 Examples of Homology Groups and Computation Short-

cuts

Now that we have defined homology groups, it would help to give some examples of

spaces, and the computations of their homology groups. To start, consider the complex

K in Figure 10 whose underlying space is a triangle. This space, of course, consists of

only a single 2-simplex.

Figure 10: Scanned from Croom, page 12 [4]

Calculating Z0(K) is easy. Every elementary 0-chain is a cycle, so Z0(K) ∼=

C0(K) ∼= Z⊕Z⊕Z. Let c0 = h0a0+h1a1+h2a2 ∈ Z0(K), but instead of doing anything

with it now, we calculate Z1(K). Suppose we have a 1-chain, c1 = g1e1 + g2e2 + g3e3.

Then ∂(c1) = g1(a1 − a0) + g2(a2 − a1) + g3(a0 − a2). Assuming we want c1 to be a

cycle, we can say that 0 = (g3 − g1)a0 + (g1 − g2)a1 + (g2 − g3)a2. Thus we see this

will hold if g1 = g2 = g3. So letting g1 = g will determine a cycle, and Z1(K) ∼= Z.

Now instead of supposing ∂(c1) = 0, suppose ∂(c1) = h0a0 + h1a1 + h2a2. That is

h0 = g3 − g1, h1 = g1 − g2, h2 = g2 − g3. Thus, we are allowed to select any values for

any 2 of the gs, and we will still arrive at the desired equality. Thus, B0(K) ∼= Z ⊕ Z,

meaning H0(K) ∼= Z.

Now suppose we take a 2-chain, c2. Because there is only one 2-simplex, c2 = nσ.
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Now, ∂(nσ) = ne1 + ne2 + ne3. If we suppose c2 is a cycle, then we set ∂(c2) = 0

and conclude this can only happen if n = 0. Thus, Z2(K) ∼= {0} and subsequently,

H2(K) ∼= {0}.

If we instead consider ∂(c2) = g1e1 + g2e2 + g3e3, we see this occurs when g1 =

g2 = g3 = n, so B1(K) ∼= Z, meaning that H1(K) ∼= {0}.

Before going on to other examples, we notice that this was a lot of work for comput-

ing the homology groups of such a simple space. Doing these computations directly by

calculating the cycle and boundary groups involves increasingly more work as the space

becomes more complicated. Fortunately, there are some shortcuts.

First, for any of the spaces we will be working with, the dimension of the associated

complex will be at most two. As a result, there are no 3-chains for 2-cycles to bound,

and B2(K) will necessarily be trivial, meaning H2(K) ∼= Z2(K).

Next, there is a very simple geometric interpretation ofH0(K) that makes computing

it completely trivial. First, a definition:

Definition 26. Let X be a space. Let “∼” define an equivalence relation of points in X

where for x, y ∈ X, x ∼ y if and only if x and y can be connected by a path. That is, if

K is a triangulation of X with x, y vertices of K, then there is a sequence σ1, σ2, . . . , σp

of 1-simplices such that x is a vertex of σ1, y is a vertex of σp, and for all i, σi and σi+1

share a vertex. The equivalence classes of points of X under ∼ are known as the path

components of X .

Theorem 7.1. Let K be a complex whose underlying space has n path components.

Then H0(K) is isomorphic to the direct sum of n copies of Z.

Proof. This proof is mostly taken from Croom [4], with some simplification near the

end. Choose a path component of K and pick a vertex of K in that component, call

it 〈a′〉. For any other vertex of K in the same path component, call it 〈b〉, there is a
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sequence of 1-simplices of the form

〈ba0〉, 〈a0a1〉, . . . , 〈ava′〉.

Let c′1 be a 1-chain that has a value of either g or −g. It is easy to see that ∂(c′1) =

g(̇〈b〉+ 〈a′〉) or g(̇〈b〉− 〈a′〉). Thus, any elementary 0-chain g〈̇b〉 in the path component

that contains a′ is homologous to one of ±g〈̇a′〉. Hence, any 0-chain on this component

is homologous to h〈̇a′〉 for some integer h.

We can repeat this process on every path component. If we index the n path compo-

nents of K, and we let ai be an elementary 0-chain in the ith path component, then for

any 0-cycle, c0 on K, there are integers h1, h2, . . . , hn such that

c0 =
n∑
i=0

hi〈̇ai〉.

