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Abstract 

Thermal proteome profiling (TPP) is a powerful method for studying protein 

stability and interactions by measuring thermal denaturation profile. It is based on the 

principle that proteins denature and become insoluble when subjected to heat. TPP can be 

used to investigate melting temperature profile shifts. By studying that shift we can 

investigate protein chaperones. Protein chaperones play an essential role in helping 

protein folding, assembly and quality control. An alternative method for cell lysis and an 

optimized TPP workflow were needed to accurately collect data. Using ethanol dry ice 

slurry proved to efficiently lyse cells. 

In this study we aimed to investigate GRP94 and BiP and their melting 

temperature profile. Based on literature, GRP94 is more selective than most endoplasmic 

reticulum (ER) chaperones which was confirmed with data in this study. Having an 

accurate melting temperature is important as it affects the melting temperature shift. 

Current methods utilize the top three method where the top three most intense peptides 

are aggregated into a single curve to determine the melting temperature. A correlation-

based aggregation method was investigated in comparison to the top three method to 

determine if there is an alternative aggregation method. Global analysis of GRP94 and 

BiP were conducted along with investigations into certain proteins to compare the two 

methods. By determining the effectiveness of the correlation-based aggregation method, 
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future research in this area could have an alternative aggregation method that is more 

flexible and representative of the overall melting temperature profile.
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Chapter 1: Introduction  

1.1 Thermal Proteome Profiling 

 

Thermal proteome profiling (TPP) is based on the principle that proteins denature and 

become insoluble when subjected to heat. Originally developed to detect drug targets 

within cells, this technique provides insights into protein interactions. In a typical TPP 

experiment, cells or lysates are subjected to a range of temperatures, causing proteins to 

denature at melting points. These samples are then analyzed, allowing for the generation 

of melting curves for different proteins. This approach enables possible assessment of 

protein-protein interactions and the effects of post-translational modifications on protein 

stability (17). These curves can provide information on protein-protein interactions and 

drug interactions, enabling the assessment of drug-target engagement (13), and allowing 

for proteome-wide thermal change relying on the sensitivity of mass spectrometry. One 

of the significant challenges in TPP is the identification of protein substrates and the 

accurate analysis of the melting curve. Data analysis strategies have been developed to 

improve the sensitivity and accuracy of TPP experiments, addressing issues such as 

aggregation of data at the peptide level and the impact of peptide intensities on melting 

temperature calculations. 

Some methods sum proteins at a peptide level and some at a protein level. The 

aggregation method can affect the results, as it determines which peptides and proteins 
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will be included in the dataset for analysis. Finding a method that suits TPP analysis is 

crucial as different intensities of peptides can shift the melting temperature and give 

different results.  

TPP relies on fitting protein denaturation curves to sigmoidal functions to 

estimate melting temperature and infer protein stability or drug interactions. While there 

are several sigmoidal models that exist, the 4-parameter Hill function has emerged as the 

gold standard due to its flexibility and biological relevance. The Hill function is a model 

used to describe sigmoidal curves and is commonly applied in biochemistry and systems 

biology. It quantifies the relationship between the concentration of a ligand and the 

receptors (23). The Hill function is.  

 

𝑓(𝑥) =
1

1 + (
𝐸𝐶50
[𝐴]

)𝑛
 

 

This is reparametrized where EC50 is replaced with 𝑇𝑚 and [A] with temperature and n 

being the Hill coefficient. However, alternative sigmoidal functions such as the 2-

parameter function and 3-parameter logistic model have been explored in other studies, 

each with advantages and limitations.  

 The 2-parameter model assume symmetric denaturation around the melting 

temperature. The equation is. 

𝑓(𝑇) =
1

1 + 𝑒(𝑇𝑚−𝑇)/𝑘
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Where Tm is the melting temperature and k is the slope factor. The symmetry assumption 

often fails for multi-domain proteins or complexes which leads to inaccuracies (7). The 

symmetry around melting temperature means that the denaturation curve has identical 

steepness in the pre- and post-transition regions. This symmetry is due to the function 

depending only on the melting temperature and the temperature leading to a mirrored 

profile before and after the melting temperature. The reason it fails for multi-domain 

proteins is due to them often having non-symmetric denaturation. Multi-domain proteins 

have non-symmetric denaturation because domains unfold at different temperatures. The 

overall domain structure matters even if we are only investigating the melting 

temperature because the melting temperature would summarize the overall stability of 

that protein. Forcing a symmetric fit to asymmetric data can introduce noise and cause a 

reduction in accuracy.  

 The logistic function is a 3-parameter sigmoidal model that is a middle ground 

between the 2-parameters and Hill function with 4-parameters. Like the 2-parameter 

function, the logistic model with 3-parameters is also symmetric around the melting 

temperature. The logistic function offers slight improvements by decoupling the slope 

parameter from temperature units, providing better slope steepness values. Decoupling 

refers to separating linked parameters to get more interpretable and biologically 

meaningful results (26). The logistic function reformulates the exponent to isolate k from 

temperature dependence using the equation: 

𝑓(𝑇) =
𝐿

1 + 𝑒−𝑘(𝑇−𝑇𝑚)
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Now k is directly scaling with the steepness meaning that a higher k value would result in 

a sharper slope, it is also unitless which would allow for more direct comparison across 

datasets. Decoupling matters for TPP because unitless k values would allow pooling data 

to be easier if different temperature increments were used.  

 The Hill function can perform better than other methods because it can account 

for baselines. Baseline refers to the signal levels at the extreme ends of the temperature 

gradient where proteins are fully folded at lower temperatures or fully denatured at higher 

temperatures. These baselines are important because data do not usually reach the 

idealized 0% or 100% solubility due to experimental noise or biological complexity. The 

Hill function is also to model baselines with different plateaus like the upper and lower 

plateau where proteins are fully folded or fully denatured. The parameters are set by the 

upper plateau, lower plateau, melting temperature, and the Hill coefficient. The 

parameters are adjusted to minimize residuals which is the difference between data and 

fitted curve. Some constraints are put in place where the upper baseline would be greater 

than the lower baseline. The melting temperature is found where the intensity is halfway 

between the lower and upper plateaus. Using software, the parameters are then optimized 

by minimizing the sum of squared errors between the predicted and the measured data. 

