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Chapter 1
INTRODUCTION

1.1 Overview

Robotic manipulators are being introduced into the workplace at an
ever increasing rate. The present day industrial robot had origins in
both numerically controlled machine tools and also in teleoperators.

The teleoperator is a device which allows an operator to handle
materials at a distance. Teleoperators are usually six-degree of
freedom arms equipped with tongs for grasping. The teleoperator
provides isolation from an object (such as a radioactive substance) but
the problems associated with human error are still inherent within the
system. The numerically controlled machine is used to do simple,
repetitive tasks faster and more accurately than humans, but there is no
interaction between the machine and its work. If an object is in the
wrong location, the machine has difficulty adapting to the new position.
Worse yet, if one desires to change to a new part, reprogramming is a
difficult task. Today's industrial robots, although controlled by
mini/micro-computers, are still basically positional machines. Because
they are equipped with few or no external sensors, they cannot obtain
vital information about the working environment. This thesis is an
attempt to provide a manipulator with force sensing capability, and the
ability to improve its performance based on this sensed information.

Manipulator performance is usually researched through the study of
robot arm kinematics, dynamics, and control. Robot arm kinematics deals
with the spatial configuration of the robot as a function of time.

Robot arm dynamics deals with the mathematical formulation of the
dynamic equations of robot arm motion. Robot arm control is concerned
with maintaining the dynamic response of a manipulator in accordance
with some pre-specified goals for system performance. One can use a
similar analysis when studying human postural dynamics. For this
reason, advances made in robotics also have applications toward
understanding human locomotion, and vice versa. Thus, robotics research
can be helpful in such areas as the development of prosthetic devices.
Also, in understanding the control strategies necessary for human
locomotion, one might be able to understand such crippling diseases as
multiple sclerosis.



1.2 Literature Survey

The field of robotics is new and interdisciplinary , so it
attracts many types of researchers from varying backgrounds. In order
to give a consistent approach, there have been textbooks written which
help to unify many theories and technologies. In [1], the author
presents theories from the following fields: computer graphics,
kinematics, dynamics, control, and programming. Much of the theory
presented has already been applied in experimental work. Vukobratovic
and colleagues [2, 3] have written a two volume set of books for
robotics. The first deals with the dynamics of manipulation and motion.
Variable structures of robots are studied as well as open and closed
configurations. The second volume studies the control of robotic
systems. The robotic system is studied as a redundant, multivariable,
essentially nonlinear automatic control system. Since the robots are
dynamically coupled, the control task itself is a dynamic task. Other
texts have been written which also deal with the kinematics, dynamics,
and control of manipulation robots [4, 5].

Some studies in the area of biped locomotion were done. In [6],
Goddard studies the motion of a three-link biped model in the frontal
plane as a constrained system with one or two feet on the ground. The
transition from constrained to unconstrained motion is discussed. In
[7], a three-link biped model was used to estimate internal feedback
gains in the human body solely from remote and external measurements. A
method was proposed by which postural stability and four motions of the
biped could be realized: standing, sitting, bending, and squatting.
This method was used to derive open loop and feedback torques. This
work is significant since the validity of the results can be checked by
making comparisons with actual human motion.

A computer graphics model was developed [8] to simulate the motion
of a thirteen-1link biped. In order to simulate different human
movements, the assumption was made that human movements are stored in
the brain as subroutines, and new movements can be learned by combining
parts of old movements. Suggestions are made for advancement in such
areas as robotics, prosthesis and even choreography. In a further
study, Beck [9] focuses on a computer graphics model of the knee joint.
Specific movements such as joint interaction and muscle contraction and
relaxation are discussed.

Many mathematical studies have been done in the area of
stabilization and placement of system poles. In [10], systems are
discussed whose state-space is naturally partitioned into position and
velocity coordinates. Planar linkage systems used as robot or biped
models fall into this category. A strong controllability hypothesis
results for these systems. Linear state variable feedback can be used
to not only place the system poles, but also the corresponding eigen-
vectors. The resulting eigenstructures can be designed to stabilize and
decouple systems in such a way that specified subspaces of the



state-space are invariant under the dynamics of the closed Toop system.
This particular type of eigenstructure assignment is also discussed in
[11]. This method is applied by Bavarian [12] to control a constrained
system. In this model, pre-compensation by an inverse plant is used to
improve performance. In a recent study, Raibert and Craig [13] have
discussed the hybrid position/force control of manipulators.

Manipulators must be capable of functioning at a number of
different process operating points, which sometimes assume a rather wide
range of values. If these values assume a range too wide, a normal
fixed parameter system model is sometimes not capable of completing the
required task. In such cases, a model is needed which is capable of
changing its parameters during a specified task. Model reference
adaptive control [14-17] has recently been used in robotic systems to
solve this problem.

Control becomes difficult with manipulators if operating
conditions change. When an object is being moved, its effective inertia
usually changes along the trajectory. In [18], position and velocity
control in a three-link manipulator is achieved by use of an adaptive
controller at each joint.

In order for robotic systems to be effective, they must come in
contact with the external environment. Therefore, force control is
necessary to regulate the force exerted by the robotic system on its
environment. This problem is discussed by Whitney in [19]. Small
corrections are made in manipulator fine motions by incorporating a
force-feedback model on a manipulator. Force/torque sensors are also
used in [20]. In this paper a grasping mechanism is discussed which is
very much like a human hand. 1In [21], a system is discussed which eases
a problem in assembly operations such as mating parts. Stiff position
controlled manipulators sometimes require compliance in which various
coordinates are free to comply with external constraints.

A goal of many robotics researchers is to have robotic
manipulators with human qualities. Nearly one third of the articles in
the International Journal of Robotics Research are related to robot
vision or vision sensors [22-27]. Tactile sensing has also been
researched. A detailed study of the human hand [28] was done which
incorporates touch control. Transfer functions for the force sensing
mechanisms of the hand provide tactile sensing to the system. A survey
was done [29] to assess the needs in state of the art automated tactile
sensing. The survey determined that tactile sensing arrays are needed
which are "skinlike" in nature, durable, and capable of transmitting a
tactile image with high resolution. Drawbacks are in the area of data
processing in software. Also mentioned was the problem of integrating
taction and manipulation.

A step toward realizing a skinlike tactile sensor array was made
by Hillis [30]. This sensor is a monolithic array of 256 tactile



sensors that fits approximately on the tip of a finger. The sensor is
rugged, flexible, and has a skin-like texture. A test was done where
the sensor was to discern between six test objects placed in front of
it. It could confidently choose the correct object, but it would also
identify other objects placed in front of it as one of the six test
objects. Although not perfect, this sensor represents a major step in
tactile sensing.

