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ABSTRACT

In an environment where most process maneuvers are automated, algorithms to
detect and classify abnormal trends in process measurements are of critical impor-
tance. The petrochemical industry in the United States loses billions of dollars an-
nually due to improper abnormal situation management, and a staggering one in 16
plant accidents results in a fatality. Hence, Statistical Process Control and Moni-
toring (SPC) has been an active area of research for many decades and a variety of
statistical and machine learning-based methods have been developed. However, most
existing methods for process monitoring learn the signal characteristics at a fixed
scale, and are best for detecting changes at that single scale. In contrast, data from
most industrial processes are inherently multiscale in nature due to events occurring
with different localization in time, space, and frequency. Unfortunately, existing tech-
niques are unable to adapt automatically to the scale of these features. Many existing
methods also require the measurements to be uncorrelated, whereas, in practice, au-
tocorrelated measurements are very common in industrial processes.

In this work, we have investigated the use of multiscale techniques to improve
upon these shortcomings of existing single-scale approaches. Because of fundamen-
tal functional relationships such as process chemistry, energy and mass balances,
measurements in multivariate processes are correlated. Our approach learns these
correlations and clustering behaviors in the wavelet space using machine learning
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methods such as Adaptive Resonance Theory (ART-2) and Principal Component
Analysis (PCA), resulting in higher detection accuracy coupled with noise reduction.
The performance of our method, named Multi-Scale Statistical Process Control and
Monitoring (MSSPC), is compared with existing methods based on the average detec-
tion delays for detecting shifts of different sizes. Our ART-2 based MSSPC detector is
currently deployed in a large scale petrochemical plant to detect process anomalies in
real time by incrementally learning normal process operation in the wavelet domain.
Several case studies for the detection of real process malfunctions, including the com-
parison with the performance of human operators, are also presented in this work.
These results indicate that MSSPC is a good method for monitoring of measurements

with unknown and different types of changes.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

An estimated eleven billion dollars per year are lost in the chemical process in-
dustry as a result of ineffective management of abnormal situations [2]. While most
abnormal situations result in lost products, lost productivity, or process inefficiency,
a staggering 1 in 16 abnormal situations results in a fatality. Even with sophisticated
data collection and computerized control systems, there remains a need to better in-
terpret data and improve decision support with respect to detection and identification
of faults. The problem of analyzing and interpreting process data is made difficult
because there are typically hundreds of sensor measurements that are often corre-
lated. Both the process and the sensors introduce noise that can mask the relevant
information. The process can be in a wide range of disjoint conditions of operation
which are continuously changing as result of process improvement.

More precisely, a process fault is defined as a “non-permitted deviation of a char-
acteristic property which leads to inability to fulfill the intended purpose” [3]. In an
environment where most process maneuvers are automated, development of proce-
dures to detect and classify abnormal process behavior by observation of measured
signals is of critical importance. This work presents a novel and now proven pattern
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recognition approach that can readily identify complex, nonlinear, correlated, noisy,

and multivariate process behaviors for the purpose of fault detection and diagnosis.

1.2 Motivation

Most industrial chemical processes, by their inherent nature, are not precisely
defined because the underlying physical and chemical process transformations cannot
be fully described. A chemical process may track any of several possible paths of
operation depending on a large number of known and unknown factors, and may exist
in multiple regions of operation. A process can move from one normal operation to
another as result of conditions such as changing feed or changing weather. Likewise,
the process can shift into abnormal regions of operation as result of equipment or
operator failures. There can exist several such normal and abnormal regions and
they can be contiguous or disjoint. Data clustering approaches for defining these
regions are intuitively suitable for fault detection and identification.

A critical feature for a fault detection approach is the ability to adapt with chang-
ing process conditions and behaviors. New regions of normal operation are con-
tinuously sought and new regions of abnormal operation are always possible. The
data analysis approach must therefore accommodate new information and knowledge
about the process, and at the same time, keep the previously acquired information
intact. The Adaptive Resonance Theory (ART) networks are among a very few
clustering algorithms that explicitly address this information management capability.
A framework for ART-based data analysis for detection and identification has been
developed by Davis and co-workers and has been applied to large-scale industrial pro-

cesses. ART-based clustering algorithms, however, are very sensitive to noise. They



require careful definition of regions identified, selection of data used to train, and
configuration of the algorithm to achieve good performance. Analogously, Principal
Component Analysis (PCA), which has been a popular unsupervised modeling tech-
nique for the statistical process control community for linearly correlated processes,
also fails to adequately account for process behaviors and noise.

Noise sensitivity can be attributed in part to the fact that most naturally occurring
process signals are a combination of components corresponding to different events
occurring at different localizations in time and frequency. For example, equipment
degradation occurs over long time intervals and low frequencies. In contrast, sensor
noise is spread across all frequencies and times. Specialized processing of the signal
at different scales benefits data analysis tasks such as detection and identification.

A multiscale hierarchy presented in this work that reflects sensor signals decom-
posed into time and frequency (wavelet) behaviors, provides a systematic way of
selecting the signal resolutions most relevant at the current time for a particular
kind of process event. For univariate and linearly correlated multivariate processes,
this wavelet-based, signal decomposition scheme is shown in this work to provide
significant improvement in detection performance over conventional statistical pro-
cess monitoring techniques. This dissertation is thus focused on combining PCA and
ART’s ability to model linear or nonlinear disjoint process regions and manage new
information, with the benefits of multiresolution data processing for greater noise

tolerance and quicker, more robust detection.



1.3 Results and Contributions

Early applications of ART-based detection and identification were limited to rela-
tively small process units and/or simulated data. The first phase of this work involved
a large-scale process study involving the application of ART to petrochemical plant
data over two years of operation but with no multiscale decomposition or specialized
noise handling approaches. Results showed that ART can detect process faults on-
line, and well in advance of the human operator. In some cases, ART was able to
detect process malfunctions that went unnoticed by the plant engineers.

The next phase of this work involved the investigation of multiresolution data
analysis techniques for noise tolerance and detection accuracy. One of the main con-
tributions is the theoretical derivation of performance curves for the multiscale Sta-
tistical Process Monitoring (MSSPC) and multiscale Principal Component Analysis
(MSPCA) methods. The theoretical curves have been validated against those calcu-
lated from Monte Carlo simulation studies for both univariate and linear multivariate
processes. The significance of this is that there now exists a theoretical justification
for the utility of these methods and a means of parameter configuration according to
desired operational objectives.

An important extension of the multiscale scheme by Bakshi [4] to multivariate
nonlinear modeling has been its integration with ART. We refer to the approach as
multi-scale ART or MSART. In the final phase of this work, the MSART network
has been used to successfully model nonlinear relationships in the wavelet domain as
well as the reconstructed signal domain. In practice, detection is shown to be quicker
and more consistent than the single scale ART detector by Whiteley and Davis. This

result has been validated using the comparative performance curves for ART and
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MSART generated over several simulated and real processes of varying statistical

nature.

1.4 Impact on Process Systems Engineering

In general, this research has developed a comprehensive approach for state es-
timation of multi-sensor processes that provides robust detection and identification
performance, and at the same time, is easy to configure and use. The approach ac-
counts for multivariate, non-linear, correlated and noisy data and addresses a critical
practical need of incorporating new information incrementally. It has been applied
and demonstrated for large scale chemical processes. Success is to a point that the
approach is being considered for integration into a commercial product. This work
overlaps significantly with several areas including chemical process engineering, com-
puter science, digital signal processing, and statistics. The general nature of the
approach has both drawn upon work in these diverse disciplines and has led to its
consideration in parallel application areas such as network security and intrusion

detection, signal detection in wireless communications, and digital speech processing.



CHAPTER 2

BACKGROUND

In an environment where most process maneuvers are automated, algorithms to
detect and classify abnormal trends in process measurements are of critical importance
from the point of view of safe and economical plant operation. These algorithms use
information extracted from previously annotated process data for predicting, prefer-
ably in real time, the state of the process when only unannotated measurements are
available. This task is referred to as fault diagnosis or anomaly detection and isolation
in the statistical process monitoring community. Clearly, one can draw close parallels
to the above objective from fields as diverse as e-commerce (fraud detection), network
security (intrusion detection), and wireless communication (signal detection). It is
not surprising, then, that algorithms designed for each of these varied applications
often rely on the same repository of pattern recognition/statistical modeling methods,
such as neural networks, for learning the characteristics of the data. This work has
primarily focused on two such techniques: Principal Components Analysis (PCA)
and Adaptive Resonance Theory (ART). We will present a method for multiscale
fault detection using these two techniques and demonstrate significant performance

enhancements on the basis of extensive simulated as well as industrial case studies.



To this end, this dissertation has built upon and enhanced the MSSPC hierarchy
by Bakshi (1998) and the ART-based diagnostic model by Whiteley and Davis (1996).
This chapter provides the basic background comprised of the previous work in this
area, the description of the MSSPC algorithm, and the description of the ART-2

diagnosis model.

2.1 Previous Work

Statistical Process Control (SPC) has been an active area of research for many
decades and a variety of methods have been developed. These include methods for
univariate SPC such as, Shewhart, moving average (MA), exponentially weighted
moving average (EWMA), and cumulative sum (CUSUM) charts. Methods for multi-
variate SPC include multivariate extensions of univariate methods, and methods that
monitor latent variables obtained by combining the measured variables to a lower
dimension space. Popular methods for reducing the dimensionality of the measured
data include principal component analysis (PCA) and partial least squares regression
(PLS). These dimensionality reduction methods have been very popular for multivari-
ate SPC in the chemical industry, and many extensions and applications have been
developed [5][6][7].

Most existing univariate and multivariate SPC methods operate at a fixed scale,
and are therefore best for detecting changes at a single scale. For example, Shewhart
charts analyze the raw measurements, thus representing them at the scale of the
sampling interval or the finest scale, and are best for detecting localized and large

changes. In contrast, MA, EWMA, and CUSUM charts consider the measurements



at a coarser scale through a transformation using a linear filter, and are best for
detecting small shifts or features at coarser scales.

In contrast to the single-scale nature of SPC methods, data from most practical
processes are inherently multiscale in nature due to events occurring with different
localization in time, space and frequency. A typical example of such data from a
petrochemical process is shown in Figure 2.1. Figure 2.1(top) shows data during
normal operation, while Figure 2.1(bottom) represents unusual operation due to a
drier cooling event. In Figure 2.1(bottom), the process change at approximately 150
time units is at a very fine scale and localized in time, but spans a wide range of
frequencies. The steady portions of the signal are at coarser scales and span a wide
temporal range. Finally, the change between 425 and 675 time units consists of a small
sharp change followed by a short steady section and a slow ramp at an intermediate
scale. Ideally, techniques for detecting changes at different scales, such as those shown
in Figure 2.1(bottom), should adapt automatically to the scale of the features. In
response to this need, many heuristic or ad hoc techniques have been proposed for
overcoming the single-scale nature of SPC charts. These include the Western Electric
rules [8] useful for identifying patterns in data and combined Shewhart and CUSUM
charts [9] for identifying large and small shifts.

Another characteristic of many existing SPC methods is that they assume the
measurements to be uncorrelated, or white, whereas, in practice, autocorrelated mea-
surements are extremely common. A common approach for SPC of autocorrelated

measurements is to decorrelate them by fitting a time series model, and monitoring
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Figure 2.1: Data from a petrochemical process: (top) Normal Operation, and (bot-
tom) Abnormal operation representing the drier cooling event,

the residual error. However, this approach is not practical, particularly for multivari-
ate processes. Other univariate approaches for decorrelating autocorrelated measure-
ments without time-series modeling include taking the batch means [10], and finding
the residuals between the measurements and their one-step ahead prediction by a
moving centerline EWMA (MCEWMA) model [11]. Batch means control charts of-
ten result in a significant delay in detecting large shifts, while MCEWMA is best only
for IMA stochastic processes. Consequently, neither of these approaches is broadly
applicable to different types of stochastic processes and process shifts and they lack
multivariate generalizations. For multivariate SPC, the measurements are usually
decorrelated by including lagged values of the variables [6]. The resulting model ob-
tained by methods such as PCA or PLS implicitly decorrelates the measurements by

extracting the linear time-series model. Traditional 72 and @ control charts are then



applied in the space of the selected latent variables and its residuals. This approach
often works better than SPC by steady-state PCA or PLS for autocorrelated data.

In recent years, wavelets have been popular for analyzing multiscale or autocorre-
lated measurements due to their ability to compress multiscale features and approx-
imately decorrelate many autocorrelated stochastic processes [1][12]. Thus, wavelet
coefficients provide compact information about a signal at different localizations in
time and frequency. Also, the wavelet coefficients of many stochastic processes are
approximately white since wavelets are approximate eigenfunctions of many mathe-
matical operators [13]. Wavelet-based multiscale methods have been developed for
improved solutions of many tasks including data compression, estimation, feature
extraction, and filtering [1][14][12][15][16].

Advantages of these applications of multiscale techniques arise from the fact that
most naturally occurring process signals are, in effect, a combination of various signal
components corresponding to different events occurring at different localizations in
time and frequency (Figures 2.2a and 2.2b). For example, equipment degradation
occurs over wide time intervals and low frequencies. In contrast, sensor noise is spread
across all frequencies and times. Events such as equipment failures are sharp, sudden
changes that are localized in time but display components across all frequencies.