For quality control, the R-square is used to find good fits. If it indicates a bad fit, then it 

may require better initial values of the parameters. The fitted results will then give what 

the melting temperature is along with the Hill coefficient. Both the 2-parameter function 

and logistic function have fixed structures that assume that the proteins the fully folded at 
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0% or fully denatured at 100%. And as mentioned before, proteins often do not have 

those idealized values.  

 The assumption of fixed baselines of 0% and 100% is linked to the symmetry of 

denaturation curves. The 2-parameter function and logistic function assume that the 

baselines are fixed where 0% of proteins are folded at high temperature and 100% of 

proteins are folded at low temperature. This means that at high temperature the protein is 

completely unfolded and at low temperature the protein is completely folded. However, 

proteins often are not completely folded or folded so the forced symmetry of that 

assumption can introduce bias as proteins have residual solubility. Hill function allows 

for the baselines to be adjustable if needed thus breaking the assumed symmetry and the 

fixed baselines that can capture protein complexity and fit multi-domain proteins better. 

 

1.2 Current Methods 

Most methods use the TPP R package from Bioconductor (5) which is designed to 

analyze TPP data (Table 1). It handles the data from label-free and isobaric labeling 

experiments and models’ protein thermal denaturation curves using the sigmoidal 

function and provides diagnostic plots and statistical methods to assess data quality. The 

input data usually consists of protein intensities measured across a temperature gradient; 

the configTable specifies sample condition, while dataPath contains raw protein 

quantification data, with dataNorm accounting for systemic biases and ensuring 

comparability. The identified proteins with altered stability are stored in the results.  
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A study of the thermostability of Escherichia coli (E. coli) proteins in vivo 

provided insights into protein complexes and metabolic pathways (17). They used TPP in 

combination with tandem mass tags (TMT), which enabled the detection of changes in 

protein thermostability under different conditions. The protein identification and 

quantification were performed using liquid chromatography coupled with tandem mass 

spectrometry with TMT-based multiplexing. Peptides were fractionated and the data were 

processed with IsobarQuant, while peptide identification was conducted using Mascot 2.4 

against the E. coli UniProt database. The variance stabilization normalization was applied 

to the raw data before melting curves were fitted using the TPP R package. This 

transforms the data to make variance independent of mean intensity to ensure equal 

weighting of all proteins. For this experiment they needed to compare melting curves 

across proteins fairly and enable clustering of co-melting complexes. Without variance 

stabilization, a protein complex with high abundance and low abundance might cause 

uneven noise. Protein complexes were analyzed using a thermal proximity coaggregation 

approach to assess if the complex subunits have co-melting behaviors. The top three most 

intense peptides for each protein were identified and aggregated for further analysis. The 

Euclidean distance was measured between the melting curves of complexes and was 

calculated to determine clustering patterns. This method demonstrated that TPP can 

provide a robust method for studying protein stability in vivo that offers application in 

drug target identification and protein-protein interactions.  

The study by Becher (3) employed a two-dimensional TPP approach combined 

with chemo proteomics to identify protein targets. The method provided insights into off-
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target interactions. TPP was performed to assess dose-dependent thermal stabilization in 

response to Panobinostat treatment. To confirm the direct binding of the treatment to its 

targets, an affinity enrichment-based chemo proteomics approach was used. After the 

LC-MS/MS analysis, raw data were processed to ensure quality control and 

normalization. Protein identification was performed using Mascot 2.4 against a 

customized version of the International Protein Index (IPI) database. The peptide 

spectrum matches were filtered using the criteria: Mascot ion score larger than 15, signal-

to-background ratio larger than 4, and signal-to-interference ratio larger than 0.5. 

Reporter ion intensities were extracted and corrected for isotope purity and interference 

using a bootstrap algorithm. The algorithm corrects for isotope impurities and 

interference in TMT reporter ion quantification. The approach randomly samples the 

MS/MS data multiple times in iterations and calculates correction factors for each TMT 

channel based on distributions. Then it averages results to derive purity-corrected 

intensities. The intensity values were also normalized to correct for batch effect since 

TMT-based quantification was used. To determine the melting point, quality control steps 

were applied where the R-squared of the curve fit had to be larger than 0.8, the plateau of 

the curve had to be less than 0.3, and the steepest slope of the curve had to be less than -

0.06. These helped remove poorly fitted curves and ensure that most proteins have fully 

denatured.  

In Yin’s study (24), MS/MS spectra were searched using Mascot against the 

UniProt database with a taxonomy filter of ‘9606’, which refers to Homo sapiens, was 

supplemented with common-containing proteins and concatenated with all the decoy 



8 

 

sequences. Search parameters allowed for trypsin cleavage with up to two missed events 

and a precursor ion tolerance of 50 ppm. Peptide spectrum matches (PSMs) were filtered 

at a false discovery rate (FDR) of 5% at the peptide level and 2% at the protein level 

using linear discrimination. TMT reporter ions were quantified using an in-house 

software package, Mojave (22) by identifying the highest peak within 20 ppm of 

theoretical reporter mass windows and correcting for isotope purities. Those quantified 

were filtered to retain those with a total TMT reporter ion intensity greater than 50,000 

and an isolation specificity above 0.7 before being summarized at the protein level. 

Protein abundance ratios across treatment groups were calculated as the percentage of the 

total TMT signal for each protein. Aggregation happens at a peptide level first, where 

TMT reporter intensities are assigned to PSM, then into the protein level using the 

summarization method. Having a set of thresholds for peptides is helpful in retaining only 

peptides that can be used in the analysis process. 

