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Abstract

Nonlinear inverse problems arise in fields such as engineering, statistics, and

machine learning. Unlike linear inverse problems, which can be formulated as convex

programs, the main challenge in nonlinear inverse problems is the non-convex nature

of the optimization involved. Solving non-convex optimization problems is NP-hard,

susceptible to local minima, and often computationally intractable, making it essential

to design practical algorithms with guaranteed performance.

This thesis addresses two specific nonlinear inverse problems. The first problem is

robust phase retrieval, which has applications in areas including X-ray crystallography,

diffraction and array imaging, and optics. In this problem, the forward model is

the magnitude of linear measurements, and the observations are corrupted by sparse

outliers. We employ a least absolute deviation (LAD) approach to robust phase

retrieval, which aims to recover a signal from its absolute measurements contaminated

by sparse noise. To tackle the resulting non-convex optimization problem, we propose

a robust alternating minimization (Robust-AM) approach, derived as an unconstrained

Gauss-Newton method. For solving the inner optimization in each step of Robust-

AM, we adopt two computationally efficient methods. We provide a non-asymptotic

convergence analysis of these practical algorithms for Robust-AM under the standard

Gaussian measurement assumption. With suitable initialization, these algorithms

are guaranteed to converge linearly to the ground truth at an order-optimal sample
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complexity with high probability, assuming the noise support is arbitrarily fixed and the

sparsity level does not exceed 1/4. Furthermore, comprehensive numerical experiments

on synthetic and image datasets demonstrate that Robust-AM outperforms existing

methods for robust phase retrieval, while offering comparable theoretical guarantees.

The second problem is max-affine regression, where the forward model is a convex

piecewise-linear function, also known as the max-affine model, which combines k affine

models using a max function. This model is advantageous for approximating the data

relationship in a way that is both interpretable and effective for fitting shape-restricted

data which often arises in economic, financial, and engineering applications.

In the first part of this study, we focus on the max-linear model, a simplified

version of the max-affine model without the bias term, with observations corrupted by

deterministic noise. For this scenario, we propose a scalable convex estimator. Under

the assumption of Gaussian covariates, we establish a non-asymptotic performance

guarantee, demonstrating that the convex estimator recovers the parameters with

high probability. When the k linear components are equally likely to achieve the

maximum, our results show that the number of noise-free observations required for

exact recovery scales as O(k4p) up to a logarithmic factor, matching the sample

complexity of alternating minimization (Ghosh et al., 2019). This sample complexity

also holds when observations are corrupted by arbitrary deterministic noise. Empirical

results further demonstrate that our method performs in line with our theoretical

predictions and competes favorably with the alternating minimization algorithm,

especially in the presence of multiplicative Bernoulli noise. Additionally, we show that

recursively applying the estimator can significantly improve estimation accuracy.
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The second part focuses on max-affine regression under sub-Gaussian noise. We

present a non-asymptotic convergence analysis of gradient descent (GD) and mini-

batch stochastic gradient descent (SGD) for max-affine regression when the model

is observed at random locations, assuming sub-Gaussianity and anti-concentration

with additive sub-Gaussian noise. Under these conditions, suitably initialized GD and

SGD converge linearly to a neighborhood of the ground truth, with the error bound

specified accordingly. Numerical results support our theoretical findings, showing

that SGD not only converges faster in runtime with fewer observations than both

alternating minimization and GD in the noiseless case, but also outperforms these

methods in low-sample scenarios with noise.
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Chapter 1: Introduction

In this dissertation, we examine nonlinear inverse problems, which are essential yet

challenging in the fields of engineering, statistics, and machine learning. An inverse

problem involves recovering the true signal θ⋆ ∈ Rd from a forward model {fi}ni=1,

where fi : R
d → R, and observations {yi}ni=1 generated by

yi = fi(θ⋆) + zi, i = 1, . . . , n,

where z1, . . . , zn represent noise. Inverse problems are prevalent in various applications,

including biomedical imaging [9], computer vision [67], and scientific research [73].

To emphasize the complexities inherent in nonlinear inverse problems, we first

consider the simpler case of linear inverse problems. In this scenario, the observation

model is given by

yi = ⟨xi,θ⋆⟩+ zi, i = 1, . . . , n, (1.0.1)

where {xi}ni=1 are measurement vectors (often called sensing vectors in signal processing

or covariates in statistical regression).

The choice of method to recover θ⋆ from {(xi, yi)}ni=1 in (1.0.1) depends on the

nature of the noise {zi}ni=1. If we assume Gaussian noise, i.e., {zi}ni=1
i.i.d∼ N(0, σ2),

commonly encountered in linear regression or as sensing noise in signal processing,

1



the maximum likelihood estimation (MLE) approach is often used:

max
θ∈Rd

n∏
i=1

P (yi;xi,θ) = max
θ∈Rd

n∏
i=1

1√
2πσ2

exp

(
−(yi − ⟨xi,θ⟩)2

2σ2

)
. (1.0.2)

Maximizing the likelihood in (1.0.2) is equivalent to minimizing the negative log-

likelihood, leading to the least squares estimator (LSE):

min
θ∈Rd

n∑
i=1

(yi − ⟨xi,θ⟩)2 . (1.0.3)

Alternatively, in scenarios with sparse outliers, where the noise {zi}ni=1 is sparse

but can take arbitrary values, the least squares approach (1.0.3) is sensitive to such

outliers. In these cases, robust estimation methods, such as the least absolute deviation

(LAD) estimator, are more suitable:

min
θ∈Rd

n∑
i=1

|yi − ⟨xi,θ⟩| . (1.0.4)

It is well known that LAD is robust to outliers [10]. Notably, the optimization

formulations in linear inverse problems, such as (1.0.3) and (1.0.4), are convex, ensuring

that any minimizer is a global solution.

We now turn our attention to nonlinear inverse problems. Consider the following

magnitude-based model as a simple example:

yi = |⟨xi,θ⋆⟩|+ zi, i = 1, . . . , n. (1.0.5)

The forward model in (1.0.5) is nonlinear due to the absolute value function, and

such models arise in phase retrieval problems, as we will discuss later. Following

optimization approaches similar to those in linear inverse problems, one can consider

various formulations. Under Gaussian noise, for instance, the least squares estimator

(LSE) can be used:

min
θ∈Rd

n∑
i=1

(yi − |⟨xi,θ⟩|)2 . (1.0.6)
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In the presence of outliers, the LAD estimator can be applied:

min
θ∈Rd

n∑
i=1

|yi − |⟨xi,θ⟩|| . (1.0.7)

Compared to the convex optimizations in (1.0.3) and (1.0.4), the formulations in (1.0.6)

and (1.0.7) are non-convex due to the nonlinear forward model. Consequently, there

may be local minima and saddle points in the optimization landscape, making these

problems NP-hard and computationally intractable [54]. Thus, designing practical

and guaranteed algorithms for non-convex optimizations is critical.

Common approaches for tackling non-convex optimizations include first-order

methods and convex relaxation techniques. Key considerations in designing an effective

algorithm are:

• Computational Efficiency: This is particularly vital for large-scale problems. In

iterative algorithms, convergence rate is crucial; even if each iteration is compu-

tationally inexpensive, slow convergence can result in high overall computational

cost.

• Sample Efficiency: A desirable algorithm should perform well with fewer samples.

Theoretical study of sample complexity, the number of samples required for

reliable performance, is also important.

This thesis focuses on theoretical aspects of algorithm performance, particularly

convergence and sample complexity.

We study two specific nonlinear inverse problems. The first is robust phase retrieval,

where observations are corrupted by outliers. This problem has numerous applications

in engineering, which we will discuss in detail later. The second problem is max-

affine regression, relevant to either prediction or optimization problems in economic,
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financial, and engineering. For the max-affine model, we consider deterministic or

sub-Gaussian noise scenarios. We propose three algorithms tailored to these nonlinear

inverse problems, accounting for both the forward model and noise conditions.

In the following subsections, we summarize the problem formulation, background,

and our main contribution for each non-linear inverse problem.

1.1 Robust Phase Retrieval

Phase retrieval refers to the recovery of unknown signals θ⋆ ∈ Rd (or Cd) from the

magnitudes of its linear measurements, which are formulated as

yi = |⟨xi,θ⋆⟩|, i = 1, . . . , n, (1.1.1)

where x1, . . . ,xm ∈ Rd (or Cd) are known measurement vectors. Solving the set of

nonlinear equations in (1.1.1) arises in numerous applications including X-ray crystal-

lography, diffraction and array imaging, and optics (e.g. [15,20,78,96]). We consider

the robust phase retrieval from the amplitude measurements in (1.1.1) corrupted with

sparse noise, i.e.

yi =

{
ξi if i ∈ Iout
|⟨xi,θ⋆⟩| if i ∈ Iin

(1.1.2)

where Iout ⊂ [n] and Iin = [n] \ Iout collect the unknown indices of outliers and inliers

respectively, and {ξi}i∈Iout is an arbitrary sequence in R. For example, such a scenario

arises in phase retrieval imaging applications [101] due to various reasons including

detection failures and recording errors.

A suite of methods designed for the plain phase retrieval [30] has been adapted

to address the outliers. These methods provide not only empirically successful per-

formances but also theoretical analyses under random measurement models. For
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instance, anchored regression [3] and PhaseMax [39] formulate phase retrieval given

an initial estimate as a linear program. RobustPhaseMax [46] modifies these methods

to offer robust estimation by introducing auxiliary variables to describe the outliers.

In another example, reshaped wirtinger flow (RWF) [105] and Amplitude Flow [97]

follow a generalized gradient descent approach for a least squares estimator (LSE).

Median-RWF [104] is a variant of these methods tailored to robust phase retrieval.

Specifically, Median-RWF uses a truncation type of regularization that identifies and

excludes outliers in each iteration by median-based thresholding on the consistency of

the current estimate to the measurements. Median-RWF significantly improves the

empirical performance of RobustPhaseMax by tolerating a higher fraction of outliers.

However, the regularization of Median-RWF involves algorithmic parameters that

have been tuned specifically for the Gaussian measurement model. It has not been

discussed how to generalize the tuning parameters to other measurement models.

A recent work proposed an approach to robust phase retrieval in the classical robust

regression framework in statistics [31]. Instead of the least squares, they adopted

the least absolute deviation (LAD) [10] to enforce the consistency to the squared

amplitude measurements with outliers (i.e. yi = |⟨xi,θ⋆⟩|2 for i ∈ Iin). The parameter

estimation is then cast as a nonconvex optimization problem. They proposed a

prox-linear method that updates the estimate iteratively through local linearization of

the forward model. This algorithm can be viewed as a variant of the Gauss-Newton

method that regularizes the updates with the proximity to the previous iterate. The

prox-linear algorithm iteratively refines the estimate through a sequence of quadratic

programs. Importantly, the prox-linear method provides comparable performance to

Median-RWF without involving any tuning parameter. Furthermore, to accelerate

5



iterative methods for large-scale applications such as astronomical or medical imaging,

they adopted the proximal operator graph splitting (POGS) solver.

In this chapter, we propose a novel optimization approach to robust phase retrieval

that shares strong theoretical guarantees (high tolerance of outlier ratio and no tuning

parameters) with the prox-linear algorithm and further improves its computational

cost. The objective is achieved by a simple unconstrained Gauss-Newton method

for LAD under the amplitude measurements in (1.1.2). The resulting algorithm

is equivalent to an alternating minimization for LAD. Since LAD is robust in the

presence of outliers, we refer to this optimization as Robust-AM. Our main theoretical

result demonstrates that a suitably initialized Robust-AM linearly converges to the

ground-truth signal from n ≳ d random amplitude-only measurements including up

to 25% outliers. The desired initialization can be obtained by the existing robust

spectral estimators [31,104].

Table 1.1: Comparison of RobustPhaseMax [46], Median-RWF [104], Prox-linear [31],
and Robust-AM for robust phase retrieval in terms of computational cost to obtain
an ϵ-accurate solution and sparse noise assumptions for the performance guarantees.

Method Computational cost Algorithm type Measurement Support model Sparsity

RobustPhaseMax
O(n3 + (n+ d)2 log(1/ϵ)) [99]

Linear program Amplitude Adversarial Unspecified
Õ((n+ d)2.38 log(1/ϵ)) [87]

Median-RWF O(nd log(1/ϵ)) Truncated gradient descent Amplitude Arbitrary fixed Unspecified
Prox-linear O (nd log log(1/ϵ)(d+ log(1/ϵ)))1 Regularized Gauss-Newton Squared Arbitrary fixed 1/4

Robust-AM O
(
n3 + (n+ d)2 log2(1/ϵ)

)
[99] Unconstrained Gauss-Newton Amplitude Arbitrary fixed 1/4

(Theorem 4) Õ
(
(n+ d)2.38 log2(1/ϵ)

)
[87]

1We establish this computational cost under the assumption that POGS linearly

converges to the solution for the inner optimization of prox-linear. However, to the
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best of our knowledge, the convergence rate of POGS has not been shown. Thus, this

computational cost is a conjecture.

time(sec)

Prox-linear

Robust-AM

Median-RWF

RobustPhaseMax

(a) zero

time(sec)

Prox-linear

Robust-AM

Median-RWF

RobustPhaseMax

(b) Cauchy distribution

Figure 1.1: Convergence of Robust-AM by ADMM [14], prox-linear by POGS, Median-
RWF, and RobustPhaseMax in run time (d = 1, 000, n = 10, 000, and η = 0.3).

We explicitly compare Robust-AM to the aforementioned methods providing a

performance guarantee, as summarized in Table 1.1. These methods consider their

own optimization approaches to robust phase retrieval. RobustPhaseMax introduced

explicit variables for sparse noise to the original constrained optimization [3, 39].

Median-RWF employed a truncation by median to convert gradient descent to minimize

the ℓ2 fidelity into a robust algorithm. Robust-AM is most similar to that of the

prox-linear which considered solving LAD by a regularized Gauss-Newton method. By

adopting the amplitude measurement model without a regularizer, unlike the squared

measurement model with a regularizer used in the prox-linear method, Robust-AM

admits a computationally efficient ADMM algorithm that runs faster than POGS,

as shown in Figure 1.1. In this experiment, the fraction of outliers η := |Iout|/n is
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set to 0.3 where |Iout| represents the cardinality of the set Iout. Outlier entries are

either set to zero or generated following the Cauchy distribution with median 0 and

mean-absolute-deviation 1. The convergence is measured by the metric dist(θ,θ⋆) :=

minα∈{±1} ∥θ − αθ⋆∥2 for θ,θ⋆ ∈ Rd. Figure 1.1 shows that Robust-AM, without

any explicit control over the proximity to previous iterates, converges to the ground

truth signal θ⋆ without overshooting. More importantly, Robust-AM empirically

outperforms the existing methods for robust phase retrieval. We will verify through

comprehensive numerical simulations that Robust-AM can tolerate a higher fraction

of outliers and provide exact recovery with fewer observations.

1.2 Max-Affine regression

The max-affine model combines k affine models in the form of

y = max
j∈[k]

(
⟨x,θ⋆j ⟩+ b⋆j

)
(1.2.1)

to produce a piecewise-linear mutivariate functions, where x and y respectively denote

the covariate and the response, and [k] denotes the set {1, . . . , k}. The max-affine

model frequently appears in applications across statistics, machine learning, economics,

and signal processing. Specifically, the max-affine model has been used for simple

auction problems [69, 77] and multiclass classification problems. In the multiclass

SVM formulation [23,26], the hypothesis takes the form:

H{(θj ,bj)}kj=1
(x) = argmax

j∈[k]
(⟨x,θj⟩+ bj) , (1.2.2)

where ⟨x,θj⟩ + bj is referred to as the confidence or similarity score for the j-th

class. The hypothesis in (1.2.2) generalizes the linear separator (halfspaces) used in

binary classifiers, which take the form Hθ,b(x) = sign (⟨θ,x⟩+ b). According to the
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framework (1.2.2), the predicted label is determined by the class with the highest

similarity score with x. Compared to learning a max-affine function in (1.2.1), which

involves learning k separate linear functions and determining the response by taking

their maximum, the multiclass classifier in (1.2.2) learns k linear functions for the

classes and selects the class with the highest score using argmax.

Moreover, it has been adopted as a predictive model for shape-restricted data,

which often arises in utility functions [1, 91,92]. The piecewise linear approximation

simplify the relationship in these types of data in an interpretable way [7, 47, 79].

Figure 1.2 visualizes fitted regression functions estimated by the max-affine model

for the mean weekly wages dataset [76] and the Boston housing dataset [48], both of

which are examples of shape-restricted data. 1

1For shape-restricted data with concavity, we can alternatively use the min-affine function by
substituting the max function in (1.2.1) with the min function. However, since the results for the
max-affine function apply directly to the min-affine function, we only study the max-affine model in
this thesis.
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Mean weekly wages data Max-affine model fitted for mean
weekly wages data

Boston housing data Max-affine model fitted for boston
housing data

Figure 1.2: Visualizations of max-affine fitted regression functions for shape-restricted
datasets.

We consider a regression of the max-affine model in (1.2.1) via least squares

min
{θj ,bj}kj=1

1

2n

n∑
i=1

(
yi −max

j∈[k]
(⟨xi,θj⟩+ bj)

)2

(1.2.3)

from statistical observations {(xi, yi)}ni=1 potentially corrupted with noise.

A suite of numerical methods has been proposed to solve the nonconvex opti-

mization in (1.2.3) (e.g., [7, 47, 65, 86]). The fact that (1.2.1) is a special case of

piecewise linear function allows us to divide x1, . . . ,xn into k partitions based on their
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membership in the polyhedral cones

Cj := {w ∈ Rd : ⟨[w; 1],βj − βl⟩ > 0, ∀l < j, ⟨[w; 1],βj − βl⟩ ≥ 0, ∀l > j}.

(1.2.4)

The set Cj contains all inputs maximizing the jth linear model.2 Note that each Cj

is determined by k − 1 half spaces given by the pairwise difference of the jth linear

model and the others. If this oracle information is known a priori, then the estimation

is divided into k decoupled linear least squares given by

(θ̂j, b̂j) = argmin
{(θj ,bj)}kj=1

∑
i∈Cj

(⟨xi,θj⟩+ bj − yi)2 , j ∈ [k]. (1.2.5)

However, since the oracle partition information is not available in practice, various

adaptive partitioning methods have been studied. The least-squares partition algorithm

[65] iteratively refines the parameter estimate by alternating between the partition

and the least-squares steps when the number of affine models k is known a priori.

The partitioning step classifies the inputs x1, . . . ,xn with respect to the maximizing

affine models given estimated model parameters. The least-squares step updates the

parameters for each affine model by using the corresponding observations. Later

variations of the alternating minimization algorithm used an adaptive search for

unknown k [7, 47]. The consistency of these estimators has been derived. In more

recent works, Ghosh et al. [36–38] established finite-sample analysis of the alternating

minimization (AM) estimator [65] for the special case when the observations are

generated from a ground-truth model. One can interpret their analysis through the

lens of the popular teacher-student framework [64]. This framework has been widely

2In case of a tie when multiple linear models attain the maximum for a given sample, we assign
the sample to the smallest maximizing index. Since the event of duplicate maximizing indices will
happen with probability 0 for any absolutely continuous probability measure on xis, the choice of a
tie-break rule does not affect the analysis.
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adopted in statistical mechanics [33, 64] and machine learning [40, 52, 106, 107]. It

provides a theoretical understanding of how a specific model is trained and generalized

through a ground-truth generative model [52]. In this framework, a max-affine model

(student) is trained by data generated from a ground-truth max-affine model (teacher)

from k fixed affine models. By using the provided data, the student model recovers

parameters that produce the ground-truth model via AM. Since the max affine model

is invariant under the permutation of the component affine models, the minimizer to

(1.2.3) is determined only up to the corresponding equivalence class. Ghosh et al. [38]

established a finite-sample analysis of AM under the standard Gaussian covariate

assumption with independent stochastic noise. They showed that a suitably initialized

alternating minimization converges linearly to a consistent estimate of the ground-

truth parameters along with a non-asymptotic error bound. Moreover, they proposed

and analyzed a spectral method that provides the desired initialization. They also

further extended the theory to a generalized scenario with relaxed assumptions on the

covariate model [36,37].

Related Work

Relation to phase retrieval and ReLU regression: The max-affine model

includes well-known models in signal processing and machine learning as special cases.

The instance of (1.2.1) for k = 2 with b⋆1 = b⋆2 = 0 and θ⋆1 = −θ⋆2 = θ⋆ reduces to

y = |⟨x,θ⋆⟩|, which corresponds to a measurement model in phase retrieval. Similarly,

the rectified linear unit (ReLU) y = max(⟨x,θ⋆⟩, 0) is written in the form of (1.2.1)

for k = 2 with θ⋆1 = 0 and θ⋆2 = θ⋆. A series of studies in [59,82,84,85,90,98,103,105]

has developed a statistical analysis of GD and SGD for phase retrieval and ReLU

regression. It has been shown that for the noiseless case, GD and SGD converge
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linearly to a near-optimal estimate of the ground-truth parameters when the number of

observations grows linearly with the ambient dimension d. In the context of bounded

noise, GD converges to the ground truth within a radius determined by the noise

level [98,105]. However, it remained an open question whether GD is consistent under

stochastic noise assumptions. Additionally, SGD in the presence of noise has not been

thoroughly investigated yet. The main results of this chapter address these questions

on phase retrieval as a special case of max-affine regression.

Relation to convex regression: The max-affine model has also been adopted in

parametric approaches to convex regression [5–7,45,47,65,79–81]. Let f⋆ : R
d → R

be an arbitrary convex function. The observations are given by {(xi, yi)}ni=1 where

yi = f⋆(xi) for all i in [n]. The nonparametric convex regression problem aims to

estimate f⋆ by solving

min
f∈Fcvx

n∑
i=1

(yi − f(xi))2, (1.2.6)

where Fcvx denotes the set of convex functions. Since f exists in the space of continuous

real-valued functions on Rd, the optimization problem in (1.2.6) is infinite-dimensional.

A line of research [6, 13, 81] investigated the interpolation approach with a max-affine

model in the form of

f̂(x) = max
i∈[n]

(yi + gT

i (x− xi)) . (1.2.7)

It provides a perfect interpolation of data {(xi, yi)}ni=1 with zero training error. For

example, the interpolation is achieved by choosing gi ∈ ∂f⋆(xi) for all i ∈ [n]. It has

been show that the least squares estimator provides near-optimal generalization bounds

relative to a matching minimax bound [7, 42, 45, 61, 62]. However, the minimax bound

for the parametric model in (1.2.7) decays slowly due to the curse of dimensionality
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for a set of max affine with n segments. The least squares for the model in (1.2.7) is

formulated as a quadratic program (QP) [13, Section 6.5.5]. However, off-the-shelf

interior-point methods do not scale to large instances of this QP due to the high

computational cost O(d4n5) [47, 65].

The k-max-affine model in (1.2.1) is considered as an alternative compact parametriza-

tion to approximate convex regression. The worst-case error in approximating d-variate

Lipschtiz convex functions on a bounded domain by a k-max-affine model decays as

O(k−2/d) [7, Lemma 5.2]. However, data in practical applications such as aircraft

wing design, wage prediction, and pricing stock options are often well approximated

by the k-max-affine model with small k (e.g., [47, Section 6], [7, Section 7]). Unlike

the interpolation approach to convex regression, if the compact model fits data in

applications, the estimation error decays much faster in n.

We will examine two different noise scenarios. The first scenario is deterministic

noise, where we make no assumptions regarding any stochastic distribution of the

noise. Under this scenario, we focus on the max-linear model, a special case of the

max-affine model obtained by removing the bias term {b⋆j}kj=1 in (1.2.1). Subsequently,

we study the max-affine model under sub-Gaussian noise.

1.2.1 Max-linear regression under the deterministic noise

We consider the problem of estimating the parameters θ⋆,1, . . . ,θ⋆,k ∈ Rd that

determine the max-linear function

x ∈ Rd 7→ max
j∈[k]

⟨θ⋆,j,x⟩ , (1.2.8)

from independent and identically distributed (i.i.d.) observations, where [k] denotes

the set {1, . . . , k}. Specifically, given the covariates x1, . . . ,xn ∈ Rd, and denoting
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the value of a max-linear function, with parameter θ, at these points by

fi(θ) := max
j∈[k]

⟨xi,θj⟩ , (1.2.9)

we observe the nonlinear observation

yi = fi(θ⋆) + zi ,

of the parameter vector θ⋆ = [θ⋆,1; . . . ;θ⋆,k] ∈ Rkd where zi denotes noise for i ∈ [n].

The most relevant prior work studied an alternating minimization (AM) algorithm

to solve a slightly more general problem of max-affine regression [38]. Each iteration

consists of a step to identify the maximizing linear models followed by least-squares

update of model parameters. However, we observed that their empirical performance

significantly degrades with outliers, mainly due to the sensitivity of the “maximizer

identification” step. Leveraging recent theory for convexifying nonlinear inverse

problems in the original domain [2–4], we propose an alternative approach by convex

programming. Due to the inherent geometry of the formulation, the convex estimator

provides stable performance in the presence of adversarial noise. It is worth mentioning

that Ghosh et al. [38] considered a random noise model, whereas we consider a

deterministic “gross error” model. Nevertheless, in the noiseless case, both results

achieve exact parameter recovery at comparable sample complexities.

Convex estimator

The common estimators for θ⋆ such as the least absolute deviation (LAD), i.e.,

minimize
θ

1

n

n∑
i=1

|fi(θ)− yi| , (1.2.10)

are generally hard to compute as they involve nonconvex optimization. Given an

“anchor vector” a, we study the estimation of β⋆ through anchored regression (AR)
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that formulates the estimation by the convex program

maximize
θ

⟨a,θ⟩

subject to
1

n

n∑
i=1

(fi(θ)− yi)+ ≤ η,
(1.2.11)

where (·)+ denotes the positive-part function. The parameter η should be chosen

so that the feasible set of (1.2.11) is not empty. The anchored regression can be

interpreted as a convexification of the LAD estimator. Since the observation functions

(1.2.9) are convex, the LAD is nonconvex mainly due to the effect of the absolute value

operator in (1.2.10). This source of nonconvexity is removed in anchored regression

by relaxing the absolute deviation to the positive part of the error. The linear

objective that is determined by the anchor vector a acts as a “regularizer” to prevent

degenerate solutions and guarantees exact recovery of the true parameter θ⋆ under

certain conditions on the measurement model in the noiseless scenario.

Anchored regression has been originally developed as a scalable convex program to

solve the phase retrieval problem [3,39] with provable guarantees. Anchored regression

is highly scalable compared to other convex relaxations in this context [18,95] that rely

on semidefinite programming. The idea of anchored regression is further studied in a

broader class of nonlinear parametric regression problems with convex observations [4]

and difference of convex functions [2].

Contributions

We provide a scalable convex estimator for the max-linear regression problem that

is formulated as a linear program and is backed by statistical guarantees. Under

the standard Gaussian covariate model, the convex estimator (1.2.11) is guaranteed

to recover the regression parameters exactly with high probability if the number of
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observations n scales as π−4
mind up to some logarithmic factors where πmin is defined as

minj∈[k] P (g ∈ Cj) for g ∈ Normal(0, Id). This sample complexity implicitly depends

on k (i.e., the number of components) through πmin. Particularly, when the k linear

components form a “well-balanced partition” in the sense that they are equally

likely to achieve the maximum, the smallest probability πmin is close to 1/k and the

derived sample complexity reduces to k4d up to the logarithmic factors. This is

comparable to the sufficient condition for exact recovery n = O(kdπ−3
min) of alternating

minimization algorithm [38] in the noise-free scenario. Monte Carlo simulations

show that our proposed convex estimator, as a convexification of the LAD estimator,

exhibits robustness against outliers, whereas AM appears to be fragile in the presence

of impulsive noise. Furthermore, the repetition of AR significantly improves the

accuracy of the estimation.

1.2.2 Max-affine regression under the subGaussian noise

We consider the max-affine regression problem, where the observations are given

by

yi = max
j∈[k]

(
⟨xi,θ⋆j ⟩+ b⋆j

)
+ zi, i = 1, . . . , n,

where we assume that {zi}ni=1 are independently generated from a σ-sub-Gaussian

distribution.

We present theoretical and numerical results on max-affine regression by first-order

methods including gradient descent (GD) and stochastic gradient descent (SGD). The

first-order methods have been widely used to solve various nonlinear least squares

problems in machine learning [34, 41, 58, 83]. We observe that GD and SGD also

perform competitively on max-affine regression compared to AM. In particular, SGD
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converges significantly faster (in run time) than AM in a noise-free scenario. Figure 1.3

compares AM, GD, and a mini-batch SGD on random 50 trials of max-affine regression

where the ground-truth parameter vectors {β⋆j}
k

j=1
are selected randomly from the

unit sphere. Covariates are independently generated from either Normal(0, I500) or

Unif[−
√
3,
√
3]⊗500. We plot the median of relative errors versus the average run time

where the relative error is calculated as

min
π∈Perm([k])

log10

(
k∑
j=1

∥β̂π(j) − β⋆j∥22/
k∑
j=1

∥β⋆j∥22

)

with Perm([k]) and {β̂j}kj=1 denoting the set of all possible permutations over [k] and

the estimated parameters, respectively. Our main result provides a theoretical analysis

of SGD that explains this empirical observation.
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Figure 1.3: Convergence of estimators for noise-free max-affine regression (k = 3,
d = 500, and n = 8, 000).

Main results

We derive convergence analyses of GD and mini-batch SGD under the same

covariate and noise assumptions in the previous work on AM by Ghosh et al. [37].
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They assumed that covariates x1, . . . ,xn are independent copies of a random vector

x that satisfies the sub-Gaussianity and anti-concentration defined below.

Assumption 1 (Sub-Gaussianity) The covariate distribution satisfies

∥⟨v,x⟩∥ψ2
≤ η, ∀v ∈ Sd−1,

where ∥ · ∥ψ2 and Sd−1 denote the sub-Gaussian norm (i.e., see [93, Equation 2.13])

and the unit sphere in ℓd2, respectively.

Assumption 2 (Anti-concentration) The covariate distribution satisfies

sup
w∈R,v∈Sd−1

P((⟨v,x⟩+ w)2 ≤ ϵ) ≤ (γϵ)ζ , ∀ϵ > 0.

The class of covariate distributions by Assumptions 1 and 2 generalizes the standard

independent and identically distributed Gaussian distribution. For example, the

uniform and beta distributions satisfy Assumptions 1 and 2. Therefore, the theoretical

result under this relaxed covariate model will apply to a wider range of applications.

They also assumed that observations are corrupted with independent additive σ-sub-

Gaussian noise.

This work establishes the first theoretical analysis of GD and mini-batch SGD for

max-affine regression. The following pseudo-theorem demonstrates that GD shows a

local linear convergence under the above assumptions.

Theorem 1 (Informal) Let β⋆ ∈ Rk(d+1) denote the column vector that collects all

ground-truth parameters (θ⋆j , b
⋆
j)j∈[k]. Given Õ(Cβ⋆kd(k

3∨σ2)) observations, a suitably

initialized GD for max-affine regression converges linearly to an estimate of β⋆ with

ℓ2-error scaling as Õ(σk2
√
d/n), where Cβ⋆ is a constant that implicitly depends on k

through β⋆ but is independent of d.
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The error bound by this theorem improves upon the best-known result on max-

affine regression achieved by AM [37, Theorem 2]. The error bound for AM is larger

by a factor that grows at least as k−1+2ζ−1
. We also present an analogous analysis for

SGD. A specification for the noise-free observation scenario is stated as follows.

Theorem 2 (Informal) A suitably initialized mini-batch SGD for max-affine regres-

sion with Õ(Cβ⋆k
9d) noise-free observations converges linearly to the ground truth β⋆

for any batch size.

The per-iteration cost of a mini-batch SGD with batch size m is O(kmd), which

is significantly lower than those for GD O(knd) and of AM O(knd2). This implies

the faster convergence of SGD in run time shown in Figure 1.3. We also observe that

SGD empirically recovers the ground-truth parameters from fewer observations (see

Figures 3.2 and 3.4).

1.2.3 Notation and Organization of the Thesis

Boldface lowercase letters denote column vectors (e.g., a), and boldface capital

letters denote matrices (e.g., A). The concatenation of two column vectors a and

b is denoted by [a; b]. The subvector of a ∈ Rd+1 containing the first d entries is

denoted by (a)1:d. Various norms are used throughout this thesis. We use ∥ · ∥1,

∥ · ∥2, ∥ · ∥F, and ∥ · ∥ψ2 to denote the ℓ1 norm, Euclidean norm, Frobenius norm, and

sub-Gaussian norm, respectively, while the spectral norm of a matrix is denoted by

∥ · ∥. The d-dimensional Euclidean unit ball is denoted by Bd
2 , and the unit sphere

in d dimensions is denoted by Sd−1. We use big-O notation to describe asymptotic

bounds. For two scalars q and p, we write q ≲ p or q = O(p) if there exists an absolute

constant C > 0 such that q ≤ Cp. The notation Õ is used to ignore logarithmic factors.
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Absolute constants that may vary from line to line are denoted by C,C1, C2, . . . and

c, c1, c2, . . .. For brevity, the shorthand notation [n] denotes the set {1, . . . , n} for

n ∈ N. Additionally, a ∨ b and a ∧ b denote max(a, b) and min(a, b) for a, b ∈ R.

We organize the rest of the thesis as follows. In Section 1.2.3, we present the

robust alternating minimization algorithm for the robust phase retrieval problem

and provide theoretical results regarding its convergence and sample complexity. In

Chapter 2, we establish the theoretical guarantees of the convex program (1.2.11)

for max-linear regression under deterministic noise. In Chapter 3, we analyze the

convergence guarantees and sample complexity of first-order methods for max-affine

regression under sub-Gaussian noise.

