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C H A P T E R I 

I N T R O D U C T I O N 

This thesis studies the addition of dynamic information to phoneme classification 

using self-organizing artificial neural networks. Instead of simply concatenating ad­

jacent spectral slices and then learning to distinguish and classify them, we provide 

additional contextual clues about the preceding and following phonemes. Such a 

setup significantly reduces the dimensionality of the problem thus allowing for easier 

training with little loss in classification accuracy. 

A set of vowel classification experiments is performed using the FSCL-LVQ clas­

sifier. The task is the speaker independent classification of 10 vowels excised from 

continuous speech taken from the DARPA TIMIT acoustic phonetic database [1]. 

These experiments have dual purposes in that they address two topics. The first 

topic concerns the addition of contextual information at the phoneme level. The sec­

ond topic is a performance comparison of two auditory-model based feature sets with 

a conventional speech feature representation. An array of experiments is performed 

and the same collection of results is used to draw conclusions about both topics. 

One way of adding dynamic information at the phoneme level to a phoneme clas­

sifier is merely to inform the recognizer of the class of the phonemes preceding and 

following the phoneme in question. This has been done by Leung and Zue [2] using a 

1 



multilayer perceptron (MLP) architecture trained using the back-propagation algo­

rithm. Their network is informed of the context phonemes using a string of indicator 

functions, each indicating one of the possible phoneme classes. 

The number of phonemes comprising human language is large. The English lan­

guage contains roughly 40 phonemes. It is not surprising that in the experiments of 

Leung and Zue, the dimension of data vectors grow to well over 100 elements. The 

amount of training data necessary to cover a problem of this high dimensionality is 

correspondingly large. 

A new form for representing phonetic context, place-of-articulation, is presented 

that helps to reduce the dimensionality problem inherent in the use of phoneme indi­

cators for classifying contextual data. Place of articulation influences vowel features 

because of the phenomenon of coarticulation. This broad phonetic category offers 

significant linguistic and acoustic information in a compact size. It is used to reduce 

the dimensionality of the problem and decrease training set size while retaining a 

competitive level of performance improvement. 

The experiments described herein investigate the application of contextual in­

formation in a pattern classification problem using competitive learning networks, 

specifically those trained with learning vector quantization (LVQ) methods. In a 

more general sense, some empirical evidence is presented concerning how context 

works. The results are used to explore questions about how context works and how 

to effectively integrate different data sets into artificial neural networks. 

There are a number of questions regarding the integration of different data in a 
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single classification scheme. We know that different data sets will have their own 
intrinsic error metrics, so what is the best way to incorporate these different data sets 
in a single classification scheme? In non-trivial classification tasks, some problems 
may arise as more information (context) is added. With the increase in information 
and dimensionality, a greater number of training samples is necessary to define the 
joint distribution of the context and data. Also, different data sets may have their 
own intrinsic error metrics. The merging of two data sets, although statistically 
straightforward, may not be trivial for a classification algorithm. 

In the vowel classification domain, it seems reasonable that the importance of 

contextual information should be secondary to that of vowel feature information. In 

the data space, feature information is sufficient to represent the basic organization of 

vowel clusters. Context merely adds dimensions to refine these clusters. In an attempt 

to take advantage of this, three different methods for adding context information into a 

two stage competitive learning algorithm are proposed and evaluated. These methods 

use training algorithms in which the significance of the feature data is recognized. 

The next two chapters introduce speech feature representations and the FSCL-

LVQ algorithm respectively. Chapter I I I also introduces the incorporation of context 

into the FSCL-LVQ algorithm through the analysis of two simple context problems. 

Chapter IV presents an array of context-sensitive vowel classification experiments 

which address questions in phoneme recognition using ANNs, phonemic context, and 

auditory feature sets. Chapter V provides a discussion of the results followed by the 

brief summary and conclusions of Chapter VI. 



C H A P T E R I I 

F E A T U R E E X T R A C T I O N M E T H O D S 

The initial stage of any speech recognition system is a preprocessor which performs 

feature extraction. Feature extraction transforms raw data into a more compact, 

robust form. A good feature extractor reduces the raw data leaving only the informa­

tion pertinent to the task at hand. The quality of the speech feature representation 

is fundamental to the performance of the entire recognition system. An effective 

speech feature representation draws out those characteristics which best distinguish 

and identify speech sounds, and performs robustly within a variety of noise environ­

ments. It has been suggested that the utility of a speech feature representation is 

also dependent upon the speech classification scheme (i.e. one feature representation 

may work best for HMM recognizers while another is best for certain ANN recog­

nizers.) Therefore, the quality of these feature representations is best evaluated in 

actual speech classification contexts. 

Many feature extractors exist that use conventional signal processing techniques 

such as LPC coefficients, cepstral coefficients, and DFT coefficients. In the search 

for alternative methods of speech feature extraction, the human auditory system has 

been studied and modeled as a natural speech feature extractor, with the expecta­

tion that it may lead to a more effective speech feature representation. Two existing 

4 
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auditory based models are the Synchrony/Mean-rate Model of Stephanie Seneff [3] 
and Karen Payton's Model of the Auditory Periphery [4]. Both models are multi­
stage computational models of the auditory system that emulate the transduction 
of acoustic vibrations into nerve impulses by mechanisms within the ear. They are 
fundamentally different in the aspects of the human auditory system that they model. 
The Payton model simulates the physiological mechanisms of the ear, while the Seneff 
model reproduces significant properties of the human auditory system based on phys­
iological and psychoacoustic observations. Detailed descriptions of these two models 
follow. 

2.1 The Payton Auditory Model 

The Payton model of the auditory periphery models the physiological mechanisms of 

the ear in four stages: the middle ear, the basilar membrane, the secondary sharpening 

filter, and the hair-cell synapse. It produces twenty frequency dispersed channel 

outputs and each channel output predicts the firing probability of a population of 

auditory neurons. A block diagram of the auditory periphery model can be seen in 

Figure I 1 . 

Stage one is a model of the middle ear. Essentially, this stage functions as a 

linear bandpass filter in which displacement at the tympanic membrane, due to sound 

pressure at the eardrum, is transduced to stapes velocity at the base of the cochlea. 

The outer ear and effects of the pinna are not considered. 

Stage two is responsible for frequency analysis as performed by the basilar mem-

1Figure 1 is taken directly from Figure 1 of Payton's paper.[4] 
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Figure 1: Block Diagram of Payton Auditory Periphery Model 

brane. Mechanical motion of the basilar membrane due to excitation by the stapes 

at the base of the cochlea is described by a two-dimensional model of cochlear me­

chanics realized through continuous differential equations. These are discretized into 

difference equations for computation. The motion of the basilar membrane has the 

property of dispersing spectral energy spatially along the length of the membrane. 

Utilizing this property, twenty 'taps', equally spaced along the length of the basilar 



membrane, form a bank of twenty channels. The rest of the model uses the outputs 

of these channels. 

The linear sharpening filter of stage three fine tunes observed membrane transfer 

characteristics and also helps to match phase shifts observed in nerve-fiber responses. 

In an anatomical sense, stages two and three combine to represent the overall perfor­

mance of the basilar membrane. 

The final stage is a hair-cell/synapse model which provides for observed post 

membrane neural transduction effects. These effects include rectification, logarithmic 

scaling, low-pass filtering, and adaptation found in hair-cell/synapse responses. Stage 

four is the only non-linear stage in the model. 

2.2 The SenefF Auditory Model 

The Seneff Synchrony/Mean-rate model is a three stage system which produces two 

sets of outputs. The model does not attempt to model the exact mechanics of the au­

ditory periphery but instead reproduces relevant properties observed in the auditory 

system. Figure 2(a)2 shows how the Seneff model is organized. 

The first stage is a linear bank of filters which performs frequency analysis. The 

distribution of filters and their bandwidths are based on a Bark scale and have been 

iteratively tuned for frequency response characteristics observed in the basilar mem­

brane. The filters collectively cover a frequency range from about 130Hz to 6400Hz. 

The output of each channel ofthe filterbank is fed to the second stage. Stage I I is 

the hair-cell synapse model which simulates the nonlinear transduction in the cochlea 

2Figure 2 is taken directly from Figure 1 of Seneff's paper.[3] 
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Figure 2: Block Diagram of SenefF Model 

and produces an output somewhat similar to auditory-nerve fiber responses. Stage 

I I consists of four serially connected substages: half-wave rectification, short-term 

adaptation, lowpass filtering, and rapid AGC (automatic gain control). Figure 2(b) 

shows the organization of the substages of Stage I I of the Seneff model. The Stage I I 

combination has been shown by Seneff to imitate auditory phenomena such as short-

term adaptation, rapid adaptation, and forward masking. The output of this stage 
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is not simulated nerve firings but merely a representation of the probability of nerve 

firing. Since there are a finite number of channels, each channel can be thought to 

represent a group of spatially located auditory neurons. 

Stage I I I operates on the output of Stage I I to produce two sets of outputs: the 

Mean Rate Spectrogram, and the Generalized Synchrony Spectrogram. It has been 

suggested by SenefF that the unique qualities of both these outputs can be used 

in tandem for speech recognition. We believe the synchrony spectrogram alone is 

sufficient for the classification vowels. Therefore, in this study only the synchrony 

spectrogram is used. 

