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Abstract 

This dissertation investigates the use of marginal likelihood estimation for Bayesian 

model comparison in Item Response Theory (IRT), focusing on 2-Parameter Logistic 

(2PL) models and their fnite mixture extensions. Bayesian model comparison uses 

the Bayes factor, which is defned as the ratio of the marginal likelihood of the com-

peting models. These are typically estimated via Monte Carlo methods, with bridge 

sampling being a popular and general purpose approach. However, it can become 

in-efcient when models are high dimensional. 

The study applies bridge sampling to both standard 2PL models and fnite mixture 

2PL models, which allow the latent ability distribution to follow a fexible mixture 

of Gaussians. To improve estimation, we introduce a marginalization strategy that 

integrates out the latent abilities using a grid-based approximation. This approach 

avoids direct sampling of discrete cluster assignments and reduces the dimensionality 

of the posterior samples, resulting in faster and more stable computation. 

Using simulated data under unimodal, bimodal, and multimodal ability distribu-

tions, we evaluate the efectiveness of bridge sampling in recovering calibrated Bayes 

factors. Results show that while fnite mixture models are more fexible, the standard 

2PL model can outperform them in cases where the true ability distribution is uni-

modal. This work provides practical insights into the application of bridge sampling 
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for psychometric data analysis and demonstrates its potential to enhance Bayesian 

model evaluation in high-dimensional settings. 
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Chapter 1: Introduction 

Item Response Theory (IRT) models are widely used in psychometric and ed-

ucational testing, particularly for analyzing the relationship between unobservable 

latent traits and item responses. These traits, such as ability or profciency, are of-

ten inferred from item responses such as answers to questions. For example, in an 

exam setting, we analyze students’ responses to measure their abilities and assess 

characteristics of the test items. These models have seen extensive applications but 

they rely on the assumption that latent traits of the subjects follow a standard nor-

mal distribution and as such, often fall short in capturing the complex structures 

of real-world data, where the population might consist of distinct sub-populations 

with varying trait distributions. As a result, traditional parametric IRT models can 

fail to account for latent heterogeneity, leading to poor model ft, biased parameter 

estimates, or incorrect conclusions. This limitation has motivated the development 

of more fexible approaches for the latent trait distribution, including mixture models 

or Bayesian Non-parametric (BNP) approaches. These models allow the number of 

latent clusters to adapt to the data, thus accommodating a wider range of latent trait 

distributions and providing a more nuanced understanding of varying characteristics 

within diverse populations. 
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With these models in mind, the next logical step would be model selection to see 

which model best fts the observed data. However, this proves to be a major challenge. 

Often in Bayesian Statistics, the Bayes factor criterion, which quantifes the relative 

evidence in favor of one model over another, is used for model comparison. It relies 

heavily on accurately estimating the marginal likelihood (or the normalizing constant) 

of each model. Unfortunately, this is computationally challenging, particularly for 

complex models like BNP IRT models, which involve a high number of parameters, 

since they usually assume at least one parameter for each individual and one or more 

relative to the items. In such cases, the marginal likelihood is not analytically available 

and we need to rely on advance computational methods for estimation. While there 

has been considerable efort in developing methods to compare traditional IRT models 

with diferent numbers of item parameters [Liu et al., 2019], little research has focused 

on comparing models with varying assumptions about the distribution of latent traits 

(ability). Thus, this paper aims to fll that literature gap. 

To estimate marginal likelihoods, several computational methods have been pro-

posed, including importance sampling [Tokdar and Kass, 2010], harmonic mean es-

timators [Raftery et al., 2007], and bridge sampling [Gronau et al., 2017]. Among 

these, bridge sampling stands out as a particularly efective method for estimating 

the marginal likelihood of complex posterior distributions. Bridge sampling works 

by constructing a “bridge” between the posterior distribution and a simpler proposal 

distribution (most often a multivariate normal distribution), allowing for a more ac-

curate and stable estimation of the marginal likelihood. This approach is especially 

well-suited for high-dimensional models much like BNP IRT models, where other 

estimators might sufer from high variance or convergence issues. Thus, this thesis 
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focuses on using bridge sampling to estimate the marginal likelihoods of paramet-

ric and non-parametric IRT models, investigating the efcacy and limitations of this 

method when applied to models with varying levels of complexity. By applying bridge 

sampling to both parametric and BNP IRT models, we aim to provide insights into 

its suitability for comparing models that difer not only in item parameters but also 

in their assumptions about latent trait distributions. 

The remainder of this dissertation is organized as follows. Chapter 2 introduces the 

fundamental concepts of Bayesian model comparison, with an emphasis on marginal 

likelihoods and Bayes factors. It also provides a detailed discussion of bridge sam-

pling and prior calibration methods used to improve the stability of model compari-

son. Chapter 3 presents the Item Response Theory (IRT) models considered in this 

study, including the standard parametric 2PL model, fnite mixture IRT models, and 

semi-parametric extensions. Chapter 4 describes the application of bridge sampling 

to both the 2PL IRT model and its fnite mixture extension. This chapter details 

the simulation setup, prior calibration procedures, and computational strategies im-

plemented to address challenges in high-dimensional posterior estimation. Chapter 

5 presents the results of the model comparison study, evaluating the performance of 

bridge sampling in selecting between unimodal and bimodal latent ability structures, 

along with a discussion of computational efciency and limitations. Finally, Chapter 

6 summarizes the key fndings and contributions of this dissertation and outlines pos-

sible directions for future research in Bayesian model comparison for IRT and other 

complex hierarchical models. 
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Chapter 2: Model Comparison in Bayesian Statistics 

2.1 Bayesian Statistics 

In Bayesian statistics, the fundamental idea is to update our beliefs about parame-

ter vector θ after observing data vector Y . This approach allows for the combination 

of prior knowledge (through the prior distribution) and new information (from the 

data) in a coherent way. The prior distribution π(θ) represents our initial beliefs or 

assumptions about the parameter before any data is observed. The likelihood p(Y |θ), 

on the other hand, refects the probability of the observed data given the parameter. 