Each of these chapters includes a comprehensive discussion of the algorithms

in terms of computational complexity and hyperparameter tuning (e.g., η in the

convex problem (1.2.11) and the step size in first-order methods). Furthermore, we

show that numerical experiments corroborate our theoretical findings and that the

proposed algorithms are comparable to or outperform existing methods in terms of

computational efficiency and sample efficiency. We conclude the thesis by discussing

future research directions and ongoing work in Chapter 4. The proofs for the theoretical

results presented in this thesis are provided in Appendices.
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In this chapter, we present the results for alternating minimization approach for the

robust phase retrieval problem, with the problem formulation described in Section 1.1.

1.3 Robust Alternating Minimization

We consider the minimization of the composite function ℓ = h◦F where h : Rn → R

is a convex function and F : Rd → Rn is a nonlinear mapping. In the special case

when F is differentiable, Burke and Ferris [16] proposed a constrained Gauss-Newton

method where the amount of the update is upper-bounded by a threshold. Duchi and

Ruan [31] considered a variant where the constraint on the proximity on consecutive

iterates is substituted by regularization with an additive penalty. We consider a

more challenging case where F is non-differentiable and propose an unconstrained

Gauss-Newton method where the variable sequence (θk)k∈N∪{0} is iteratively updated

by

θk+1 ∈ argmin
θ∈Rd

h(F (θk) + F ′(θk)(θ − θk)) (1.3.1)

where F ′(θk) ∈ Rn×d denotes the Clarke’s generalized Jacobian matrix at θk [21]. Due

to the local linear approximation of F at θk in (1.3.1), θk+1 is obtained as a solution

to a convex program. In a special case where h : Rn → R and F : Rd → Rn are

respectively given by

h(z) = ∥z∥1 (1.3.2)

and

F (θ) = (|⟨xi,θ⟩| − bi)ni=1 , (1.3.3)

their composition reduces to

ℓ(θ) :=
1

n

n∑
i=1

||⟨xi,θ⟩| − bi| . (1.3.4)
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Then the minimization of ℓ corresponds to the LAD approach to robust phase retrieval

with the amplitude measurement model. Furthermore, given h and F as in (1.3.2)

and (1.3.3), the update rule in (1.3.1) is explicitly written as

θk+1 ∈ argmin
θ∈Rd

n∑
i=1

|⟨xi,θ⟩ − sign(⟨xi,θk⟩) · bi| . (1.3.5)

The resulting algorithm (1.3.5), derived from an unconstrained Gauss-Newton method

of robust phase retrieval, is equivalent to an alternating minimization to the LAD

formulation of robust phase retrieval when noisy measurements with a negative sign

are discarded. The alternating minimization iteratively updates two variables

θ ∈ Rd and ϕ := (ϕ1, . . . , ϕn) ∈ {±1}n to recover the ground-truth θ⋆ and true phase

sign(⟨xi,θ⋆⟩), respectively, by alternatively solving the following optimization:

ϕki = argmin
ϕi∈{±1}

|⟨xi,θk⟩ − ϕi · bi| , ∀i ∈ [n], (1.3.6a)

θk+1 ∈ argmin
θ∈Rd

n∑
i=1

∣∣⟨xi,θ⟩ − ϕki · bi∣∣ , (1.3.6b)

where k denotes the iteration index. Since bi ≥ 0, (1.3.6a) yields the closed form

expression ϕki = sign(⟨xi,θk⟩) for all i ∈ [n]. Therefore, plugging this into (1.3.6b)

results in (1.3.5). An analogous alternating minimization for least-squares phase

retrieval has been studied in the literature [35,72,94].

Remark 3 Besides the magnitude loss in (1.3.4), there exist more sophisticated robust

loss functions such as Huber [53], Cauchy [66], Welsch [27], and HOW [100] (see [8]

for more examples). Despite its simplest form, Robust-AM derived with the magnitude

loss empirically performed significantly better than competing methods providing a

performance guarantee. It would be interesting to study whether one can further

improve empirical and theoretical performances with other loss functions.
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1.4 Optimization Algorithms

This section discusses numerical algorithms for Robust-AM. First, we note that

the optimization in (1.3.5) is equivalent to a linear program

minimize
θ∈Rd,(ti)ni=1

⟨t,1n⟩

subject to ti ≥ ⟨xi,θ⟩ − sign(⟨xi,θk⟩) · bi,
ti ≥ −⟨xi,θ⟩+ sign(⟨xi,θk⟩) · bi, ∀i ∈ [n]

(1.4.1)

where 1n = [1, . . . , 1]T ∈ Rn. There exist various computationally efficient numerical

methods to solve linear programs. For example, the derandomized algorithm by van

den Brand [87] finds an exact solution to a linear program with d variables and n

constraints at the cost of Õ ((n+ d)c) multiplications where c ≈ 2.38.

To further accelerate the convergence of Robust-AM, we also adopt iterative nu-

merical algorithms that provide an approximate solution to the inner optimization

in (1.3.5). In particular, we consider two alternating direction methods of multipli-

ers (ADMM) algorithms for inner optimization. We refer to the Robust-AM with

approximate solutions to the inner optimization by these ADMM algorithms as fast

Robust-AM since they provide a significantly lower computational cost for the entire

convergence of Robust-AM to an ϵ-accurate estimate.

1.4.1 ADMM for LAD

Given θk, the optimization in (1.3.5) is viewed as LAD for linear regression and

one can use an ADMM algorithm for LAD [14, Chapter 6.1]. To describe the update

rule of the ADMM algorithm, we introduce shorthand notations for the sake of brevity.

Let X ∈ Rn×d be a matrix whose i-th row is xT
i for i ∈ [n], b := (b1, . . . , bn) ∈ Rn, and

Λk = diag(sign(⟨x1,θk⟩), . . . , sign(⟨xn,θk⟩)). By introducing an auxiliary variable
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y ∈ Rn, (1.3.5) is equivalently rewritten as

minimize
θ∈Rd,y∈Rn

∥y −Λkb∥1
subject to y = Xθ.

(1.4.2)

The augmented Lagrangian function of (1.4.2) is written as

Lρ(θ,y,ϕ) = ∥y −Λkb∥1 + ϕT (Xθ − y) +
ρ

2
∥Xθ − y∥22,

from which the update rules are derived as follows:

θt+1 = X+

(
yt − ϕt

ρ

)
, (1.4.3a)

yt+1 = Λkb

+ sign

(
Xθt +

ϕt

ρ
−Λkb

)
⊙
[∣∣∣∣Xθt +

ϕt

ρ
−Λkb

∣∣∣∣− 1

ρ

]
+

, (1.4.3b)

ϕt+1 = ϕt + ρ(Xθt+1 − yt+1), (1.4.3c)

where t, k ∈ {0} ∪ N denote the indices respectively for the inner iteration in (1.4.3)

and the outer iteration (1.3.5), ⊙ denotes the Hadamard product, and [·]+ takes

the positive part of each entry of the input vector. The most expensive step in

(1.4.3) is the least squares problem in (1.4.3a). Since it repeats with the same X,

the pseudo inverse X+ of X can be pre-computed as X+ = (XTX)−1XT with cost

O(d3 + d2n) and be used on memory over iterations. For faster convergence, we adopt

the varying step size strategy for ρ [14, Section 3.4.1]. The prox-linear with the POGS

algorithm [31, Section 5] involves a similar matrix inversion. However, since their

matrix evolves over the outer iteration, unlike the fast Robust-AM with ADMM,

it is necessary for POGS to repeat the matrix inversion. Recall that we wanted to

adopt ADMM for the inner iteration of Robust-AM to accelerate the convergence with

approximate solutions. Therefore, the convergence rate in the inner optimization is

crucial. However, to the best of our knowledge, the convergence rate has not been
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shown for the above ADMM algorithm and the POGS algorithm. Below we will

present another ADMM algorithm for (1.3.5) with proven linear convergence in the

next section.

1.4.2 ADMM for linear program with linear convergence

Wang and Shroff [99] proposed the ADMM approach for a linear program and

showed that their ADMM approach solves a linear program significantly faster than

standard software such as CPLEX [51] and Gurobi [43]. Moreover, they showed the

linear convergence result for their ADMM approach. To apply their approach to our

linear program (1.4.1), we reformulate it into the standard form of a linear program

(only with equality constraints) [99, Equation 1] by introducing 2n auxiliary variables

u, s ∈ Rn as

minimize
w∈Rd+3n

⟨c,w⟩

subject to Bw = pk, u, s ≥ 0n,
(1.4.4)

with
c := [0d; 1n; 0n; 0n] ∈ Rd+3n

w := [θ; t; u; s] ∈ Rd+3n

pk := [Λkb; Λkb] ∈ R2n

B :=

[
X −In 0n,n In
X In −In 0n,n

]
∈ R2n×(d+3n),

where 0n ∈ Rn and 0n,d ∈ Rn×d denote the column vector and the matrix with zero

entries. By following [99, Algorithm 1], introducing auxiliary variable y = [y1; y2] ∈

Rd+3n and dual variable zk = [z1; z2] ∈ Rd+5n for y1 ∈ Rd+n, y2, z1 ∈ R2n, and

z2 ∈ Rd+3n provides the augmented Lagrangian function of (1.4.4):

Lρ(w,y, z) = cTw + g(y2) + zT (B1θ +B2y − p̄k)

+
ρ

2
∥B1θ +B2y − p̄k∥22,

(1.4.5)
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where

g(y2) :=

{
0 if y2 ≥ 02n,

∞ otherwise,

and

B1 :=

[
B

Id+3n

]
, B2 :=

[
0d+2n,d+3n

−Id+3n

]
, p̄k :=

[
pk
03n

]
.

The update rule by (1.4.5) is then given in a closed form as

wt+1 =
1

ρ
(I +BTB)−1 (BT

1

(
zt + ρ(B2y

t − p̄k)
)
+ c
)
, (1.4.6a)

yt+1 = wt+1 +
zty
ρ
, yt+1

2 = [yt+1
2 ]+, (1.4.6b)

zt+1
1 = zt1 + ρ

(
Bθt+1 − p

)
, zt+1

2 = zt2 + ρ(wt+1 − yt+1). (1.4.6c)

The most expensive step is the matrix inversion given in (1.4.6a). It is calculated

via the matrix-inversion lemma as

(Id+3n +BTB)−1 = Id+3n −BT(I2n +BBT)−1B

with cost O(n3). Since this step does not depend on previous outer iterations, one

can use a pre-computed result on memory over the inner and outer iterations. Hence,

by the linear convergence result [99, Theorem 1], the cost for an ϵk-accurate solution

to (1.4.4) is O (n3 + (n+ d)2 log(1/ϵk)). However, due to more auxiliary variables in

(1.4.4) compared to (1.3.5), in our numerical studies, the ADMM algorithm by (1.4.6)

showed slower convergence in the run time relative to the algorithm by (1.4.3).

Figure 1.4 compares the empirical success rate of Robust-AM by two ADMM

algorithms, where the success is declared if the estimate θ̂ satisfies dist(θ̂,θ⋆) ≤ 10−3.

The table in (c) of Figure 1.4 compares the average run time for the experiments in

(a) and (b) of Figure 1.4. The empirical study illustrates that the two Robust-AM

algorithms show comparable performances but Robust-AM with the first ADMM
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ADMM-LAD

ADMM-LP

(a) zero

ADMM-LAD

ADMM-LP

(b) Cauchy distribution

(c) Run time comparison

zero Cauchy distribution

ADMM-LAD 1.75s 4.75s

ADMM-LP 767.19s 155.64s

Figure 1.4: (Top) Empirical success rate per number of measurements n for Robust-
AM by ADMM algorithms (d = 100 and η = 0.25) under the outlier settings in
Figure 1.1. (Bottom) Run time comparison of Robust-AM by ADMM algorithms.

(ADMM-LAD) is much faster than Robust-AM with the second ADMM (ADMM-LP).

In the analysis of computation cost, we considered the slower ADMM-LP for the

inner optimization. However, since Robust-AM with ADMM-LAD is significantly

faster and the two algorithms show similar success rates, we adopted Robust-AM with

ADMM-LAD for numerical experiments.
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1.5 Theoretical results

In this section, we present the convergence analysis of the Robust-AM algorithms

under the following assumptions. First, we adopt the standard random linear mea-

surements and outliers with arbitrary support and adversarial values [31].

Assumption 3 The measurement vectors (xi)
n
i=1 are independent copies of x ∼

Normal(0, Id).

Assumption 4 The outliers are supported on an arbitrarily fixed set Iout with |Iout| =

ηn for η ∈ [0, 1/4] and their magnitudes |ξi| can be adversarial.

Additionally, to provide the convergence analysis of the fast Robust-AM, we

introduce an extra assumption that quantifies the suboptimality of solving (1.3.5) by

ADMM.

Assumption 5 There exists a bounded sequence (ϵk)k∈N such that θk is an inexact

minimizer up to the sub-optimality level ϵk for all k ∈ N, i.e.

n∑
i=1

|sign(⟨xi,θk⟩)⟨xi,θk+1⟩ − bi|

≤ ϵk + min
θ∈Rd

n∑
i=1

|sign(⟨xi,θk⟩)⟨xi,θ⟩ − bi| .
(1.5.1)

We denote the highest sub-optimality level as ϵmax, i.e.

ϵmax := max
k∈N

ϵk.

Theorem 4 Suppose that Assumptions 3, 4, and 5 hold. Then there exist absolute

constants C, c > 0 and constants νη ∈ (0, 1), λη > 0 depending only on η, for which
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the following statement holds for all θ⋆ ∈ Rd with probability at least 1− exp(−cd): If

n ≥ Cd and

max (dist (θ0,θ⋆) , ληϵmax) ≤ sin(1/20)∥θ⋆∥2, (1.5.2)

then the sequence (θk)k∈N∪{0} by the fast Robust-AM algorithm satisfies

dist (θk,θ⋆) ≤ νkη · dist (θ0,θ⋆) + ληϵmax (1.5.3)

for all k ∈ N, where dist(θ,θ⋆) := minα∈{±1} ∥θ − αθ⋆∥2.

(a) νη (b) λη

Figure 1.5: The dependence of parameters ηn and λn in Theorem 4 on the outlier
fraction η.

Theorem 4 establishes a local linear convergence of the Robust-AM with n ≳ d

Gaussian random measurements when the support of outliers is arbitrarily fixed and

the fraction of outliers is no larger than 1/4.

For a more detailed illustration of the linear convergence result in (3.1.13), we

discuss how the parameters νη and λη depend on the outlier ratio η. The linear

convergence parameter νη in (3.1.13) is explicitly specified as an increasing function of
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η shown in (a) of Figure 1.5 in the proof of Theorem 4. Therefore, smaller η implies

faster convergence. The final error bound by (3.1.13) with k going to infinity is given

as the amplification of the sub-optimality parameter ϵmax in the inner optimization by

a factor of λη. On one hand, the parameter λη is also explicitly given as an increasing

function of η and is bounded for η ∈ [0, 1/4] (see (b) of Figure 1.5). On the other

hand, ϵmax can be small in practice as one uses the linear program packages in readily

available software such as CPLEX and Gurobi, and the default accuracy parameter is

sufficiently low (less than 10−4). Furthermore, for ADMM algorithms in Section 1.4,

the accuracy is determined by the employed stop condition. A sufficiently small ϵmax

and bounded λη make the final error bound sufficiently small.

Now we discuss two conditions in (2.1.4). A condition ληϵmax ≤ sin(1/20)∥θ⋆∥2

is easily satisfied in practice because ληϵmax can be small, as discussed in the final

error bound. The other condition on the initial estimate is easily satisfied by existing

initialization methods studied in [31,104]. Specifically, [104, Proposition 2] and [31,

Theorem 3] guarantee that θ0 provided by the initialization methods obeys the

initial condition with the same order of sample complexity of Theorem 4 with high

probability.

Next, we compare the specification of Theorem 4 to this scenario to the analogous

results for competing methods: RobustPhaseMax [46], Median-RWF [104], and prox-

linear [31]. Theorem 4 as well as the previous results achieve the exact recovery

when the number of observations n exceeds a multiple of the signal dimension d. For

the threshold of η, earlier theoretical results on RobustPhaseMax and Median-RWF

showed that there exists an unspecified numerical constant so that the algorithms

provide the exact recovery if the outlier fraction is below this constant. In contrast,
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the analyses of the prox-linear [31] and Robust-AM (Theorem 4) demonstrate that

these methods can tolerate outliers up to 1/4 of the total observations. Furthermore,

these theoretical guarantees consider different degrees of adversary for their outlier

models. The performance guarantee of RobustPhaseMax by Hand [46] assumed the

highest adversary so that both the support and values of sparse noise are adversarial.

The performance guarantees of Median-RWF by Zhang et al. [104] considered the same

outlier model as in Assumption 4, but they also introduced additive noise of a bounded

norm in addition to sparse noise. Duchi and Ruan [31] used the lowest adversary so

that the support of sparse noise is random but the nonzero values of sparse noise

can depend on the measurements. Despite providing performance guarantees under

the highest adversary, as shown in Section 2.2, RobustPhaseMax showed significantly

inferior empirical performance relative to the other methods in terms of the tolerable

outlier ratio.

As discussed in Section 1.3, Robust-AM has no explicit control over the amount

of the update in each iteration unlike the constrained or regularized versions of the

Gauss-Newton method [16,31]. However, despite its simple form, Robust-AM provides

the monotone decrease of the estimation error toward zero without any overshooting

for robust phase retrieval in the setting of Theorem 4. All convergence analyses by

Theorem 4 and previous work [31,104] require an initialization within a neighborhood

of the ground truth. The size of the basin of convergence was determined with an

explicit numerical constant only in [46] and Theorem 4.

Lastly, we compare the computational costs of the robust estimators. First,

RobustPhaseMax is formulated as a linear program and thus it can be exactly

solved with Õ((n + d)2.38 log(1/ϵ)) multiplications by derandomized algorithm [87].
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Furthermore, as we discussed in Section 1.4.2, there exists an ADMM algorithm for

the linear program that costs O(n3+(n+d)2 log(1/ϵ)) for an ϵ-accurate solution. Due

to the term log(1/ϵ), if the desired accuracy decreases in proportion to the size of the

problem, it is preferable to use ADMM. Otherwise, the derandomized algorithm will

be computationally efficient. The other estimators are given as an iterative algorithm

with a proven convergence rate. Therefore, we compare their computational costs to

obtain an ϵ-accurate solution. Median-RWF is a truncated gradient descent with the

per-iteration cost of O(nd). Since the linear convergence of Median-RWF has been

established, the total cost is O(nd log(1/ϵ)). Unlike Median-RWF, the updates in

prox-linear and Robust-AM involve a nontrivial inner optimization, respectively cast as

a quadratic program and a linear program. One may use an exact solver for these sub-

problems. For example, there exists an interior point method for quadratic programs

with the cost O((n+ d)4) [102]. Since it has been shown that prox-linear converges

quadratically, the total cost with this exact inner solver is O((n + d)4) log log(1/ϵ).

The inner optimization in Robust-AM can be exactly solved at the cost Õ((n +

d)2.38 log(1/ϵ)) by the derandomized algorithm [87]. Due to its linear convergence, the

total cost of Robust-AM is Õ((n+ d)2.38 log(1/ϵ)). However, as shown in Theorem 4,

the linear convergence of Robust-AM remains valid when the inner optimization

problems are solved only approximately. The fast Robust-AM with the ADMM solver

for linear programs has the per-iteration cost of O(n3 + (n+ d)2 log(1/ϵmax)) as shown

in Section 1.4. Due to its linear convergence in Theorem 4, the total cost to obtain

the ϵ + ληϵmax accuracy is O(n3 + (n + d)2 log(1/ϵmax) log(1/ϵ)). In contrast, the

convergence rate of POGS for the inner optimization in prox-linear has not been
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established. We summarize the comparison for the computational costs of algorithms

in Table 1.1.

1.6 Numerical Results

This section compares the empirical performances of Robust-AM to its theoretical

analysis in Theorem 4. Robust-AM is also compared against the competing methods,

which include RobustPhaseMax, Median-RWF, and the prox-linear. Recall that all

these methods require an initial estimate. For this purpose, we adopt the spectral

method by Zhang et al. [104].

1.6.1 Synthetic data experiments

First, through experiments on synthetic data, we show that the numerical results

corroborate our theoretical findings in Theorem 4 and Robust-AM outperforms the

competing methods. In this experiment, the measurement vectors are generated

so that {xi}ni=1
i.i.d.∼ Normal(0, Id) by following the assumptions in Theorem 4 and

analogous theoretical analyses of the other methods. The ground-truth signal is

generated as θ⋆ ∼ Normal(0, Id) independently from the measurement vectors. The

outlier support is randomly selected following the uniform distribution on all possible

subsets Iout ⊂ [n] of size ηn.

Figure 1.6 shows the phase transition of the empirical success rate by Robust-AM

through Monte Carlo simulations, where the outlier values are i.i.d. following the

Cauchy distribution with median 0 and mean-absolute-deviation 1. The fraction of

outliers is fixed to η = 0.25. Recall that the performance guarantee in Theorem 4

applies uniformly to all ground-truth signals. To observe the empirical performance

in an analogous setting, we design the experiment as follows: 1) Generate 20 sets

34



100 200 300 400 500

2500

2250

2000

1750

1500

1250

1000

750

500

250

0

0.2

0.4

0.6

0.8

1

Figure 1.6: Phase transition of empirical success rate by Robust-AM per the number
of measurements n and the dimension d.

of random measurement vectors {xi}ni=1. Generate 30 sets of random ground-truth

θ⋆; 2) For each fixed {xi}ni=1, success is declared if the estimator recovers all 30

ground-truth signals by satisfying dist(θ̂,θ⋆) ≤ 10−3 where θ̂ denotes the estimate;

3) The empirical success rate is calculated on the outcomes from 20 distinct sets of

measurement vectors. The transition occurs at the boundary where the number of

measurements is proportional to the ambient dimension (signal length). This empirical

result corroborates our theoretical finding in Theorem 4. Next, we repeat the same

experiment on RobustPhaseMax, Median-RWF, and the prox-linear. Figure 1.7(a)

compares the empirical performance of Robust-AM against RobustPhaseMax, Median-

RWF, and the prox-linear by displaying the phase transition of these methods for

a range of the outlier fraction η in this setting. The ambient dimension is set to

d = 100. Figure 1.7(a) shows that Robust-AM outperforms all the other methods

with a significantly lower threshold for the phase transition. We further expand
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(b) Uniform distribution
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(c) Zero distribution

0 0.1 0.2 0.3 0.4

15

10

5

1 0

0.5

1

0 0.1 0.2 0.3 0.4

15

10

5

1 0

0.5

1

0 0.1 0.2 0.3 0.4

15

10

5

1 0

0.5

1

0 0.1 0.2 0.3 0.4

15

10

5

1 0

0.5

1

Figure 1.7: Phase transition of success rate per measurement ratio n/d and fraction of
outliers η for various outlier magnitude models. Arranged as: (top-left) RobustPhaseMax,
(top-right) Median-RWF, (bottom-left) prox-linear method, (bottom-right) Robust-AM.
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the comparison to other models for outlier values. The second scenario draws ξi

from the uniform distribution on (−d∥θ⋆∥22/2, d∥θ⋆∥22/2). The third scenario sets ξi

to 0. As observed in Figure 1.7(b) and Figure 1.7(c), similar trends appear in the

other outlier models. RobustPhaseMax, while providing the strongest theoretical

performance guarantee, shows the worst empirical performance in the comparison.

There is no consistent dominance between Median-RWF and the prox-linear algorithm.

Median-RWF outperforms the prox-linear in the second scenario, but the other way

around in the other scenarios.

1

10

100

(a) Cauchy distribution

1

10

100

(b) Uniform distribution

Figure 1.8: Empirical success rate per number of measurements n by Robust-AM with
the amplification of outliers (d = 100 and η = 0.25). The outlier values are generated
following the Cauchy/uniform distribution and then amplified by a factor from {1, 10,
100}.

We also investigated whether the performance of Robust-AM is affected by outlier

magnitudes. We repeat the experiment in Figure 1.7 with the outliers amplified

by constant factors of 1, 10, and 100. As shown in Figure 1.8, the amplification of

the outlier magnitudes does not affect the empirical success rate significantly. This
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phenomenon is expected since the least absolute deviation formulation is a median

estimator [10].
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Figure 1.9: Convergence of RobustPhaseMax, Median-RWF, prox-linear method, and
Robust-AM in the iteration count (first row) and the run time (second row).

Next, we compare the convergence speed of Robust-AM and the prox-linear

algorithm. In this experiment, the dimension parameters are set to n = 1, 500

and d = 200 where the values of outliers are zero. The outlier ratio varies over

η ∈ {0.1, 0.2, 0.3}. Figure 1.9 illustrates how the log of dist(θk,θ⋆) decays over the

iteration index k. The median over 10 trials is plotted. In their theoretical analyses, the

prox-linear algorithm converges faster at a quadratic rate than the linear convergence

of Robust-AM in Theorem 4. However, as shown in Figure 1.9, Robust-AM empirically
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converges faster than the prox-linear algorithm in both the iteration count and

run time for all considered η. Moreover, Figure 1.9 illustrates that the number of

iterations for Robust-AM increases as η increases. This implies that for each iteration,

the convergence rate of Robust-AM is proportional to η. This supports our theoretical

finding that the convergence parameter νη in Theorem 4 is an increasing function of η

as shown in Figure 1.5(a).

1.6.2 Real image experiments

(a) Ground-truth
(b) Recovered by
RobustPhase-

Max
(c) Recovered by
Median-RWF

(d) Recovered by
Prox-linear

(e) Recovered by
Our Method

Figure 1.10: Example of recovery for an image data.

We further apply Robust-AM to a set of image data to show that Robust-AM

continues outperforming the other competing methods for non-Gaussian measurement

models. We adopt the structured random measurement model in the experimental

setting in [31, Section 6.3] given by

XH = (Ik ⊗Hd)[S1,S2, · · · ,Sk]T ∈ Rkd×d, (1.6.1)

where Hn ∈ Rd×d denotes the normalized Hadamard matrix and S1, . . .Sk ∈ Rd×d are

diagonal matrices whose diagonal entries are independently drawn uniformly random

from {±1}. The measurement vector xi is the i-th column of XT
H for i ∈ [n], where
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n = kn. The linear measurement operator in (1.6.1) applies to the vectorized version

of a 2D input image θ⋆ ∈ Rd1×d2 denoted by θ⋆ := Vec(θ⋆) ∈ Rd with d = d1 × d2.

The measurements corresponding to outliers are substituted by zero in the experiment.
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Figure 1.11: Phase transition of success rate per k and the fraction of outliers η for zero
outlier magnitude models. Subfigures are displayed according to (a) RobustPhaseMax
(top-left), (b) Median-RWF (top-right), (c) Prox-linear method (bottom-left), and (d)
Robust-AM (bottom-right).

Robust-AM and the competing algorithms are tested on the collection of 50 images

of handwritten digits3. Figure 1.11 compares the two methods in the empirical success

rate over 50 images, where the number of random modulations k and the outlier

fraction η respectively vary over k ∈ {1, . . . , 12} and η ∈ [0, 0.4]. Similar to the

3https://hastie.su.domains/ElemStatLearn/datasets/zip.digits.
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previous experiments on synthetic data, Figure 1.11 demonstrates that Robust-AM

outperforms the competing algorithms by providing recovery with smaller k for each

observed η. Since the algorithmic parameters of Median-RWF were specifically selected

for Gaussian measurements in [104], we heuristically tuned the step size to 0.2 for the

non-Gaussian measurement model (1.6.1).

1.7 Discussion on a tolerable fraction of outliers in robust
phase retrieval

Although Theorem 4 provides a local convergence guarantee when the outlier

fraction satisfies η ≤ 1/4, Robust-AM empirically continues to provide exact recovery

for η above 1/4 for larger n as shown in Figure 1.7(a), Figure 1.7(b), and Figure 1.7(c).

We discuss these phenomena in this section. First, we present an analysis of tolerable

η for LAD in (1.3.4). Next, we elaborate on the analysis of Robust-AM to elucidate

the dependence of tolerable η on n and the error in the initialization. The resulting

condition on η is compared to that for LAD.

1.7.1 Tolerable η by LAD

We consider the population-level analysis of LAD in (1.3.4) under the Gaussian

measurement assumption. Furthermore, since linear regression can be considered as a

special case of phase retrieval with the oracle phase information, the upper bound on

tolerable η for phase retrieval is no larger than that for linear regression. Therefore,

we analyze η for the population-level linear regression for LAD given by

θ̂ ∈ argmin
θ∈Rd

E

(
1

n

n∑
i=1

|⟨xi,θ⟩ − βi|

)
, (1.7.1)
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where

βi :=

{
ξi if i ∈ Iout
⟨xi,θ⋆⟩ if i ∈ Iin.

(1.7.2)

The following lemma characterizes the condition for the exact recovery of θ⋆ by (1.7.1).

Lemma 5 Suppose that Assumptions 3, 4 and 5 hold with modifications so that

η ∈ [0, 1) and ϵmax = 0. The solution to (1.7.1) coincides with θ⋆ for any instances of

(ξi)i∈Iout if and only if η < 1/2.

Theorem 5 provides a sharp characterization of tolerable η for the population-level

LAD. The original LAD in (1.3.4) that minimizes the empirical loss will behave

similarly when n is sufficiently large. In the subsequent analysis, we compare tolerable

η for Robust-AM to the condition η < 1/2.

1.7.2 Tolerable η by Robust-AM

In the proof of Theorem 4, for the sake of simple presentation, we did not attempt to

expand the tolerable range of η beyond [0, 1/4]. However, with a slight modification of

the proof, we obtain the following lemma that illustrates how tolerable η is determined

by n and the initialization error.

Lemma 6 Fix δ ∈ (0, 1), ψ0 ∈ (0, 0.12) arbitrarily and define

u(x) :=
1

2
− 3x

π

(
1 +

√
π log

(eπ
2x

))
, ∀x ∈ R+.

There exists an absolute constant C1 for which the following statement holds: Suppose

that Assumptions 3,4 and 5 hold with modifications so that

0 ≤ η < u(ψ0)− C1

√
d ∨ log(1/δ)

n
(1.7.3)
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and ϵmax = 0. Furthermore, suppose that

dist (θ0,θ⋆) ≤ sin(ψ0)∥θ⋆∥2, (1.7.4)

n ≥ C2
1 ·min(1− 2η, ψ0, u(ψ0))

−2 · (d ∨ log(1/δ)) (1.7.5)

Then Robust-AM linearly converges to θ⋆ with probability at least 1− δ.

Figure 1.12: Plot of u(ψ0) with respect to ψ0 ∈ [0, 0.12].

Theorem 6 shows that Robust-AM tolerates a higher value of η as the initialization

error decreases and/or n increases. In particular, as ψ0 and n approach 0 and ∞,

respectively, the highest tolerable level of η by Robust-AM converges 1/2, which

matches the corresponding condition on η by LAD Theorem 5.

Next we explain why we choose ψ0 = 1/20 and η ≤ 1/4 in Theorem 4. On one

hand, the requirement on the initialization in (1.7.4) and the sample complexity in

(1.7.5) become more stringent as ψ0 decreases toward 0. On the other hand, as shown

in Figure 1.12, with ψ0 increasing toward 0.12, u(ψ0) converges to 0 and the sample

complexity in (1.7.5) blows up to infinity. The choice of ψ0 = 1/20 compromises these
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conflicting conditions. Then choosing C1 in (1.7.3) sufficiently large yields the range

0 ≤ η ≤ 1/4. The factor min(1− 2η, ψ0, u(ψ0)) in (1.7.5) is then bounded from below

by 0.12 and Theorem 6 coincides with a special case of Theorem 4 with ϵmax = 0.

1.8 Summary

The least absolute deviation (LAD) has been a popular statistical method for

regression in the presence of outliers. We consider the LAD approach to robust phase

retrieval with the magnitude-only measurement model. To solve the resulting non-

convex optimization, we derive a robust alternating minimization method (Robust-AM)

as an unconstrained Gauss-Newton method. Furthermore, we propose fast Robust-AM

by exploiting efficient solvers and show that Robust-AM by ADMM converges faster

than a similar approach known as the prox-linear by its efficient solver POGS [31].

We established a local convergence analysis of Robust-AM under the standard

Gaussian measurement model when the support of sparse noise is arbitrarily fixed but

magnitudes can be adversarial. A suitably initialized Robust-AM converges linearly

to the ground truth uniformly over all ground-truth signals when the number of

measurements n is proportional to the signal length d and the outlier fraction is up

to 1/4. This theoretical result is comparable to existing prior art in the literature.

Furthermore, the numerical results show that Robust-AM outperforms the existing

guaranteed methods for various outlier models in both synthetic and real-image data.
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Chapter 2: Max-linear regression by convex program

In this chapter, we present the results for convex program for max-linear regression

under the deterministic noise, with the problem formulation described in Section 1.2.1.

