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ABSTRACT 

We present a means of tracking the liuman torso tlirough a monocular video sequence by lever­

aging the COCONE curve-reconstruction and segmentation algorithm. This solution uses geometry 

and topology to perform tracking instead of an a priori learned model, which pennits a reasonable 

level of generality. Implementation of the algorithm is straightforward and tracking is automatic, 

requiring little to no user input other than a sequence of images. 

This solution is unique in that tracking is conditioned on the input sequence instead of attempting 

to f i t the sequence to a given model. Since the model is amorphous, a more general result may be 

derived. This more closely mimics the human visual system, which appears to track without regard 

to the semantics of the tracking problem. 
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Chapter 1 

INTRODUCTION 

1.1 Motion Trackmg 

Motion tracking is the process by wliich a computer analyzes input, video and produces a description 

of the movement of interesting features in that video. What constitutes an interesting feature is 

defined before analysis, which requires models of the feature and how it moves. 

We use the term motion description to encapsulate various outputs from a motion tracker. Visual 

output. (e.(/.. a video with pertinent features highlighted by bounding boxes) as well as other forms 

of data {e.g.. an ordered list of joint positions for each frame) are included. In complex scenarios, the 

description may include surface deformations (due. for example, to muscle movement or contraction). 

Low-level motion descriptions label pixels [e.g.. as "tracked" or "not. tracked") whereas high-level 

descriptions classify pixels according to feature groups (e.g.. as "arm" or "head"). A high-level descrip­

tion, therefore, associates semantic meaning with each tracked pixel. These descriptions generally 

correspond to their models: low-level models are usually general with less semantic meaning: high 

level models are usually specific wit h a great deal of meaning. 

This is important because the desired output description constrains the models used in analysis. 

To obtain more meaningful outpul. we often must, assume characteristics of the input that compro­

mise the generality of the tracker. For example, if we desire output in the form of a human skeleton, 

the u priori assumption is that we are tracking a human. One of the objectives of this work is to 

demonstrate how low-level models may produce high-level descriptions. This reduces the need for a 

priori assumptions and helps to generalize the tracker. 

] 



Motion trackers typically address two related problems: ubject recoynition and ohject tracking. 

In object recognition, the feature model is matched lo the current frame of video. Object tracking 

leverages the motion model to produce candidate positions for the object in the next frame. Con­

sequently, motion tracking is a search problem: given an input sequence, the tracker searches for 

interesting features in each frame. 

Tracking posable bodies like the human figure is difficult due to the extreme number of candidate 

positions. However, applications for human motion tracking in animation, surveillance, and human-

computer interaction are extensive |4. 7, 22, 23j and motivate the desire to produce motion trackers 

that can reliably track the liuman figure. 

1.2 Applications of Motion Trackers 

Motion capture systems, widely used by animators to generate believable motion for complex se­

quences, rely on sensors and multiple cameras to identify and track limbs and joints. Motion capture 

produces a stick figure model [i.e.. a skeleton) which an animator may later clothe with a skin. 

Automatic motion capture describes the use of a motion tracker to analyze an input sequence 

and to generate this model without the need for sensors or multiple cameras. (Brey has written 

an excellent survey.) This represents more freedom for actors and less cost for animators, since 

expensive motion capture studios may be replaced with commodity hardware. 

Surveillance may also benefit from motion tracking by permitting cameras equipped with track­

ing logic to respond to movement in their input. For example, normally stationary cameras may 

pan upon detecting movement. This principle extends to firing weapons, locking doors, and other 

responses to intrusion. Coombs and Brown have a good discussion of moving cameras for tracking 

applications |7J. 

Human-computer interaction can use motion tracking to produce more believable response to 

human motion. For example, a robot head may pan with human motion. Object recognition is also 

a fundamental component of human-computer interaction. 
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1.3 Limits of Motion Trackers 

Unfortunately, robust tiacking remains somewhat elusive. Solutions to the problem typically attempt 

to fit recorded data to figure and motion models. For example, a figure model may be a coimected 

series of line segments that approximate the human skeleton. A motion model may include joint 

constraints to prevent the tracker from identifying an outlier as a correct moveinent of a joint. 

We may think of the tracker as an intelligent search agent looking through the input sequence 

to identify features that look like the figure model and that also conform to its understanding of 

how that figure should move. This is somewhat easier said than done. Object recognition depends 

on a great number of factors that are extremely difficult to characterize and estimate: illumination, 

occlusion, background clutter, and noise are but a few examples. In the case of liuinan figure tracking, 

the situation is even more complicated due to the complexity of the model. A realistic one will have 

at, least thirty degrees of freedom, so a tracker may have to search through a thirty-dimensional 

space to find a correct answer. A brute-force search of this dimensionality is intractable. 

Current tracking systems vary in their solutions to this problem. Many rely on a learned prob­

abilistic model [8. 17. 24. 27J. which both obscures variations in the input sequence and trims the 

search space by predicting the location of the tracked figure in the next, frame. Others use image-

based techniques, in which specific charact erist ics of the input sequence are used to track the figui e 

|6. 15. 20. 21. 23J. Solutions often contain a combination of the two. 

General tracking—reliably disambiguating any novel figure from its background and following 

it without error—has not been accomplished. Isard and Blake's CONDENSATION algorithm uses 

particle filtering and a learned motion model to great effect, but each motion must be first learned. 