The Generalized Synchrony Spectrogram is a spectral representation of the input 

waveform in which features, such as formants, are more easily seen. Each channel of 

the Generalized Synchrony Spectrogram is produced by the Generalized Synchrony 

Detector (GSD). The GSD extracts its spectral representation from the Stage I I 

output by measuring the periodicity of each channel (synchrony) with respect to its 

center frequency. Periodicity is measured as presented in Figure 33, which depicts the 

construction of a single generalized synchrony detector (GSD). Input data in each 

channel is compared (subtracted) from a delayed version of itself. The delay is set 

to one-half of the period of the channel's center frequency. IF the input is perfectly 

periodic at the channel center Frequency, like a sine wave, the difference should be 

zero. The output of the GSD is the ratio of the sum to the difference oF the input 

waveForm and its delayed equivalent. The greater the periodicity, the smaller the 

difference, and the larger the output value. Both the sum and the difference measures 
3Figure 3 is taken directly form Figure 11(a) of Seneff's paper.[3] 



10 

are passed through integrators (summers) that act to smooth the GSD over time. A 
saturating half-wave non-linearity is located at the output to limit the magnitude of 
the GSD in cases of high periodicity. A threshold value is included to reduce some 
weak periodicities that can be characterized as the spontaneous discharge rate. 

In 

Figure 3: Schematic of Generalized Synchrony Detector 

2.3 L P C Weighted Cepstral Coefficients 

Due to the formant/resonance properties of the vocal tract, speech signals have been 

found to be well modeled by all pole systems. Linear prediction analysis, an all-

pole modeling technique, is a commonly used method for speech feature extraction. 

A related but alternative technique for modeling the short time speech spectrum 

is based on cepstrum analysis. Cepstrum analysis, a nonlinear signal processing 

method, can be used to transform linear prediction coefficients (LPC) derived using 
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linear prediction analysis into cepstral coefficients. Cepstral coefficients have been 

found to be an equally viable alternative for speech feature representations. 

The LPC spectrum of a signal can be estimated using a number of different meth­

ods. Most are based on some type of estimation of the signal's autocorrelation func­

tion (ACF). With a reasonable estimate of the ACF, the linear prediction coefficients 

can be found easily using the Yule-Walker equations. An efficient algorithm, named 

the Levinson algorithm, exists for recursively solving this set of equations. We derived 

linear prediction coefficients using what is commonly know as the autocorrelation 

method. In this method, a biased estimator is used to calculate the ACF. The linear 

prediction coefficients are then found using the Levinson algorithm. 

Cepstral coefficients can be calculated from the LPC spectrum using the recursive 

formula of Equation 2.1. This equation converts the p-th order LPC coefficients 

(afc) 1 < k < p,ao = 1) to the q-th order LPC cepstrum coefficients (cfc,0 < k < q). 

The variable e represents the residual error from the linear prediction analysis. 

To improve on the utility of cepstral coefficients, Juang, Rabiner, and Wilpon 

suggest the signal processing technique of "liftering". This technique has been found 

"to reduce the variability of the statistical components of LPC-based spectral mea­

surements" [5]. The liftering procedure performs windowing in the cepstral domain to 

reduce variability. They report improved results when using liftering in several speech 

recognition tasks using Euclidean distance as a distortion measure. The resulting 

windowed coefficients are referred to as weighted cepstral coefficients. A number of 

(2.1) 
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liftering windows are proposed by Juang, Rabiner, and Wilpon, and the raised sine 
lifter of Equation 2.2 seems most promising. This window is a function of window 
length L, which is also cepstral order. 

w(A;) = l + 0.5Lsin—, k = 1: L (2.2) 

For these three feature representations to be examined in a comparative fashion, 

the number of channels/coefficients in each must be chosen fairly. Both the Payton 

and Seneff models are designed with 20 channels. This channel size is within the 

bounds of those seen in other works. Typically, LPC and WCC orders are kept 

low, around order 12. Overly high model orders in all pole models can result in 

spurious peaks that are detrimental to classification tasks. Sixteen LPC weighted 

cepstral coefficients is a reasonable model order that is not too large yet is near to the 

channel size of the auditory models. The model orders selected for all three feature 

representations are believed to be sufficient and competitive without giving advantage 

to any one representation. 



C H A P T E R I I I 

F S C L - L V Q 

In recent years artificial neural networks (ANNs) have been applied to many signal 

processing tasks including speech and image recognition. Inspired by biological neural 

systems, these networks consist of numerous highly interconnected small computa­

tional elements called neurons. Typically, specialized algorithms are used to "train" 

these networks to perform tasks, often in the pattern classification domain. Much 

has been written covering the broad topic of neural networks. The reader is referred 

to "An Introduction to Computing with Neural Nets" by Richard Lippmann[6] for a 

general introduction to artificial neural networks. 

The neural network architectures used in this document are based on competitive 

learning schemes. In these networks, neurons are defined as vectors within an input 

space. Neurons compete in a winner-take-all contest in which the neuron w c nearest 

to an input vector x, with respect to some error metric d(x, w;), wins. 

d{x,wc) = min{(i(x, W j ) } (3.1) 

In the performance phase of a competitive learning network, the index of the 

winning neuron is typically the output of the network. In the training phases, a 

learning rule is typically used that iteratively modifies the position of a neuron based 

13 
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on the distance between it and a training vector, according to some error metric. 
Equation 3.2 is an example of a generic competitive learning rule where a neuron w 
is modified in response to an input vector x. 

w { t + 1) = w{t) + a{t)[x{t) - w(f)] (3.2) 

The time varying scalar variable a usually decreases over time so that the network 

eventually converges. 

Keeping with terminology used in vector quantization (VQ), neurons are referred 

to as reference vectors or codewords. Each codeword is a vector ofthe same dimension 

as the input vector. In context discussions, groups of elements within these vectors 

are referred to as fields. Entire collections of codewords are called codebooks. 

The ANN used in this investigation of context-sensitive vowel recognition is a two 

stage algorithm called FSCL-LVQ. The first stage. Frequency-Sensitive Competitive 

Learning (FSCL), is an unsupervised competitive learning algorithm that incorpo­

rates a "fairness" function to insure even utilization of all codewords. The second 

stage, Learning Vector Quantization (LVQ), is a supervised algorithm which modi­

fies the FSCL codebook to fine tune decision boundaries and improve classification 

performance. A more detailed discussion of both algorithms is given in the next two 

sections. The final section introduces the use of these algorithms in context-sensitive 

problems. 
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3.1 F S C L 

Frequency-Sensitive-Competitive-Learning (FSCL) [7] is a type of self-organizing com­

petitive learning network much like Kohonen's self-organizing feature map[8]. FSCL 

incorporates into its training algorithm a "fairness" function which adds sensitivity 

to the frequency of codeword use. As a result, codebooks are generated with more 

evenly utilized codewords. 

FSCL associates with each codeword a variable that represents the of the 

number of times that codeword has been winner. This win count variable is used 

within a fairness function ^{ui) to augment a standard error metric d(x,Wi) and 

create a frequency sensitive error metric rf*(x, Wi). J-fa) is an increasing function of 

Ui which serves to de-emphasize overly used codewords. 

The winning codeword is modified according the learning rule of Equation 3.4. 

The scalar variable e is the learning rate, which monotonically decreases to zero over 

time. All other codewords remain unchanged. 

Even though FSCL's codebook selection may not be optimal with respect to any 

conventional error metric, it consistently results in a codebook with codewords that 

are more evenly distributed throughout the data space. 

d*(x,Wi) = :F(^)(i(x, (3.3) 

w { t + 1) = w(t) + e{t)[w{t) - x{t)] (3.4) 

i . 
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3.2 LVQ 

Learning Vector Quantization (LVQ) [8] is a technique which improves the perfor­

mance of self-organizing networks in classification tasks. Typically, it starts with a 

codebook trained by some unsupervised learning technique and iteratively fine tunes 

the decision boundaries defined by the classes and locations of codewords. The re­

sulting network performs classification simply by using a nearest-neighbor selection 

criterion; the class of the closest (winning) codeword is chosen to be the class of the 

test vector. Several variations on this basic LVQ algorithm have been proposed. The 

most common are LVQ1, LVQ2, and LVQ3, all proposed by Kohonen. All create 

decision regions that are near-optimal, although piecewise linear. 

The LVQ1 algorithm is very similar to the basic competitive learning update scheme 

given in Equation 3.2 with a slight modification that incorporates classification to the 

scheme. 

For a given training token x with class cx, nearest neighbor selection of a codebook 

occurs as described in Equation 3.1. The winning codeword w c with class cc is then 

updated according to the rules of Equations 3.5 and 3.6. 

If cc = cx {x is classified correctly). 

3.2.1 LVQ1 

w c ( t + 1) = w c(t) + a(t)[x(t) - Wc(t)] (3.5) 

If cc 7̂  cx {x is classified incorrectly) 

w c (t + 1) = w c(t) - a{t)[x{t) - wc(*)] (3.6) 
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The scalar coefficient a{t) is a monotonically decreasing function of time. Typi­
cally, a{t) is initialized around 0.01 and decreases linearly to zero over 10000 or more 
iterations. 

In simple examples, the decision boundaries created by LVQ1 has been demon­

strated to coincide closely with those of a Bayes classifier. One effect of the LVQ1 

algorithm is the reduction of the point density of the codewords around the Bayesian 

decision boundaries. This "depletion region" of codewords does not appear to be 

detrimental. 

3.2.2 LVQ2 

The LVQ2 algorithm attempts to better approximate Bayes decision boundaries by 

making adjustments to pairs of codewords that incorrectly define a descrimination 

surface. This algorithm does not exhibit "depletion regions" as produced in LVQ1. 

