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Abstract 

Zika virus (ZIKV) is an emerging pathogen associated with a wide variety of 

adverse disease outcomes and a potential for worldwide transmission. Of particular 

concern is the correlation of ZIKV to an assortment of neurological disorders and its 

effects on developing fetuses. This document provides a concise overview of ZIKV 

epidemiology, the diseases caused by ZIKV, the molecular structure and tropism of the 

virus, and the mechanisms by which it may cause disease. Furthermore, the identification 

and development of therapeutics to treat ZIKV infection will be discussed, with a focus 

on pharmaceuticals that are in clinical trials or are already approved by the FDA for the 

treatment of other diseases. Finally, the relevance of lipid metabolism to ZIKV 

replication will be explored to highlight new discoveries in the field and their potential to 

be exploited as novel methods of treatment. While many articles use other flaviviruses 

such as Dengue virus (DENV) to make inferences on the structure and function of ZIKV, 

this review will primarily utilize publications that explicitly study ZIKV in an attempt to 

condense the current body of knowledge on its specific traits. 
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Chapter 1. Introduction 

 Zika virus (ZIKV) is an emerging pathogen associated with various epidemics across the 

world since its discovery in 1947. ZIKV is of particular concern due to its association with 

increased rates of Guillain–Barré Syndrome and increased rates of microcephaly in children born 

from ZIKV infected mothers.1 Despite major outbreaks in 2015 and 2016,2,3 there are no licensed 

therapeutics available to treat ZIKV infection. While many ongoing projects are exploring 

prospective vaccine candidates,4–6 few projects are addressing the need for therapeutic 

interventions against ZIKV following infection. Most therapeutic interventions for ZIKV rely on 

repurposed drugs developed for other infections, though none have gained FDA clearance to 

specifically treat ZIKV.7  

As such, it is important to identify potential therapeutic targets and to evaluate their 

effects on ZIKV infection and replication. ZIKV infection alters a diverse set of host cellular 

processes, but one notable change is to the host lipidome.8,9 Previous studies have identified 

changes that resulted in upregulation of lipogenesis-associated transcription factors and 

decreased expression of lipolysis-associated proteins,10 increased production of various lipid 

species in infected serum,11,12 and increased biogenesis of lipids specifically related to lipid 

droplet formation.13 Thus, modulating host fatty acid synthesis and lipid metabolism may 

warrant investigation as additional paths by which novel therapeutics for ZIKV infection could 

be developed. 
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Chapter 2. Epidemiology of ZIKV 

 ZIKV was discovered in 1947 in a sentinel rhesus monkey within the Zika Forest of 

Uganda during surveillance for yellow fever virus.14 ZIKV, or Orthoflavivirus zikaense as of 

2023,15 belongs to the Flaviviridae family and the Orthoflavivirus genus, a relationship it shares 

with other emerging pathogens of concern such as dengue virus (DENV), yellow fever virus 

(YFV), West Nile virus (WNV), and Japanese encephalitis virus (JEV). Spondweni virus 

(SPOV) is the closest relative to ZIKV, and both viruses occupy their own clade when grouped 

under a phylogenetic tree.16 Two distinct lineages, African and Asian, have been identified in 

ZIKV. The African lineage was the first to be identified and has been sporadically isolated since 

1947 from various hosts.16 The Asian lineage was first identified in Malaysia in 1966, and from 

it has evolved a distinct American sublineage that has caused epidemics in the Americas in 2015-

2016.17 Major outbreaks of ZIKV occurred in Indonesia in 1977-1978, Micronesia in 2007 

(commonly known as the Yap outbreak, named after the island from which it originated), French 

Polynesia in 2013-2014, Brazil and Colombia in 2015, the United States and Puerto Rico in 

2016, and India in 2021.3,18 The Brazilian epidemic in 2015-2016 produced the largest number of 

recorded cases of ZIKV, as well as the largest number of recorded birth defects and other 

observable clinical outcomes.19 ZIKV is primarily transmitted via Aedes species mosquitoes, 

with notable mention of Aedes aegypti and Aedes albopictus as common competent vectors.20 

ZIKV is thus commonly designated as an arbovirus (Arthropod borne virus). In regions where 

ZIKV is most prevalent, such as Africa, the virus participates in a sylvatic transmission cycle 



3 
 

between nonhuman primates and mosquitoes, with humans being considered an incidental host. 