Ho. Lee, Yang, and Kriegman present an elegant, fairly general solution in |15]. but its motion 

description is low-level and therefore not useful for many applications. 

These two examples present an essential question: how can we produce a high-level motion 

description from a low-level model? Low-level models permit more generality in the tracking process, 

and high-level descriptions specify the output more precisely. 

This work attempts to answer that question by conditioning the model to the input sequence and 

deriving semantic inforniatiou from it . Rather than relying on skeletal or blob models, we segment 

the human figure into six pieces and use the area of the segments to perform tracking. 
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1.4 Contributions of This Work 

The principle contribution of this work is to show how such a model may be used in conjunction 

with robust segmentation software (in particular, the Flow Discretization Algorithm |9J) to perform 

reasonably reliable, general tracking. By limiting the specificity of the model and deriving informa­

tion from the geometry of the figure, we demonstrate that it is possible to track the human torso 

without semantically identifying il as such. This allows substantially more flexibility than many 

current solutions whose models are so specific as to limit them to a particular domain |21] or that 

require extensive learning processes for each motion learned [17]. I t also produces more useful output 

than solutions that use low-level models [15]. 

We l imit ourselves to tracking the human torso to provide proof-of-concept, though it should 

not be difficult to extend the algorithm to track other segments (see Section 6.1). Our algorithm is 

similar in spirit to other image-based solutions, differing principally in the model used to perform 

tracking. 

1.5 Torso Tracking 

I t may be argued that torso tracking is a domain of little importance; however, it merits consideration 

for several reasons. 

First, the torso is very rarely completely occluded, and never by itself. I t is almost always at 

least partially visible, which simplifies identification and location. 

Second, reliably segmenting the torso from the human figure limits the search space for other 

features such as the head, arms and hands, and legs. This reduces the complexity of the tracking 

problem and improves performance. The presented system is also amenable to extension to locating 

and tracking other body parts. 

Third, the torso has restricted mobility compared to the other parts of the human body. There­

fore, motion models for the torso do not need to specifically accommodate wide ranges of motion, 

but may instead restrict themselves to relatively simple changes in onentation caused by affine 

transformations. 

Tracking the torso is still problematic, however, especially in monocular video. Yet monocular 

video is the most common form of data and the easiest to produce. Moreover, monocular video is the 
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(a) (b) (c) (d) 

Figuie 1.1: Various problematic inputs. 

Figures (b) through (d) have been inverted for clarity. 

format of all archival video footage, so algorithms that can analyze single-camera video sequences 

are necessary. 

Projection forces the tracker to infer three-dimensional data, which requires simplifying assump­

tions that are not always accurate |23j. As a result, certain occlusions caimot be resolved, and it is 

difficult to determine the direction of rotational movements. 

Object recognition becomes more problematic during occlusion since elements of the human 

figure may be included as a part of the torso as a consequence of poor segmentation (see Figure 1.1 

for examples). The arms may be included when crossed over the body ( l . l . b ) . The inverted V-angle 

made by the legs is hidden when viewing the body in profile, often causing the legs to be incorrectly 

assigned to the torso (1.1.a. I . i . d ) . In situations when the shoulders are hunched, the curves of the 

neck are obscured, which may cause the head to be included (1.1.a). Full occlusion of the torso, 

while rare, also causes problems ( l . l . c ) . 

Trackers must also account for noise, which may arise due to data acquisition and other operations 

such as background subtract ion. Noise corrupts the figure of interest and may destroy pertinent, torso 

features ( l . l . d ) . Robustness to noise may be achieved by a combination of methods. Morphological 

operators are used to fil l in holes in this solution; machine learning has been used in other solutions 

to permit tracking in cluttered environments (|17. 27J). 
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In order to generalize the solution as much as possible, the tracker incorporates an amorphous, 

area-based model for the human figure. Six segments are allocated: one for the each arm and leg. 

one for the head, and one for the torso. This permits quite a bit of flexibility when examining each 

image in the input sequence since no orientation fitting is assumed or required. Moreover, it reduces 

the need for a motion model. It may even be applied to objects that are not human at all. 

This results in some significant advantages compared to other motion trackers: 

1. No off-line learning process is required to track. Initial investments in most tracking solutions 

are time-consuming. 

2. Any segment may be tracked. While we demonstrate here how to track the torso, the algorithm 

may be extended easily to track any segment. 

3. Using an area-based model avoids pose estimation, angle fitting, and other computationally 

expensive techniques. 

There are trade-offs to these benefits, however. The tracker may require several observations before 

settling on the torso. This may be caused by noise, occlusion, or poor initialization. The granular 

nature of the model also makes it difficult to guarantee that the selected segment actually is the 

torso. Its dependence on segmentation may also be considered a weak point; poor segmentation will 

undermine the algorithm considerably. 

The following section describes prior work in the field of motion tracking for comparison to the 

presented one. Chapter 3 describes t he details of the algorithm used to identify and locate the torso 

within a sequence of images. Chapter 4 describes the implementation of the algorithm, with results 

and conclusions following in Chapters 5 and 6 respectively. 



Chapter 2 

RELATED WORK 

Mot ion t racking is a well-studied topic and has been addressed in several ways. The standard refer­

ence for probabilistic solutions is Blake and Isard's CONDENSATION algorithm [17J. CONDENSATION 

uses a Bayesian framework (a form of particle filtering) to track objects througli frames. A summary 

of the algorithm is below, along with inention of two important extensions |8. 27J. 