For each training token x with class cx, LVQ2 uses a nearest neighbor selection 

scheme to choose the closest (winning) codeword w w with class cw, and the second 

closest (runner up) codeword w r with class cr. If the class of x, cx, is different from 

the winning class cw but the same as the runner up class cr then the codewords are 

modified according to Equation 3.7. In all other cases, no adjustment is made. 

If {cx y£ cw), {cx — cr) and x falls within the "window", 

w w ( t + 1) = w w ( t ) - a(t)[x(t) - w w (t)] 

w r ( t + 1) = w r(t) + a{t)[x{t) - w r(f)] (3.7) 

For the rule of Equation 3.7 to apply, the training vector x must fall within a 
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"window" defined in terms of the relative distances dw and dr from w w and w r 

respectively. This "window" criterion is defined in Equation 3.8. 
Token x is within the "window" if 

min{dw/dr,dr/dw) > s, s — {1 — w)/{l + w) (3-8) 

Optimal window width w depends on the number of available training tokens. A 

window width of 0.2 (20%) is a reasonable value for training with a small number of 

training tokens. 

The LVQ2 algorithm has be shown to improve classification accuracy by shift­

ing decision surfaces toward the Bayes decision surface. If LVQ2 is performed for 

too many iterations, the initial improvements can be lost due to codewords "drifting 

away". This occurs because during every update, the correction of the correct class 

codeword is always of greater magnitude than that of the incorrect class codeword 

causing the distance between the two codewords || wr — ww \\ to decrease monotoni­

cally. 

3.2.3 LVQ3 

The LVQ3 algorithm combines elements from both LVQ1 and LVQ2 to produce a very 

stable and efficient algorithm. Like LVQ2, for each training token x with class cx, 

LVQ2 uses a nearest neighbor selection scheme to choose the closest two codewords 

Wi with class C j , and Wj with class Cj. If the class of x is the same as one of the 

winning codeword classes and different from the other, an update scheme similar to 

LVQ2 is employed with the same window criterion of Equation 3.8. If the classes of 
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both codewords are the same as the class of x, then an update rule similar to that 
used by LVQ1 is applied. 

If (ca, 7̂  Cj), (ca, = cj) and x falls within the "window", 

WiC* + 1) = Wi(*) - c*it)[x{t) - w-M 

W j ( t + l ) = w j ( t ) + a(t)[x(t)-w j (*)] (3.9) 

For k G {i,j}, and cx = Q = cj 

w k ( t +1) = w k ( t ) + ea(t)[x(t) - w k(t)] (3.10) 

The scalar learning constant e in Equation 3.10 is dependent upon the size ofthe 

window, being smaller for narrower windows. Reasonable values for e range between 

0.1 and 0.5. Optimal value for e depend on the window width and the size of the 

training set. 

LVQ3 is self-stabilizing in that its optimal codeword placement does not change 

with additional learning. The incorporation of corrections (Equation 3.10) that en­

sure the continued rough approximation of the class distributions are responsible for 

this stabilizing property. They are also responsible for some reduction in classifica­

tion performance. This is because the corrections that maintain class distributions 

interfere with corrections that improve classification performance. 

In the FSCL-LVQ algorithm, the assignment of classes to the codewords occurs 

after the FSCL phase but before the LVQ phase. This is done in such a way that all 

of the possible classes are represented by at least one codeword. In cases where the 

number of codewords is much greater than the number of classes, a typically sufficient 
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rule is a majority voting scheme in which the class with most training vectors nearest 
to a given codeword is chosen to be the class of that codeword. 

3.3 Context-Sensitive F S C L - L V Q 

In Kohonen's paper, "The Self-Organizing Map" [8], the idea of context-sensitive 

learning is introduced as a method for topographically mapping symbolic items in 

a way that represents their logical similarities. Kohonen suggests that these logical 

similarities can be drawn from the context of the symbol. To incorporate contextual 

information into the learning process, the symbohc expression of an item xs and 

the representation of its context xc can be combined to form a vector sum of two 

orthogonal components as shown in Equation 3.11. 

(3.11) 

In the symbol mapping problem, Kohonen signified the importance of weighting 

the symbol and context parts properly such that "the norm of the context part pre­

dominates over that of the symbol part during the self-organizing process". Due to 

the nature of some other task, in may be equally advantagous to assign weighting such 

that the symbol/data part predominates over the context part. In both cases, the 

need to emphasize some aspect of the data over another during the self-organization 

process is recognized. 

The nature of the context information as well as the form in which it is presented 

will infiuence its degree of emphasis with respect to the symbol information. Contex­

tual information can come in both continuously valued and discretely valued forms. 

x — Xc 
Xs 

0 + 
0 
Xc 
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Examples of continuously valued contexts include temperature or pressure in sensi­
tive physical measurements. Possible discrete valued contexts include word or symbol 
indices, or vectors of binary indicators that signify arbitrary class memberships. 

In the next two sections, two simple experiments are presented that explore the 

addition of context in a continuous domain and in a mixed continuous/discrete do­

main using FSCL-LVQ. In these experiments, we wish to establish some empirical 

evidence of how contextual information manifests itself in competitive learning net­

works. A better understanding of the relation between context and symbol informa­

tion may lead to more effective ways of emphasising certain information during the 

self-organization process. It may also suggest better ways of incorporating contexual 

information into the learning process. 

3.3.1 Context in Continuous Domain 

A binary classification experiment is presented that uses two dimensional data. Both 

distributions are Gaussian in x and uniformly distributed in y over the range [0,1). 

Equations 3.12 and 3.13 define the probability density functions fei and fa of Class 1 

and Class 2 respectively. 

C l - fci{x,y) = ^ e * V { ^ { x - l j i 1 f } (3.12) 

C2: / ^ ( o ^ ^ e x p ^ O . - ^ ) 2 } (3.13) 

pcl = Proh{x G Cl] 

pC2 = Prob{x e C2} 

Pei = PC2 = 0.5 (3.14) 
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The symbols 01 and Gi represent the standard deviations of p c i ^ y ) and Pc2{x,y) 
respectively. The symbols / ^ i and 1x2 represent the means of pci{x,y) and Pc2{x,y) 
respectively. Mean /i2 is defined to be a linear function of y as given in Equation 3.15. 
The parameters m and c can be adjusted to control the amount of overlap between 
pci{x,y) and Pc2{x,y)- Mean fj,i is constant with respect to y. 

^2 = my + c (3.15) 

For the purposes of investigating context, the x components of the distributions 

are defined to be the "data" portion and the y components the context. Therefore 

context-independent studies make use of only the x component. Context-dependent 

studies use both the x and y components. 

Optimal classification criterion is defined using Bayes classifiers. The Bayes risk 

RB for simple binary hypotheses is given in Equation 3.16. 

RB = PciLciOi + Pc2Lc2{l - P) (3.16) 

The symbols a and (1—/?) represent the false alarm and miss probabilities respectively. 

Lei and Lc2 are the loss coefficients associated with incorrectly choosing Class 1 or 

Class 2 respectively. Bayes risk RB for a simple binary hyphothesis is minimized 

by the likelihood ratio test of Equation 3.17 where dFci{x,y) — fci{x,y)dx and 

dFC2{x,y) = faix, y)dx. 

j , / ^ = j dFciix,y)/dFc2{x,y) > PciLci/pc2Lc2 ^ 1 7 \ 
^ ' | 0 , otherwise ^ ' ' 

By making equal the loss coefficients Lei and Lc2 a n d noting that p^ = pi as stated 

in the problem definition of Equation 3.14, the likelihood ratio test can be simplified 
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into the form of Equation 3.18. 

^0 = 1 i ' d F c ^ y ) l d F c 2 ^ y ) > i 

y ' 10, otherwise v 

The corresponding decision boundary is given in Equation 3.19. 
fci{x,y) = fC2{x,y) (3.19) 

Accuracy for a given class is determined by integrating the probability density 

function of that class over the classification region defined for that class. Optimal 

percentage accuracy for given set of classification boundaries is found by summing 

the individual accuracy for all the classes, weighted by their probability of occurance. 

In the context-sensitive example, optimal percentage accuracy for a single boundary 

decision rule is given in Equation 3.20 

Pei I j fci{x,y)dxdy + pc2 / fC2{x,y)dxdy (3.20) 
J J<j>{x)=l J J<l>{x)=0 

In the context independent case, the resulting probability density functions are 

the marginal distributions gci{x) and gc2{x) of fci{x,y) and fc2{x,y) with respect 

to x of the original two dimensional density functions. 

Cl : gci{x) = Jo1 ^ exp {^{x - ^ } dy (3.21) 

C2: g ^ ^ J t ^ e x v ^ i x - ^ d y (3.22) 

The optimal decision boundary for the context independent case is given in Equa­

tion 3.23. 

gci{x) = gc2{x) (3.23) 



24 

Optimal percentage accuracy is calculated using Equation 3.24 for the context 

independent case, where b is the optimal Bayes decision boundary. 

MATLAB [10] is used extensively to calculate the marginal distributions, opti­

mal classification boundaries and optimal classification accuracies defined in Equa­

tions 3.19 through 3.24. Integration is performed numerically using a rectangular rule 

to discretize the density functions. 

Some experimentation is necessary to determine values for fii, m, c, ax, and a2 that 

yield interesting results. Interesting results have a statistically significant difference 

in classification accuracies between the context independent and context dependent 

cases and fall short of perfect classification by at least 5%. The resulting parameter 

values are as follows: fii — 0.0, m = 8.0, c = 1.68, ai — 4.0, and 02 = 1. 