In the above examples, applications are made in both robotics and
human modelling. These are just a few examples of the current research,
and they also help to give insight into the areas that need to be
addressed. Many unsolved problems remain for future research in
robotics and human modelling.

1.3 Organization

Chapter 2 describes the three-link robot arm. The nonlinear
equations of motion are given (a detailed derivation of these equations
is in Appendix A) and control strategy is discussed. State variable
feedback stabilizes the system. Constraint forces at the point of
contact of the arm with the wall are calculated and shown to be a
function of state and input. Sensing mechanisms are discussed, and
force feedback is used to improve system response. In Chapter 3, the
system is linearlized, and linear state feedback gains are calculated.
Sensor dynamics are discussed, as well as the system with force feedback
implemented. Chapter 4 gives the results of digital computer
simulations used to verify the equation developed in the previous
sections. Chapter 5 contains a summary and recommendations for further
work. The programs used can be found in Appendix B. A fourth order
Runge-Kutta integration routine is used on the system of nonlinear
differential equations to calculate the state variables of the model.



Chapter 2

The Three-Link Planar Arm

2.1 Introduction

This chapter contains the theory and control strategy used to move
the robot arm. Section 2.2 contains the equations of motion of the
robot arm as well as the parameters used in this model. A control
strategy for simultaneous stabilization and decoupling is presented in
section 2.3, along with an inverse plant which generates control signals
to move the arm along a specified trajectory.

Force sensing and characteristics of tactile sensors are discussed
in section 2.4. These concepts are applied in 2.5, providing force
feedback to the system. Block diagrams are given to specifically show
the system dynamics.

2.2 Equations of Motion and Parameters

The robot arm shown in Figure 2.2.1 can be analyzed as a
three-link planar inverted pendulum. This arm is chosen with parameters
to match those of a robotic system designed by SANDHU Incorporated,
called a RHINO R XR-1. The robot arm was built with the same operating
technology as large industrial robots, and is used mainly for research
and educational purposes in the field of robotics.

In this analysis, the robot arm is studied in the sagittal plane.
The arm consists of three links, with the first 1ink anchored to the
ground by a pinjoint. The bottom of the second 1ink is connected by a
pin joint to the top of the first link. The third link is connected at
its center of mass to the end of the second 1ink. On the RHINO R XR-1,
there are DC motors at each joint which provide the torques needed to
move the arm. In this analysis, it is assumed that each torque
generator is ideal, and capable of providing any amount of torque in
zero time. Each joint is connected by a frictionless pin joint.

To aid in the discussion, a numbering system is introduced. The
bottom 1ink is named link 1, the middle link is named link 2, and the
top link is named link 3. With each 1ink, there is an associated torque
uj, joint Jj, and angle 6j; i = 1, 2, 3. Angular position g is
measured at joint Jj clockwise with respect to the vertical. Each link
is characterized by four parameters: length, mass, location of center



Figure 2.2.1 The Three-Link Robot Arm



of mass, and the moment of inertia about the center of mass. These
parameters can be seen in Figure 2.2.2, where 1 is the length of link
i, mj is the mass of link i, kj is the location of the center of mass of
link i, and Ij is the moment of inertia about the center of mass of the
ith 1ink. The parameter values, which are estimates of actual 1link
parameters [31], are given in Table 2.1.

The instantaneous position of the robot is specified by vector
o(t) = [e; 62 6317, and the velocity of the robot is vector of(t).
In order to study contact of the robot arm with a surface, a vertical
wall is assumed to exist at x = d. The arm leans against this wall with
a force y. A constraint equation which is a function of the angular
position vector o governs this contact, and is given in Eq. 2.2.1.

P(o) = 1psinep + 1psingp + k3sing3 -d = 0 {8.2:1)

As stated earlier, the joint Jq is constrained to stay fixed to
the ground, and the arm is to be controlled to move such that link 3
moves along the wall with a contact force, y. It is assumed that the
wall is frictionless, so there is no tangential component of force at
the point of contact on the wall.

The equations of motion for the arm (Appendix A) in matrix form

are

J(0)5 + B(0)e2 + F(e) = CU - %I (2.2 2]
where

6 = [ 6 8 8]

of = 1 éf ég ég IF (2.2.3)

U = [u u u3 T

-1 (2.2.4)

The force of constraint in the horizontal direction is y. The matrices
J, B, and F are nonlinear functions of 0. The J matrix is of dimension
(3 x 3) containing inertial terms, B is a (3 x 3) matrix containing

coriolis terms, and F is of dimension, (3 x 1) containing gravitational
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Table 2.1

PARAMETERS OF THE ROBOT ARM

PARAMETER VALUE UNIT
11 0.25 m
1o 0.25 m
13 0.10 m
kq 0.15 m
ko 0.15 m
k3 0.05 m
m1 1.0 kg
m? 1.0 kg
m3 1.0 kg
I 0.005 kg-m2
1o 0.005 kg-m2
I3 0.001 kg-m2
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It is apparent that y is a function of both state X and input U. Figure
2.2.3 is a block diagram of the constrained system, obtained by
combining Eqs. 2.2.6 and 2.2.9. The switch is closed for constrained
motion, and open for unconstrained motion.

2.3 Control Strategy

The robot arm is an unstable nonlinear system, and therefore a
method of stabilization and control must be provided. In the three-link
biped model of Hemami et al. [7], open loop torques are derived from
records of a man performing the same actions as those desired by the
three-1ink biped. This method however, is not practical for most
industrial robots. They must do many different tasks that require large
amounts of memory. Control is achieved in this model by linear state
feedback. This section discusses pole placement and decoupling, as well
as the control signals derived from an inverse plant model.

Linear State Feedback and Decoupling

For overall system stability, it is desired that all of the poles
(eigenvalues) of the system be in the left half of the complex frequency
plane. State variable feedback is used to place the system poles, and
thus stabilize the system. Position and velocity feedback are generally
used in linkage systems since these states are easily measured.

Marked improvement was demonstrated in the response of a
five-link biped leg decoupling the motion of each 1ink [32]. This
method is both easy to apply and requires few computations. The
necessary computations are matrix inversion and matrix multiplication.

The system is linearized for unconstrained motion (y = 0).
Substitution of the static values o0 = 0, © = 0 into the equations of
motion (2.2.2), and solving yields the bias torques for an arbitrary
operating point.

Up = C-IF(ep) (2.3.1)

1o Il



terms. Eq. 2.2.2 describes both the free motion of the arm, in which
case y = 0 and P(o) # 0 and the constrained motion where y > 0 and P(o)
= 0.