There might be some concern of uniqueness of representation of elements. Suppose

we have 0-chains, g =
∑
gi〈̇ai〉 and h =

∑
hi〈̇ai〉 that represent the same homology

class. But then for some 1-chain, c1

∑
(gi − hi)〈ai〉 = ∂(c1),

but since for i 6= j, ai and aj are in different path components, this can only hold if

gi = hi. Thus, g and h are the same chain. Thus we have that H0(K) ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸
n times

via the isomorphism

n∑
i=0

hi〈̇ai〉 → (h1, h2, . . . , hn).

Thus Theorem 7.1 allows us to immediately determineH0(K) if we know how many
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path components K has.

The last shortcut is not to compute Zp(K) and Bp(K) separately. Instead, we com-

pute Hp(K) directly and use some intuition to otherwise skip steps. The idea is to first

“reduce” the complex by passing to things homologous to find the most essential form

of a cycle, and then determine under what conditions, if any, that cycle may bound.

Figure 11: Scanned from Munkres, page 32 [11]
.

To help understand how we do this, consider the complex M in Figure 11 whose

underlying space is a square. To start, M has only 1 path component, so H0(M) ∼= Z.

Next, we compute H2(M): Suppose we have a 2-cycle, z2. Suppose z2 has a value of a

on σ1. We notice that 1-simplex e5 is a face of σ1 and no other 2-simplex. Thus, when

we compute ∂(z2), we find that it will have a value of a on e5, because nothing can

“cancel“ the value of e5 picked up by σ1. Thus a = 0. Using similar reasoning, we find

that z2 must have a value of 0 on every 2-simplex. Thus, H2(M) ∼= {0}.

It is for H1(M) that we truly exploit our shortcut. The following, including this

technique, is presented in Munkres [11]. Suppose we have a 1-chain, c on M and let c

have a value of a on e1. Computation will show that the chain

c1 = c+ ∂(aσ1)

has a value of 0 on e1. Clearly c1, c are homologous because c1 − c = ∂(aσ1). Next, if
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c1 has a value of b on e2, then computations show that

c2 = c1 + ∂(bσ2)

has a value of 0 e2. Further, since ∂(bσ2) has a value of 0 on σ1, c2 has a value of 0 on

e1 as well. Lastly, if c2 has a value of d on e3. Again, computations show that

c3 = c2 + ∂(dσ3)

has a value of 0 on e1, e2, e3. Further, c ' c3, as c3 − c = ∂(dσ3) + ∂(bσ2) + ∂(aσ1).

Thus, any 1-chain c is homologous to a 1-chain c3 which can take nonzero values only

on the subcomplex M ′ in Figure 12. Note, c3 can still have a value of 0 on M ′, but on

any 1-simplex not in M ′, c3 necessarily has a value of 0. This concept will be useful in

the future, and so we give it a formal name.

Figure 12: Scanned from Munkres, page 32 [11]
.

Definition 27. Let K be a complex and K ′ be a subcomplex of K. We say that a chain

c ∈ Cp(K) is carried by K ′ if c ∈ Cp(K ′). That is, c takes nonzero values only on K ′.

Now, we consider a cycle, z1. Since a cycle is still a chain, z1 is homologous to

a cycle z′1 which is carried by M ′. But then z′1 must also have a value of 0 on e4,
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as otherwise ∂(z1) will have a nonzero value on v. Thus, any 1-cycle on M must be

homologous to one of the form g(e5+e6+e7+e8). But g(e5+e6+e7+e8) = ∂(g
∑
σi).

Thus we conclude that H1(M) ∼= {0}

It should be observed that the complexes K and M have isomorphic homology

groups in each dimension. This is no mistake, as |K| and |M | are homeomorphic.

This was our goal, after all: finding groups which are topologically invariant.

Theorem 7.2. Let K and L be complexes such that |K| and |L| are homeomorphic.

Then Hp(K) ∼= Hp(L) for each p.

Proving Theorem 7.2 would take too long and involve a lot of discussion of topics

which ultimately serve no other purpose than proving this very theorem, but it is a

essential result nonetheless.

It should be noted that the converse of Theorem 7.2 does not hold. That is, if you

have two complexes that have isomorphic homology groups in each dimension, it is not

necessarily true that they are homeomorphic. The following examples will show such a

situation.