 

In Franken’s study (7) the melting curves were fitted to the fold changes of each protein 

using the equation, 

𝑓(𝑇) = 𝑝𝑙𝑎𝑡𝑒𝑎𝑢 +
1 − 𝑝𝑙𝑎𝑡𝑒𝑎𝑢

1 + 𝑒
1
𝑇
−𝑏

 

 

Where T is the temperature and a, b, and plateau are constants. The melting 

temperatures of the protein were given by the temperature at which the value of the 
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melting curve is 0.5. The model fitting was performed by non-linear regression using the 

nls function in R, which is different from other methods using the TPP R package.  

Median melting temperatures were reported if proteins were quantified with at least two 

unique peptides across replicates. In the 2D-TPP experiments, proteins were evaluated 

across different compound concentrations, normalized, and analyzed based on 

stabilization criteria. Scatter plots visualized stabilization scores to identify significant 

thermal stability changes.  

A mass spectrometry data analysis study was done to assess protein stability and 

inhibitor effect using TPP (14). The signal intensity was measured across different 

temperatures and fitted to a sigmoidal curve using a nonlinear least squares approach in 

R. The melting temperature and slope parameters were determined, and the thermal shifts 

induced by inhibitors were reported relative to the control. A statistical comparison using 

ANOVA assessed whether inhibitor treatment significantly altered protein melting 

behavior. Dose-response curves were fitted using the Hill function (9), determining the 

melting temperature and Hill coefficients for different inhibitors. MS data were processed 

using MaxQuant with protein identification based on the UniProtKB database, and 

quantification was performed using label-free and TMT-based approaches. Melting 

curves were normalized, and the data were fitted using a four-parameter model for TPP-

TR. The outliers were removed, and the final melting points were determined per protein. 

For TTP-CCR, intensity values were normalized across inhibitor concentration gradients, 

and dose-response curves were fitted using nonlinear regression. The goodness of fit was 

assessed using an R-squared value, and filtering criteria were applied to retain proteins 
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with consistent dose-response behaviors. Using various methods and thresholds for 

screening peptides may give different results.  

 

 

 

Table 1. Method summary of the current methods for TPP analysis. 

References  Method/ 

Software 

Aggregation Level Screening Thresholds  

(7) 

(17) 

TPP R 

package 

Protein level quantification 

was based on the top three 

most intense peptides. 

Trypsin digestion up to three missed 

cleavages, peptide tolerance of 10 

ppm, MS/MS tolerance of 0.02 Da. 

(24) TPP R 

package  

Protein level quantification 

was done by summing the 

intensities of all peptides for 

each protein. 

10 ppm precursor mass tolerance, 

0.025 Da product ion mass 

tolerance, FDR < 1% (peptide and 

protein level) 

(4) nlsM() R 

package  

Peptide level filtering was 

done before aggregation, and 

protein level aggregation was 

done based on protein 

groups. 

20 ppm precursor mass tolerance 

initially and then 4.5 ppm precursor 

mass tolerance, FDR < 1% (peptide 

and protein level), unmodified 

counterpart peptides were discarded  
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(21) nlme() R 

package  

Peptides that were in top 

matches in the database were 

retained and aggregated into 

protein melting temperatures. 

100 ppm of precursor mass 

tolerance, 0.5 fragment mass 

tolerance, and a maximum of one 

missed cleavage  

 

In TPP, accurately capturing the melting behavior of a protein is essential for 

determining its thermal stability and potential interactions. Peptide aggregation strategies 

often rely on selecting the most intense peptides, however, this approach can introduce 

biases, as highly abundant peptides may not consistently reflect the protein’s overall 

melting point profile. A correlation-based selection method was explored in our study to 

improve accuracy. By identifying peptides with the most consistent melting curves, this 

method reduces the influence of outliers and ensures that the final aggregated curve more 

reliably represents the unfolding behavior of the entire protein. Only peptides that follow 

a similar sigmoidal trend are filtered and included, thus reducing the impact of noisy 

peptides. Aggregating highly correlated peptides produces a smoother and more 

consistent melting curve as well, which leads to a more accurate hill function fitting 

curve at the protein level. 

 

1.3 Chaperones: GRP94 and BiP 

In the context of endoplasmic reticulum (ER) chaperones, TPP has been applied 

to map their client networks, identify interaction partners, and explore the effects of 

chaperone-targeting inhibitors. By detecting thermal stability shifts upon chaperone 
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binding or inhibition, TPP can reveal direct and indirect interactions that can offer 

valuable insights into protein mechanisms. It reveals direct interactions by detecting 

target engagement and TPP can identify these shifts by comparing melting curves 

between treated and untreated samples. It can also reveal indirect interactions by mapping 

cellular responses. An indirect effect arises when a drug or mutation alters the stability of 

proteins. TPP has been extensively used to map the interactome of cytosolic HSP90 (19) 

revealing a network of client proteins whose stability decreased upon drug treatment. One 

study (10) demonstrated that TPP could identify ER-resident chaperone interactors by 

measuring protein thermal stability in response to stress conditions, allowing for the 

detection of protein-protein interactions. 

Chaperone proteins play an essential role in maintaining cellular homeostasis by 

assisting in protein folding, assembly, and quality control. Among them, glucose-

regulated protein 94 (GRP94) and immunoglobulin-binding protein (BiP) are two key 

chaperones located in the ER, where they regulate protein maturation and stress 

responses (6). 