In order to study the robot arm under constrained motion, it is
necessary to calculate the force of copstraint, y. The state equations
are obtained by solving Eq. 2.2.2 for o and by adding 0 = 0 to obtain

o = 0

it . T

o = J-1(e)[-B(o)e? - F(o) + CU - % y ] (2.2.5)
where the state is X = [0 0]T. Equation (2.2.5) can be compactly
expressed as

X = f(X, U, y) (2.2.6)

The force of constraint y can now be solved as a function of state
and input. For this purpose, the constraint P(e) (Eq. 2.2.1) is twice
differentiated with respect to time, to obtain

Ple) = QX)X = 0 (2.2.7)
Substituting X from Eq. 2.2.6 into Eq. 2.2.7 results in

QUX)F(X, U, y) = 0 (2.2.8)

Eq. 2.2.8 can now be solved for y in terms of the state X and input U,
to obtain

y = (X, U) (2.2.8)

More explicitly, the solution for y is obtained by the following
steps. Eq. 2.2.7 when expanded is given below in Eq. 2.2.10.

. . P oy
{(6%? (g_gﬂ) é} o + _g_@T 5 = 0 ' (2.2.10)

Now, substitute © from Eq. 2.2.5 into Eq. 2.2.10 to obtain the solution
for Y
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To linearize Eq. 2.2.2, the following quantities are substituted:

O = 0Bt A6
© = 06 + A0
(2.3.2)
& = 6B * AB
Uu = Ug + al

Neglecting the powers of incremental variables, and subtracting the bias
Eq. 2.3.1, the following linear equation results with the delta notation
removed.

J(op)d + %% (eg) & - ¢y (2.3.3)

Let the desired poles for each link be Aj1, Aj2, 1 =1, 2, 3.
A decoupled system in matrix form describes the desired system behavior:

5+Mo +No = 0 (2.3.4)

The matrices M and N are diagonal matrices whose elements are found from
the desired poles of each link:

mii = -(n1* A¢2)

nii Al Ai2 (2.3.5)

Implementing state feedback in the linearized equations (2.3.3) yields
the desired decoupled form. Substitution of the state feedback control
law into Eq. 2.3.3 yields

P @
36+ LA = Clup + Ke + 60) (2.3.6)

Algebraic manipulation of the above equation results in

5+ [_J-l C6] 6 + [J'l(%g - CK)Je= J-lcup (2.3,7)

Comparing coefficients with Eq. 2.3.4, the feedback gain matrices K and
G can be calculated.

13
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c-1(aN 325 ) (2.3.8)
~c-1lom

oW
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In order to find these feedback gain matrices, it is necessary
that the matrix C is invertible. This is true if there is a torque
generator at each joint of the linkage system. The block diagram in
Figure 2.2.3 is modified by adding feedback gains as shown in Figure
2.3.1. Thus, the system is stabilized about an operating point Xj.

Inverse Plant Model

In the preceding section, linear state feedback gains were derived
using a linearized model of the system. Once these gains were
calculated, they were put back into the nonlinear system, thus providing
stability. However, if in addition to stability, a specific movement
is desired, control inputs must be provided which will move the system
to the desired operating point. The method of the inverse plant model
is used to generate these control inputs.

Suppose that it is desired that the system track a pre-specified
trajectory. This trajectory is a continuous function of angular
position o, and has continuous first and second derivatives. An error
signal is generated by subtracting the desired trajectory from the
actual state.

Ge = 0Od - 06

e 0d - © (2.3.10)
This can be seen in Figure 2.3.2. To calculate the control inputs, the
desired values for angular position, velocity, acceleration and
constraint force are substituted into the equations of motion (2.2.2)
and solved for Ui, the control inputs from the inverse plant. After
making the substitutions stated above, the following equation results

o 5 T
J(0g)ed + Blogldg” + Flag) = Clijp - & yq (2.3.10)

Solving for Ujp yields

- . T
C-1[J(og)oq + Blog) ed2 + Floq) + %%— vd] (2.3.11)

Uin = [u1y, u24, u3j,] (2.3.12)

14
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Each Ujjpn specifies the torque generated at the ith joint, Jj.

2.4 Force Sensing

Adding human-like sensing to a robotic manipulator is the real
challenge in the robotics field. There has been a great deal of
research in the area of visual sensing and pattern recognition [22-27,
33, 34]. However at the present, tactile sensing appears to be a more
appropriate way to assess an environment. For one, there are far fewer
data to be processed, which means that most complex processing can be
performed in real time. Another factor is that data collection is much
more readily controlled. Placement and pressure of a fingertip are
controlled by a program, so one can go directly to the area at which a
tactile image is desired.

If one wants a robot arm which is 1ike a human arm, then some type
of grasping mechanism might be desired which compares to a human hand.
A multi-fingered hand was made in [35] so that fine movements could be
done without moving the entire arm. The human hand contains thousands
of sensors which detect heat, pressure, vibration, and texture. It was
found that the highest density of sensors is in the fingertip, and the
lowest density is in the palm of the hand [36]. Because of the
complexity of the human hand it is impossible to implement these same
properties on a robotic hand, but it is possible to do a rough estimate.
There are two main obstacles when using sensors: First, sensing
mechanisms are still somewhat crude when presenting an image, and
secondly, the large amount of data from sensors causes difficulty in
data processing and decision making. However, it is not necessary to
exactly model a human hand and arm for most robotic applications.
Instead, one might provide the robot with sensors directly related to
its job function, thus reducing the number of sensors and simplifying
the arm.

There are many performance specifications of sensors which are
usually highly dependent upon the application of the manipulator. One
of these specifications is proximity sensing. It is necessary to
determine location and orientation of an object to avoid damaging
collisions when making contact. Another specification is contact
sensing. For array type sensors, this refers to determination of a
tactile image upon contact with an object. For single sensors it simply
refers to binary sensing. The sensitivity of a sensor transducer is
another important factor. One must apply enough force to an object so
that it does not drop, but it must also not press too hard so as to
damage the object. Therefore, a sensitivity range must be determined,
again depending upon the particular application. Linearity and
hysteresis of a device are qualities that are often mentioned together.
Nonlinearity is tolerable since inverse compensation is easy if the
device is stable. Hysteresis, on the other hand, is intolerable. Touch
sensing devices should be stable, monotonic, and repeatable. Another

17



quality, time resolution, is sometimes discussed in two ways. First, in
terms of the sensor response time, secondly in terms of overall
control-loop response. Touch-transducer response time should be small
compared to loop cycle time.

For this application, it is adequate to use a single analog sensor
at the point of contact of the robot arm with the wall. It is desired
to measure the force exerted by the arm on a flat wall.