With the given parameter values, the optimal context-sensitive boundary is cal­

culated and shown in Figure 4. The curve appears to be a straight line but actually is 

curved slightly. The optimal classification accuracy for this case is 87.33%. Figure 5 

plots the calculated marginal distributions for class 1 and class 2. Their intersec­

tion at x = 2.174 is the optimal Bayes boundary and yields an optimal classification 

accuracy of 81.01% for the context independent case. 

Experiments are performed using the FSCL-LVQ paradigm on both the context 

dependent and context independent cases. The four codewords used in the network 

are sufficient to create near optimal decision boundaries. Experimental results can be 

found in Table 1 and Table 2. These tables show classification accuracy for different 

(3.24) 
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Optimal Context Dependent Boundary 

>- 0.5 

m = 8 
c = 1.68 

0 1 2 3 4 5 6 7 8 

X 

Figure 4: Optimal Context-Sensitive Decision Boundary 

numbers of iterations and different learning rates. Both LVQ2 and LVQ3 are used in 

the LVQ stage of training. It results indicate that LVQ2 performs better than LVQ3 

in the context-sensitive classification task. 

A closer look at the location of the codewords in the LVQ2 trained network found 

them ouside of the of the data space [y > l,y < 0). Regardless, the decision bound­

aries defined by these codewords were close to the optimal Bayes decision boundaries 

and as a result performed well. The LVQ3 trained network had all its codewords 

placed withing the data space, although the decision boundaries defined by those 

codewords were poor. For either method to get good decision boundaries, the cod-

words have to be placed well outside the areas of high probability density. This is 

no problem for LVQ 2, but it conflicts with the strategies of LVQ3, which attempt to 

maintain a rough estimate of the probability density function. 
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Figure 5: Marginal Distributions for Context-Independent Classification. The inter­
section of the two curves defines the optimal Bayes boundary. 

In addition to illustrating the use of LVQ2 and LVQ3 in the FSCL-LVQ paradigm, 

this experiment demonstrates the fallibility of LVQ methods if not used with care. 

When the number of codebooks is small, the nonlinearity of codebook selection task 

becomes more apparent through convergence to local minima. A significant question 

is whether these LVQ methods converge to the optimal Bayes decision boundaries as 

the number of codewords increase to infinity. We do not know of such a proof in the 

literature and intend to investigate this question in the future. 

From a context-sensitive learning point of view, the addition of context informa­

tion produces results near to the maximum theoretically possible. The networks, 

when trained properly, are learning the joint distribution of the context and the data 

information. This observation raises a question. Is there any difference between 

Class 2 marg. dist.; N(0,16) 

sigl = 4 
m = 8 
o = 1.68 

^Classi 
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Table 1: Continuous Domain Example: Context Dependent Results 

Ivq alg. Irn. rates # iter % accuracv 
T,V09 
U V \ c / 

U . U U U / 70 
1 U 

86 1 7 
O U . X ( 

1.J V V c ^ / > n nn^/- O 1 • JL f 
J-J V V C ^ Z J n nfn/-

U . U U O / 
uu R7 on 

O 1 .uu TVO 9 n nn^/-
u.uuo / 

ou ou. oo 
TVO 9 u.uuo / ou Rl 1 7 
LVQ 2 0.007/- 45 87.50 
LVQ 2 0.007/- 60 84.83 
LVQ 2 0.007/- 35 88.00 
LVQ 3 0.01/0.2 200 80.50 
LVQ 3 0.01/0.1 100 80.33 
LVQ 3 0.005/0.3 300 80.50 
LVQ3 0.005/0.2 50 80.17 
LVQ3 0.005/0.02 50 82.33 
LVQ3 0.01/0.05 80 80.33 

context-sensitive learning and the learning of joint distributions? The remainder of 

this thesis, especially Chaper V, attempts to answer this question. 
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Table 2: Continuous Domain Example: Context Independent Results 

LVQ alg. Irn. rates # iter % accuracy 
LVQ 2 0.007/- 35 80.50 
LVQ 2 0.007/- 45 80.33 
LVQ 2 0.003/- 50 80.17 
LVQ2 0.005/- 40 80.50 
LVQ3 0.01/0.05 150 80.33 
LVQ3 0.005/0.02 150 80.50 
LVQ3 0.005/0.02 50 80.83 

3.3.2 Context in Mixed Domain 

A second binary classification is presented in which context information is binary in 

nature. Both classes of distributions are uniform in two dimensions. 

Cl : foiix, y) = 0.5; {0.5 <x< 1.5,0.5 < y < 1.5}, 

{2.0 < a; < 3.0,1.0 < y < 2.0} (3.25) 

C2 : fC2{x, y) = 0.5; {0.5 < a; < 1.5,1.0 < y < 2.0}, 

{2.0 <x< 3.0,0.5 <y< 1.5} (3.26) 

Prob{x e Cl} = Prob{x € C2} = 0.5 (3.27) 

Context information: 

Contextclass 1 

Contextclass 2 

7 = 

7 = 

0, {1 .0<y<2 .0} 

1, {0 .5<y<1 .5} 

(3.28) 

(3.29) 
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Figure 6: Class Distributions for Mixed Domain Context Example 

Data is generated using MATLAB according to the expressions of the probability 

density functions fci{x,y) and fc2{x,y) given in Equations 3.25 and 3.26. Data 

points are produced in each of four subregions as shown in Figure 6, defined by the 

sample class and a binary context variable 7 G {0,1}. 

regionA : {0.5 < x <1.5 ,1 .0<y<2.0} class : C2, 7 = 0 

regionB : {0.5 < x < 1.5,0.5<y< 1.5} class : Cl, 7 = 1 

regionC : {2.0 < x <3.0 ,1 .0<y<2.0} dass : ci, 7 = 0 

regionD : {2.0 < x < 3.0,0.5 <y< 1.5} dass : C2, 7 = 1 (3.30) 

Without context information, an optimal Bayes decision rule for detecting class 1 
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is given in Equation 3.31 and yields an optimal classification accuracy of 75%. 

x < 1.25, {0.5 <y< 1.5} 

x > 1.25, {2.0 <y< 3.0} (3.31) 

With context information, the problem is completely specified. The optimal de­

cision rule for detecting class 1 of Equation 3.32 yields 100% classification accuracy. 

7 = 0, x < 1.0 { 0 . 5 < y < 1.5} 

7 = 0, x > 1.0 {2.0 <y< 3.0} 

7 = 1, x > 1.5 {0.5 <y< 1.5} 

7 = 1, x > 1.5 {2.0 <y< 3.0} 

Training using FSCL-LVQ using a codebook of eight codewords produces classi­

fiers with 100% accuracy in the context dependent case and a near optimal 74.1% 

accuracy in the context dependent case. FSCL training places two codewords into 

both disjoint regions. LVQ training properly adjusts the decision boundaries to op­

timize classification accuracy although as a result, the codewords sometimes move 

outside of the regions of uniform distribution. 

This example demonstrate learning with discretely valued context. We use this 

type of context in the vowel classification experiments of the next chapter. LVQ2 and 

LVQ3 handle the discrete values with no problems. Again, training simply learns the 

joint distribution of the context and data information. Although it is less clear in 



31 

this example, the joint distribution is defined in three dimensions: the XY data plane 
and the context dimension. 



C H A P T E R I V 

E X P E R I M E N T S I N C O N T E X T - S E N S I T I V E 
V O W E L C L A S S I F I C A T I O N 

These experiments have dual purposes in that they address two topics. The first 

topic is a performance comparison of two audit ory-mo del based feature sets with a 

conventional speech feature representation. The second topic concerns the addition of 

contextual information at the phoneme level. A single set of experiments is performed 

and the same collection of results is used to draw conclusions about both topics. 

This section presents details of the experiments by first explaining the audi­

tory/conventional feature set comparison aspects of the experiment. Details about 

the context part of the experiments follow. Note that even though the feature set dis­

cussion is separate from the context discussion, the experimental results are generated 

from one set of procedures. 

Speech data for all of the experiments is taken from a subset ofthe DARPA TIMIT 

Acoustic Phonetic Database. This database is organized with phonetic transcriptions 

which allow for ease in vowel extraction and in the determination of adjacent phoneme 

types. Occurrences of seven vowels (a, ae, A, e, I , t) and three diphthongs {ay, ey, ow) 

extracted from the continuous speech often talkers (7 male/3 female) form the data 

set used in this study. The data set, containing approximately 703 tokens, is rather 

32 
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small. We believe that a data set of this size is sufficient to provide a good qualitative 
feel for the results. To make use of this data set, and provide talker independence, 
the following testing methods are used. For talker independent experiments, data 
from one talker is used for testing and data from the remaining nine talkers is used 
for training. A composite performance measure is computed as the mean of the 
performance measures with each of the ten talkers being the test talker. 

4.1 Comparison of Speech Representations 

This subsection explains the implementation details of three speech feature set repre­

sentations. Speech feature sets for training and testing are derived from three different 

sources: the synchrony response of Seneff's auditory model, the auditory model pro­

posed by Payton, and LPC derived weighted cepstral coefficients. Comparisons of 

classification results for each of the speech feature representations are discussed. 

The Seneff speech feature sets are obtained from the output of the generalized 

synchrony detector. The Seneff model program we use produces 40 channels of output. 