GRP94, an HSP90-like protein located in the endoplasmic reticulum (ER) lumen, 

shares structural and functional similarities with cytosolic HSP90 proteins, including its 

ATPase activity (12). However, GRP94 also possesses unique features such as calcium-

binding capabilities (25), which are critical given the ER’s role as a major calcium 

storage compartment. Unlike other ER chaperones, GRP94 exhibits a more selective 

client repertoire (16), although the molecular basis for this selectivity remains poorly 

understood. Evolutionarily, GRP94 has adapted to manage a distinct set of client proteins 
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and stress responses compared to HSP90. Its essential functions include facilitating 

protein folding, assembly, secretion, and antigen presentation, particularly for membrane-

bound and secreted proteins. Notably, GRP94 interacts with a smaller and more specific 

group of substrates compared to other ER chaperones like BiP. While many plasma 

membrane receptors and secreted proteins do not require GRP94 for proper folding, some 

rely on its association due to its abundance in the ER lumen, reflecting a functional 

consequence of its availability.  

The earliest identified GRP94 clients came from the immunoglobulin family, 

where it binds selectively to the variable (V) domain of light chains, in contrast to BiP, 

which binds both variable (V) and constant (C) domains (18). This shows a more 

selective clientele for GRP94. Ablation of GRP94 impairs light chain secretion, although 

studies in mice indicate that serum Ig levels can remain stable in the absence of GRP94, 

suggesting the existence of bypass quality control mechanisms. Some toll-like receptors 

(TLRs) also bypass GRP94 dependence, but their depletion leads to compromised innate 

immune responses to selected pathogens. GRP94 has garnered attention for its role in 

immunity, particularly through its ability to stimulate T cells and enhance anti-tumor 

activity. Identified as gp96, GRP94 is a potent stimulator of cross-priming, a process 

where dendritic cells capture peptides from other cells and present them to T cells, 

generating antiviral and antitumor responses. GRP94-peptide complexes are internalized 

by dendritic cells and antigen-presenting cells through receptor-mediated endocytosis, 

mediated by scavenger receptors. Once internalized, peptides are separated from GRP94 

and loaded onto major histocompatibility complex (MHC) molecules, which are 
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subsequently displayed on the cell surface for recognition by T cell receptors. Despite its 

established roles in protein homeostasis and immunity, GRP94’s client specificity and 

mechanisms of action remain active areas of research, with potential implications for 

therapeutic strategies targeting cancer and immune modulation. 

BiP, another major ER chaperone, belongs to the HSP70 family and plays a 

crucial role in protein homeostasis. It interacts with a broad range of misfolded proteins, 

preventing their aggregation and targeting them for degradation. BiP is a key regulator of 

unfolded protein response, binding to misfolded proteins under ER distress and signaling 

protective cellular mechanisms (8). It associates with transmembrane sensors to regulate 

ER stress responses (15). In contrast to GRP94’s selective client interactions, BiP 

engages in more general chaperoning activities (1). It binds nascent polypeptide chains to 

prevent premature folding, facilitates the translocation of proteins across the ER 

membrane, and participates in the degradation of terminally misfolded proteins through 

ER-associated degradation (ERAD) (11). The cooperative action of BiP and GRP94 

ensures proper protein folding and quality control, maintaining ER homeostasis under 

both normal and stress conditions. Given their critical roles, both GRP94 and BiP serve 

as potential therapeutic targets in diseases related to protein misfolding, including cancer 

and immune dysfunction. 

We are interested in using TPP to identify potential chaperone clients of GRP94 and BiP. 

By enabling the study of protein stability and interactions under conditions, TPP provides 

crucial insights into cellular mechanisms, protein function, and protein-protein 

interactions. Understanding chaperone proteins through TPP can help elucidate their roles 
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in disease pathology and therapeutic development. By enhancing the methodologies for 

analyzing TPP data and improving accuracy and reliability, the insights gained from this 

could contribute to advancing biomedical research. 
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Chapter 2. Methods 

 

2.1 Thermal Proteome Profiling 

We obtained three sets of samples with a total of 30 samples, including control, 

GRP94 knockout, and BiP knockouts. All the samples were resuspended in 99% 

phosphate-buffered saline (PBS), pH 7.4, (Gibco, Catalog Number 10010001, Carlsbad, 

CA) with HALT (1%) to ensure the cells within the solution were dispersed evenly. We 

used 90 uL of resuspension buffer for the control set and 100 uL for the treatment sets.  

Following conventional TPP protocols, we used ten different temperatures as treatments: 

37, 40, 43, 46, 49, 52, 55, 58, 61, and 64°C. The heat treatments were performed using a 

ThermoMixer (Thermo Fisher Scientific) to set to the desired temperatures, and samples 

were heated to each temperature for three minutes, then the samples were taken off to 

cool for three more minutes before snap-freezing in an ethanol dry ice slurry. Unlike 

standard TPP protocols that use liquid nitrogen, we used ethanol/dry ice slurry to perform 

cell lysis on the cells to ensure the separation of proteins from the cells. The ethanol dry 

ice slurry was used because we did not have access to liquid nitrogen. The slurry was 

made using 500 mL of ethanol and enough dry ice to cover the sample vials in an ice 

bucket. The samples were frozen in the slurry for thirty seconds and then transferred to a 

thermomixer with a temperature set to 37 degrees Celsius for 1:30 minutes. Samples were 

kept on ice when they were not being treated with heat or lysed. This cycle was repeated 

seven times for all samples. Once all the samples had been lysed, they were centrifuged 

for 30 minutes at 4 degrees Celsius at 20,000 RCF. This separates the non-protein cell 
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particles from proteins. Once soluble proteins were recovered, a lysis buffer containing 

15% SDS was added to each sample after the pellet had been discarded to lyse any 

remaining cell particles. The samples were then centrifuged again for 8 minutes at 15 

degrees Celsius at 8000g. The lower g speed and higher temperatures ensure that SDS 

does not precipitate at lower temperatures. The samples were then transferred to clean 

tubes after discarding the cell pellets. Figure 1 shows an illustrated overview of the TPP 

experiment used for this study. 

 

Figure 1. Overall TPP method. 