A large body of published literature has investigated the use of wavelets for vari-
ous forms of change detection. For example, the work by Crouse et. al. [17] proposed
a wavelet-domain Hidden Markov Model for univariate statistical signal processing.
Swami, Sadler, and co-workers [18][16][19]]20][21][22] have presented multiscale meth-

ods for step detection and estimation. Other researchers [23][24] have investigated
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wavelet-based shockwave detection, mean value jump detection, monitoring appli-
cations for mechanical systems, and so on. These applications of multiresolution
methods, including this work, are based on selection of wavelet coefficients for the
purpose of retaining as much of the underlying process signal- and as little of the
noise- as possible. Unlike these previous developments, however, the proposed mul-
tiscale hierarchy exploits clusters of wavelet coefficients of multiple process variables
to provide a systematic way of selecting the most relevant scales. Because of funda-
mental functional relationships such as process chemistry, energy and mass balances,
measurements in multivariate processes are correlated. If these intervariable correla-
tions are linear, the resulting wavelet coefficients will be linearly correlated as well
[4]. Similarly, if the process variables are non-linearly correlated, the wavelet coeffi-
cients will be non-linearly correlated. The current work proposes to take advantage
of these correlations and clustering behavior in the wavelet space for higher detection
accuracy coupled with noise reduction.

The benefits of the multiscale representation using wavelets have also been ex-
tended to change detection and process monitoring. Methods for Bayesian multiscale
change detection require prior knowledge about the nature of the process change
[25]. Such methods can perform well if the necessary information is available, but
are not popular in industrial monitoring applications due to a lack of the necessary
information for the prior, and a lack of familiarity with Bayesian methods [26].

Our approach, called multiscale SPC (MSSPC), consists of decomposing each
measured variable to multiple scales by using a selected family of wavelet basis func-
tions. The decomposition permits identification of signal features at various scales

as relatively large coefficients in uncorrelated data. This work presents theoretical
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analysis and properties of univariate and multivariate MSSPC. The performances of
MSSPC and existing methods are compared based on the average run lengths (ARL)
for detecting shifts of different sizes. The ARL is determined both empirically by
Monte-Carlo simulation, and theoretically for uncorrelated as well as stationary and
nonstationary autocorrelated measurements. For autocorrelated univariate measure-
ments, MSSPC is compared with residuals, weighted batch means [10] and MCEWMA
[11] charts. The performance of multivariate MSSPC using PCA is compared with
steady-state and dynamic PCA. The theoretical analysis and application to industrial
data indicate that MSSPC is a good general method for SPC of processes containing
features of different sizes and at different scales from uncorrelated or autocorrelated
measurements. Furthermore, MSSPC subsumes existing methods such as Shewhart,
MA, EWMA, and CUSUM charts, depending on the nature of the selected wavelet.
Thus, MSSPC can adapt the data filter and the detection limits according to the
nature of the process change, and can specialize to existing methods if necessary.
These results indicate that MSSPC is a good method for SPC of measurements with
unknown and different types of changes. If the nature of the features representing

abnormal operation is known a priori, then existing methods may be tailored to out-

perform MSSPC.

2.2 Wavelets

A family of wavelet basis functions may be represented as,

Veult) = % (t - “) (2.1)

where s and u represent the dilation and translation parameters, respectively, and

¥(t) is the mother wavelet. Dyadic discretization of the dilation and translation
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parameters as, s = 2™, u = 2™k, with m and k being integers, permits the wavelets to
be orthonormal [27]. Efficient methods have been developed for decomposing a signal
on a family of wavelet basis functions based on convolution with the corresponding
filters [14]. Thus, any signal can be decomposed to its contribution at multiple scales

as a weighted sum of dyadically discretized orthonormal wavelets.

y(t) = D> duthmi(t) + 1; ark®ri(t) (2.2)

m=1 k=1

where, y is the measurement, d,,; are the detailed wavelet coefficients at the scale m,
arr are the scaled signal coefficients at the coarsest scale L. Orthonormal wavelets
have found application in many data analysis and modeling tasks due to their com-
putational efficiency, ability to compress deterministic features in a small number
of relatively large wavelet coefficients, and to approximately diagonalize a variety of
mathematical operators. These properties are illustrated in Figures 2.3 and 2.4. Fig-
ure 2.3 shows the wavelet decomposition of an example process previously presented
in Figure 2.1(bottom). The fine scale features are captured by the large wavelet
coefficients in Figures 2.3b, c, and d, and the remaining coarse scale features by the
last scaled signal in Figure 2.3e. Thresholding the wavelet coefficients by eliminating
small coefficients and reconstructing the signal results in a signal with less random
variation, as shown in Figure 2.3f. Thus, the stochastic noise in the signal may be
reduced by thresholding the coefficients at each scale to retain only the large coef-
ficients. The properties of such a wavelet thresholding approach have been studied
extensively [1].

The decorrelation ability of wavelets is depicted in Figure 2.4. The original
signal, a nonstationary stochastic process, and its autocorrelation function are shown
in Figure 2.4a. The wavelet coefficients and corresponding autocorrelation functions
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Figure 2.3: Extraction of deterministic changes by wavelet decomposition. (a) original
signal, (b) wavelet coefficients at m = 1, (c) wavelet coefficients at m = 2, (d) wavelet
coefficients at m = 3, (e) last scaled signal coefficients at m = 3, (f) reconstructed
signal after wavelet thresholding [1]

shown in Figures 2.4b, c, and d indicate that the coefficients are approximately
uncorrelated. The last scaled signal in Figure 2.4e contains some residual correlation,
which may be further reduced by decomposing to coarser scales. The variance of the
wavelet coefficients at each scale varies with the power spectrum of the original signal.
Thus, the variance of the wavelet coefficients and the last scaled signal in Figures 2.4b,
¢, d, e, increases with decreasing frequency. These properties form the basis of the
multiscale SPC method described in this work.

The wavelet decomposition in Figures 2.3 and 2.4 downsamples the coefficients
at coarser scales due to the dyadically discretized translation parameter, as shown in
Figure 2.5a. A disadvantage of using dyadically discretized wavelets is that every

measurement is decomposed after a time delay, with this delay increasing at coarser
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Figure 2.4: Approximate Decorrelation due to Dyadic Wavelet Transform

scales. Thus, the fifth measurement, x5 is decomposed to dig after x4 is obtained, and
to dgg after measuring xg. Thus, if a mean shift occurs at x5, it will not be detected
at scale m = 1 without a delay of one sample, and at scale m = 2 without a delay of
three samples.

This time delay can be eliminated by using wavelets with a uniformly discretized
translation parameter, © = k. This results in wavelet decomposition without down-
sampling, as shown in Figure 2.5b. The wavelets are no longer orthonormal to each
other. Consequently, the decorrelation ability is lost, but the compression ability is
retained. These wavelets are convenient for pattern recognition and on-line multiscale

methods [15].
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2.3 Multiscale Statistical Process Control

2.3.1 Methodology

Figure 2.6 shows a schematic diagram of the MSSPC approach for online anomaly
detection. Given the SPC parameters (such as detection thresholds) and the number
of scales L, the following approach allows us to construct the SPC diagnostic models
that constitute the MSSPC architecture. Let P be the number of process variables in
a multivariate process. All the constituent diagnostic models of the MSSPC scheme
model the data over a P-dimensional space of either the wavelet coefficients of these
P variables on different scales, or the signals reconstructed by various combinations

of wavelet coefficients.
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Training

Consider an N x P matrix Y?%" of normal training data, where N is the num-
ber of training samples. During the training phase, the following steps synthesize
normal diagnostic models and thus capture the normal behavior of the process. We
first apply the 1-D wavelet transform to each of the P variables to obtain detailed
signal coefficients dfflat”; and the scaled signal coefficients a’ﬁfg, where m =1,..., L,
t=2L ... N,andp=1,...,P. Theillustration in Figure 2.6 used a wavelet decom-
position with L = 4. We then construct L + 1 training matrices D" m =1,..., L,
and A% each of size N — 2L +1 x P, that contain the corresponding detailed and
scaled signal coefficients. The SPC diagnostic modeling algorithm of choice (such
as PCA, PLS, ART, etc) is independently applied to each of these training matrices.
Let the resulting diagnostic models in the wavelet domain be represented as SPCD,,,
m=1,...,L, and SPCA}, respectively. We thus have L + 1 SPCs that constitute
the Scale Selection Layer of wavelet-domain detectors. For example, Figure 2.6
shows a Scale Selection Layer composed of SPCD,, SPCDy, SPCD3;, SPCDy, and
SPCA,, which represent diagnostic models of wavelet coefficients of normal data at
the respective scales.

A crucial feature of the MSSPC architecture is the reconstruction of the signal
based on only the relevant scales. By replacing all except the relevant scales by zeros
before applying the inverse wavelet transform, the reconstructed signal is made to
conform to the nature of the change under consideration in terms of its magnitude
and rate of change. We thus filter out the unnecessary details of the process from the

point of view of the change under consideration. At any time ¢t > 2%, the signal can be

reconstructed in 2% ways, depending on which of the L + 1 scales were selected for
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reconstruction. For each of the 2% combinations, the coefficients corresponding to
selected scales are retained for reconstruction. The remaining coefficients are reduced
to zeros. Inverse wavelet transform is then applied. In this fashion, we generate
training data matrices of reconstructed signals for each of the 2L combinations. Let
these matrices be Ytren Yirain  Ybain each of which is of size (N — 2F +1) x P,
The data points for ¢ < 2¥ are not reconstructed since all the wavelet coefficients are
available only for t = 2%, ..., N.

Finally, we apply diagnostic modeling independently to each of these reconstructed
training matrices to obtain diagnostic models in a signal space filtered to retain
the selected combination of scales. These 271 SPC diagnostic models, SPCY;,
i=1,...,2F" constitute the Diagnosis Layer of detectors. In Figure 2.6, diagnoses
of the 5 Scale Selection networks lead to 25 = 32 possible ways in which the signal
could be reconstructed. Correspondingly, the Diagnosis Layer in Figure 2.6 is com-
posed of 32 SPC diagnostic models, each of which represents a model of normal data
reconstructed in one of the 32 possible ways.

When all scales are selected for reconstruction, the original signal matrix Y?'ren
is exactly reproduced for rows corresponding to ¢t > 2L, The corresponding Diagnosis
Layer network is the same as the time-domain SPC. Hence the time-domain detector

is a special case of the multiscale hierarchy presented in this work.

Online Testing

Having trained the Scale Selection Layer and Diagnosis Layer SPCs, we are now
in a position to carry out online detection. At each time ¢, the following steps allow

us to detect abnormalities using the proposed MSSPC approach.

19



| spc¥,
- — - |
| |spepy | | % |
ar ) g | == .
Abnogmal | SPCYs
| 4|_) x _|—‘> Abnormal
| SPCDy | | |
——————
y oo 2 | :
/ Norma\ SPCYs |
ytes
Original_j W | 4'9 Wl—tp | %
Signal |
o =
| | | |
| SPCA4 | |
atest |
X 4,t
.
afift | | Abnormal | SPC¥32 |

L | |

Scale Selection Layer

Diagnosis Layer

Figure 2.6: The MSSPC Architecture for Robust Fault Diagnosis

20



1. Apply wavelet transform to decompose the P-dimensional signal vector y!e

test

into wavelet coefficients dle*/ and a7?%,. Figure 2.6 shows a decomposition

of a dyadic window of the test signal y;*** into coefficients di%’, ..., d{’* and

test

aj’s’. For each scale m, construct a P-dimensional vector djg’

m.t» comprising of

(itest

coefficients d,7%

with p=1,..., P. This vector is presented as input to detector
SPCD,, of the Scale Selection Layer. Similarly, construct the vector atﬁt to be

presented to the detector SPC'Aj,.

2. Each of these networks provides a diagnosis at the corresponding scale, based
on whether the similarity between the input vector and the stored normal di-
agnostic models is above a pre-set detection threshold. Only if the network
SPCD,, provides an “abnormal” diagnosis, the coefficients diz% , p=1,..., P,
are retained for reconstruction. Similarly, only if the network SPC A provides
an “abnormal” diagnosis, the coefficients af$, are retained for reconstruction.
For example, in Figure 2.6, the dy coefficient vector was deemed "normal” by

SPCD,. Hence, prior to the application of the inverse wavelet transform, the

dy coefficients of all variables were reduced to zeros.

3. Apply inverse wavelet transform to the wavelet coefficients selected for recon-
struction. The vector yi¢’, comprised of the reconstructed values for the P
process variables, is presented as input to one of the 2L+! SPCY Diagnosis
Layer detectors corresponding to the combination of scales selected for recon-
struction. For instance, the chosen Diagnosis Layer network in Figure 2.6 was

trained on normal data that was wavelet-decomposed and reconstructed with-

out the dy coefficients. Thus, the selected Diagnosis Layer network compares
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the reconstructed test signal at time ¢ with prototypes of normal signals decom-
posed and reconstructed in exactly the same way. The resulting “normal” or

”abnormal” diagnosis is provided to the user.

The added benefits of our method come at a cost of increased computation and
storage requirements. For a wavelet decomposition involving L scales, the worst-case
computational requirement for MSSPC is of the order of L+ 2 times the computation
for the time-domain detector. The worst-case storage requirement for MSSPC is of

the order of L + 1 + 25! times the storage requirement for time-domain SPC.
2.3.2 Illustration

Figure 2.7 illustrates the potential of wavelet decomposition for process fault
detection. As stated earlier (Figure 2.2a and 2.2b), a typical process signal is
composed of a superimposition of several components such as sensor noise, distur-
bances, equipment degradation, and so on. By projecting the signal at increasingly
coarser levels of resolution, the wavelet transform allows us to analyze each of these
components at their respective frequencies and at the appropriate locations in time.
Figure 2.7 shows successive approximations of the signal from Figure 2.2a using
Haar wavelets and dyadic discretization. Equipment degradation can be observed
at the lowest scaled signal a,. Sudden events such as sensor and equipment failures
can be observed across all detailed signals. For instance, the equipment failure from
time-steps 35 through 40 can be seen at dy[10], d3[5], and d4[3].