2.1 Accuracy of the Convex Estimator

In this section, we provide our main results on the estimation error of the convex

program in (1.2.11). We consider the anchor vector a constructed from a given initial

estimate θ̃ = [θ̃1; . . . ; θ̃k] ∈ Rkd as

a =
1

2n

n∑
i=1

∇fi(θ̃) =
1

2n

n∑
i=1

k∑
j=1

1{xi∈C̃j}ej ⊗ xi, (2.1.1)

where

C̃j :=
{
z ∈ Rd : ⟨z, θ̃j − θ̃l⟩ ≥ 0, ∀l ̸= j

}
, j ∈ [k] (2.1.2)

and ej ∈ Rk denotes the jth column of the k-by-k identity matrix Ik for j ∈ [k]. Since

fi is differentiable except on a set of measure zero, with a slight abuse of terminology,

∇fi in (2.1.1) is referred to as the “gradient”. In (2.1.1), the choice of anchor vector

follows from the geometry of convex equations [4, Section 1.4]. In particular, in the

noiseless case, θ⋆ would be a solution to

maximize
θ

⟨a,θ⟩

subject to fi(θ) ≤ yi, ∀i ∈ [n].
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if it satisfies the Karush–Kuhn–Tucker condition

−a+
n∑
i=1

λi∇fi(θ⋆) = 0

for some λ1, . . . , λn ≥ 0. In other words, the anchor vector a needs to be in the

cone ({∇fi(θ)}ni=1). The choice of a in (2.1.1) is inspired by this condition.

The following theorem illustrates the sample complexity and the corresponding

estimation error achieved by the estimator in (1.2.11). The estimation error is measured

as the sum of the ℓ2 norms of the difference between the corresponding components of

the ground truth θ⋆ and the estimate θ̂.

Theorem 7 Let {Cj}kj=1 be polyhedral cones constructed by (θ⋆,j)
k
j=1

Cj :=
{
z ∈ Rd : ⟨z,θ⋆,j − θ⋆,l⟩ ≥ 0, ∀l ̸= j

}
, j ∈ [k], (2.1.3)

and {C̃j}kj=1 be and (2.1.2). Let a be as in (2.1.1) and {xi}ni=1 be independent copies

of g ∼ Normal(0, Id). Then there exist absolute constants c, C > 0, for which the

following statement holds for all z ∈ Rn with probability at least 1− δ: Suppose that

θ̃ is independent of {xi}ni=1 satisfies

∥(θ̃j − θ̃j′)− (θ⋆,j − θ⋆,j′)∥2
∥θ⋆,j − θ⋆,j′∥2

≤

min

(
0.1,

cπ4
min

2k
log−1/2

(
k

cπ4
min

))
, ∀j, j′ ∈ [k] : j ̸= j′.

(2.1.4)

If the feasible set of the optimization problem in (1.2.11) is not empty and the number

of observations satisfies

n ≥ C ζ−2
(
4d log3 d log5 k + 4 log(1/δ) log k

)
, (2.1.5)

where

ζ := min
j∈[k]

√
π

32
P2{g ∈ Cj} − 2max

j∈[k]

√
P{g ∈ C̃j△Cj},
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then the solution θ̂ to (1.2.11) obeys

k∑
j=1

∥θ⋆,j − θ̂j∥2 ≤
2

ζ

(
η +

1

n

n∑
i=1

(zi)+

)
. (2.1.6)

To make the optimization problem in (1.2.11) feasible, it suffices to include the

ground-truth θ⋆ in the feasible set, i.e.

η ≥ 1

n

n∑
i=1

(−zi)+, (2.1.7)

The error bound in (2.1.6) reduces to 2
ζn

∑n
i=1 |zi| when the parameter η is chosen so

that the equality in (2.1.7) is achieved. In practice, the noise entries are unknown and

this error cannot be achieved. If η, as a parameter that determines the power of the

adversary, is chosen so that η ≥ ∥z∥1/n, then the resulting error bound becomes 4∥z∥1
nζ

.

In particular, if η satisfies η ≥ ∥z∥∞, then the resulting error bound will be 4∥z∥∞
ζ

.

The latter condition will be readily satisfied in practical applications. Furthermore,

as shown in the empirical sensitivity analysis in Section 2.2, the estimation error does

not crucially depend on the choice of η.

2.1.1 Comparison with an oracle estimator

Assuming that the additive noise is i.i.d. sub-Gaussian with zero mean and variance

σ2, the error bound in (2.1.6) becomes Õ(σ/ζ), which implies that our estimator is

not consistent. However, in the adversarial noise setting which is our focus, we can

compare the performance case of our estimator with an oracle-assisted estimator,

similar to the analysis carried out in [17] for the matrix completion problem. In this

scenario, the error bound by the convex estimator nearly matches the performance of

an oracle-assisted estimator (up to a factor determined by θ⋆).
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Lemma 1 Consider the same regression problem as in Theorem 7 with {xi}ni=1 being

independent copies of g ∼ Normal(0, Id). Suppose that {Cj}kj=1 in (2.1.3) is given as

the oracle information. Then there exists an absolute constant C > 0 such that if

n ≥ Cπ−2
minmax(kd log(n/d), log(1/δ)), (2.1.8)

then the estimates {θ̂j}kj=1 obtained through the decoupled least-squares (1.2.5) with

bj = 0 for all j ∈ [k] satisfy

sup
∥z∥∞≤η′

k∑
j=1

∥θ⋆,j − θ̂j∥2 ≳
π
3/2
minη

′

πmax

(2.1.9)

with probability at least 1− δ, where πmax := maxj∈[k] P(g ∈ Cj).

Proof 1 See Appendix B.2.1.

One expects that the oracle estimator nearly achieves the optimal performance.

However, since the lower bound by Lemma 1 does not vanish as n increases to infinity,

the oracle estimator is also biased in the presence of adversarial noise. Note that

the lower bound in (2.1.9) remains the same with the feasible set substituted by

∥z∥1 ≤ nη′. Furthermore, if η achieves the equality in (2.1.7), then the error bound

in (2.1.6) implies

sup
∥z∥1≤nη′

k∑
j=1

∥θ⋆,j − θ̂j∥2 ≤
2η′

ζ
. (2.1.10)

Therefore, in this scenario, the error bound in (2.1.10) matches that by the oracle

estimator up to an extra factor O(πmax/ζπ
3/2
min). In particular, if πmax ≈ πmin ≈ 1/k,

then the error by the convex estimator is sub-optimal up to a factor k5/2 relative to

the oracle estimator.
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2.1.2 Initialization

Theorem 7 provides an error bound by the convex estimator given an initial

estimate satisfying (2.1.4). Finding such an initial estimate is not a trivial task.

Ghosh et al. [38] proposed an initialization scheme that consists of dimensionality

reduction by a spectral method [38, Algorithm 2], followed by a low-dimensional random

search [38, Algorithm 3]. It has been shown that if the observations are corrupted with

independent sub-Gaussian noise, then the initialization scheme provides an estimate

within a certain neighborhood of the ground-truth in a polynomial time when k = O(1).

Their proof only uses the fact that the maximum magnitude of sub-Gaussian noise

entries is bounded with high probability. Below, we extend the analysis of their

initialization scheme to the scenario where the noise vector z is a fixed deterministic

vector under the only condition that ∥z∥∞ ≤ η′.

To this end, we first recall the first stage in their initialization scheme that extracts

the eigenvectors corresponding to the k dominant eigenvalues of the following matrix:

M̂ =
2

n

 n/2∑
i=1

yixi

 n/2∑
i=1

yixi

⊤

+
2

n

n/2∑
i=1

yi (xix
T

i − Id) . (2.1.11)

Let M̃ denote the noise-free version of M̂ , i.e.,

M̃ =
2

n

n/2∑
i=1

(
max
j∈[k]
⟨θ⋆,j,xi⟩

)
(xix

T

i − Id)+

2

n

 n/2∑
i=1

(
max
j∈[k]
⟨θ⋆,j,xi⟩

)
xi

 n/2∑
i=1

(
max
j∈[k]
⟨θ⋆,j,xi⟩

)
xi

⊤

.

Then the ground-truth parameter vectors θ⋆1, . . . ,θ
⋆
k are in the columns space of EM̃ .

Ghosh et al. [38] derived a tail bound on the perturbation of those eigenvectors

due to sub-Gaussian noise. We provide an analogous perturbation analysis in the
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deterministic noise setting. The following lemma provides upper bounds on the

contributions of the noise to the two summands in the right-hand side of (2.1.11).

Lemma 2 Suppose that x1, . . . ,xn
i.i.d.∼ Normal(0, Id) and z := (z1, . . . , zn) ∈ Rn are

arbitrary fixed. Then the following inequalities hold with probability at least 1− δ:∥∥∥∥∥ 1n
n∑
i=1

zixi

∥∥∥∥∥
2

≲ ∥z∥∞ ·
√
d+ log(1/δ)

n
,∥∥∥∥∥ 1n

n∑
i=1

zi (xix
T

i − Id)

∥∥∥∥∥ ≲

∥z∥∞ ·max

(√
d+ log(1/δ)

n
,
d+ log(1/δ)

n

)
.

(2.1.12)

Proof 2 See Appendix B.2.3.

Let Û be a matrix whose columns are the k dominant eigenvectors of M̂ . Further-

more, let the columns of U ⋆ be the eigenvectors of the noise-free component of EM̃ .

Then, plugging the results in Lemma 2 into the proof of [38, Lemma 8] yields that∥∥∥ÛÛ T −U ⋆ (U ⋆)T
∥∥∥2
F
≲(

∥z∥2∞ +maxj∈[k] ∥θ⋆,j∥21
λ2k(EM̃ )

)
kd log3(dk/δ)

n

(2.1.13)

holds with probability at least 1 − δ. This is analogous to [38, Theorem 2] which

addresses the case of the sub-Gaussian noise. The remainder of their initialization

scheme does not depend on any assumption on the noise model. Therefore, the

resulting initial estimate satisfies (2.1.4) if

n ≳
k6 log(k/πmin)

π13
min

·

max

{
∥z∥2∞ log

(
1 +

maxj∈[k] ∥θ⋆,j∥2k4 log1/2(k/πmin)

π5.5
min

)
,

(
∥z∥2∞ +max

j∈[k]
∥θ⋆,j∥21

)
k3d log3(n/k) ·maxj∈[k] ∥θ⋆,j∥2

λ2k(EM̃)

}
.

(2.1.14)
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The condition in (2.1.14) is obtained by applying the initialization condition (2.1.4)

and substituting σ by ∥z∥∞ in [38, Equation 20]. The requirement for the initial point

of anchored regression (2.1.4) is more relaxed in terms of the dependence on πmin,

compared to the similar requirement for the alternating minimization method [38,

Theorem 1]. Furthermore, for both anchored regression and alternating minimization,

the sample complexity of the initialization dominates that of the subsequent stages of

the algorithms.

In the above paragraphs, we have shown that the anchored regression combined with

the spectral initialization provides a stable estimate in the presence of an arbitrarily

fixed deterministic noise of bounded magnitudes. However, this result does not extend

to the adversarial noise setting in Theorem 7 and Lemma 1. Maximization over zs

that obey ∥z∥∞ ≤ η′ in (2.1.12), can be addressed effectively by taking the union

bound over extreme points of ℓn∞ ball with the radius η′ and choosing δ = 2−nδ̄

with δ̄ ∈ [0, 1] denoting overall error probability. Therefore, the terms d+log(1/δ)
n

in

(2.1.12) are equal to d+n log(2)+log(1/δ̄)
n

, which are clearly bounded from below by log 2.

Consequently, in the adversarial setting, the error in the spectral method does not

vanish as n grows, and the desired accuracy for the initialization scheme cannot be

established. Considering a relaxed condition ∥z∥1 ≤ nη′ exacerbates the situation and

the error bound in the spectral method becomes even larger.

2.1.3 Compariosn with alternating minimization in computa-
tional cost

This section compares AR and AM in their computational costs. First, AR is

implemented via an equivalent formulation with auxiliary variables t := [t1; . . . ; tn] ∈

Rn as
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maximize
(θj)kj=1,(ti)

n
i=1

⟨a, [θ1; . . . ;θk]⟩

subject to ti ≥ 0, ⟨xi,θj⟩ − yi ≤ ti,
1

n

n∑
i=1

ti ≤ η,

∀i ∈ [n], ∀j ∈ [k] .

(2.1.15)

To compute the computational costs for (4.2.2), we further reformulate it into

the form of a linear program minAs=b,s≥0⟨c, s⟩ by introducing an additional nk + 1

auxiliary variables to convert the second and third inequality constraints into equality

constraints. Then, we have nk+ 1 equality constraints and 2dk+ nk+ n+ 1 variables.

By [87], finding its exact solution costs Õ (((n+ d)k)c) with c ≈ 2.38. In contrast, with

finitely many operations, AM can find only an approximate solution. The per-iteration

cost of AM is O(nkd2). In the noiseless case, due to the linear convergence of AM,

the total cost to obtain an ϵ-accurate solution is O(nkd2 log(1/ϵ)).

In a special case where the observations are almost equally distributed over the

linear components of the max-linear model, we have πmin ≈ πmax ≈ 1/k. Consequently,

the sample complexity for both estimators is Õ(dk4). Thus, the computational costs

for AR and AM become Õ(d2.38k12) and Õ(d3k5), respectively. When d is much larger

than k (specifically, d > k14, the computational cost of AR is significantly lower

than that of AM. However, in the opposite scenario, AM is more cost-effective. We

summarize the comparison with respect to the computational cost, sample complexity

and model assumption in Table 2.1.

4The spectral initialization is not included in this comparison. To incorporate the initialization
into the analysis, it is necessary to modify the noise model from an adversarial noise model to a gross
error model as discussed in Section 2.1.2.
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Table 2.1: Comparison of local convergence of AR and AM.4

AR AM [38]

Cost for ϵ-accuracy Õ
(
((n+ d)k)2.38

)
O(nkd2 log(1/ϵ))

Cost for an ideal instance Õ(d2.38k12) Õ(d3k5)

Sample complexity Õ
(
π−4
mind

)
O(π−3

minkd)
Covariate model Gaussian Gaussian
Noise model Adversarial Sub-Gaussian

2.2 Numerical results

We present a set of Monte Carlo simulations to evaluate the performance of the

estimator by anchored regression numerically. The experiments were designed to

illustrate the following perspectives on the estimation performance: i) The empirical

phase transition on exact recovery without noise corroborates Theorem 7; ii) Further

iterations of AR with updated anchor vectors significantly reduce the estimation error;

iii) AR provides a competitive empirical performance with additive Gaussian noise

to AM; iv) AR provides a stable estimation in the presence of sparse noise, where

the performance of AM significantly deteriorates. We implement AR by the linear

program given in (4.2.2). Since (4.2.2) is in the standard form of a linear program, it

can be solved efficiently by readily available software such as CPLEX and Gurobi [44].

AR is compared to the version of AM by Ghosh et al. [38]. For a fair comparison, we

let both methods start from the same initial estimate, which will be specified later.

In the Monte Carlo simulations, the regressors x1, . . . ,xn are generated as inde-

pendent copies of a random vector following Normal(0, Id), as assumed in Theorem 7.

For each run, the estimation error is measured up to permutation ambiguity, that is,

the error is calculated as the minimum of
∑k

j=1 ∥θ̂π(j) − θ⋆,j∥2/
∑k

j=1 ∥θ⋆,j∥2 over all
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possible permutation π over segment indices, where (θ⋆,j)
k
j=1 and (θ̂j)

k
j=1 denote the

ground-truth parameters and their estimates, respectively.

Since both AR and AM algorithms operate provided suitably initialized parameter,

it is crucial to obtain an initial estimate, which lands near the ground-truth parameter.

To this end, throughout the simulations, we apply the heuristic known as the AM with

repeated random initialization in [7], summarized as follows: One repeats the following

procedure for q ∈ [m]: i) Randomly generate parameters θrq,1, . . . ,θ
r
q,k ∈ Rd. ii) Run

the AM algorithm from given initial estimates for Iinit iterations and obtain estimates

θoq,1, . . . ,θ
o
q,k. Then choose the set of parameters θoq′,1, . . .θ

o
q′,k, which achieves the least

empirical loss in (1.2.3), i.e.

q′ = argmin
q∈[m]

n∑
i=1

(
max
1≤j≤k

⟨xi,θoq,j⟩ − yi
)2

.

Throughout all simulations, the initialization parameters are set to m = 200 and

Iinit = 10. Moreover, the maximum iteration number for the AM algorithm, denoted

by IAM, is set to IAM = 120.
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Figure 2.1: Phase transition of recovery rate for varying n and d in the noiseless case
(k = 5).
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Figure 2.2: Phase transition of recovery rate for varying n and k in the noiseless case
(p = 20).

Figures 2.1 and 2.2 illustrate the empirical phase transition of exact recovery

in the noise-free scenario as a function of the sample size n per varying dimension

parameters, which are the ambient dimension p and the number of segments k. The

reconstruction is determined as success if the normalized estimation error is below

10−5. The recovery rate is calculated as the ratio of success out of 50 trials. In this

simulation, we assume that k ≤ d. To satisfy the “well-balance partition” condition,

we generate the ground-truth parameter vectors so that they are mutually orthogonal

one another.

Figure 2.1 shows that for both AR and AM, the phase transition occurs when n

grows linearly with p while k is fixed to 5. This observation qualitatively coincides

with the sample complexity by Theorem 7. A complementary view is provided by

Figure 2.2 for varying k while p is fixed to 20. Here, the phase transition occurs when

n is proportional to kt for some constant t ∈ (1, 2). The order of this polynomial is

smaller than the corresponding result by Theorem 7, where n is proportional to k4.

A similar gap between theoretical sufficient condition and empirical phase transition
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Algorithm 1: Iterative Anchored Regression (IAR)

1: Input: data {xi, yi}ni=1; initialized parameter θ̃ ∈ Rkd; fidelity upper bound η;
max. number of iterations IIAR

2: Output: estimated parameter θ̂ ∈ Rdk

3: for i = 1 to IIAR do
4: Compute anchor vector a from θ̃ by (2.1.1)

5: Estimate θ̂ by anchored regression in (4.2.2)

6: θ̃ ← θ̂
7: end for

was observed for AM in the noise-free setting [37, Appendix L]. Overall, as shown

in these figures, AR and AM provide similar empirical performance in the noiseless

scenario.

In practice, observations are often corrupted with noise. Next, we study the

estimation under two noise models. In these experiments, the ground-truth parameter

vectors are i.i.d Normal(0, Ikd). Furthermore, to deduce statistical performance, the

median of the estimation error in 50 trials is observed.

First, we consider the i.i.d. Gaussian noise model, i.e. yi = fi(θ⋆) + zi, where

fi(θ⋆) is defined in (1.2.9) and {zi}ni=1 are i.i.d following Normal(0, σ2). To track

the change of the estimation performance as a function of the noise strength, the

dimension parameters are fixed as d = 30 and k = 6. AM has shown to be consistent,

with an error rate that vanishes as n grows [38]. Its empirical estimation error decays

similarly in the experiment. However, we observe that AR has a larger estimation

error compared to AM, which remains nontrivial even for large n. We conjecture

that this bias term is due to the regularizer with an imperfect anchor vector. In fact,

as the anchor vector is obtained from a more accurate initial estimate, the result

estimation error decays accordingly. Motivated by this observation, we consider a
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Figure 2.3: Estimation error versus the number of observations n under Gaussian
noise of variance σ2 (k = 6 and d = 30): repeated random initialization (black line
with square markers), AR (green line with triangle markers), iterative AR (blue line
and circle markers), and AM (red dashed line). All methods start from the repeated
random initialization.

57



Figure 2.4: Estimation error and validation error via cross-validation by AR for varying
η (k = 3, d = 30, and n = 1, 500): The dotted vertical line indicates the location of η⋆
that achieves the equality in (2.1.7).

modification of AR with further iterative refinements, which we call the iterative

anchored regression (IAR). The first iteration of IAR is equivalent to AR, but in the

subsequent iterations, the anchor vector is refined by using the estimate from the

previous iteration. The entire IAR algorithm is summarized in Algorithm 1. The

number of iterations in IAR is set to IIAR = 40. Figure 2.3 shows that with more

iterations the performance of iterative AR becomes as good as that of AM. Moreover,

for small n (e.g. n ≤ 1, 000), IAR provides a smaller estimation error than AM.

Moreover, we also study the sensitivity to the choice of the parameter η in (1.2.11).

The need to tune this parameter can be a weakness of AR since AM does not involve

any such parameter. As shown in Figure 2.4, the estimation error by AR does not

critically depend on η. In this experiment, we vary η around η⋆ that achieves the

equality in (2.1.7) with ±50% margin. Within this range, the estimation error remains

small. Also, note that the minimum estimation error is achieved when η is slightly

smaller than η⋆. It still remains to set the value of η within this range. Since the

observations are corrupted with i.i.d. noise in this experiment, we applied a 5-fold
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Figure 2.5: Estimation error versus the number of observations n under multiplicative
Bernoulli noise model with probability φ (k = 6 and d = 30): repeated random
initialization (black line with square markers), AR (green line with triangle markers),
IAR (blue line with circle markers), AM (red dashed line), and AM-LAD (magenta
line with asterisk markers). All methods start from repeated random initialization.

cross-validation to estimate the validation error. Figure 2.4 suggests that choosing

an η value that yields the smallest prediction error will likely result in the smallest

estimation error.

Next, we study the empirical performance of the estimators under a gross error

model. In Section 2.1, we have shown that the theoretical analysis of AR combined

with the initialization by Ghosh et al. [38] applies to this model. Specifically, each

observation is corrupted by a sparse noise according to the multiplicative Bernoulli
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model with probability φ, that is, P{yi = −fi(θ⋆)} = φ and P{yi = fi(θ⋆)} = 1− φ

for i ∈ [n]. The multiplicative Bernoulli noise model has a similarity with the Massart

noise [28, Definition 1.1]. Similar to the previous experiment, we compare AR to

IAR and AM. Furthermore, we also study the performance of a variation of AM in

which the least squares update is substituted by LAD. It will be denoted by AM-LAD.

Figure 2.5 illustrates the estimation error in this setting where d = 30 and k = 6.

Unlike the case of Gaussian noise, AR outperforms AM in the presence of multiplicative

Bernoulli noise. Furthermore, IAR and AM-LAD achieve exact recovery over the

range of φ in this experiment.

2.3 Discussion

As discussed in Section 2.2, the proposed convex estimator provides a comparable

error bound relative to an oracle estimator in the adversarial noise case. However,

it does not provide a consistent estimator with random noise. This inconsistency

arises due to the maximization of the correlation with the anchor vector a. Since the

direction of the anchor vector does not coincide with the ground truth, the convex

estimator introduces a bias. As a way to mitigate the bias in the convex estimator,

we propose the iterative anchored regression that recursively refines the anchor vector

to better align its direction with that of the ground truth. We have demonstrated

that the iterative anchored regression empirically provides an exact recovery of the

ground-truth parameters in the presence of outliers. Hence, it would be fruitful to

pursue the theoretical analysis of the iterative anchored regression, particularly in

terms of its behavior in the presence of outliers and random noise. Each iteration

solves a linear program, which costs Õ (((n+ d)k)c) with c ≈ 2.38 as discussed in
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Section 2.1.3. Therefore, the per-iteration cost of the iterative anchored regression

might be higher than that of the alternating minimization, which is O(nkd2). To

further alleviate the computational cost of the iterative version, one might consider

warm-start strategies in interior-point methods for linear programming (e.g. [56]).
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Chapter 3: Max-affine regression by first-order methods

In this chapter, we present the results for the first-order methods for max-affine

regression, with the problem formulation described in Section 1.2.2.

3.1 Convergence analysis of gradient descent

We first formulate the least squares estimator for max-affine regression and derive

the gradient descent algorithm. For brevity, let ξ := [x; 1] ∈ Rd+1 and βj := [θj ; bj ] ∈

Rd+1. Then the model in (1.2.1) with an additive noise is rewritten as

y = max
j∈[k]
⟨ξ,β⋆j ⟩+ noise. (3.1.1)

The least squares estimator minimizes the quadratic loss function given by

ℓ(β) :=
1

2n

n∑
i=1

(
yi −max

j∈[k]
⟨ξi,βj⟩

)2

, (3.1.2)

where β = [β1; . . . ; βk] ∈ Rk(d+1).

The gradient descent algorithm iteratively updates the estimate by

βt+1 = βt − µ∇βℓ(β
t),

where µ > 0 denotes a step size. A generalized gradient [50] of the cost function in

(3.1.2) with respect to the jth block βj is written as

∇βjℓ(β) =
1

n

n∑
i=1

1{xi∈Cj}

(
max
j∈[k]
⟨ξi,βj⟩ − yi

)
ξi, (3.1.3)
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where C1, . . . , Ck are defined in (1.2.4).

We show that the expression in (3.1.3) provides a valid generalized gradient of

ℓ(β) with respect to βℓ. We apply the chain rule on the generalized gradient [50]. The

cost function in (3.1.2) is the composition ϱ ◦ F where

ϱ((ti)
n
i=1) =

1

2n

n∑
i=1

t2i

and β 7→ F (β) = (fi(β))
n
i=1 with

fi(β) =

∣∣∣∣max
j∈[k]
⟨βj, ξi⟩ − yi

∣∣∣∣ , i ∈ [n].

Since each max-affine function fi is regular at each point of the domain, the equality

in [50, Eq. (5.7)] holds and it characterizes the generalized gradient of ℓ as

∇βℓℓ(β) =
1

n

n∑
i=1

(
max
j∈[k]
⟨βj, ξi⟩ − yi

)
· ∇βℓ

(
max
j∈[k]
⟨βj, ξi⟩

)
.

Since a sub-gradient of a convex function is a generalized gradient [22], it suffices to

show that 1{xi∈Cℓ}ξi is a sub-gradient of the convex function ∇βℓ

(
maxj∈[k] ⟨βj, ξi⟩

)
.

To this end, we verify that the following inequality holds for all i ∈ [n]:

max

(
⟨βℓ + h, ξi⟩ , max

j ̸=ℓ∈[k]
⟨βj, ξi⟩

)
−max

j∈[k]
⟨βj, ξi⟩ ≥ 1{xi∈Cℓ} ⟨h, ξi⟩ , ∀h ∈ Rd+1.

(3.1.4)

Let i ∈ [n] be arbitrarily fixed. First, we consider the case when ℓ is a maximizer in

the max-affine function in (3.1.1) at ξi. Then we have ⟨βℓ, ξi⟩ = maxj∈[k] ⟨βj, ξi⟩ and

1{xi∈Cℓ} = 1. Therefore, (3.1.4) holds since

max

(
⟨βℓ + h, ξi⟩ , max

j ̸=ℓ∈[k]
⟨βj, ξi⟩

)
≥ ⟨βℓ + h, ξi⟩, ∀h ∈ Rd+1.

Next, we assume that ℓ is not a maximizer. Then 1{xi∈Cℓ} = 0 and there exists

ℓ′ ∈ [k] \ {ℓ} such that ⟨βℓ′ , ξi⟩ = maxj∈[k] ⟨βj, ξi⟩ > ⟨βℓ, ξi⟩. Therefore, (3.1.4) is also
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satisfied since

max (⟨βℓ + h, ξi⟩ , ⟨βℓ′ , ξi⟩) ≥ ⟨βℓ′ , ξi⟩ , ∀h ∈ Rd+1.

Then the generalized gradient ∇βℓ(β) is obtained by concatenating {∇βjℓ(β)}kj=1

by

∇βℓ(β) =
k∑
j=1

ej ⊗∇βjℓ(β),

where ej ∈ Rk denotes the jth column of the k-by-k identity matrix Ik for j ∈ [k].

Moreover, ℓ(β) is differentiable except on a set of measure zero, with a slight abuse of

terminology, ∇βℓ(β) is referred to as the “gradient”.

Next, we present a convergence analysis of the gradient descent estimator. The

analysis depends on a set of geometric parameters of the ground-truth model. The

first parameter πmin describes the minimum portion of observations corresponding to

the linear model which achieved the maximum least frequently. It is formally defined

as a lower bound on the probability measure on the smallest partition set, i.e.

min
j∈[k]

P(x ∈ C⋆j ) ≥ πmin, (3.1.5)

where C⋆1 , . . . , C⋆k are polytopes determined by

C⋆j := {w ∈ Rd : ⟨[w; 1],β⋆j − β⋆l ⟩ > 0, ∀l < j, ⟨[w; 1],β⋆j − β⋆l ⟩ ≥ 0, ∀l > j}.

(3.1.6)

The next parameter κ quantifies the separation between all pairs of distinct linear

models in (1.2.1) so that the pairwise distance on two distinct linear models satisfy

min
j′ ̸=j
∥(β⋆j )1:d − (β⋆j′)1:d∥2 ≥ κ. (3.1.7)

Next, we present a convergence analysis of the gradient descent estimator. The

analysis depends on a set of geometric parameters of the ground-truth model. The
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first parameter πmin describes the minimum portion of observations corresponding to

the linear model which achieved the maximum least frequently. It is formally defined

as a lower bound on the probability measure on the smallest partition set, i.e.

min
j∈[k]

P(x ∈ C⋆j ) ≥ πmin, (3.1.8)

where C⋆1 , . . . , C⋆k are polytopes determined by

C⋆j := {w ∈ Rd : ⟨[w; 1],β⋆j − β⋆l ⟩ > 0, ∀l < j, ⟨[w; 1],β⋆j − β⋆l ⟩ ≥ 0, ∀l > j}.

(3.1.9)

The next parameter κ quantifies the separation between all pairs of distinct linear

models in (1.2.1) so that the pairwise distance on two distinct linear models satisfy

min
j′ ̸=j
∥(β⋆j )1:d − (β⋆j′)1:d∥2 ≥ κ. (3.1.10)

Our main result in the following theorem presents a local linear convergence of the

gradient descent estimator uniformly over all β⋆ satisfying (3.1.9) and (3.1.10).

Theorem 8 Let δ ∈ (0, 1/e), yi = maxj∈[k]⟨ξi,β⋆j ⟩+ zi for i ∈ [n] with ξi = [xi; 1],

and {zi}ni=1 being additive σ-sub-Gaussian noise independent from everything else.

Suppose that Assumptions 1 and 2 hold.5 Then there exist absolute constants C,C ′, R >

0, and ν ∈ (0, 1), for which the following statement holds with probability at least 1− δ:

If the initial estimate β0 belongs to a neighborhood of β⋆ given by

N (β⋆) :=

{
β ∈ Rk(d+1) : max

j∈[k]
∥βj − β⋆j∥2 ≤ κρ

}
(3.1.11)

with

ρ :=
Rπ

ζ−1(1+ζ−1)
min

4kζ−1 · log−1/2

(
kζ

−1

Rπ
ζ−1(1+ζ−1)
min

)
∧ 1

4
, (3.1.12)

5To simplify the presentation, we assume that the parameters η, ζ, γ in Assumptions 1 and 2
are fixed numerical constants in the statement and proof of Theorem 8. Therefore, any constant
determined only by η, ζ, γ will be treated as a numerical constant.
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then for all β⋆ satisfying (3.1.8) and (3.1.10), the sequence (βt)t∈N by the gradient

descent method with a constant step size satisfies

∥∥βt − β⋆
∥∥
2
≤ νt

∥∥β0 − β⋆
∥∥
2
+ C ′σk

√
k (kd log(n/d) + log(k/δ))√

n
, ∀t ∈ N,

(3.1.13)

provided that

n ≥ Cπ
−2(1+ζ−1)
min ·

(
k1.5π

−(1+ζ−1)
min ∨ σ

κρ

)2

· (kd log(n/d) + log(k/δ)) . (3.1.14)

Proof 3 See Appendix C.3.

Theorem 8 demonstrates that the GD estimator with a constant step size converges

linearly to a neighborhood of the ground-truth parameter of radius Õ (σ2k4d/n). The

number of sufficient observations to invoke this convergence result scales linearly in d

and is proportional to a polynomial in π−1
min and k. This result implies the consistency

of the gradient descent estimator. To compare Theorem 8 to the analogous result for

AM under the same covariate and noise models [36, Theorem 1], we have the following

remarks in order.

• First, the final estimation error by (3.1.13) with t→∞ is smaller than that by [36,

Theorem 1] by being independent of π−1
min, which grows at least proportional to

k. A larger estimation error bound in their result is due to the analysis of the

least squares update, wherein the smallest singular value of the design matrix of

each linear model is utilized. These quantities do not appear in the analysis of

the gradient descent update.
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• Second, the convergence parameter ν in (3.1.13) is smaller than 3/4 for AM6,

which might result in a slower convergence of GD in iteration count. The

convergence speed issue becomes significant for large k and π−1
min. For example, in

the illustration by Figure 1.3, GD shows a slower convergence in run time despite

the lower per-iteration cost O(knd), which is lower than that of AM O(knd2)

by a factor of d. However, as discussed in Section 3.2, the slow convergence of

GD can be improved by modifying the algorithm into a (mini-batch) SGD.

• Third, the sample complexity results by Theorem 8 and [36, Theorem 1] are

qualitatively comparable. There were mistakes in the proof of [36, Theorem 1].

We think that their result could be corrected with an increased order of depen-

dence in their sample complexity on k and πmin (see Appendix C.5 for a detailed

discussion).

• Lastly, regarding the proof technique, we adapt and improve the strategy by

Ghosh et al. [36, 37]. Note that the subgradient of the loss function in (3.1.3)

involves clustering of covariates with respect to maximizing linear models such as

(1.2.4), which also arises in alternating minimization. Due to this similarity, key

quantities in the analysis have been estimated in [36, 37]. We provide sharpened

estimates via different techniques. For example, Theorem 26 provides a tighter

bound than [37, Lemma 7] by a factor of αζ
−1

for a scalar α ∈ (0, 1).