 

2.2 Ethanol Slurry Cell Lysis Validation 
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The slurry was set up by adding enough dry ice to cover the sample test tubes 

with ethanol (Figure 2). Depending on the size of the ice bucket, the amount of dry ice 

and ethanol may vary. Using imaging and trypan blue dye, cells were seen at various 

stages.  

 

Figure 2. Ethanol dry ice slurry setup. 

 

2.3 Protein Quantification and Mass Spectrometry Sample Preparation 

Pierce BCA Protein Assay Kit (Company, Catalog Number, Location) was used 

for all sets of samples. This method evaluates and determines the total protein 

concentration in a solution by measuring a color change from blue to purple proportional 
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to the protein content. Two dilution series were done to all sets of samples: 1:5 and 1:10 

(sample: lysis buffer). The lysis buffer used in BCA was diluted more with water with a 

1:2 ratio to ensure that the SDS was under 15%. 10 uL of the sample was used for 1:5 

dilution with 40 uL lysis buffer. 20 uL of the sample was taken from a 1:5 dilution 

mixture with 20 uL lysis buffer. 10 uL of each diluted sample was loaded on the 96-well 

plate with 200 uL of working reagent. Eight BCA standards were used with a blank. We 

utilized standard protocol standards for this study. The plates were incubated for 30 

minutes in a 60°C incubator. The samples were read using a spectrophotometer set to 562 

nm. Once the preliminary analysis of the BCA data was done, the samples were alkylated 

and reduced using DTT and IAA and then quenched.  

The protein samples were digested using an automated workflow on the 

KingFisher (KF) with PAC and hydroxyl beads (2). Eight 96-well KF plates were used. 

The protein plate contained activated hydroxyl beads with 100% acetonitrile and our 

protein samples. 100% ACN in the protein plate causes the protein to precipitate. The tip 

plate contained a KF tip comb. Five wash plates were made with 95% ACN in TEAB and 

50% ethanol. The digestion plate contained .05 μg/ uL of trypsin. Each sample was 

adjusted to have 40 μg of protein based on the BCA data results. This was done by 

calculating how many μL of the sample are needed and then adding the remaining 

amount of μL using 50mM TEAB to 100 μL since we used 100 μL of sample per well. 

We used a 1:4 ratio of hydroxyl beads to protein for the protein plate. The beads were 

equilibrated twice using 70% ACN. Each plate was placed in the KF, and the protein and 

bead plates were mixed for ten minutes to allow for the protein to crash out onto the 
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beads. The beads containing protein were picked up and transferred to the wash plates. 

After each wash, the protein plate was taken out of the KF and transferred to an incubator 

at 47 degrees Celsius and incubated for two hours. The plate was covered with a foil 

microplate. The supernatant was removed after incubation, and 1% formic acid was 

added to each well. We prepared 30 sample tubes for the supernatants. The plate was 

placed back into the KF to eluent from the quenching plates. The digestion plate was 

taken out, and any remaining liquid was pooled together with previous supernatants. The 

samples were dried down overnight in a speedvac. 

 

2.4 Mass Spectrometry Data Acquisition  

Liquid chromatography was performed using an Easy-Spray Nano 1200 system 

equipped with an autosampler for column pickup. The analytical column was a 25-

centimeter-long, 75-micron inner diameter column packed with 1.9-micron C18 particles. 

A trap column with 2 centimeters in length and 75-micron inner diameter packed with 2-

micron particles was used for sample loading and initial separation. The mobile phase 

consisted of Solvent A with 100% water with 0.1% formic acid and Solvent B with 8% 

ACN with 0.1% formic acid. The gradient used for separation was as follows: 

• 0-5 min: 2% solvent B  

• 5-15 min: linear increase to 8% solvent B 

• 15-95 min: gradual ramp to 44% solvent B 

• 95-98 min: increased to 100% solvent B  

• 98-103 min: Held at 100% solvent B for column wash  
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• 103-110 min: re-equilibration at 2% solvent B 

 

The flow rate was maintained at 250 nL/min during the gradient phase and increased to 

500 nL/min during the column wash and re-equilibration steps. 

Mass spectrometry analysis was conducted using Thermo Exploris with data-

independent acquisition (DIA) in both MS1 and MS2 modes. The nanospray ionization 

(NSI) source operated at 2000 V in positive ion mode with an ion transfer tube 

temperature of 280 degrees Celsius. The MS1 master scan was acquired in the Orbitrap at 

a resolution of 60,000, with an automatic gain control (AGC) target of 1000% and 

maximum injection time set to auto. The mass range spanned m/z 350-1650. 

For MS acquisition, 16 m/z isolation windows were applied using higher energy 

collisional dissociation (HCD) at a normalized collision energy of 27%. MS2 scans were 

performed at a resolution of 30,000 with an AGC target of 1000% and maximum 

injection time in auto mode. A staggered window approach was applied for precursor ion 

selection to ensure optimal coverage of the mass range that improves precursor isolation.  

The instrument was calibrated to measure different temperatures during the 

acquisition to enhance reproducibility. A data spectral library was constructed from six 

injections that were combined into a pooled dataset. The acquisition was controlled by 

loop control with multiple isolation windows. A scan was triggered when the signal 

intensity met a predefined threshold. The normalized collision energy was applied for 

fragmentation, and isolation windows were adjusted for each method.  
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Raw DIA-MS data from the instrument were processed using EncyclopeDIA. The 

raw files were demultiplexed into pseudo-MS2 spectra, and the data were searched 

against the UniProt FASTA protein database. Demultiplexed refers to the process of 

separating and assigning mixed spectral data back to their original individual samples. A 

direct DIA search workflow was applied, generating a spectral library from the sample 

data. 