The force sensor is described by a transfer function, as shown
below in Eq. 2.4.1.

'yp = H(S)y (2.4.1)

In this equation, y is the actual force, calculated as a function of

state and input and described by Eq. 2.2.11. The perceived contact

force, yp is the force which is sensed. The transfer function H(s)

provides a delay in the feedback loop, which is necessary for overall

gtabi]ity. Details of the transfer function are discussed in section
4.

2.5 Force Feedback

Once a sensor is implemented, a strategy must be determined to use
the sensor measurements to aid in the control of a manipulator. Force
feedback is used to control the force that the robot arm exerts on the
wall. Since the force y is a function of both states and inputs, it is
necessary to alter one or both of these to change the force. The state
of a system is usually specified, so the force must be controlled by
changing the inputs to the system. These inputs are changed in such a
way that the arm presses on the wall with a force comparable to some
desired force yq4.

One is usually concerned with moving the arm on a particular
surface while moving along a specified trajectory. This regulatory
process is initiated by the tactile sensing strategy in the previous
section. The receptors of the sensing mechanism stimulate a signal
which is transformed into some perceived contact force, yp. This force
is compared to a desired force, yq and the error signal ye is fed to the
controlling mechanism.

B =ty 74 (2.5.1)

Since the inputs to the system are torque generators, the error signal
ve is fed back as a torque through some gain factor. If one assumes
that the torque to be fed back is a linear function of the difference
between the perceived and desired contact force, then one can write

18



Uf = —Gl(.Yp - Yd) (2.5.2)

where G; is a (3 x 1) matrix of gains, and Uf is the feedback torque to
be added to the overall torque as shown in Figure 2.5.1.

To calculate the gains G, the original equations of motion are
used (Eq. 2.2.2), with the following exceptions.

U+ Uf
Yy * ve (2.5.3)

Ut
YT

In Eq. 2.5.3, Ur is the total torque and yT is the total force on the
wall. The incremental torque and force from the force feedback Toop are
Ur and ye, respectively. If the static values 8 = 0O and o = 0 and
the bias values @ = oy are substituted in Eq. 2.2.2, the following
equation results after subtracting the bias equation.

T
e = T | e (2.5.4)
e = 0p
Solving for Uf,
T
ug = c-l %l;_ Ve (2.5.5)
8 = 6p

Therefore, the feedback gains G can be found as a function of an
arbitrary operating point:

G]. = C-l gpl

55 (2.5.6)

6 = 0p

The (3 x 1) matrix of gains Gy is now determined. These gains are valid
for excursions close to the operating point, op.

2.6 Summary

The equations of motion for a robot arm were derived for a rigid
planar linkage system model. The evolution of the block diagram is seen
as the complexity of the model is increased. The first block diagram
shows the dynamic system and force calculations necessary for
constrained motion.

19
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As the chapter progresses, feedback is added to stabilize the
system, and an inverse plant is used so that the system tracks a desired
input. Finally, force sensing is discussed, and a force feedback
strategy is derived to regulate the force on the wall.
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Chapter 3
STABILITY

3.1 Introduction

In Chapter 3, the equations derived in Chapter 2 are used along
with specific parameter values to obtain the numerical values to be used
in the digital computer simulations. In section 3.2, the equations of
motion are linearized for small excursions about an operating point. In
section 3.3, the linear state-variable feedback gains are calculated
using the linearized equations.

In section 3.4, sensor characteristics are discussed. Included in
this discussion is the algorithm for moving from unconstrained to
constrained motion. The sensor is equipped with a material which
absorbs the shock of impact. Finally, in section 3.5, a force feedback
loop is added to the system, and appropriate feedback parameters are
derived.

3.2 Static Analysis - Linearization about an Operating Point

In section 2.2, the equations of motion for the robot arm are
derived for both constrained and unconstrained motion. These equations
are then linearized in section 2.3. The operating point is chosen so
that the arm is situated in a vertical position, with the third link
horizontal as shown in Figure 3.2.1. If the parameter values in Table
2.1 and the bias values

op = [0 0 /2] (3.2.1)

o = [0 0 0]

are substituted into Eq. 2.3.3, and y = 0, the following matrix equation
results.
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0 .001
-1 0
1 -1]U
0 1

0
0

This equation is put into state space form:

X = AX + BU
= [o ol
= [u; wup u3l

The resulting state space equation is

X = |-

+ -

154.06 -105.34
171.18  160.65 0 |
0 o 0 |

24.161 -57.01 26.85
-26.85 67.785 -40.94
0 0 1000
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The poles of the linearized system are
A = -17.029, -4.7991, 0, 0, 4.7991, 17.079.

Clearly, the above system is unstable. However, it can be stabilized
since a simple calculation shows that controllability matrix has full
rank:

rank [B | AB] = 6 (3.2.6)

This is a system of controllability index two, and is the same type of
system as those discussed by Ceranowicz, et al. [10].

3.3 State Feedback

State feedback is provided as a means of placing the system poles
in the left half of the complex frequency plane, thus stabilizing the
system. In section 2.3 the linearized equations are given, and a
feedback scheme which simultaneously places the poles and decouples the
system is discussed. In section 3.2, numerical values for the system
parameters and bias positions are given in Eq. 3.2.2. The linearized
system in state space form is given in Eq. 3.2.5. In this section, the
state variable feedback gains are calculated. These will be used in all
of the simulations of Chapter 4.

In section 3.2 the system was linearized about an operating point
wich was chosen so that the arm stands vertical with the top link
horizontal.

n
—
o

o 0 w217

o = [0 0 0] (3.3.1)

With this choice of bias values, it was determined in section 2.3 that
the gain matrices K and G can be calculated from Eq. 2.3.8. In the pole
placement method used, it is first necessary to place the eigenvalues,
so that the matrices M, and N can be calculated. The following poles
were arbitrarily chosen:

A1 = -2, M2 =-3, A21=-4, Ap2 = -5, Q31 = -6, A3z = -7

Now the diagonal matrices M and N from Eq. 2.3.4 are specified:
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M = 8 N = 20
_ o _ 2 ] 332
From Eq. 2.3.8 K and G can be calculated
-7.8915 -7.724 -.042
K = -0.6 -5.724 -.042
0 0 -.042
-1.2625 -1.71 -0.013
G = -0.5 -0.81 -0.013
0 0 =A% (3.3.3)

For digital computer simulations, the nonlinear system equations
are used with the linear state feedback discussed above. Therefore, the
feedback is valid only for small excursions about the bias values.