6As shown in the proof in Appendix C.3, the parameter ν is given as ν = (1− µλ) by (C.3.19).
The quantity µλ is determined by (C.3.8) and (C.3.29) as a function of πmin, πmax, and ζ so that it
decreases in k and π−1

min.
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Theorem 8 also provides an auxiliary result. As a direct consequence of Theorem 8,

we obtain an upper bound on the prediction error, which is defined by

E(β̂) := E

(
max
j∈[k]
⟨ξ, β̂j⟩ −max

j∈[k]
⟨ξ,β⋆j ⟩

)2

,

where β̂ = [β̂1; . . . ; β̂k] denotes the estimated parameter vector by GD. Since the

quadratic cost function in (1.2.3) is 1-Lipschitz with respect to the ℓ2 norm, it follows

that the prediction error E(β̂) is also bounded by Õ(σ2k3d/n) as in (3.1.13) with

t→∞.

A limitation of Theorem 8 is that its local convergence analysis requires an

initialization within a specific neighborhood of the ground-truth parameter. To obtain

the desired initial estimate, one may use spectral initialization by [38, Algorithm 2, 3],

which consists of dimensionality reduction followed by a grid search. They provided a

performance guarantee of a spectral initialization scheme under the standard Gaussian

covariate assumption [38, Theorems 2 and 3]. Therefore, the reduction of Theorem 8

to the Gaussian covariate case combined with [38, Theorems 2 and 3] provides

a global convergence analysis of GD, which is comparable to that for alternating

minimization [38]. Even in this case, the number of sufficient samples for the success

of spectral initialization overwhelms that for the subsequent gradient descent step.

Since multiple steps of their analysis critically depend on the Gaussianity, it remains

an open question whether the result on the spectral initialization generalizes to the

setting by Assumptions 1 and 2.

3.2 Convergence analysis of mini-batch SGD

SGD is an optimization method that updates parameters using a single or a

small batch of randomly selected data point(s) instead of the entire dataset. SGD
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converges faster in run time than GD due to its significantly lower per-iteration cost.

In particular, when applied to max-affine regression, SGD empirically outperforms

GD and AM in both sample complexity and convergence speed (see Figures 1.3, 3.2

and 3.4). In this section, we present an accompanying theoretical convergence analysis

of mini-batch SGD for max-affine regression. The update rule of a mini-batch SGD

with batch size m for max-affine regression is described as follows. For each iteration

index t ∈ N, let It be a multiset of m randomly selected indices with replacement so

that the entries of It are independent copies of a uniform random variable in [n]. A

mini-batch SGD iteratively updates the estimate by

βt+1 = βt − µ 1

m

∑
i∈It

∇βℓi(β
t),

where

ℓi(β) :=
1

2

(
yi −max

j∈[k]
⟨ξi,βj⟩

)2

, i ∈ [n].

Then the following theorem presents a local linear convergence of SGD.

Theorem 9 Under the hypothesis of Theorem 8, there exist absolute constants C,C ′ >

0 and c, ν ∈ (0, 1), for which the following statement holds with probability at least

1− δ: For all β⋆ satisfying (3.1.9) and (3.1.10), if the initial estimate β0 belongs to

N (β⋆) defined in (3.1.11), n satisfies (3.1.14), and m satisfies

m ≥ C ·
(
σ

κρ

)2

· (d+ log(k/δ)) , (3.2.1)
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then the sequence (βt)t∈N by the mini-batch SGD with batch size m and step size

µ = c (1 ∧m/(d+ log(n/δ))) satisfies

EIt
∥∥βt − β⋆

∥∥
2
≤
(
1−

(
1 ∧ m

d+ log(n/δ)

)
cν

)t ∥∥β0 − β⋆
∥∥
2

+ C ′σk

√(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
, ∀t ∈ N.

(3.2.2)

Proof 4 See Appendix C.4.

Theorem 9 establishes linear convergence of mini-batch SGD in expectation to

the ground-truth parameters within error Õ(σ2k2 (d/m ∨ kd/n)). The local linear

convergence applies uniformly over all β⋆ satisfying (3.1.9) and (3.1.10). In general,

the convergence rate of SGD is much slower even with strong convexity [12, 49, 71].

However, in a special case where the cost function is in the form of
∑n

i=1 ℓi(β), smooth,

and strongly convex, if β⋆ is the minimizer of all summands {ℓi(β)}ni=1, then SGD

converges linearly to β⋆ [70, Theorem 2.1]. The convergence analysis in Theorem 9

can be considered along with this result. The cost function in (3.1.2) in the noiseless

case satisfies the desired properties locally near the ground truth, whence establishes

the local linear convergence of SGD.

Theorem 9 also explains how the batch size m affects the final estimation error

by (3.2.2) with t→∞. Let n and m satisfy (3.1.14) and (3.2.1) so that Theorem 9 is

invoked. Under this condition, one can still choose m and n so that m ≲ n/k. Then

the Õ(σ2k2d/m) term determined by the batch size m dominates the final estimation

error. In this regime, the SGD estimator is not consistent since the estimation error

Õ(σ2k2d/m) does not vanish with increasing n. This result implies the trade-off
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between the convergence speed and the final estimation error determined by the batch

size.

Furthermore, since the condition on m in (3.2.1) becomes trivial when σ = 0, we

obtain a stronger result in the noiseless case given by the following corollary.

Corollary 10 Let δ, δ′ ∈ (0, 1), and ϵ > 0 fixed. Suppose that the hypothesis of

Theorem 9 holds. If t ≥ (log(1/ϵ) + log(1/δ))
(
1 ∨ d+log(n/δ)

m

)
1/ν, then

∥∥βt − β⋆
∥∥
2
≤ ϵ∥β0 − β⋆∥2

holds with probability at least 1− δ − δ′.

Proof 5 By Theorem 9, (3.2.2) holds with probability at least 1 − δ. By applying

Markov’s inequality, we have

P
(∥∥βt − β⋆

∥∥
2
≥ ϵ∥β0 − β⋆∥2

)
≤ EIt∥βt − β⋆∥2

ϵ∥β0 − β⋆∥2
≤

(
1−

(
1 ∧ m

d+log(n/δ)

)
ν
)t

ϵ
≤ δ′,

where the second and third inequalities hold by (3.2.2) and assumption on t respectively.

Theorem 10 presents the convergence of SGD with high probability, which is

stronger than the convergence in expectation. Furthermore, there is no requirement

on the batch size in invoking Theorem 10. This result is analogous to the recent

theoretical analysis of phase retrieval by randomized Kaczmarz [85] and SGD [84].

3.3 Numerical results

We study the empirical performance of GD and mini-batch SGD for max-affine

regression. The performance of these first-order methods is compared to AM [38].

We use a constant step size 0.5 for GD. The step size for SGD is set to 1∧(m/d)
2
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adaptive to the batch size. In the synthetic data experiment, according to our

covariate assumptions in Assumption 1 and Assumption 2, we consider the following

two scenarios; The first scenario involves Gaussian covariates, where x1, . . . ,xn are

generated as independent samples from a random vector following Normal(0, Id).

The other scenario involves a uniform distribution, where x1, . . . ,xn are generated

as independent samples from a random vector following Unif[−
√
3,
√
3]⊗d, which is

also considered in the numerical setting in [37]. We use spectral initialization for the

Gaussian covariate model [37], while for the uniform distribution case, we apply the

multiple-restart random initialization method [7]. Next, in the real data experiment,

we use the mean weekly wages and Boston housing pricing datasets, as presented in

Figure 1.2. We apply random initialization, which is commonly used in practice.

3.3.1 Synthetic data experiments

First, we observe the performance of the three estimators for the exact parameter

recovery in the noiseless case. In this experiment, the ground-truth parameters

θ⋆1, . . . ,θ
⋆
k are generated as k random pairwise orthogonal vectors with k < d, and the

offset terms are set to 0, i.e., b⋆j = 0 for all j ∈ [k]. By the construction, the probability

assigned to the maximizer set of each linear model will be approximately 1
k
. In other

words, the parameters πmax and πmin of the ground truth concentrate around 1
k
where

πmin is defined in (3.1.8) and πmax := maxj∈[k] P(x ∈ C⋆j ). Furthermore, due to the

orthogonality, the pairwise distance satisfies ∥θ⋆j − θ⋆j′∥2 =
√
2 for all j ̸= j′ ∈ [k].

Consequently, the sample complexity results for GD and SGD by Theorem 8 and

Theorem 9 simplify to an easy-to-interpret expression Õ(k16d) that involves only k
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and d for both Gaussian and uniform distribution scenarios. The sample complexity

result on AM [37] simplifies similarly.

AM
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Figure 3.1: Gaussian covariate
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Figure 3.1: Uniform covariate

Figure 3.2: Phase transition of estimation error per the number of observations n and
the ambient dimension d in the noiseless case (The number of linear models k and
the batch size m are set to 3 and 64, respectively). The first row and the second row
respectively show the median and the 90th percentile of estimation errors in 50 trials.
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Figure 3.3: Gaussian covariate
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Figure 3.3: Uniform covariate

Figure 3.4: Phase transition of estimation error per number of observations n and
number of linear models k in the noiseless case (The ambient dimension d and mini-
batch size m are set to 50 and 64 respectively). The first row and the second row
respectively show the median and the 90th percentile of estimation errors in 50 trials.

Figures 3.1 and 3.3 illustrate the empirical phase transition by the three estimators

through Monte Carlo simulations under the Gaussian covariate model. The median
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and the 90th percentile of 50 random trials are displayed. In these figures, the

transition occurs when the sample size n becomes larger than a threshold that depends

on the ambient dimension d and the number of linear models k. Figure 3.1 shows

that the threshold for both estimators increases linearly with d for fixed k. This

observation is consistent with the sample complexity by Theorem 8 and Theorem 9.

A complementary view is presented in Figure 3.3 for varying k and fixed d. The

thresholds in Figure 3.3 for GD and SGD are almost linear in k when d is fixed to 50,

which scales slower than the corresponding sample complexity results in Theorem 8 and

Theorem 9. A similar discrepancy between theoretical and empirical phase transitions

has been observed for AM [37, Appendix L]. We also observe that mini-batch SGD

outperforms GD and AM with a lower threshold for phase transition. It has been

shown that the inherent random noise in the gradient helps the estimator to escape

saddle points or local minima [25,55]. This explains why SGD recovers the parameters

with fewer samples than GD. We also note that the relative performance among

the three estimators remains similar in both the median and the 90th percentile.

This shows that SGD for noiseless max-affine regression does not suffer from a large

variance, which corroborates the result in Corollary 10.

The phase transition boundaries in Figures 3.1 and 3.3 are higher with a larger

success regime relative to the corresponding results in Figures 3.1 and 3.3. Re-

call that GD/SGD with the multiple-restart random initialization involves multiple

runs of GD/SGD. The performance improvement is obtained at the cost of higher

computational cost proportional to the number of repetitions.

Figures 3.5 and 3.6 study the estimation error by mini-batch SGD under zero-

mean Gaussian noise with standard deviation σ = 0.1 in three different scenarios.
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Figure 3.5: Convergence of estimators for max-affine regression under additive white
Gaussian noise of variance σ2 = 0.01 (k = 8 and d = 50). Comparison between
Gaussian and Uniform covariates.

In Figure 3.5, we focus on observing how the batch size m affects the convergence

speed and the estimation error. Figure 3.5(a) and Figure 3.5(b) consider the scenario

where the spectral method provides a poor initialization due to a small number of

observations. Consequently, GD and AM fail to provide a low estimation error. In

contrast, mini-batch SGD with a small batch size (m = 32 or m = 128) relative

to the total number of samples (n = 1, 500) converges to a small estimation error

(< 10−2). In other words, there exists a trade-off between the convergence speed and

the estimation error determined by the batch size m. SGD with m = 128 converges
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Figure 3.6: Convergence of estimators for max-affine regression under additive white
Gaussian noise of variance σ2 = 0.01 (k = 3, d = 500, and n = 8, 000).
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Figure 3.7: Comparison of vSGD, SGD, and AM for max-affine regression with
Gaussian covariates under additive white Gaussian noise with variance σ2 = 0.01
(k = 3, d = 500, and n = 8, 000). vSGD starts with m = 16 and doubles m every 50
epochs.

slower to a smaller error than SGD with m = 32. This corroborates the theoretical

result in Theorem 9. However, as the batch size m further increases to m = 1, 024

close to n = 1, 500, SGD starts to fail like GD and AM. Again, this phenomenon is
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explained by the fact that the noisy gradient in SGD avoids saddle points and local

minima efficiently [25,55].

For the Gaussian and uniform covariates, Figure 3.5(c) and Figure 3.5(d) illustrate

the comparison in a high-sample regime, where the number of samples is twice larger

than that for Figure 3.5(a) and Figure 3.5(b), respectively. In this case, both GD

and AM converge to a smaller error than SGD. Moreover, AM converges faster than

the other algorithms in the run time, which is explained by the following two reasons.

First, as discussed in Section 3.1, AM converges faster than GD and SGD in the

iteration count with a smaller constant for linear convergence. Second, due to the

small ambient dimension (d = 50), the gain in the per-iteration cost of SGD O(kmd)

over that of AM O(knd2) is not significant.

Lastly, Figure 3.6, compares the convergence of the estimators in the presence of

noise when d, k, and n are set as in Figure 1.3. On one hand, SGD converges faster

than AM with a significantly lower per-iteration cost O(kmd) than O(knd2) due to

the large ambient dimension (d = 500) and small batch size (m = 512 compared

to n = 8, 000). On the other hand, SGD yields a larger error than the other two

estimators. The estimation error bound of SGD, as described in Theorem 9, is affected

by m and behaves similarly in this case. To address the large error in SGD caused

by the mini-batch size while maintaining fast convergence, we empirically propose

SGD with a variable step size (vSGD). vSGD begins with a small m and gradually

increases m to improve the estimator’s accuracy. Figure 3.6 compares vSGD with

both SGD and AM, showing that vSGD not only achieves the accuracy of AM but

also converges at a speed comparable to SGD.
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3.3.2 Real economic data experiments

The real data experiments are prediction tasks for mean weekly wages based on

years of education and experience and Boston housing price with respect to lower

population status and average of rooms per dwelling. Mean weakly wages dataset,

provided in [76, Chapter 10, Exercise 29], contains 25, 631 records of weekly wages for

adult males aged between 18 and 70 who worked full-time in the US, along with years

of experience and education. The Boston housing dataset [48] includes various features

related to housing in the Boston area. For this experiment, we focus on two features:

the percentage of the population with lower socioeconomic status and the average

number of rooms per dwelling. As shown in Figure 1.2, these data sets show shape

restrictions, and the max-affine model is well-suited to fit this data. After normalizing

the dataset for both covariates and responses, we applied SGD and AM with k = 6

and evaluated performance using RMSE in 5-fold cross-validation across 100 random

initializations. The box plot results in Figures 3.8 and 3.9 show the performance across

100 runs. SGD provides more stable estimates that are less affected by initialization,

whereas the performance of AM varies with initialization, consistent with observations

in [65]. This may come from the fact that SGD escapes local minima well [25, 55],

while AM is likely to get stuck in local minima depending on the initialization.
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Figure 3.8: Box plot of RMSEs for
mean weekly wages across 100 initial-
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Figure 3.9: Box plot of RMSEs for
Boston housing prices across 100 ini-
tializations.

3.4 Summary

We have established a local convergence analysis of GD and SGD for max-affine

regression under a relaxed covariate model with σ-sub-Gaussian noise. The covariate

distribution, characterized by sub-Gaussianity and anti-concentration, extends beyond

the standard Gaussian model. It has been shown that suitably initialized GD and

SGD converge linearly to within a non-asymptotic error bound, comparable to the

analogous result for AM. Notably, when applied to noiseless max-affine regression,

SGD empirically outperforms both GD and AM in terms of sample complexity and

convergence speed. Furthermore, in the presence of noise, we show that variable batch

size strategies for SGD converge faster than AM while achieving the same accuracy.

In the special case of the Gaussian covariate model, the spectral method proposed by

Ghosh et al. [38] can provide the desired initial estimate. Extending their theoretical

results on the spectral method to the relaxed covariate model would be of great interest.
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On the practical side, we demonstrate that SGD provides more stable estimates than

AM in real data experiments when the algorithms are initialized randomly.
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Chapter 4: Future Work

In this chapter, we outline a potential research direction, motivated by the empirical

results in this Thesis.

4.1 Motivation

Figure 2.5 shows that in the presence of outliers, alternating minimization with

LAD empirically outperforms competing methods, including the iterative version of the

convex program in Algorithm 1. While the hyperparameter η for the convex program

in (1.2.10) can be tuned via cross-validation in the presence of stochastic noise (as

shown in Figure 2.4), this may not be feasible with outliers. In contrast, alternating

minimization with LAD has no tuning parameter. These observations suggest that

alternating minimization with LAD is a promising method for max-affine regression

in the presence of outliers. Consequently, our future goal is to study alternating

minimization with LAD, which we refer to as RobustPA, as it can be seen as a robust

version of LSPA [65].

4.2 Algorithm for RobustPA and preliminary real data ex-
periment results

We describe the RobustPA algorithm in more detail. Analogous to LSPA (equiva-

lent to the AM algorithm), Robust-AM consists of two main steps. Using the notation
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from (3.1.1), the first step partitions the covariates (ξi)
n
i=1 into regions based on the

current estimates. Fix t ∈ N arbitrarily. Suppose we are at the t-th iteration and

have an estimator βt at this step. We partition the covariates (ξi)
n
i=1 into disjoint

polyhedral cones Ct1, . . . , Ctk, defined by substituting β in (1.2.4) with βt. The second

step is to estimate the parameters (βt+1
j )kj=1 based on the partitions (Ctj)kj=1:

βt+1
j ∈ argmin

βj∈Rd+1

n∑
i=1

1{xi∈Ctj} |yi − ⟨ξi,βj⟩| , ∀j ∈ [k]. (4.2.1)

The alternating minimization with LAD for max-affine regression can be derived

by applying the Gauss-Newton method. This procedure parallels the approach in

Section 1.3 but substitutes the linear measurement model (1.1.1) with the max-affine

model (1.2.1). Solving (4.2.1) is equivalent to linear regression for LAD. Hence, one

can use a linear program, alternating direction method of multipliers (ADMM), or

iteratively reweighted least squares (IRLS). Here, we focus on the linear programming

approach. By introducing auxiliary variables t := [t1; . . . ; tn] ∈ Rn, the optimization

in (4.2.1) can be reformulated as:

minimize
βj∈Rd+1,(ti)ni=1

⟨1n, t⟩

subject to


ti ≥ yi − ⟨ξi,βj⟩, if xi ∈ Ctj,
ti ≥ −yi + ⟨ξi,βj⟩, if xi ∈ Ctj,
ti = 0, otherwise

∀i ∈ [n], j ∈ [k],
(4.2.2)

where 1n = [1, . . . , 1]T ∈ Rn. The complete RobustPA algorithm is detailed in

Algorithm 2.

To further motivate our goal, we compare the performance of RobustPA to AM [37]

and SGD Section 3.2 in real data experiments using the datasets from Section 3.3.2.

To contaminate the datasets, we amplify the response values by a factor of 15 in 10%

of the data points selected randomly. Figure 4.1 visualizes the contaminated mean
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Algorithm 2: RobustPA for Max-Affine Regression

Input: dataset {xi, yi}ni=1; initial parameter estimates β0;
while stop condition is not satisfied do

for j = 1; j ≤ k; j = j + 1 do
Update βt+1

j using (4.2.2):

βt+1
j ∈ argmin

βj∈Rd+1

n∑
i=1

1{xi∈Ctj} |yi − ⟨ξi,βj⟩| .

end
t← t+ 1

end

Output: final estimate β̂ ← [βt1; . . . ;β
t
k]

weekly wages data points, where the red points represent the amplified outliers. As

shown in Figure 4.2, AM, which is designed for least squares (1.2.3), is sensitive to

outliers, leading to poor model fitting. However, as seen in Figure 4.3, RobustPA

provides a model that fits the majority of the data and is less affected by outliers.

We applied SGD, AM, and RobustPA with k = 6 and evaluated performance

using median absolute error in 5-fold cross-validation across 100 random initializations.

Figures 4.4 and 4.5 show that RobustPA outperforms the competing algorithms in

this setting.

4.3 Problem setting for max-affine regression in the presence
of outliers

Having observed the empirical success of RobustPA, we now seek to analyze the

algorithm theoretically. For a formulation with measurements corrupted by sparse

outliers, as in robust phase retrieval in (1.1.2), we consider robust max-affine regression
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Figure 4.1: Mean weekly wages data
with 10% outliers (in red)

Figure 4.2: Fitted max-affine model by
AM for mean weekly wages data with
10% outliers

Figure 4.3: Fitted max-affine model by
RobustPA for mean weekly wages data
with 10% outliers

where the observations are corrupted by sparse outliers:

yi =

{
χi, if i ∈ Iout,
maxj∈[k]⟨ξi,β⋆j ⟩, if i ∈ Iin,

(4.3.1)

where Iout ⊂ [n] and Iin := [n] \ Iout represent the unknown indices of outliers and

inliers, respectively. The values of the outliers (χi)i∈Iout are arbitrary in R. The goal

is to estimate the ground-truth parameters (β⋆j )
k
j=1 from the observations (ξi, yi)

n
i=1.
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Figure 4.4: Performance of AM, SGD,
and AM with LAD on mean weekly
wages data
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Figure 4.5: Performance of AM, SGD,
and AM with LAD on Boston housing
data

In the formulation (4.3.1), it is important to analyze the theoretical performance

of RobustPA, particularly with respect to local convergence and sample complexity.

Our first goal is to establish local analyses that may demonstrate convergence and

sample complexity similar to the theoretical results studied in this thesis. Preliminary

numerical results for local convergence in Figure 4.6 indicate that RobustPA converges

to the ground truth at a rate faster than linear. Furthermore, Figure 4.7 shows that

RobustPA also achieves global convergence from random initialization. The phase

transition in Figure 4.8 shows that the sample complexity depends on the dimension

linearly, resulting in (near) optimal sample complexity.

We summarize our future goals as follows:

• The first goal is to establish the local analysis of RobustPA. Based on preliminary

numerical results, we expect that RobustPA locally converges to the ground

truth at a rate faster than linear with (near) optimal sample complexity.
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Iteration index t

Figure 4.6: Convergence of RobustPA from suitable intializations in the iteration
count.

• To complete the local analysis, it is necessary to study robust initial estimation

methods that can provide suitable initial estimates.

• The final goal is to establish global convergence. This may involve two steps: (1)

demonstrating that the dynamics from random initialization lead to the basin

of the local convergence region, and (2) applying the local convergence result

once the estimates lie within this region. A similar approach has been studied

in the phase retrieval problem using SGD [84].
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Iteration index t

Figure 4.7: Convergence of RobustPA from random initializations in the iteration
count.
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Figure 4.8: The phase transition for empirical success rate over 50 trials. We generate
Gaussian measurements under k = 5, pfail = 0.04 with the values of outliers ξi = −yi
for i ∈ Iout.
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Appendix A: Proofs for Section 1.2.3

A.1 Proof of Theorem 4

We first prove by induction on the iteration index j that

dist (θj,θ⋆) ≤ νη · dist (θj−1,θ⋆) +
ϵj−1

Cη
(A.1.1)

holds for all j ∈ N for some numerical constant νη ∈ (0, 1) and Cη > 0 depending only

on η. Let k ∈ N be arbitrarily fixed. Suppose that θj satisfies (A.1.1) for all j ≤ k.

Note that the distance between θ and θ⋆ is written as

dist(θ,θ⋆) = ∥θ − φ(θ)θ⋆∥2, (A.1.2)

where

φ(θ) := argmin
α∈{±1}

∥θ − αθ⋆∥2 .

Then we have dist (θk+1,θ⋆)≤∥θk+1 − φ(θk)θ⋆∥2 and dist(θk,θ⋆) = ∥θk − φ(θk)θ⋆∥2.

Therefore, it follows that

∥θk+1 − φ(θk)θ⋆∥2 ≤ νη∥θk − φ(θk)θ⋆∥2 +
ϵk
Cη

(A.1.3)

implies (A.1.1) for j = k + 1. This completes the induction argument.
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Therefore, it suffices to show that the hypothesis of the theorem implies (A.1.3).

For the sake of brevity, we denote the objective function of the optimization formulation

in (1.3.5) by

fθk(θ) =
1

n

n∑
i=1

|sign (⟨xi,θk⟩) ⟨xi,θ⟩ − bi| . (A.1.4)

Then (1.5.1) provides

fθk(θk+1)︸ ︷︷ ︸
(A)

≤ fθk(φ(θk)θ⋆)︸ ︷︷ ︸
(B)

+ϵk. (A.1.5)

Next, we derive a lower bound (resp. an upper bound) on (A) (resp. (B)) of (A.1.5).

From the definition of bi in (1.1.2), (A) is written as

(A) =
1

n

n∑
i=1

|sign (⟨xi,θk⟩) ⟨xi,θk+1⟩ − bi|

=
1

n

∑
i∈Iin

|sign(⟨xi,θk⟩)⟨xi,θk+1⟩ − |⟨xi, φ(θk)θ⋆⟩||︸ ︷︷ ︸
(a)

+
1

n

∑
i∈Iout

|sign (⟨xi,θk⟩) ⟨xi,θk+1⟩ − ξi| .

(A.1.6)

To simplify the partial summation over Iin, we introduce the spherical wedge [85]

defined by

Wθ,z := {v ∈ Sd−1 | sign(⟨v,θ⟩) ̸= sign(⟨v, z⟩)}. (A.1.7)

Then it follows that ⟨xi, φ(θk)θ⋆⟩ and ⟨xi,θk⟩ have the opposite sign if and only if

ai ∈ Wθk,φ(θk)θ⋆ . Therefore, the summand in (a) is rewritten as

(a) =
1

n

∑
i∈Iin

1{xi∈Wθk,φ(θk)θ⋆
} |⟨xi,θk+1 + φ(θk)θ⋆⟩|

+
1

n

∑
i∈Iin

1{xi /∈Wθk,φ(θk)θ⋆
} |⟨xi,θk+1 − φ(θk)θ⋆⟩| .
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The second summand on the right-hand side provides a valid lower bound on (a) since

the other summand is nonnegative. Combining the above results, we obtain that

(A) ≥ 1

n

∑
i∈Iin

1{xi /∈Wθk,φ(θk)θ⋆
} |⟨xi,θk+1 − φ(θk)θ⋆⟩|

+
1

n

∑
i∈Iout

|sign (⟨xi,θk⟩) ⟨xi,θk+1⟩ − ξi| .
(A.1.8)

Similarly, (B) is written as

(B)=
1

n

∑
i∈Iin

|sign(⟨xi,θk⟩)⟨xi, φ(θk)θ⋆⟩ − |⟨xi, φ(θk)θ⋆⟩||︸ ︷︷ ︸
(b)

+
1

n

∑
i∈Iout

|sign(⟨xi,θk⟩)⟨xi, φ(θk)θ⋆⟩ − ξi| .

If ai ∈ Wθk,φ(θk)θ⋆ , then ⟨xi,θk⟩ and ⟨xi, φ(θk)θ⋆⟩ have the opposite sign and hence

(b) satisfies

(b) = 2 |⟨xi,θ⋆⟩| ≤ 2 |⟨xi, φ(θk)θ⋆ − θk⟩| .

Otherwise, if ai ̸∈ Wθk,φ(θk)θ⋆ , then (b) = 0. Therefore, we have

(B) ≤ 2

n

∑
i∈Iin

1{xi∈Wθk,φ(θk)θ⋆
} |⟨xi, φ(θk)θ⋆ − θk⟩|

+
1

n

∑
i∈Iout

|sign(⟨xi,θk⟩)⟨xi, φ(θk)θ⋆⟩ − ξi| .
(A.1.9)

By plugging in the bounds of (A.1.8) and (A.1.9) into (A.1.5), we obtain that (A.1.5)

implies
1

n

∑
i∈Iin

1{xi /∈Wθk,φ(θk)θ⋆
} |⟨xi,θk+1 − φ(θk)θ⋆⟩|

+
1

n

∑
i∈Iout

|sign (⟨xi,θk⟩) ⟨xi,θk+1⟩ − ξi|︸ ︷︷ ︸
(∗)

− 1

n

∑
i∈Iout

|sign(⟨xi,θk⟩)⟨xi, φ(θk)θ⋆⟩ − ξi|︸ ︷︷ ︸
(∗∗)

≤ 2

n

∑
i∈Iin

1{xi∈Wθk,φ(θk)θ⋆
} |⟨xi, φ(θk)θ⋆ − θk⟩|+ ϵk.

(A.1.10)
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By applying the triangle inequality to the summands in (∗) and (∗∗), we obtain a

necessary condition of (A.1.10) given by

1

n

∑
i∈Iin

1{xi /∈Wθk,φ(θk)θ⋆
} |⟨xi,θk+1 − φ(θk)θ⋆⟩|︸ ︷︷ ︸
(c)

− 1

n

∑
i∈Iout

|⟨xi,θk+1 − φ(θk)θ⋆⟩|︸ ︷︷ ︸
(d)

≤ 2

n

∑
i∈Iin

1{xi∈Wθk,φ(θk)θ⋆
} |⟨xi, φ(θk)θ⋆ − θk⟩|︸ ︷︷ ︸

(e)

+ϵk.

(A.1.11)

We have shown that (A.1.5) implies (A.1.11). In the remainder of the proof, we

demonstrate that if (A.1.11) is satisfied, then (A.1.3) holds with high probability.

This is achieved by applying a probabilistic lower bound on (c) and probabilistic upper

bounds on (d) and (e), using concentration inequalities.

To this end, note that the measurement vectors {xi}ni=1 depend not only on the

current iterate θk and the next iterate θk+1, but also on the indicator functions within

the spherical wedge in (c) and (e). Therefore, we consider the uniform bounds for

all iterates and the collection of spherical wedges with the largest angle less than

ψ ∈ (0, π). We introduce the corresponding lemmas below.

Lemma 11 Let ψ ∈ (0, π), η ∈ (0, 1/2) and δ > 0. Suppose that {xi}ni=1 are indepen-

dent copies of g ∼ Normal(0, Id). Let

Wψ :=
{
Wθ,z : θ, z ∈ Rd,∠ (θ, z) ≤ ψ

}
, (A.1.12)
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where Wθ,z is defined in (A.1.7). Then there exists an absolute constant C such that

inf
W∈Wψ

z∈Sd−1

1

n

∑
i∈Iin

1{xi /∈W} |⟨xi, z⟩| ≥ (1− η)
√

2

π

− 2ψ

π

(√
2

π
+

√
2 log

(
eπ

2ψ

))
− ψ

20

(√
2ψ

π
+ 1

)
, (A.1.13)

sup
z∈Sd−1

1

n

∑
i∈Iout

|⟨xi, z⟩| ≤ η

√
2

π
+
√
η
ψ

20
, (A.1.14)

and

sup
W∈Wψ

z∈Sd−1

1

n

∑
i∈Iin

1{xi∈W} |⟨xi, z⟩|

≤ 2ψ

π

(√
2

π
+

√
2 log

(
eπ

2ψ

))
+

√
2ψ

π
· ψ
20

(A.1.15)

hold with probability at least 1− δ provided that

n ≥ C · ψ−2 (d log(n/d) ∨ log(1/δ)) . (A.1.16)

Proof 6 See Appendix A.3.

Now we derive the largest angle for the spherical wedge Wθk,φ(θk)θ⋆ . Since the angle

between θk and φ(θk)θ⋆ is always acute, we have

sin (∠ (θk, φ(θk)θ⋆)) =

∥∥∥∥(Id − θkθ
T
k

∥θk∥22

)
φ(θk)θ⋆
∥θ⋆∥2

∥∥∥∥
≤
∥∥∥∥(Id − θkθ

T
k

∥θk∥22

)
φ(θk)θ⋆ − θk
∥θ⋆∥2

∥∥∥∥
(i)

≤ ∥θk − φ(θk)θ⋆∥2
∥ theta⋆∥2

=
dist (θk,θ⋆)

∥θ⋆∥2
(ii)

≤ sin

(
1

20

)
,

(A.1.17)
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where (i) holds since the projection operator is non-expansive; (ii) follows since the

induction hypothesis implies

dist (θk,θ⋆)

≤ νkη · dist (θ0,θ⋆) +
maxi∈[0:k−1] ϵi

Cη

k−1∑
t=0

νtη

≤ νkη · dist (θ0,θ⋆) + (1− νη) sin
(

1

20

)
∥θ⋆∥2

k−1∑
t=0

νtη

≤ sin

(
1

20

)
∥θ⋆∥2,

(A.1.18)

where the second and the last inequalities follow from (2.1.4).

Hence, in Theorem 11, we plug in ψ = 1/20. Then the sample complexity in

Theorem 4 invokes Theorem 11, (A.1.13), (A.1.14), and (A.1.15) hold with probability

at least 1− δ simultaneously. The remainder of the proof is conditioned on the events

that (A.1.13), (A.1.14), and (A.1.15) hold.

By applying (A.1.13) and (A.1.14) to (c) and (d) of (A.1.11) and (A.1.15) to (e)

of (A.1.11) with the choice of ψ = 1/20, we obtain

∥θk+1 − φ(θk)θ⋆∥2 ≤ νη∥θk − φ(θk)θ⋆∥2 +
ϵk
Cη

(A.1.19)

for

νη :=
2c0
Cη

and Cη := (1− 2η)

√
2

π
− c0 −

1

400
(1 +

√
η), (A.1.20)

where

c0 :=
1

10π

(√
2

π
+
√

2 log (5eπ)

)
+

1

100
√
5π
.

Since νη satisfies

dνη
dη

=
c0

(
2
√

2
π
+ 1

800
√
η

)
(
(1− 2η)

√
2
π
− c0 − 1

400
(1 +

√
η)
)2 > 0
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for all η ∈ [0, 1/4], it is monotonically increasing in η and upper-bounded as νη ≤

ν1/4 < 9/10. This implies νη < 1 uniformly over η ∈ [0, 1/4]. This completes the proof

of (A.1.3).