The MSSPC methodology and its features are illustrated by the univariate exam-

ple shown in Figures 2.8 and 2.9. These figures use the Haar wavelet. The data
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Figure 2.7: Representation of Process Signals at Successive Levels of Approximation

representing normal operation are independent, identically distributed (IID) Gaus-
sian with unit variance. The detection limits at each scale are determined from the
normal data. In this case, the detection limits at each scale are equal for dyadically
discretized wavelets, since the coefficients are also uncorrelated with approximately
unit variance. For uniformly discretized wavelets, the limits need to be adjusted to
account for the lack of downsampling and autocorrelation in the coefficients. Abnor-
mal operation is indicated in Figure 2.8a by a shift of magnitude 5 between samples
30 to 60. The results for the Shewhart chart and MSSPC for this case are shown
in Figure 2.8. MSSPC results in a filtered signal that mainly contains the feature
representing abnormal operation. Furthermore, the MSSPC detection limits change
according to the nature of the signal, and the scales at which the features are present.

The detailed steps in MSSPC at four time steps are shown in Figure 2.9. When
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the shift first occurs at t=30, it is detected only at the finest scale, as shown in Fig-
ure 2.9b for t=30. The signal reconstructed with the coefficients outside the limits
and the limit at the current time (t=30) are shown in Figure 2.9f, indicating that
MSSPC detects the shift. The values of the limit and reconstructed signal at t=30 in
Figure 2.9f form the corresponding points in Figure 2.8b. The plots for t=34 depict
the behavior of MSSPC after the shift has persisted for some time. Now, the shift is
detected by the wavelet and scaling function coefficients at the coarsest scale in Fig-
ures 2.9d and e. The detection limit at t=34 is depicted by the circle in Figure 2.9f,
and is determined based on the variance of the normal data at the selected scales.
As the shift persists, it is detected only by the last scaled signal. The behavior of
MSSPC when the process returns to normal operation is shown by the plots at t=61
and t=64. At t=61, the last scaled signal continues to violate the detection limit,
but the return to normal is picked up at the finest scale, as shown in Figure 2.9b.
The reconstructed signal and limit at t=61 confirm that the process has returned to
normal operation. As the return to normal persists, the last scaled signal continues
to be outside the limit, but wavelet coefficients at other scales help in keeping the
reconstructed signal within its limits. Finally, the last scaled signal also stops violat-
ing the detection limit. The figures for t=61 and t=64 clearly demonstrate the need
for the final wavelet reconstruction and monitoring step, as discussed in the previous

paragraph.
2.3.3 Integer versus Dyadic Discretization

As discussed in Section 2.2, the wavelet translation parameter may be discretized

dyadically or uniformly. The type of discretization may be selected according to
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Figure 2.8: (a) Shewhart chart, (b) MSSPC. Detailed figures for obtaining each point
on the reconstructed signal and limits are shown in Figure 2.9.

the nature of the measured data, and the objective of the SPC problem. Dyadic
discretization permits the use of orthonormal wavelets and approximate decorrelation
of autocorrelated measurements, but introduces a time delay in detecting changes
due to a lag in the computation of the wavelet coefficients. Uniform discretization
does not downsample the wavelet coefficients and permits truly on-line SPC, but the
decorrelation ability and orthonormality are lost. These properties and the average
run length analysis in this work indicate that, in general, wavelets with uniform
discretization are best for on-line SPC of uncorrelated or moderately autocorrelated
measurements, particularly for detecting large shifts. If the measurements are highly
correlated or non-stationary, it is best to use dyadically discretized wavelets. For

small shifts, the performance with dyadic or integer discretization is quite similar.
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Figure 2.9: Illustration of MSSPC methodology. (a) original signal used for monitor-
ing measurement at selected time, (b), (c), (d) wavelet coefficients at m = 1,2, 3, (e)
coefficients for last scaled signal, m = 3, (f) reconstructed signal (x) and detection
limit (o) corresponding to selected time, and plotted on Figure 2.8.
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For dyadic discretization, if the measurements representing normal process opera-
tion are uncorrelated and Gaussian, the coefficients at each scale will also be uncorre-
lated and Gaussian with almost equal variance. If the normal data are autocorrelated,
then the coefficients of an orthonormal wavelet decomposition at each scale will be
approximately uncorrelated Gaussian, with the variance proportional to the power
spectrum of the measurements in the corresponding frequency band. Due to these
properties, the limits at each scale for MSSPC with dyadically discretized wavelets
can be determined directly from the wavelet decomposition or power spectrum of
normal data.

For integer discretization, the variance of the coefficients at each scale is still
proportional to the power spectrum of the measured data, but the detection limits
need to be adjusted to account for the fact that O(N) coefficients in the original
signal yield O(N x (L + 1)) coeflicients for a decomposition depth of L, and for the
autocorrelation between the measurements. The increase in the number of coefficients
in the decomposed signal requires the limit at each scale to be larger than that for the
original data to maintain equal false alarm rates. Different approaches may be used
to determine the detection limits for the wavelet and scaling function coefficients and
the reconstructed signal to obtain the same false alarm rate. For example, the wavelet
and scaling function coefficients may be subjected to smaller confidence limits to be
more sensitive to changes in the signal, followed by a higher confidence limit for the
reconstructed signal. Alternatively, the confidence limits for the coefficients may be
increased according to Equation 2.3 to account for the increase in the total number
of coefficients [4].

1
= — ——(100 — 2.
Cr =100 I+ 1( 00— C) (2.3)
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Variable C is the desired confidence limit for the reconstructed signal, and C7, is the
confidence limit that must be used for the coefficients at each scale for a decomposition
of depth L. The autocorrelation in the coefficients requires further adjustment of the
detection limits to obtain the desired in-control run lengths. This adjustment is
similar to that used by SPC methods that filter the measurements such as, MA,
EWMA, and CUSUM [28]. For the examples in this work, this adjusted detection

limit is determined empirically.
2.3.4 Relation with Existing Methods

The characteristics of MSSPC can be appreciated by comparing the filters used
by MSSPC with those used by existing SPC methods. The filters used by Shewhart,
EWMA, MA and CUSUM charts, shown in Figure 2.10[29], indicate that these meth-
ods differ in the scale at which they filter the measurements, and the nature of the
filter. Shewhart, MA, and CUSUM charts filter the data at increasingly coarse scales.
The scale of the EWMA filter is determined by the value of the filter parameter, and
that of the MA chart by the length of the filter window. These methods represent
the measurements at a single fixed scale since the size of the filter does not vary,
making them best for detecting changes that occur at a single scale. Consequently,
these methods are best for detecting changes that span only one scale or range of
temporal and frequency localization, since the filter does not adapt to the scale of
the signal features. Thus, Shewhart charts are best for detecting large and localized
changes, while CUSUM charts are best for detecting smaller coarse changes. Tech-

niques based on combining multiple charts aim to improve the performance of control
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charts over a broader range of scales. For example, combined Shewhart-CUSUM
charts [9] represent the measurements at two scales, the finest and coarsest.

The filters available to MSSPC are of many different shapes, and include the fil-
ters used by existing methods. The filters available to MSSPC with Haar wavelets
for a decomposition depth of L = 3 are shown in Figure 2.11. The filters are labeled
by a 4-bit binary number to indicate the coefficients retained for reconstruction. For
example, the combination 0100 corresponds to reconstruction after retaining only the
wavelet coefficient at m = 2 and the combination 1101 corresponds to the selection
of wavelet coefficients at scales m = 1,2 and the scaling coefficient ag. Comparison
with Figure 2.10 reveals that these MSSPC filters subsume the filters used by She-
whart, MA and CUSUM charts. For example, the combination 1111 corresponds to
a Shewhart chart, the combination 0011 corresponds to an MA filter of window size
4, while the combination 0001 to a CUSUM chart for a signal of length 8. The use of
smoother boundary corrected wavelets, such as Daubechies wavelets, approximates
an EWMA filter as one of the possible cases [15]. Thus, MSSPC can automatically
specialize to many existing methods depending on the nature of the measurements
and abnormal features. The example in Figure 2.9 shows that when the shift is first
detected at scale ¢t = 30, the filter used to detect this change is 1000 in Figure 2.11.
This filter adapts to 0011 at ¢ = 34, which is a mean filter of length 4, and to 1001
at t = 61.

MSSPC with dyadic discretization is also related to the approach of decorrelating
the measurements by taking their weighted or unweighted batch means [10]. Batch
means control charts select the window size according to the nature of the autocorre-

lation, thus requiring a longer window with increasing correlation. Since the windows

29



Shewhart MA

EWMA CuMsuU

Figure 2.10: Commonly Used SPC Filters

do not overlap, this approach cannot detect a shift sooner than the window length.
Unweighted batch means with a window of dyadic length is equivalent to the last
scaled signal from a Haar decomposition at a depth equal to the base two logarithm
of the batch means window length. Thus, MSSPC using Haar wavelets can subsume
batch means of dyadic lengths. Unlike batch means, MSSPC also has the wavelet
coefficients at finer scales available for detecting the shift sooner than a batch means

control chart.
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2.4 ART for Diagnosis

Most real-world large-scale industrial processes, by their inherent nature, are not
precisely defined in the space of sensor measurements. Within a loosely defined re-
gion, any given process may follow any of several possible paths depending on a
large number of known and unknown factors. There may exist several such regions,
possibly disjoint, because of factors such as various combinations of input feed char-
acteristics, changes in the desired nature of output, variations in the environmental
conditions, and so on (Figure 2.12a). Clustering-based models approximate these
complex, multivariate modes of operation as regions in sensor space as opposed to
deriving a precise functional relationship and are, thus, offer several important char-
acteristics for diagnosis of industrial processes [30][31]. Specifically, the ART family
of networks [32][33][34][35][36] includes some of the few clustering algorithms that ex-
plicitly address the issue of stable adaptation and incremental learning with changing
process behavior. This dissertation has made use of ART-2 for nonlinear diagnostic
modeling in wavelet space because of these desirable properties of ART family of al-
gorithms. This section presents a brief introduction for ART-2 based diagnosis. For a
more detailed discussion on this topic, the reader is referred to the Ph.D. dissertation
by Whiteley [37].

ART-2 is an unsupervised clustering mechanism proposed by Carpenter and Gross-
berg (Figure 2.12b) [32]. Conventional clustering algorithms were designed to be
synthesized off-line and lack the mechanism to adapt to dynamically evolving pat-
terns. The objective of the analog ART-2 network is to “self-organize stable pattern
recognition codes in response to arbitrary sequences of input patterns”. It imparts

human-like memory attributes which result in significant information management
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and system maintenance benefits. Later developments in the ART family of algo-
rithms, such as ARTMAP and Fuzzy ARTMAP [33][34][35][36], extended the basic
principles of adaptive resonance for the purpose of supervised classification and func-
tion approximation.

For the purpose of diagnosis, the ART input space corresponds to the measure-
ments of multiple process variables available at any time. Functional dependencies
and constraints across process variables can be modeled as clusters of training data in
this space: the underlying assumption being that abnormal behavior violates either
these functional dependencies or the operating constraints. In either case, measure-
ment vectors corresponding to anomalous behavior lie outside the clusters of normal
data. When enough labeled data are available about a previously unknown abnormal
operation, the ART-2 cluster space can be incrementally updated with prototypes
that characterize the new behavior. Each cluster is associated with a particular pro-
cess behavior in the form of a lookup table. The output space is thus the discrete
space of possible diagnoses or classes.

The similarity measure is an ART-2 distance metric used to quantify the extent
of match between the current measurement vector and the nearest cluster prototype.
A similarity measure of 1 indicates an exact match, whereas a similarity measure of
0 indicates no match. The vigilance parameter is a threshold such that a similarity
measure greater than or equal to the vigilance is considered an acceptable match. A
similarity measure below the vigilance represents an “unknown” process condition.
Implementation of ART-2 for fault diagnosis (Whiteley and Davis) uses a variable
number of hyper-spherical clusters which are of fixed size. The lack of any orientation,

incremental training, and overlapping coverage are some of its features distinct from
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other clustering-based diagnosis algorithms (e.g., [31]). It has been shown to be able
to work consistently well over a wide range of simulated as well as real-life process
situations [38][39][30].

Typical real world processes under a continuous transition from one operating
regime to the other, exploring previously unknown equilibria in response to the ever-
changing environment. When new information is available in terms of the latest
process data, an ART-based fault detector can choose to modify its current clusters
or add new clusters. This incremental modification takes place in a way that ensures
that the network remains stable as well as capable of adaptation to the changing
process conditions. ART and ARTMAP-based networks have been investigated for
process modeling and diagnosis of multivariate chemical data by several researchers
such as Wienke and co-workers [40][41][42], Hopke and co-workers [43], as well as
Wang and co-workers [44], in addition to the previous work by our group at the Ohio
State University [38] (Figure 2.12b).

ART-based clustering algorithms are especially sensitive to noise because of the
inherent feature enhancement ability of ART coupled with the ability to remember
rare events. The work by Frank et. al. [45] studied the clustering performance of
fuzzy ART and ART-2 in the presence of noise and concluded that responsiveness to
novel behavior can lead to non-optimal mapping because of the uncertain distinction
between “novelty” and “noise”. Thus, the properties of Adaptive Resonance Theory
that led to advantages in a noise-free environment do not necessarily offer similar
benefits for noisy mappings [46].

Due to the feature enhancement abilities of ART-2 clustering mechanism, however,

an ART-2 based fault detector is vulnerable to process noise. For example, consider
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a multivariate, linearly correlated, noisy simulated process shown in Figure 2.13a.
Abnormal operation was simulated as a mean shift added to all four variables from
time-steps 176 through 225. Only normal data were used for training, so that the
abnormal data were expected to be detected as an unknown event. Due to noise,
however, we can see that normal and abnormal operations were not clearly separated.
An ART-2 network was trained with independently generated normal data and was
subjected to the test data. At each time step, the ART-2 similarity measure between
the current four-dimensional data vector and stored cluster prototypes of normal data
formed the basis for anomaly detection. For the given test data, the ART-2 similarity
measures versus time are shown (Figure 2.13b-top). A similarity measure below the
vigilance parameter indicated the absence of an acceptable winner cluster, and hence
an “abnormal” state (Detection Flag = 1), as shown in the bottom graph. A similarity
measure above the vigilance parameter indicated that a matching normal cluster was,
indeed, found (Detection Flag = 0). We can see that a lot of abnormal points were
classified as normal. Such missed points can be misleading to an automated correction
action and are undesirable. ART-2 diagnosis for such a noisy mapping was, thus, not
robust. There was one false flag.