By averaging pairs of adjacent channels, the output is reduced to 20 channels that 

span the same frequency range. A feature vector is generated for each vowel by 

averaging spectral slices from the middle third of the duration of the vowel, and then 

normalizing with respect to energy. 

A Payton model based feature set is generated for each vowel by averaging the 

spectral output over the middle third of the duration of the vowel and then normal­

izing with respect to energy. For more distinguishable Payton model feature sets, it 

is necessary to subtract the spontaneous firing rate from each of the twenty output 
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Table 3: Composite Percentage Classification Error: Feature Representations 

Context Method Feature Set Training Set Testing Set 

No Context 
Seneff 23.11% 51.74% 

No Context Payton 28.14% 53.69% No Context 
WCC 25.51% 58.71% 

Method A 
Seneff 18.73% 48.21% 

Method A Payton 20.73% 46.48% Method A 
WCC 20.53% 48.20% 

Method B 
Seneff 18.32% 47.64% 

Method B Payton 21.79% 49.49% Method B 
WCC 21.11% 48.40% 

Method C 
Seneff 22.54% 49.15% 

Method C Payton 24.62% 47.66% Method C 
WCC 22.74% 47.67% 

channels prior to averaging and normalization. 

The third group of speech feature sets is derived from weighted cepstral coeffi­

cients. For each vowel, the first 16 LPC coefficients are calculated using the autocor­

relation method over the middle third of the vowel's duration. These LPC coefficients 

are then used to generate the 16 cepstral coefficients which comprise the feature set. 

Recognition tests using the FSCL/LVQ classifier are performed using all three 

speech representations. The networks are set up with 64 codewords with each code­

word size being the size of the feature vector. FSCL training is performed for 1000 

iterations, with an initial learning rate of 0.01, linearly decreasing to zero. LVQ 

training is performed for 500 iterations, with a window width of 0.25 and an initial 

learning rate of 0.05, which linearly decreases to zero. 
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Classification results can be seen in Table 3. Methods A, B, and C are three 
different procedures for introducing context into the network. The details of these 
methods are given in the following subsection. Without regard to the details of the 
context-dependent methods, we can still use their results in a comparative fashion to 
evaluate the performance of the speech feature representations. 

4.2 Addition of Context at Phoneme Level 

In this set of experiments, context information is added to the feature sets described 

above and vowel classification tests are performed to study the effect of context on 

performance. Three methods for adding context to a competitive learning network 

are proposed and evaluated. 

Table 4: Composite Percentage Classification Error: Context Methods 

Feature Set Context Method w/o context method A method B method C 
Seneff training set 23.11% 18.73% 18.32% 22.54% Seneff 

testing set 51.74% 48.21% 47.64% 49.15% 
Payton training set 28.14% 20.73% 21.79% 24.62% Payton 

testing set 53.69% 46.48% 49.49% 47.66% 
WCC training set 25.51% 20.53% 21.11% 22.74% WCC 

testing set 58.71% 48.20% 48.40% 47.67% 

There is a variety of context information that can be used to enhance the per­

formance of a speech recognition system. In phoneme recognition applications, it 

seems reasonable that mformation about the phonemes preceding and following the 

phoneme in question would be useful. It is in this way that we define context. 
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One way for adding context at the phoneme level to a phoneme classifier is merely 
to inform the recognizer of the class of the phoneme preceding and following the 
phoneme in question. This has been done by Leung and Zue [2] using a multilayer 
perceptron (MLP) architecture trained using the back-propagation algorithm. Their 
network is informed of the context phonemes using a string of indicator functions, each 
indicating one of the possible phoneme classes. The number of phonemes comprising 
a human language is not small, and it is not surprising that the dimension of data 
vectors grows to be quite large. 

The most straightforward reason for adding phonemic context to a phoneme classi­

fier is to attempt to compensate for coarticulation effects. Coarticulation is the effect 

that adjacent phonemes have on each other due to overlapping in their articulatory 

positions. For example, in English the /k / of "keel" is articulated farther forward in 

the mouth than the /k / of "call". Coarticulation causes the place of articulation of 

the consonant to be modified by the following vowel. 

To reduce the domain of the context representation from the forty possible phoneme 

types, yet model coarticulation effects, phonemes are reclassified by place-of-articulation. 

Place-of-articulation classifications, at least for consonants, are indicative of their pri­

mary articulator. Six place-of-articulation categories are used: labial, dental, palatal-

alveolar, velar, 'r', and no-consonant. Silences and vowels are grouped in a separate 

no-consonant category since place-of-articulation for these sounds are not defined in 

the same way as consonants. The phoneme 'r', being somewhat unique in its effect 

on surrounding phonemes (by markedly lowering third formant frequency), is given a 
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category of its own. This category should also be applied to other rhotacizing sounds. 
The assignment of phonemes in the TIMIT database to place-of-articulation class can 
be found in Appendix B. 

Six indicator functions, one for each of the place categories, are used to define a 

six element context field. Two context fields, one for the preceding phoneme and one 

for the following phoneme, are concatenated with the feature field created by a speech 

preprocessor for a given vowel. The resulting vectors comprise the context dependent 

training and testing set. 

For the proper evaluation of any context method, context independent results 

must first be obtained for comparison. Feature vectors, as is, are used to train the 

FSCL/LVQ classifier. Training parameters and training detail are as described in the 

previous section. 

The first and most straightforward method of introducing context is to train 

FSCL/LVQ with the context dependent data set in the same manner as with the 

context independent data set. We will refer to this method of adding context as 

method A. 

For the vowel recognition task, it seems reasonable that the importance of context 

information should be secondary to that of feature information. In the data space, 

feature information is sufficient to represent the basic organization of vowel clusters. 

Context merely adds dimensions which refine these clusters. Perhaps some advantage 

can be gained through the use of training algorithms in which the significance of the 

feature data is recognized. One way of doing this is to use a training algorithm to learn 
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the underlying vowel feature space independent of context. With this framework in 
place, context information can then be added. In this manner, the feature information 
is used to form clusters before the context information is introduced. 

Two implementations of the previously described procedure are proposed for 

FSCL/LVQ. Both variations, method B and method C, have two training stages: 

training on data without context information, and retraining on data with context 

information. The two variations differ in the way that FSCL and LVQ are used in 

each stage. Method B performs FSCL training on data without context, and uses the 

resulting codebook as a starting point for LVQ training on data with both feature and 

context information. Method C performs FSCL and LVQ training on data without 

context, and uses the resulting codebook as a starting point for more LVQ training 

on data with both feature and context information present. Vectors without context 

are created from the vectors with context simply by zeroing out the context fields. 

Training parameters for the context-dependent methods are identical to those in the 

context independent case described earlier. 

Composite percentage classification results for all methods are given in Table 4. 

The data in this table is identical to that in Table 3. The table has been rearranged 

to better facilitate context method comparisons. An improvement of 3 to 5 percent 

can readily be seen from the addition of context using any method. 

To better understand the results, n-best classification statistics are presented for 

all three feature sets in Figures 7, 8, and 9. The improvements due to context are 

consistent across context methods and feature representations. The classification 
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Classification Results Using Seneff Features 
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Figure 7: Classification results verses number of winning classes for the Seneff speech 
representations. 

improvements due to context are steady through the best-five results and decline 

only as classification performance approaches 100%. 

WCC performs far worse than the auditory feature sets in the context-independent 

case and as a result, sees the greatest gains in the use of context. The context-

dependent results are fairly consistent among context methods and feature representa­

tions. Each feature representation performed best on a different context method. Us­

ing the same training parameters and number of iterations, the Seneff model learned 

the training data sets consistently better than the other representations and per­

formed best on the context-independent tests. These results suggest that the use of 

the Seneff model representation results in faster convergence than the other represen­

tations. 
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5 

Figure 8: Classification results verses number of winning classes for the Payton speech 
representations. 

4.3 Analysis 

There are many factors in the above experiments that could have helped or hurt 

performance. As a result, many questions can be asked about the role of phonemic 

context, context incorporation methods, and LVQ techniques in the effectiveness of 

the experiments. 

The representation of the phonemic context, binary indicator vectors, may have 

caused problems in the learning process through its discrete nature. Since the con­

text information is inherently discrete, some other manner of representation, such 

as a binary index for each place category, or a more ordered representation of place 

ranging from frontal articulations (bilabials) to back articulations (velars), may bet­

ter impart the context information. Alternatively, a context representation with a 
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Classification Results Using LPC WCC Features 
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Figure 9: Classification results verses number of winning classes for the LPC WCC 
speech representations. 

more continuous nature may allow more graceful learning with better results. 

The simple context-sensitive FSCL-LVQ examples of Chapter I I I demonstrate 

that learning with context can be reduced to the learning of the joint distribution 

of the context and vowel information. In the course of the above experiments, we 

proposed that the inherent relation between the phonemic context and vowel features 

could be exploited in such a way that vowel features were emphasized over context. 

Two of the three methods of introducing context added such emphasis by training 

on vowel information before context information was added. No improvements or 

degradations in performance over direct training was observed. Why were there no 

differences in performance between the three context methods. Is it valid to expect 

such differences? 

noc ontext 
----- met 

met 
- • - met 

iod A 
-lodB 
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Finally, how do the respective LVQ algorithms impact the effectiveness of the 
learning process. Do the LVQ algorithms adversely react to the addition of context, 
especially in tests using methods B and C. How do the LVQ algorithms handle the 
discrete nature of the context representation? LVQ2 was used in the above vowel 
classification experiments with reasonable results. And although unreported, informal 
vowel classification tests using other LVQ versions produced comparable yet slightly 
worse results, we can not be sure that LVQ2 is the best method for the job. Perhaps 
LVQ3 properties including the retention of rough class distribution properties would 
serve to better emphasise the vowel clusters and de-emphasis the more random nature 
of the context data. 