 

2.5 Data analysis 

A min-max normalization was used on all datasets acquired. This method rescales 

data values to a range between 0 and 1. The minimum value is transformed to 0, and the 

maximum value of a feature is transformed to 1. This preserves the relationships between 

original data values. Three datasets were acquired from the study. A control set was used 

as a reference point to compare to the knockout sets GRP94 and BiP. GRP94 and BiP 

knockout sets were the treatment sets. The Hill function was used to model protein 

unfolding transitions that allow for the quantification of binding and stability changes. 

This function is useful in TPP as it accounts for sigmoidal behavior in protein 

denaturation. The Hill coefficient provides insight into the binding effects and deviations 

between the control and the knockout conditions that indicate changes in protein-protein 

interactions. The parameters derived from the Hill equation, including the melting 

temperature and Hill coefficient, were used to assess differential stability. 
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Chapter 3: Results and Discussion 

This section presents the results of the study with details of the validation of the 

ethanol dry ice slurry method for cell lysis as well as the effectiveness of the correlation-

based method compared to the top three methods. A global analysis was also performed 

to provide insights into melting temperature profiles. 

 

3.1 Cell Lysis Validation  

A dry ice ethanol slurry was chosen as an alternative lysing method due to a lack 

of access to a nitrogen tank. This approach provides a more accessible and cost-effective 

solution for researchers facing similar constraints. From pre-freeze images, the cells are 

shown to be fully intact, where the trypan blue dyes the other membrane of the cell. Each 

cycle is done by freezing the samples in the slurry for thirty seconds and then transferring 

them to  a thermomixer with a temperature set to 37 degrees Celsius for 1:30 minutes. 

We evaluated how the cells would look at cycles one, three, and five. At cycle five, the 

cells are seen to have been lysed with the trypan blue dye, showing that the cell 

membrane was broken (Figure 3.1). To ensure successful lysing of cells, we have 

determined that cell lysis at seven cycles with the ethanol slurry will lyse the cells 

completely. This method not only provides an effective alternative to traditional nitrogen-

based lysis but also offers practical solutions for those with limited resources. 
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Figure 3. Cell lysis ethanol slurry cycles. Pre-freeze shows intact cell membranes from 

Trypan blue dye. Cycle one, three, and five are shown, respectively, with cycle five 

showing that the cell membranes have been lysed, showing the success of ethanol dry ice 

slurry as an alternative lysing method. 

 

 

 

3.1Global Data Analysis: Correlation  

The first analytical approach aimed to evaluate protein melting temperatures by 

fitting the peptide intensity values to a Hill function curve. The goal was to ensure a high 

correlation between the peptide intensity values and the fitted curves, which would 

enhance the reliability of the thermal stability profiles. The dataset was obtained and 

checked to ensure it contained the required temperature-dependent intensity values. The 

objective of this approach was to estimate the melting temperatures of proteins by 

analyzing the intensities of the peptides using correlation. Peptides were fitted to a Hill 

function curve while aiming for a high correlation between the observed intensities and 

the fitted curves. Correlation measures the strength and direction of the linear relationship 
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between two variables. R-squared is the coefficient of determination, which indicates 

how well the fitted curve explains the variability in the data. Correlation and R-squared 

are mathematically related, but correlation reflects the linear association between two 

variables, while R-squared indicates how much variability can be explained by the model. 

Correlation alone was deemed sufficient for this analysis as it directly measures the 

relationship. A strong correlation would enhance the reliability of the thermal stability 

profile.  

Peptides were filtered based on their correlation with the Hill function fit with this 

dataset. The purpose is to ensure only peptides with reliable melting behavior contribute 

to protein stability profiles. A low correlation implies that the peptide’s solubility does 

not follow the predicted pattern. This can be due to noise or peptides from different 

domains melting at different temperatures. Filtering using correlation can provide a more 

reflective overall melting temperature profile.  Based on the distribution of peptide 

correlation, it was determined that 0.7 would be the criterion used to filter peptides 

(Figure 4a). In cases where no peptides meet the 0.7 threshold, the threshold will be 

reconsidered based on the distribution histogram. The highest correlation for each protein 

was recorded, and the number of proteins with at least one high correlation peptide was 

determined.  A histogram was generated to visualize the distribution of correlation values 

across all peptides as well as the maximum correlation per protein (Figure 4b). Those 

with 0.7 or above correlation peptides were aggregated per protein by summing the 

intensities at each temperature. Summing the intensities that fit the threshold helps 

smooth out random fluctuations and gives a more representative profile rather than being 
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dominated by individual peptide variability. This allowed for a more representative 

thermal stability profile for each protein rather than relying on peptide data points. The 

aggregated data were then used to fit the melting curves and estimate the melting 

temperature (Figures 4c and 4d). This was done by interpolating the normalized intensity 

value and determining the temperature at which the signal intensity dropped to 50%.  

 

Figure 4. GRP94 global data analysis using correlation aggregation-based method. a) 

Distribution of peptide correlation that determines the correlation threshold. b) 

Distribution of max correlation per protein. c) GRP94 melting temperature of proteins 

ranked, showing the trend of melting temperature globally. d) GRP94 histogram of 

melting temperature using a correlation of 0.7 or above peptides. 

 

To ensure biologically relevant results, only melting temperatures within the 

range of 37 degrees Celsius to 64 degrees Celsius were considered and recorded. The 
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final dataset was sorted by melting temperature, ranked, and visualized using a scatter 

plot to illustrate the distribution of protein melting temperature. The proteins were ranked 

to ensure clarity when displaying the data. A histogram was also created to show the 

frequency distribution of melting temperatures for peptides with high correlation values.  

 

3.2 Global Data Analysis: Top Three Peptides 

 

An alternative approach was used to evaluate protein melting temperatures by 

aggregating the top three most intense peptides for each protein (20). This method was 

applied as a benchmark to compare with the correlation-based peptide filtering approach, 

as the top three aggregation methods are commonly used in TPP studies. The dataset was 

first reviewed to ensure that it contained the necessary temperature-dependent intensity 

values. This method was used to compare it to the correlation-based peptide filtering 

approach. The top three peptide aggregation methods are commonly used in TPP studies, 

making it a relevant benchmark for comparison. This was done to assess whether the 

correlation-based method provided a more accurate or representative thermal stability 

profile.  