Also considered are works by Mamania. Shaji. and Chandran |21|. Remondino and Roditakis 

|23J. Ho, et al. |15j, and Chen. Lee, Parent, and Machiraju |6J, each of whom provide solutions more 

similar to the one presented here. Their methods typically rely on a variety of image characteristics 

and model approximation to identify and track body parts. Typical image characteristics include 

color cues and depth infonnation. Curve fitting is used to pennit, trackers to identify curves on a 

silhouette with some degree of probability (one example, for instance, might be identifying the legs 

by finding the inverted V-angle |6J). 

2.1 Particle Filtering 

The subject of particle filtering is extensive, so only the very basics are described here. Presented 

with a system, we wish to estimate its prior, cunent. or even future state by sampling. In high-

dimensional systems (such as the pose of a human body with thirty degrees of freedom), sampling 

must be sparse or the process becomes intractable. Samples are usually referred to as "particles." 

Deciding where to sample the system most effectively is a difficult problem. 



Provided witli a model for the system and for how it changes over time (e.e/., a model for the 

human body and moveinent or joint constraints), hypotheses may be formulated to help predict, 

where samples should be taken to glean the most accurate view of the state of the system. These 

hypotheses are usually discretized as probability distributions over the image space. 

Particle filtering is used in a variety of applications: signal processing, motion tracking, and 

even economics. Modern particle filtering began in 1960 with the Kalman filter (see [30] for a good 

introduction). There are two main drawbacks to using a Kalman filter to estimate systeni state: (1) 

it cannot handle multiple hypotheses and [2) it expects Gaussian processes, i.e.. normally distributed 

data. 

Motion trackers based on particle filtering, such as CONDENSATION, use a Bayesian filter rather 

than the Kalman filter. They accommodate multiple hypotheses and multi-variate data in non­

linear. non-Gaussian processes. They are naturally more attractive for motion tracking, in which 

multiple hypotheses are common. In addition, Bayesian filters are typically easier to implement than 

Kalman filters. 

Bayesian filtering |3. 12( takes its name from Bayes" theorem, upon which it relies: 

FiA, I A) = P W A ! * ! (2.!) 

in which P{Ai \ A) should be read as "the conditional probability of event Aj given the occurrence 

of events A." Each one of the Aj is a particle or sample from the system. Bayes' theorem describes 

the entire state of the system and uses it to find the probability of the occurrence of a particular 

event. Generally, the Markov assumption1 is used when Bayesian filters are implemented; otherwise, 

summarizing the state of the system becomes computationally intractable. 

In particle filters, the current state of the systeni is guessed from samples and updated according 

to the following equation: 

S e / ( x t + i ) « 5 t + i = {{xiM) [* = 1,•••,"} (2.2) 

where each x j represents the state of the systeni (a vector) and u'J the weight of a particular sample. 

The time step is represented by t and the sample index by i. The predicted state of the system 

1I.e.. that the cunent state depends nnly on the prior state, or that the prior state encodes information about all 
states preceding i t . 
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is given by Bei{xi+i) (under the Markov assumption, tliis becomes St+i) [12]. The weights are 

adjusted iteratively by inputs to the system—in our case, successive images from a video sequence. 

This probabilistic model accommodates new samples and updates the weights accordingly. 

Bayesian filters, however, have several problems. Sminchisescu and Triggs note that statistical 

approximations in many applications are difficult, if not impossible to find. Moreover, Bayesian 

filters may be trapped into choosing incorrect samples at local minima rather than attempting to 

optimize around a global minimuin. Minimal-cost samples are often found around high-cost samples 

that are unlikely to be resampled, so the samples need to be locally optimized |25, 26]. 

2.2 CONDENSATION 

Blake and Isard's seminal CONDENSATION (CONditional DENSity propagATiON) algorithm demon­

strates the use of Bayesian filtering in motion tracking problems and has become a standard reference 

for the technique. Specifically, it applies to tracking curves through cluttered backgrounds based on 

prior learned models of motion and hand-drawn contours of the figures to be tracked. 

Clutter in a scene is typically manifested as a different mode in the distribution; should the 

tracked object be occluded for a sufficient time, a Kalman-based tracker may fixate on the occluding 

object. By permitting multiple hypotheses, the CONDENSATION filter may recover from situtations 

that would render a normal Kalman filter useless. 

The motion model is learned by applying background subtraction to video sequences and applying 

Kalman filtering to those sequences. Iterative filtering produces increasingly good results when used 

with the CONDENSATION filter on novel data sets. The learning process requires substantial user-

intervention, as does the generation of the contour model. 

The authors report good results, noting that they are able to run the tracker on complicated 

sequences at roughly six frames per second in 1998. Though the initial investment in training and 

image processing is extensive, the application to later data sets is tremendous: the tracker reliably 

recognizes objects in clutter and tracks complex motion. A typical example is tracking a wind-tossed 

leaf on a bush. 

The CONDENSATION algorithm has been extended and refined in two particular cases to allow 

tracking of multiple objects, such as a flock of birds |27] and to reparameterize the search space by 

simulated annealing |8]. Other statistically-grounded solutions also exist |24. 25. 26]. 
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The principle disadvantage of the CONDENSATION algorithm is that it requires training for novel 

data: the authors have produced a system to track objects in clutter, but training is required for 

each new object or motion, severely compromising the generality of the solution. This makes it 

difficult to envision using it in a production environment. 