After observing the data, the prior is updated using Bayes’ theorem, resulting in the 

posterior distribution p(θ|Y ), which combines both the prior information and the 

likelihood derived from the data: 

p(Y |θ)π(θ) 
p(θ|Y ) = . 

m(Y ) 

The posterior distribution represents our updated belief about the parameter θ 

after considering the evidence provided by the data. The denominator m(Y ), known 

as the marginal likelihood or evidence, is a normalizing constant that ensures the 

posterior distribution integrates to one. Bayesian inference revolves around this pro-

cess of updating beliefs, allowing for a dynamic and fexible approach to statistical 

modeling, where prior assumptions and new data are continuously incorporated to 
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refne estimates. Overall, Bayesian statistics ofers a fexible, intuitive, and robust 

framework for inference, particularly in settings where prior knowledge is valuable, 

uncertainty needs to be fully quantifed, or complex models must be estimated. 

2.2 Overview of Marginal Likelihood 

The marginal likelihood is a critical component in Bayesian model comparison. It 

represents the probability of the observed data under a specifc model, averaging over 

all possible values of the model parameters, weighted by their prior distributions. 

Mathematically, for a given model M with parameter vector θ and data Y , the 

marginal likelihood is defned as: Z 
p(Y |M) = p(Y |θ,M)p(θ|M) dθ, 

where p(Y |M) is the likelihood function indicating how likely the observed data Y 

are, given the parameters vector θ and the model M , and p(θ|M), or π(θ), is the 

prior distribution of the parameters under model M . 

The marginal likelihood (also known as the Bayesian evidence) serves a dual pur-

pose. First, it acts as a normalizing constant in Bayesian inference, ensuring that 

the posterior distribution integrates to one. Second, it quantifes the overall ft of the 

model to the data, balancing the likelihood of the observed data against the com-

plexity of the model. In Bayesian inference, more complex models, which typically 

involve a larger number of parameters, have broader parameter spaces to integrate 

over. This often results in a lower marginal likelihood unless the additional com-

plexity is strongly supported by the data. As mentioned before, in cases with high 

dimensional parameters like the IRT models, computing this integral analytically is 

not feasible and we must rely on computational methods. 

5 



2.3 Methods for Marginal Likelihood Estimation 

In most cases, the marginal likelihood does not have a closed form or is too 

complex to derive. Thus, it is commonly computed using Monte Carlo integration, 

a computational technique that relies on repeated random sampling to approximate 

numerical results. Generally, this method expresses the integral of interest as an 

expected value with respect to a probability distribution p(x) of a random variable 

X. If we can simulate from this distribution, we can approximate the expectation of 

m(x) using the sample mean. For example, the method estimates an expectation of 

Ep[m(x)] with the empirical average: Z NX1 
p(x)m(x)dx = Ep[m(x)] ≈ m(xi), xi ∼ p(x),

N 
i=1 

where xi are i.i.d samples from the distribution of X and N is the number of samples. 

There are many diferent implementations of Monte Carlo integration to estimate 

the marginal likelihood because diferent methods vary in efciency depending on the 

distribution of the likelihood relative to the prior. The following MC methods are 

some of them. 

2.3.1 Naive Monte Carlo 

The Naive Monte Carlo method is one of the simplest method of estimating the 

marginal likelihood. The idea is to rewrite the marginal likelihood as the expectation 

under the prior distribution and estimate it with the average: Z 
p(Y |M) = p(Y |θ,M)π(θ) dθ 

= Eπ [p(Y |θ,M)] 
NX1 ˜≈ p(Y |θ̃  

i,M), θi ∼ π(θ),
N 

i=1 
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˜where θi denotes the i-th sample from the prior distribution π(θ). Though this 

approach is simple, naive Monte Carlo is generally inefcient. Typically, the likelihood 

is concentrated in a smaller region of the parameter space compared to the prior. As a 

result, most values sampled from the prior yield likelihood values close to zero, which 

increases the variance of the estimator and can require a vast number of samples to 

accurately estimate the marginal likelihood. 

2.3.2 Importance Sampling 

To remedy the limitation of Naive Monte Carlo, Tokdar and Kass [2010] introduces 

a proposal based on importance sampling, which emphasizes sampling from a high 

density region of the parameter space. Say we are able to sample from a distribution 

Q with density q(x), then: Z 
Ep[m(x)] = p(x)m(x)dx Z � � 

p(x) 
= q(x) m(x) dx 

q(x)� � 
p(x) 

= Eq m(x) 
q(x) X1 
N 

p(xi)≈ m(xi), xi ∼ q(x). 
N q(xi)i=1 

In this case, we are sampling from q(x) and not p(x). This is extremely useful 

when p(x) is difcult to sample from but we can still evaluate the un-normalized 

density. Depending on the choice of q(x), this method improve the variance of the 

estimate’s distribution and thus makes the Monte Carlo trace converges faster. To 
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estimate the marginal likelihood p(Y ), we would rewrite the equation similarly: Z 
p(Y |M) = p(Y |θ,M)π(θ) dθ � � 

p(Y |θ,M)π(θ) 
= Eq 

q(θ|M) X1 
N 

p(Y |θi,M)π(θi)≈ , θi ∼ q(θ|M),
N q(θi|M)

i=1 

where q(θ|M) is called the importance density. According to Gronau et al. [2017], a 

good importance density should be easy to evaluate, share the same domain as the 

posterior distribution, resemble the posterior distribution closely, and have slightly 

fatter tails. Even though this approach is much more efcient than the Naive Monte 

Carlo procedure, the heavy reliance on the choice of importance density makes this 

approach less fexible in high dimensional cases. If the importance density does not 

adequately satisfy the conditions above, the algorithm performs poorly and result in 

high variance in estimates. 