Several ART and ARTMAP variants have been proposed in the past to tackle
this issue. The PROBART network proposed by Marriot and Harrison [46] stores
probabilistic information about the node associations between ART layers to achieve
a better performance in noisy mappings. A modified ARTMAP by Lim and Harrison
[47] was shown to approach Bayes optimal classification rates. The work by Srinivasa
[48] proposed a PROBART variant that improved its generalization ability in the

context of high noise. Gaussian ARTMAP by Williamson [49] combined a Gaussian
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classifier and an ARTMAP network by appropriately changing the definitions of ART
choice and match functions. Recently, Wang and co-workers [44] have proposed the
use of wavelet feature extractors in place of the original data preprocessing and feature
enhancement units within ART-2.

The current work approaches the problem of noise in ART mappings of digital
signals in a manner fundamentally different than the research efforts discussed above.
The proposed multiscale hierarchy of ART networks does not modify the internals
of ART-2 in any way. As a result, the benefits of our mechanism are likely to be
applicable even if any of the above ART variants were used as the basic unit of the
hierarchy. This work combines the advantages of ART networks such as the ability to
model nonlinear, disjoint process mappings and the incremental training ability with
the benefits offered by multiresolution processing such as noise tolerance and quicker
as well as more robust detection of events.

The use of several types of noise reduction filters, including wavelet-based filters,
presents itself as a potential solution to the above noise vulnerability. However, this
solution encounters the following two problems. First, the noise reduction or filtering
step is clearly separated from the multivariate diagnosis step. The filtering step, thus,
does not benefit from intervariable clustering behaviors that are typically present in
real-life multivariate processes. Secondly, the diagnosis step is indifferent to which
signal components were retained in the filtering step. To work around these issues,
our approach integrates filtering and non-linear modeling for diagnosis. It also offers
specialized processing according to the scales of the signal components retained in

the filtered signal.
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CHAPTER 3

MSSPC AND MSPCA - THEORETICAL ANALYSIS AND
PROPERTIES

Data from most industrial processes contain contributions at multiple scales in
time and frequency. In contrast, most existing univariate and multivariate SPC meth-
ods are best for detecting events at only one scale. As stated previously, Shewhart
charts are best for detecting localized and large changes, while EWMA and CUSUM
charts are best for detecting small changes at a coarse scale. A multiscale approach
for SPC that can adapt to the scale of the relevant signal features has been developed
based on wavelet analysis [4]. This dissertation presents the theoretical analysis of
univariate and multivariate multiscale SPC (MSSPC), and compares its properties
with existing SPC methods based on their average run length (ARL) analysis. This
comparison shows that existing SPC methods are best for situations where the scale
of the signal features that represent abnormal operation is known beforehand. If the
nature of the abnormal features cannot be predicted a priori, MSSPC provides better
average performance. MSSPC also performs well for monitoring autocorrelated mea-
surements due to the ability of dyadic wavelets to approximately decorrelate most

stochastic processes. MSSPC with dyadic discretization is appropriate for SPC of
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highly autocorrelated or nonstationary stochastic processes. If the normal measure-
ments are uncorrelated or contain only mild autocorrelation, it is better to use MSSPC
with uniformly discretized wavelets. Many existing methods such as, MA, EWMA,
CUSUM, Shewhart and batch means charts are shown to be special cases of MSSPC.
Thus, MSSPC can specialize to these methods depending on the nature of the signal
features. The ARL for MSSPC is determined via Monte-Carlo simulation as well as
derived theoretically. The properties of MSSPC are also illustrated by application to

univariate and multivariate SPC problems from a large scale petrochemical process.

3.1 Average Run Length Analysis of Univariate MSSPC

We have compared the performance of univariate MSSPC with existing univariate
SPC methods for detecting a mean shift in uncorrelated and autocorrelated measure-
ments. The average run length (ARL) [28] is the average number of samples required
to detect a shift, and is determined in this dissertation both theoretically and by
Monte-Carlo simulation. The theoretical derivation of ARL for wavelets with integer
and dyadic discretization is presented in the Appendix. For Monte-Carlo ARL, dif-
ferent instances of test data are generated by simulating a shift of a given magnitude
at a particular time. Time to detect this shift is recorded for each instance. This de-
tection delay for each instance is referred to as its run length and an average of these
run lengths over a large number of simulations is the Monte-Carlo ARL for the shift
magnitude under consideration. The ARL value for a non-zero mean shift thus repre-
sents the detection probability. When plotted against the magnitude of the shift, the
ARL curve is expected to be non-increasing and typically converges to the location

of the mean shift as the magnitude of shift tends to infinity. When the magnitude of
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shift is zero, the corresponding ARL value indicates the probability of false alarms,
and is referred to as the in-control run length. For the same in-control run length,
it is desirable to have lowest possible ARL values for non-zero mean shifts. For the
examples in this dissertation, the mean shift is located at the first measurement. The

Monte-Carlo simulation results are generated from at least one thousand realizations.
3.1.1 A Uncorrelated Gaussian Process

Suppose that the measurements are univariate IID Gaussian with unit variance,

2(t) = N(0,1) (3.1)

where N(0,1) is a Gaussian random number with zero mean and unit variance. The
performance of Shewhart and MA charts is compared with MSSPC with dyadic or
integer discretization. In each case, the parameters are selected to maintain approx-
imately equal in-control run lengths. MA charts are selected for comparison with
MSSPC using Haar wavelets, since both methods use filters of the same shape.

For dyadically discretized wavelets, the ARL curves obtained from theory and
simulation for different depths of decomposition are shown in Figure 3.1. The ARL
for a Shewhart chart and a moving average chart with window of size 16 are also shown
in Figure 3.1 for comparison. The theoretical run lengths are determined based on
the assumption that the downsampled coefficients are uncorrelated and Gaussian with
variance equal to that of the original measurements. The close match between the
theoretical and simulated curves confirms the validity of these assumptions. Detailed
derivation of the theoretical approach is provided in Appendix A.1.

With increasing depth of the wavelet decomposition, the ability of MSSPC to
detect large shifts deteriorates due to the increasing time delay in obtaining the
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Figure 3.1: ARL of MSSPC-Dyadic simulated, MSSPC-Dyadic theoretical, Shewhart,
and MA charts applied to univariate IID Gaussian Process for different depths of
decomposition.

wavelet and scaling function coefficients at coarser scales. The ability to detect small
shifts improves at greater depths due to greater separation between the stochastic
variation and deterministic mean shift at coarser scales. Depending on the selected
depth of decomposition, the performance of MSSPC tends to be better than that
of Shewhart charts for small shifts, and better than MA charts for large shifts. For
higher depths (L = 3,4), the delay introduced due to dyadic downsampling adversely

affects the detection performance for large shifts.
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The ARL plots for integer discretization shown in Figure 3.2 indicate better per-
formance than that with dyadic discretization for detecting large shifts (Figure 3.1).
As expected, the improvement is particularly significant for larger depths of decom-
position. For example, for L = 4, MSSPC-Integer ARLs match the MA ARLs for
small shifts and the Shewhart ARLs for larger shifts. This observation indicates that
MSSPC-Integer successfully selected the finer scales for larger shifts and the coarser
scales for smaller shifts, without any previous knowledge of the magnitude of shift. Its
performance is thus robust overall for a range of shifts.

The theoretically computed ARL for MSSPC with integer discretization is shown
in Figure 3.3 for depth of L = 1, and indicates a good match with the empirical
values. The theoretical analysis of Appendix A.1 cannot be accurately applied to
MSSPC with integer discretization since the assumption of uncorrelated coefficients
is violated. However, this correlation can be modeled as a Markov chain, and a
theoretical method for ARL may be derived as shown in Appendix A.2. This approach
uses numerical integration to compute the probability of detection in terms of the
magnitude of the shift and the number of time steps passed since the introduction
of the shift. These probabilities are then used to derive the value of the average run
length. Detailed derivation of ARL values for a two-scale wavelet decomposition with
Haar wavelets for this signal is provided in Appendix A.2. The procedure is general
and can be extended to multiple scales and other wavelets. The computation cost
for numerical integration, however, increases exponentially with the depth of wavelet
decomposition.

Since the number of coefficients from the uniformly discretized wavelet decom-

position is more than the number of samples in the original signal, the confidence
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limit at each scale is increased by using Equation 2.3. The lack of downsampling
also results in autocorrelated coefficients at each scale, requiring further adjustment
in the limits to obtain the desired in-control run lengths. The adjusted limits are
determined by simulating the run length for different limits at each scale. The limit
corresponding to the desired run length is then determined by interpolation between

the simulated values. The resulting limits at each scale for different decomposition
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Comparison of the ARL curves for MSSPC-dyadic, MSSPC-integer, MA, and
Shewhart charts in Figures 3.1 and 3.2 indicates that no single method performs best
for all shift sizes. Thus, if the objective of SPC is to detect only small shifts, it is
best to use a MA control chart. Similarly, if the objective is to detect only large
shifts, it is best to use a Shewhart chart. Other methods such as CUSCORE charts
[50], can be tailored to detect specific changes whose nature is known beforehand. In
most practical problems, it is impossible to predict the type or extent of change due
to abnormal operation. For such problems, MSSPC is more appropriate due to its
ability to adapt for detecting a wide variety of shifts and signal features.

This general nature of MSSPC is illustrated in Figure 3.5 which shows the mean-
square error (MSE) for classifying a mean shift of different sizes. The shift persists
for 50 samples, and is surrounded on both sides by 50 samples each of normal data,
as shown in Figure 3.5a. Similar to the ARL analysis, the MSE analysis from Figure
3.5b shows that the average MSE values for all shifts in Figure 3.5 are smallest for
MSSPC-I over the range of mean shifts considered. Thus the MSSPC approach is

seen to be robust over a wide range of shift magnitudes.
3.1.2 A Stationary Autocorrelated Process

Many methods have been devised for SPC of autocorrelated measurements [28]. If
a time-series model of the measurements is available, it can be used to decorrelate the
measurements. The residuals will be uncorrelated, and may be monitored by existing
SPC methods [51]. Since time-series models may not be readily available, and are
often not practical to use, other methods that do not require an explicit time-series

model of the measurements have been developed for decorrelating the measurements.
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Figure 3.5: Mean-square error for classification by MSSPC-Integer, Shewhart, and
MA charts for IID Gaussian process with mean shift. Total MSE for all shifts is
7.1722 x 1073 for Shewhart, 4.2808 x 102 for MA, and 3.4099 x 102 for MSSPC-I.

These methods include batch means control charts [10] and moving center line EWMA
(MCEWMA) [11]. Batch means control charts decorrelate the data by taking the
average of the measurements in non-overlapping windows. The window size is selected
such that the means in each window are uncorrelated. Thus, more correlation will
require a longer window size. Weighted batch means (WBM) determine the weights
based on knowledge of the autocorrelation, while unweighted batch means use equal
weights regardless of the type of correlation. A significant limitation of this approach
is that it cannot detect a shift sooner than the window length. In addition, the
window size may have to be determined empirically. The MSSPC approach with
dyadic discretization takes a weighted mean of the measurements, but does better
than the batch means approach due to the multiscale nature. MCEWMA fits an
EWMA to the measurements to minimize the one-step ahead prediction error, and is

ideally suited for decorrelating IMA stochastic processes. It has also been applied to
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other types of autocorrelated processes [11]. As illustrated by the examples in this
section, MCEWMA does not perform as well as MSSPC for other types of stochastic
processes.

The ARLs for the following AR(1) process,

z(t) = 0.5z(t — 1) + €(t) (3.2)

for different depths are shown in Figure 3.6 based on Monte-Carlo simulation and the
derivation presented in Appendix A.1. The match between the analytical and Monte-
Carlo results is not as good as that for MSSPC of uncorrelated data shown in Figure
3.1. This is because the assumption of uncorrelated measurements at each scale is not
as valid. Furthermore, the match between theory and experiment deteriorates with
increasing depth, since the assumption of uncorrelated coefficients is less accurate at
coarser scales. Figure 3.6 also shows the ARL of SPC residuals and weighted batch
means charts [10]. These results indicate that WBM does well only for small shifts,
while residual charts work well only for very large shifts. Across a wide range of
shifts, MSSPC with dyadic discretization works quite well, particularly for small L.

Figure 3.7 depicts the ARL for an AR(1) process given by,

x(t) = 0.92(t — 1) + €(t) (3.3)

The high degree of autocorrelation in this stochastic process makes it more difficult
to detect shifts. This figure compares the ARL of MSSPC-D with that of WBM, and
MCEWMA control charts. WBM does well for detecting small shifts, but deterio-
rates quickly for larger shifts. MCEWMA does better than WBM only for the largest

shift. MSSPC-D does worse than WBM for small shifts, but does significantly better
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coefficients.
3.1.3 A Non-stationary Process

Nonstationary stochastic processes present special challenges for SPC, since their
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Figure 3.6: ARL curves for MSSPC-Dyadic simulated, MSSPC-Dyadic theoretical,
residuals, and weighted batch means charts for AR(1) process given by Equation 3.3

than the other two approaches for larger shift sizes. The time delay due to downsam-

pling is made up to a certain extent by the easier detection of shifts in uncorrelated

mean tends to change over time. The ARL performance of MSSPC and MCEWMA
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are compared in Figure 3.8. In this case, the stochastic process is IMA(1,1) given by,
z(t) =x(t — 1)+ €(t) — 0.5¢(t — 1) (3.4)

which can be modeled optimally by EWMA. Using wavelets without downsampling
is not feasible for SPC of such nonstationary measurements, since the high autocorre-
lation in the non-downsampled wavelet coefficients increases the rate of false alarms
for the same fault detection ability.