2.3 Image-space Solutions 

Another class of solutions may be referred to as image-space solutions. These rely less on probabilities 

and more on image cues such as contours, constrast. depth, and color. The solution formulated in 

this work is an image-space solution. 

Image-space solutions are not as widespread as particle filtering methods for several reasons. 

The principal difficulty is that tracking figures in a cluttered background has proven difficult, and 

preprocessing (especially background subtraction) is problematic. Image characteristics are also 

sensitive to fluctuations in intensity and color that may skew results. Nonetheless, there are some 

interesting applications of image cues. 

Mamania, et al. use an image-space method to find 3-D model data in the Bharantanatyam dance 

|21|. Remondino and Roditakis suggest a simple camera model so that an a priori known scaling 

constraint may be used to extract 3-D model data |23|. These papers describe pose estimation, a 

form of model fitting that is most often applied to automatic motion capture. Chen, et al. combine 

image features and physical constraints to track limbs and the head |6J. Ho, et al. use learned linear 

subspaces to track the head |15j. Both papers describe means of performing tracking. 

2.3.1 Bharantanatyam Dance 

Mamania. et al. extract 3-D data from a monocular video sequence by using visual cues and 

assumptions about the nature ofthe camera. Their work focuses exclusively on the Bharantanatyam 

dance. The complexity of the problem is reduced somewhat by a wide golden belt common to all 

costumes for the dance. They identify skin regions by color to identify the arms, belly, and head of 

the dancer. 

Such a solution is undesirable since it relies on color information and operates in a very limited 

domain (though it should be noted that the dance itself is extremely complicated!). This restricted 

generality permits accurate pose estimation but would be difficult to apply to other input. 
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2.3.2 Camera F i t t i ng 

Remondino and Roditakis simplify the matter somewhat by using a pinhole model for the camera. 

They assume that the camera is far enough away from the scene that perspective effects may be 

ignored. Anthropometric data is used to recover perspective poses after they are extracted from the 

video. (The authors also describe how to apply the algorithm to a perspective camera if its focal 

length is known.) 

This work improves upon Mamania. et al. by eliminating domain considerations and leveraging a 

camera model for pose estimation. Pose estimation is elegant in this system due to their assumptions 

and a user-provided scaling factor used to recover the relative lengths of line segments. While it is 

quite useful in extracting 3D information from 2D vertices, the authors do not describe how they 

identified the figure in each frame. 

2.3.3 Linear Subspaces 

Ho, et al. describe an algorithm lhat relies on learning linear subspaces to track objects through 

video. It relies solely on intensitv information and learns the position of the object based only on 

prior observations in the sequence. No off-line learning is required. 

Data points surrounding the area to be tracked are provided by the user. The surrounding area 

is sampled at different locations and orientations, from which the authors generate a vector space 

E A . The appearance model of the figure is represented as a linear subspace of R A . where K is the 

dimension of the sample space. Ho. et al. sampled from a 19x19 grid. Tracking is accomplished 

by updating the subspace over time using a Gramm-Schmidt process [28]. The authors' main 

contribution is the use of the unifonn L1 reconstruction norm: 

Error'* {L,{xl,...,xN}) = maxrf 2(L,.T i) (2.3) 
i 

where L is the subspace. the samples are { x i , . . ..x-s} and rf2 is the standard distance between the 

subspace L and the observation .r,. This permits a better assessment, they argue, of the quality of the 

estimation. Moreover, the generality of the uniform reconstruction norm improves the algorithm's 

efficiency. 

However, it does not appear from their results that precise contours are extracted from the video. 

Such contours are useful if additional model fitting is desired. Moreover, the lack of a model means 
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that it is difficult to glean semanlic infonnation from the output. This is undesirable in many 

situations. 

2.3.4 Physical Constraints 

Chen, et al. describe another method that couples image characteristics and physical constraints [6]. 

The focus of the work is how to reconstruct motion capture data from a monocular video sequence, 

though many of the teclmiques apply to the tracking problem. 

Using a single video stream makes reconstructing the model in the input sequence an ill-posed 

problem, which they attempt to address by extracting silhouettes from the input, sequence and 

matching them against silhouettes generated by fitting model parameters to the input. 

The authors introduce a novel cost function, to select a motion parameter set that most closely 

approximates the difference between the input silhouette and model silhouette: 

H W 
f iSinpuu Smodel) = S . / M ^ j ) ( 2 - 4 ) 

» } 

where Sinput ' s silhouette extracted from the input and Smodel is the silhouette generated from 

the fitted model. H and W describe the dimensions of the images. 

The cost function 

( 0, Sinput (l. j ) = Smodel ihj) 

{2.-o) 
d{i,j), otherwise 

bears some discussion, since it is used aids tracking hmbs and other features that may be obscured 

by occlusion. The authors define a ewe apace that contains pixels close to the skeleton of the figure. 

The skeleton characterizes limbs well, and a distance function may therefore be used to penalize the 

cost function when the model silhouette does not overlap regions near the core area. This distance 

function is defined by 

d{i,j) = D{S,r,Put){i,j) + wDiSinputKU) (2.6) 

where D{S) is the Euclidean distance transform of the binarv image 5. S is the inverse image of 

5. and w is a weighting factor that weights the importance of the coverage of the core area relative 
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to tlie area of iiiisinatch outside of the silhouette area. Functions / and c are together called the 

core-weighted XOR. 