Figure 13

Figure 13 shows a plane diagram. Plane diagrams are something topologists use to

display a three-dimensional space in two dimensions. Notice in the diagram how on we

have two vertices that are labelled x0, and two that are labeled x3. Thus they are in fact

the same point, and the line segment between them is the same 1-simplex on that space.
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A good way to think about it is that you take the rectangle, and “glue” the edges together

that are indicated in the diagram. So the plane diagram in Figure 13 shows a “ring” or

what we call an annulus.

The annulus (call it A) has 1 path component, so H0(A) ∼= Z. We can use a similar

argument as we used for L to see that H2(A) ∼= {0}. For H1(A), we can use similar

methods as in the previous example (which Munkres describes as “pushing off” the 1-

simplices) to show that any 1-chain is homologous to one carried by the subcomplex A′

in Figure 14.

Figure 14

Now we notice two possible cycles: one which runs along the top of the annulus

once (call it z1), and one which runs along the bottom once. However, they are clearly

homologous, as they are the boundary of the 2-chain which takes equal value on every

2-simplex. Thus, we only need to consider the 1-cycle which runs along the top of the

annulus (in which case, the cycle must take a value of 0 on 〈x0x3〉). So any 1-cycle on

A is homologous to one of the form gż1 for an integer g and H1(A) ∼= Z.

Now, consider the Möbius band, M , in Figure 15. This plane diagram looks very

similar to the one for the annulus. The difference is in the gluing. Essentially, unlike

with the annulus, you create a half twist before gluing the ends together. Using our

previous work, we immediately get that H0(M) ∼= Z and H2(M) ∼= {0}.

Using the pushing off technique, we get that any 1-chain on M is homologous to
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Figure 15: Scanned from Croom, page 20 [4]
.

one carried by the subcomplex M ′ in Figure 16. Notice that z′1 =
∑6

i=1 ei is a cycle.

There are also cycles which run along the top or bottom, and then goes through e7, but

these are homologous to multiples of z′1. So any 1-cycle on M is homologous to gz′1 and

H1(M) ∼= Z.

Figure 16
.

So, the homology groups of the annulus and Möbius band are isomorphic. However,

it is known that A and M are not homeomorphic. The annulus is orientable, but the

Möbius band is not. However, despite this deficiency, homology groups are still quite

useful. Even if they cannot show that two spaces are homeomorphic, knowing that they

are not is still very useful.
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8 Homology Groups of Surfaces, Part I

We now begin the main goal: homology groups of surfaces. Surfaces (technically closed

surfaces) are a special class of spaces. The main feature of surfaces is that they are

locally homeomorphic to the plane, R2. Essentially this means that for every point of a

surface, when it is looked at closely, appears flat, like the plane, and there are no edges,

or boundaries. This latter condition excludes such spaces as the annulus or Möbius band.

It should be noted that all surfaces are path-connected, so we will pay no attention to H0

as it always be isomorphic to Z.

Figure 17: Accessed from www.math.osu.edu on March 13, 2013
.

Some examples of surfaces are the sphere and torus, which have already been seen.

Another example is the Klein bottle, seen in Figure 17. One can think of a Klein bottle

by taking a cylinder, and instead of gluing the circular edges directly, as we would

do to create a torus, we glue them in the “reverse” direction (this is analogous to the

half-twist in creating a Möbius band). One may object calling this a surface, because

there are apparently points where the Klein bottle intersects itself. The plane never self-

instersects, so how is it locally homeomorphic to the plane at these points? The answer

is that the Klein bottle is actually a subset of R4, but we are viewing it in R3. In R3,
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it cannot exist without this self-intersection. We must blame human beings’ inability to

perceive four spatial dimensions for this problem.

At first, we will only work with surfaces which can have a plane diagram made

from a square or rectangle, with appropriate gluings. In this case, “appropriate” means

that edges are glued in pairs. We should also have that no 2-simplex is glued to itself,

nor should any 2-simplex be glued to another 2-simplex along more than one edge.

To help facilitate these computations, we have a lemma, which comes from Munkres

[11]. Before we state the lemma, we will note that from this point forward, we assume

that every 2-simplex is oriented counter-clockwise, and the orientation of 1-simplices

is determined arbitrarily. We can have arbitrary orientations for 1-simplices because 0-

simplices (which arise in calculations of the boundary of 1-chains) have no orientation.

Lemma 8.1. Let L be the complex in Figure 18, whose underlying space is a rectangle.

Let Bd L denote the complex whose underlying space is the boundary of the rectangle.