Figure 3.8 shows that for small shifts, the performance of MCEWMA and MSSPC-
D are equivalent, but MCEWMA performs better for detecting large shifts. The supe-
riority of MCEWMA for this type of stochastic process is due to it being the optimal
approach for decorrelating an IMA(1,1) time series. A mean shift in an IMA(1,1)
process appears as a spike of very small duration in the decorrelated residuals [52].
The MSSPC-D approach may easily miss this spike, even when it is large, due to
the downsampling of the wavelet coefficients. Furthermore, the mean shift cannot
be detected in the coefficients of the last scaled signal due to the residual autocor-
relation and extremely large detection limits. The extremely localized nature of the
spike indicates that a Shewhart chart on uncorrelated data should work best, which

is essentially the approach used by MCEWMA.

3.2 Average Run Length Analysis of Multivariate MSSPC

The general framework of MSSPC shown in Figure 2.6 may be used to transform
any existing multivariate SPC method to a multiscale approach. This section focuses
on multivariate SPC using principal component analysis (PCA). PCA has been pop-
ular for process monitoring since it allows extension of the principles of univariate
statistical process monitoring to multivariate processes by capturing a large number
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of related measured variables in a small number of uncorrelated principal compo-
nent scores [53][5]. The T? plot monitors the space of selected principal components,
whereas the () plot monitors the residual space. The detection limits are based on
the assumption of IID Gaussian data, or are found empirically.

Multivariate monitoring by MSPCA applies monitoring by conventional PCA to
the coefficient matrix at each scale. Thus, each column of the data matrix is decom-
posed by the selected wavelet, and 7% and Q plots are developed for the coefficients
at each scale. Since the wavelet transform is a linear operation, MSPCA preserves
the modeling qualities of PCA and does not affect the eigenvectors or eigenvalues of
the original matrix.

Many extensions and variations of PCA have been developed for dealing with
various practical situations. A common approach for monitoring autocorrelated mea-
surements is by dynamic PCA (DPCA) [6][7]. DPCA decorrelates the measurements
by augmenting the data matrix by lagged variables. Thus, PCA of the augmented
matrix implicitly finds the time-series model between the lagged and other variables.
Multivariate EWMA has also been applied to the selected principal component scores
to benefit from the dimensionality reduction and to improve the detection of small
shifts [54]. A rigorous ARL analysis of PCA and its many variations is usually not
available. This section studies the theoretical properties of PCA, DPCA, and MSPCA

based on simulated uncorrelated and autocorrelated data.
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3.2.1 Uncorrelated Measurements

This example considers the linear uncorrelated multivariate process modeled as

follows [4],

#(t) = N(0,1) (3.5)
2s(t) = N(0,1) (3.6)
N $1(t)+3§'2(t)
z3(t) = — 5 (3.7)
_ o mi(t) —xa(t)
x4(t) = 7 (3.8)
.Z'lgt;
JTQt
Y() = | g | 026 (3.9)
$4(t)

The data matrix, Y, for normal operation is generated by Equation 3.9, while that
for abnormal operation is generated by adding a mean shift of various sizes to all the
variables. Both, PCA and MSPCA select two principal components for the 72 plots.
A run is terminated if there is violation of the limits in either of the T2 or @ plots.
The ARL curves for both methods shown in Figure 3.9 indicate that the behavior of
PCA and MSPCA-I is analogous to that of Shewhart chart and MSSPC-I shown in
Figure 3.2. Similar to the univariate uncorrelated case, MSPCA shows improvement

over PCA for this multivariate process.
3.2.2 Autocorrelated Measurements

This section presents ARL analysis of the following multivariate time-series model
[6],

118 —.191
At = [.847 264 ]Z(t_lH
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; _24]u(t—1) (3.10)
y(t) = z(t)+v(t) (3.11)
w0 = |5 T e

o o - (312

The data matrix for steady-state PCA is [u(t) y(¢)], while that for dynamic PCA is
[u(t) u(t—1)y(t) y(t—1)]. Following Ku et al., two principal components are selected
for steady-state PCA, and seven for DPCA. Data representing abnormal operation
is generated by introducing a shift in . The ARL analysis for this process using
MSPCA-D is shown in Figures 3.10 and using MSPCA-I in Figure 3.11. Both figures
include ARL plots for PCA and DPCA. For all methods, a run is terminated when
either the T or () plot violates its detection limit.

These figures indicate that DPCA does perform better than PCA, particularly
for detecting large shifts in the mean. MSSPC with dyadic discretization using both
PCA or DPCA does well for detecting small shifts, but not as well as PCA or DPCA
for detecting large shifts. Its performance for detecting large shifts deteriorates due
to the delay introduced by downsampling. These results are comparable to those
for univariate MSSPC by Shewhart chart and MSSPC-D shown in Figure 3.1. In
contrast, MSSPC with integer discretization based on PCA and DPCA does better
for all shifts than their single-scale counterparts. The best performance is provided by
MSDPCA-I since it benefits from the decorrelation by DPCA and quicker detection

by the multiscale approach.
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3.3 Industrial Case Studies

The SPC methods studied in this dissertation are applied here to univariate and
multivariate data obtained from a petrochemical process. The data are provided by

the Abnormal Situation Management Consortium.
3.3.1 Univariate Processes

The univariate measurements analyzed in this section represent a malfunction
in a charge gas drier unit and a sensor malfunction due to oil accumulation. Both
events exhibit very small levels of noise relative to the magnitudes of the events
under consideration. This facilitates localizing the onset and end times for faulty
behavior by operator annotation and manual inspection of data. Unlike the previous
simulated examples, this industrial data-set contains different types of changes in
the measurements. As illustrated by these examples, actual operating data usually

contain changes of different sizes and shapes, making them ideally suited for MSSPC.

Charge Gas Drier Cooling

Measurements under normal and drier cooling conditions are shown in Figure 2.1.
Since the normal data has far less variation than the abnormal measurements, it is
possible to identify the onset and end of the drier cooling event at 100 and 666 time
units respectively, as shown in Figure 3.12. The thresholds for the Shewhart, MA, and
MSSPC charts were determined empirically to obtain approximately the same rate of
false alarms of 1% on the normal data. The large sudden change at the start of the
abnormal operation is ideally suited to detection by a Shewhart chart. As shown in

Figure 3.13, a Shewhart chart performs slightly better than MSSPC which does better
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than MA for identifying the starting point of the fault. In contrast, the slow return
to normal operation is more difficult for the Shewhart chart to detect. As shown in
Figure 3.13, MSSPC is the best method for detecting the return to normal operation,
with the Shewhart chart providing the worst performance. Since the return is a slow
change occurring at a coarse scale, it is difficult to detect only from the magnitude of
the measurements, but is easier to detect based on the slope of the signal. MSSPC is
particularly good for detecting such changes since the wavelet coefficients correspond
to the local slope of the measurements, and capture the behavior at multiple scales.
Consequently, MSSPC is the only method that detects abnormal operation between

samples at 655 and 666.

Sensor Malfunction due to Oil Accumulation.

This example analyzes a sensor failure due to oil accumulation. The difference
between the faulty sensor and a coupled redundant sensor is shown in Figure 3.14.
The abnormal event is indicated by a change in the frequency and amplitude of the
measurements. The small oscillations make it difficult to detect the beginning of this
fault by any of the methods used in this dissertation. Once again, the rate of false
alarms was maintained equal for all methods to approximately 1%. As illustrated in
Figure 3.15, the MA chart results in the worst performance for detecting the onset

and end of the event. MSSPC performs slightly better than Shewhart charts.
3.3.2 A Multivariate Process

PCA and MSPCA were used to detect a disturbance in furnace feeds. Normalized
sensor readings for 10 furnace feed sensors used as test data are presented in Figure

3.16. The event began at approximately 108" time-step. The detection performance
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presented in Figure 3.17 shows that MSPCA detects the event slightly earlier than

PCA and continues to detect it with its ) value well above the detection limits. On

the other hand, PCA misses a few genuine alarms at around time-step 150 in both,

T? and Q@ plots, while MSPCA does not in its @ plot.
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CHAPTER 4

MSART - CLUSTERING IN WAVELET DOMAIN

We have developed a method for process fault detection based on the integration
of multiscale signal representation and scale-specific clustering-based diagnosis. Pre-
vious chapter demonstrated the utility of our multiscale detection scheme applied to
linear projection-based methods such as PCA and Dynamic PCA. This chapter fur-
ther demonstrates its use in conjunction with a non-linear modeling method, namely
Adaptive Resonance Theory-2. The multiscale ART-2 (MSART-2) algorithm detects
a process change when one or more wavelet coefficients violate the similarity thresh-
olds with respect to clusters of wavelet coefficients under normal process operation
at that scale. In contrast to most other multiresolution schemes, the MSART frame-
work exploits the clustering behavior of wavelet coefficients of multiple variables for
the purpose of scale selection and feature extraction. By reconstructing the signal
with only the relevant scales, MSART-2 can automatically extract the signal feature
representing the abnormal operation under consideration. We provide illustrative ex-
amples as well as Monte Carlo bases for these claims via a comparative performance
analysis over several case studies. Comparison of average detection delays or run-
lengths of MSART-2 with those of ART-2 for a variety of processes with different
statistical characteristics is provided. We also present comparative results on real
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industrial case studies. Our results indicate that MSART-2, as compared to ART-2,
is a general approach that may be preferable for problems where it is necessary to

detect all changes drawn from processes of various statistical characteristics.

4.1 Illustration of the MSART-2 Algorithm

To illustrate the advantages of our approach in more detail, we present three case
studies. To facilitate a visual representation, let us limit ourselves to two variables,
although the method is general and can be applied to data with any number of
variables. The three cases differ in terms of noise and the extent of separation between
normal and abnormal operation.

The experiments discussed in this chapter use the same set of parameters for
all the Scale Selection Layer as well as Diagnosis Layer networks. All scales, thus,
provide equally important information about detection of an event. As a result, the
algorithm performs well as a general detection algorithm that can detect a broad
range of events. With more specific information about the faults at hand, one may
want to tailor the MSART detection system to specific types of events by adjusting
the ART parameters at the relevant scales.

Figure 4.1a shows the normal behavior of the process considered in this illustra-
tion. The input vector x(¢) consisted of measurements of two nonlinearly correlated
process variables z1(t) and zo(t). A bi-variate problem was chosen for visual sim-
plicity, although the algorithms considered are multi-variate. Gaussian noise was
superimposed on the data to simulate noisy conditions. Figure 4.1b illustrates the
non-linear correlation between these two process variables when plotted against each

other. Simulated faults included shifts of differing magnitudes among differing levels
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Figure 4.1: A Bi-variate Process for Illustration of the MSART-2 Approach

of noise, followed by resumption of normal behavior. The test signals were subjected
to online diagnoses by applying (1) an ART-2 detector, (2) a moving average (MA)
filter followed by an ART-2 detector (referred to as ART-2+MA), and (3) an MSART-
2 detector. Comparative analyses brought out the strengths and weaknesses of the

current approach with respect to the basic ART-2 based detection/diagnosis.

4.1.1 Case One: A Low-noise Process with a Clearly Sepa-
rable Shift

Figure 4.2a shows the test data used for diagnosis in this section. As can be seen

as the left side of the outermost arm of the spiral, a shift was introduced to simulate

abnormal behavior from time-step 501 to time-step 550. The number of scales, L,

was chosen to be 4.
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Scale Selection

The detection flags of the decomposed signals provide an insight into the mecha-
nism of scale selection in the MSART-2 architecture. Figure 4.2b shows the diagnoses
by the resulting 5 Scale Selection Layer networks for a part of the test signal. As
explained earlier, the Scale Selection Layer subjects each wavelet coefficient of the
test data (dy, ..., ds, and a4 in this case) independently to an ART-2 network trained
exclusively on the corresponding coefficients of training normal data. In Figure 4.2b,
a detection flag of 0 indicates a “normal” diagnosis, whereas a detection flag of 1
implies an “abnormal” diagnosis. The overall diagnosis, i.e., the diagnosis on the
reconstructed signal (Figure 4.2b: bottom-most graph), illustrates the effect of simul-
taneous selection of multiple scales. Figure 4.2b shows that when the abnormal region
started at time-step 501, the mean shift was detected immediately by ARTD,, the
network trained with finest detailed component of normal data. Scale Selection net-
works at the subsequent (coarser) detailed scales, ARTD,, ..., ARTDy,, detected the
shift at subsequent points in time. Since the level of detail became coarser at lower
frequencies, the duration for which the shift was detected increases from 1 time-step
to 16 time-steps as we go from d; to dy.

Similarly, when the normal operation resumed at time-step 550, the transition was
detected in the order of the finest to the coarsest scale. Except for the transitional
region, the fault was reflected only in the residual signal (a4) for most parts. The
residual signal is equivalent to that generated after applying a moving average filter,
and hence it is less sensitive to noise than the original time-domain signal. However,
it continued to report the fault for roughly up to 16 time-steps after the fault was

over (Figure 4.2b: fifth plot from the top).
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Reconstruction and Overall Diagnosis

Based on the outcomes of the Scale Selection Layer networks, a reconstructed
signal was appropriately generated. For example, at time-step 551 in Figure 4.2b,
only the networks ARTD; and ART A, reported a non-normal operation. Hence, the
reconstructed signal at time-step 551 was generated by applying the inverse wavelet
transform with all other coefficients, except d; and a4, replaced by zeros. Similarly,
at time-step 556, the reconstructed signal was generated by applying the inverse
wavelet transform after retaining only the coefficients ds, d4, and a4, and replacing all
other coefficients by zeros. This reconstructed signal was then subjected to an ART-
2 network from the Diagnosis Layer. At each time-step, of the 32 Diagnosis Layer
networks, the network trained on data generated by carrying the same reconstruction
on normal data was chosen. The detection flag of the Diagnosis Layer network chosen
at each time-step are plotted against time in the bottom-most graph.