In cases where minimizing the objective function is insufficient, the authors use liuinan anatomy 

and joint constraints to help characterize motion. The authors report tracking results of about three 

seconds per frame in simple cases, five in more complex. 

In each case, except for Ho's linear subspace algorithm, the models and characteristics used represent 

significant a priori constraints that make general tracking relatively difficult. The results from Ho, et 

al. are so general that they are probably difficult to use in situations where tight fitting is required. 

Chapter 3 describes our algorithm, which attempts to provide some generality in tracking by 

leveraging geometric and topological information contained in the contour of the figure. Enough 

data are retained that it should be possible to perform higher-level functions as well, such as pose 

estimation and extraction (i.e., automatic motion capture). 

13 



Chapter 3 

TORSO TRACKING 

We begin to specify tlie algorithm by describing its desired features. We then discuss its motivation, 

the human model used, assumptions made, and individual components of the algorithm. 

3.1 Algorithm Features 

A good tracking algorithm should have the following characteristics: 

1. Achieve nearly automatic tracking. 

2. Eliminate dependency on color and stereo information. 

3. Robustly handle noisy or severely corrupted video. 

4. Process video quickly. 

When successfully met. these goals produce a tiacking system capable of operating on commodity 

hardware while still producing reliable data in a reasonable amount of time. Most of the objectives 

have been met satisfactorily, although room for improvement certainly exists. See Chapter 5 for 

details. 
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3.2 Motivation 

Tlie question posed in Chapter 1 drives the motivation for our tracking algorithm. How can we gener­

ate high-level motion descriptions using low-level models? Low-level models permit good generality 

when tracking, but make deriving useful information from the motion description fairly difficult. 

We address this problem by using a low-level model that is conditioned by input image features to 

derive semantic information that can be used to produce motion descriptions suitable for higher-level 

functionality such as automatic motion capture. 

3.3 Human Figure Model 

The human body has been commonly modelled as a stick figure or kinematic chain [8, 27], contours or 

bounding boxes [15, 17). or blobs [e.g.. cylinders, cones, metaballs. ellipsoids, etc. [13. 20. 24, 25, 26]). 

Usually coupled to the geometric model are motion or joint constraints {i.e., a movement model) 

[6. 17. 27]. These help to minimize the search space and to correct poor tracking estimates. 

Unfortunately, current models are relatively inflexible. We argue that flexibility is more easily 

achieved when the model used enforces no semantic constraints on the input sequence. Using a 

kinematic chain or skeletal model naturally assumes that the input contains such infonnation, for 

example. Models whose meaning and definition vary with the input are critical to making trackers 

with a higher degree of flexibility. 

To that end, we model the human figure with six segments and allow the characteristics of those 

segments (such as location and area) to change with the input. The six segments represent the limbs 

(two arms and two legs), the torso, and the head. The segment with the largest area is assumed to 

be the torso. Anatomically, the torso is considered to extend from the neck to the hips. 

Given an image / , we define C1 C / to be the set of pixels that compose the extracted contour 

of the figure. When segmented, C = { 5 i , 52 , • • •, Se}, where each 5 , is a segment. A segment,, 

therefore, consists of vertices on the contour of the figure. Characteristics such as area and location 

may be detennined by using axis-aligned bounding boxes or by triangulating the surface and using 

Heron's formula [29]. 

No a priori curve-fitting, stick-models, or motion constraints are considered or required.1 Rather 

' I t is important, to realize that such underlying representations are s t i l l possible in the segmentation stage. The 
Flow Discretization Algorithm [9], for instance, relies on the medial axis of the contour, so i t has a skeletonization of 
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than approaching a motion model from a deductive perspective (i.e.. here is a database of all of the 

motions learned by the tracker, please fit the input to one of them), we present an inductive method 

(i.e., based on what is visible, please decide what part of the figure is the torso). 

An additional advantage is that the semantic meaning of each segment may change with the 

application. No longer does the model enforce any semantic constraints on the underlying image. 

If one wished to track the palm, for instance, it would be possible to use the same method. By 

attempting to search by a different area or location, one may also easily track the head (see Section 

6.1). 

3.4 Assumptions Made 

Input to the algorithm is a sequences of images that make up a video. We assume that the input 

sequence has undergone a background subtraction step prior to running the algorithm. 2 Robust 

background subtraction details may be found in |18]; Kim has written a program that seems suited 

to surveillance situations |19J. 

The initial pose of the figure is used to initialize the tracker; we assume that the initial config­

uration is correctly segmented. This is done to avoid requiring user interaction at this level, not 

because it is always an accurate assumption. While this assumption may cause poor tracking at the 

outset, it should be corrected after several observations. 

We finally assume that only one figure appears in the image. This avoids complexities difficult to 

handle in the segmentation step that are not pertinent to the tracking problem. Means for including 

multiple figures are discussed in Chapter 6. 

3.5 Algorithm 

The algorithm is divided into three stages: pre-processing, segmentation, and post-processing. Dur­

ing the pre-processing stage, the input data are filtered to remove noise and extract contours. The 

Flow Discretization Algorithm |9| is then applied to analyze the contours and segment the figure. 

the figure. However, this skeleton is'•translated" into segments rather than being used for model-fitt ing. In this sense, 
we may argue that, the model is derived from, the input. 