2.3.3 Harmonic Mean Estimator 

Instead of sampling from the importance distribution, we can estimate the marginal 

likelihood by sampling from the posterior distribution with the harmonic mean esti-

mator [Raftery et al., 2007]. In the Bayesian marginal likelihood estimation context, 

the harmonic mean is used in a more specialized way. We use the identity: Z � � 
1 1 q(θ|M) 

= q(θ|M) dθ = Epost
p(Y |M) p(Y |M) p(Y |θ,M)π(θ|M) 

N 
!−1X1 1 

p(Y |M) ≈ 
N w(θ̃  

i)i=1 !−1X1 
N 

q(θ̃  
i|M) ˜≈ , θi ∼ π(θ̃|Y ,M),

N p(Y |θ̃  
i,M)π(θ̃  

i|M)i=1 
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where Epost[.] means that we are taking expectation with respect to the posterior 

˜density. Diferent from importance sampling, we are sampling θi from the posterior 

distribution and not the importance density. An appropriate importance density in 

this case should exhibit thinner tails compared to the posterior distribution [Gronau 

et al., 2017] and share same other conditions as the importance sampling approach. 

Thus, this approach also sufers in high dimensions and a poor choice of importance 

density similar to importance sampling. Moreover, since the harmonic mean involves 

the reciprocal of likelihoods, if any likelihood values approach zero, the estimator can 

become extremely large or even unbounded. The estimator is also sensitive to outliers 

and tends to produce poor results in high-dimensional spaces or models with complex 

likelihood functions. To reduce the potential high variance in high dimensional cases, 

bridge sampling was introduced. 

2.3.4 Bridge Sampling 

The bridge sampling method was introduced in the late 90s [Meng and Wong, 

1996], and a R-package bridgsampling was later popularized by Gronau et al. [2017]. 

The idea is as the name suggested, constructing a bridge between the two probability 

distributions: the posterior distribution of the model parameters (which is typically 

complex and difcult to integrate) and a simpler, well-known distribution (often a 

multivariate normal distribution) referred to as the proposal distribution. By evalu-

ating the relative densities of these two distributions at strategically chosen points, 

bridge sampling allows for efcient and accurate estimation of the marginal likelihood 
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p(Y |M): R 
p(Y | θ,M)π(θ | M)h(θ | M)q(θ | M)dθ 

p(Y | M) = R p(Y |θ,M)π(θ|M) 
p(Y |M) h(θ | M)q(θ | M)dθ 

Eq(θ)[p(Y | θ,M)π(θ | M)h(θ | M)] 
= 

Eπ(θ|Y,M)[h(θ | M)q(θ | M)] 
1 PN2 p(Y | θ ∗ ,M)π(θ ∗ | M)h(θ ∗ 

i | M)i=1 i i≈ N2 PN1 
,

1 h(θ̃  
j | M)q(θ̃  

j | M)]
N1 j=1 

˜where θj ∼ π(θ|Y, M), the posterior distribution and θ ∗ ∼ q(θ|M), the proposal i 

distribution. And h(θ|M) is the bridge function defned as: 

1 
h(θ|M) = C · , 

s1p(Y |θ,M) + s2p(Y |M)q(θ|M) 

N1 N2where s1 = , s2 = , and C is a constant. 
N1+N2 N1+N2 

Bridge Sampling Framework 

The implementation of bridge sampling begins with drawing 2N1 posterior samples 

˜ ˜ ˜θ1, θ2, . . . , θ2N1 from the posterior distribution π(θ | Y ,M), where θ represents model 

parameters. These samples are typically obtained using Markov Chain Monte Carlo 

(MCMC) methods. The posterior samples are divided into two equally sized batches 

˜ ˜of N1 samples each and transformed onto the real line ϕ̃ 
1, ϕ2, . . . , ϕ2N1 

, if necessary. 

Next, a proposal distribution q(ϕ | M) is selected. Typically, a multivariate 

normal distribution is used as the proposal, with mean µ and covariance matrix Σ 

estimated from the frst batch of transformed posterior samples q(ϕ | M) = N (µ, Σ), 

where ϕ represents the parameters transformed onto the real line. N2 samples 

ϕ ∗ 
1, ϕ2 

∗ , . . . , ϕN 
∗ 

2 
are then drawn from this proposal distribution and inverse trans-

formed to the original space θ ∗ 
1, θ2 

∗ , . . . , θ ∗ 
N2 
, if needed. 

Using the N2 proposal samples, we evaluate the un-normalized posterior density as 

q21,i = p(Y | θi 
∗ ,M)π(θ ∗ 

i ), and the un-normalized proposal density as q22,i = q(ϕ ∗ | 

10 
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M). We defne l2,i = q21,i/q22,i to represent the density ratio for the i-th proposal 

samples. 

Similarly, we use the second batch of N1 posterior samples to evaluate the un-

normalized log posterior density and the un-normalized log proposal density. Specif-

cally, for each sample in this batch, we compute the un-normalized posterior density, � � � � 
denoted as q11,j = p Y | θ̃  

j ,M π θ̃  
j , and the un-normalized proposal density, � � 

˜denoted as q12,j = q ϕj | M . We then defne the density ratio for the j-th posterior 

samples as l1,j = q11,j /q12,j . 

Iterative Scheme for Marginal Likelihood Estimation 

Once we have obtained the density ratio for the posterior samples and proposal 

samples, we iteratively estimate the marginal likelihood p(Y | M) using the update 

proposed by Meng and Wong [1996, p. 837]. The updated value at iteration t + 1 is 

computed as: ,XN2 N1X1 l2,i 1 1 
p(Y | M)(t+1) = ,

N2 s1l2,i + s2p(Y | M)(t) N1 s1l1,j + s2p(Y | M)(t) 
i=1 j=1 

where p(Y |M)(0) is usually set as 1, and N1 is set to be equal to N2, and thus, 

s1 = s2 = 1/2. 

This update is repeated until convergence, typically determined by the relative 

change in the marginal likelihood estimate falling below a small threshold such as 

10−6 . The iterative nature of this scheme helps stabilize the estimate and reduces 

the variance inherent in direct importance sampling approaches. By leveraging both 

posterior and proposal samples, bridge sampling provides a robust and efcient means 

of computing marginal likelihoods, which are essential for Bayesian model comparison. 