3.4 Characteristics of Sensors

In order to model the effect of a sensor in a digital computer
simulation, transfer functions must be derived so that appropriate
equations can be written. These transfer functions must incorporate
such characteristics of sensors as time resolution and sensitivity. The
sensor must also be rugged in order to absorb contact forces when making
the transition from unconstrained to constrained motion.

The time resolution of a sensor is affected by two parameters.
First, touch-transducer response time, and secondly, time necessary for
data-processing must be considered. As mentioned in section 2.4, it is
important that sensor response time is small compared to the overall
loop cycle time of the manipulator on which the sensor is incorporated.

The sensitivity of a sensor varies according to the application of
the manipulator. For delicate operations, a sensor might need to be
accurate enough to detect a change in mass on the order of a few grams,
while for heavy machinery the sensor might not even respond to a mass
less than a few kilograms. However, no matter what type of
application, it is important to have a large dynamic range. In [29],
it was reported that dynamic range is much more important than
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linearity, since one can compensate for linearity during processing of
data. For sensors today, a good response time would be logarithmic
in nature with a dynamic range of about 1000:1.

In [28] transfer functions for the tactile sensing mechanisms in
the human finger were derived. It was assumed that the sensor had a
second order response characteristic. This response incorporates the
delay which comes from the indentation of the skin which stimulates the
neural response from the tactile sensors. In [29] it was reported that
the amount of reaction time (whole-loop) it takes for a human to, say,
push a lever as fast as possible after any stimulus, is about 150-200
ms on the average.

There are many transduction technologies available that can be
used for tactile sensing. Some examples are resistive and conductive
materials, semiconductors, piezoelectric transduction, capacitive
sensing, and photoelectric transduction, to name a few. There is no one
materials technology that simultaneously provides linear, stable,
sensitive, rugged, and cheap sensing. However, many of these
technologies are in use today and are performing relatively well.

These sensors have such a quick response that for the single force
sensor implemented on this manipulator, a simple delay can be used for
the transfer characteristic, the response is assumed ideal except for
the delay element. Recall Eq. 2.4.1:

Yp = H(S)Y (3.4.1)

In this equation, y is the actual force exerted on the wall, calculated
as a function of state and input. The perceived contact force y, is
that force which is sensed. The transfer function is a delay given by
the following equation.

v = y(t- 1) (3.4.2)

The time delay <t used for this application is about 40 ms. This value
could not be found explicitly in the literature, but it is assumed
reasonable by researchers in sensor technologies.

A sensor must be rugged enough so that it is not damaged when
contact is made with a surface or an object. Therefore, in order to
make the transition from unconstrained to constrained motion, this
sensor is equipped with an absorbing structure which is capable of
absorbing the shock of impact. This material should be 1ike the spongy
part at the tip of a human finger. It is modelled as a spring and
dashpot and is shown in Figure 3.4.1, and 3.4.2. The equation relating
force and distance is Eq. 3.4.3, where ¢ is the distance from the sensor
to the wall, and ¢ is the velocity in the X-direction of the tip of the
manipulator.
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0 IF € g\W ? Xeq
F =  -Ke - Be IF Xcom € € < Xegq
Y(X’ U) IF Ps € € Xcom (3.4.3)

In the above equation, the force on the wall is zero if no contact
is made. The force is calculated by using the second part of Eq. 3.4.3
when compressing the absorbing structure. In this application, values
are chosen for xeq and Xxcom to be Xxgq = 1 cm and xcop = 0.5 cm.  The
absorbing structure cannot be compressed beyond xcom. The stiffness, K
provides a restoring force as represented by a spring. Thus, if
stretched, the spring tries to contract; if compressed, it tries to
expand. The damping, or viscous friction, B characterizes the element
that absorbs energy. The damping force is proportional to the relative
velocity of the two ends of the dashpot. For this structure, K is
chosen to be small since it is desired to mostly provide damping, with a
small restoring force. The third part of Eq. 3.4.3 is the force on
the wall calculated as a function of state and input as before.

As mentioned above, ¢ is the distance from the sensor at the
manipulator tip to the wall (See Figure 3.4.1). The calculation for ¢
is given in Eq. 3.4.4, where Xeq is the size of the absorbing structure
at rest.

d

e = lisingp + Ipsinep + k3sine - xaq (3.4.4)

Similarly, Eq. 3.4.4 can be differentiated with respect to time to yield
the velocity in the K-direction of the manipulator tip, as given in Eq.
3.4.5.

e = 1101 cosey + 1282 cosep + K3 63 coso3 (3.4.5)

The values for the stiffness, K and the damping, B can be
determined as follows When the absorbing structure is fully compressed
(e = Xcoms € = 0), the force should be equal to fi, Newtons. Therefore,
K can be calculated by substituting the above values for ¢, and ¢ into
Eq. 3.4.3 and solving for K as given below

K = fl/XCom (3.4.6)

The value for B can be chosen arbitrarily, depending on the amount of
damping desired.
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3.5 System with Force Feedback

Force feedback is used in this system to provide fine control of
the force exerted on the wall by the robot arm. The force is sensed by
force sensor, and the perceived force is regulated about a desired
force, yq. This desired force can be constant or time-varying.

The transfer functions of the previous section can be implemented
in Eq. 2.5.2 to derive the appropriate feedback torques. Substituting
Eq. 3.4.2 into Eq. 2.5.2, one obtains the following equation.

Uf = Gl[H(S)Y - yd] (3.5.1)

The only unknown in this equation is the (3 x 1) vector Gj, representing
the force feedback gains.

The feedback gains, Gj, can be derived using Eq. 2.5.6. Using the
same operating point as in the previous sections:

[0 0 x/2]

D

o

n n
—
o
o
o
=i

Ob {3.5.2)

One can make substitutions into Eq. 2.5.6. To get the following gain
values.

Gy = [0.5 0.25 0] (3.5.3)

If the system deviates from the bias values by too much,
instability can result, so additional gain control is needed. One way
to do this is by decreasing the above gains by a constant value.

Gy = ab) (3.5.4)

In Eq. 3.5.4, ¢ can be a scalar between 0 and 1, thus decreasing the
gains.

A more desirable approach to regulating these gains ié by using
time-varying feedback. If the bias positions and velocities are
time-varying, then the gains can be calculated on-1line using Eq. 2.5.6.
T

Gl = C-l
. 0 = oplt) (3.5.5)

This is actually a more valid assumption, since one usually follows a
time-varying reference trajectory. However, one must again be aware of
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instabilities that might result from deviations too far from the bias
values. These can be compensated for by multiplying by a scalar, a as
mentioned above.