The remainder of this section studies in detail the context-dependent vowel recog­

nition experiments described above. The analysis will help to better understand 

the effects of phonemic context on the vowel classification experiments, and address 

some questions raised. Due to the large scale experimental procedures used, multiple 

repetitions of the experiments is prohibitively costly in terms of time and memory. 

Therefore, the focus of analysis is on the the codebooks generated during this single 

set of experiments. 

4.3.1 The Data Set 

Important details in the understanding of the experimental results can be found in 

the data itself. Observations can be made from the usage tables in Appendix A that 

classify and enumerate the data set in terms of vowel class and context situation. 

Some primary observations follow: 
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1. There are more "iy" vowel samples than any other vowel in the set. There are 
twice as many "iy" vowels as any other vowel. 

2. The dental place of articulation is about twice as common as any other place of 

articulation, in both the preceding and following context case. Labial is second 

common, with no-consonant in third place. 

3. There are many vowel/context combinations that are not represented. The 

context space is sparse. For a given vowel, less than half of the pre/post context 

combinations are represented. Among the entire data set, there are no palatal-

alveolar/palatal-alveolar or V / V combinations and only single tokens for the 

velar/velar, velar/palatal-alveolar, and no-consonant/palatal-alveolar context 

combinations. 

The fact that all of the possible context and vowel combinations are not repre­

sented does not deter from the results obtained. Obviously, the data set is too small 

for all of the interrelations between vowels and context to be learned. It is reasonable 

to expect that some of the more prominent vowel and context interrelations will be 

learned. 

Over represented and under represented classes do have the potential to cause 

improvements unrelated to the coarticulatory context effects we desire to learn. The 

statistics of the vowel/context combinations in natural speech may outweigh the 

statistics of the coarticulatory context. In this case, the gains achieved by the in­

corporation of additional information in the form of context are dependent only on 

the text spoken. Classification of different utterances may result in poorer results. 
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4.3.2 Codebook study 

In this subsection, the codebooks produced for three of the ten speakers are examined 

with respect to context learning using Method A. In an attempt to better understand 

how the codewords were distributed throughout the context space, each codeword 

was classified by hand into a preceding and following context category. Observations 

on these categorizations are discussed. 

The organization of codewords by FSCL is orderly and basically as expected. All 

ofthe codewords' context elements were between 0 and 1, usually with no more than 

two or three non-zero elements. In many cases, the context fields had a single one and 

the remainder zeros. It was also common to have one of the two non-zero elements 

predominate over the other. For hand classification of these context fields, the class 

whose corresponding element was substantially larger than any ofthe other elements, 

became the class of the context field. There were a few cases in which the context field 

seemed to be shared by two or more classes. This is to be expected and even hoped 

for since it is reasonable to assume that in some context/vowel situations, a speech 

feature vector could be relatively invariant to contextual place of articulations. The 

statistics of the classifications matched those of the data set such that the majority 

of context fields were hand classified dental. 

The fine tuning of the codewords by LVQ2 produced context fields that were 

much harder to hand classify. Elements within the context fields were no longer 

ranged between 0 and 1 and rarely were there any zero valued elements. Many of the 

elements were negatively valued. In the majority of the context field did have 
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an element whose magnitude dominated over the others, and these elements were 
used to classify the context field in a way similar to the hand metric for classifying 
the FSCL context fields. Those element values which dominated over other element 
values were in the range of 5.0 to 10.0. Some elements got as large as 12.0. This 
is an alarming observation since the Euclidean error metric is used as the distance 
measure, and feature vector elements ranged between 0 and 1 in the data set. This 
observation can be attributed to the modified version of LVQ which was used in this 
set of experiments. It has been shown that this version has a tendency to cause 
codewords to diverge and can be unstable. Even with these alarming magnitudes, 
there was a reasonably strong correlation between the hand classifications of the FSCL 
codewords and the hand classifications of the LVQ codewords. 

4.3.3 The Effects of Modifying Codeword Fields 

To gain more insight on how context-dependence works and how the data and context 

fields interact, a series of tests were performed in which different codeword fields were 

modified (nullified) and the amount of classification degradation observed. The results 

are somewhat inconclusive since there is a major amount of degradation in all tests. 

Therefore, only a brief discussion of the procedures and some observations follow. 

Four tests are performed on codebooks from two speakers using all three context 

methods. In each test, classification is performed using codebooks and data in which 

one or more fields is removed. Classification is performed for previous context and 

data (pd), data and following context (df), data only (do), and context only (co). 

The first three n-best results can be seen in Table 5 compared against the unmodified 
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Table 5: Codebook Study Results: Percentage Classification Error for Speakers JLS 
and CRH 

Speaker JLS, Method A Speaker CRH, Method A 
Test n= l n=2 n=3 Test n= l n=2 n=3 
pd 98.67 6S.00 54.67 pd 62.32 53.62 49.28 
df 78.67 65.33 54.67 di­ 63.77 47.83 39.13 
do 76.00 64.00 60.00 do 62.32 53.62 44.93 
CO 78.67 72.00 62.67 CO 62.32 55.07 49.28 
or 37.33 17.33 13.33 or 43.48 36.23 30.43 

Speaker JLS, Method B Speaker CRH, Method B 
Test i i = l n=2 n=3 Test n= l n=2 n=3 
pd 96.00 85.33 58.67 pd 78.26 50.72 46.38 
df 74.67 64.00 52.00 df 73.91 53.62 42.03 
do 89.33 70.67 57.33 do 63.77 57.97 46.38 
co 82.67 72.00 64.00 CO 76.81 53.62 52.17 
or 38.67 24.00 18.67 or 43.48 31.88 26.09 

Speaker JLS, Method C Speaker CRH, Method C 
Test n = l n=2 n=3 Test n= l n=2 n=3 
pd 98.67 66.67 41.33 pd 94.20 88.41 47.83 
df 68.00 42.67 25.33 df 91.30 86.96 46.38 
do 98.67 86.67 64.00 do 91.30 91.30 78.26 
CO 78.67 69.33 61.33 co 78.26 49.28 46.38 
or 52.00 30.67 10.67 or 42.03 33.33 26.09 
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codebook performance (or). In all cases performance dropped by at least 20%. No 
one of the four test situations performed significantly better than any others although 
the pd tests in all but one case got the worst results. Closer study revealed that after 
removing one or more fields from the codebooks, only a small subset of the entire 
codebook was ever selected during the classification process. The tests with the 
worst results typically used only 6 or 8 codewords representing only two or three 
classes. 

It is a little surprising that there was no graceful degradation with respect to the 

context fields. Expecially so in the cases where only one of the two context fields were 

zeroed out. The zeroing out of one context field results in changing a single element 

from 1 to 0. At first glance it is remarkable that the change of a single element by 1 

can change performance in such a drastic way. Realize though that the vowel feature 

field and the context fields are normalized with respect to energy. Therefore, zeroing 

out any one of the three fields results in reducing the norm of the data vector to 

1/3 its original length. Clearly, too much weighting was given to the context data. 

The optimal weighting of context with respect to the vowel features is an interesting 

problem that warrants further investigation. 



C H A P T E R V 

D I S C U S S I O N 

The experiments described in this document serve many purposes. They study vowel 

classification using the FSCL-LVQ classifier. They introduce the use of place-of-

articulation information as a valid form of incorporating contextual information at 

the phonemic level. They also provide a qualitative measure of the effectiveness of 

auditory based feature extraction methods and make comparisons to a conventional 

feature extraction method. 

Equally important although less conclusive, this thesis addresses the issue of 

context-sensitive classification. There seems to be a difference between some types of 

data which we call context in certain classification problems. In the symbol mapping 

problem of Kohonen described in section 3.3, the significance of weighting the norm 

of the context part over the norm of the symbol part during the self-organization pro­

cess was noted. In the vowel classification experiments of chapter IV, we emphasize 

different parts of the data and context in an attempt to recognize the intuitive differ­

ences in importance of the vowel features and their phonemic context. Two methods 

were proposed (method B and method C) that gave emphasis to the vowel features 

early on in the training process. Experimental results using these two methods were 

compared to straightforward training on the vowel features and context data together 
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(method A). No differences in performance over straightforward training could be seen 
from the use of the two alternative context-sensitive methods. This result could be 
used to claim that context-sensitive methods cannot achieve any better performance 
than straightforward training, and that there is no difference between context and 
vowel feature data. We believe that this would be a premature conclusion. 

Scaling of different fields of data in the classification process seems to be a logical 

way to emphasis one field of data over another. Within the domain of competitive 

learning algorithms and FSCL-LVQ, we realize that scaling should only have an effect 

on the self-organization process, not on the fine tuning of classification boundaries. 

Typically self-organizing algorithms seek to minimize some overall error function E, 

typically mean-square. Equation 5.1 shows a typical error function in which dx is the 

volume differential in the x space and w c is the "winning" codebook vector according 

to some distance metric. 

E = j || x - w c || 2 p{x)dx (5.1) 

When a dimension in the x space is scaled by a scalar a, the contribution of that 

dimension to the overall error measure is scaled by a2. The resulting optimal codebook 

arrangement that minimizes Equation 5.1 is thereby altered. 