11 



2.4 Standard Bayes Factors and Calibrated Bayes Factors 

2.4.1 Standard Bayes Factors 

The Bayes factor uses the marginal likelihood to compare two models directly. It 

is defned as a ratio of the marginal likelihoods of two competing models, M1 and M2, 

p(Y |M1)
BF12 = . 

p(Y |M2) 

This ratio provides a quantitative measure of the relative evidence in favor of 

one model over another. A Bayes factor greater than 1 indicates that model M1 

is more strongly favored by the observed data as compared to M2, while a value 

less than 1 favors M2. The strength of evidence can be interpreted using conventional 

thresholds; for example, a Bayes factor between 3 and 10 indicates moderate evidence, 

while values above 10 suggest strong evidence for one model over the other [Kass 

and Raftery, 1995] (see also [Jefreys, 1961]). More details regarding the marginal 

likelihood and Bayes factor can be found at Gelman et al. [2013]. 

2.4.2 Calibrated Bayes Factors 

One common issue when using Bayes Factor is that Bayesian inference typically 

starts with non-informative or weakly informative priors, allowing the data to drive 

parameter estimation without strong subjective assumptions. While this fexibil-

ity is advantageous, it can lead to computational inefciencies, particularly in high-

dimensional models where difuse priors increase variance and slow Markov chain 

Monte Carlo (MCMC) convergence. 

To mitigate this issue, Xu et al. [2019] propose using training samples to cali-

brate prior distributions, ensuring they provide sufcient information for stable infer-

ence without unduly infuencing posterior estimates. We adopt a similar approach, 
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leveraging a subset of the data to construct weakly informative priors that improve 

estimation efciency. 

The calibrated Bayes factor modifes the standard Bayes factor by incorporating 

information from a calibration sample. Suppose that we select a subset of the data, 

called the training sample, and use it to update the prior distributions for both 

models. The calibrated Bayes factor is then defned as: 

X 
log CB12(Y ) = log BF12(Y ) − 

1 
H 

log BF12(Y (h)),
H 

h=1 

where Y (h) denotes the h-th randomly selected subset of the data used for calibration, 

and H is the total number of such subsets. Essentially, the CBF adjusts the original 

Bayes factor by removing the average contribution from the calibration samples. 

2.5 Prior Calibration Using Training Samples 

To implement this, we frst select a representative subset Y sub from the full dataset 

Y . This subset should be large enough to capture key characteristics of the full data 

while remaining computationally feasible. We ft the model to this subset and extract 

summary statistics such as posterior means and variances from this subset are then 

used to inform the prior specifcation for the model. 

This strategy improves the stability of posterior inference in the model, reducing 

sensitivity to initial parameter choices and minimizing variance in marginal likelihood 

estimates. By balancing non-informative priors with data-driven weakly informative 

priors, this method enhances computational efciency while preserving the fexibility 

of Bayesian inference. 
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Chapter 3: Item Response Theory (IRT) Models 

Item Response Theory (IRT) is a family of models widely used in educational 

testing and psychometrics to scale binary responses into continuous latent constructs, 

describing characteristics of individuals and items. IRT models can include diferent 

numbers of parameters that describe the characteristics of the items. The standard 

IRT models include the 1-Parameter Logistic (1PL) model, the 2-Parameter Logistic 

(2PL) model, and the 3-Parameter Logistic (3PL) model, where the name derives 

from the number of parameters associated to each item. 

In this section, we introduce model notation in the context of educational assess-

ment, where typically data are students’ responses to exam items, with the latent 

trait interpreted as their ability. Throughout the paper, we will focus on the 2PL 

model. 

3.1 Parametric IRT Models 

The observed data in Item Response Theory (IRT) models are typically binary 

responses, denoted as yip, where yip = 1 indicates that the individual p answers item 

i correctly and yip = 0 otherwise. The probability of a correct response, denoted by 

πip, is modeled conditionally on a set of latent parameters encoding characteristics of 

the individuals and items. In the 2PL model, each item has a difculty parameter βi, 
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which refects how challenging the item is, and a discrimination parameter λi, which 

measures how well the item diferentiates between individuals of diferent ability levels. 

The individual’s latent ability ηp represents their underlying skill, with higher values 

corresponding to higher ability. 

In the 2PL model, the probability of a correct answer is modeled as: 

1 
πip = P (yip = 1|ηp, βi, λi) = ,

1 + exp(−λi(ηp − βi)) 

i = 1, . . . , I, p = 1, . . . , P, 

where I is number of items and P is number of individuals. 

A high value difculty parameter βi makes the item harder to be answered cor-

rectly, requiring individuals with higher abilities ηp to achieve a 50% chance of answer-

ing correctly. When ηp = βi, the probability of a correct response is 50%. If ηp > βi, 

we have that πip > 0.5, indicating a higher likelihood of a correct response. If ηp < βi, 

then πip < 0.5 and the item is less likely to be answered correctly. We assume that 

the discriminations λi are positive and the latent traits ηp follow a standard normal 

distribution. 

A 1PL model assumes that all items have the same discrimination, typically by 

setting λi = 1, simplifying the logistic function. This makes the model suitable 

when the items are of similar quality in distinguishing between individuals of varying 

abilities. A 3PL model adds a guessing parameter for each item to the 2PL (typi-

cally denoted as ci), which accounts for the possibility that individuals may answer 

correctly by guessing. 

In Bayesian settings, maintaining the normality assumption for the latent trait, 

we include priors for the parameters. The complete 2PL IRT model specifcation is 
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as follows: � � 
1 

ypi ∼ Bernoulli ,
1 + exp(−λi(ηp − βi)) 

βi ∼ N (µβ , σβ 
2 ), log(λi) ∼ N (µλ, σλ 

2), ηp ∼ N (0, 1), 

i = 1, ..., I, p = 1, ..., P, 

assuming conditional independence of responses across individuals and items. This 

model, as well as the 1-PL and 3-PL IRT models, are parametric, meaning that they 

assume all individuals are drawn from a population with a single, well-defned latent 

trait distribution. While these models are computationally efcient and widely used, 

they struggle to capture the complexity of real-world data where latent traits may be 

heterogeneous across sub-populations. This limitation is particularly noticeable when 

individuals come from diferent cultural or educational backgrounds, which might 

require more fexible models to accurately capture the variability in their latent traits. 

To address this limitations, one can relax the normality assumption and model the 

ability using a mixture of Gaussian distribution either using fnite or infnite mixtures. 