For each protein, the peptide intensities were sorted in descending order at every 

temperature condition, and the top three peptides with the highest intensities were 

selected and summed at each temperature to generate an aggregated signal profile. The 

aggregated data was used to fit the melting curves and estimate the melting temperature. 

This was done through linear interpolation of the normalized intensity values, 
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determining the temperature at which the signal dropped to 50% of its maximum value. 

To ensure biologically relevant results, only melting temperatures within the range of 37 

degrees Celsius to 64 degrees Celsius were recorded. The melting temperatures were 

plotted using a scatter plot and ranked by protein, just as above with the correlation 

aggregation-based method (Figure 3.3a). A histogram of the melting temperature was 

plotted and revealed that the melting temperature profile for this method showed more 

variation and was more scattered when compared to the correlation-based aggregation 

method (Figure 5).  

 

 

Figure 5. GRP94 global data analysis using top-three aggregation method. a) GRP94 

melting temperature profile ranked by protein. b) The GRP94 histogram of the melting 

temperature profile shows a more evenly distributed distribution. 

 

3.3 Protein Analysis  

 

Assessing the algorithmic approach with PLEC, TLN1, EMC29, PYR1, and GRP75 
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The proteins were analyzed to evaluate differences in their melting temperatures 

between control and treatment/knockout conditions to assess the algorithmic approach. 

The proteins were chosen based on the number of peptides and some of these proteins 

had higher peptide counts as well as lower peptide counts. Having proteins with high and 

low peptide counts allowed us to explore how the method would perform. As an 

exploration of the correlation-based aggregation method these proteins were not chosen 

due to biological significance but rather as examples to compare the two methods. 

Correlations were calculated using predicted and experimentally measured curves for the 

y-axis while melting temperature values were used for the x-axis. To assess whether a 

distinction in melting temperatures existed between the control and treatment groups, 

clustering analysis was performed using MiniBatch K-Means that minimizes the sum of 

squared distances between data points and their respective cluster centers. The analysis 

used two key variables for each peptide: melting temperature derived from the Hill 

function and the correlation value. p 

The clustering process involved an initial estimation of cluster centers, followed by 

iterative assignment of data points to the nearest cluster based on Euclidean distance. The 

cluster centers were then recalculated as the mean position of all data points within each 

cluster. This iterative process continued until the cluster centers stabilized. Cluster 

determination was based on spatial distribution and data characteristics, with distance 

metrics guiding grouping decisions and silhouette scoring validating cluster quality. The 

number of clusters was set to two to three clusters as the MiniBatch allowed for a smaller 

number of clusters.  
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Figure 6. Correlation cluster analysis of PLEC protein. a) PLEC control set. b) PLEC 

GRP94 knockout set. 

 

From this clustering analysis, distinct melting temperatures were observed (Figure 

6). The PLEC control set exhibited a clear melting temperature of around 55°C, 

characterized by a high correlation within that cluster (Figure 6a). In contrast, the PLEC 

GRP94 knockout set showed a reduced melting temperature of approximately 48°C, 

suggesting a shift in protein stability under knockout conditions (Figure 6b). These 

findings highlight the impact of GRP94 on PLEC thermal stability and underscore the 

effectiveness of clustering methods in identifying melting temperature variations. TLN1 

showed a similar result where the melting point profile shifted after the knockout of 

GRP94 (Figure 7). 
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Figure 7. Correlation cluster analysis of TLN1 protein. a) TLN1 control set. b) TLN1 

GRP94 knockout set. 

 

Once the peptides were filtered by using correlation as a criterion, an aggregated 

curve was generated to fit a Hill function. PLEC and TLN1 both used 0.9 correlation as a 

criterion to filter the peptides. The correlation threshold was changed to accommodate the 

number of peptides for these proteins. The threshold change is manual and would depend 

on how the distribution looks for each dataset and protein. These proteins had a higher 

number of peptides overall and within the 0.9 correlation range. Using that as a threshold 

ensures that those with high correlation are captured for a more accurate representation of 

the melting temperature profile. The top three methods were employed as well to 

compare the methods (Figure 8). The correlation-based aggregation method showed a 

better Hill function curve fit with the melting temperature around 50°C as discussed 

above for PLEC (Figure 8a). The top-three method showed a steeper Hill function curve 

fit with a melting temperature closer to 55°C (Figure 8b). When compared to the 
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correlation aggregation method, the top-three aggregation method showed a less desirable 

Hill function fit. Protein TLN1 also showed comparable results when comparing the 

correlation-based method to the top-three method (Figure 8c and Figure 8d). By using the 

correlation-based aggregation method the curve showed a better Hill function fit that is 

more representative of the melting temperature profile. 

 

 

Figure 8. Aggregated peptide protein Hill function curve fit of PLEC and TLN1 from 

GRP94 knockout dataset. a) PLEC protein Hill function curve using correlation-based 

aggregation method. b) PLEC protein Hill function curve using top three method. c) 

TLN1 protein Hill function curve using correlation-based aggregation method. d) TLN1 

protein Hill function curve using top three method. 
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ECM29 protein analysis was done in an analogous manner. The protein was taken 

from the GRP94 knockout dataset. Using the clustering analysis, the correlation clusters 

showed melting temperature for the protein at around 50°C (Figure 9a). Compared to the 

control of ECM29, where the melting temperature is around 55°C, there is a clear shift in 

the melting temperature profile (Figure 9b). The control dataset of EMC29 showed 

peptides with a high correlation, while the GRP94 dataset of EMC29 had a more evenly 

distributed peptide correlation range. There is a noticeably clear shift in the melting 

temperature profile.  
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Figure 9. Protein ECM29 analysis. a) Clustering analysis of the control set to determine 

correlation and show a general trend of melting temperature. b) Clustering analysis of the 

GRP94 knockout set to determine correlation and show a general trend of melting 

temperatures. c) Hill function curve fit using correlation method with correlation 

threshold of 0.8 or above. d) Hill function curve fit using the top three method. 