Then

1. Every 1-cycle of L is homologous to a 1-cycle carried by Bd L.

2. If d is a 2-chain of L and if ∂d is carried by Bd L, then d is a multiple of the chain∑
σi [11].

Figure 18: Scanned from Munkres, page 34 [11]
.
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Proof. The proof of 2 is easy. For any interior edge e, there are exactly two 2-simplices,

σi, σj that have e has an edge. Since ∂d must have a value of 0 on e (as ∂d is carried

by Bd L), we see that d must have the same value on σi as σj (having both of the 2-

simplices are oriented counter-clockwise, one of σi, σj will go through e in its positive

direction, and the other will go through it in its negative direction). Extending this on

every interior edge e, we get that d must have the same value on every 2-simplex, and d

should be a multiple of
∑
σi.

Figure 19: Scanned from Munkres, page 35 [11]
.

The proof of 1 requires the use of the “pushing off” technique used in our previous

example. For any 1-chain c, we first we “push off” the 1-simplices in the center, meaning

that c is homologous to a 1-chain c1, carried by the complex in Figure 19. We then push

off the remaining interior edges, meaning c1 is homologous to a 1-chain c2, carried by

the complex in Figure 20. Now, if z2 is a cycle, we must have that z2 is carried by Bd L,

else ∂(z2) has non-zero value on v1, . . . , v5.

With this lemma in hand, we begin our computations. One last note on our notation

for these computations. While all 1-simplices still have an orientation, the fact that we

have chosen their orientation arbitrarily means we cannot use our old notation, as this

would suggest a particular orientation. We introduce a modified notation. If σ1 is a
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Figure 20: Scanned from Munkres, page 35 [11]
.

1-simplex with a, b as vertices, then we will use the notation [a, b] to be the orientation

of σ1 that starts at a and ends at b.

In this first section, all proofs come from Munkres [11]

Theorem 8.2. Let T denote the complex represented by the labelled rectangle L in

Figure 21. |T | is the torus. Then

H1(T ) ∼= Z⊕ Z and H2(T ) ∼= Z.

Further, if we let γ =
∑
σi, where σi denotes a 2-simplex, and let

w1 = [a, b] + [b, c] + [c, a],

z1 = [a, d] + [d, e] + [e, a].

Then γ generates H2(T ) and w1, z1 are generators for H1(T ).

Figure 21: Scanned from Munkres, page 35 [11]
.
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Proof. Let g : |L| → |T | be the gluing map, and let A = g(|Bd L|). Then A is home-

omorphic to a wedge of two circles (the union of 2 circles with a vertex in common),

seen in Figure 22. Because g only glues edges in Bd L, Lemma 8.1 immediately gives

1. Every 1-cycle of L is homologous to a 1-cycle carried by A.

2. If d is a 2-chain of T and if ∂d is carried by A, then d is a multiple of the chain γ.

Figure 22: Scanned from Munkres, page 36 [11]
.

However, in T we also get that

3. If c is a 1-cycle of T carried by A, then c is of the form mw1 + nz1.

4. ∂γ = 0.

3 follows because A is just the space in Figure 22. 4 is also direct. ∂γ definitely

has a value of 0 on every 1-simplex not in A, simply by computing boundaries of the

2-simplices with that 1-simplex as a face. For the 1-simplices in A, direct computations

also show that each of these 1-simplices takes a value of 0. For example, [a, b] is a face

of σ1 and σ2 (see Figure 21). ∂σ1 has a value of −1 on [a, b], and ∂σ2 has a value of +1

on [a, b].

Now, 1 and 3 give us that every 1-cycle of T is homologous to one of the form

z = mw1 + nz1. We see that z will bound if and only if it is trivial, because if z = ∂d,

then d is a multiple of γ by 2. So d = pγ and c = ∂d = ∂pγ = p∂γ = 0. Thus

H1(T ) ∼= Z⊕ Z
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with w1, z1 generating the group.

For H2(T ), we note that for a 2-cycle d, ∂d is carried by A, since ∂d is trivial. Thus,

2 says that d is of the form pγ. Further, 4 tells us that any such 2-chain of that form is in

fact a cycle. Since there are no 3-chains to bound, we conclude that

H2(T ) ∼= Z

with γ as a generator.