As a result, regions with well-established populations of Aedes mosquitos pose the most risk for 

viral transmission, especially in areas where nonhuman primate reservoirs are readily available. 

ZIKV is also capable of being transmitted perinatally (during childbirth), in utero, sexually, or 

via blood during transfusions.21 These methods of transmission combined with continuous 

mosquito-borne infections results in an urban cycle in human populations, as shown in Figure 1. 

Studies are ongoing to determine other potential animal reservoirs of ZIKV; many susceptible 

hosts have been indicated via serological tests and in vitro models, but no other definitive 

reservoirs have been identified.3,22,23 As of 2023, the WHO has identified 92 countries in which 

ZIKV is circulating to some degree, but viral transmission has been difficult to monitor due to a 

lack of robust surveillance systems and a high level of cross-reactivity in laboratory tests with 

other Orthoflaviviruses.24–26 An illustration of the spread of ZIKV from the World Health 

Organization is shown in Figure 2.
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Figure 1: Lifecycle of ZIKV and effects of infection 

ZIKV participates in a sylvatic life cycle with nonhuman primates such as monkeys, 
chimpanzees, and baboons. Aedes species mosquitos are the most common vector for 
transmission, with Aedes aegypti and Aedes albopictus playing a notable role. Studies have 
shown the potential for ZIKV to infect other animals, although no definitive reservoir has been 
determined. Once passed to humans, ZIKV can be continuously spread from infected persons, to 
mosquitos, and back to humans. Spread can also occur from sexual intercourse, blood 
transfusions, exposure perinatally, or in utero. Many symptoms of ZIKV infection are similar to 
the common cold, but ZIKV has been correlated with many severe adverse outcomes. The most 
significant adverse outcomes typically occur during pregnancy and affect the fetus. Figure 
created in BioRender. 



 
 

Figure 2: Global spread of ZIKV 

World map showing the spread of ZIKV. Dark blue regions are those with current or previous ZIKV transmission. Light blue regions have a 
well-established competent vector but no known cases of ZIKV transmission. White regions have no known vectors or transmissions to 
date. Gray regions are those with no applicable data available. Data and figure courtesy of the WHO Zika epidemiology update, May 2024. 

5 
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Effects of ZIKV infection 

ZIKV is typically asymptomatic, but it can cause mild flu-like symptoms such as fever, 

rash, and migraines in around 20-25% of cases14; however, of utmost concern is the association 

of ZIKV with increased rates of Guillain-Barré syndrome (GBS)27,28 and microcephaly in infants 

born to infected mothers.29 Following infection, ZIKV primarily disseminates throughout the 

body via the blood and then by crossing the blood-tissue barrier.30  

Guillain-Barré syndrome is an autoimmune disease caused by antibodies targeting 

gangliosides, causing acute neuromuscular paralysis.31 The approximate mortality rate of 

Guillain-Barré syndrome is 5%, but 20% of patients experience lifelong disability. While the 

mechanism by which ZIKV could trigger GBS is unknown, electrophysiological findings have 

suggested demyelinating neuropathy, acute inflammatory demyelinating polyradiculoneuropathy, 

and axonal neuropathy as key drivers of disease. The heterogeneity of these findings may 

suggest multiple mechanisms and immune interactions whereby ZIKV can trigger GBS.32–35  

Microcephaly is a clinical presentation in which the head of an infant is significantly 

smaller than the heads of most other infants (2-3 standard deviations below the mean for sex, 

age, and ethnicity), resulting in deleterious effects to brain development and cognitive function. 