3.6 Summmary

In this chapter, the system was linearized and the system was
simultaneously stabilized and decoupled by using a pole-placement
routine. Sensors were discussed, along with the theory necessary for
going from unconstrained to constrained motion. Finally, the system
with force feedback was discussed. The feedback gains in the force
feedback loop were adjusted so that instability did not arise.
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Chapter 4
DIGITAL COMPUTER SIMULATIONS AND RESULTS

4.1 Introduction

In order to verify the results of the previous chapters, digital
computer simulations of this robot system are carried out. Both
constrained and unconstrained motion are studied. In section 4.2, free
arm stability is demonstrated. In section 4.3, a similar simulation is
done, but a wall at a distance d from the base of the arm is assumed,
and the arm is constrained to keep contact with the wall at all time. A
tracking problem is discussed in section 4.4, where the robot arm moves
with a pre-specified periodic motion. In section 4.5, a force feedback
loop is added to the system, showing improvements in system response.
Finally, section 4.6 is a simulation of the arm touching the wall
(i.e., going from unconstrained to constrained motion).

4.2 Free Arm Stability

A free arm simulation is used to check the validity of the
original equations of motion. A bias point is chosen and the arm is
offset from this bias point. The simulation is done to verify that the
arm returns to the equilibrium position.

In this case, the bias point is chosen so that the bottom two
links are vertical, and the top link is horizontal.

op = [0 0 90° T (4.2.1)

The angular positions are given in degrees. The equilibrium velocities
are chosen so that the system remains at rest after reaching
equilibrium. The bias velocities are

&b = [0 0 0] (4.2.2)

Initial conditions are chosen reasonably close to the bias values so
that the system is not initially unstable. The initial conditions are
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Using the above bias point and Eq. 2.3.1, the bias torques are found to
be

U = [0 0 07T (4.2.4)

The results of this stability test are shown in figures 4.2.1 to 4.2.3.

In the plots of angular position (Figure 4.2.1), the system starts
from the initial offset conditions, and settles to equilibrium in about
2 seconds. The velocities (Figure 4.2.2) start from rest and settle to
the rest position (o = 0), after the system is in the equilibrium
position (0 = op). Since no torque is needed when the system is in
equilibrium, the control U goes to zero. All of the graphs reach
equilibrium in about two seconds, which is expected according to the
choice of system poles.

4.3 Constrained Motion Stability

After verifying in the previous section that the feedback strategy
is valid for unconstrained motion, a constraint is imposed, and a
similar digital computer simulation is performed. The constraint is a
wall at a distance x = d from the first joint of the robot arm. The arm
is to move along the wall without violating the constraint.

The equilibrium point is chosen to be the same as in the previous
section:

ob [o o 90° T
% = [0 0 07T (4.3.1)

The constraint equation is also the same.

P(e) = 1psing] + 1psingp + K3 sinpz3 -d = 0 (4.3.2)

Initial conditions are chosen so that the arm does not initially violate
the constraint. In addition, it is desired that the top link stay in
the horizontal position throughout the simulation. The initial
conditions are:
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0f
0f

In addition to keeping the constraint, it is desired that the arm
presses against the wall with a constant force of 10 newtons. The
system at rest requires that bias torques are generated so that this
constant force can be applied. To calculate these bias torques, a
modified form of Eq. 2.3.1 is necessary; the bias force, yp must be
included. For the system at rest, the velocities and accelerations must
be equal to zero: 0 = 0 and § = 0. After substituting these values
into Eq. 2.2.2, in addition to the values for op and yh, the following
equation results, after some algebraic manipulation.

T
Up = 1 [Flop) + 2= yp] (4.3.3)
In this simulation, @y is given above in Eq. 4.3.1 and yp = 10N which
yields
U = [5.0 2.5 0.0]T (4.3.4)

This equation shows that no torque is needed at joint three since link
three is pivoted at the center of mass.

The results of the digital computer simulation are shown in
Figures 4.3.1 to 4.3.2. The positions and velocities start from the
initial values and return to the equilibrium values this time in about
2.5 seconds (See figures 4.3.1 a-c and 4.3.1 d-f, respectively). The
control law is again state variable feedback; the controls are shown in
Figure 4.3.2 a-c, where it is apparent that the inputs settle to the
bias values, Uy. Figure 4.3.2d is a graph of the force, y vs. time.

The force settles to the constant value of 10 newtons, but it starts at
about 9.2 newtons at the beginning of the simulation. In some
industrial applications of robotics, it might be desired that the force
stay within a closer range of values to yy. This problem of tightening
the control on the force is discussed in a later section. Figure 4.3.2e
is a plot of the constraint equation (2.2.1). Notice that the magnitude
of the values is on the order of 10-9, so the constraint is not
violated.

4.4 Periodic Movement
In the next simulation, it is desired that the system tracks a specified

trajectory. The robot arm is again constrained to movement along the
wall. However, in this case, values for ob and op are chosen which are
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not constant.

The system is to track a sinusoidal trajectory, where the point of
contact of the arm with the wall moves with simple harmonic motion over
a vertical distance of about twelve centimeters. This is accomplished
by letting o1 vary sinusoidally from 0° to -40°] (0 to -0.7 rad).
Similarly, o2 moves through an angle equal in magnitude but opposite in
sign to 91. Link three stays in the horizontal position such that 63 =
90° (g/2 radians). The position of the arm at the highest and lowest
points on the trajectory is shown in Figures 4.4.1 and 4.4.2,
respectively.

The time-varying bias trajectories are given in equations 4.4.1 to
4.4.3. The bias velocity op is the first time derivative of the
position 6y, and the bias acceleration 6y is the second derivative of
the position with respect to time.

fpl “0.70 * [ 5 - .5 cos(g¥30]
8h2 = -0.70 * [.§ - .5 cos(ﬂ% )]
0 T
- » - — z - (4.4.1)
b -0.70 (2F)(0.5 sin(ZEE))
. _ 27 . 2nt
8h2 = -0.70 (—Tj(O.S s1n(—T—J)
5 0
Bt N B (4.4.2)
o1 -0.70 (22 £ (0.5 cos(3FL))
6b2 & -0.70 (2%12(0.5 cos(g%i))
0 3 0
. (4.4.3)

In the above equations op is measured in radians, op is measured in
rad/secp. The period T is chosen to be two seconds for these
simulations.
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In order to implement this periodic movement, the bias equatiogns
(4.4.1) and (4.4.2) are subtracted from the actual values of o and o to
generate an error signal. The error signal is then multiplied by the
feedback gains to apply the state-variable feedback. The above two bias
equations are used along with (4.4.3) to generate the appropriate
control signals for the inyerse plant pre-compensator. At each time
step, the bias values op, eb, Op are substituted into Eq. 2.3.11 to
solve for the control signals of the inverse plant as shown below.