Theorem 8.3. LetK denote the complex represented by the labelled rectangle in Figure

23. |K| is the Klein bottle. Then

H1(K) ∼= Z⊕ Z2 and H2(K) ∼= {0}

Further, if

w1 = [a, b] + [b, c] + [c, a],

z1 = [a, d] + [d, e] + [e, a],

then z1 generates the torsion of H1(K) (Z2), and w1 generates H1(K)/Z2.

Proof. This proof begins the same as for the torus in Theorem 8.2. We let g be the

corresponding gluing map, and letA = g(|Bd L|). Again, A is the wedge of two circles.

Again, properties 1 and 2 hold. 3 is also the same. But this time, ∂γ = 2z1. This fact is

simple to establish. Take [a, b] for example. As before, [a, b] is a face of σ1 and σ2, and

when computing the boundary, we get a negative value from σ1 and a positive value from

σ2. However, consider [a, d], which is a face of σ3 and σ4. Computing boundaries, we
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Figure 23: Scanned from Munkres, page 37 [11]
.

get a positive value for [a, d] from both σ3 and σ4. This also happens for each 1-simplex

in z1, so ∂γ = 2z1.

Now, every 1-cycle on K is of the form z = mw1 + nz1. To see when z bounds,

we suppose z = ∂d for some 2-chain d. Since z is carried by A, 2 tells us that d = pγ.

Thus, ∂d = 2pz1, and we see that z bounds if and only if n is even and m is 0. We thus

obtain

H1(K) ∼= Z⊕ Z2

with z1 generating Z2, and w1 generating Z.

For H2(K), we once again get that any 2-cycle d must be of the form pγ. However,

this time pγ is a cycle if and only if p = 0, since ∂γ = 2z1. Hence,

H2(K) ∼= {0}.

The Klein bottle shows some interesting things. Remembering that the second ho-

mology group indicates an enclosed volume, H2(K) being trivial means that the Klein

bottle does not enclose a volume. Said another way, the Klein bottle has no definite

inside. The other interesting feature is the presence of Z2 in the first homology group.

41



Understanding what this means can be difficult, especially given our original interpre-

tation of what a non-trivial cycle in H1 means. How can this cycle not enclose a part

of the Klein bottle when we “go through it” once, but it does when we go through it a

second time?

The twisting nature (non-orientability) of the Klein bottle is what allows this to hap-

pen. Notice that if we pick a point on the Klein bottle, and start on its “outside” (as

previously discussed, the Klein bottle has no definite inside or outside, but we appeal to

the intuitive sense of an outside here). We are able to trace a path along the Klein bottle

such that we will eventually reach our initial point, but now we are on the “inside” of

the bottle. Thus, if we think of one pass through of z1 to be on the “outside” and one

to be on the “inside” we see that we could “unravel” the bottle, with half of the bottle

“within” the two copies of z1 and other half “outside” of them.

Next we have another surface, known as the projective plane. The projective plane

is a very strange space, and incredibly difficult to visualize. One way the projective

plane can be defined is by taking a circle (with interior), and gluing every point on the

boundary of the circle with its antipode (the point directly opposite it on the bound-

ary). It should be obvious that if embedded in R3, the projective plane will have self-

intersections. Like the Klein bottle, the projective plane properly exists in R4.

Theorem 8.4. Let P denote the complex represented by the labelled rectangle in Figure

24. |P | is the projective plane. Then

H1(P ) ∼= Z2 and H2(P ) ∼= {0}.

Further, the cycle

z1 = [a, b] + [b, c] + [c, d] + [d, e] + [e, f ] + [f, a]
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will generate H1(P ).

Figure 24: Scanned from Munkres, page 38 [11]
.

Proof. Again, let g be the gluing map, and let A = g(|Bd L|). This time, A is homeo-

morphic to a circle. The results 1 and 2 are the same as before. But now

3. Every 1-cycle carried by A is a multiple of z1.

4. ∂γ = 2z1.

Using similar reasoning to what we did for the Klein bottle, we see that

H1(P ) ∼= Z2 and H2(P ) ∼= {0}.

Before moving on to the next example, we need another definition, which essentially

allows us to build new surfaces out of simpler ones.

Definition 28. LetK and L be surfaces. The connected sum ofK and L, denotedK#L

is created by deleting a small open disk from both K and L, and gluing them along their

boundaries. If K and L are homeomorphic, we sometimes notate K#L as 2K (or 2L).