A.2 Supporting Lemmas

Lemma 12 Let g ∼ Normal(0, Id) and ψ ∈ (0, π). Let Wψ be defined as in (A.1.12).

Then we have

sup
W∈Wψ

P(g ∈ W ) ≤ ψ

π
.

Proof 7 Let W ∈ Wψ be arbitrarily fixed. It follows from the definitions in (A.1.12)

and (A.1.7) that W is a cone. Therefore, g ∈ W if and only if g/∥g∥2 ∈ W .

Furthermore, note that g/∥g∥2 is uniformly distributed in Sd−1. Then we have

P (g ∈ W ) = P

(
g

∥g∥2
∈ W

)
≤ ψ

π
. (A.2.1)

The assertion follows since W was arbitrary.

Lemma 13 ([75, Lemma 2.1]) Let δ ∈ (0, 1) and {xi}ni=1 be independent copies of

g ∼ Normal(0, Id). Then it holds with probability at least 1− δ that

sup
z∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

|⟨xi, z⟩| −
√

2

π

∣∣∣∣∣ ≤ 4

√
d

n
+

√
2 log(2/δ)

n
. (A.2.2)

Lemma 14 ([74, Lemma 6.4]) Let δ ∈ (0, 1) and {xi}ni=1 be independent copies of

g ∼ Normal(0, Id). Let s ∈ N satisfy s < n. Then it holds with probability at least

1− δ that

sup
z∈Sd−1

T :|T |≤s

1

s

∑
i∈T

|⟨xi, z⟩|

≤
√

2

π
+ 4

√
d

s
+

√
2 log

(en
s

)
+

√
2

s
· log

(
2

δ

)
.

(A.2.3)
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Lemma 15 ([85, Lemma 5.1]) Let δ ∈ (0, 1) and an acute angle ψ > 0. Suppose

{xi}ni=1 be independent copies of a random variable x ∈ Rd and we consider the set

Wψ given by (A.1.12). Then, if

n ≥ (4π/ψ)2(2d log(2en/d) + log(2/δ)),

we have

sup
W∈Wψ

1

n

n∑
i=1

1{xi∈W} ≤
2ψ

π
. (A.2.4)

holds with probability at least 1− δ.

A.3 Proof of Theorem 11

We proceed with the proof under the following four events, each of which holds

with probability at least 1− δ/4. The first event is defined as

sup
z∈Sd−1

∣∣∣∣∣ 1n∑
i∈Iin

|⟨xi, z⟩| − (1− η)
√

2

π

∣∣∣∣∣
≤ 4

√
d

n
+

√
2 log(8/δ)

n
,

(A.3.1)

which holds with probability at least 1− δ/4. Since by the assumption on outliers,

we have a set |Iin| with |Iin| = (1− η)n and the outliers are independent of {xi}ni=1.

Hence, (A.3.1) is a direct result of (A.2.2) in Theorem 13. By following the same

argument, we also have that

sup
z∈Sd−1

∣∣∣∣∣ 1n ∑
i∈Iout

|⟨xi, z⟩| − η
√

2

π

∣∣∣∣∣ ≤ 4

√
ηd

n
+

√
2η log(8/δ)

n
(A.3.2)

holds with probability at least 1− δ/4.
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Next, we describe the following event: for an arbitrary fixed α ∈ (0, 1), it holds

with probability at least 1− δ/4 that

sup
T :|T |≤αn
z∈Sd−1

1

n

∑
i∈T∩Iin

|⟨xi, z⟩| ≤

α

√
2

π
+ 4

√
αd

n
+ α

√
2 log

( e
α

)
+

√
2α log(8/δ)

n
.

(A.3.3)

Again, since by the Assumption 1, we have a fixed set |Iin| with |Iin| = (1− η)n and

the outliers are independent of {xi}ni=1, (A.3.3) holds by (A.2.3) in Theorem 14.

Since (A.1.16) invokes Theorem 15 with probability at least 1− δ/4, it holds with

probability at least 1− δ/4 that

sup
W∈Wψ

n∑
i=1

1{xi∈W} ≤
2ψn

π
. (A.3.4)

Since we have shown that (A.3.1), (A.3.2), (A.3.3), and (A.3.4) hold with proba-

bility at least 1− δ, we will move forward with the remainder of the proof by assuming

those conditions are satisfied.

We first show (A.1.13). We observe that for an arbitrary W ∈ Wψ and z ∈ Sd−1,

it holds deterministically that

1

n

∑
i∈Iin

1{xi /∈W}|⟨xi, z⟩| =

1

n

∑
i∈Iin

|⟨xi, z⟩| −
1

n

∑
i∈Iin

1{xi∈W}|⟨xi, z⟩|.

Hence, by taking infimum on both sides over sets Wψ and Sd−1, we have

inf
W∈Wψ

z∈Sd−1

1

n

∑
i∈Iin

1{xi /∈W}|⟨xi, z⟩|

≥ inf
z∈Sd−1

1

n

∑
i∈Iin

|⟨xi, z⟩|︸ ︷︷ ︸
(A)

− sup
W∈Wψ

z∈Sd−1

1

n

∑
i∈Iin

1{xi∈W}|⟨xi, z⟩|

︸ ︷︷ ︸
(B)

. (A.3.5)
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We first obtain a lower bound on (A) and an upper bound on (B). We have a lower

bound on (A) by (A.3.1):

(A) ≥ (1− η)
√

2

π
− 4

√
d

n
−
√

2 log(8/δ)

n
. (A.3.6)

By taking n according to (A.1.16) for a sufficiently large C > 0, we have

(A) ≥ (1− η)
√

2

π
− ψ

20
. (A.3.7)

It remains to show an upper bound on (B). Under the event (A.3.4), we have

(B) ≤ sup
T :|T |≤2ψn/π

z∈Sd−1

1

n

∑
i∈T∩Iin

|⟨xi, z⟩| .

Therefore, by letting α = 2ψ/π in (A.3.3), (A.3.3) gives an upper bound on (B):

(B) ≤ 2ψ

π

√
2

π
+ 4

√
2ψd

πn
+

2ψ

π

√
2 log

(
eπ

2ψ

)
+

√
4ψ log(8/δ)

πn
. (A.3.8)

Taking n according to (A.1.16) yields

(B) ≤ 2ψ

π

(√
2

π
+

√
2 log

(
eπ

2ψ

))
+
ψ

20

√
2ψ

π
. (A.3.9)

Hence, putting the results (A.3.7) and (A.3.9) into (A.3.5) completes the proof of

the statement (A.1.13).

For the proofs of remaining statements in (A.1.14) and (A.1.15), the upper bound

in (A.1.14) is a direct consequence of (A.3.2) with choosing n according to (A.1.16).

Lastly, (A.1.15) is the result of the upper bound of (B) in (A.3.9). These complete

the proof of (A.1.14) and (A.1.15).

A.4 Proof of Theorem 5

Define the empirical loss function ℓlinear : R
d → R+ for the LAD linear regression

as

ℓlinear(θ) :=
1

n

n∑
i=1

|⟨xi,θ⟩ − βi| , ∀θ ∈ Rd.
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Then it holds for any θ ∈ Rd that

ℓlinear(θ)− ℓlinear(θ⋆) =
1

n

∑
i∈Iin

|⟨xi,θ − θ⋆⟩|

+
1

n

∑
i∈Iout

(|⟨xi,θ⟩ − ξi| − |⟨xi,θ⋆⟩ − ξi|)︸ ︷︷ ︸
(∗)

. (A.4.1)

By the triangle inequality, the magnitude of (∗) is upper-bounded by

|(∗)| ≤ 1

n

∑
i∈Iout

|⟨xi,θ − θ⋆⟩| . (A.4.2)

Then (A.4.1) and (A.4.2) yield the following inequality:

1

n

∑
i∈Iin

|⟨xi,θ − θ⋆⟩| −
1

n

∑
i∈Iout

|⟨xi,θ − θ⋆⟩|

≤ ℓlinear(θ)− ℓlinear(θ⋆).
(A.4.3)

For brevity, let ℓ(θ) = Eℓlinear(θ), which is the cost function in (1.7.1). Since the

outlier fraction is fixed to η, by taking the expectation in (A.4.3), we obtain√
2

π
(1− 2η)∥θ − θ⋆∥2 ≤ ℓ(θ)− ℓ(θ⋆). (A.4.4)

It is obvious from (A.4.4) that η < 1/2 is a sufficient condition for θ⋆ to be the unique

minimizer of ℓ regardless of the values of (ξi)i∈Iout . We prove that η < 1/2 is also a

necessary condition by contradiction. Suppose η ≥ 1/2 and θ⋆ is the unique minimizer

of ℓ. Since (ξi)i∈Iout can be arbitrary, we set the values by

ξi = ⟨xi,θ1⟩, ∀i ∈ Iout

for some θ1. Then it follows that

ℓlinear(θ1) =
1

n

∑
i∈Iin

|⟨xi,θ1 − θ⋆⟩| ,

ℓlinear(θ⋆) =
1

n

∑
i∈Iout

|⟨xi,θ1 − θ⋆⟩| .
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Thus, by taking expectation in ℓlinear(θ1)− ℓlinear(θ⋆), we obtain

ℓ(θ1)− ℓ(θ⋆) = (1− 2η)

√
2

π
∥θ1 − θ⋆∥2 ≤ 0,

where the last inequality holds by the assumption η ≥ 1/2. This contradicts the

assumption that θ⋆ is the unique minimizer of ℓ.

A.5 Proof of Theorem 6

The proof is almost similar to that of Theorem 4. We present only their differences

below. First, to focus on the dependence of η on the other parameters, we consider

a simple case with the exact inner iterations. Therefore, the corresponding error

term will not appear in this proof. More importantly, we rewrite the concentration

inequalities Theorem 11 to explicitly show the dependence of the deviation terms on

dimension parameters d and n, and the probability parameter δ. This modification is

straightforward and the corresponding results are stated in the following corollary.

102



Corollary 16 Instate the assumptions of Theorem 11. Then there exists an absolute

value C2 > 0 such that

inf
W∈Wψ

z∈Sd−1

1

n

∑
i∈Iin

1{xi /∈W} |⟨xi, z⟩| ≥ (1− η)
√

2

π
,

− 2ψ

π

(√
2

π
+

√
2 log

(
eπ

2ψ

))
− 2C2

√
d ∨ log(1/δ)

n

sup
z∈Sd−1

1

n

∑
i∈Iout

|⟨xi, z⟩| ≤ η

√
2

π
+ C2

√
d ∨ log(1/δ)

n
,

and

sup
W∈Wψ

z∈Sd−1

1

n

∑
i∈Iin

1{xi∈W} |⟨xi, z⟩|

≤ 2ψ

π

(√
2

π
+

√
2 log

(
eπ

2ψ

))
+ C2

√
ψ(d ∨ log(1/δ))

n

hold with probability at least 1− δ.

Since the sample complexity in (1.7.5) implies (A.1.16), it invokes Theorem 16

with ψ substituted by ψ0. Due to the modifications from Theorem 11 to Theorem 16,

under the exact inner iterations, the inequality in (A.1.19) is rewritten as

∥θk+1 − φ(θk)θ⋆∥2 ≤ νη,ψ0,n · ∥θk − φ(θk)θ⋆∥2 (A.5.1)

with

νη,ψ0,n :=
2cψ0,n

Cη,ψ0,n

,

Cη,ψ0,n := (1− 2η)

√
2

π
− 2C2

√
d ∨ log(1/δ)

n
− cψ0,n,

cψ0,n :=

2ψ0

π

(√
2

π
+

√
2 log

(
eπ

2ψ0

))
+ C2

√
ψ0(d ∨ log(1/δ))

n
.

(A.5.2)
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We show that the assumptions in Theorem 6 imply νη,ψ0,n < 1. By the definitions of

Cη,ψ0,n and cψ0,n, we have

Cη,ψ0,n − 2cψ0,n

≥ (1− 2η)

√
2

π
− 5C2

√
d ∨ log(1/δ)

n

− 6ψ0

π

(√
2

π
+

√
2 log

(
eπ

2ψ0

))

≥
√

2

π

(
6ψ0

π

(
1 +

√
π log

(
eπ

2ψ0

))
− C1

√
d ∨ log(1/δ)

n

)

− 5C2

√
d ∨ log(1/δ)

n
− 6ψ0

π

(√
2

π
+

√
2 log

(
eπ

2ψ0

))

= C1

√
2

π

√
d ∨ log(1/δ)

n
− 5C2

√
d ∨ log(1/δ)

n

≥

(
2

√
2

π
− 5C2

C1

)
·min(1− 2η, ψ0, u(ψ0)), (A.5.3)

where i) the first inequality holds by ψ0 ≤ 1; ii) the second inequality is obtained by

substituting η by its upper bound by (1.7.3); iii) the last inequality follows from the

condition in (1.7.5). It remains to show that the lower bound in (A.5.3) is strictly

positive. First, one may choose C1 sufficiently large so that 5C2/C1 < 2
√

2/π. Next,

since u(x) obeys

du(x)

dx
= −

3
(
1 +

√
π log

(
eπ
2x

))
π

+
3

2
√
π log

(
eπ
2x

) < 0

for all x ∈ (0, 1), it is monotonically decreasing on (0, 1). It then follows that

u(ψ0) ≥ u(0.12) > 0 for all ψ0 ∈ (0, 0.12]. Therefore, we have min(1−2η, ψ0, u(ψ0)) > 0

for all η ∈ [0, 1/2) and all ψ0 ∈ (0, 0.12]. This completes the proof.
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Appendix B: Proofs for Chapter 2

B.1 Proof of Theorem 7

We prove Theorem 7 in two steps. First, in the following proposition, we present

a sufficient condition for stable estimation by convex program in (1.2.11). Then we

derive an upper bound on ϱ in the proposition, which provides the sample complexity

condition along with the corresponding error bound in Theorem 7.

Proposition 1 Under the hypothesis of Theorem 7, suppose that θ̃ satisfies

ϱ := inf
j∈[k]
w∈Sd−1

E1Cj(g) |⟨g,w⟩| − sup
j∈[k]
w∈Sd−1

E1C̃j\Cj(g)⟨g,w⟩+

− sup
j∈[k]
w∈Sd−1

E1Cj\C̃j(g)⟨g,w⟩+ > 0 . (B.1.1)

Then there exists an absolute constant c > 0 such that if

n ≥ cϱ−2
(
4d log3 d log5 k + 4 log(δ−1) log k

)
, (B.1.2)

then the solution θ̂ to the optimization problem in (1.2.11) obeys

k∑
j=1

∥θ⋆,j − θ̂j∥2 ≤
2

ϱn

n∑
i=1

|zi| (B.1.3)

with probability 1− δ.
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Proof 8 We first show that there exists a constant c > 0 such that the condition in

(2.1.4) implies ζ > 0. Hence, we consider

min
j∈[k]

√
π

32
P2{g ∈ Cj}︸ ︷︷ ︸
(i)

− 2max
j∈[k]

√
P{g ∈ C̃j△Cj}︸ ︷︷ ︸

(ii)

> 0. (B.1.4)

It follows from the definition of πmin that (i) in (B.1.4) is bounded from below as

(i) ≥
√

π

32
π2
min. (B.1.5)

It only remains to find an appropriate upper bound on (ii). Since {Cj}kj=1 consists

of disjoint sets (except their boundaries corresponding to sets of measure zero), for a

fixed j ∈ [k], the symmetric difference between C̃j and Cj is written as

C̃j△Cj =
(
∪j′ ̸=j C̃j ∩ Cj′

)
∪
(
∪j′ ̸=jCj ∩ C̃j′

)
.

Therefore, we obtain

(ii) ≤ 2
√
2k max

j∈[k]
max

j′∈[k]\{j}

√
P
(
g ∈ C̃j ∩ Cj′

)
. (B.1.6)

Moreover, since

g ∈ C̃j ∩ Cj′ =⇒ gTθ̃j ≥ xT

i θ̃j′ , xT

iθ⋆,j′ ≥ xT

iθ⋆,j

=⇒ gT(θ̃j − θ̃j′) ≥ 0, gT(θ⋆,j − θ⋆,j′) ≤ 0

=⇒ gT(θ̃j − θ̃j′) · gT(θ⋆,j − θ⋆,j′) ≤ 0,

(B.1.7)

with [38, Lemma 9], (ii) in (B.1.6) is further upper-bounded by

(ii)

≤ 2
√
2k·

max
j∈[k]

max
j′∈[k]\{j}

√
P
(
gT(θ̃j − θ̃j′) · gT(θ⋆,j − θ⋆,j′) ≤ 0

)
≤ C
√
k ·max

j∈[k]
max

j′∈[k]\{j}

(√
∥(θ̃j − θ̃j′)− (θ⋆,j − θ⋆,j′)∥2

∥θ⋆,j − θ⋆,j′∥2

· log1/4
(

2∥θ⋆,j − θ⋆,j′∥2
∥(θ̃j − θ̃j′)− (θ⋆,j − θ⋆,j′)∥2

))
,

(B.1.8)
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for an absolute constant C > 0. Then, by plugging in (B.1.5) and (B.1.8) to (B.1.4),

we obtain a sufficient condition for (B.1.4) as

C
√
kmax
j∈[k]

max
j′∈[k]\{j}

√
∥(θ̃j − θ̃j′)− (θ⋆,j − θ⋆,j′)∥2

∥θ⋆,j − θ⋆,j′∥2
·

log1/4

(
2∥θ⋆,j − θ⋆,j′∥2

∥(θ̃j − θ̃j′)− (θ⋆,j − θ⋆,j′)∥2

)
<

√
π

32
π2
min.

(B.1.9)

For a fixed j′ ∈ [k] \ {j}, let

a =
∥(θ̃j − θ̃j′)− (θ⋆,j − θ⋆,j′)∥2

∥θ⋆,j − θ⋆,j′∥2
and b =

π4
min

k
.

Since a, b ∈ (0, 0.1] and a ≤ b
2
log−1/2(1/b) imply a log1/2(2/a) ≤ b, if one chooses c in

(2.1.4) so that c < π
32C2 , then (2.1.4) implies (B.1.9) for all distinct j, j′ ∈ [k]. In the

remainder of the proof, we will assume that (B.1.4) holds.

We show that, for a sufficiently large ρ > 0, the following three conditions cannot

hold simultaneously:

1

n

n∑
i=1

(fi(θ⋆ + h)− yi)+ ≤ η , (B.1.10)

∥h∥1,2 > ρ , (B.1.11)

⟨a,h⟩ ≥ 0 . (B.1.12)

Therefore, assuming (B.1.11) and (B.1.12) hold, it suffices to show

L(h) := 1

n

n∑
i=1

(fi(θ⋆ + h)− yi)+ > η . (B.1.13)
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To this end, we derive a lower bound on L(h) as follows:

L(h) ≥ 1

n

n∑
i=1

(fi(θ⋆ + h)− fi(θ⋆))+ −
1

n

n∑
i=1

(zi)+

(a)

≥ 1

n

n∑
i=1

(⟨∇fi(θ⋆),h⟩)+ −
1

n

n∑
i=1

(zi)+

=
1

n

n∑
i=1

|⟨∇fi(θ⋆),h⟩|
2

+
1

n

n∑
i=1

⟨∇fi(θ⋆),h⟩
2

− 1

n

n∑
i=1

(zi)+

=
1

n

n∑
i=1

|⟨∇fi(θ⋆),h⟩|
2

+
1

n

n∑
i=1

⟨∇fi(θ⋆),h⟩
2

− ⟨a,h⟩+ ⟨a,h⟩ − 1

n

n∑
i=1

(zi)+

(b)
= ⟨a,h⟩ − 1

n

n∑
i=1

(zi)+ +
1

n

n∑
i=1

|⟨∇fi(θ⋆),h⟩|
2

+
1

n

n∑
i=1

⟨∇fi(θ⋆)−∇fi(θ̃),h⟩
2

(c)
= ⟨a,h⟩ − 1

n

n∑
i=1

(zi)+ +
1

n

n∑
i=1

k∑
j=1

1Cj(xi)|⟨xi,hj⟩|
2

+
1

n

n∑
i=1

k∑
j=1

{1Cj(xi)− 1C̃j(xi)}⟨xi,hj⟩
2

, (B.1.14)

where (a) holds by the convexity of fi, which implies

fi(θ⋆ + h) ≥ fi(θ⋆) + ⟨∇fi(θ⋆),h⟩ ,

(b) follows from (2.1.1), and (c) is obtained by calculating ∇fi(θ) at θ = θ⋆ and θ = θ̃.

We further proceed by obtaining lower bounds on the last two terms in (B.1.14) by

the following lemmas, which are proved in Appendices B.2.4 and B.2.5.

Lemma 3 Let (Vh)h∈Rkd be a random process defined by

Vh :=
1

n

n∑
i=1

k∑
j=1

1Cj(xi) |⟨xi,hj⟩| ,
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where x1, . . . ,xn are i.i.d. Normal(0, Id). Then, for g ∼ Normal(0, Id) and any

δ ∈ (0, 1), there exists an absolute constant c1 > 0 such that

V := inf
∥h∥1,2=1

Vh ≥ min
j∈[k],w∈Sd−1

E1Cj(g) |⟨g,w⟩|

− c1
(
d log3 d log5 k + log(δ−1) log k

n

)1/2

holds with probability at least 1− δ/2.

Proof 9 See Appendix B.2.4.

Lemma 4 Let (Qh)h∈B1,2 be a random process defined by

Qh :=
1

n

n∑
i=1

k∑
j=1

{
1C̃j(xi)− 1Cj(xi)

}
⟨xi,hj⟩ ,

where x1, . . . ,xn are i.i.d. Normal(0, Id). Then, for g ∼ Normal(0, Id) and any

δ ∈ (0, 1), there exists an absolute constant c2 > 0 such that

Q := sup
∥h∥1,2=1

Qh ≤ max
j∈[k],w∈Sd−1

E1C̃j\Cj(g)⟨g,w⟩+

+ max
j∈[k],w∈Sd−1

E1Cj\C̃j(g)⟨g,w⟩+

+ c2

(
d log3 d log5 k + log(δ−1) log k

n

)1/2

holds with probability at least 1− δ/2.

Proof 10 See Appendix B.2.5.

Since Vh are Qh are homogeneous in h, we obtain that the third term in the

right-hand side of (B.1.14) is written as Vh and lower-bounded by

Vh
2
≥
V ∥h∥1,2

2
. (B.1.15)
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Similarly, the last term in the right-hand side of (B.1.14) is written as −Qh and

lower-bounded by

−Qh

2
≥ −

Q∥h∥1,2
2

. (B.1.16)

Furthermore, by Lemmas 3 and 4, the condition in (B.1.2) implies that

V −Q ≥ c3ϱ > 0 (B.1.17)

holds with probability 1− δ for an absolute constant c3 > 0. Then we choose ρ so

that it satisfies

ρ =
2

V −Q
·

(
η +

1

n

n∑
i=1

(zi)+

)
.

Next, by plugging in the above estimates to (B.1.14), we obtain that, under the event

in (B.1.17), the conditions in (B.1.11) and (B.1.12) imply

L(h) ≥ ⟨a,h⟩ − 1

n

n∑
i=1

(zi)+ +
(V −Q)∥h∥1,2

2

> − 1

n

n∑
i=1

(zi)+ +
(V −Q)ρ

2

= − 1

n

n∑
i=1

(zi)+ +
1

n

n∑
i=1

(zi)+ + η

= η .

This lower bound implies (B.1.13). Therefore we have shown that the three conditions

in (B.1.10), (B.1.11), and (B.1.12) cannot hold simultaneously. It remains to apply

the claim to a special case.

Let ĥ = θ̂−θ⋆. Recall that both θ̂ and θ⋆ are feasible for the optimization problem

in (1.2.11). Moreover, since θ̂ is the maximizer, it follows that ⟨a, θ̂⟩ ≥ ⟨a,θ⋆⟩, which

implies ⟨a, ĥ⟩ ≥ 0. Therefore the conditions in (B.1.10) and (B.1.12) are satisfied

with h substituted by ĥ. Since the three conditions cannot be satisfied simultaneously,
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the condition in (B.1.11) cannot hold, i.e. ĥ satisfies

∥∥∥ĥ∥∥∥
1,2
≤ ρ ≤ 2

ϱ

(
η +

1

n

n∑
i=1

(zi)+

)
. (B.1.18)

Since the noise vector w was arbitrary, (B.1.18) holds for any w. Furthermore, since

the random processes in Lemma 3 and Lemma 4 do not depend on the noise w, the

conclusion of the theorem applies to an adversarial noise without amplifying the error

probability.

Next, we use the following lemma to obtain a lower bound on ϱ in (B.1.1).

Lemma 5 Let A ⊂ Rd be of finite Gaussian measure and g ∼ Normal(0, Id). Then

we have

inf
w∈Sd−1

E1A(g) |⟨g,w⟩| ≥
√

π

32
P2{g ∈ A}

and

sup
w∈Sd−1

E1A(g)⟨g,w⟩+ ≤
√

P{g ∈ A} .

Proof 11 For an arbitrarily fixed ϵ > 0, let Sϵ ⊂ Rd denote the set defined by

Sϵ := {x ∈ Rd : |⟨x,w⟩| < ϵ} .

Then we have

E1C(g)|⟨g,w⟩| ≥ ϵE1C(g)1Sc
ϵ
(g)

= ϵE (1C(g)− 1C(g)1Sϵ(g))

≥ ϵE (1C(g)− 1Sϵ(g))

= ϵ (P{g ∈ C} − P{g ∈ Sϵ}) . (B.1.19)
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Moreover, since ⟨g,w⟩ ∼ Normal(0, 1), P{g ∈ Sϵ} is upper-bounded by

P{g ∈ Sϵ} = P{|⟨g,w⟩| < ϵ} =
∫ ϵ

−ϵ

1√
2π
e−u

2/2du ≤ ϵ

√
2

π
. (B.1.20)

By plugging in (B.1.20) to (B.1.19), we obtain

E1C(g)|⟨g,w⟩| ≥ ϵ

(
P{g ∈ C} − ϵ

√
2

π

)
. (B.1.21)

Since the parameter ϵ > 0 was arbitrary, one can we maximize the right-hand side of

(B.1.21) with respect to ϵ to obtain the tightest lower bound. Note that the objective is

a concave quadratic function and the maximum is attained at ϵ =
√
π/8P {g ∈ C}.

This provides the lower bound in the first assertion. Next, by the Cauchy-Schwarz

inequality, we obtain the upper bound in the second assertion as follows:

E1A(g)⟨g,w⟩+ ≤
√

E (1A(g))
2
√
E⟨g,w⟩2+

=
√

E1A(g)

√
E⟨g,w⟩2

2

=

√
P{g ∈ A}

2
.

Finally, by applying Lemma 5 to each of the expectation terms in ϱ, we obtain a

lower bound on ϱ given by

ϱ ≥ min
j∈[k]

√
π

32
P2 {g ∈ Cj} −max

j∈[k]

√
P
{
g ∈ Cj \ C̃j

}
−max

j∈[k]

√
P{g ∈ C̃j \ Cj}

≥ min
j∈[k]

√
π

32
P2 {g ∈ Cj} − 2max

j∈[k]

√
P
{
g ∈ Cj△C̃j

}
, (B.1.22)

where the second inequality holds since C̃j△Cj = (C̃j \ Cj) ∪ (Cj \ C̃j) for all j ∈ [k].

This implies that (2.1.5) is a sufficient condition for (B.1.2). Moreover, substituting ϱ

in (B.1.3) by the lower bound in (B.1.22) provides (2.1.6). This completes the proof

of Theorem 7.
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B.1.1 Tightness of the lower bound on ϱ

In (B.1.22), we obtain a lower bound on ϱ by Lemma 5. We show through

the following example that the lower bound is tight in terms of its dependence on

P {g ∈ Cj} for j ∈ [k].

Example 1 Let d = 2. Then C̃j \ Cj and Cj \ C̃j are Lorentz cones. Let θCj , θCj\C̃j and

θC̃j\Cj denote the angular width of Cj, Cj \ C̃j, and C̃j \ Cj respectively. Furthermore,

we assume that

min
j∈[k]

P {g ∈ Cj} ≥ max
j∈[k]

P
{
g ∈ Cj△C̃j

}
. (B.1.23)

In this case, the parameter ϱ in Proposition 1 is expressed as

ϱ =

√
2Γ(3/2)

Γ(1)

[
min
j∈[k]

2

π
sin2

(
θCj
4

)
−max

j∈[k]

1

π
sin

(
θC̃j\Cj
2

)

−max
j∈[k]

1

π
sin

(
θCj\C̃j
2

)]
. (B.1.24)

When θC is small enough, sin(θC) ≈ θC holds by the Taylor series approximation.

Hence, there exists absolute constants c1 > 0 and c2 > 0 such that

ϱ = c1min
j∈[k]

P2{g ∈ Cj} − c2max
j∈[k]

P{g ∈ C̃j△Cj} .

This example shows that ζ in Theorem 7 is tight in the sense that the dominating term

in both ϱ and ζ is proportional to the squared probability measure of the smallest Cj.

Let θCj denote the angular width of Cj. Without loss of generality, we may

assume that minj∈[k] θCj ≤ π. Furthermore, the assumption in (B.1.23) implies that

the angular width of Cj△C̃j is at most π for all j ∈ [k]. Therefore, the identity in

(B.1.24) is obtained by applying the following lemma, proved in Appendix B.2.2, to

the infimum/supremum of expectation terms in (B.1.1).
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Lemma 6 Let C be a polyhedral cone in R2 and g ∼ Normal(0, I2). Suppose that the

angular width of C, denoted by θC satisfies 0 ≤ θC ≤ π. Then we have

inf
w∈S1

E1C(g) |⟨g,w⟩| =
2
√
2Γ(3/2)

πΓ(2)
sin2

(
θC
4

)
and

sup
w∈S1

E1C(g)⟨g,w⟩+ =

√
2Γ(3/2)

πΓ(2)
sin

(
θC
2

)
.

Proof 12 See Appendix B.2.2.

B.2 Supporting lemmas

B.2.1 Proof of Lemma 1

For brevity, we introduce the shorthand notations

Aj =
n∑
i=1

1Cj(xi)xix
T

i , and bj =
n∑
i=1

1Cj(xi)yixi.

Then, since each Cj is given by the intersection of (k − 1) half-planes in Rd, by [89,

Theorem 2], it holds with probability at least 1− δ/3 that

sup
j∈[k]

∣∣∣∣∣ 1n
n∑
i=1

1Cj(xi)− P(g ∈ Cj)

∣∣∣∣∣ ≤
C1

√
log(3/δ) + kd log(n/d)

n
,

(B.2.1)

which implies

c2nπmin ≤
n∑
i=1

1Cj(xi) ≤ C3nπmax, ∀j ∈ [k]. (B.2.2)

Moreover, by [85, Theorem 5.7], with probability at least 1− δ/3, we have

sup
I:|I|≤αn

λmax

(∑
i∈I

xix
T

i

)
≤ C4

√
αn

provided

n ≥ max

(
d,

log(3/δ)

α

)
. (B.2.3)
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We also use the following claim: If

n ≥ C5θ
−2max(d log(n/d), log(3/δ)), (B.2.4)

then it holds with probability 1− δ/3 that

inf
I⊂[n]:|I|≥θn

λmin

(∑
i∈I

xix
⊤
i

)
≥ c6nθ

3. (B.2.5)

Proof 13 (Proof of Claim) For an arbitrarily fixed T > 0, we have

1

n

∑
i∈I

⟨ξi,v⟩2 ≥
θT

2
, ∀I ⊂ [n] : |I| ≥ θn (B.2.6)

provided

N(v) :=
n∑
i=1

1{x:⟨x,v⟩2>T}(xi) > n− θn

2
. (B.2.7)

Since {x : ⟨x,v⟩2 > T} is consists of two half-spaces in Rd, by [89, Theorem 2], there

exists an absolute constant C7 > 0, for which it holds with probability at least 1− δ/3

that

1

n
N(v) ≥ 1

n
EN(v)− C7

√
d log(n/d) + log(3/δ)

n
, ∀v ∈ Sd−1. (B.2.8)

Moreover, due to [37, Lemma 15], we have

1

n
EN(v) = P

(
|⟨x,v⟩|2 > T

)
≥ 1−

√
eT . (B.2.9)

Plugging in (C.2.6) into (C.2.5) yields

1

n
N(v) ≥ 1−

√
eT − C7

√
d log(n/d) + log(3/δ)

n
, ∀v ∈ Sd−1.

Then (C.2.4) is satisfied for all v ∈ Sd by T = θ2

16e
and C5 = (4C7)

2.

Since (2.1.8) implies (C.2.1) and (C.2.2), combining the above results provides that

c8nπ
3
min ≤ λmin(Aj) ≤ λmax(Aj) ≤ C9n

√
πmax, ∀j ∈ [k],
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holds with probability 1− δ. Then the least squares solution in (1.2.5) with bj = 0 for

all j ∈ [k] is written as θ̂j = A−1
j bj and satisfies

∥θ⋆,j − θ̂j∥2 ≥
λ
1/2
min (Aj)

λmax(Aj)

∥∥∥(zi)i:xi∈Cj∥∥∥2
≥ c10π

3/2
min√

nπmax

∥∥∥(zi)i:xi∈Cj∥∥∥2 ≥ c11π
3/2
min

πmax

∥∥∥(zi)i:xi∈Cj∥∥∥∞.
(B.2.10)

Then taking a sum over j ∈ [k] and maximizing over w satisfying ∥w∥∞ ≤ η′, we

obtain

sup
∥w∥∞≤η′

k∑
j=1

∥θ⋆,j − θ̂j∥2 ≥
c12π

3/2
minη

′

πmax

.