Optimal classification boundaries, which every classification algorithm strives to 

achieve, minimize an error function. Often this error function is a Bayes risk, defined 

in Equation 5.2 for a simple binary problem. 

RB = PciLciOi + Pc2Lc2{l - 0) (5.2) 
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The symbols a and (1-/9) represent the false alarm and miss probabilities respectively. 

Lc\ and Lc2 are the loss coefficients associated with incorrectly choosing Class 1 or 

Class 2 respectively. Bayes risk RB is typically minimized by a form of likelihood 

ratio test 0(x) as given in Equation 5.3 for a binary detection problem. 

If the decision boundaries define by this likelihood ratio test (/»(x) are weighted by the 

same factor as the data is weighted, there will be no net difference in classification. 

In the FSCL-LVQ classifier, the placement of codewords by FSCL as determined 

by the scaling of the data, can have a profound effect on the codebook to which LVQ 

coverges. In addition, even though scaling should not have any effect upon optimal 

classification, LVQ with a finite number of codewords is not an optimal classifier and 

may be affected by scaling when the number of codewords is small. 

An effective context-sensitive scaling algorithm for competitive learning networks 

should take into account the issues mentioned above. A general form for the addi­

tion of weighting to typical competitive learning schemes is the weighted Euclidean 

distance between two vectors x and y as shown in Equation 5.4. 

The familiar squared Euclidean distance measure is a type of squared weighted Eu­

clidean distance in which the weight matrix W is the identity matrix I . 

One major area of future research is in the determination ofthe optimal weighting 

matrix W for a given context-sensitive problem. One weight matrix worth investi­

gating is based upon a metric called the Mahalanobis distance. The Mahalanobis 

1, dFc\{x,y)ldFc2{x,y) > PciLci/pc2Lc2 
otherwise (5.3) 

dw(x,y) = (x -y ) (5.4) 
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distance uses the inverse covariance matrix K X

_ 1 of x as its weight matrix and can 
be shown to normalize and decorrelate x. A more detailed discussion of the Maha­
lanobis distance can be found in Appendix C. 

Certainly, the simple classification examples of section 3.3 demonstrate that con­

text dependent classification can be viewed simply as the joint distrubution of data 

and contex. Limited to this view, the issue of context-sensitive classification becomes 

unremarkable. Effective learning of the joint distribution of two or more fields of data 

typically requires significantly more training samples than learning of any of the fields 

of data alone. The amount of data necessary to fully describe the joint distribution 

of the vowel features and the phonemic context information in the vowel classifica­

tion problem presented earlier is extremely large. Upfront, we acknowledge the fact 

that the training data set is insufficient to make this description. That is one of the 

significant advantages of place-of-articulation as a context feature representation over 

simple phonemic indicator functions. The dimensionality of the joint data space is 

significantly reduced. Still, the usage tables of Appendix A and the discussion of 

section 4.3.1 indicate that more data is necessary. Is there any way to make use of 

this additional information even though it is not adequate? 

An alternative way of defining context in a classification scheme is as any extra 

information that can be included in the classification task, even if insufficient to 

define a joint distribution. There should be some measurable correlations between 

the context data and the definition of classification boundaries. These correlations 

can be used to improve classification results. We do not know the best way of utilizing 
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these correlations yet. 

One possible technique for better incorporating context within FSCL-LVQ clas­

sification ensures that the context-free information is not forgotten. This is done 

using a learning algorithm that randomly scales the context fields from 0 to 1 during 

training. The amount of scaling of the context fields can be refered to as the degree 

of certainty in the context information. Such techniques might prevent the network 

from over-relying on the context information. 

Context can also be introduced gradually into the training process by using a con­

text gain factor that monotonically increaases with iteration count. Such a technique 

can monitor the performance of the network as the gain factor increases to determine 

the best amount of scaling for the context fields. Although this technique may be 

computationally slow, it may reveal insightful information on the effects of scaling in 

FSCL-LVQ classifiers. 



C H A P T E R V I 

S U M M A R Y AND C O N C L U S I O N S 

6.1 Summary 

Through empirical investigations, we have demonstrated the application of contextual 

information into a pattern classification problem. Study has been limited to compet­

itive learning networks, specifically those trained using learning vector quantization 

(LVQ) methods. 

The context-sensitive problem that inspired this work is in speech recognition. 

The characteristics of a given phoneme is effected by the phonemes surrounding it. 

Thus, information about the surrounding phonemes should improve phoneme clas­

sification. This surrounding information is a prime example of the "context" we 

refer to throughout this document. Our definition of context encompasses any extra 

information that can be included in a classification problem. 

In any classification or estimation scheme, performance should improve with the 

application of additional information to the task. It follows that the addition of infor­

mation in the form of "context" as defined above, should also improve performance 

results. This fact was demonstrated in two contrived classification problems that use 

FSCL-LVQ to generate classifiers for data with and without context. These examples 
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illustrate how context learning is equivalent to learning the joint distribution of the 
two data sets. In non-trivial classification tasks, some problems may arise as more 
information (context) is added. With the increase in information and dimensionality, 
a greater number of training samples is necessary to define the joint distribution of 
the context and data. Also, different data sets will have their own intrinsic error 
metrics. The merging of two data sets, although statistically straightforward, may 
not be trivial for a classification algorithm. 

In this paper the addition of time/context information at the initial phoneme 

classification stage is studied for self-organizing artificial neural networks. Instead 

of simply concatenating adjacent spectral slices and then learning to distinguish and 

classify them, we instead provide contextual clues about the preceding and follow­

ing phonemes. Such a setup significantly reduces the dimensionality of the problem 

allowing for easier training with little loss in classification accuracy. 

A large scale experiment using the FSCL-LVQ classifier was performed to in­

vestigate context as applied to phoneme recognition. The task was limited to the 

recognition of 10 vowels in a talker independent context. Context was incorporated 

from information about the phonemes surrounding each vowel in the form of broad 

phonetic categories. The mean accuracy of the vowel classification was low, approxi­

mately 50%. The addition of context information gave improvements in performance 

of 3% to 5% over classification without context. Calculation of n-best statistics found 

the gains from the use of context information to be consistent. 

In the same vowel classification study, a new form for representing phonetic con-
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text, place-of-articulation, was offered. Place of articulation data is known to be 
correlated to the vowel features. This relation is commonly referred to as coartic­
ulation. As a results, this broad phonetic category offers significant linguistic and 
acoustic information in a compact size. 

From the same experiment in which we tested the use of context in vowel classifica­

tion, results were applied to the evaluation of auditory model based speech feature ex­

tractors. The same set of classification experiments was performed using three differ­

ent speech feature representations: the Seneff Synchrony Model (a model inspired by 

psycho-acoustic observations), the Payton Model ofthe Auditory Periphery(a model 

based on physiological data), and LPC based weighted cepstral coefficients(WCC). 

Doing so enabled the comparison ofthe effectiveness ofthe two auditory based speech 

feature extractors against a conventional signal processing method. 

Classification results using each of the different speech feature extraction methods 

were comparable. In this particular task, the weighted cepstral coefficients performed 

slightly worse than the auditory based models. Performance of the Seneff and Payton 

models were near identical. This perhaps is due to the fact that both auditory models 

are filterbank based models in contrast to WCCs, which is a parametric method. 

These results in no way prove that one method is better than another, but instead 

suggests that auditory based models can be competitive with other signal processing 

methods in speech feature extraction tasks. 
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6.2 Future Work 

The study of adding context into classification tasks has uncovered a number of 

questions about the integration of different data in a single classification scheme. We 

know that different data sets can have their own intrinsic error metrics, so what is 

the best way to incorporate these different data sets in a single classification scheme. 

There may be a great deal of correlation between the data sets, plus there may be some 

statistically insignificant information inherently embedded in the data. Although 

these issues do not affect the classification task in a statistical sense, the may have a 

profound effect in the way that different learning algorithms adapt. 

The determination of the optimal amount of weighting of context information will 

be studied extensively in the future. Empirically, experiments can be performed in 

which the weighting is modified and perhaps some heuristic rules can be derived. 

Two additional methods for incorporating context into the FSCL-LVQ classifier were 

presented in Chapter V. These methods may yield insights into the more optimal 

weighting of context. Both techniques use scaling in a dynamic manner to incor­

porate context without degredating feature information. These two methods will 

be applied to the same context-sensitive vowel classification experiments described 

above, although limited to the Seneff feature representation only. 

The Mahalanobis distance also presents new opportunities for study within the 

domain of input scaling. In addition to a straightforward examination of the Maha­

lanobis distance as an error metric, further study of the Mahalanobis distance may 

answer some questions about the effects of decorrelation and normalization of input 
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data in competitive learning algorithms. If there are any gains or significant effects 
from the normalization and decorrelation of input data, a closer look at the optimal 
unsupervised learning algorithms of Sanger[9] is warranted. This algorithm is based 
on a maximum information preservation principle that is closely related to Principle 
Component Analysis in statistics. As a front end in pattern classification schemes, 
such an algorithm could be used to transform input data into a form more easily 
absorbed by pattern classification paradigms. 



Appendix A 

U S A G E T A B L E S F O R V O W E L AND 
C O N T E X T DATA 

The following tables count the number of combinations of preceding and following 

context combinations for a given vowel exist in the data set. In each table, the 

columns are arranged by following (post) phoneme place-of-articulation and the rows 

are arranged by preceding (pre) phoneme place-of-articulation. Place-of-articulation 

labels are abreviated: labial (lb), dental (dt), palatal-alveolar (pt), velar (vl), V (r), 

and no-consonant (nc). Tables 6 through 8 contain the usage tables for all ten vowels. 