3.2 Finite Mixture IRT Models 

The fnite mixture IRT model extends the standard 2PL model by allowing the 

latent trait distribution to consist of a fnite mixture of normal components. This 

approach accommodates heterogeneity in the population’s latent traits by assuming 

that individuals belong to one of K latent subgroups, each with its own distribution 

of abilities. 

16 



Let z = (z1, ..., zP ) be a vector denoting the subgroup allocation for each individ-

ual, with zp ∈ 1, . . . , K, the model is specifed as: � � 
1 

ypi ∼ Bernoulli ,
1 + exp(−λi(ηp − βi)) 

βi ∼ N (µβ , σβ 
2 ), log(λi) ∼ N (µλ, σλ 

2), zp ∼ Categorical(w1, . . . , wK ), 

ηp | zp = k ∼ N (µk, σk 
2), k = 1, . . . , K, 

i = 1, ..., I, p = 1, ..., P. 

Similar to the standard 2PL model, we assume that item parameters are inde-

pendently distributed across items and independent of the person-level parameters. 

Given their cluster assignments zp, the latent abilities ηp are conditionally indepen-

dent across individuals. The prior over zp induces dependence in ηp marginally, 

but conditional independence is preserved within clusters. The mixture weights 

w = (w1, ..., wk) are modeled using a Dirichlet prior: � � 
1 1 

w ∼ Dirichlet , . . . , . 
K K 

The cluster means and variances are typically assigned hierarchical priors: 

µk ∼ N (0, σk 
2/γ), σk 

2 ∼ Inverse-Gamma(a, b), 

where γ is a constant scale factor. This structure allows the model to identify sub-

groups within the population that share similar latent traits, improving model fexi-

bility and ft. Unlike the standard 2PL model, which assumes a single normal distri-

bution for abilities, the fnite mixture model captures multimodal or skewed distribu-

tions in the population. This makes it particularly useful when the data suggest the 

existence of distinct subpopulations, such as students from diferent educational back-

grounds. Alternatively, one can introduce infnite mixture models or semi-parametric 
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IRT models, which extend this approach by allowing the number of latent subgroups 

to be potentially infnite or determined by the data. These models remove the need 

to pre-specify the number of clusters K and provide greater fexibility in capturing 

complex latent trait distributions. 

3.3 Semi-Parametric IRT Models 

An alternative to the fnite mixture approach is the use of semi-parametric or 

Bayesian nonparametric (BNP) models. These models further relax the assumption 

of a fxed number of latent subgroups by allowing the number of clusters to grow 

with the data. A commonly used BNP method is the Chinese Restaurant Process 

(CRP), which assigns individuals to clusters in a probabilistic manner. The process 

encourages the formation of new clusters as more data are observed, regulated by a 

concentration parameter α. An accessible overview of Bayesian nonparametric models 

and the CRP can be found in Li et al. [2019]. 

The semi-parametric IRT model can be expressed as: � � 
1 

ypi ∼ Bernoulli ,
1 + exp(−λi(ηp − βi)) 

βi ∼ N (0, σ 2 
β 

2 
λ),), log(λi) ∼ N (0, σ 

2 
k),ηp 

2 

| zp = k ∼ N (µk, σ 

k/γ), 

z ∼ CRP(α), 

2 µk ∼ N (0, σ σ ∼ Inverse-Gamma(a, b),k 

k = 1, . . . , K, i = 1, ..., I, p = 1, ..., P. 

Here, the independence assumption is conceptually the same as the fnite mixture 

model and the cluster assignment vector z is determined by the CRP, and the cluster 

parameters µk and σ2 
k have their own priors. This model is highly fexible, allowing the 
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data to determine both the number and structure of clusters without pre-specifying 

K. 

While the semi-parametric approach ofers substantial fexibility, it is computa-

tionally intensive and can be less interpretable than fnite mixture models. Therefore, 

in this chapter, we primarily focus on the parametric and fnite mixture models, which 

provide a good balance between fexibility, interpretability, and computational feasi-

bility. 

3.4 Identifability 

A key aspect of IRT models is the issue of identifability—whether the model 

parameters can be uniquely determined from the observed data. In the standard 

parametric IRT models, the assumption of a normal distribution for the latent ability 

plays an important role in ensuring identifability. This assumption allows the model 

parameters to be well-defned and separable from one another. 

However, when the normality assumption is relaxed, as in fnite mixture or semi-

parametric IRT models, identifability becomes more challenging. In these models, 

additional constraints are typically required to avoid issues such as label switching 

or unidentifable location and scale parameters. For example, constraints on the 

ordering of cluster means or fxing certain parameters may be imposed to guarantee 

identifability. 

Since the primary focus of this study is on the estimation of the marginal like-

lihood for model comparison purposes, and not on the detailed inference of model 

parameters, we do not delve into the technical aspects of identifability here. For a 
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thorough discussion of identifability conditions in mixture IRT models and related 

models, see Section 2.3 of Paganin et al. [2023]. 
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Chapter 4: Marginal Likelihood Estimation for IRT models 

This chapter discusses our experiments in estimating the marginal likelihood for 

IRT models. Among the approaches presented in Chapter 2, we focused on using 

bridge sampling. However, we found that direct application of bridge sampling proved 

difcult for the IRT models described in Chapter 3, due to the large parameter space 

implied by these models, where we have one parameter for each individual and at 

least one per item. 

In addition, when using Finite Mixture IRT Models, the discrete nature of the 

cluster assignments presents additional obstacles. Specifcally, it increases the dimen-

sionality of the parameter space by adding P additional parameters—one for each 

individual. Since bridge sampling requires parameters to reside in a continuous, real-

valued space, including the categorical cluster labels necessitates a transformation. 

However, there is no valid or principled way to transform these discrete variables to 

the real line and invert that transformation without distorting the target distribution. 

Even if a transformation were forced, it would introduce instability in the iterative 

bridge sampling scheme, leading to numerical issues and unreliable estimates. One 

can integrate the discrete parameters by marginalizing all the cluster assignments 

to use bridge sampling with only continuous parameters. However, this does not 

signifcantly reduce the dimensions of the posterior space. 
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As a solution, we propose an “hybrid” approach. The idea is to calculate the 

marginal likelihood by considering one subset of the parameters at a time. For the 

frst subset (latent abilities), we would like to use numerical integration, while for the 

rest (item parameters), we rely on bridge sampling. 