2 T h e term "segmentation" may refer to segmenting the foreground f rom the background and also to breaking the 
figure into pieces. In this work, the latter definition is used exclusively; when background subtraction is meant, that, 
term is used. 
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Preprocessing: 

Noise filtering 
Edge detection 

Conrours 

Segmentation by Fiow Discretization 

i 
Segments 

iz 
Postprocessing; 

Model update 
Model matching by Hausdorff metric 

Figure 3.1: Algorithm Flowchart. 

Initially, the torso is assumed to be tbe largest segment. During post-processing, the torso model is 

updated statistically and matched using a Hausdorff metric |16| to the current frame. 

3.5.1 Pre-Processing 

The results from the pre-processing stage are the contours of the figure. Since noise corrupts the 

contour significantly and may greatly influence the results of the segmenter. it is important that 

noise be filtered from the input image. Noise may arise from several sources, so a combination 

of filters may be required to eliminate noise. Gaussian smoothing is used to filter random noise: 

morphological filling closes holes generated by background subtraction. Thresholding is then applied 

to produce a binary image from which the contours can be extracted. 

To facilitate robust segmentation, the extracted contours should exhibit the following properties: 

T h i n contours. The complexitv of reconstruction and segmentation depends on the number of 

input vertices and becomes computationally expensive when contours are several pixels thick. 3 The 

Flow Discretization Algorithm will also report packed vertices as segments, so a continuous, thick 

contour may have more area than the inside of the figure and be incorrectly represented as the torso. 
3 l n practice, widths of more than seven or eight pixels greatly increased processing time. 
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Geometr ic plausibil i ty. The edge detector should avoid detecting false boundaries due to noise. 

See. for example, Figuie 4.1, which shows an actor masquerading as a genie. The input image has 

been corrupted by noise from background subtraction, and so the boundaries discovered by various 

detectors are also poor. Noise adversely affects segmentation, so contours that are not truly parts 

of the figure will often create spurious segments. 

The suggested means for meeting tliese criteria are examined in Section 4.4.1. 

3.5.2 Figure Segmentation 

To segment the input image, we use Samrat Goswami's implementation of the Flow Dicretization 

Algorithm |9J. It takes as input vertices on the contour and returns a list of segments sorted by area. 

The mathematical properties of the algorithm are interesting and bear some investigation, and its 

use in tracking is novel. 

The Flow Discretization Algorithm relies on computing several features from the input point 

sample. In particular, critical points are identified and the Voronoi diagram and Delaunay tesselation 

are computed. These are ultimately combined with the fiow induced by points on the boundary to 

form closed stable manifolds. These manifolds are the segments produced by the algorithm. 

Some discussion of each of these features of the algorithm follow. This discussion, derived from 

definitions provided by the authors, is included here for completeness. The formulations are included 

from [9]. 

3.5.2.1 Cr i t i ca l Points and Flow 

Dey. et al. begin to develop their segmentation algorithm by describing a theory of flow induced 

by shape. Flow is derived from the input boundary which is analyzed to find critical points. The 

definition of flow proceeds through first defining a height function for the shape, its anchor set, and 

finally regular and critical points. 

Height Function The height function for a shape E is a distance function h: 

pes 
(3.1) 
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where p is a point, on the surface of S. The authors describe E as a compact manifold of dimension 

d — 1 that is embedded in R r i . It, is this function the authors hope to characterize to describe the 

flow induced by shape. 

Anchor set Associated with the height function is an anchor set. which describes the set of points 

closest to x G E. In the discrete domain, this corresponds to Voronoi planes. The anchor set for 

each point in the (/-dimensional real space is given by 

These two definitions permit the authors to define the critical points of the height function h(x): 

For every point x £ Rd let H(x) be the convex hull of A fx), i.e.. the convex hull of the 

points on E that are closest to x. We call x a critical point of h if x € H{x). Otherwise 

we call x a regular point.|9j 

(Regular points are smooth: critical points are non-smooth.) Critical points are the local extrema 

and saddle points of the height function. These points may be used to find a vector field that 

describes the gradient ofthe height function. The direction of steepest ascent, at, every point x in the 

height function may be derived by computing the distance between x and the point in H(x) closest, 

to i t . 

The normalized vector field defines the flow on the space described by the point sample. 

3.5.2.2 Stable Mani fo lds 

Having derived the critical points atid flow of a point sample, we may now consider the stable 

manifold of a critical point: 

where (i>y{t) defines the fiow function. The stable manifold of a critical point is the set of all points 

that flow into that point. The stable manifolds of all critical points are the segments of the space 

R d : 

A{x) = argmin ||p — scj| (3.2) 

(3.4) 
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Tliis definition ofthe segments ofa space is defined in a continuous domain, and so the flow must 

be discretized. This is accomplished by taking a finite point sample from the boundary. Critical 

points are determined as before, but flow is found using Voronoi and Delaunay objects. 

3.5.2.3 Appl ica t ion of Flow Discretization 

The Flow Discretization Algorithm provides a fairly intuitive segmentation of the input figure. The 

segments are relatively natural, generally corresponding to geometric discontinuities such as hard 

angles or abrupt changes in curvature. Since the angle and curvature of the human body changes 

throughout an input sequence, this allows our algorithm to condition its results on the input sequence 

itself, rather than requiring a prion constraints on the movement of the figure. This generalizes the 

tracker significantly. 