Microcephaly is correlated to an imbalance between progenitor cell production and death that 

causes a decrease in neuronal and glial cells within the brain.36,37 Microcephaly is not necessarily 

fatal, but it is associated with many life-threatening conditions and lifelong developmental 

challenges. It has been demonstrated that ZIKV can directly infect placental cells such as 

Hofbauer cells (placental macrophages) and trophoblasts38 to gain access to the fetus. Further 

experiments have suggested that ZIKV likely spreads from basal and parietal decidua to 

chorionic villi and amniochorionic membranes,39 and that the decidua acts as a reservoir for 
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trimester dependent transmission.40 It has been recorded that disease and adverse outcomes for 

the fetus are most prevalent when infection occurs in the first trimester of pregnancy, although 

infection can occur over the entire course of gestation.40,41 

ZIKV infection could cause microcephaly by directly infecting neural progenitor cells 

and other cells essential to central nervous system development, causing an immune response 

which may result in dysregulation of developmental genes and apoptosis.42–44 Alternatively, 

inflammation of the placenta caused by the proliferation of macrophages in response to infection 

could also lead to non-autonomous effects on developing fetal cells, resulting in reduced 

neurogenesis and microcephaly.43 Accordingly, much of ZIKV research has been directed 

toward treating perinatal and in utero transmission, which introduces an additional challenge: 

any therapeutics targeting ZIKV must be safe and efficacious for both the mother and the fetus. 
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Chapter 3. Structure and molecular mechanisms of ZIKV 

Like other Orthoflaviviruses, ZIKV is an enveloped icosahedral virus with a 10.8 kb 

single-stranded positive-sense RNA (+ssRNA) genome; however, unlike most Orthoflaviviruses 

ZIKV seems to demonstrate a high level of homologous recombination activity, allowing for its 

adaptation to and proliferation in various mosquito vectors.45,46 The primary building blocks that 

comprise a mature ZIKV virion are its structural proteins, nonstructural proteins, and the RNA 

genome. ZIKV has three structural proteins: the capsid (C), precursor membrane (prM, which 

matures into the membrane, M), and envelope (E). The seven nonstructural proteins include 

NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. Nonstructural proteins play vital roles in 

replicating the viral genome, packing the genome, assembling the maturing virion, and 

subverting host defenses. The viral genome, once inside a cell and replicating, produces a single 

polyprotein that is then cleaved into the individual genes for its aforementioned proteins.47 ZIKV 

heavily utilizes and rearranges the host endoplasmic reticulum to act as an anchor, replication 

site, and source for the viral envelop before proceeding to the Golgi apparatus for further 

maturation.48–52 A basic overview of the structure and genome of ZIKV is demonstrated in 

Figure 3. 

The predominant targets of ZIKV are primary human placental cells such as human 

trophoblast stem cells, fibroblasts, and Hofbauer cells39,53,54; however, ZIKV can establish 

infection in a broad range of human cells, ranging from spermatogonia, fibroblasts, neural 

progenitor cells,55 macrophages,56 and fetal endothelial cells,21 among many others. The ability 



9 
 

of ZIKV to vertically infect cortical progenitor cells is notable and also unique amongst 

Orthoflaviviruses.57 The wide range of susceptible host cells is a proposed to be a result of the 

ZIKV envelope protein and the prM-E heterodimer complex being able to interact with a variety 

of receptors, most notably C-type lectin receptors like DC-SIGN, TIM (T cell immunoglobulin 

mucin), and TAM (Tyrosine-protein kinase receptors: TYRO3, AXL, and MER).58–60 The virus 

is typically taken up via clathrin-mediated endocytosis, after which the viral particle changes 

conformation, fuses with the endosomal membrane, and releases its genome into the cytoplasm 

following signaling from low pH.47,55,61 Similarly, mature viral particles bud from infected cells 

via exocytosis.62 In addition to inhibiting apoptosis by blocking at least one key inflammatory 

pathway,63 exocytosis avoids immediately lysing infected cells,64 thereby allowing more 

continuous replication and spread. The basic mechanism by which ZIKV infects a cell and 

replicates is shown in Figure 4.  