;
Uin = C-1[3(ep)dp + Blop)ap? + Flop) - 2~ | yp ] (4.4.4)
0 = 0p

The results of the digital computer simulation are shown in
Figures 4.4.3 and 4.4.4. In Figures 4.4.3a and 4.4.3b, the graphs of o]
and 62 are superimposed on the graphs of the reference positions.
Similarly, the graphs of 3; and & are superimposed on the corresponding
bias velocity graphs. The position and velocity graphs track the
reference, but with phase 1ag and overshoot. This may or may not be a
problem, depending upon the specific application. If the arm is
painting a wall, then lag and overshoot are acceptable. If closer
following of the reference is desired, then some changes must be made.

The value of the force y on the wall varies about the bias value
(yp = 10 N), as shown in Figure 4.4.4d. The constraint, as shown in
Figure 4.4.4 e is maintained. The force on the wall will be controlled
by force feedback in the next section, thus providing a smaller range of
excursion of the force about the bias value.

The phase lag and overshoot can be handled in a number of ways.
One way is to vary some parameters of the system. To change system
parameters, one can either move the system poles and speed up the
system, or one can use adaptive control. A simulation was performed
where the angles varied sinusoidally from 0° to 10°, and the system
tracked nearly perfectly. From this simulation, one can infer that the
methods are valid for small excursions about the operating point.

Another way to decrease phase lag and overshoot is to use dynamic
state feedback, accomplished by implementation of a servo compensator.
4.5 Effect of Force Feedback

It was shown in the previous section that the robot arm is able to
track a desired trajectory, but the force exerted on the wall varies
around a constant reference force. In this section, force feedback is
used to keep the force on the wall closer to the reference force.

A11 of the simulations done in this section track the same
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sinusoidal motion as in the previous section. Improvements and
modifications are made by implementing a force feedback loop. In this
loop, a transfer function is needed which models the force sensing
device, and feedback gains need to be calculated so that the appropriate
control signals can be derived.

In the first simulation, the force sensor is modelled as a delay
element. The amount of delay was chosen to be a 40 ms delay. Although
the size of the delay depends on both the type of material used for the
sensor and the speed of the processor, we can assume that this value is
reasonable. In the digital simulations, the steps are taken in T = 20
ms increments. The discrete time equations for the sensor can be
written as in Eq. 4.5.1.

velkT) = y((k-2)T) - vq (4.5.1)

This error signal is multiplied by a (3x1) gain matrix, and the
appropriate control signals are derived. However, one must first
calculate the gain values. Using Eq. 3.5.3, gain values can be
calculated based on the following static values:

. T
©=0,8=0,0=[0 0 =] (4.5.2)

These gains are valid for small excursions about an operating
point. In the simulations done in this section, a sinusoidal trajectory
is desired. This type of reference trajectory deviates from the static
reference values by too much, causing instability. Therefore, the gain
matrix G is multiplied by a constant o« = .2 so that the gains in Eq.
4.5.3 result.

G; = [0.1 0.05 0.0]T (4.5.3)

Using these gains, the control signals for the force feedback loop can
be derived and are given in Eq. 4.5.4.

UFFB = G1ye (4.5.4)

The simulation is shown in Figures 4.5.1 and 4.5.2. Notice the
decrease in the excursion of the force on the wall, y. The bias force
is again 10N.

The next simulation uses the same transfer function for the
sensor, but different feedback gains. In this section, time varying
feedback is used, as described by Eq. 3.5.5. The reference positions
are the same as those described by Eq. 4.4.1. A simulation was done
using these gains resulting instability. The gains were then multiplied
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by « = 0.5, and the resulting simulation is shown in Figures 4.5.3 and
4.5.4.

Notice once again that the maximum value of y has now decreased to
about 11.6 Newtons. One can infer that tighter restrictions could be
made on the excursions of the force if the trajectories were followed
more closely.

4.6 Touching the Wall

In this section, the problem of moving from unconstrained to
constrained motion is explored. The robot arm is to start from a rest
position away from the wall. It will then move toward the wall and
re-establish equilibrium after making contact with the wall. To avoid
damage to the arm, a structure is mounted on the tip of the manipulator
which absorbs the force of impact.

The arm will start at the following initial position.
o = [ -10° -10° 80° ] (4.6.1)

The positions o follow a specific trajectory and the control signals to
follow this trajectory are given by the inverse plant as in the previous
section. The force exerted on the wall is calculated the same way as in
section 3.4. It is calculated as follows:

0 if e <0
F = -Ke - B;; if Xcom < g < Xeq
Y(X, U) if £ < Xcom (4.6.2)

In the above equation xgq is the length of the absorbing structure at
rest, and xcon is the length when fully compressed. In this simulation,
Xeq = 10 mm and xcom = 5 mm. If these values along with K = 100, and B
= gO are substituted into Eq. 4.6.2 the following equation results.

0 if e <0
F = «100 ¢ =50 ¢ if 5mm < e < 10 mm
v(X, U) if e < 5mm (4.6.3)

The reference trajectories for o can be described as follows. The
simulation starts with the system at rest. At t = 0.2 sec, the
reference is a ramp function until contact is made with the wall. The
reference then switches to the final equilibrium position, o = [ -0.01
-0.01 n/2 ]2, where all angles are measured in radians.
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The simulations are shown in Figures 4.6.1 and 4.6.2. The
positions o are shown with their reference trajectories. They each lag
the reference, but end at their equilibrium values. The graphs of the
velocities o all tend toward zero at the end of the simulation. The
force y, shown in Figure 4.6.2d, is zero while no contact is made, and
immediately jumps to about 2.5N after making contact. The system stays
at rest with the force remaining at 2.5N. A graph of ¢ vs. time is
included in Figure 4.6.2e. Notice that after making contact with the
wall, the system remains at the position where ¢ = 5 mm, which is the
value for xcom as described previously.

4.7 Summary

In this chapter, the results of the previous chapters were shown
to be valid through the use of digital computer simulations. The system
was shown to be stable during both free motion and constrained motion.
Also, the arm was able to move from unconstrained to constrained motion
in the same simulation. A tracking problem was discussed, and force
feedback helped to provide a fine control on the force exerted on a wall
while tracking a desired motion.
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Chapter 5
SUMMARY AND RECOMMENDATIONS

5.1 Summary

A planar three-link robot arm was presented and modelled in the
sagittal plane. In Chapter 2, the equations of motion were derived. A
control strategy was derived which helped to stabilize and decouple the
system. In addition, a control strategy was derived so that the system
could track a desired motion. The robot arm was equipped with a force
sensor to provide force feedback and to enable fine control on the force
exerted on a wall.