This can. however, cause problems. Figure 3.2 displays several results from Goswami's imple­

mentation of the algorithm. In many cases, discontinuities that would normally help segment the 

torso are obscured and poor segmentation results. Post-processing helps correct these errors. 

An additional disadvantage is that the implementation does not recognize multiple figures. Spu­

rious noise data included in the sequence may seriously harm segmentation, since the algorithm will 

interpolate a curve between the genuine contour and the false noise. An example of this may be 

found in Figure 5.2. An extremely large segment has been derived due to a very little bit of noise: 

this, in fact, was assumed to be the torso! 

3.5.2.4 Advantages 

The Flow Discretization Algorithm is extremely efficient. Algorithms for computing the Voronoi 

diagram and Delaunay tessellation have been designed to run in O(nlogn) |14]. Segmentation 

proceeded in real-time for the samples provided during testing. 

The authors do note that the algorithm suffers in the presence of noise |10J. However, in practice, 

it suffers only when noise udda artifacts to the input image, as in Figure 5.2 {note the horizontal bar in 

the upper-left corner ofthe input). This type of noise is relatively easy to filter out via morphological 

operations, smoothing, and thresholding. In many cases, it may be done automatically. With respect 

to noise that corrupts or removes parts of the input image, the segmenter responds admirably. In 

fact, in these cases, when relatively few contour points are provided (Figure 5.3). the results may be 

even better than when a dense sample is taken. 
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(a) (b) 

Figuie 3.2: Flow Discretization segnientation examples. 

In this figure, data with no noise were used as input, (a) demonstrates rather poor segmentation— 
note that the right arm of the figure is included as a part of the torso, (b) shows a slightly better 
example, though the torso includes a bit too much of the legs and is located rather low. (c) is better, 
correctly removing arms, legs, and hips, but including the head. This happens because the neck is 
not visible, (d) suggests the best torso of the four, removing arms, legs, hips, and head. 

21 



3.5.3 Torso Identification 

Torso identification proceeds in tivo sub-stages. In the first, the model of the torso is updated 

according to prior observations in the sequence. In the second, the updated model is matched to 

the current input image. 

3.5.3.1 M o d e l Update 

There are a variety of circumstances in which it is difficult to segment the torso reliably from 

the input figure, and so the model for the torso must be guessed. While the examples shown are 

generated by Flow Discretization, this is likely to be common in any segmentation step. See Figures 

5.1 to 5.7. 

We briefly consider the three affine transformations and how they impact the segnientation 

process. 

Translat ion In general, translation in the x-direction poses little problem for the algorithm. The 

side-to-side motion of the torso is usually only accompanied by swinging of the arms, and occlusion 

is rare. Translation in y and z (see "Scale", below) does cause more problems, however. 

Movement in y is often accompanied by extra movement in the arms and legs. This movement 

may obscure features that aid in segmenting the torso. In order to alleviate this problem, denser 

sampling is necessary. 

Scale Scaling of the torso usually arises due to changes in the depth of the figure, since depth under 

perspective projection may be approximated by scale differences under orthographic projection |23|. 

Therefore, the torso detected farther away from the camera should have a smaller area than the one 

detected closer to the camera. 

In practice the depth ofthe figure influences the segmentation process. I f smoothing or closing 

obscures features, detail is lost and segnientation may recommend a torso that is too large (Figure 

5.4). 

Rota t ion As shown in Figure 3.2. rotation has an unfortunate effect on segmentation. When the 

silhouette is viewed in profile [i.e.. during rotation about the y-axis). the torso will be tall and thin, 

often extending from the head or shoulders to the knees. 
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Recovery In order to recovei from mistakes by the segmenter. the relative confidence of each 

frame compared to others in a subset of the input sequence is assessed. 

Define F = {.A, h,---,fn} to be the set of all frames in the sequence and W C F to be the win­

dow of frames under observation. Let / , be the current frame such that W = { f i - m , ,A-m+i i •. •, /»}• 

We refer to IV as a backward window or back window of F. 

Further define 

where (7a is the standard deviation of the area of the torsos in W. SEM. then, is the standard 

error of the mean of the area of the torsos in a given window. If the value of SEM is high, then the 

confidence in each frame is low: if the SEM is low. the confidence is high. 

Given the area of the frame's torso a,, we define the area confidence of the »** frame as follows: 

where ij.a is the mean area of the torso over W and i is a user-specified tolerance value. In essence, 

we say that if the current observat ion falls within a user-defined tolerance (expressed in standard 

deviations), the frame is acceptable. I f the observation does not fall within this tolerance, the frame 

is unacceptable and will not be weighted in the final outcome. Having thus ascertained the confidence 

of each frame in W, we proceed to update the model. 

Let T = {t\,t2: • • • •tm} be the set of torsos associated with each frame / g W. A torso is 

described by a set of vertices on the contour ofthe figure (as extracted from step one ofthe algorithm). 

These vertices are enclosed by an axis-aligned bounding box 6 = (min , mox}, where min and max 

are the vertices that define the box. I t should be noted that min and max have coordinates x and 

y respectively. The new vertices are determined as follows: 

SEM = (3.5) 
s/m 

(3.6) 

m 

(3-7) 
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where mnx is the x-coordinate of tlie mininnim vertex of tlie new bounding box and s is a scaling 

factor that reduces Yfj=\ a c i t ' 0 miity. The other coordinates are likewise determined. 