Theorem 8.5. Let 2P be the connected sum of projective planes. Then

H1(2P ) ∼= Z⊕ Z2 and H2(2P ) ∼= {0}
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Figure 25: Scanned from Munkres, page 38 [11]
.

Proof. We still use the rectangle L, with identifications as indicated in Figure 25 (here,

the arrows denote the direction of gluing). Again, we let g be the gluing map, with

A = g(|Bd L|), which is a wedge of two circles. We let w1 be the cycle which runs

across the top right edges (and through the diagonal), and z1 being the cycle which runs

across the bottom left edges (and across the diagonal). 1 and 2 from Theorem 8.2 hold,

with 3 and 4 being

3. Every 1 cycle carried by A is of the form mw1 + nz1.

4. ∂γ = 2w1 + 2z1.

The same logic as presented in the computations forK and P will show thatH2(2P ) ∼=

{0}. H1 is a different matter. The key is to use w1 and z1 to create more “useful” gener-

ating cycles. To this end, we suggest {w1, w1 + z1}. This works, because z1 is a linear

combination of these cycles (z1 = −(w1)+(w1+z1)). With this in mind, and following

the logic of the other computations, we see that

H1(2P ) ∼= Z⊕ Z2

with w1 + z1 generating Z2 and w1 generating Z.

It should be noted that Hn(2P ) ∼= Hn(K) for all n. This is no mistake. While our

comments at the end of Section 7 tell us it should not necessarily be the case, it is known

that the Klein bottle is homeomorphic to the connected sum of two projective planes.
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9 Homology Groups of Surfaces, Part II

There are many surfaces left to consider. In fact, there are infinitely many. There is a

known classification theorem for surfaces.

Theorem 9.1. Let X be a surface. Then X homeomorphic to the sphere, S2, the con-

nected sum of n tori, nT , or the connected sum of m projective planes, mP .

How, then, can we proceed with these calculations? The lemma we used in Section

8 does not directly apply, because none of the remaining surfaces can be created from

it with appropriate gluings. However, looking back at the proof of Lemma 8.1, there is

nothing particularly important about that particular triangulation of the rectangle, or the

fact that it even if a rectangle. Any n-gon with any given triangulation will yield the

same conclusions: every 1-cycle will be homologous to one carried by the boundary of

the n-gon, and any 2-chain whose boundary is carried by the boundary of the n-gon will

be a multiple of γ =
∑
σi.

With that in mind, we start with the sphere, S2. The sphere can be constructed from

the plane diagram of a rectangle, by gluing the top and left sides together, as well as the

bottom and right sides. This gluing, under the triangulation of the rectangle in Lemma

8.1 would glue two 2-simplices along more than one face in the top left and bottom

right corners. To get around this, we need only modify the triangulation. If we replace

the rectangle in the top left by the one in Figure 26, and a rotation of that rectangle to

replace the bottom right, we have an acceptable triangulation.

Theorem 9.2. Let S2 denote the complex represented rectangle discussed above. |S2|

is the sphere. Then

H1(S
2) ∼= {0} and H2(S

2) ∼= Z.
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Figure 26
.

(a) (b)

Figure 27: Scanned from Munkres, page 40 [11]

Proof. Let g by the gluing map, and A = g(|Bd L′|). Then A is a line segment. Since

every cycle is homologous to one carried byA, and the only cycles on a line segment are

trivial, we immediately get that H1(S
2) ∼= {0}. Further, the same logic as in Theorem

8.2 will show that H2(S
2) ∼= Z.

This result should be no surprise, as we already discussed that every cycle on a

sphere bounds, and the sphere clearly encloses a volume.

Theorem 9.3. Let nT be a space homeomorphic to the connected sum of n tori. Then

H1(nT ) ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸
2n times

and H2(nT ) ∼= Z.

Proof. We will prove the result for 2T , and the remaining cases will follow similar

arguments. Let Figure 27a be a triangulation of 2T (call the octagon M ) with gluings
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indicated in Figure 27b. Let g be the gluing map, with X = g(|Bd M |). X is the wedge

of four circles. Then

1. Every 1-cycle of of 2T is homologous to a 1-cycle carried by X .

2. If d is a 2-chain of 2T and if ∂d is carried by X , then d is a multiple of γ

3. If z is a 1-cycle of 2T carried by X , then z is of the form mA+ nB + sC + tD

4. ∂γ = 0

3 follows because X is a wedge of four circles, and 4 follows from computations of

boundaries: for a 1-simplex in the boundary of M , ei, the two 2-simplices that have ei

as a face go through ei in opposite directions, so they cancel each other out.