ZIKV is known to produce an interferon (IFN) response in infected cells. While 

dependent on cell type, ZIKV infection can result in the production of type I (α, β), type II (γ), 

and type III (λ) interferons alongside the activation of IFN-stimulated genes (ISGs). It has been 

noted that ZIKV seems to target the STAT1 and STAT2 (signal transducer and activator of 

transcription) molecules to limit type I IFN signaling, thus allowing for more efficient viral 

replication. Following the innate immune response, the adaptive immune response to ZIKV 

infection typically produces Th1 T-cells, CD8+ T-cells, and B cells to fully clear the infection. 

The E, prM, and NS1 proteins present as the most common targets for the antibody response. 

Alterations to the immune system in pregnant women may explain both the ability of ZIKV to 

preferentially infect placental cells as well as the effects of ZIKV on the developing fetus.60,65 
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Figure 3: Basic structure and genome of ZIKV 

ZIKV is an enveloped icosahedral virus with a positive sense single stranded RNA genome. 
Translation of its genome produces a single polyprotein that is then cleaved with both host and viral 
proteases and translated to produce ZIKV components. Nonstructural proteins play critical roles in 
mediating the replication and assembly of the virus along with antagonizing host defenses. The 
structural proteins make up the mature ZIKV virion. Figure courtesy of and adapted from113 with 
additional information from 47. 
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Figure 4: ZIKV infectious lifecycle 

ZIKV binds to host cells via a variety of proposed host cell receptors (C-lectin type, TIM, TAM) 
and is taken up via clathrin-mediated endocytosis. The viral particle then fuses to the endosomal 
membrane and disassembles to release its RNA into the cytoplasm. The viral genome is 
translated by host ribosomes to produce a single polyprotein which is then cleaved by a variety 
of host and viral factors to produce the individual components of ZIKV. The maturing virus 
acquires its envelope from the endoplasmic reticulum and proceeds to the Golgi apparatus for 
further processing. Assembly of the mature virion allows for subsequent budding from the host 
cell via exocytosis. Figure courtesy of and created in BioRender. 
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Chapter 4. Condensed overview of ongoing clinical trials related to ZIKV and studies on 
potential therapeutic targets 

 As of yet, there are no approved vaccines for ZIKV, and there are few options for 

treatment following infection. While primary prevention remains the ultimate goal, it is essential 

to recognize that infections will still occur and that treatment options are necessary in such 

circumstances. No therapies have thus far been approved to treat ZIKV directly, but some 

pharmaceuticals exhibit an effect on the progression of ZIKV infection, as covered in some 

reviews.66–68 While many compounds show some degree of antiviral activity in vitro or in vivo, 

typically in mouse models, few have progressed to clinical trials. Of particular note are the 

following, detailed below and in summary in Table 1: 

Polyanion suramin is an antiparasitic drug that demonstrated some antiviral properties by 

targeting the NS2B/NS3 proteinase complex of ZIKV.69–71 NS2B acts as a cofactor to stabilize 

proper protein folding and joins with the NS3 proteinase to mediate post-translational processing 

of the viral polyprotein alongside host proteases.72 While not approved by the FDA in the United 

States, suramin is a traditional medicine typically used to treat trypanosome infections in Africa. 