In Chapter 3, explicit feedback gains were derived based on poles
which were placed to stabilize the system. The control necessary for
moving from unconstrained to constrained motion was also discussed.

Chapter 4 verified all of the results of the previous chapters
through digital computer simulations. Both unconstrained and
constrained motion were shown, as well as a tracking system. Force
feedback was used effectively to provide a smaller excursion of the
force exerted on a wall.

5.2 Recommendations

Many areas remain to be addressed in the robotics industry. This
thesis is a step toward understanding robots, and also lays the basis
for further work in this area. This thesis can be expanded in many
ways.

In this thesis, constrained motion was done where the robot arm
moved along a flat frictionless surface. It would be interesting to do
constrained motion along a curved surface. Or, one could simulate
frictional forces on the surface. This is perhaps not a difficult
problem, due to the way this particular arm is built. Since the third
link is pivoted at the center of gravity, frictional forces could be
controlled by the torque generator for the third 1ink, u3.

Another problem that could be addressed is the possibility of

using two of these arms at the same time. The arms would have to be
coordinated in order to work in tandem. One example is picking up an
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object. Another problem might be to equip to robot arm with a grasping
mechanism. Or, alternatively, to use a more complicated tactile sensor.

This thesis is also significant because there is a hardware model
available so that one can compare experimental results with theoretical
results. It is difficult to do this with biped motion, because feedback
gains, torques, etc. are difficult to derive from human motion.

However, in robotics, one can verify the theory presented herein.

There are many areas to be explored, and this work is a starting
place for future research in this area.
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APPENDIX A

Detailed Derivation of the Equations of Motion

The robot arm can be analyzed as a three-link inverted pendulum in
the sagittal plane, (Figure Al). A1l of the links are connected by
frictionless pin joints, and the bottom 1link is connected to the ground.
Each 1ink Lj (i =1, 2, 3) is characterized by four parameters: its
mass mj, its moment of inertia, Ij about the center of mass, the
distance 13 from joint i to joint I + 1, and the distance from joint i
to the center of mass kj. These parameters are shown in Figure A2. The
angle g of each link is measured clockwise from the vertical. A
vertical wall is situated at x = d. The arm leans against this wall
with a force y.

To derive the equations of motion, the robot can be divided into
three free body diagrams. Each link can be represented as in Figure A3.
Let F; and G; be the reaction forces acting on link i at pin joint i.
Let xj and y; be the horizontal and vertical translation of the center
of mass of 1link i, and let g be the gravitational acceleration: g =
9.81 m/sec?.

The sum of the horizontal forces is equal to the product of mass
times horizontal acceleration of the center of mass.

F1 - F2 = mXp
Fo - F3 = mXp

The sum of the vertical forces equals the product of mass and
vertical acceleration of the center of mass.

Gy - mg - G2 miy1

Gz - mg - G3 = mYyp
G3 - m3g -/F@ = m3y3 (A2)
In addition, the algebraic sum of clockwise torques exerted on each link

is equal to the product of moment of inertia and angular acceleration.
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Figure Al The Three-Link Robot Arm
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Figure A2 Parameters of the Robot Arm
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Link 1,2

i=1,2

Link 3

Figure A3  Free Body Diagrams of Each Link
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1167 = G2(1; - ky)singy + Gikysiney - Fikjcose
- Fa(17 - ky)cosey + ug - up
I282 = Gpkpsinep + G3(12 - k2)siney - Fokaocoser
- F3(12 - kp)cosep + up - u3
1363 = u3 - yk3cose3 (A3)

There are six constraint equations which are derived from Figure
A2.

x1 = Kkjsineg
Y1 = Kkjcosep

x2 = Kkpsingp + 11sing)
Y2 = Kkpcosagp + 1jcose;

x3 = Tl2singp + 11sing)
y3 = 1pcosep + 1jc0s0] (A4)

Equations (Al) and (A2) are solved to yield force equations in terms of
mass times acceleration and y, which is assumed known.

3
T = Y mgXk + oy i=1,2,3
k=t i
3 .
9i =) MYk 1=1,82 3 (A5)
k=1

The constraint equations are twice differentiated and solved for Xj, ¥j
and substituted into the force equations, (A5). These new force
equations are then substituted into Eq. A3 the torque equations,
eliminating all internal forces except y, the constraint force.

After simplification, the following equations are obtained.

59



19 = (-mki - m112‘- m31§)61

- op[(mpl1kp + m31112) cos(ey - 62)]

- ég[(mgllkz + m31112) sin(e; - 62)]

+ [(mp + m3)gly + mykyg] siney - 1jycosey + up - up
I6p = - 61[(1112m3 + 11kamp) cos(ey - 62)]

+ 52[-1§m3 - kg m2 |

+ éi[(]lkzmg + 111om3)sin(6] - 62)]

+ (1om3g + kompg)sinep - 1pycosey + up - u3
183 = -vyk3cose3 + u3 (A6)

Matrix notation provides ease of algebraic manipulation for the
equations of motion. Expressing these equations in matrix form yields:

J(0)d + B(e)6% + F(e) = CU + D(o)y (A7)
The elements of each matrix are given below:

I + mlki + mg]i + m31§

11
j12 = (mpl1kp + m31112) cos(ey - 62)
j13 = 0

jo1 = (mp11 k2 + m31112) cos(ey - 62)

Jo2 = Ip + mzkg + m31g

j2z3 = 0

31 = 0

32 = 0

33 = 13

bij; = O

by = -(mplikp + m31112) sin(ey - 62)
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biz = 0
b21 = -(mp11kp + m31112) sin(ey - 62)
bp = b3 = b3y = b3z = 0
fi = -[(mp + m3)1y + mky]g sine;
fz = -[mkz + m312]g sinep
f3= 0
dp = -1jcose;
dp = -T12co0s6?
d3 = -k3cose3
1 -1 0
c = 0 1 -1
0 0 1
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Note that the contact constraint equation is

P(e) = - (17 siney + 1psinep + k3sing3) - d (A8)

Differentiating Eq. A8 with respect to position 6, gives

_ o

= = D(o) (A9)

Substituting Eq. A9 into A7, we obtain the final form of the equations
of motion.

= . T
J(o)e + B(0)oZ + F(o) = CU - %%— (A10)

Equation Al0 is convenient for two reasons. It is a compact form
for writing the equations of motion, which simplifies computations.
Also it can be used for both constrained and unconstrained motion, where
the latter is the case where y = 0.
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