Now, every 1-cycle of T is homologous to one of the form z = mA+nB+sC+tD.

A cycle z0 will bound if z0 = ∂d. But then ∂d is carried by A, so d = pγ. Then

z0 = ∂d = p∂γ = 0. Thus, z0 bounds only if z0 is trivial. Thus

H1(2T ) ∼= Z⊕ Z⊕ Z⊕ Z.

Now if d is a 2-cycle of 2T , then ∂d is carried by A and d = pγ. Since ∂γ = 0, d is

a cycle for any p. Thus

H2(2T ) ∼= Z.

For n > 2, the calculations go exactly the same. We take a 4n-gon, with sides

glued in pairs, with one side between the two glued sides (notice in Figure 27b how

B is between the two sides marked A, an A between the Bs, a C between the Ds and

a D between the Cs). We will get 2n cycles which will never bound. And because

∂γ = 0, H2(nT ) ∼= Z.
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The process for proving Theorem 9.3 is extremely similar to that of Theorem 8.2.

This is not surprising, because they are similar spaces.

Theorem 9.4. Let mP be a space homeomorphic to the connected sum of m projective

planes. Then

H1(mP ) ∼= Z⊕ . . .⊕ Z︸ ︷︷ ︸
m−1 times

⊕Z2 and H2(mP ) ∼= {0}.

(a)
(b)

Figure 28

Proof. We will prove the result in the case of 3P , and the remaining cases will follow

similar arguments. Let Figure 28a be a triangulation of 3P (call the hexagon M ) with

gluings indicated in Figure 28b. Let g be the gluing map, with X = g(|Bd M |). X is a

wedge of three circles. Then

1. Every 1-cycle of of 3P is homologous to a 1-cycle carried by X .

2. If d is a 2-chain of 3P and if ∂d is carried by X , then d is a multiple of γ

3. If z is a 1-cycle of 3P carried by X , then z is of the form mA+ nB + sC
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4. ∂γ = 2(A+B + C)

3 follows because X is a wedge of three circles, and 4 follows from computations

of boundaries: every 2-simplex goes through 1-simplices in X in the same direction,

and since every such 1-simplex is a face of two 2-simplices, we get two copies of each

1-cycle, A,B,C.

Like we did for Theorem 8.5, we create a new set of generating cycles to aid our

computations. We choose {A,B,A+B+C}. Note that C = −A+−B+(A+B+C).

Now, if z is a 1-cycle of 3P , it is homologous to one of the form z = mA+nB+ sC =

(m − s)A + (n − s)B + s(A + B + C). Then z bounds if and only if m = n = s is

even. Thus

H1(3P ) ∼= Z⊕ Z⊕ Z2.

For H2, if d is a 2-cycle, then ∂d is carried by X , and d = pγ. But since ∂γ =

2(A+B + C), then d is a cycle if and only if p = 0. Thus

H2(3P ) ∼= {0}.

Form > 3, we take a 2m-gon, gluing adjacent sides in pairs in “opposite” directions,

creating new generating cycles in the same way. Doing so gives m − 1 non-bounding

cycles and 1 cycle which bounds with every other copy of itself.

As we see, all of these surfaces have non-isomorphic homology groups, so they

are, in fact, distinct. This is not enough to conclude that these are the only surfaces,

unfortunately, though it is the case. This might seem suspect. The connected sum of a

torus and projective plane should certainly be a surface, after all. As it turns out, T#P

is homeomorphic to 3P . While we will not show this fully, we will show that they have

isomorphic homology groups.
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Theorem 9.5. Let L denote the complex represented by the labelled hexagon in Figure

29. |L| is the connected sum of a torus and a projective plane. Then

H1(L) ∼= Z⊕ Z⊕ Z2 and H2(L) ∼= {0}.

Figure 29

Proof. Let g be the gluing map, and let X = g(|Bd M |). X is a wedge of three circles.

Then

1. Every 1-cycle of of L is homologous to a 1-cycle carried by X .

2. If d is a 2-chain of L and if ∂d is carried by X , then d is a multiple of γ

3. If z is a 1-cycle of L carried by X , then z is of the form mA+ nB + sC

4. ∂γ = 2C

3 follows from X being a wedge of three circles, and 4 follows from boundary

computations: 2-simplices which have a 1-simplex ei inA orB as a face will go through

ei in opposite directions, whereas 2-simplices which have a 1-simplex ej in C as a face

will go through ej in the same direction. Then following the same logic that we have
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now used many times, we quickly arrive at the conclusions. This time we do not even

need to create new generating cycles.