The last scaled signal (as) was the only coefficient selected to reconstruct the
signal for time-steps 509 through 550 (Figure 4.2b), because only ART A, detected
the fault in this time interval. The reconstructed signal was thus a scalar multiple of
a4, implying a consistent detection of sustained faults and less false alarms. Beyond
time-step 550, however, multiple scales were selected for reconstruction. Since the
transition at time-step 550 was negative, i.e. from a positive shift to no shift, the
scales d; through d, tend to neutralize the continuing positive deviation of the residual
as due to filter lag. As a result, the diagnosis based on the reconstructed signal
(bottom-most graph) did not lead to as many false alarms following the resumption
of a normal state as the diagnosis based solely on a, (4" graph from the top). The

reconstruction operation is, thus, crucial for avoiding false flags at the end of the
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abnormal operation and at the same time maintain consistent detection of sustained

shifts.

Analysis

The utility of the MSART-2 approach over ART-2 with or without moving average
filtering is seen from Figures 4.2c and 4.2d. Figure 4.2c shows the similarity measures,
and the associated vigilance parameters, for the current test data using ART-2 and
MSART-2. A similarity measure below the vigilance parameter (solid horizontal line)
indicates an “abnormal” diagnosis. While both ART-2 and MSART-2 detected the
fault for its entire duration, the multiscale approach managed to achieve a larger
separation between the normal and faulty behavior without as many false alarms
(Figure 4.2c).

Figure 4.2d shows the detection flags of three fault detectors: an ART-2 detec-
tor, an MSART-2 detector with a 16 tap wavelet filter, and an ART-2 detector that
uses a 16 tap moving average filter for noise removal. The ART-2 detection per-
formance (top-most graph) reiterates the fact that ART-2 based diagnosis without
any preprocessing is prone to noise and hence false alarms. MA smoothening filter
achieves reduction in noise, and hence reduction in false alarms, during continued
normal operation (bottom-most graph). However, it did not detect the fault imme-
diately (time-step 501) and it lead to a set of false alarms immediately following the
malfunction (time-step 550). The MSART-2 approach (middle graph) was successful
in reducing both of these disadvantages by focusing on only the smoothened (a4)
component of the signal during sustained shift, and a combination of relevant scales

during the transitional phases.

74



4.1.2 Case Two: A Low-noise Process with a Narrowly Sep-
arable Shift

We now present a case where the faulty data were narrowly separated from the
normal data by changing the magnitude of the shift (Figure 4.3a). The shift lasted for
time-steps 501 through 550, similar to the earlier case. Towards the end, the shifted
data completely overlapped with the other arm of the spiral, known to be normal.

Figures 4.3b through 4.3d illustrate the performance of MSART-2 relative to that
of ART-2 with or without MA filtering. The individual outcomes of the Scale Selection
Layer networks were similar to Case One. Towards the end of faulty operation (time-
steps 545 through 550), due to complete overlap of shifted data and another arm of
the normal spiral, none of the Scale Selection Layer networks detected the fault. The
sudden shift back to normal, however, was detected clearly (time-steps 551 and 552).

Figure 4.3c shows the similarity measures for abnormal operation for ART-2 and
MSART-2. When compared to Case One (Figure 4.2¢, top graph), ART-2 can be ob-
served to achieve considerably less separation between the normal and the abnormal
operations in terms of the similarity measure (Figure 4.3c, top graph). Similar reduc-
tion in the level of separation is seen with MSART-2 as well (Figures 4.2¢ and 4.3c,
bottom graphs), although MSART-2 continued to outperform ART-2. The similarity
measure for MSART-2 remained well below the vigilance for most parts. Towards the
end of the abnormal operation, a close match of the test and normal data affected
the similarity measure.

As can be seen from the diagnoses reported in Figure 4.3d, ART-2 did not detect
the fault consistently because of the smaller distinction between normal and abnor-

mal data with respect to the level of normal noise. Use of the MA filter alleviated
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the chattering and also reduced the number of false alarms during sustained normal
behavior. This added advantage, however, came at the cost of delay in detecting the
resumption of normal operation at time-step 551. The MSART-2 approach, similar
to Case One, successfully managed to reduce the chattering as well as the inaccurate
classification at the transitional regions. For Case Two, MSART-2 can thus be seen
to provide quicker and more consistent detection than both ART-2 and ART-2+MA

in spite of the narrow separation between abnormal and normal process operation.

4.1.3 Case Three: A High-noise Process

The purpose of the third case-study was to study the effect of multiscale architec-
ture on anomaly detection in the presence of noisy signal. The training and testing
data used for this case are provided in Figures 4.4 and 4.5a. Similar to Case One, a
shift was simulated from time-step 501 through 550, although it is difficult to visually
detect the shift because of the presence of more noise.

In contrast with the earlier cases, the high noise in this case hampered the detec-
tion of the transient phases in finer scales. Analysis of the decomposed scales (Figure
4.5b) shows that the two finest ART-2 detectors (d; and ds) did not detect the shift
at all, unlike the earlier cases. The overall diagnosis was based on only the coarsest
scaled signal, a4, for most parts. Scales d3 and d, detected the transition back to
normal with the expected delay. This selection of multiple scales for reconstruction
reduced, to a small extent, the lagged alarm at the resumption of normal operation.
Figures 4.5c and 4.5d compare ART-2 and MSART-2 detectors for this test case.
The similarity measure plot (Figure 4.5¢, top graph) shows that ART-2 was unable

to separate the normal and abnormal process operation. Thus, the ART-2 detector
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Figure 4.4: Variable Correlations Under Normal Conditions for Case Three

led to many missed and false alarms (Figure 4.5d, top graph). The detection flag for
MSART-2 closely resembled that for ART-2+MA. Both detectors detected the tran-
sition away from normal and resumption of normal operation at a lag approximately
equal to the width of the filter used (16 in this case).

Because of the large amount of noise for Case Three, it is not surprising that the
ART-24+MA approach worked better than ART-2. The close resemblance of MSART-
2 and ART-24+MA for this test case attests to our claim that the multiscale detection

approach conforms to the best scale for the fault at hand.

These three representative cases illustrate that the multiscale approach is a generic
approach that works well on wide variety of situations. On the other hand, single-

scale methods such as ART-2 with and without moving average filter work best only
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for specific situations. For example, the unfiltered ART-2-based approach works
best only for low noise mappings (or large shifts) with clearly separated normal and
abnormal modes of operation. Similarly, the moving average based approach works

better for very noisy mappings (or small shifts).

4.2 Average Run-Length Performance Analysis

Having presented illustrations that bring out the strengths of the proposed MSART-
2 architecture, we now provide a statistically sound comparative performance analy-
sis via Monte Carlo simulations on three types of processes on the basis of the ARL
curves.

In the experiments presented in the following sections, the vigilance for ART-2 was
varied for a fixed vigilance parameter of MSART-2, until the in-control run-lengths
matched. We can then compare the MSART-2 and ART-2 detection performance,
while keeping the average false alarm rate equal for both detectors, in a Monte Carlo
fashion. Since repeated experimentation is required to calculate ARLs, the MSART-2
detector was limited to the minimum level of wavelet decomposition (i.e., L = 1) to
reduce computational time. For higher levels of wavelet decomposition, the difference

between ART-2 and MSART-2 performances will be even more significant.
4.2.1 A Univariate Process

We now consider the following simple univariate process model:
z(t) = N(0,1) (4.1)

where N(0,1) is the output of an IID Gaussian random number generator with zero

mean and unit variance and z(¢) is the process under measurement. Process data
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were normalized so as to lie between the range 0 to 1 as required by ART-2. A data
set, of 1000 samples was generated for this process and used for training the ART-2
and MSART-2 detectors.

To generate the ARL curves, shifts of varying magnitudes were introduced at ¢t = 0.
For subsequent time-steps, simulated abnormal data were subjected to diagnosis by
the algorithm under investigation (ART-2 or MSART-2), and time-step at which
the shift was first detected (run-length) was recorded for each magnitude of shift
for both detection algorithms. This process was repeated for 1000 instances of the
random process and the run-lengths were averaged for each shift across these 1000
simulations.

The ARL curves for ART-2 and MSART?2 are provided in Figure 4.6. We can see
that for a wide range of shift magnitudes, MSART-2 detects the shift with smaller av-
erage run-lengths. For small shifts, the process noise hampers the ability of ART-2 to
consistently detect the shift. Thus, the multiscale architecture successfully improves
on detection abilities of ART-2 without introducing significant delay. For large shifts,
however, ART-2 is seen to perform slightly better since the shift is easily separable

from the inherent noise in the mapping.
4.2.2 A Multivariate, Linearly Correlated Process

Consider the following linear multi-variate process:

() = N 1) (4.2)
() = N(0,1) (4.3)
z3(t) = 21(8) + 22(t) (4.4)

V2
. l’l(t) — T (t)
z4(t) = A (4.5)
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Univariate Process

yi(t) = ;(t) + &(t) (4.6)

where z;(t),i = 1,...,4 are linearly correlated process variables under measure-
ment. Simulated IID Gaussian noise, €;(t), of mean zero and standard deviation of
0.2 was superimposed on each variable to generate the measurements y;(¢). Process
data were normalized so as to lie between the range 0 to 1. Similar to the univariate
process, a data-set of 1000 measurement vectors was generated and used for training
the ART-2 and MSART-2 detectors.

Shifts were introduced to y;(t) at t = 0, with the magnitudes varying as multiples
of the standard deviation of ¢;(t). The linear correlation across the process variables
is thus violated. In a manner similar to the univariate process above, ARL curves
were generated and are presented in Figure 4.7. Again, we observe that MSART-2
outperformed ART-2 for a wide range of shifts. Shifts of a given magnitude are applied
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across all process variables, and hence shifts are detected earlier (lower run-lengths)
when compared to the univariate process (Figure 4.6). We observe that MSART-
2 performs better than ART-2, except for large shifts when abnormal operation is

well-separated from normal operation.
4.2.3 A Multivariate, Nonlinearly Correlated Process

We now present the ARL results for a non-linear spiral process similar to the one

used for Section 4.1.

r(t) = r(t—1)—0.001 (4.7)
6(t) = 6(t—1)+2+m=0.006 (4.8)
z1(t) = r(t) x cos(0(t)) (4.9)
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Figure 4.8: Comparison of ART-2 and MSART-2 Performances based on ARL for a
Nonlinear Multivariate Process

zo(t) = r(t) x sin(0(t)) (4.10)

yi(t) = zi(t) +elt) (4.11)

The ARL results presented in Figure 4.8 show that, similar to the earlier results,
the multiscale architecture is observed to improve the detection performance of ART-2
in noisy mappings (small shifts). Since the ARL curves are generated by averaging the
run-lengths over a 1000 simulations, these results validate the illustrations provided
in Section 4. When compared to Figure 4.7, the reduced difference between the ARL
curves can be attributed to the lower number of variables as well as the nonlinear

nature of the process.
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Similar to the ARL analyses from the previous chapter, the ARL curves presented
in this section confirm the utility of MSART-2 over ART-2 as established in Section
*. By exploiting wavelet-domain clusters, we see that MSART-2 can detect small

shifts with smaller detection delays when compared with ART-2 for three example

process models of varying statistical characteristics.

4.3 Industrial Case Studies

As claimed earlier, deviations from normality in real processes can be slow or fast.
In addition, they may differ in the level of noise, and in a random and/or deterministic
nature of the change. We go back to the two representative process changes from a a
real large-scale petrochemical process that were discussed in the context of univariate
MSSPC in the previous chapter. For each example case, ART-2, MSART-2, and
ART-24+MA were trained with the same training data and same training parameters.
Similar to the illustration from Section 4.1, the objective is to detect the deviations
away from normality as soon as possible with the minimum number of both missed
and false alarms. The results presented below support our claim that MSART-2
automatically conforms to the nature of the event at hand and hence performs well

as a general detection mechanism.
4.3.1 Example 1: Drier Cooling

The normal and test data for this example were presented earlier as Figures 2.1
and 3.12 in the previous chapter. Since the overall magnitude of the change is large
compared to the extent of noise in the process, all three methods under investigation
were expected to perform identically except for the transition phases. The onset of

the deviation, as well as the return to normality, can be seen to be slow developing
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(relative to the window of 16 time-steps used in the MA and wavelet filters) and
deterministic trends. Hence, the delay introduced by the MA filter was not significant
with respect to the pace of change in the process signal. ART-2+MA was expected
to have better detection accuracy, in the transient regions, than ART-2 because noise
reduction capabilities of the MA filter outweighed the delay it introduced. This
observation is reflected in the results presented in Figure 4.9.

The test data from Figure 3.12 were subjected to ART-2, MSART-2, and ART-
24+MA detectors trained on the normal data from Figure 2.1. After the onset of
the event at time-step 100, all three methods detected the event at approximately
equal times and continued to detect it consistently. Towards the end of the event,
however, the ART-2 detector missed approximately 10 genuine alarms more than
the ART-2+MA and MSART-2 detectors. The MA filter reduced the noise in the
data. On the other hand, due to the slow pace of the onset and end, the filter did
not cause a significant lag. These factors contributed to the better performance of
ART-24+MA over ART-2. It can be seen that MSART-2 performance was equivalent
to that of ART-2+MA because it automatically selected the low-resolution scales
for this slow-paced deterministic event. MSART-2, thus, successfully adapted to the
slow, deterministic nature of the change.