This completes the proof.

B.2.2 Proof of Lemma 6

We first prove the first assertion. Since C is a cone, it follows that g ∈ C if and

only g/∥g∥2 ∈ C. Moreover, Bayes’ rule implies

E1C(g) |⟨g,w⟩| = P {g ∈ C}E [ |⟨g,w⟩| | g ∈ C] .

Therefore we have

inf
w∈S1

E1C(g) |⟨g,w⟩|

= inf
w∈S1

P {g ∈ C}E
[
∥g∥2

∣∣∣∣⟨ g

∥g∥2
,w⟩

∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
(a)
= inf

w∈S1
P {g ∈ C}E [∥g∥2]E

[ ∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
(b)
=

√
2Γ(3/2)

Γ(2)
inf

w∈S1

θC
2π

E

[ ∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
, (B.2.11)

where (a) holds since ∥g∥2 and g/∥g∥2 are independent and (b) follows from E∥g∥2 =
√
2Γ(3/2)/Γ(2) and

P{g ∈ C} = P

{
g

∥g∥2
∈ C
}

=
θC
2π

.
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Then it remains to compute the expectation in (B.2.11). Below we show that

inf
w∈S2

E

[∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
=

4

θC
sin2

(
θC
2

)
(B.2.12)

and

sup
w∈S2

E

[∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
=

2

θC
sin

(
θC
2

)
. (B.2.13)

Let T = {a, b} ⊂ S1 satisfy that C is the conic hull of T . Then let h be the unit vector

obtained by normalizing (a+ b)/2. Then we have ∠(a,h) = θC/2 and ∠(b,h) = θC/2.

Let ϕ : S1 → R be defined by ϕ(w) := ∠(h,w). Since the conditional expectation

applies to |⟨g/∥g∥2,w⟩|, which is invariant under the global sign change inw, it suffices

to consider w that satisfies 0 ≤ ϕ(w) ≤ π. Since g/∥g∥2 is uniformly distributed on

the unit sphere, the expectation term in (B.2.12) is written as

E

[∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C

]
=

1

θC

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ . (B.2.14)

It follows from the assumption on the range of θC and ϕ(w) that −π/2 ≤ ϕ(w)−θC/2 ≤

π and 0 ≤ ϕ(w) + θC/2 ≤ 3π/2. We proceed by separately considering the comple-

mentary cases for (θC, ϕ(w)) given below.

Case 1: Suppose that

−π
2
≤ ϕ(w)− θC

2
< ϕ(w) +

θC
2
≤ π

2
. (B.2.15)

Then ϕ(w) is constrained by

0 ≤ ϕ(w) ≤ π/2− θC/2 . (B.2.16)
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Furthermore, the integral in (B.2.14) is rewritten as∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ =

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
cos θdθ

= sin

(
ϕ(w) +

θC
2

)
− sin

(
ϕ(w)− θC

2

)
= 2 cos (ϕ(w)) sin

(
θC
2

)
. (B.2.17)

Since sin(θC/2) ≥ 0, the expression in (B.2.17) monotonically decreases in ϕ(w) for

the interval given in (B.2.16). Thus the maximum (resp. minimum) is attained as

2 sin(θC/2) at ϕ(w) = 0 (resp. 2 sin2(θC/2) at ϕ(w) = π/2− θC/2).

Case 2: Suppose that

−π
2
≤ ϕ(w)− θC

2
<
π

2
< ϕ(w) +

θC
2
≤ 3π

2
. (B.2.18)

Then ϕ(w) satisfies

π

2
− θC

2
≤ ϕ(w) ≤ π

2
+
θC
2

(B.2.19)

and the integral in (B.2.14) reduces to∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ

=

∫ π
2

ϕ(w)− θC
2

cos θdθ −
∫ ϕ(w)+

θC
2

π
2

cos θdθ

= 2− sin

(
ϕ(w)− θC

2

)
− sin

(
ϕ(w) +

θC
2

)
= 2− 2 sin (ϕ(w)) cos

(
θC
2

)
. (B.2.20)

Since cos(θC/2) ≥ 0 for all θC ∈ [0, π], the maximum (resp. minimum) is attained as

2 sin2(θC/2) at ϕ(w) = π/2− θC/2 (resp. 4 sin2(θC/4) at ϕ(w) = π/2).
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Case 3: Suppose that

π

2
≤ ϕ(w)− θC

2
< ϕ(w) +

θC
2
≤ 3π

2
. (B.2.21)

Then we have

π

2
+
θC
2
≤ ϕ(w) ≤ π (B.2.22)

and ∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ

=

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
(− cos θ)dθ

= sin

(
ϕ(w)− θC

2

)
− sin

(
ϕ(w) +

θC
2

)
= −2 cosϕ(w) sin

θC
2
. (B.2.23)

The maximum (resp. minimum) of (B.2.23) is attained as 2 sin(θC/2) at ϕ(w) = π

(resp. 2 sin2(θC/2) at ϕ(w) = π/2 + θC/2).

By combining the results in the above three cases, we obtain (B.2.12) and (B.2.13).

Then substituting the expectation term in (B.2.11) by (B.2.12) provides the first

assertion.

Next we prove the second assertion. Similarly to (B.2.11), we have

sup
w∈S1

E1Cj(g)⟨g,w⟩+

= sup
w∈S1

P {g ∈ C}E
[
∥g∥2 ·

〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C
]

(a)
= sup

w∈S1

P {g ∈ C}E [∥g∥2]E
[〈

g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C
]

(b)
=

√
2Γ(3/2)

Γ(2)
sup
w∈S1

θC
2π

E

[〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C
]
,
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where (a) holds since ∥g∥2 and g/∥g∥2 are independent, (b) follows from E∥g∥2 =

√
2Γ(3/2)/Γ(2), and

P{g ∈ C} = P

{
g

∥g∥2
∈ C
}

=
θC
2π

.

If suffices to show that

max
w∈S1

E

[〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C

]
=

2

θC
sin

(
θC
2

)
. (B.2.24)

Since g/∥g∥2 is uniformly distributed on the unit sphere S1 and u+ = (u+ |u|)/2 for

all u ∈ R, we have

E

[〈
g

∥g∥2
,w

〉
+

∣∣∣∣ g

∥g∥2
∈ C
]

=

∫ ϕ(w)+θC/2

ϕ(w)−θC/2

cos θ + | cos θ|
2θC

dθ

=
1

2

(
1

θC

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
| cos θ|dθ + 1

θC

∫ ϕ(w)+θC/2

ϕ(w)−θC/2
cos θdθ

)

=
1

2

(
E

[∣∣∣∣〈 g

∥g∥2
,w

〉∣∣∣∣ ∣∣∣∣ g

∥g∥2
∈ C
]

+ E

[〈
g

∥g∥2
,w

〉 ∣∣∣∣ g

∥g∥2
∈ C
] )

. (B.2.25)

As shown above, the first term in (B.2.25) is maximized at ϕ(w) = 0 and the maximum

is given in (B.2.13). Furthermore, the second term in (B.2.25) is rewritten as∫ ϕ(w)+θC/2

ϕ(w)−θC/2
cos θdθ = sin

(
ϕ(w) +

θC
2

)
− sin

(
ϕ(w)− θC

2

)
= 2 cosϕ(w) sin

(
θC
2

)
. (B.2.26)

Since sin (θC/2) ≥ 0, the expression in (B.2.26) is a decreasing function of ϕ(w) ∈ [0, π].

Hence, the maximum is attained at ϕ(w) = 0 as

max
w∈S1

2 cosϕ(w) sin

(
θC
2

)
= 2 sin

(
θC
2

)
. (B.2.27)

Since the two terms in (B.2.25) are maximized simultaneously, by plugging in the

above results to (B.2.24), the second assertion is obtained.
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B.2.3 Proof of Lemma 2

By construction, we have

1

n

N∑
i=1

zixi ∼ Normal

(
0,
∥w∥22
n2

Id

)
.

Then, the concentration of the Euclidean norm of a standard Gaussian vector guaran-

tees, with probability at least 1− δ/2, that∥∥∥∥∥ 1n
n∑
i=1

zixi

∥∥∥∥∥
2

≲
∥w∥2
n

(
√
d+

√
log(1/δ)) (B.2.28)

for some absolute constant C. This implies the first bound in (2.1.12).

Next, we want to obtain an upper bound on the second term in (2.1.12). By the

variational characterization of the spectral norm, we have∥∥∥∥∥ 1n
n∑
i=1

zi (xix
T

i − Id)

∥∥∥∥∥ ≤ sup
u∈Bd2

∣∣∣∣∣ 1n
n∑
i=1

zi
(
(xT

iu)
2 − 1

)∣∣∣∣∣ . (B.2.29)

For brevity, we introduce a shorthand notation to denote the following random process

Yu :=
n∑
i=1

zi
(
(xT

iu)
2 − 1

)
,

indexed by u ∈ Bd2. Then, for u,u
′ ∈ Bd2, we have

Yu − Yu =
n∑
i=1

zi⟨xi,u− u′⟩⟨xi,u+ u′⟩.

Therefore, we bound the subexponential norm of each summand as

∥zi⟨xi,u− u′⟩⟨xi,u+ u′⟩∥ψ1

≤ zi∥⟨xi,u− u′⟩∥ψ2 · ∥xi,u+ u′∥ψ2 ≲ zi∥u− u′∥2.

Applying the Bernstein inequality (e.g. see [93, Theorem 2.8.1]) then yields

P
(
|Yu − Yu′| ≥ c

(√
t∥w∥2∥u− u′∥2 + t∥w∥∞∥u− u′∥2

))
≤ 2 exp(−t),

(B.2.30)
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for any t ≥ 0 and an absolute constant c. Then, the process Yu has mixed tail

increments (i.e, see [29, Equation 12]) with respect to the metrics (d1, d2) where

d1(a, b) = ∥w∥∞∥a − b∥2 and d2(a, b) = ∥w∥2∥a − b∥2 for any a, b ∈ Bd2. Hence,

applying [29, Corollary 5.2] with the bound on γ-functional (i.e, see [29, Equation 4])

provides
sup
u∈Bd2

|Yu|

≲ ∥w∥2
(∫ ∞

0

√
logN

(
Bd2, ∥ · ∥2, η

)
dη +

√
log(1/δ)

)
+ ∥w∥∞

(∫ ∞

0

logN
(
Bd2, ∥ · ∥2, η

)
dη + log(1/δ)

)
(b)

≤ ∥w∥2(
√
d+

√
log(1/δ)) + ∥w∥∞(p+ log(1/δ)),

holds with probability at least 1 − δ/2 where (b) holds due to an upper bound on

the covering number N(Bd2, ∥ · ∥2, η) ≤ (3/η)d (e.g. see [93, Example 8.1.11]). This

implies the second bound in (2.1.12).

B.2.4 Proof of Lemma 3

For any h satisfying ∥h∥1,2 = 1, we have

Vh ≥ min
∥h∥1,2=1

EVh − sup
h∈B1,2

|Vh − EVh| . (B.2.31)

In what follows, we derive lower estimates of the summands in the right-hand side of

(B.2.31).

First, we derive a lower bound on min∥h∥1,2=1 EVh. Since x1, . . . ,xn are i.i.d.

Normal(0, Id), we have

EVh = E
1

n

n∑
i=1

k∑
j=1

1Cj(xi) |⟨xi,hj⟩| = E

k∑
j=1

1Cj(g) |⟨g,hj⟩|

=
k∑
j=1

∥hj∥2E1Cj(g)

∣∣∣∣〈g, hj
∥hj∥2

〉∣∣∣∣ ,
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where h = [h1; . . . ; hk]. Then EVh is lower-bounded by

EVh ≥ ∥h∥1,2 inf
j∈[k],w∈Sd−1

E1Cj(g) |⟨g,w⟩| .

Next, we show that (Vh−EVh)h∈B1,2 is concentrated around 0 with high probability

by using the following lemma.

Lemma 7 Suppose that A1, . . . ,Ak be disjoint subsets in Rd. Let (Uh)h∈B1,2 be a

random process defined by

Uh :=
1

n

n∑
i=1

k∑
j=1

1Aj(xi)⟨xi,hj⟩+ , (B.2.32)

where x1, . . . ,xn are i.i.d. Normal(0, Id). Then, for any δ ∈ (0, 1), there exists an

absolute constant c > 0 such that

sup
h∈B1,2

|Uh − EUh| ≤ c

(
d log3 d log5 k + log(δ−1) log k

n

)1/2

(B.2.33)

holds with probability at least 1− δ.

Proof 14 We first show that Uh has sub-Gaussian increments with respect to the

ℓk∞(ℓd2)-norm, i.e.

∥Uh − Uh′∥ψ2
≲

√
log k√
n

∥∥∥(hj)kj=1 −
(
h′
j

)k
j=1

∥∥∥
ℓk∞(ℓd2)

. (B.2.34)

Since A1, . . . ,Ak are disjoint, it follows that

|Uh − Uh′| ≤ 1

n

n∑
i=1

k∑
j=1

1Aj(xi)
∣∣⟨xi,hj − h′

j⟩
∣∣

≤ 1

n

n∑
i=1

max
1≤j≤k

∣∣⟨xi,hj − h′
j⟩
∣∣ (B.2.35)

holds almost surely, where the last step follows from Hölder’s inequality. We proceed

with the following lemma.
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Lemma 8 ( [88, Lemma 2.2.2]) Let g ∼ Normal(0, Id) and a1, . . . ,ak ∈ Rd.

Then ∥∥∥∥max
j∈[k]
|⟨g,aj⟩|

∥∥∥∥
ψ2

≲
√

log kmax
j∈[k]
∥aj∥2 .

It follows from (B.2.35) and Lemma 8 that

∥Uh − Uh′∥ψ2
≤

∥∥∥∥∥ 1n
n∑
i=1

max
j∈[k]

∣∣⟨xi,hj − h′
j⟩
∣∣∥∥∥∥∥
ψ2

≲
1

n

√√√√ n∑
i=1

∥∥∥∥max
j∈[k]

∣∣⟨xi,hj − h′
j⟩
∣∣∥∥∥∥2
ψ2

≲

√
log k√
n

max
j∈[k]

∥∥hj − h′
j

∥∥
2

=

√
log k√
n

∥∥∥(hj)kj=1 −
(
h′
j

)k
j=1

∥∥∥
ℓk∞(ℓd2)

,

where the second inequality follows from [93, Proposition 2.6.1].

Since Uz has a sub-Gaussian increment as in (B.2.34), by [93, Lemma 2.6.8],

which says that centering does not harm the sub-gaussianity, we also have

∥(Uh − EUh)− (Uh′ − EUh′)∥ψ2

≲

√
log k√
n

∥∥∥(hj)kj=1 −
(
h′
j

)k
j=1

∥∥∥
ℓk∞(ℓd2)

. (B.2.36)

Therefore Dudley’s inequality [32] applies to provide a tail bound on the left-hand

side of (B.2.33). Specifically it follows from a version of Dudley’s inequality [93,

Theorem 8.1.6] that

sup
h∈B1,2

|Uh − EUh| ≲
√
log k√
n

(∫ ∞

0

√
logN(B1,2, ∥·∥ℓk∞(ℓd2)

, η)dη + u diam (B1,2)

)
(B.2.37)
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holds with probability at least 1− 2 exp(−u2). Note that the diameter term in (B.2.37)

is trivially upper-bounded by

diam(B1,2) = sup
h,h′∈B1,2

∥h− h′∥ℓk∞(ℓd2)
≤ 2 .

Moreover, since B1,2 ⊆
√
dB1, where B1 denotes the unit ball in ℓ1, we have∫ ∞

0

√
logN(B1,2, ∥·∥ℓk∞(ℓd2)

, η)dη

≤
∫ ∞

0

√
logN(

√
dB1, ∥·∥ℓk∞(ℓd2)

, η)dη

≲
√
d log3/2 d log2 k ,

where the second inequality follows from Maurey’s empirical method [19] (also see [57,

Lemma 3.4]). By plugging in these estimates to (B.2.37), we obtain that

sup
h∈B1,2

|Uh − EUh| ≲
(
d log3 d log5 k + log(δ−1) log k

n

)1/2

holds with probability at least 1− δ.

Note that C1, . . . , Ck are disjoint except on a boundary, which corresponds to a set

of measure zero. Since the standard multivariate normal distribution is absolutely

continuous relative to the Lebesgue measure, these null sets can be ignored in getting

a tail bound on the infimum of the random process (Vh)h∈B1,2 . Moreover, Vh is written

as Vh = V +
h + V −

h , where

V +
h :=

1

n

n∑
i=1

k∑
j=1

1Cj(xi)⟨xi,hj⟩+

and

V −
h :=

1

n

n∑
i=1

k∑
j=1

1Cj(xi)⟨xi,−hj⟩+ .
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Since (V +
h )h∈B1,2 and (V −

h )h∈B1,2 are in the form of (B.2.32), by Lemma 7, we obtain

that

sup
h∈B1,2

|Vh − EVh| ≤ sup
h∈B1,2

∣∣V +
h − EV +

h

∣∣+ sup
h∈B1,2

∣∣V −
h − EV −

h

∣∣
≲

(
d log3 d log5 k + log(δ−1) log k

n

)1/2

(B.2.38)

holds with probability at least 1− δ/2.

Finally, the assertion is obtained by plugging in the above estimates to (B.2.31).

B.2.5 Proof of Lemma 4

Note that Qh is decomposed into

Qh =
1

n

n∑
i=1

k∑
j=1

1C̃j\Cj(xi)⟨xi,hj⟩

+
1

n

n∑
i=1

k∑
j=1

1Cj\C̃j(xi)⟨xi,−hj⟩ . (B.2.39)

Then the summands in the right-hand side of (B.2.39) are respectively upper-bounded

by

Q′
h :=

1

n

n∑
i=1

k∑
j=1

1C̃j\Cj(xi)⟨xi,hj⟩+

and

Q′′
h :=

1

n

n∑
i=1

k∑
j=1

1Cj\C̃j(xi)⟨xi,−hj⟩+ .

We upper-bound suph∈B1,2
Q′

h and suph∈B1,2
Q′′

h to get an upper bound on suph∈B1,2
Qh

through (B.2.39) by the triangle inequality. Specifically, we show that there exists an

absolute constant c > 0 such that

sup
∥h∥1,2=1

Q′
h ≤ sup

j∈[k],w∈Sd−1

E1C̃j\Cj(g)⟨g,w⟩+

+ c

(
d log3 d log5 k + log(δ−1) log k

n

)1/2

(B.2.40)
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and

sup
∥h∥1,2=1

Q′′
h ≤ sup

j∈[k],w∈Sd−1

E1Cj\C̃j(g)⟨g,w⟩+

+ c

(
d log3 d log5 k + log(δ−1) log k

n

)1/2

hold simultaneously with probability at least 1− δ/2.

Due to the symmetry, it suffices to show that (B.2.40) holds with probability

1− δ/4. By the triangle inequality, it follows that

sup
∥h∥1,2=1

Q′
h ≤ sup

∥h∥1,2=1

EQ′
h + sup

h∈B1,2

|Q′
h − EQ′

h| .

Then, similar to Lemma 3, we derive (B.2.40) through the concentration of the maxi-

mum deviation, that is, suph∈B1,2
|Q′

h − EQ′
h|, and an upper bound on suph∈B1,2

EQ′
h.

The supremum of the expectation is upper-bounded as

EQ′
h = E

k∑
j=1

1C̃j\Cj(g)⟨g,hj⟩+

≤ max
j∈[k],w∈Sd−1

E1C̃j\Cj(g)⟨g,w⟩+
k∑
j=1

∥hj∥2 .

Moreover, since C̃1, . . . , C̃k are disjoint (except on a set of measure zero), by

Lemma 7, we obtain that

sup
h∈B1,2

|Q′
h − EQ′

h| ≲
(
d log3 d log5 k + log(δ−1) log k

n

)1/2

(B.2.41)

holds with probability at least 1− δ/4. This provides the assertion in (B.2.40).
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Appendix C: Proofs for Chapter 3

C.1 Tools

This section collects a set of standard results on concentration inequalities, which

will be used in the proofs of Theorem 8. The following lemma provides the concentration

of extreme singular values of sub-Gaussian matrices.

Lemma 17 ( [93, Theorem 4.6.1]) Let {xi}ni=1 be independent isotropic η-sub-

Gaussian random vectors in Rd. Then there exists an absolute constant C > 0

such that

P

(∥∥∥∥∥ 1n
n∑
i=1

xix
⊤
i − Ip

∥∥∥∥∥ > η2max(ϵ, ϵ2)

)
≤ δ where ϵ =

√
C(d+ log(2/δ))

n
.

Remark 18 It has been shown that Lemma 17 continues to hold when xi is substituted

by ξ = [xi; 1] [37]. Indeed, multiplying a random sign to the last coordinate of ξi does

not modify the outer product ξiξ
⊤
i whereas ξi remains a sub-Gaussian vector.

Furthermore, we also use the results from the standard Vapnik–Chervonenkis (VC)

theory stated in the following lemmas.

Lemma 19 ( [89, Theorem 2]) Let V be a collection of subsets of a set X and

{xi}ni=1 be n independent copies of a random variable x ∈ X . Then it holds for all
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ϵ > 0 and n ≥ 2/ϵ2 that

P

(
sup
V ∈V

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈V } − P(x ∈ V )

∣∣∣∣∣ ≥ ϵ

)
≤ 4ΠV(2n) exp(−nϵ2/16),

where ΠV(n) denotes the growth function defined by

ΠV(n) := max
x1,...,xn∈X

∣∣{(1{x1∈V }, . . . , 1{xn∈V }
)
: V ∈ V

}∣∣ .
Lemma 20 ( [68, Corollary 3.18]) Let V be a collection of subsets having VC

dimension d. Then, for all n ≥ d, the growth function of V is upper-bounded by

ΠV(n) ≤
(en
d

)d
.

The VC dimension of the k-fold intersection has been known in the literature (e.g.

see [11]). We will use the following lemma for the result for the intersection of size

two. Since it was given as an exercise in [68], we provide a proof for the sake of

completeness.

Lemma 21 ( [68, Equation (3.53)]) Let V and W be collections of subsets of a

common set. Then their intersection given by V ∩W := {V ∩W : V ∈ V , W ∈ W}

satisfies that

ΠV∩W(n) ≤ ΠV(n)ΠW(n), ∀n ∈ N.

Proof 15 For any V ∩W ∈ V ∩W, we have

(
1{x1∈V ∩W}, . . . , 1{xn∈V ∩W}

)
=
(
1{x1∈V }, . . . , 1{xn∈V }

)
⊙
(
1{x1∈W}, . . . , 1{xn∈W}

)
,

where ⊙ denotes the pointwise product. Therefore, the claim follows from the definition

of the growth function.
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Lemma 22 Let Pk be the collection of all polytopes constructed by the intersection of

k half spaces in Rd. Then the growth function of Pk satisfies

ΠPk(n) ≤
(

en

d+ 1

)k(d+1)

. (C.1.1)

Proof 16 Let Hj be the collection of all half spaces in Rd for j ∈ [k]. Then, by the

construction of Pk, we have Pk = ∩kj=1Hj. Therefore, by inductive application of

Theorem 21, the growth function of Pk satisfies

ΠPk(n) ≤
k∏
j=1

ΠHj
(n). (C.1.2)

Furthermore, since the VC dimensions of half spaces in Rd is d + 1 (e.g. see [68,

Section 3]), Theorem 20 implies

ΠHj
(n) ≤

(
en

d+ 1

)d+1

, ∀j ∈ [k]. (C.1.3)

The assertion is obtained by plugging in (C.1.3) into (C.1.2).

Finally, the following corollary is a direct consequence of Lemmas 19, 20, and 21.

Corollary 23 Let δ ∈ (0, 1) and Pk be the collection of all polytopes constructed by

the intersection of k half-spaces in Rd. Suppose that {xi}ni=1 are independent copies

of a random vector x ∈ Rd. Then it holds with probability at least 1− δ that

sup
Z∈Pk

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈Z} − P(x ∈ Z)

∣∣∣∣∣ ≤ 4

√
log(4/δ) + 2k(d+ 1) log(2en/(d+ 1))

n
.

(C.1.4)

C.2 Supporting lemmas

In this section, we list lemmas to prove Theorem 8. These lemmas are borrowed

from [85] and [37]. We improve on a subset of these results derived with a streamlined

proof.
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C.2.1 Worst-case extreme eigenvalues of partial sum of outer
products of covariates

A partial sum of the outer products of covariates,
∑

i∈I ξiξ
⊤
i appears frequently

in the proof. The summation indices in I often depend on covariates. The following

lemma by Tan and Vershynin [85] provides a tail bound on the worst-case largest

eigenvalue of
∑

i∈I ξiξ
⊤
i when the cardinality of I is bounded from above.

Lemma 24 ( [85, Theorem 5.7]) Let δ ∈ (0, 1/e), α ∈ (0, 1), and ξi = [xi, 1] ∈

Rd+1 for i ∈ [n]. Suppose that Assumption 1 holds. Then it holds with probability at

least 1− δ that

sup
I:|I|≤αn

λ1

(∑
i∈I

ξiξ
T

i

)
≤ C4(η

2 ∨ 1)
√
αn

for some absolute constant C4 > 0, provided

n ≥
(
d ∨ log(1/δ)

α

)
. (C.2.1)

Remark 25 In the original result, Tan and Vershynin assumed that {ξi}ni=1 are

isotropic η-sub-Gaussian random vectors [85, Theorem 5.7]. Later, Ghosh et al. [37]

showed that the result also applies to the setting in Lemma 24 through the following

argument. The outer product ξiξ
⊤
i remains the same as one multiplies a random sign to

the last entry of ξi which makes the random vector η̃-sub-Gaussian with η̃ = max(η, 1).

Moreover, Ghosh et al. also derived analogous lower tail bound on the smallest

eigenvalue when the index set I exceeds a threshold [37, Lemma 7]. Their proof

strategy adopted an epsilon-net approximation and a union bound argument. Our

lemma below, derived by using the small-ball method [60], provides a streamlined

proof and a sharper bound.
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Lemma 26 Let α, δ ∈ (0, 1) and ξi = [xi, 1] ∈ Rd+1 for i ∈ [n]. Suppose that

Assumption 2 holds. Then there exists an absolute constant C > 0 such that if

n ≥ Cα−2(d log(n/d) ∨ log(1/δ)) (C.2.2)

then it holds with probability at least 1− δ that

inf
I⊂[n]:|I|≥αn

λd+1

(∑
i∈I

ξiξ
⊤
i

)
≥ 2n

γ

(α
4

)1+ζ−1

. (C.2.3)

We compare Lemma 26 to the previous result by Ghosh et al. [37, Lemma 7]

when the parameter γ is treated as a fixed constant. They demonstrated that the

worst-case minimum eigenvalue in the left-hand side of (C.2.3) satisfies Ω(nα1+2ζ−1
) if

n ≥ α−1max(4p, ζ−1(d+1)). On one hand, their requirement in the sample complexity

is less stringent than that in (C.2.2). On the other hand, the lower bound in (C.2.3)

is tighter than theirs by a factor of αζ
−1
. When these two results are applied to derive

Theorem 8 with α substituted by πmin, the resulting sample complexity Õ(π
−4(1+ζ−1)
min d)

by Lemma 26 is smaller than Õ(π
−4(1+2ζ−1)
min d) by [37, Lemma 7]. The gain due to

Lemma 26 is π−4ζ−1

min , which is no less than k4ζ
−1
. For example, if the covariates are

Gaussian ζ = 1/2, then the gain is k8.

Proof 17 Let T > 0 be an arbitrarily fixed threshold. If

N(v) :=
n∑
i=1

1{⟨ξi,v⟩2>T} > n− αn

2
(C.2.4)

then it follows that

1

n

∑
i∈I

⟨ξi,v⟩2 ≥
αT

2
, ∀I ⊂ [n] : |I| ≥ αn.

Therefore, it suffices to show that (C.2.4) holds for all v ∈ Sd with probability 1− δ.

Let H denote the collection of half-spaces in Rd given by {x ∈ Rd : xTu >
√
T − w}
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for all v = [u; w] ∈ Sd. Since the VC dimension of all half-spaces in Rd is at most

d+ 1, by Lemmas 19 and 20, it holds with probability at least 1− δ/2 that

1

n
N(v) ≥ 1

n
EN(v)− C ′

√
d log(n/d) + log(1/δ)

n
, ∀v ∈ Sd, (C.2.5)

where C ′ > 0 is an absolute constant.

Moreover, it follows from Assumption 2 that

1

n
EN(v) = P

(
|⟨x,u⟩+ w|2 > T

)
≥ 1− (Tγ)ζ . (C.2.6)

By plugging in (C.2.6) into (C.2.5), we obtain that

1

n
N(v) ≥ 1− (Tγ)ζ − C ′

√
d log(n/d) + log(1/δ)

n
, ∀w ∈ Sd.

Then (C.2.4) is satisfied for all v ∈ Sd when T = 1
γ

(
α
4

)ζ−1

and C = (4C ′)2. This

completes the proof.

C.2.2 Local estimates

In this section, we present local tail bounds which arise in the proof of the

main result. The following lemma, obtained as a direct consequence of the triangle

inequality and the definition of κ in (3.1.10), provides a basic inequality that will be

used frequently throughout this section.

Lemma 27 Suppose that β ∈ N (β⋆), where N (β⋆) is defined as in (3.1.11). Then

we have

∥(βj − βj′)− (β⋆j − β⋆j′)∥2 ≤ 2ρ∥(β⋆j − β⋆j′)1:d∥2, ∀j ̸= j′ ∈ [k].

Proof 18 Since β ∈ N (β⋆), by the triangle inequality, we have

∥(βj − βj′)− (β⋆j − β⋆j′)∥2 ≤ ∥βj − β⋆j∥2 + ∥βj′ − β⋆j′∥2 ≤ 2κρ, ∀j, j′ ∈ [k].
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Furthermore, it follows from the definition of κ in (3.1.10) that

κ ≤ ∥(β⋆j − β⋆j′)1:d∥2, ∀j ̸= j′ ∈ [k].

Then the assertion follows.

We also use the following lemma by Ghosh et al. [37], which is a consequence of

Assumptions 1 and 2 respectively for the sub-Gaussianity and anti-concentration.

Lemma 28 ( [37, Lemma 17]) Suppose that x ∈ Rd satisfies Assumptions 1 and

2. If

∥v − v⋆∥2 ≤
1

2
∥(v⋆)1:d∥2,

then

P
(
⟨[x; 1],v⋆⟩2 ≤ ⟨[x; 1],v − v⋆⟩2

)
≲

((
∥v − v⋆∥2
∥(v⋆)1:d∥2

)2

· log
(
2∥(v⋆)1:d∥2
∥v − v⋆∥2

))ζ

.

Intuitively, when the parameter vector β belongs to a small neighborhood of the

ground-truth, the partition sets (Cj)kj=1 by β and
(
C⋆j
)k
j=1

by the ground-truth β⋆

will be similar. The next lemmas quantify the empirical measure on the event of

x ∈ Cj ∩ C⋆j′ for distinct indices j and j′, and quadratic forms given as a partial

summation indexed by the indicator functions on this event.

Lemma 29 Let (Cj)kj=1 and
(
C⋆j
)k
j=1

be defined as in (1.2.4) and (3.1.9) respectively

by β and β⋆. Furthermore, let πmin be defined as in (3.1.8) by β⋆. Suppose that

x ∈ Rd and {xi}ni=1 satisfy Assumptions 1 and 2, and that the parameter ρ of N (β⋆)

in (3.1.11) satisfies (3.1.12) for some numerical constant R > 0. Then there exists an

absolute constant C such that if

n ≥ Cπ−2
min · (kd log(n/d) ∨ log(1/δ)) (C.2.7)
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then with probability at least 1− δ

1

n

n∑
i=1

1{xi∈Cj∩C⋆j } ≥
πmin

4
(C.2.8)

holds for all j ∈ [k], β ∈ N (β⋆), and β⋆ ∈ Rd+1.

Proof 19 Note that the left-hand side of (C.2.8) is an empirical measure on the event

x ∈ Cj ∩ C⋆j . We first derive a lower bound on its expectation, which is written as

P
(
x ∈ Cj,x ∈ C⋆j

)
= P

(
x ∈ Cj|x ∈ C⋆j

)
· P
(
x ∈ C⋆j

)
=
(
1− P

(
x ̸∈ Cj|x ∈ C⋆j

))
· P
(
x ∈ C⋆j

)
. (C.2.9)

Then, by the construction of (Cj)kj=1 in (1.2.4), we have

P
(
x ̸∈ Cj|x ∈ C⋆j

)
=

P(x ̸∈ Cj,x ∈ C⋆j )
P(x ∈ C⋆j )

≤ 1

P(x ∈ C⋆j )
∑
j′ ̸=j

P
(
⟨[x; 1],βj′⟩ ≥ ⟨[x; 1],βj⟩, ⟨[x; 1],β⋆j ⟩ ≥ ⟨[x; 1],β⋆j′⟩

)
≤ 1

P(x ∈ C⋆j )
∑
j′ ̸=j

P
(
⟨[x; 1],vj,j′⟩⟨[x; 1],v⋆j,j′⟩ ≤ 0

)
≤ 1

P(x ∈ C⋆j )
∑
j′ ̸=j

P
(
⟨[x; 1],v⋆j,j′⟩2 ≤ ⟨[x; 1],vj,j′ − v⋆j,j′⟩2

)
,

where the second inequality holds since vj,j′ = βj − βj′ and v⋆j,j′ = β⋆j − β⋆j′, and the

last inequality follows from the fact that ab ≤ 0 implies |b| ≤ |a − b| for a, b ∈ R.