4.1 Optimized Log Likelihood Computation for marginal like-
lihood estimation 

To improve computational efciency while maintaining accuracy in estimating the 

marginal likelihood, we derive an optimized formulation for the log-likelihood for 1PL 

and 2PL IRT models. The goal of marginal likelihood estimation is to evaluate the 

integral of the joint density of the observed data and all model parameters over the 

parameter space: Z 
m(Y ) = π(β, λ, η) p(Y | β, λ, η) dβ dλ dη. 

This integral is typically approximated using Monte Carlo methods, such as bridge 

sampling, which require sampling from the posterior distribution of all parameters. In 

this section, we propose an alternative strategy to simplify this computation, taking 

advantage of the structure of IRT models, where item parameters and person param-

eters are typically assumed mutually independent. We rewrite the multidimensional 

integral above as: Z 
π(β, λ, η) p(Y | β, λ,η) dβ dλ dη Z Z �Z � 

= p(Y | β, λ, η)π(η)dη π(β)π(λ)dβdλ 
L B HZ Z 

= p(Y | β, λ)π(β)π(λ)dβdλ, 
L B 

where p(Y | β, λ) is sometimes referred to as an integrated likelihood and: 
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• L = (R+)I is the space of discrimination parameters λ, 

• B = RI is the space of difculty parameters β, 

• H = RP is the space of latent abilities η. 

We propose to approximate the integral over the latent abilities η analytically 

or numerically, reducing the dimensionality of the integral to be estimated by bridge 

sampling. Specifcally, since individuals’ abilities are i.i.d., we precompute the integral 

over ηp for each individual, so that the remaining marginal likelihood computation 

only involves the item parameters (β, λ) and mixture parameters in the case of fnite 

mixture models. This strategy simplifes the computation and improves the numerical 

stability of the marginal likelihood estimation. 

Considering an individual p and an item i, the likelihood function in a two-

parameter logistic (2PL) item response theory (IRT) model is given by: 

exp(ypiλi(ηp − βi))
P (ypi | ηp, βi, λi) = ,

1 + exp(λi(ηp − βi)) 

where ypi represents the binary response of individual p to item i, λi is the discrimi-

nation parameter, and βi is the difculty parameter. 

In both the standard 2PL and fnite mixture 2PL model, the integrated likelihood 

of the observed data conditional on the model parameters is expressed as: 

YI P ZY 
p(Y | β, λ) = P (ypi | ηp, βi, λi)f(ηp) dηp, 

Hi=1 p=1 

and the integrated log-likelihood function is therefore: 

XI P ZX 
log p(Y | β, λ) = log P (ypi | ηp, βi, λi)f(ηp) dηp, 

Hi=1 p=1 
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where f(ηp) denotes the density of the latent ability distribution, which may be 

standard normal in the standard 2PL model or a mixture of normal distributions in 

the fnite mixture 2PL model. 

Using numerical approximation, we can estimate the integral by approximating 

the continuous function f(x) as discrete distribution over R points: Z RX exp(ypiλi(η
(r) − βi))

P (ypi | ηp, βi, λi)f(ηp)dηp ≈ f̃(η(r)) , 
H 1 + exp(λi(η(r) − βi))r=1 

where 

f(η(r))
f̃(η(r)) = PR . 

f(η(s))s=1 

For computational efciency, we precompute f(η(r)) for a grid of η and normalize 

it with f̃(η(r)). We found that typically using R = 101 grid points is sufcient. 

Given the independence of item responses and using the approximation above, 

fnally, the integrated log-likelihood can be approximated as: 

I RX X 1 
log p(Y | β, λ) ≈ n0i log f̃(η(r))

1 + exp(λi(η(r) − βi))i=1 r=1 !XR 
exp(λi(η

(r) − βi))
+ n1i log f̃(η(r)) ,

1 + exp(λi(η(r) − βi))r=1 

where ni 
0 and ni 

1 represent the number of individuals who responded 0 or 1 to item 

i, respectively. This formulation allows for a direct computation of the marginal 

likelihood without explicitly sampling ηp. 

4.2 Results for the Finite Mixture IRT Models 

In our fnite mixture model, we assume that the latent trait distribution follows 

a mixture of Gaussian components: 

KX 
f(ηp | w, µ, σ2) = wk · N (ηp|µk, σk 

2), 
k=1 
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where the mixture weights follow a symmetric Dirichlet distribution: � � 
1 1 

w ∼ Dirichlet , . . . , . 
K K 

The prior structure for the cluster-specifc parameters is given by: � � 
σ2 

σ2 µk|σ2 ∼ N µ0, 
k , ∼ Inv-Gamma(α, β),k kγ 

where γ is a scale parameter, that we consider fxed. To derive the marginal like-

lihood, we integrate out the latent cluster assignments and the mixture component 

parameters: 

K Z Z � �X σ2 

f(ηp | w) = wk p(ηp|µk, σk 
2)p µk|µ0, 

k p(σk 
2|α, β) dµk dσk 

2 . 
γ 

k=1 

Using the completing-the-square technique and the probability density function 

(PDF) transformation trick for normal and inverse-gamma distributions, integrating 

out µk and σk 
2 results in a non-central t-distribution for ηp within each cluster: � � 

(1 + γ)β 
ηp | k ∼ t2α µ0, ,

γα 

where 2α is the degrees of freedom, µ0 is the location parameter, and the scale pa-

rameter is given by (1+ 
γα 
γ)β . 

To obtain the marginal distribution of ηp, we average over the mixture weights: 

K � �X (1 + γ)β 
f(ηp | w) = wk · t2α µ0, . 

γα 
k=1 

This marginalization approach ofers computational advantages. By integrating 

out the cluster-specifc parameters and directly evaluating the marginal distribution of 

ηp as a mixture of t-distributions, we avoid the need to explicitly sample or iterate over 

all P individuals’ latent abilities in each step of the computation. This is particularly 
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benefcial when the sample size P is large, as it reduces the computational burden 

and accelerates the evaluation of the marginal likelihood. Consequently, this strategy 

leads to faster convergence and improved scalability of the bridge sampling procedure 

in high-dimensional settings. 