4.3.2 Example 2: Sensor Malfunction due to Oil Accumula-
tion

In the context of univariate MSSPC, this example process was discussed earlier
in the earlier chapter as Figure 3.14. Since the MA filter was set to calculate the
average over a window of 16 consecutive time-steps, we expected the ART-2+MA to

be ineffective in detecting the initial zero-mean stochastic part of the failure pattern.
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Figure 4.9: Comparative Detection Performance for the Drier Cooling Event
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Detection of Oil Accumulation (Onset time = 720, End time = 827)
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Figure 4.10: Detection of Oil Accumulation (Sensor Failure)

Also, in this case, the return to normality was a sudden, sharp change of large mag-
nitude. Due to the change in question taking place over a time-span much smaller
than the averaging window, we expected the ART-2+MA to result in a large number
of false alarms immediately after the end of the sensor failure. Indeed, we find that
ART-2 detector resulted in a smaller number of false flags and a smaller number of
missed flags for this event, when compared to the ART-2+MA detector (Figure 4.10).
Similar to figure 4.9, we observe that MSART-2 conforms to the scale of the change

under consideration and mimics the best performance for the event at hand.
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CHAPTER 5

INDUSTRIAL VALIDATION AND COMPARISON

Results from the earlier chapters illustrated the utility of the proposed algorithms
primarily with the help of simulated process models and/or specific detection limits.
The analysis presented in this chapter displays the capability of our algorithms when
compared with uniscale methods on univariate/multivariate industrial data over a
broad range of model fidelities and false alarm rates. This analysis thus provides
a detailed comparison of the performances of these methods on a broad range of
detection operating regimes. In some cases, we also compare the performance of the
human operator with that of the MSART algorithm.

Our detector implementations have been largely successful in tackling the above
issues for a process of such a large scale. The following section describes a comparative
study of the performances of the uniscale and multiscale versions of ART and PCA
detectors. Note that for industrial case studies, the beginning and end of the events
have to be manually determined with the help of operator annotations. This process
is subjective and the results can be potentially influenced by the determination of the
event duration. However, these examples help reinforce the conclusions drawn from
the simulated case studies, for which exact information about the onset and reset of
abnormal operation was available.
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5.1 Case Studies

5.1.1 A Valve Leak Malfunction

Figure 5.1 shows the sensor readings during an abnormal process operation caused
by a leaking valve. This event manifests itself primarily in three non-redundant
sensors, trends of which are shown. As can be clearly observed, different sensors
respond to the same root cause with different scales and delays due to differences in
the underlying physical quantities being measured and also due to the process control
scheme in place.

The performance curve from Figure 5.2 shows the average missed alarm rate plot-
ted against the average false alarm rate. Different false alarm rates were achieved by
changing the respective threshold parameters for the detection algorithms in question,
namely PCA, MSPCA, ART, or MSART. For each false alarm rate, the correspond-
ing average missed alarm rate was calculated for each abnormal event and plotted
for each algorithm. It is obviously desirable to have the lowest possible missed alarm
rate for a given false alarm rate.

It can be seen that PCA outperforms ART for the detection of this event. This
is expected since the process variables involved in this event are linearly correlated,
stationary, and approximately Gaussian. The proposed multiscale versions of these
algorithms, MSPCA and MSART, outperform the respective single-scale versions.
Due to the linear correlation between wavelet coefficients, corresponding to a lin-

ear correlation between process variables, MSPCA results in fewer false alarms than

MSART.
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Figure 5.1: Sensor Data for the ValveLeak Event
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Figure 5.2: Comparison of Performance for the ValveLeak Event
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Figure 5.3: Sensor Data for the ColdWeather Event

5.1.2 A Cold Weather Malfunction

Figure 5.3 shows our next industrial example, which involves a valve failure due
to an unexpectedly lower ambient temperature. This is a univariate example which
approximately obeys the assumptions of stationarity and unimodal Gaussian distri-
bution. PCA is again seen to miss fewer alarms when compared to ART as seen
in Figure 5.2. Similarly, MSPCA performs better than MSART. As was the case of
the previous example, the multiscale versions of PCA and ART outperformed the

corresponding uniscale detectors.
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Figure 5.4: Comparison of Performance for the ColdWeather Event
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5.1.3 A Change in Furnace Feed Event

Our third example corresponds to a “normal but unusual” process operation as-
sociated with a change in furnace feed. It was typically observed multiple times every
day and lasted a few hours. Figure 5.5 shows several instances of this event. Although
a high-level description of the sensor trend is seen to be similar for all instances, the
event clearly showed characteristics for which multiscale analysis would be valuable,
since the event lasted for varying intervals for different instances and rose to different
magnitudes with differing approach and reset rates.

The performance curves for this event are shown in Figure 5.6. Unlike previous
two examples, we observe that ART performs better than PCA, possibly due to devi-
ations from ideal assumptions such as stationarity and Gaussian distribution. These
deviations were seen to affect MSPCA more strongly than PCA, perhaps due to the
strong auto-correlation in the data. However, MSART continues to outperform ART.
The nonlinear modeling capability of ART makes it insensitive to non-stationarity
and non-Gaussian behavior, and these benefits appear to hold in the wavelet domain

as well.

5.1.4 A Feed Malfunction

The data presented in Figure 5.7 show a distinctly nonlinear and multi-modal
correlation in the bivariate sensor space. The process is seen to exist in three disjoint
normal regimes. As a result, detector based on ART is expected to perform better

than PCA for this process. The Figure 5.8 shows this assertion to be true. Although
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Figure 5.5: Sensor Data for the Change in Furnace Feed Event
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Figure 5.7: Sensor Data for the FeedMalfunction Event

the multiscale versions of these algorithms are seen to perform better, the improve-
ment is more significant in the case of ART due to the nonlinear nature of the variable

correlation.

5.2 Comparison with Human Operator

To provide a perspective of detection performance of the algorithms proposed in
this work, we have provided two examples where the detection delay of a human

operator is compared with that of our MSART algorithm. Figure 5.9 shows the
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Figure 5.9: Operator Detection of the ValveLeak Event

detection flag of the MSART algorithm for the valve leak event (Figure 5.1) with
0 being normal and 1 being abnormal diagnosis. It can be seen that the MSART
algorithm detected the abnormal event hours in advance of the human operator.
Another example is provided with the help of figures 5.10 and 5.11. This bivariate
event was caused by a sensor “acting up”, i.e., providing erroneous reading. It can
be seen that the MSART algorithm is a few minutes faster than the human operator,

which is a significant fraction of the event duration.
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CHAPTER 6

LESSONS LEARNED FROM INDUSTRIAL
IMPLEMENTATION

Application of the ART-2 and PCA SPCs to industrial data brought out sev-
eral features of interest regarding their function. The industrial data used in this
work consisted of measurements from a total of 509 sensors distributed across dif-
ferent process units with close inter-connections. The readings of all the 509 sensors
were provided every minute, with significant events annotated by the plant operators
loosely as “normal”, “unusual”, and “abnormal”, and then specifically such as “fur-
nace decoking”, “charge drier cool”, etc. SPC engines using PCA, ART, MSPCA,
and MSART were built to detect these deviations from the normal process operation.
This chapter provides a sense of the difficulties involved and lessons learned from the
real-time industrial deployment of these SPC algorithms.

First of all, even with the best of efforts by the engineer, the sheer scale of the
process often caused annotations to be inconsistent. An event listed as “unusual”
for one day, for instance, may be omitted entirely for the next day. Hence, the data
used for training had to be very carefully screened before use. Often, the information
available to the operator came from sources outside of the 509 sensors and hence sim-

ilar events ended up having different annotations. Although these issues adversely
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affected all SPCs being compared, the ART-based detectors were found to be specifi-
cally sensitive to contradicting annotations and overlapping class definitions. During
incremental training, if new data overlapped in the sensor space with previous clus-
ters that belonged to a different class, the previous clusters were often completely
overwritten, thus generating wrong diagnosis for future cases.

Secondly, some of the sensors may have been dysfunctional and exhibited erratic
variations in their normal signatures, say of the order of 20% to 30% of the instrument
span over a period of 24 hours. Removal of erratic or non-critical sensors and formu-
lating the detector models again very significantly improved the detector performance
in terms of false alarms. Selection of sensors that are a part of the detection models
thus proved to be a very important aspect of the fault detection mechanisms.

Though most operations in the plant were continuous, the sensor trends were
not entirely steady state. Often, there were slow drifts that were not completely
captured by the data listed as “normal” in the training set, and hence were flagged
by the detectors during the test phase. This generated a large number of notifications
(on the order of 100 per day for a set of 370 sensors) that were unwelcome to the
plant operators. Often, a sudden change, such as a set-point change, was deliberately
introduced in the process by the plant operators. It was not possible to exhaustively
provide examples of all such changes in the training data. Hence such changes were
often flagged as abnormal by the detector, although they were in reality a part of
the day-to-day plant operations. Exponential mean-filtering was used to make the
ART and PCA detectors robust to mean-shifts and process drifts to a certain extent.
However, it also masked genuine process anomalies that did need to be flagged by the

detector. Hence the exponential filtering was later removed.
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Since the sensor signals were being sampled per minute, the detector algorithms
were expected to diagnose each snapshot of sensor data within a small fraction of a
minute. However, the diagnosis operation in ART is an exhaustive search process.
The time taken for a decision grows exponentially with the complexity of the search
space, which is, in turn, a function of the dimensionality of the space in terms of
the number of process variables and the nature of cross-variable relationships. How-
ever, as is the case with many large-scale problems, the relationships across process
variables were mostly localized and related to the spatial position of the sensor in a
process unit. To be able to manage scale and related issues such as speed, it was nec-
essary to decompose the task of diagnosis into smaller subsets which were solved with
smaller ART and PCA detectors. The decomposition was generated based on oper-
ator knowledge and reduced the associated structural and computational complexity
to a large extent. These focused SPCs resulted in a better diagnostic performance as
well as were easier to train. In addition, the ART detector could adequately classify
between different abnormal behaviors for input spaces with low dimensionality and
less number of classes to distinguish between. However, it led to false alarms when
the detector was trained with many different events. This problem was also solved
with this focused detection approach.

Lastly, there was an expectation that the detector algorithm provide a list of
sensors that contributed the most to the detector decision. A knowledge of the con-
tributing sensors enables the operator to track the root cause of the abnormality. For
PCA and MSPCA, a mechanism for calculating the contribution charts [55] has been
developed. For ART and MSART, similar calculations based on the directions in

the sensor space that most contribute to the difference between actual and expected
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sensor readings lead to a list of three most contributing sensors. Although ad hoc,

this method often provided an accurate list of contributing sensors.

The observations listed above are not specific to this particular industrial imple-
mentation. This work has been one of the first of its kind in terms of the complexity
of the process and the scale of the deployment in terms of the number of sensors and
process units involved. Future exercises of this kind can benefit significantly from the

lessons learned from this deployment.
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CHAPTER 7

CONCLUSION

The multiscale approach based on wavelets studied in this dissertation is shown
to be ideal for SPC of measurements that contain features with different localizations
in time or frequency. Examples of such features include deterministic changes with
different temporal durations, and stochastic variation with changing intensity over
frequency or time. MSSPC exploits the ability of wavelets to compress deterministic
features at all scales to a small number of relatively large coefficients. It adapts to
features at different scales by focusing only on those scales that contain coefficients
outside the detection limits at each scale. The values of the detection limits at each
scale depend on the nature of the correlation of measurements representing normal
operation. MSSPC adapts both, the nature of the filter applied to the measurements
as well as the detection limits for a selected confidence limit, according to the scale of
the abnormal feature. Thus, MSSPC can specialize to many existing SPC methods
including Shewhart, MA, CUSUM, and EWMA charts depending on the scale of the
abnormal feature and the selected wavelet.

Two variations of MSSPC are studied in this dissertation that investigate two
different ways of discretization of wavelet translation parameter. If the translation
parameter is discretized dyadically, then the coefficients are downsampled at each
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scale. This permits the use of orthonormal wavelets, and approximate decorrela-
tion of autocorrelated measurements, but introduces a time delay in obtaining the
coefficients. If the translation parameter is discretized uniformly, then there is no
downsampling of the coefficients. This permits on-line decomposition without delay,
but the wavelets are no longer orthonormal, and the coefficients remain autocorre-
lated. ARL analysis shows that MSSPC with dyadic discretization performs well for
detection of shifts from highly autocorrelated or nonstationary measurements since
the benefits of decorrelation outweigh the delay due to downsampling. If the measure-
ments are uncorrelated or only moderately correlated, the benefits of decorrelation
are not as significant, and it is better to decrease the time delay in detecting a change.
In such situations, it is better to use MSSPC uniform discretization of the wavelet
translation parameter.

Comparison of the average run lengths with existing methods for univariate and
multivariate SPC indicates that MSSPC does not perform better than methods specif-
ically designed to detect certain types of changes. For example, Shewhart charts are
best for detecting large shifts, while MA or EWMA charts can be designed to detect
shifts of a certain size. Other methods such as CUSCORE [50] can be tailor-made
for detecting changes that are known a priori. These methods are not adaptive or
general, and do very well only for the type of change they are designed to detect.
In contrast, MSSPC is a general method that consistently does well in detecting a
changes in different types of measurements and with a broad range of characteris-
tics. Since the nature of change is unknown a priori for most industrial abnormal

or operational situations, MSSPC seems to be an ideal choice for a general purpose
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approach. Furthermore, MSSPC can easily deal with autocorrelated measurements
and multivariate problems.

Previous work by Whiteley and Davis [30] established ART-2 as a technique for
efficiently and adaptively capturing linear and non-linear mappings between process
variables for the purpose of fault diagnosis and sensor trend analysis. The multiscale
architecture presented in this work was shown to significantly enhance the range of
applicability of the ART-2-based diagnosis algorithm by reducing its sensitivity to
noise without sacrificing on its detection performance. Our approach integrates scale
selection and clustering-based diagnosis. Application on both simulated as well as
industrial case studies show that our MSART-2 scheme enhances the noise tolerance
of the ART-2-based diagnosis algorithm by Whiteley and Davis.