Similarly, the FDA approved antimalarial drug atovaquone seemingly blocked ZIKV infection in 

C6/36 and Vero cells; experiments suggested that atovaquone likely blocked the envelope 

protein from fusing to host cells and blocked pyrimidine synthesis.73,74 Chloroquine, another 

FDA approved antimalarial drug, also demonstrated an ability to reduce ZIKV infection in mice 

and cell models by blocking viral uptake and disassembly in the endosome.75–77 
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Both asunaprevir and simeprevir demonstrated significant effects in Vero 76 cells by 

targeting NS3, theoretically neutralizing its activity by binding to the active site of NS3 and 

preventing cleavage of the viral polyprotein.78 Sofosbuvir demonstrated significant effects 

against ZIKV in mice by decreasing mortality, increasing survival time, and preventing acute 

neuromotor impairments.79 Sofosbuvir targets NS5, the viral RNA-dependent RNA polymerase 

(RdRp), by acting as a uridine analog that causes chain termination and prevents further genetic 

replication. Merimepodib (MMPD) inhibited ZIKV replication in Huh7 cells by inhibiting 

inosine-5’-monophosphate dehydrogenase (IMPDH).80 Interestingly, all four of these antivirals 

were designed to treat hepatitis C virus (HCV), another member of the Flaviviridae family. Of 

the four, only asunaprevir is not FDA approved for the treatment of chronic hepatitis C infection. 

The molecular basis by which approved HCV therapeutics can target ZIKV warrants further 

exploration in clinical trials. 

The novel monoclonal antibody tyzivumab was developed specifically to treat ZIKV 

infection by targeting the viral envelope protein. The treatment partially completed a phase I 

trial; enough volunteers finished the study to evaluate the safety and dosage of tyzivumab in 

healthy human adults, but not enough ZIKV infected volunteers were enrolled to complete the 

trial. As of yet, no results or publications have been made available regarding the progress of the 

treatment.68 A phase I clinical trial was also conducted with human anti-ZIKV immunoglobulin 

(ZIKV-Ig) created from purified IgG fractions of human plasma containing anti-ZIKV 

antibodies. The trial demonstrated that ZIKV-Ig was well tolerated in volunteers and 

demonstrated potential as a prophylactic treatment option; however, no updates in results or 

publications on ZIKV-Ig have emerged since 2021.66,68,81 
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As mentioned previously, the ability to safely administer treatment to pregnant women 

without harming the fetus is one of the key concerns in drug development for ZIKV. A screening 

of various FDA approved drugs for effects on ZIKV identified daptomycin as being able to 

lower ZIKV infection rates in various cell types. Daptomycin falls under the FDA Pregnancy 

Category B, meaning animal reproduction studies have thus far failed to demonstrate a risk to the 

fetus, but no adequate and well-controlled studies in pregnant human women have been 

conducted. None of the screened candidates fall under Category A which applies to drugs with 

no demonstrated risk to human fetuses. Daptomycin, an antibiotic, had not been previously 

shown to have antiviral activity, but it may affect phosphatidylglycerol (PG) rich endosomal 

membranes which are critical for ZIKV entry.82 

Another study demonstrated that alpha-linoleic acid (ALA), a polyunsaturated ω-3 fatty 

acid, was able to inhibit ZIKV infection in some cell lines by potentially destabilizing the viral 

envelope.83 Treatment with ALA did not demonstrate any adverse effects for mothers or their 

fetuses in previous studies aimed at evaluating the effects of ALA supplementation in pregnant 

women.84,85 

As the some of the studies indicate, many fatty acid synthesis pathways and products 

seem to be related to ZIKV infection. This raises interesting questions regarding the role of fatty 

acid synthesis in relation to ZIKV viral infection.  



15 
 

 

Drug Target Stage Reference(s) 

Polyanion Suramin Viral NS2B/NS3 

complex 

Various clinical trials, 

not FDA approved 

69–71 

Atovaquone Viral envelope 

protein 

FDA approved for 

treatment of P. 

jirovecii pneumonia 

73,74 

Chloroquine Viral envelope 

protein, endosome pH 

FDA approved for 

treatment of malaria 

75–77 

Asunaprevir and 

simeprevir 

Viral NS3 protein Only simeprevir FDA 

approved for 

treatment of chronic 

hepatitis C virus 

78 

Table 1: Notable drugs and therapies with effects on ZIKV infection  Continued 
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Merimepodib Host inosine-5'-

monophosphate 

dehydrogenase 

(IMPDH) 