Table 9 is a usage table for the entire data set. 
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Table 6: Vowel Usage Tables: "aa", "ae", "ah", and "ay" 

aa 
vowel post 

context lb dt pa vl r nc 
lb 2 2 0 5 2 0 
dt 1 3 0 0 10 0 

pre pa 1 1 0 0 3 0 
vl 0 1 0 0 2 0 
r 1 3 1 1 0 0 
nc 0 2 0 0 4 0 

ae 
vowel 

context 
post vowel 

context lb dt pa vl r nc 
lb 0 2 5 0 0 0 
dt 5 21 2 0 0 1 

pre pa 0 4 0 0 0 0 
vl 1 0 0 0 0 0 
r 4 1 11 0 0 0 
nc 3 10 4 0 0 0 

ah 
vowel post 

context lb dt pa vl r nc 
lb 0 13 0 0 0 0 
dt 12 5 2 0 0 0 

pre pa 7 2 0 0 0 0 
vl 1 1 1 0 0 0 
r 0 1 0 0 0 0 
nc 3 3 1 0 1 0 

ay 
vowel post 

context lb dt pa vl r nc 
lb 3 8 1 1 0 6 
dt 6 7 11 0 1 3 

pre pa 0 0 0 0 0 0 
vl 0 0 0 0 0 0 
r 1 1 0 0 0 0 
nc 0 1 0 0 1 5 
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Table 7: Vowel Usage 

eh 
vowel post 

context lb dt pa vl r nc 
lb 0 16 4 0 3 1 
dt 4 10 1 0 0 0 

pre pa 1 3 0 0 7 0 
vl 1 5 2 0 0 0 
r 0 2 0 0 0 0 
nc 4 12 0 0 0 0 

:eh", "er", "ey", and "ih" 

er 
vowel post 

context lb dt pa vl r nc 
lb 3 9 3 1 0 4 
dt 1 5 0 0 0 4 

pre pa 0 0 0 0 2 1 
vl 0 8 1 0 1 2 
r 0 0 0 0 0 0 
nc 0 7 0 1 0 10 

ey 
vowel post 

context lb dt pa vl r nc 
lb 6 8 1 3 0 4 
dt 2 15 2 2 0 2 

pre pa 1 0 1 1 0 0 
vl 3 0 0 0 0 0 
r 0 1 1 1 0 0 
nc 1 1 0 0 0 0 

ih 
vowel 

context 
post vowel 

context lb dt pa vl r nc 
lb 1 7 2 1 1 1 
dt 7 20 1 2 0 2 

pre pa 0 0 0 0 0 0 
vl 1 2 0 0 0 7 
r 1 6 0 0 0 1 
nc 1 5 0 0 0 1 



61 

Table 8: Vowel Usage 

iy 
vowel post 

context lb dt pa vl r nc 
lb 2 17 3 1 0 3 
dt 21 20 7 1 7 21 

pre pa 0 1 0 0 0 0 
vl 0 0 0 0 0 14 
r 2 14 0 2 0 9 
nc 4 8 1 0 1 4 

: "iy", and "ow" 

ow 
vowel post 

context lb dt pa vl r nc 
lb 0 3 1 0 0 1 
dt 6 16 0 2 0 2 

pre pa 0 1 0 0 0 3 
vl 1 0 1 0 0 0 
r 1 3 1 0 0 1 
nc 4 0 0 0 0 0 

Table 9: Vowel Usage Tables: Totals 

Totals 
vowel post 

context lb dt pa vl r nc 
lb 17 85 20 12 6 20 
dt 65 122 26 7 18 35 

pre pa 10 12 1 1 12 4 
vl 8 17 5 0 3 23 
r 10 32 14 4 0 11 
nc 20 49 6 1 7 20 



Appendix B 

P H O N E M E T O P L A C E - O F - A R T I C U L A T I O N 
M A P 

Tables 10 and 11 list all of the phonemes in the TIMIT database in IPA symbol form 

and in TIMIT symbol form respectively. Phonemes are arranged by the place-of-

articulation context class in which they have been assigned. Some types of phonemes, 

such as glides, are difficult to classify in terms of place. As a results, there are many 

valid ways to segment the phoneme corpus, and Table 10 is just one possible selection. 

Table 10: Mapping of Phoneme to Place-of-articulation using IPA Symbols 

Labial Dental Velar P alat al- Alveolar V No-consonant 
P t 6 k c r h fi 
P0 t 0 1 k 0 y e i 
m r d g <sil> 
f n d 0 ! a A 
b r n g 0 3 u u 
b 0 s 8 j ? u 
m z 1 

i 
<sil> a? oy 

V ey i» 
w a™ o^ 

i 9 
? <sii> 
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Table 11: Mapping of Phoneme to Place-of-articulation using TIMIT symbols 

Labial Dental Velar Palat al- Alveolar V No-consonant 
P t th k ch r hh hv 

pel tel 1 kel y eh ih 
m dx d g pau ao ae 
f n del ng sh aa ah 
b nx en gel zh uw uh 

bcl s dh eng jh er ux 
em z el epi ay o y 

V ey i y 

w aw ow 
ax axr 
ix ax-h 
q 
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Table 11: Mapping of Phoneme to Place-of-articulation using TIMIT symbols 

Labial Dental Velar Palatal-Alveolar V No-consonant 
P t th k ch r hh hv 

pel tel 1 kel y eh ih 
m dx d g pau ao ae 
f n del ng sh aa ah 
b nx en gel zh uw uh 

bcl s dh eng jh er ux 
em z el epi ay oy 

V ey iy 
w aw ow 

ax axr 
ix ax-h 
q 



Appendix C 

M A H A L A N O B I S D I S T A N C E 

The squared weighted Euclidean distance between two vectors x and y can be written 

in the quadratic form of equation C.l. 

d w ( x , y) = (x - y ) H W - 1 ( x - y) (C.l) 

The familiar squared Euclidean distance measure is a type of squared weighted Eu­

clidean distance in which the weight matrix W is the identity matrix I . 

By limiting the weight matrix W to the class of positive definite matrices, some 

interesting properties can be discovered. If W is positive definite, its inverse is also 

positive definite and can be factored as shown in equation C.2 where T is full rank. 

If W is positive semidefinite, it also can be factors as in equation C.2 althought T 

will not be full rank or its principle minors will be only nonnegative. 

w - i = T f f T ( C _ 2 ) 

This decomposition can be used to show that the squared weighted Euclidean distance 

dw(x,y) is equivalent to the squared Euclidean distance ^ ( x , y ) ofthe input vectors 

transformed by the matrix T . 

dw{*,y) = (x - y ) H W - 1 ( x - y) (C.3) 
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cMx,y) = ( x - y ) H T H T ( x - y ) (C.4) 
^ ( x ^ ) = ( T ( x - y ) ) H ( T ( x - y ) ) (C.5) 
dw{x,y) = (Tx — Ty) H (Tx — Ty) (C.6) 
M x . y ) = ^ ( T ^ T y ) (C.7) 

If the weight matrix is chosen to be the correlation matrix R x of a random vector 

x, then the matrix transform T can be shown to decorrelate and normalize the input 

vectors. 

R x = £[dd H ] (C.S) 

( ^ T ) " 1 = E[ddn] (C.9) 

T - i T - T = E [ d d H j ( C _ 1 0 ) 

I = TE[dd H ]T H (C. l l ) 

I = £ [ T d d H T H ] (C.12) 

I = E[{Td){Tdf] (C.13) 

I = £;[bbH], b = Td (C.U) 

Similarly, if the weight matrix is chosen to be the covariance matrix K x of a ran­

dom vector x, then the matrix transform can be shown to decorrelate and normalize 

input vectors minus their statistical mean m x . A squared weighted Euclidean dis­

tance that uses the covariance matrix of the data as the weight matrix is refered to 

as a Mahalanobis distance. 

K x = E[(d - m)(d - m) H ] (C.15) 
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( T H T ) - I = ^ [ (d - m)(d - m) H ] (C.16) 

T - I T - T = ^ [ (d - m)(d - m) H ] (C.17) 

I = T£;[(d - m)(d - m) H ]T H (C.18) 

I = £[T(d - m)(d - m) H T H ] (C.19) 

I = E[T(d - m)(T(d - m)) H] (C.20) 

I = £[bb H ] , b = T ( d - m ) (C.21) 

This works for any R x and any K x since they are always positive semidefinite, 

and are positive definite if they are full rank. Frequently, the covariance matrix is 

not known and must be estimated from the data using estimators such as the ones 

given in equations C.22 and C.23. 

K x = ^ E ( x i - m i ) ( x i - m i ) H (C.22) 
i V »=! 

Rx = -^Exixf (C.23) 
i=i 

These estimates cannot be guaranteed to be positive definite or positive semidefinite. 

In these cases, the properties of the weighted distance cannot be defined. 

There are many ways of decomposing a matrix in this manner. The resulting 

weighted distance measure is unaffected, although it adds a twist to the possible 

interpretations of the effects of the squared weighted Euclidean distance. 

The above analysis yields a better understanding of squared weighted Euclidean 

distances and more specifically the Mahalanobis distance. The use of this distance 

metric in competative learning schemes such as FSCL or LVQ has not yet been 

studied. 
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