This work also presented rigorous comparison among the various single and multi-
scale detection algorithms on several different industrial case studies with univariate
as well as multivariate unusual process patterns. Comparisons were made on the
basis of operating curves that documented the rate of missed alarms versus the rate
of false alarms. We show that PCA and MSPCA outperform ART-2 and MSART-2
in the presence of certain ideal conditions such as linearity and stationary, Gaussian
behavior. For non-linear and/or discontinuous process correlations, ART-2 outper-
forms PCA whereas MSART-2 performs even better. These case studies show that
our algorithms detected actual abnormalities in a complex process plant much sooner
than human operators, while maintaining a low false alarm rate. The ART-2 models

were compared with other algorithms being developed elsewhere, such as QTA and

109



MVSE, and compared favorably due to qualities such as the ability to build incre-
mentally, and the ability to model linear as well as nonlinear, possibly disjoint process
correlations.

The MSSPC methodology can also be used to transform any single-scale process
monitoring method to its multiscale equivalent. In addition to developing multiscale
versions of other process monitoring methods, there are many other areas of future
work. The tuning parameters in MSSPC include the depth of decomposition and type
of wavelet. It is expected that both decisions can be automated. This dissertation
has only focused on the use of Haar wavelets, but the approach may easily be used
with other types of wavelets. The use of smoother, boundary-corrected wavelets
may provide better performance than Haar wavelets due to better feature extraction
and decorrelation abilities. Furthermore, extension to wavelet packets may permit
MSSPC to automatically select the best family of basis functions from a large library.
MSSPC may also be extended to the identification of the root causes of the abnormal
operation. Since process operation involves making decisions at different time scales,

the multiscale approach may also permit integration of various operation tasks.
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APPENDIX A

ANALYTICAL DERIVATION OF ARL CURVE FOR
UNIVARIATE MSSPC

Consider an IID Gaussian process X with mean 0 and standard deviation o. If
it undergoes a mean-shift of magnitude ¢ at time k£ = 1 then the variables X [k],k =
2,3,...,00 are IID Gaussian variables with mean ¢ and standard deviation o. The

probability of not detecting this shift with a Shewhart chart using limits [—7 7] is,

B = P{-n<X<n}

= /77 flz —0,0)dx

-n

= ®(n—190)—®(-n—9) (A.1)

where,

1 expfé(

)2

Q8

flz,0) =

o\ 2w
and @ is the standard normal cumulative distribution function. The ARL is then
[28]:

ARL = i kgF (1= B) !

= — A.
k=1 1-p ( 2)
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A.1 ARL for Univariate MSSPC with Dyadic Discretization

This derivation is for MSSPC with Haar wavelets. It assumes that the wavelet
and scaling function coefficients from a wavelet decomposition are completely uncor-
related.

Since Haar wavelets and scaling functions have a support of 2™, at scale m, a
mean shift can appear only in the first wavelet coefficient at each scale after the shift.
Subsequent wavelet coefficients are not affected by the shift, and are statistically
similar to wavelet coefficients for IID Gaussian data. A mean shift of size ¢ located at
the second measurement gets scaled to 6/2™? in the first wavelet coefficient at any
scale. The first coefficient of the last scaled signal becomes 6(2% — 1)/2%/2 and the
other coefficients become §2%/2. This difference between the change in the first and
other coefficients is sufficiently small to be ignored in the derivation.

The probability of not detecting the shift in the first wavelet coefficient at scale

m may be written as,

= (1= g0 ) = @ (-1 53) (A.3)

The probability of not detecting the shift in wavelet coefficients other than the first one
is denoted as [y, and is given by Equation A.1, which is the same as the probability of
not detecting a shift in IID Gaussian measurements. The probability of not detecting
the shift in the first scaled signal coefficient

For a decomposition of depth, L, the probability of not detecting a shift in any

scaled signal coefficient is,

B =@ (n—02"%) — & (—n — 62/?) (A.4)
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By using Equation A.4 for all the scaled signal coefficients, the slight difference be-
tween the size of the shift in the first coeflicient versus others is being ignored.
The ARL for MSSPC-Dyadic with L = 1 is determined as follows.

ARL, = (1-55,)

+35161 (1 - 5031) A5
+5/31503i (1 - 5051) (49
+...

The first term in Equation A.5 is the probability of detecting the shift in the first
wavelet or scaling function coefficient. The second term represents the probability of
detecting the shift in the second wavelet or scaling function coefficient knowing that
there was no detection in the first wavelet or scaling function coefficients, and so on.

Equation A.5 can be written as,

o0

ARL, = (1—B1B,)+ (1 — BoBy)B1By Y (2k +1)(BoBy)*
k=1

26161
1 1 A6
1= BB, (A.6)

Similarly, for L = 2, the ARL may be written by referring to two scales in Figure

2.5a as,
ARL2 == (1 - 51) B
+3B81(1 = BoB2)
+506160282(1 — Bo)

+75 53601 — G2,) (A7)
+9515§525321 — o) B
+115183 B285(1 — B5B2) + - - -
which may be simplified to,
ARL, = 1+ 28, + 2505152323&“‘ Bo) (A.8)
1 — 558,
Similarly, the ARL for L = 3 is,
4 a 3 a4
ARL3 =1+ 21 + 2605182 + 2856182 + 200515251 + o + i + o) (A.9)

1~ B§Bs
113



In general, the equation for the ARL for MSSPC-Dyadic at any depth of decompo-
sition may be written from the wavelet decomposition diagram for that depth. Figure
A.1 shows the probability of not detecting the shift for each wavelet and last scaled
signal coefficient for L = 1 and L = 3. The first term in ARL in Equations A.6, A.8,
and A.9 is always 1. Each of the next 2L~ terms is obtained by traversing the grid
in time until the first 5, is reached. Each term is 2 times the product of all the 3’s
up to the time point. For example, the fourth term in Equation A.9 is corresponds
to xg in Figure A.1b and is two times the product of S, 52, and the two 5y’s at scale

m = 1. The last term in the ARL equation may be written as,

2l—L-13 L ) oL-1_1 k :
26 ff_ F_iﬂ Bi 4+ v iV (A.10)
1-06y —Be k=1
where,
1 if 7 is odd
C(j) ={ 1+loga(j) if 7 is dyadic (A.11)

1+ logs (j — 2Ll0-‘12(j)J) if j is even but non-dyadic
ARL results based on this theoretical approach are compared with those from Monte-
Carlo simulation in Figures 3.1 and 3.6 for uncorrelated and autocorrelated measure-
ments. These results show a good match between theoretical and simulated results
for uncorrelated measurements. For autocorrelated measurements, the assumption of
uncorrelated wavelet coefficients is less accurate, and the match between the theoreti-
cal and simulated results deteriorates slightly as shown in Figure 3.6. The theoretical
ARL tends to be smaller than the simulated ARL. The reason for this underestimation

is discussed in the Section A.2 of this appendix.
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Figure A.1: Dyadic discretization grid for ARL equations. (a) Grid for obtaining
Equation A.6 for L =1, (b) Grid for obtaining Equation A.9 for L = 3.
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A.2 ARL for Univariate MSSPC with Integer Discretization

When integer discretization is used, wavelet coefficients are not downsampled. As
in the previous section, consider a zero-mean Gaussian random process X [k] with a
mean shift of size § introduced starting from time-step k. Thus, X[0] is a random
variable with mean 0, whereas X|[k|,k > 0 are IID random variables with mean .

Let the event that the shift is missed at time £ > 0 be denoted as E,. The

runlength (RL) is the time-step at which the fault is first detected. Thus, we have,
P(RL = k) = P(Fk, Ek:—laEk—Za---;E%El) (A12)

The a priori probability of the event Ey be B[k]. Note that the notation £, used in the
previous section denotes the probability of the shift being missed at scale m, where as
the notation [[k| used here is the overall probability of the shift being missed at time
k. Given the number of scales chosen for wavelet decomposition, L, this probability is
a function of the distributions of the variables X[k — 2 + 1], X[k —2F +2],..., X[k].
This implies that §[k] is constant for k¥ > 2. Let us choose L = 1 for the sake of this
derivation. In that case, let p; denote $[1] and let p, denote B[k], k > 1.

Since the wavelet decomposition without downsampling is not orthogonal, the
events Fj are, in general, not independent unlike the previous section. Let us first
derive an expression for the ARL assuming independence of these events.

For k£ > 1,

P(RL = ]C) = P(E, Ek—l, Ek_g, ey EQ, El)
= P(E,) x P(Ex_) x P(Ey_3) ... P(Ey) x P(Ey) (A.13)
= (L-p)p5 7’

For k=1, P(RL=k) = (1 —p,).
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The ARL, which is the expected value of the random variable RL, can be derived

similar to Equation A.5 as,

ARL, = Y,k x P(RL =k)

= (1—p) + X0k x (1 —p)p5 *p (A.14)
= (1—p)+pi2

Let E represent the MSSPC discrete decision function. Since L = 1, E is a
function only of { X[k —1], X[k]} at time k. If the values of the measurements were a
and b at times £ — 1 and k respectively, and the shift was not detected at time & then,
we have E(X [k — 1] = a, X[k] = b) = 1. The value for E(X[k —1] =a, X[k] =0) =0
if the shift was detected at time k. Given the values of the detection thresholds for
the wavelet coefficients at each scale, as well as the thresholds for the reconstructed

signal, E is a deterministic function in two dimensions. We have,

+o0o  r400
pr= /oo /oo E(zo, 1) f (20, 0) f (21 — 6,0)dzoda: (A.15)

Similarly,
+oo  p+oo
b2 = /—oo /_oo E(z1,22) f (21— 6,0) f(22 — 6, 0)da1ds (A.16)

The terms p; and p, are computed by numerical integration using the above formula-
tion. Our ongoing work has focused on deriving closed form expressions for the above
probabilities, although it is beyond the scope of this work.

The ARL values tabulated in Table A.1 show that the assumption of the events
E} being independent is not valid except for large shifts. The ARL estimates from
the above analysis are compared to those generated from Monte Carlo simulations.
For each experiment, the runlengths for simulated data were averaged over 100,000
instances. As the shift magnitude increases from small to medium, the signal to noise

ratio increases. As a result, the detection probabilities are more correlated. This
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is reflected in the increased relative error in ARL estimates. For large shifts, the
probability that the shift is detected in the very first step itself grows larger and
as a result, the dependence of detection probabilities at successive time-steps is less
important. Hence the relative error in ARL estimates decreases for large shifts. It is
worth noting that the ARL estimates derived from Equation A.13 are always lower
than the actual values. This is due to the fact that, if the variable value at time k£ —1
is unusually high or unusually low, it is likely to trigger detection at time-step k£ — 1
as well as time-step k. There exists, thus, a positive correlation between detection
probabilities at consecutive time-steps which the Equation A.13 fails to model, and
hence the under-estimation of ARL values results. In other words, the Equation A.12
assumes P(Ey|Ey_1) = P(E)), whereas in reality, P(Eg|Ex_1) > P(Ey).

To obtain more accurate ARL estimates, let us now model the detection event as
a one-step Markov chain. This assumption allows us to model the joint probability

distribution as:
P(RL = k,k > 2)
= P(&a Ek—laEk—Qa"'aE27E1)
= P(Ek|Ek_1) X P(Ek_1|Ek_2) X P(Ek_Q‘Ek_g) .. P(E2|E1) X P(El)
= (1—ps)p5 *pupr

(A.17)

where p3 = P(Eg|Ex_1),k > 2 and py = P(FE3|E;). The values of p3 and p, are

computed by numerical integration.

_ fjf: fjocf fj;o E(IEO; $1)E($1;$2)f($0, U)f(iUl -0, O)f(@ -0, U)diﬂodﬂfld@
b1

yZ!
(A.18)

Similarly,

N fj—;: fj—oooo fj—oo; E(,’L'l, .’I)'Q)E(.’IZ'Q, $3)N(IL‘1 — 6, O')N(.IQ — (5, O')N(IL'g — 5, O')dﬂ?ld.’ll'gdﬂfg
P2

b3

(A.19)
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Table A.1: Theoretical ARL Estimation with Assumed Independence of Detection
Probabilities (Equation A.13)

Shift Size (9) Experimental ARL Theoretical ARL Percent Error
0 2937.1 2840.9 3.2756
1 115.05 101.85 11.483
2 8.1691 6.5034 20.390
3 2.5130 2.3066 8.2124
4 1.7087 1.6954 0.7836

Table A.2: Theoretical ARL Estimation with 1-step Markov Model for Detection
Probabilities (Equation A.19)

Shift Size (9) Experimental ARL Theoretical ARL Percent, Error
0 2937.1 2975.1 -1.2930
1 115.05 115.95 -0.7775
2 8.1691 8.4056 -2.8961
3 2.5130 2.5553 -1.6826
4 1.7087 1.7101 -0.0819

Also, P(RL = 2) = (1 —p4)p1 and P(RL = 1) =1—p;. We now have the expression:

ARL = Y.k x P(RL = k)
(1= p1) +2(1 = pa)p1 + 5325 k x (1 — p3)p§ *papn (A.20)
= (1=p1) +2(1 = p)p1 + prpa 222

Table A.2 shows the relative error of this ARL estimate. A family of theoretical
and experimental ARL curves for different in-control runlengths is shown in Fig-
ure 3.3. Tables A.1 and A.2 indicate that by taking into account a 1-step Markov
chain dependence, the ARL estimates improve in accuracy. Furthermore, the ARL
values are always over-estimated due to the negative correlation between shift de-

tections at time-steps k and k — 2, given the detection at time-step £ — 1. in other
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words, the Equation A.16 assumes P(Ey|Ey 1, Fx_2) = P(Ey|Ex_1), whereas in real-
ity, P(Eg|Ex_1, Ex_2) < P(Eg|Ex_1). This observation indicates that the accuracy of
the theoretical ARL estimation can further be improved by modeling with a 2-step
Markov chain dependence. Inaccuracies due to a finite simulation sample size and

numerical integration step-size are other sources of error.
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