Stalled following 

phase 2b trials for 

hepatitis C virus 

treatment 

80 

Tyzivumab Viral envelope 

protein 

Stalled following 

phase I trials for 

ZIKV treatment 

68 

ZIKV-Ig Induces antibody 

immune response to 

ZIKV envelope 

protein 

Stalled following 

phase I trials for 

ZIKV treatment 

81 

Daptomycin Host 

phosphatidylglycerol-

rich endosomal 

membranes 

FDA approved for the 

treatment of E. 

faecalis and S. aureus 

infections 

82 

Alpha-linoleic acid Viral envelope 

protein(?) 

In vitro studies 83 

Table 1 continued
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Chapter 5. A brief overview of fatty acid synthesis and its relationship to ZIKV 

Experiments have shown that ZIKV infection induces increased expression of genes 

related to lipid production and metabolism8; accordingly, serum samples from ZIKV infected 

individuals demonstrate a notably altered lipidome with observable increases in various fatty 

acid species.11,12 Fatty acid synthase (FASN, encoded by the gene FAS) is a large dimeric 

enzyme that plays a key role in fatty acid synthesis. The enzyme forms palmitate from acetyl-

CoA and malonyl-CoA, constituting one of the first steps in lipid metabolism.86 FASN has 

garnered interest as more studies have identified it as an oncogene and a potential target for 

therapy87; additionally, multiple studies have shown that viral infections specifically increase 

intracellular FASN levels, and that FASN activity may be essential to viral replication.88,89 The 

upregulation of FASN and the production of fatty acids may serve multiple roles for viruses, 

including producing energy by breaking down lipids via beta-oxidation,89,90 making post-

translational protein modifications via fatty acylation,91 and forming lipid droplets to anchor viral 

replication close to molecular building blocks.92,93 Accordingly, more studies have focused on 

evaluating the utilization of fatty acids during viral replication and targeting host factors to 

reduce viral viability.94  

Lipid droplets are of particular interest in exploring the interactions of ZIKV with fatty 

acids. Lipid droplets are storage organelles that are created from the endoplasmic reticulum and 

reside in the cytoplasm; they contain a hydrophobic core of neutral lipids, such as 

triacylglycerols and sterol esters, surrounded by a monolayer of phospholipids and proteins.95 
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Cells use lipid droplets to store excess lipids, maintain homeostasis, and act as a buffer against 

cellular stress.96 Previously, ZIKV capsid protein has been shown to accumulate around lipid 

droplets.93,97 Studies have also shown ZIKV to have various effects on lipid droplet formation 

and accumulation, both increasing and decreasing lipid droplet regulation depending on the cell 

type.92 

In one study,10 both SH-SY5Y cells and neural stem cells infected with ZIKV 

demonstrated a significant increase in mRNA expression of transcripts related to lipid 

metabolism when compared to uninfected cells. Upregulated genes included PLIN2, DGAT1, and 

FAS. PLIN2 (perilipin 2, also called adipose differentiation-related protein, ADRP, or 

adipophilin) plays a key role in lipid droplet formation and intracellular triglyceride 

accumulation.98 Similarly, DGAT1 (diacylglycerol acyltransferase) is a crucial enzyme that 

catalyzes the formation of triglycerides.99 In the study, pharmacological inhibition of DGAT1 

using A922500 significantly decreased lipid droplet accumulation and ZIKV replication. 