Recall that β ∈ N (β⋆) implies ∥vj,j′ − v⋆j,j′∥2 ≤ 2ρ∥(v⋆j,j′)1:d∥2 due to Lemma 27.

Furthermore, one can choose the numerical constant R > 0 in (3.1.12) sufficiently
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small (but independent of k and p) so that 2ρ ≤ 0.1. Then it follows that

P(x ̸∈ Cj′ |x ∈ C⋆j′)
(i)

≲
k

P(x ∈ C⋆j )

(
∥vj,j′ − v⋆j,j′∥22
∥(v⋆j,j′)1:d∥22

log

(
2∥(v⋆j,j′)1:d∥2
∥vj,j′ − v⋆j,j′∥2

))ζ

(ii)

≤ k

P(x ∈ C⋆j )

(
(2ρ)2 log

(
1

ρ

))ζ
(iii)

≤ k

πmin

(
R2π

2ζ−1(1+ζ−1)
min

k2ζ−1

)ζ

≤ R2ζπ1+2ζ−1

min

k
, (C.2.10)

where (i) follows from Lemma 28; (ii) holds since a log1/2(2/a) is monotone increasing

for a ∈ (0, 1]; (iii) follows from the fact that a ≤ b
2
log−1/2(1/b) implies a log1/2(2/a) ≤

b for b ∈ (0, 0.1]. Since πmin ≤ 1
k
, once again R > 0 can be made sufficiently small so

that the right-hand side of (C.2.10) is at most 1
2
. Then plugging in this upper bound

by (C.2.10) into (C.2.9) yields

P(x ∈ Cj′ ∩ C⋆j′) ≥
1

2
· P(x ∈ C⋆j′). (C.2.11)

It remains to show the concentration of the left-hand side of (C.2.8) around the

expectation. Recall that Cj and C⋆j are constructed as the intersection of at most k

half-spaces. Then Cj ∩ C⋆j belongs to the set P2k defined in Lemma 22 and, hence, we

have

sup
j∈[k],β∈N (β⋆)

β⋆∈Rd+1

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈Cj∩C⋆j } − P(x ∈ Cj ∩ C⋆j )

∣∣∣∣∣ ≤ sup
Z∈P2k

∣∣∣∣∣ 1n
n∑
i=1

1{xi∈Z} − P(x ∈ Z)

∣∣∣∣∣ .
Therefore, it follows from Corollary 23 that with probability at least 1− δ

1

n

n∑
i=1

1{xi∈Cj∩C⋆j } ≥ P(x ∈ Cj ∩ C⋆j )− 4

√
log(4/δ) + 2k(d+ 1) log(2en/(d+ 1))

n

(C.2.12)
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holds for all j ∈ [k], β ∈ N (β⋆), and β⋆ ∈ Rd+1. The first summand in the right-hand

side of (C.2.12) is bounded from below as in (C.2.11). Then choosing C in (C.2.7)

large enough makes the second summand less than half of the lower bound in (C.2.11).

This completes the proof.

Next, the following lemma provides a slightly improved upper bound compared to

the analogous previous result [37, Lemma 6]. Moreover, Lemma 30 is derived by using

the VC theory and provides a streamlined and shorter proof compared to previous

work [37].

Lemma 30 Suppose that Assumptions 1 and 2 hold, and that ρ satisfies (3.1.12) for

some numerical constant R > 0. Let δ ∈ (0, 1/e). There exists an absolute constant C

such that if

n ≥ Ck4π
−4(1+ζ−1)
min (log(k/δ) ∨ d log(n/d)) (C.2.13)

then with probability at least 1− δ

1

n

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨[xi; 1],v⋆j,j′⟩2 ≤

2

5γk

(πmin

16

)1+ζ−1

∥vj,j′ − v⋆j,j′∥22 (C.2.14)

holds for all j ∈ [k], β ∈ N (β⋆), and β⋆ ∈ Rd+1 where vj,j′ = βj − βj′ and

v⋆j,j′ = β⋆j − β⋆j′.

The previous result [37, Lemma 6] showed that with probability at least 1−δ the left-

hand side of (C.2.14) is bounded from above by Õ((π1+ζ−1

min /k) logζ/2+1(k/(πmin
1+ζ−1

)))

if n ≥ O(max(p, log(1/δ))). In contrast, Lemma 30 provides a smaller upper bound

by a logarithmic factor at the cost of increased sample complexity. However, the

condition in (C.2.13) is implied by another sufficient condition from another step of

the analysis; hence, it does not affect the main result in Theorem 8.
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Proof 20 By the definition of (Cj)kj=1 in (1.2.4), it holds for any j ̸= j′ that

xi ∈ Cj ∩ C⋆j′ ⇐⇒ ⟨ξi,βj⟩ ≥ ⟨ξi,βj′⟩, ⟨ξi,β⋆j′⟩ ≥ ⟨ξi,β⋆j ⟩

⇐⇒ ⟨ξi,vj,j′⟩ ≥ 0, ⟨ξi,v⋆j,j′⟩ ≤ 0

=⇒ ⟨ξi,vj,j′⟩⟨ξi,v⋆j,j′⟩ ≤ 0.

(C.2.15)

Furthermore, by Lemma 27, every β ∈ N (β⋆) satisfies ∥vj,j′ − v⋆j,j′∥2 ≤ 2ρ∥(v⋆j,j′)1:d∥2.

Therefore, it suffices to show that with probability at least 1− δ

1

n

n∑
i=1

1{⟨ξi,v⟩⟨ξi,v⋆⟩≤0}⟨ξi,v⋆⟩2 ≤
2

5γk

(πmin

16

)1+ζ−1

∥v − v⋆∥22 (C.2.16)

holds for all (v,v⋆) ∈M, where

M := {(v,v⋆) ∈ Rd+1 ×Rd+1 : ∥v − v⋆∥ ≤ 2ρ∥(v)1:d∥2}.

Since ab ≤ 0 implies |b| ≤ |a− b| for a, b ∈ R, each summand in the left-hand side

of (C.2.16) is upper-bounded by

1{⟨ξi,v⟩⟨ξi,v⋆⟩≤0}⟨ξi,v⋆⟩2 ≤ 1{⟨ξi,v⋆⟩2≤⟨ξi,v−v⋆⟩2}⟨ξi,v⋆⟩2

≤ 1{⟨ξi,v⋆⟩2≤⟨ξi,v−v⋆⟩2}⟨ξi,v − v⋆⟩2.

Before we proceed to the next step, for brevity, we introduce a shorthand notation given

by

Sv,v⋆ := {ξ ∈ Rd+1 : ⟨ξ,v − v⋆⟩2 ≥ ⟨ξ,v⋆⟩2}. (C.2.17)

Then the left-hand side of (C.2.16) is bounded from above as

1

n

n∑
i=1

1{⟨ξi,v⟩⟨ξi,v⋆⟩≤0}⟨ξi,v⋆⟩2 ≤
1

n

n∑
i=1

1{ξi∈Sv,v⋆}⟨ξi,v − v⋆⟩2.

Next, we derive a tail bound on the empirical measure 1
n

∑n
i=1 1{ξi∈Sv,v⋆} on the event

for ξ ∈ Sv,v⋆. Let P2 denote the collection of all polytopes given by the intersections
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of two half-spaces. Then Sv,v⋆ belongs to P2 ∪ P2. It follows from Lemma 22 and [24,

Theorem A] that

ΠP2∪P2(n) ≤
(

en

C ′(d+ 1)

)C′(d+1)

(C.2.18)

for some absolute constant C ′. Therefore, by Lemma 19 and (C.2.18), we obtain that

sup
(v,v⋆)∈M

∣∣∣∣∣ 1n
n∑
i=1

1{ξi∈Sv,v⋆} − P(ξ ∈ Sv,v⋆)

∣∣∣∣∣ ≲
√

log(1/δ) + d log(n/d)

n
(C.2.19)

holds with probability at least 1− δ
2
.

Similar to (C.2.10), we obtain an upper bound on the probability by using Lemma 28

as follows:

sup
(v,v⋆)∈M

P(ξ ∈ Sv,v⋆) ≤ C1

(
(2ρ)2 log

(
1

ρ

))ζ
≤ C1

(
R2π

2ζ−1(1+ζ−1)
min

k2ζ−1

)ζ

≤ C1R
2ζπ2+2ζ−1

min

k2︸ ︷︷ ︸
α

(C.2.20)

where C1 > 0 is an absolute constant. By choosing the numerical constant C > 0 in

(C.2.13) sufficiently large, we obtain from (C.2.19) and (C.2.20) that

P

(
sup

(v,v⋆)∈M

1

n

n∑
i=1

1{ξi∈Sv,v⋆} >
α

2

)
≤ δ

2
. (C.2.21)

Furthermore, one can choose the numerical constant R > 0 small enough so that

α ∈ (0, 1). Then, since (C.2.13) and (3.1.12) imply (C.2.1), by Lemma 24, it holds

with probability at least 1− δ/2 that

sup
I:|I|≤αn

2

∥∥∥∥∥∑
i∈I

ξiξ
⊤
i

∥∥∥∥∥ ≲ (η2 ∨ 1)
√
αn. (C.2.22)
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Finally, by combining the results in (C.2.21) and (C.2.22), we obtain that with

probability at least 1− δ

1

n

n∑
i=1

1{⟨ξi,v⟩⟨ξi,v⋆⟩≤0}⟨ξi,v⋆⟩2 ≤ sup
I:|I|≤αn

2

1

n

∑
i∈I

⟨ξi,v − v⋆⟩2

≤ sup
I:|I|≤αn

2

∥∥∥∥∥ 1n∑
i∈I

ξiξ
⊤
i

∥∥∥∥∥ · ∥v − v⋆∥22

≤ C2(η
2 ∨ 1)Rζ

(
π
(1+ζ−1)
min

k

)
· ∥v − v⋆∥22

holds for all (v,v⋆) ∈ M, where C2 is an absolute constant. By choosing R > 0

sufficiently small so that

C2(η
2 ∨ 1)Rζ ≤ 2

5γ

(
1

16

)1+ζ−1

,

we obtain the assertion in (C.2.16).

C.3 Proof of Theorem 8

The loss function ℓ(β) is decomposed as

ℓ(β) =
1

2n

(
max
j∈[k]
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩ − zi

)2

=
1

2n

n∑
i=1

(
max
j∈[k]
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩

)2

︸ ︷︷ ︸
ℓclean(β)

−

(
1

n

n∑
i=1

zi

(
max
j∈[k]
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩

)
− 1

2n

n∑
i=1

z2i

)
︸ ︷︷ ︸

ℓnoise(β)

.

Then the partial gradient of ℓ(β) with respect to βl is written as

∇βlℓ(β) =
1

n

n∑
i=1

1{xi∈Cl}

(
max
j∈[k]
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩ − zi

)
ξi

=
1

n

n∑
i=1

1{xi∈Cl}

(
max
j∈[k]
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩

)
ξi︸ ︷︷ ︸

∇βl
ℓclean(β)

− 1

n

n∑
i=1

zi1{xi∈Cl}ξi︸ ︷︷ ︸
∇βl

ℓnoise(β)

(C.3.1)
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where C1, . . . , Ck are determined by β as in (1.2.4).

In the remainder of the proof, we will use the following shorthand notation to

denote the pairwise difference of parameter vectors and the probability measure on

the largest partition by the ground-truth model:

vj,j′ := βj − βj′ , v⋆j,j′ := β⋆j − β⋆j′ , and πmax := max
j∈[k]

P
(
x ∈ C⋆j

)
.

Below we show that the following lemmas hold under the condition in (3.1.14). The

proof is provided in Appendix C.3.1.

Lemma 31 Under the hypothesis of Theorem 8, if (3.1.14) is satisfied, then with

probability at least 1− δ the following inequalities hold for all j ∈ [k], β⋆ ∈ Rk(d+1),

and βt ∈ N (β⋆):

⟨∇βjℓ
clean(βt),βtj − β⋆j ⟩ ≥

2

γ

(πmin

16

)1+ζ−1
(
∥βtj − β⋆j∥22 −

1

10k

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

)
,

(C.3.2)

∥∇βjℓ
clean(βt)∥22 ≲

(
πmax + π

2(1+ζ−1)
min

)∥∥βtj − β⋆j
∥∥2
2
+
π
2(1+ζ−1)
min

k2

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2
,

(C.3.3)

and ∥∥∇βjℓ
noise(βt)

∥∥
2
≲
σ
√
kd log(n/d) + log(1/δ)√

n
. (C.3.4)

The remainder of the proof shows that the assertion of the theorem is obtained

from (C.3.2), (C.3.3) and (C.3.4) via the following three steps.

Step 1: We prove by induction that all iterates remain within the neighborhood

N (β⋆). Suppose that βt ∈ N (β⋆) holds for a fixed t ∈ N. By the triangle inequality,
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for any j ∈ [k], the next iterate βt+1 satisfies

∥βt+1
j − β⋆j∥2 = ∥βtj − µ∇βjℓ(β

t)− β⋆j∥2

≤ ∥βtj − µ∇βjℓ
clean(βt)− β⋆j∥2︸ ︷︷ ︸
Aclean

+µ∥∇βjℓ
noise(βt)∥2︸ ︷︷ ︸
Anoise

. (C.3.5)

Then it remains to show

∥βt+1
j − β⋆j∥2 ≤ Aclean + Anoise ≤ κρ, ∀j ∈ [k]. (C.3.6)

Note that the first summand in the right-hand side of (C.3.5) satisfies

A2
clean = ∥βtj − β⋆j∥22 − 2µ⟨∇βjℓ

clean(βt),βtj − β⋆j ⟩+ µ2∥∇βjℓ
clean(βt)∥22.

Therefore, it follows from (C.3.2) and (C.3.3) that

A2
clean ≤

∥∥βtj − β⋆j
∥∥2
2
− 4µ

γ

(
1

16

)1+ζ−1

π1+ζ−1

min

(
∥βtj − β⋆j∥22 −

1

10k

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

)

+ µ2C1

((
πmax + π

2(1+ζ−1)
min

)∥∥βtj − β⋆j
∥∥2
2
+
π
2(1+ζ−1)
min

k2

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

)

=

(
1− 4

γ

(
1

16

)1+ζ−1

µπ1+ζ−1

min + C1µ
2
(
πmax + π

2(1+ζ−1)
min

))
∥βtj − β⋆j∥22

+

 2
γ

(
1
16

)1+ζ−1

µπ1+ζ−1

min

5k
+
C1µ

2π
2(1+ζ−1)
min

k2

 ∑
j′∗:j′ ̸=j

∥∥vtj,j − v⋆j,j′
∥∥2
2
. (C.3.7)

We set the step size µ to be

µ =
ωπ1+ζ−1

min

τ
(C.3.8)

where ω is a constant that will be specified later and τ is given by

τ := πmax + π
2(1+ζ−1)
min . (C.3.9)
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Putting the choices of µ and τ respectively by (C.3.8) and (C.3.9) into (C.3.7) yields

A2
clean ≤

1−
4
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

τ
+
C1ω

2π
2(1+ζ−1)
min

(
πmax + π

2(1+ζ−1)
min

)
τ 2

 ∥βtj − β⋆j∥22

+

 2
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

5τk
+
C1ω

2π
4(1+ζ−1)
min

τ 2k2

 ∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

≤

1−
4
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

τ
+
C1ω

2π
2(1+ζ−1)
min

τ

 ∥βtj − β⋆j∥22

+

 2
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

5τ
+
C1w

2π
2(1+ζ−1)
min

τ

 max
1≤j ̸=j′≤k

∥∥vtj,j′ − v⋆j,j′
∥∥2
2
.

(C.3.10)

Next, since βt ∈ N (β⋆), by the definition of N (β⋆) in (3.1.11), we have

max
j∈[k]
∥βtj − β⋆j∥2 ≤ κρ. (C.3.11)

Furthermore, by Lemma 27, we also have

max
1≤j ̸=j′≤k

∥∥vtj,j′ − v⋆j,j′
∥∥
2
≤ 2κρ. (C.3.12)

Then plugging in (C.3.11) and (C.3.12) into (C.3.10) yields

(κρ)−2A2
clean ≤ 1− π

2(1+ζ−1)
min ω

τ

(
2

γ

(
1

16

)1+ζ−1 (
2− 4

5

)
+ C1ω (1 + 4)

)

≤ 1− π
2(1+ζ−1)
min

τ
· ω

 12
γ

(
1
16

)1+ζ−1

5
+ 5ωC1


≤ 1− π

2(1+ζ−1)
min

τ
· ω

 12
γ

(
1
16

)1+ζ−1

5


︸ ︷︷ ︸

c0

,

(C.3.13)

which is rewritten as

A2
clean ≤ (κρ)2

(
1− c0ωπ

2(1+ζ−1)
min

τ

)
. (C.3.14)
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For fixed γ and ζ, c0 is a positive numerical constant. Due to the choice of τ by

(C.3.9), we have

π
2(1+ζ−1)
min

τ
=

π
2(1+ζ−1)
min

πmax + π
2(1+ζ−1)
min

< 1,

Furthermore, one can choose ω > 0 sufficiently small so that ωc0 < 1. Then the upper

bound in the right-hand side of (C.3.14) is valid as a positive number.

If Anoise is upper-bounded as

Anoise ≤ κρ
c0ωπ

2(1+ζ−1)
min

2τ
, (C.3.15)

then, by the elementary inequality 1−
√
1− α ≥ α/2 that holds for any α ∈ (0, 1),

we have

Anoise ≤ κρ

1−

√
1− c0ωπ

2(1+ζ−1)
min

τ

 . (C.3.16)

Then (C.3.14) and (C.3.16) yield (C.3.6). Therefore, it suffices to show that (C.3.15)

holds.

Due to the inequality in (C.3.4), we have

∥∥∇βjℓ
noise(βt)

∥∥
2
≲
σ
√
kd log(n/d) + log(1/δ)√

n
, ∀j ∈ [k].

By the choice of µ in (C.3.8), we obtain an upper bound on Anoise given by

Anoise = µ
∥∥∇βjℓ

noise(βt)
∥∥
2
≲
ωπ1+ζ−1

min

τ
·
σ
√
kd log(n/d) + log(1/δ)√

n
. (C.3.17)

The condition in (3.1.14) implies

n ≥ C · σ
2π

−2(1+ζ−1)
min (kd log(n/d) + log(1/δ))

κ2ρ2
. (C.3.18)

One can choose the absolute constant C > 0 in (3.1.14) and (C.3.18) as large enough

so that (C.3.18) and (C.3.17) imply (C.3.15). This completes the induction argument
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in Step 1.

Step 2: Next we show that all iterates also satisfy

∥∥βt+1 − β⋆
∥∥
2
≤
√
1− ν

∥∥βt − β⋆
∥∥
2
+ C ′µσ

√
k (kd log(n/d) + log(1/δ))

n
. (C.3.19)

We use the fact that βt ∈ N (β⋆), which has been shown in Step 1. By the update rule

of gradient descent and the triangle inequality, the left-hand side of (C.3.19) satisfies

∥βt+1 − β⋆∥2 = ∥βt − µ∇βℓ(β
t)− β⋆∥2

≤ ∥βt − µ∇βℓ
clean(βt)− β⋆∥2 + µ∥∇βℓ

noise(βt)∥2

=

√√√√ k∑
j=1

∥βtj − β⋆j − µ∇βjℓ
clean(βt)∥22︸ ︷︷ ︸

Bclean

+

√√√√µ2

k∑
j=1

∥∇βjℓ
noise(βt)∥22︸ ︷︷ ︸

Bnoise

.

(C.3.20)

Below we derive an upper bound on each of the summands on the right-hand side of

(C.3.20). First we show that

B2
clean ≤ (1− ν)

k∑
j=1

∥∥βtj − β⋆j
∥∥2
2
. (C.3.21)

Since βt ∈ N (β⋆), the inequality in (C.3.21) holds if there exist constants µ, λ ∈ (0, 1)

such that

k∑
j=1

⟨∇βjℓ
clean(βt),βj−β⋆j ⟩ ≥

µ

2

k∑
j=1

∥∇βjℓ
clean(βt)∥22+

λ

2

k∑
j=1

∥βtj−β⋆j∥22, ∀βt ∈ N (β⋆).

(C.3.22)
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Indeed, the condition in (C.3.22) and βt ∈ N (β⋆) imply

B2
clean =

k∑
j=1

∥βtj − µ∇βjℓ
clean(βt)− β⋆j∥22

=
k∑
j=1

∥βtj − β⋆j∥22 +
k∑
j=1

µ2∥∇βjℓ
clean(βt)∥22 − 2µ

k∑
j=1

⟨βtj − β⋆j ,∇βjℓ
clean(βt)⟩

≤
k∑
j=1

∥βtj − β⋆j∥22 − µλ
k∑
j=1

∥βtj − β⋆j∥22

= (1− µλ)
k∑
j=1

∥βtj − β⋆j∥22. (C.3.23)

Next we show that (C.3.22) holds. Due to (C.3.2) and the elementary inequality

∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22, it holds for all j ∈ [k] that

⟨∇βjℓ
clean(βt),βtj − β⋆j ⟩

≥ 2

γ

(
1

16

)1+ζ−1

π1+ζ−1

min

(
∥βtj − β⋆j∥22 −

1

5k

∑
j′:j′ ̸=j

(∥∥βtj − β⋆j
∥∥2
2
+
∥∥βtj′ − β⋆j′

∥∥2
2

))
.

(C.3.24)

By taking the summation of (C.3.24) over j ∈ [k], we obtain

k∑
j=1

⟨∇βjℓ
clean(βt),βtj − β⋆j ⟩ ≥

6
γ

(
1
16

)1+ζ−1

π1+ζ−1

min

5

k∑
j=1

∥βtj − β⋆j∥22. (C.3.25)

Furthermore, by using (C.3.3) and the elementary inequality ∥a+b∥22 ≤ 2∥a∥22+2∥b∥22

again, we obtain

∥∇βjℓ
clean(βt)∥22 ≤ C1

(
πmax + π

2(1+ζ−1)
min

)
∥βtj − β⋆j∥22

+
2C1π

2(1+ζ−1)
min

k2

∑
j′:j′ ̸=j

(
∥βtj − β⋆j

∥∥2
2
+
∥∥βtj′ − β⋆j′∥22

)
.

(C.3.26)

Summing the equation in (C.3.26) over j ∈ [k] yields
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k∑
j=1

∥∇βjℓ
clean(βt)∥22 ≤ C1

(
πmax + π

2(1+ζ−1)
min +

4(k − 1)π
2(1+ζ−1)
min

k2

)
k∑
j=1

∥∥βtj − β⋆j
∥∥2
2

≤ C1

(
πmax + π

2(1+ζ−1)
min + 4π

2(1+ζ−1)
min

) k∑
j=1

∥∥βtj − β⋆j
∥∥2
2
.

(C.3.27)

By combining (C.3.25) and (C.3.27) with µ as in (C.3.8), we obtain a sufficient

condition for (C.3.22) given by

6
γ

(
1
16

)1+ζ−1

π1+ζ−1

min

5
≥
ωπ1+ζ−1

min C1

(
πmax + 5π

2(1+ζ−1)
min

)
2
(
πmax + π

2(1+ζ−1)
min

) +
λ

2
. (C.3.28)

By choosing ω > 0 small enough, (C.3.28) is satisfied when λ is chosen as

λ = min(c2π
1+ζ−1

min , 1) (C.3.29)

for an absolute constant c2 > 0. Hence, we have shown that the condition in (C.3.22)

holds with µ and λ specified by (C.3.8) and (C.3.29).

Next we consider the second summand on the right-hand side of (C.3.20). The

inequality in (C.3.4) implies

B2
noise = µ2

k∑
j=1

∥∥∇βjℓ
noise(βt)

∥∥2
2
≲
µ2σ2k(kd log(n/d) + log(1/δ))

n
. (C.3.30)

Finally, plugging in (C.3.23) and (C.3.30) into (C.3.20) provides the assertion

(C.3.19). This completes the proof of Step 2.
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Step 3: We finish the proof of Theorem 8 by applying the results in Step 1 and Step 2.

Plugging in the expression of ν = µλ with µ and λ as in (C.3.8) and (C.3.29) provides

∥βt − β⋆∥2 ≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C2 ·
µσ

1−
√
1− µλ

·
√
k (kd log(n/d) + log(1/δ))

n

(a)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C2 ·
2σ

λ
·
√
k (kd log(n/d) + log(1/δ))

n
(b)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C3 ·
σ

πmax

·
√
k (kd log(n/d) + log(1/δ))

n

(c)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C3 · σk
√
k (kd log(n/d) + log(1/δ))

n
,

where (a) follows from the elementary inequality
√
1− t < 1− t/2 for any t ∈ (0, 1);

(b) holds by the choice of τ in (C.3.9); (c) holds since π−1
max ≤ k.

C.3.1 Proof of Lemma 31

We show that each of (C.3.2), (C.3.3), and (C.3.4) holds with probability at least

1 − δ/3. We also note that for simplicity, we proceed on the proofs using β and

vj,j′ . Therefore, the assertions in (C.3.2), (C.3.3), and (C.3.4) can be completed by

substituting β and vj,j′ with βt and vtj,j′ respectively.

Proof of (C.3.2): We show that (C.3.2) holds with high probability under the

following condition

n ≥ C1 (log(k/δ) ∨ d log(n/d)) k4π−4(1+ζ−1)
min , (C.3.31)

which is implied by the assumption in (3.1.14). We proceed with the proof under the

following three events, each of which holds with probability at least 1− δ/9. First,

since (C.3.31) implies (C.2.13), by Lemma 30, it holds with probability at least 1−δ/9
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that

1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,v⋆j,j′⟩2

≤ 2

5γk

(πmin

16

)1+ζ−1 ∑
j′:j′ ̸=j

∥vj,j′ − v⋆j,j′∥22, ∀j ∈ [k], ∀β ∈ N (β⋆), ∀β⋆ ∈ Rd+1.

(C.3.32)

Moreover, since (C.3.31) also implies (C.2.7), by Lemma 29, it holds with probability

at least 1− δ/3 that

1

n

n∑
i=1

1{xi∈Cj∩C⋆j } ≥
πmin

4
, ∀j ∈ [k], ∀β ∈ N (β⋆), ∀β⋆ ∈ Rd+1. (C.3.33)

Lastly, since (C.3.31) is a sufficient condition to invoke Lemma 26 with α = πmin/4, it

holds with probability at least 1− δ/9 that

inf
I⊂[n]:|I|≥πminn

4

λd+1

(
1

n

∑
i∈I

ξiξ
⊤
i

)
≥ 2

γ

(πmin

16

)1+ζ−1

. (C.3.34)

Therefore, we have shown that (C.3.32), (C.3.33), and (C.3.34) hold with probability

at least 1− δ/3. The remainder of the proof is conditioned on the event that {ξi}ni=1

satisfy (C.3.32), (C.3.33), and (C.3.34).

Let β⋆ ∈ Rd+1, β ∈ N (β⋆), and j ∈ [k] be arbitrarily fixed. For brevity, we

will use the shorthand notation hj := βj − β⋆j . Then the left-hand side of (C.3.2) is

rewritten as

⟨∇βjℓ
clean(β),hj⟩ =

1

n

n∑
i=1

1{xi∈Cj}

(
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩

)
⟨ξi,hj⟩

=
1

n

k∑
j′=1

n∑
i=1

1{xi∈Cj∩C⋆j }⟨ξi,βj − β⋆j′⟩⟨ξi,hj⟩

=
1

n

n∑
i=1

1{xi∈Cj∩C⋆j }⟨ξi,hj⟩
2 +

1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,βj − β⋆j′⟩⟨ξi,hj⟩.
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By the inequality of arithmetic and geometric means, we have

⟨ξi,βj − β⋆j′⟩⟨ξi,hj⟩ = ⟨ξi,βj − β⋆j + β⋆j − β⋆j′⟩⟨ξi,hj⟩

= ⟨ξi,hj + v⋆j,j′⟩⟨ξi,hj⟩

≥ ⟨ξi,hj⟩
2

2
−
⟨ξi,v⋆j,j′⟩2

2
≥ −
⟨ξi,v⋆j,j′⟩2

2
.

Therefore, we obtain

⟨∇βjℓ
clean(β),hj⟩ ≥

1

n

n∑
i=1

1{xi∈Cj∩C⋆j }⟨ξi,hj⟩
2

︸ ︷︷ ︸
(∗)

− 1

2n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,v⋆j,j′⟩2︸ ︷︷ ︸

(∗∗)

.

(C.3.35)

By (C.3.33) and (C.3.34), the first summand in the right-hand side of (C.3.35) is

bounded from below as

(∗) ≥ 2

γ

(πmin

16

)1+ζ−1

∥hj∥22. (C.3.36)

Moreover, due to (C.3.32), (∗∗) is bounded from above as

(∗∗) ≤ 1

5γk

(πmin

16

)1+ζ−1 ∑
j′:j′ ̸=j

∥vj,j′ − v⋆j,j′∥22. (C.3.37)

Then, plugging in (C.3.36) and (C.3.37) into (C.3.35) provides

⟨∇βjℓ(β),hj⟩

≥ 2

γ

(πmin

16

)1+ζ−1

∥hj∥22 −
1

5γ

(
1

16

)1+ζ−1
(
π1+ζ−1

min

k

) ∑
j′:j′ ̸=j

∥vj,j′ − v⋆j,j′∥22

=
2

γ

(πmin

16

)1+ζ−1
(
∥hj∥22 −

1

10k

∑
j′:j′ ̸=j

∥∥vj,j′ − v⋆j,j′
∥∥2
2

)
.

This completes the proof.

Proof of (C.3.3): The proof is based on the condition

n ≥ C2 (log(k/δ) ∨ d log(n/d)) k4π−4(1+ζ−1)
min , (C.3.38)
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which is implied by (3.1.14). We will proceed under the following four events, each of

which holds with probability at least 1− δ/12. First, since (C.3.38) implies (C.2.13),

by Lemma 30, (C.3.32) holds with probability at least 1− δ/12. Next, since
(
C⋆j
)k
j=1

are included in the set of intersection of k half-spaces in Rd, by Corollary 23 and

(C.3.38), it holds with probability at least 1− δ/12 that

1

n

n∑
i=1

1{xi∈C⋆j } ≤ 2P
(
x ∈ C⋆j

)
, ∀j ∈ [k]. (C.3.39)

We also consider the event given by

n∑
i=1

1{xi∈Cj∩C⋆j} ≤ 2nc

(
π
2(1+ζ−1)
min

k2

)
, ∀j ̸= j′, ∀β ∈ N (β⋆) (C.3.40)

for some numerical constant c ∈ (0, 1). Note that (C.3.38) is a sufficient condition

to invoke Lemma 30 with probability at least 1− δ/12. Therefore, all intermediate

steps in the proof of Lemma 30 hold. In particular, due to the inclusion argument in

(C.2.15), xi ∈ Cj ∩ C⋆j′ implies ξi = [xi; 1] ∈ Svj,j′ ,v⋆j,j′ for any j ̸= j′, where Svj,j′ ,v⋆j,j′ is

defined in (C.2.17). Then, (C.2.21) with α as in (C.2.20) implies (C.3.40). The last

event is defined by

max
I⊂[n]

|I|≤2αn

λmax

(
1

n

∑
i∈I

ξiξ
T

i

)
≤ C4(η

2 ∨ 1)
√
α, ∀α ∈

{
cπ

2(1+ζ−1)
min

k2

}
∪
{
P(x ∈ C⋆j )

}k
j=1

.

(C.3.41)

By (C.3.38), Lemma 24, and the union bound over j ∈ [k], (C.3.41) holds with

probability at least 1−δ/12. Thus far we have shown that (C.3.32), (C.3.39), (C.3.40),

and (C.3.41) hold with probability at least 1− δ/3. We proceed conditioned on the

event that {ξi}ni=1 satisfy these conditions.

Let β⋆ ∈ Rd+1, β ∈ N (β⋆), and j ∈ [k] be arbitrarily fixed. Then the partial

gradient of ℓclean(β) with respect to the jth block βj ∈ Rd+1 of β ∈ Rk(d+1) is written

151



as

∇βjℓ
clean(β) =

1

n

n∑
i=1

1{xi∈Cj}

(
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩

)
ξi

=
1

n

∑
j′∈[k]

n∑
i=1

1{xi∈Cj∩C⋆j′}
(
⟨ξi,βj⟩ − ⟨ξi,β⋆j′⟩

)
ξi

=
1

n

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,βj − β⋆j ⟩ξi +

1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,βj − β⋆j′⟩ξi.

(C.3.42)

By using the identity ⟨ξi,βj −β⋆j′⟩ = ⟨ξi,βj −β⋆j +β⋆j −β⋆j′⟩, (C.3.42) is rewritten as

∇βjℓ
clean(β) =

1

n

n∑
i=1

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩ξi +
1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,β⋆j − β⋆j′⟩ξi.