4.3 Prior Calibration in the 2PL Finite Mixture IRT Model 

As discussed in Section 2.4, we consider a prior calibration approach to mitigate 

the efect of vague priors when computing Bayes factors. In particular, we ft the 

model using a subset of the data. Using the posterior samples, we estimate the hyper-

parameters of item parameters (β, λ) using moment matching, as well as parameters 

of the mixture components for the Finite Mixture IRT Models. 

Thus, we ft the fnite mixture model outlined in Section 3.2 to a subset of the data, 

consisting of 200 randomly selected individuals out of 1000 (more will be discussed 

in Chapter 5). The resulting posterior samples are then used to estimate the hyper-

parameters for prior calibration in the full data analysis, via moment matching. 

Our 2PL IRT Model with fnite mixture after calibration would be: � � 
1 

ypi ∼ Bernoulli ,
1 + exp(−λi(ηp − βi)) 

σ2 σ2βi ∼ N (µ̂β , ˆβ), log(λi) ∼ N (µ̂λ, ˆλ), ηp | zp = k ∼ N (µk, σk 
2), 

zp ∼ Categorical(w1, . . . , wK ), w ∼ Dirichlet(α̂w), 

µk ∼ N (µ̂, σk 
2/γ), σk 

2 ∼ Inv-Gamma(α̂, β̂), 

k = 1, . . . , K, i = 1, ..., I, p = 1, ..., P, 

where the estimated hyperparameters used for prior calibration are: 

µ̂β , σ̂β 
2 , µ̂λ, σ̂λ 

2 , µ,ˆ γ,ˆ α,ˆ β,ˆ α̂w. 
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These were obtained via moment matching based on posterior samples from the subset 

of 200 individuals. This calibrated model allows for more efcient posterior inference 

and facilitates more stable marginal likelihood estimation using bridge sampling. 

4.4 Prior Calibration in the 2PL Basic IRT Model 

For the standard 2PL IRT model, we also consider the possibility of applying prior 

calibration as discussed in Section 2.4. Our 2PL IRT Model after calibration would 

be: 

� � 
1 

ypi ∼ Bernoulli ,
1 + exp(−λi(ηp − βi)) 

βi ∼ N (µ̂β , σ̂β 
2 ), log(λi) ∼ N (µ̂λ, σ̂λ 

2), ηp ∼ N (0, 1), 

i = 1, ..., I, p = 1, ..., P. 

Note that for the traditional IRT model the standard normal distribution for the 

latent trait is considered as an assumption on the population rather than a prior, so 

we do not update that distribution. Then, we use these estimated hyper-parameters 

when ftting the model on the rest of the data. 
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Chapter 5: Simulations 

5.1 Simulated Data 

The primary goal of this study is to assess whether Bayes factors obtained via 

bridge sampling appropriately favor the true underlying model. Specifcally, we aim 

to evaluate whether the Bayes factor supports the standard 2PL IRT model when the 

data-generating process is unimodal; and whether the Bayes factor favors the fnite 

mixture IRT model when the data-generating process is bimodal. 

In this study, we simulate synthetic data following the approach of Paganin et al. 

[2023]. We specify three diferent scenarios for the distribution of latent abilities: 

unimodal, bimodal, and multimodal. For each scenario, responses are generated for 

P = 1000 individuals across I = 10 binary items. The item parameters include 

discrimination parameters {λi}10 
i=1, sampled from a uniform distribution U(0.5, 1.5), 

and difculty parameters {βi}10 
i=1, equally spaced between -3 and 3. 

For the unimodal scenario, the latent abilities ηp are generated from a normal 

distribution with mean 0 and variance 1.252 . In the bimodal scenario, abilities are 

generated from a mixture of two normal distributions with equal weights, specifcally 

N (−2, 1.252) and N (2, 1.252). For the multimodal scenario, abilities are drawn from 

a mixture of three components: two normal distributions N (−2, 1) and N (0, 0.5), and 
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one skew-normal distribution with location parameter 3, scale parameter 1, and shape 

parameter -3. The mixture weights for the multimodal case are set to (0.2, 0.4, 0.4). 

5.2 Results 

5.2.1 Calibrated Bayes Factor Analysis 

To compare the standard 2PL model with the fnite mixture 2PL model, we use 

the Calibrated Bayes Factor (CBF) as defned in Section 2.4.2. The CBF accounts 

for prior calibration by subtracting the average log Bayes factor computed on a set 

of training subsets from the log Bayes factor on the full dataset. Specifcally, for each 

simulation, we compute 

HX 
log CB12(Y ) = log BF12(Y ) − 

1 
log BF12(Y (h)),

H 
h=1 

where log BF12(Y ) = log p(Y | M1) − log p(Y | M2) compares the fnite mix-

ture model (M1) to the standard 2PL model (M2) on the full dataset Y , and 

log BF12(Y (h)) is the log Bayes factor computed from the h-th subset Y (h) . In our 

study, we set H = 10 and use the same 10 subsets for both prior calibration and 

computing the calibration term in the CBF. This averaging is done separately within 

each dataset. 

To evaluate how the CBF behaves under repeated data simulation and estimation, 

we consider the following setup. Under each latent trait scenario (unimodal, bimodal, 

and multimodal), we simulate a single set of 50 datasets. For each of these datasets, 

we ft both models, obtain posterior samples via MCMC, and estimate the marginal 

likelihoods for the full dataset and each of the 10 calibration subsets using bridge 

sampling. To account for variability in the bridge sampling step, we repeat the 

procedure 10 times per dataset, each time drawing a new set of proposal samples 
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from the ftted proposal distribution. In each data simulation, the posterior samples 

and calibration subsets are held fxed; only the proposal samples vary across these 

repetitions. 

A negative log CBF indicates that the standard 2PL model generalizes better than 

the mixture model, while a positive CBF favors the fnite mixture model. 

5.2.2 Unimodal Scenario Results 

Figure 5.1: Log Calibrated Bayes Factors across simulations in the unimodal scenario. 
Each box represents variability across datasets for a fxed bridge sampling replication. 