In another study,13 primary placental cells acquired during the first trimester were 

infected with ZIKV and analyzed with quantitative shotgun lipidomics. The study provided 

evidence that neutral lipids were increased in the infected cohort as compared to mock infected 

cohort, and it demonstrated a significant increase in FAS, DGAT1, and FAT/CD36 (fatty acid 

translocase, an enzyme that facilitates fatty acid transport). Under immunostaining, it was noted 

that lipid droplets accumulated in greater numbers near infected focal sites and that lipid droplets 

experienced a significant increase in global distribution. As in the previously mentioned study, 

inhibition of DGAT1 using A922500 substantially reduced lipid droplet quantity and viral 

infection rates. 
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Confoundingly, a different study100 observed a significant decrease in lipid droplets 

within Huh-7 cells following ZIKV infection. These results are not necessarily contradictory, 

however, as one suggested hypothesis for this decrease is an overall consumption or exhaustion 

of lipid droplets as the viral infection grows. Another proposed hypothesis is that viral infection 

induces lipophagy which could release free fatty acids from lipid droplets to be used in viral 

replication.51,100,101 

Based on the above studies, it can be inferred that fatty acid biogenesis plays a significant 

role in ZIKV replication. As such, targeting the pathways and enzymes related to fatty acid 

synthesis may yield important information on the precise mechanisms by which ZIKV replicates 

intracellularly. One caveat, however, is that alterations in lipid metabolism may have deleterious 

effects on the fetus due to the disruption of cellular membranes. Perhaps of most consequence is 

that FASN knockouts in mice suggested that lack of proper FASN expression may be lethal in 

fetal development,102,103 may be affiliated with preterm deliveries,104 or may cause an array of 

gastrointestinal issues.105 
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Chapter 6. Discussion 

 The highly adaptable nature of ZIKV and its potential to cause significant disease across 

the world highlights the importance of developing novel vaccines and treatments for infection. 

Understanding the molecular structure of ZIKV and the mechanisms by which it infects and 

alters host cells is paramount in combating its spread.  

As noted previously, many inferences about ZIKV have been drawn from other 

flaviviruses,106,107 but the unique qualities of ZIKV, such as its ability to infect neural cells with 

alarming ease, deserve dedicated study. Moreover, there are many aspects of ZIKV that warrant 

further studies to rectify competing data. One such example is the debate on which host receptors 

are essential to viral entry. While some studies demonstrate that a receptor such as Axl is 

important to ZIKV infection in human cells,108 others have demonstrated that Axl may not be 

important in mice cells.109–111 It should be considered pertinent to explore whether this is a matter 

of cell tropism, or if the receptor is used in other aspects of pathogenesis as suggested by further 

articles.112 Additionally, experiments to explore the differences in lipid droplet regulation 

between cell types92 should be prioritized to elucidate the precise molecular basis for the changes 

observed. It would be intriguing to explore if ZIKV relies on various types of protein acylation, 

as well as if beta oxidation and lipid droplet formation are crucial processes in productive 

infections. Such changes to cellular functions could be explored with gene knockouts, transient 

knockdowns, or via pharmacological inhibitions.  

Finally, while progress has been made in identifying compounds that may be able to 

inhibit or alleviate ZIKV infection, no vaccines or pharmaceuticals that precisely target ZIKV 

exist. No clinical trials for ZIKV specific therapies have progressed past phase II, highlighting an 
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urgent need for investment into research and development. While there is still much work to be 

done in creating more robust antivirals in general, some drugs currently under development or in 

use for the treatment of other conditions demonstrate the potential to be repurposed for antiviral 

therapy. For example, one drug that has not specifically been associated with effects on ZIKV 

but may be intriguing for future pharmacological tests is denifanstat, previously referred to as 

TVB-2640. Denifanstat is a FASN inhibitor that acts by inhibiting the β-ketoacyl reductase 

domain of the FASN enzyme complex.113 It is primarily used to treat metabolic dysfunction-

associated steatohepatitis (MASH)114,115 and has been investigated as a treatment for certain 

cancers such as glioblastomas.116 As a result of its positive effects in MASH patients, the FDA 

has granted denifanstat breakthrough therapy designation to accelerate development, and it is 

currently proceeding to phase III clinical trials. Additionally, denifanstat was among a variety of 

FASN inhibitors tested for effects on SARS-CoV-2 replication, and it demonstrated a significant 

impact on viral replication.117 Therefore, denifanstat, along with the other FASN inhibitors of 

significance, may merit further study for potential antiviral applications.  
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