10 Finding Spaces With Certain Homology Groups

After finishing all of these computations of homology groups of surfaces, we notice that

there has not been much variety in the homology groups thus far. All second homology

groups have been trivial or isomorphic to Z. The lack of 3-simplices to bound prevents

anything like Z2, and the requirement of connectedness and being locally homeomor-

phic to the plane restricts it to only Z. H1 is also similarly restricted. For surfaces, we

cannot even have something as simple Z, let alone Z3.

It is then clear that to get some such groups, we cannot have a surface. After all,

with a full classification of surfaces known, we know that we cannot find some strange

surface with such groups. While another space may not be as “nice” as a surface, we

will no longer bound by restrictions such as being locally homeomorphic to a plane. In

particular, this means we no longer need to glue edges in pairs. This will give us all the

freedom we need to get other finite groups such as Z3.

Figure 30
.
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To get a space whose first homology group is isomorphic to Z3, we use the space L

in Figure 30, with gluing indicated by the labels. The side of the triangle, which will

denote by A, will be a cycle. In fact, since we are gluing every side together, “any” side

is a cycle, and they are all the same side. Following our usual process from all of the

previous computations, we get that any 1-cycle carried by the boundary is a multiple of

A, and ∂γ = 3A (as every 2-simplex on the boundary of L will go through the edges on

the boundary in the same direction, and each one is the fact of three such 2-simplices).

Thus, every three copies of A will bound, and H1(L) ∼= Z3. If using an n-gon with

analogous gluings, we will get a first homology group of Zn.

Using these spaces, we can build anything else that we want. Suppose, for example,

we wanted a space with a first homology group of Z3 ⊕ Z3, we need only glue a vertex

of one to a vertex of the other, making sure to not glue them in a “loop,” but rather in

a “chain” (that is to say, if we were gluing four of these things together, we glue one to

another, then a third to one of them, and a fourth to the third, but then not gluing the

fourth to the first). If we want a copy of Z, we glue on a circle. If we want to change

the second homology group on top of it, we can paste sphere onto it. Since the sphere

has trivial first homology group, this will not alter the first homology group at all. Of

course, we still do not have any 3-simplices to bound, so we still cannot have anything

like Z2 in our second homology group.5

There might be some concern that doing this gluing might create new, unwanted

cycles. The simple explanation for why this does not happen is that a point is not a

2-dimensional space, and so no new area is enclosed. More mathematically, if a new

cycle were created by this process, it would necessarily have to pass through the vertex

where the 2 spaces were glued. But then the only way to get back to that vertex is to

travel through cycles which were already present. This is not completely rigorous, but
5There is a method for getting such groups in the second homology group, known as suspension, but

it is outside of the scope of this work.
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it is easy to convince oneself of it. This is, however, why we require that the objects be

glued in “chains,” as if 3 spheres were glued in a “loop,” a new cycle would be created

by going through each one.

11 Closing Comments

Arriving at the end of this development of simplicial homology theory, we look back

and take note of how much effort was needed to simply define the homology groups,

let alone compute theme for a special class of spaces. Indeed, simplicial homology

theory mostly dead-ends after a few more developments past what was discussed here.

A different homology theory, known as singular homology, began to prevail and still

prevails as a topic of research.

Still, studying this original homology is important, as singular homology (as well as

other homology theories) is much less intuitive. Often it is easier to reach some con-

clusions in singular homology than their simplicial counterpart. For example, Theorem

7.2 in the singular case becomes almost a triviality, while in the simplicial case, several

other concepts need to be developed, which eventually dead-end along with the rest of

simplicial homology. But the proofs of these results give no insight into what is hap-

pening. For that matter, the groups are defined in such an abstract way that figuring out

what they mean is a challenge. Thus, starting with simplicial homology is necessary to

have the intuition to truly understand what the singular groups actually mean.

Thus, the work presented here has provided a good starting point for the study of ho-

mology theory. From here, one can go on to study the generalized homology theory with

the Eilenberg-Steenrod Axioms, as well as singular homology theory, and eventually to

cohomology theories. Those are, however, topics for another work.
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