 

Due to the smaller size of peptides in ECM29 protein 0.8 was used as a criterion 

for filtering peptides to aggregate into the new curve. The aggregated data fit with the 

Hill function and showed a sigmoidal curve with a melting temperature of 51.3°C (Figure 

9c). To compare with our method, we also used the top-three aggregation method to 

visualize the data. The top 3 methods showed a less desirable Hill function fit where the 
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melting temperature was at 56.4°C (Figure 9d). This method yielded a less desirable Hill 

function fit, further supporting the correlation-based approach as the more reliable 

method for capturing stability changes. 

PYR1 and GRP75 proteins were analyzed using the BiP knockout dataset. The 

control set of PYR1 showed a melting temperature of around 55°C (Figure 10a). PYR1 

BiP knockout clusters have shown a melting temperature of around 50 degrees Celsius 

(Figure 10b). PYR1 had several peptides within the higher correlation range, so 0.85 was 

selected as a filter for aggregation for the correlation method. The correlation method and 

the top three methods were used to analyze PYR1 as well (Figures 10c and 10d). The 

melting temperature profile showed a shift when looking at the clusters. Based on the 

correlation-based aggregation method the Hill function curve displayed a better sigmoidal 

curve.  
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Figure 10. PYR1 protein analysis. a) Control cluster analysis. b) BiP knockout cluster 

analysis. c) Hill function curve fit using correlation-based aggregation method. d) Hill 

function curve fit using the top-three method. 

 

GRP75 was analyzed in the same way with 0.7 as a filter for peptide aggregation 

due to the amount of the peptide being on the lower end. For the control set, the melting 

temperature was around 53°C (Figure 11a), and for the BiP knockout set the melting 

temperature was around 47°C (Figure 11b). The correlation method and the top three 

methods were used (Figures 11c and 11d). 
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Figure 11. GRP75 protein analysis. a) Control cluster analysis. b) BiP knockout cluster 

analysis. c) Hill function curve fit using correlation-based aggregation method. d) Hill 

function curve fit using the top-three method. 

 

GRP94 and BiP Global Analysis of Melting Temperatures  

This analysis aimed to compare the delta melting temperatures of proteins within 

the GRP94 and BiP datasets, relative to the control set. The goal was to determine 

whether the presence of GRP94 or BiP induces significant changes in protein stability 

and how they differ between the datasets. The delta temperature was measured by 

subtracting the melting temperatures of the control set from the treatment sets. To 
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visualize the results and distribution of the delta temperatures, an overlapping histogram 

was generated showing the GRP94 and BiP datasets (Figure 12). BiP dataset showed a 

broader distribution in the direction of negative delta melting temperatures. A negative 

delta melting temperature would indicate that the treatment dataset had a lower melting 

temperature than the control set. Based on the literature, GRP94 is observed to have a 

more selective clientele (16), which is confirmed with our data.  

 

Figure 12. Histogram of delta melting temperature from GRP94 and BiP datasets relative 

to the control set. 
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Chapter 4: Conclusion  

The results of the TPP experiment presented reveal critical insights into the 

behavior and stability of proteins under heat stress. The melting curves generated from 

the analysis demonstrate the thermal stability of various proteins and their interaction, 

highlighting the influence of peptide selection and aggregation strategies on the final 

thermal profiles. The study’s use of correlation-based peptide aggregation instead of 

relying on intensity-based methods addresses a major challenge in TPP analysis. The 

challenge is the potential distortion of melting curves by outlier peptides or highly 

abundant, non-cooperative peptides. This approach successfully reduces noise and 

provides more reliable thermal stability data, improving the accuracy of protein melting 

point estimation.  

The comparison between conventional intensity-based top three aggregations and 

the correlation-based method highlights the impact of peptide selection on the final 

melting curve. Intensity-based aggregation, while it is straightforward, can often lead to 

biased melting curves due to the dominance of highly abundant peptides. These peptides 

may not accurately represent the protein’s overall thermal stability, especially if they 

exhibit atypical or inconsistent melting behavior. In contrast, the correlation-based 

method includes peptides with consistent sigmoidal melting profiles, which reduces the 

influence of outliers and enhances the overall quality of the fitted melting curve. The 

approach can lead to a smoother melting curve that improves the reliability of 

downstream analysis, such as determining thermal shifts and protein-protein interactions. 

The data also underscore the importance of accurate curve fitting in TPP analysis. The 
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use of non-linear regression models like the Hill function provides robust curve fitting 

and reliable estimation of the melting temperature. The improved accuracy in melting 

temperature determination enhances the identification of protein targets and the detection 

of thermal stability shifts and changes. 

The chaperone proteins GRP94 and BiP analyzed in this study serve as key 

models for assessing TPP accuracy. Both protein chaperones exhibit distinct melting 

profiles reflecting their differential stability and client binding properties. The thermal 

stability global data reveal that GRP94 and BiP maintain their stability across a range of 

temperatures, but GRP94 shows a more selective clientele, as literature has suggested. 

Overall, the findings highlight the importance of peptide aggregation strategies, 

accurate curve fitting, and robust normalization methods in TPP analysis. The 

correlation-based aggregation method reduces the influence of noisy peptides and gives a 

more accurate and consistent melting curve. This methodological refinement has 

significant implications for the broader application of TPP in drug discovery, protein-

protein interactions, and proteome-wide assessments. Additional analysis is needed to 

confirm the significance of biological interactions. Individual proteins can also be 

analyzed in more detail in future work.  
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