(C.3.43)

Then it follows from (C.3.43) that

∥∥∇βjℓ
clean(β)

∥∥2
2

(i)

≤ 2

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩ξi

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥ 1n ∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,β⋆j − β⋆j′⟩ξi

∥∥∥∥∥
2

2

(ii)

≤ 2 ·

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}ξiξ
⊤
i

∥∥∥∥∥ · 1n
n∑
i=1

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩2

+ 2 ·
∑
j′:j′ ̸=j

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj∩C}ξiξ
⊤
i

∥∥∥∥∥ · 1n
n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,β⋆j − β⋆j′⟩2

≤ 2 ·

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}ξiξ
⊤
i

∥∥∥∥∥
2

︸ ︷︷ ︸
(a)

·∥βj − β⋆j∥22

+ 2 · max
j′:j′ ̸=j

∥∥∥∥∥ 1n
n∑
i=1

1{xiCj∩C⋆j′}
ξiξ

⊤
i

∥∥∥∥∥︸ ︷︷ ︸
(b)

· 1
n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,β⋆j − β⋆j′⟩2︸ ︷︷ ︸

(c)

, (C.3.44)

where (i) holds since ∥a+ b∥22 ≤ 2∥a∥22+2∥b∥22 and (ii) holds since Cj ∩C⋆l and Cj ∩C⋆l′

are disjoint for any l ̸= l′ ∈ [k]. An upper bound on (b) is provided by (C.3.32). It

remains to derive upper bounds on (a) and (c).
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First, we derive an upper bound on (a). By the triangle inequality, we have

√
(a) ≤

k∑
j′=1

∥∥∥∥∥
n∑
i=1

1{xi∈Cj∩C⋆j′}
ξiξ

T

i

∥∥∥∥∥ . (C.3.45)

For the summand indexed by j′ = j, due to the set inclusion Cj ∩ C⋆j ⊂ C⋆j , we obtain

that

n∑
i=1

1{xi∈Cj∩C⋆j }ξiξ
T

i ⪯
n∑
i=1

1{xi∈C⋆j }ξiξ
T

i .

Therefore, by (C.3.39) and (C.3.41), we have∥∥∥∥∥ 1n
n∑
i=1

1{xi∈C⋆j }ξiξ
T

i

∥∥∥∥∥ ≤ max
I:|I|≤2nP(x∈C⋆j )

∥∥∥∥∥ 1n∑
i∈I

ξiξ
T

i

∥∥∥∥∥
≲ (η2 ∨ 1)

√
P(x ∈ C⋆j )

≤ (η2 ∨ 1)
√
πmax,

(C.3.46)

where the last inequality holds by the definition of πmax. Similarly, by (C.3.40) and

(C.3.41), we have∥∥∥∥∥
n∑
i=1

1{xi∈Cj∩C⋆j′}
ξiξ

T

i

∥∥∥∥∥ ≲ (η2 ∨ 1)
√
c

(
π1+ζ−1

min

k

)
, ∀j′ ̸= j. (C.3.47)

Then by plugging in (C.3.46) and (C.3.47) to (C.3.45), we obtain

(a) ≲
(
πmax + π

2(1+ζ−1)
min

)∥∥βj − β⋆j
∥∥2
2

for an absolute constant C1. Finally, since an upper bound on (b) is given by (C.3.47),

plugging in the obtained upper bounds to (C.3.44) provides the assertion.
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Proof of (C.3.4): By the variational characterization of the Euclidean norm and

the triangle inequality, we have

∥∥∇βjℓ
noise(β)

∥∥
2
= sup

[u; w]∈Bd+1
2

∣∣∣∣∣ 1n
n∑
i=1

zi1{xi∈Cj}(⟨xi,u⟩+ w)

∣∣∣∣∣
≤ sup

u∈Bp2

∣∣∣∣∣ 1n
n∑
i=1

zi1{xi∈Cj}⟨xi,u⟩

∣∣∣∣∣︸ ︷︷ ︸
(A)

+ sup
|w|≤1

∣∣∣∣∣ 1n
n∑
i=1

zi1{xi∈Cj}w

∣∣∣∣∣︸ ︷︷ ︸
(B)

, (C.3.48)

where Bd
2 denotes the unit ball in ℓd2. Note that (A) and (B) depend on β only through

Cj, which are determined by β according to (1.2.4). For any β and any j ∈ [k], the

corresponding Cj is given as the intersection of up to k affine spaces. Therefore, it

suffices to maximize
∥∥∇βjℓ

noise(β)
∥∥
2
over Cj ∈ Pk−1 for a fixed j, where Pk−1 is defined

in the statement of Theorem 22.

We proceed under the event that the following inequalities hold:∥∥∥∥∥ 1n
n∑
i=1

xix
T

i

∥∥∥∥∥ ≤ 1 + ϵ (C.3.49)

and ∣∣∣∣∣ 1n
n∑
i=1

1{xi∈Cj} − P(x ∈ Cj)

∣∣∣∣∣ ≤ ϵ, ∀Cj ∈ Pk−1 (C.3.50)

for some constant ϵ, which we specify later. The remainder of the proof is given

conditioned on (xi)
n
i=1 satisfying (C.3.49) and (C.3.50).

First, we derive an upper bound on (A) in (C.3.48). Note that (A) corresponds to

the supremum of the random process

Zu :=
1

n

n∑
i=1

zi1{xi∈Cj}⟨xi,u⟩
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over u ∈ Bp
2 . The sub-Gaussian increment satisfies

∥Zu − Zu′∥ψ2 ≲
σ√
n

√√√√ 1

n

n∑
i=1

1{xi∈Cj}⟨xi,u− u′⟩2

≤ σ√
n

∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}xix
T

i

∥∥∥∥∥
1/2

· ∥u− u′∥2

≤ σ√
n

∥∥∥∥∥ 1n
n∑
i=1

xix
T

i

∥∥∥∥∥
1/2

· ∥u− u′∥2

≤ σ
√
1 + ϵ√
n
· ∥u− u′∥2,

where the third step follows from the inequality∥∥∥∥∥ 1n
n∑
i=1

1{xi∈Cj}xix
T

i

∥∥∥∥∥ ≤
∥∥∥∥∥ 1n

n∑
i=1

xix
T

i

∥∥∥∥∥ ,
which holds deterministically, and the last step follows from (C.3.49). Then, by

applying a version of Dudley’s inequality [93, Theorem 8.1.6], we obtain that

P

(
sup
u∈Bp2

|Zu| >
C1σ
√
1 + ϵ√
n

(∫ ∞

0

√
logN(Bp

2 , ∥·∥2, η)dη +
√
log(1/δ)

))
≤ δ.

By the elementary upper bound on the covering number N(Bp
2 , ∥·∥2, η) ≤ (3/η)p (e.g.

see [93, Example 8.1.11]) and the definition of (A) in (C.3.48), we have

(A) ≲

√
σ2(1 + ϵ)(d+ log(1/δ))

n
, (C.3.51)

holds with probability 1− δ/3. Then we apply the union bound over Cj ∈ Pk−1. It

follows from (C.1.1) that

sup
Cj∈Pk−1

(A) ≲

√
σ2(1 + ϵ)(log(1/δ) + kd log(n/d))

n

holds with probability 1− δ/9.
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Next we derive an upper bound on (B) in (C.3.48). Note that (B) is rewritten as

the absolute value of

ϱ =
1

n

n∑
i=1

zi1{xi∈Cj}.

Conditioned on (xi)
n
i=1 satisfying (C.3.50), ϱ is a sub-Gaussian random variable that

satisfies Eϱ = 0 and

Eϱ2 =
σ2

n
·

(
1

n

n∑
i=1

1{xi∈Cj}

)
≤ σ2(P(x ∈ Cj) + ϵ)

n
.

The standard sub-Gaussian tail bound implies

P

(
|ϱ| >

√
C2σ2(P(x ∈ Cj) + ϵ) log(1/δ)

n

)
≤ δ.

By taking the union bound over Cj ∈ Pk−1 and utilizing the inequality in (C.1.1), we

obtain that

sup
Cj∈Pk−1

(B) ≲

√
σ2(P(x ∈ Cj) + ϵ) (kd log(n/d) + log(1/δ))

n

≤
√
σ2(1 + ϵ) (kd log(n/d) + log(1/δ))

n
(C.3.52)

holds with probability 1− δ/9.

Finally it remains to show that (C.3.49) and (C.3.50) hold with probability 1− δ/3

for ϵ satisfying

ϵ ≲

√
kp(log(n/d) + log(1/δ))

n
.

This is obtained as a direct consequence of Lemmas 17 and 19. One can choose the

absolute constant C in (3.1.14) large enough so that ϵ < 1. Then the parameter ϵ in

(C.3.51) and (C.3.52) will be dropped. This completes the proof.
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C.4 Proof of Theorem 9

The proof will be similar to that for Theorem 8. We will focus on the distinction due

to the modification of the algorithm with random sampling. The partial subgradient

in the update for the mini-batch stochastic gradient descent algorithm is given by

1

m

∑
i∈It

∇βlℓi(β
t) =

1

m

∑
i∈It

1{xi∈Cl}

(
max
j∈[k]
⟨ξi,βtj⟩ −max

j∈[k]
⟨ξi,β⋆j ⟩

)
ξi︸ ︷︷ ︸

∇βl
ℓcleani (βt)

− 1

m

∑
i∈It

zi1{xi∈Cl}ξi︸ ︷︷ ︸
∇βl

ℓnoisei (βt)

,

where C1, . . . , Ck are determined by βt as in (1.2.4).

As shown in Appendix C.3, (3.1.14) invokes Lemma 31 and hence (C.3.2) holds with

probability 1− δ/3. Next, we show that under the condition (3.1.14), the statements

of the following lemma hold with probability 1 − 2δ/3. The proof is provided in

Appendix C.4.1.

Lemma 32 Suppose that the hypothesis of Theorem 9 holds. If (3.1.14) is satisfied,

then the following statement holds with probability at least 1− 2δ/3: For all j ∈ [k],

β⋆ ∈ Rk(d+1), and βt ∈ N (β⋆), we have

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
clean
i (βt)

∥∥∥∥∥
2

2

≲

(
1 ∨ d+ log(n/δ)

m

)((√
πmax + π1+ζ−1

min

)∥∥βtj − β⋆j
∥∥2
2
+
π1+ζ−1

min

k

∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

)
,

(C.4.1)

and

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
noise
i (βt)

∥∥∥∥∥
2

2

≲ σ2

(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
. (C.4.2)

Then we show that the assertion of the theorem follows from (C.3.2), (C.4.1), and

(C.4.2) via the following three steps.
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Step 1: We show that every iterate remains within the neighborhood N (β⋆) by the

induction argument. Therefore, we illustrate that if we suppose βt ∈ N (β⋆) holds for

a fixed t ∈ N, we show βt+1 ∈ N (β⋆) in expectation. By the update rule of SGD with

batch size m, the triangle inequality gives

EIt∥βt+1
j − β⋆j∥2 ≤ EIt

∥∥∥∥∥βtj − µ 1

m

∑
i∈It

∇βjℓ
clean
i (βt)− β⋆j

∥∥∥∥∥
2︸ ︷︷ ︸

Aclean

+µEIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
noise
i (βt)

∥∥∥∥∥
2︸ ︷︷ ︸

Anoise

.

(C.4.3)

We will show that

EIt∥βt+1
j − β⋆j∥2 ≤ Aclean + Anoise ≤ κρ, ∀j ∈ [k]. (C.4.4)

By applying Jensen’s inequality, we can obtain an upper-bound Aclean in (C.4.3):

A2
clean ≤ EIt

∥∥∥∥∥βtj − µ · 1m∑
i∈It

∇βjℓ
clean
i (βt)− β⋆j

∥∥∥∥∥
2

2

= ∥βtj − β⋆j∥22 − 2µEIt

〈
1

m

∑
i∈It

∇βjℓ
clean
i (βt),βtj − β⋆j

〉
+ µ2EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓi(β
t)

∥∥∥∥∥
2

2

.

(C.4.5)

Due to the expectation, the second term in (C.4.5) simplifies to

EIt

〈
1

m

∑
i∈It

∇βjℓ
clean
i (βt),βtj − β⋆j

〉
= ⟨∇βjℓ

clean(βt),βtj − β⋆j ⟩, (C.4.6)

where ∇βjℓ
clean(βt) is defined in (C.3.1). Then, (C.3.2) gives a lower bound on (C.4.6).

Furthermore, an upper bound on the third term in (C.4.5) is given by (C.4.1). Putting

the bounds (C.3.2) and (C.4.1) in (C.4.5) provides

A2
clean ≤(
1− 4

γ

(
1

16

)1+ζ−1

µπ1+ζ−1

min + C1µ
2

(
1 ∨ d+ log(n/δ)

m

)(√
πmax + π1+ζ−1

min

))
∥βtj − β⋆j∥22

+

 2
γ

(
1
16

1+ζ−1
)
µπ1+ζ−1

min

5k
+ C1

(
1 ∨ d+ log(n/δ)

m

)
µ2π1+ζ−1

min

k

 ∑
j′∗:j′ ̸=j

∥∥vtj,j − v⋆j,j′
∥∥2
2
.

(C.4.7)
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Let us choose the step size µ following

µ =
ωπ1+ζ−1

min

τ
·
(
1 ∧ m

d+ log(n/δ)

)
(C.4.8)

for a numerical constant ω, which we specify later, and τ defined as

τ :=
√
πmax + π1+ζ−1

min . (C.4.9)

Taking µ by (C.4.8) and τ by (C.4.9) in (C.4.7) yields

A2
clean

≤

(
1−

(
1 ∧ m

d+ log(n/δ)

)
· 4

γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

τ
−
C1ω

2π
2(1+ζ−1)
min

(√
πmax + π1+ζ−1

min

)
τ 2

)∥βtj − β⋆j∥22

+

(
1 ∧ m

d+ log(n/δ)

)
·

 2
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

5τk
+
C1ω

2π
3(1+ζ−1)
min

τ 2k

 ∑
j′:j′ ̸=j

∥∥vtj,j′ − v⋆j,j′
∥∥2
2

≤

1−
(
1 ∧ m

d+ log(n/δ)

)
·

 4
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

τ
− C1ω

2π
2(1+ζ−1)
min

τ

 ∥βtj − β⋆j∥22

+

(
1 ∧ m

d+ log(n/δ)

)
·

 2
γ

(
1
16

)1+ζ−1

ωπ
2(1+ζ−1)
min

5τ
+
C1ω

2π
2(1+ζ−1)
min

τ

max
j ̸=j′

∥∥vtj,j′ − v⋆j,j′
∥∥2
2
.

(C.4.10)

Due to βt ∈ N (β⋆) defined in (3.1.11), we have (C.3.11) and (C.3.12) by Theorem 27.

Inserting (C.3.11) and (C.3.12) into (C.4.10) gives

(κρ)−2A2
clean ≤ 1− π

2(1+ζ−1)
min ω

τ

(
1 ∧ m

d+ log(n/δ)

)(
4

γ

(
1

16

)1+ζ−1 (
1− 2

5

)
+ C1ω (1 + 4)

)

= 1− π
2(1+ζ−1)
min ω

τ

(
1 ∧ m

d+ log(n/δ)

) 12
γ

(
1
16

)1+ζ−1

5
+ 5ωC1


≤ 1− c0ωπ

2(1+ζ−1)
min

τ

(
1 ∧ m

d+ log(n/δ)

)
, (C.4.11)
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where c0 is the numerical constant defined in (C.3.13). We represent (C.4.11) as

A2
clean ≤ (κρ)2

(
1− c0ωπ

2(1+ζ−1)
min

τ
·
(
1 ∧ m

d+ log(n/δ)

))
. (C.4.12)

We note that by (C.3.13), c0 is a positive absolute constant given γ and ζ. On the

other hand, the choice of τ in (C.4.9) provides a bound

π
2(1+ζ−1)
min

τ
=

π
2(1+ζ−1)
min√

πmax + π1+ζ−1

min

< 1.

Since (1 ∧m/(d+ log(n/δ)) < 1, one can set ω > 0 such that ωc0 < 1, which makes

the upper bound in the right-hand side of (C.4.12) a positive scalar belonging in (0, 1).

By following the arguments in (C.3.15) and (C.3.16), if

Anoise ≤ κρ

(
c0ωπ

2(1+ζ−1)
min

2τ

)(
1 ∧ m

d+ log(n/δ)

)
(C.4.13)

holds, we have

Anoise ≤ κρ

1−

√
1− c0ωπ

2(1+ζ−1)
min

τ

(
1 ∧ m

d+ log(n/δ)

) . (C.4.14)

Since the upper bounds (C.4.12) and (C.4.14) satisfies (C.4.4) it suffices to show

(C.4.13).

By (C.4.2), we have√√√√EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
noise
i (βt)

∥∥∥∥∥
2

2

≲ σ

√(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
for all j ∈ [k]. After applying Jensen’s inequality, we consider the choice of µ given in

(C.4.8). Then, we have

Anoise = µEIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
noise
i (βt)

∥∥∥∥∥
2

≤ µ

√√√√EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
noise
i (βt)

∥∥∥∥∥
2

2

≲

σωπ1+ζ−1

min

τ

(
1 ∧ m

d+ log(n/δ)

)√(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
.

(C.4.15)
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Since (3.1.14) implies (C.3.18), we can choose a sufficiently large absolute constant

C > 0 in (C.3.18) such that (C.3.18) and (C.4.15) result in (C.4.13). We complete

the proof of induction argument in Step 1.

Step 2: In this step, we show that every iterate obeys

EIt
∥∥βt+1 − β⋆

∥∥
2
≤

√
1− ν

∥∥βt − β⋆
∥∥
2
+ C ′µσ

√
k ·

(√
d+ log(n/δ)

m
∨
√
kd log(n/d) + log(1/δ)

n

)
.

(C.4.16)

In Step 1, we showed βt ∈ N (β⋆). By following the argument (C.4.3), we have

EIt∥βt+1 − β⋆∥2 ≤ EIt

∥∥∥∥∥βt − µ 1

m

∑
i∈It

∇βℓ
clean
i (βt)− β⋆

∥∥∥∥∥
2

+ EIt

∥∥∥∥∥ 1

m

∑
i∈I

∇βℓ
noise
i (βt)

∥∥∥∥∥
2

≤

√√√√EIt

∥∥∥∥∥βt − µ 1

m

∑
i∈It

∇βℓcleani (βt)− β⋆

∥∥∥∥∥
2

2︸ ︷︷ ︸
Bclean

+

√√√√EIt

∥∥∥∥∥ 1

m

∑
i∈I

∇βℓnoisei (βt)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Bnoise

,

(C.4.17)

where the last inequality holds by the Jensen’s inequality. We first show an upper

bound on Bclean in (C.4.17):

B2
clean ≤ (1− ν)

k∑
j=1

∥∥βtj − β⋆j
∥∥2
2
. (C.4.18)

By following the argument in (C.3.23), (C.4.18) holds if there exist constants µ, λ ∈

(0, 1) such that for all βt ∈ N (β⋆),

k∑
j=1

EIt

〈
1

m

∑
i∈It

∇βjℓ
clean
i (βt),βtj − β⋆j

〉

≥ µ

2

k∑
j=1

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
clean
i (βt)

∥∥∥∥∥
2

2

+
λ

2

k∑
j=1

∥βtj − β⋆j∥22.

(C.4.19)

Hence, we show (C.4.19).First, since (C.3.2) holds, (C.3.25) holds. Also, the left-hand

side in (C.4.19) can be computed as (C.4.6). Thus, by (C.4.6) and (C.3.25), we obtain
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a lower bound on the left-hand side of (C.4.19):

k∑
j=1

EIt

〈
1

m

∑
i∈It

∇βjℓ
clean
i (βt),βtj − β⋆j

〉
≥

6
γ

(
1
16

)1+ζ−1

π1+ζ−1

min

5

k∑
j=1

∥βtj − β⋆j∥22.

(C.4.20)

Furthermore, to obtain an upper bound on first term in the right-hand side of

(C.4.19), applying (C.4.1) with the elementary inequality ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22

provides

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
clean
i (βt)

∥∥∥∥∥
2

2

≤ C1

(
1 ∨ d+ log(n/δ)

m

)((√
πmax + π1+ζ−1

min

)
∥βtj − β⋆j∥22

+
2π1+ζ−1

min

k

∑
j′:j′ ̸=j

(
∥βtj − β⋆j

∥∥2
2
+
∥∥βtj′ − β⋆j′∥22

))
.

(C.4.21)

Taking summation on (C.4.21) over j ∈ [k] yields

k∑
j=1

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
clean
i (βt)

∥∥∥∥∥
2

2

≤ C1

(
1 ∨ d+ log(n/δ)

m

)(√
πmax + π1+ζ−1

min + 4π1+ζ−1

min

) k∑
j=1

∥∥βtj − β⋆j
∥∥2
2
.

(C.4.22)

Putting the bounds (C.4.20) and (C.4.22) in (C.4.19) with µ chosen in (C.4.8), we

have a sufficient condition for (C.4.19):

6
γ

(
1
16

)1+ζ−1

π1+ζ−1

min

5
≥
ωπ1+ζ−1

min C1

(√
πmax + 5π1+ζ−1

min

)
2
(√

πmax + π1+ζ−1

min

) +
λ

2
. (C.4.23)

(C.4.23) is satisfied when we choose ω > 0 small enough and λ as in (C.3.29). Hence,

we have shown (C.4.18) with ν = µλ where µ and λ are chosen by (C.4.8) and (C.3.29).
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Next, we bound Bnoise in (C.4.17). By (C.4.2), we obtain an upper bound on

Bnoise:

B2
noise = µ2

k∑
j=1

EIt

∥∥∥∥∥ 1

m

∑
i∈It

∇βjℓ
noise
i (βt)

∥∥∥∥∥
2

2

≲ kµ2σ2

(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
.

(C.4.24)

Finally, putting (C.4.18) and (C.4.24) in (C.4.17) gives (C.4.16). We complete the

proof of Step 2.

Step 3: We finish the proof of Theorem 9 using the results demonstrated in Step

1 and Step 2. By substituting the expression ν = µλ , where we choose µ and λ

according to (C.4.8) and (C.3.29) respectively, into (C.4.16), we obtain

EIt∥βt − β⋆∥2

(1− µλ)t/2 ∥β0 − β⋆∥2 + C2 ·
µσ

1−
√
1− µλ

·

√
k ·
(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
(a)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C2 ·
2σ

λ
·

√
k ·
(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
(b)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C3 ·
σ

πmax

·

√
k ·
(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
(c)

≤ (1− µλ)t/2 ∥β0 − β⋆∥2 + C3 · σk ·

√
k ·
(
d+ log(n/δ)

m
∨ kd log(n/d) + log(1/δ)

n

)
,

where i) (a) follows from the inequality
√
1− t < −t/2 + 1 for any t ∈ (0, 1); ii) (b)

holds by the choice of τ in (C.4.9); iii) (c) is a result of π−1
max ≤ k.

C.4.1 Proof of Lemma 32

We will show that both (C.4.1) and (C.4.2) hold with probability at least 1− δ/3.

Furthermore, for simplicity, we proceed on the proofs using β and vj,j′ instead of
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using βt and vtj,j′ in the statements of Theorem 32. Thus, we complete the assertions

in (C.4.1) and (C.4.2) by substituting β and vj,j′ with βt and vtj,j′ respectively.

Proof of (C.4.1): We show that with high probability, (C.4.1) holds if

n ≥ C1 (log(k/δ) ∨ d log(n/d)) k4π−4(1+ζ−1)
min , (C.4.25)

Note that (3.1.14) is a sufficient condition for (C.4.25). We proceed with the proof

under the following six events, each of which holds with probability at least 1− δ/18.

First, by the proof of (C.3.3) in Appendix C.3.1, (C.4.25) is a sufficient condition to

invoke (C.3.3) with probability at least 1− δ/18. Next, by following the argument for

(C.3.39), (C.4.25) is a sufficient condition to invoke (C.3.39) with probability at least

1− δ/18. Furthermore, (C.4.25) implies (C.2.13) and is a sufficient condition to invoke

Lemma 30 and Lemma 24 with probability at least 1− δ/18 respectively. Hence, by

following the arguments for (C.3.40), (C.3.41), and (C.3.32), (C.3.40), (C.3.41), and

(C.3.32) hold with probability at least 1− δ/18 respectively. The last event is defined

as

max
i∈[n]
∥ξiξT

i ∥ ≲ d+ log(n/δ). (C.4.26)

By Lemma 17 and the union bound over i ∈ [n], (C.4.26) holds with probability at

least 1− δ/18.

Since we showed that (C.3.3), (C.3.39), (C.3.40), (C.3.41), (C.3.32), and (C.4.26)

hold with probability at least 1− δ/3, we will move forward with the remainder of

the proof by assuming those conditions are satisfied.
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Let β⋆ ∈ Rd+1, β ∈ N (β⋆), and j ∈ [k] be arbitrarily fixed. By the argument

in [63, Equation 7], we decompose

EI

∥∥∥∥∥ 1

m

∑
i∈I

∇βjℓ
clean
i (β)

∥∥∥∥∥
2

2

=
1

m
Ei1
∥∥∇βjℓ

clean
i1

(β)
∥∥2
2︸ ︷︷ ︸

(A)

+
m− 1

m
∥∇βjℓ

clean(β)∥22︸ ︷︷ ︸
(B)

, (C.4.27)

where we define I := {i1, . . . , im} ⊂ [n] and ∇βjℓ
clean(β) in (C.3.1).

Note that (C.3.3) gives an upper bound on (B):

(B) ≲
m− 1

m

((
πmax + π

2(1+ζ−1)
min

)∥∥βj − β⋆j
∥∥2
2
+
π
2(1+ζ−1)
min

k2

∑
j′:j′ ̸=j

∥∥vj,j′ − v⋆j,j′
∥∥2
2

)
.

(C.4.28)

It remains to show the bound on (A). By following arguments (C.3.43), we

decompose ∇βjℓ
clean
i (β) following

∇βjℓ
clean
i (β) = 1{xi∈Cj}⟨ξi,βj − β⋆j ⟩ξi +

∑
j′:j′ ̸=j

1{
xi∈Cj∩C⋆j′

}⟨ξi,β⋆j − β⋆j′⟩ξi, ∀i ∈ [n].

(C.4.29)

Then it follows from (C.4.29) that for any i ∈ [n],

∥∥∇βjℓ
clean
i (β)

∥∥2
2

(i)

≤ 2
∥∥1{xi∈Cj}⟨ξi,βj − β⋆j ⟩ξi

∥∥2
2
+ 2

∥∥∥∥∥ ∑
j′:j′ ̸=j

1{
xi∈Cj∩C⋆j′

}⟨ξi,β⋆j − β⋆j′⟩ξi

∥∥∥∥∥
2

2

(ii)
= 2 ·

∥∥ξiξ⊤i ∥∥1{xi∈Cj}⟨ξi,βj − β⋆j ⟩2 + 2 ·
∥∥ξiξ⊤i ∥∥ · ∑

j′:j′ ̸=j

1{
xi∈Cj∩C⋆j′

}⟨ξi,β⋆j − β⋆j′⟩2

(iii)

≲ (d+ log(n/δ)) ·

(
1{xi∈Cj}⟨ξi,βj − β⋆j ⟩2 +

∑
j′:j′ ̸=j

1{xi∈Cj∩C⋆j′}
⟨ξi,β⋆j − β⋆j′⟩2

)
,

(C.4.30)

where (i) holds due to ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22; (ii) holds since Cj ∩ C⋆l and Cj ∩ C⋆l′

are disjoint for any l ̸= l′ ∈ [k]; and (iii) holds by (C.4.26).
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Applying the expectation on (C.4.30) yields

Ei1
∥∥∇βjℓi1(β)

∥∥2
2
≲

(d+ log(n/δ)) ·


1

n

n∑
i=1

1{xi∈Cj}⟨ξi,βj − β⋆j ⟩2︸ ︷︷ ︸
(a)

+
1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Cj∩C⋆j′}
⟨ξi,β⋆j − β⋆j′⟩2︸ ︷︷ ︸

(b)

 .

(C.4.31)

An upper bound on (b) is provided by (C.3.32). It remains to derive an upper bound

on (a).

The triangle inequality provides

(a) ≤
k∑

j′=1

∥∥∥∥∥
n∑
i=1

1{xi∈Cj∩C⋆j′}
ξiξ

T

i

∥∥∥∥∥ · ∥∥βj − β⋆j
∥∥2
2

(C.4.32)

For the summand indexed by j′ = j, the set inclusion, Cj ∩ C⋆j ⊆ C⋆j yields

n∑
i=1

1{xi∈Cj∩C⋆j }ξiξ
T

i ⪯
n∑
i=1

1{xi∈C⋆j }ξiξ
T

i .

Therefore, by (C.3.39) and (C.3.41), we have∥∥∥∥∥ 1n
n∑
i=1

1{xi∈C⋆j }ξiξ
T

i

∥∥∥∥∥ ≤ max
I:|I|≤2nP(x∈C⋆j )

∥∥∥∥∥ 1n∑
i∈I

ξiξ
T

i

∥∥∥∥∥
≲ (η2 ∨ 1)

√
P(x ∈ C⋆j )

≤ (η2 ∨ 1)
√
πmax,

(C.4.33)

where the last inequality holds by the definition of πmax. Similarly, by (C.3.40) and

(C.3.41), we have∥∥∥∥∥
n∑
i=1

1{xi∈Cj∩C⋆j′}
ξiξ

T

i

∥∥∥∥∥ ≲ (η2 ∨ 1)
√
c

(
π1+ζ−1

min

k

)
, ∀j′ ̸= j. (C.4.34)

Then by plugging in (C.4.33) and (C.4.34) into (C.4.32), we obtain

(a) ≲
(√

πmax + π1+ζ−1

min

)∥∥βj − β⋆j
∥∥2
2
.
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Finally, applying obtained upper bounds on (a) and (b) in (C.4.31) gives

(A) ≲
(d+ log(n/δ))

m

((√
πmax + π

(1+ζ−1)
min

)∥∥βj − β⋆j
∥∥2
2
+
π
(1+ζ−1)
min

k

∑
j′:j′ ̸=j

∥∥vj,j′ − v⋆j,j′
∥∥2
2

)
.

(C.4.35)

Putting (C.4.28) and (C.4.35) in (C.4.27) completes the proof.

Proof of (C.4.2): We proceed with the proof under the following three events,

each of which holds with probability at least 1− δ/9. First, (3.1.14) invokes (C.3.4)

with probability at least 1− δ/9. Next, by following the same argument in the proof

of (C.4.1), (C.4.26) holds with probability at least 1 − δ/9. The last event is the

following:

1

n

n∑
i=1

z2i ≤ σ2

(
1 +

√
C log(1/δ)

n

)
. (C.4.36)

Since {zi}ni=1 are i.i.d σ-sub-Gaussian random variables, the Bernstein’s inequality

yields that (C.4.36) holds with probability at least 1− δ/9.

We have shown that (C.3.4), (C.4.26), and (C.4.36) hold with probability at least

1− δ/3. For the remainder of the proof, we assume that those conditions are satisfied.

Then, by the argument in [63, Equation 7], we decompose

EI

∥∥∥∥∥ 1

m

∑
i∈I

∇βjℓ
noise
i (β)

∥∥∥∥∥
2

2

=
1

m
Ei1
∥∥∇βjℓ

noise
i1

(β)
∥∥2
2︸ ︷︷ ︸

(A)

+
m− 1

m
∥∇βjℓ

noise(β)∥22︸ ︷︷ ︸
(B)

, (C.4.37)

where we define I := {i1, . . . , im} ⊂ [n] and ∇βjℓ
noise(β) in (C.3.1).

(C.3.4) gives an upper bound on (B):

(B) ≲
σ2kd log(n/d) + log(k/δ)

n
. (C.4.38)

The remaining step is to obtain a bound on (A). Since we have

∥∥∇βjℓ
noise
i1

(β)
∥∥2
2
≤ ∥zi1ξi1∥22 ≤ ∥ξi1ξT

i1
∥z2i1≲d+ log(n/δ)z2i1 ,
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where the last inequality holds by (C.4.26), applying the expectation and (C.4.36)

gives an upper bound on (A):

(A) ≲
1

n

n∑
i=1

z2i

(
d+ log(n/δ)

m

)
≲ σ2

(
1 ∨

(
log(1/δ)

n

)1/2
)(

d+ log(n/δ)

m

)
≤ σ2

(
d+ log(n/δ)

m

)
,

(C.4.39)

where the last inequality hold by (3.1.14). Putting the results (C.4.38) and (C.4.39)

into (C.4.37) reduces to (C.4.2).

C.5 Discussion on the proofs of [38, Theorem 1] and [36,
Theorem 1]

In the proof of [38, Theorem 1], they claimed that n ≳ δ−2 implies [38, Equa-

tion (45)]. They showed that [38, Equation (45)] follows from [38, Lemmas 10 and 11].

Their [38, Lemma 10] presents the concentration of the supremum of an empirical

measure via the VC dimension and [38, Lemma 11] computes an upper bound on

the VC dimension of the feasible set of the maximization. According to their proof

argument, the number of observations n should be proportional to the VC dimension

d log(n/d) to obtain the concentration in [38, Equation (45)]. Their sufficient condition

n ≳ δ−2 for [38, Equation (45)] missed the dependence on the VC dimension. We

suspect that this is a typo. While it does not ruin their main result, the sample

complexity in [38, Theorem 1] might need to be corrected accordingly. Specifically,

between [38, Equation (32) and (33)], the parameter δ in [38, Lemma 6] was set to

δ = Ck−2π6
min to upper-bound the second summand in the right-hand side of [38, Equa-

tion (32)]. Therefore, the corrected sample complexity of [38, Lemma 6] increases to
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Õ(k4dπ−12
min ) so that it dominates the sample complexity for part (b) in [38, Proposi-

tion 1] (n ≳ kdπ−3
min). Consequently, the sample complexity in [38, Theorem 1] will

increase by a factor k3π−9
min.

Next, we report another mistake in their analysis under the generalized covariate

model [36, Theorem 1]. They mistakenly omitted the dependence of σ in the sample

complexity. A careful examination of their proof on page 48 in [37] will reveal that

they use the same technique as in their other analysis in the Gaussian covariates

case [38]. Therefore, we expect that their sample complexity should depend on the

noise variance σ2 to ensure that the next iterate belongs to the local neighborhood of

the ground truth (refer to the proof of their Theorem 1 on page 1865 in [38]).
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