Figure 5.1 displays the distribution of log Calibrated Bayes Factors (CBFs) across 

10 bridge sampling replications, each evaluated on a set of independently simu-

lated datasets under the unimodal scenario. Each boxplot corresponds to a single 
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bridge sampling replication, with the spread refecting variation across diferent data-

generating simulations. 

Overall, the CBF values are predominantly negative, indicating consistent pref-

erence for the standard 2PL model over the fnite mixture model. This aligns with 

expectations, as the data were generated from a unimodal latent trait distribution, 

which the standard 2PL is designed to capture. While a few replications yield log 

CBFs that are close to or slightly above zero, suggesting occasional support for the 

mixture model, these cases are rare and do not overturn the broader trend. Addi-

tionally, the narrow spread of log CBF values within each replication highlights the 

numerical stability of bridge sampling, suggesting that it yields consistent marginal 

likelihood estimates even under repeated runs. 

5.2.3 Bimodal Scenario Results 

Figure 5.2 shows the distribution of log Calibrated Bayes Factors (CBFs) under 

the bimodal scenario, across 10 bridge sampling replications. Each box represents the 

variation in CBF values across independently generated datasets for a fxed bridge 

sampling repetition. 
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Figure 5.2: Log Calibrated Bayes Factors across simulations in the bimodal scenario. 
Each box represents variability across datasets for a fxed bridge sampling replication. 

In contrast to the unimodal case, all CBF values here are strongly positive, consis-

tently favoring the fnite mixture model over the standard 2PL. This result aligns with 

the data-generating process, which involves a bimodal latent trait distribution that 

the mixture model is better equipped to capture. Moreover, the similarity in CBF 

magnitude and variability across replications reinforces both the stability of bridge 

sampling and the robustness of the model comparison conclusion. Under bimodal 

structure, the fnite mixture model is clearly preferred. 
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5.2.4 Multimodal Scenario Results 

Figure 5.3 displays the log Calibrated Bayes Factors (CBFs) across simulations 

in the multimodal scenario. As with the previous plots, each box represents the 

distribution of CBF values across datasets for a fxed bridge sampling replication. 

Figure 5.3: Log Calibrated Bayes Factors across simulations in the multimodal sce-
nario. Each box represents variability across datasets for a fxed bridge sampling 
replication. 

Compared to the bimodal case, the CBF values in the multimodal scenario are not 

only consistently positive, but substantially larger—reaching values as high as 450 in 

some simulations. This indicates an even stronger preference for the fnite mixture 

model over the standard 2PL. The larger magnitude refects the increased mismatch 

between the true data-generating process and the unimodal constraint imposed by the 
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standard model, which becomes more pronounced in the presence of multiple latent 

subpopulations. 

Despite the increased complexity of the data, the CBF distributions remain rela-

tively stable across bridge sampling replications. This further supports the reliability 

of bridge sampling in high-dimensional, nonstandard settings and afrms the mixture 

model’s ability to fexibly adapt to heterogeneity in the latent trait distribution. 
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Chapter 6: Conclusions 

6.1 Summary Findings 

This thesis explored the use of marginal likelihood estimation for Bayesian model 

comparison in 2PL Item Response Theory (IRT) models, focusing on both the stan-

dard and fnite mixture formulations. Through simulations under unimodal, bimodal, 

and multimodal latent ability distributions, we assessed model performance, general-

izability, and sensitivity to prior calibration using calibrated Bayes factors (CBFs). 

A key methodological contribution was the use of an integrated log posterior 

formulation. By numerically integrating over the latent ability parameters η, we re-

duced the dimensionality of the posterior density and improved numerical stability in 

marginal likelihood estimation. This integration also removed dependence on latent 

class indicators z, which are discrete parameters. Since bridge sampling requires con-

tinuous densities to function properly, marginalizing over these latent classes enabled 

the application of bridge sampling to fnite mixture models, which would otherwise 

violate this assumption due to their use of discrete latent assignments. 

Across all three scenarios, the marginal likelihood estimates obtained via bridge 

sampling exhibited strong numerical stability. For each simulated dataset, repeated 

bridge sampling runs produced tightly clustered estimates. This consistency confrms 
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the robustness of bridge sampling, even in models with hierarchical structures and 

latent mixture components. 

Model comparison was conducted using the log calibrated Bayes factor (CBF), 

which evaluates the change in model evidence between subset and full data. Positive 

CBF values indicate support for the fnite mixture model, while negative values favor 

the standard 2PL. In the unimodal scenario, CBF values ranged from approximately 

0 to -60, refecting consistent preference for the simpler 2PL model and suggesting 

overftting by the mixture model. In contrast, both the bimodal and multimodal 

scenarios yielded strongly positive CBFs, ranging from 160 to 220 in the bimodal case, 

and up to 450 in the multimodal case, highlighting the mixture model’s advantage in 

capturing latent heterogeneity when the true ability distribution is more complex. 

Taken together, these fndings support the use of fnite mixture models when 

there is evidence of multimodality in the latent structure, while also emphasizing 

the value of CBFs as a tool for validating model generalization. The integration of 

the log posterior not only improves the theoretical validity of bridge sampling for 

mixture models but also enhances computational efciency by drastically reducing 

dimensionality. 

6.2 Limitations 

While the use of integrated log posterior and bridge sampling provided accurate 

and efcient marginal likelihood estimation, several limitations remain. First, the 

current approach relies on numerical integration over a fxed grid for η, which may 

not scale well for high-dimensional or adaptive models. 
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Another limitation lies in the fxed number of mixture components K, which was 

manually tuned to match the underlying data-generating process. Future work could 

explore the BNP models that allow the number of components to adaptively grow 

with data complexity, although this would require further methodological extensions 

to enable marginal likelihood computation. 

Finally, while the calibrated Bayes factor is useful for assessing generalization, it 

assumes that the subset data is sufciently representative and that the calibration 

process does not introduce bias. More sophisticated resampling or cross-validation 

strategies could be considered to better assess model robustness and reduce variability 

in marginal likelihood estimates across partitions. 
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