Given the new bounding box. an inclusion test is performed for each of the vertices on the 

contour. I f the bounding box contains the given vertex, it is added to the new torso segment. In 

this fashion, the current, representation of the torso is modeled. 

3.5.3.2 Torso Match ing 

The difficulty with using a back window of frames—a necessary requirement for any application 

that would analyze data in real time—is that the position of the torso drifts significantly away from 

center. That is, the torso will be weighted more towards prior observation and will continually 

drift toward previous positions. In order to combat this, the updated torso is matched to the input 

sequence using a modified version of the Hausdorff matching technique described in [16], which is 

detailed briefly in the following paragraphs. 

The torso is also shifted by a number of pixels to obtain a tight bound on the contour of the 

figure. 

HausdorfT-based Match ing The bidirectional Hausdorff distance between two sets A and B is 

defined mathematically as follows: 

H(A.B) = m&x{h{A.B),h{B.A)) (3.8) 

where 

/i(.4,B) = maxmin lla-611 (3.9) 
oS.4 befi 

is the forward Hausdorff distance. The Hausdorff distance h{A, B) describes the inaximum of the 

minimal distances between points in sets A and B. In general, the Hausdorff distance is asymmetric, 

and so the maximum ofthe forward (from A to B) and backward (or reverse, from B to A) distances 

is reported as the Hausdorff distance. 

When the Hausdorff distance is small, we say that sets A and B are similar. It is worth noting, 

however, that outliers can have a dramatic effect on the reported distance. This motivates the 
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definition of the partial Hausdorff distance: 

HI<{A,B) = Kl

a'iAmm{A,B) (3.10) 

If we express A" as a percentage of tlie points in a set, the partial Hausdorff distance is the Hausdorff 

distance between K percent of the points in set A to set B. This reduces the influence of outliers. 

More importantly, the partial Hausdorff distance may be used to match the torso model to the figure 

in the presence of occlusion, since only a percentage of the vertices need be visible. 

An additional advantage of using the partial Hausdorff distance is that it automatically selects the 

best matching points. Other correlative techniques require a search, which may be time-consuming. 

Huttenlocher and Rucklidge |16) describe a Hausdorff-based method for searching for a model in 

an input image, which was modified for use in this algorithm. 

The input to their algorithm is a set of input vertices (the input image) and a set of model 

vertices. Using the forward partial Hausdorff distance, the authors subdivide the input image into 

"interesting" and "uninteresting" regions. The interesting regions are searched in the second stage, 

ill which the model vertices are subjected to translation and scale transformations. Good matches 

are determined by calculating the reverse Hausdorff distance. 

Due to simplifying assumptions made in this application, certain processes in the original algo­

rithm are unnecessary. In particular, because vertices are taken from the contour of the figure, no 

scaling transformation is required. Background subtraction makes the area of interest considerably 

smaller. Since only one figure is in each frame, we may accept the first exceptional match. These 

features improve the time complexity of the algorithm significantly. 

An unfortunate consequence of Hausdorff matching, however, is that the area of interest may 

vary widely between diffeient data sets, and a tight bound on performance is difficult to establish. 

There is no guarantee that two input sequences of the same resolution will take the same amount 

of time to process, since the area of interest is dictated by the moveinent of the figure in the video. 

An upper-bound on performance may be found by using the size of the input frame. In practice, 

the actual performance is orders of magnitude faster. 
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Chapter 4 

IMPLEMENTATION 

4.1 System Specifications 

The algorithm was implemented in a Fedora Core 4 Linux environment on middle-road hardware: 

an Athlon XP 1800+ processor (clocked at 1.53GHz) using the nForce2 chipset with 512MB DDR 

RAM. This is commodity hardware that is easy to find and replace. 

The only special component that the system boasts is a Serial ATA hard disk, which permits 

somewhat faster transfers than typical disks. The video sequences had a resolution of 320 x 240. 

4.2 Supporting Software 

4.2.1 Programming Language 

The tracker was written in Java version 1.5. All image processing components were written from 

scratch, including smoothers, edge detectors, and morphological operators. 

4.2.2 Flow Discretization Implementat ion 

We rely on Dr. Samrat Goswami's implementation of the Flow Discretization Algorithm, which is 

attached to the tracker by means of a Java Process object. 
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Tliis incurs some overhead due to thread management and disk access. This is masked by the 

time taken to perfonn edge detection and does not affect performance. In practice, Goswami:s 

implementation runs in real time on the contours supplied. 

4.3 Sequences Tested 

Several different motions and actions were tested in order to stress the segmentation and location 

processes: 

Dance The dance sequence is a computer generated sequence of breakdancing. I t was the most 

complicated sequence, since it contained significant (author-induced) noise, rotation, 

translation in the xy-plane. and full occlusion of the torso. This sequence was generally 

poorly tracked. 

Genie The genie sequence feat ured a genie-like actor waving his arms wildly. This was used to 

test the effects of occlusion on the tracker. The input was corrupted by noise. 

Hop The hop sequence is computer generated. It features a figuie hopping on one foot and 

rotating in a small circle. I t stresses up-and-down translation and rotation. This ten-

second sequence also exercised a variety of movements that "distract" the tracker. 

Squat The squatting sequence is computer generated and tests movement in the y-direction. 

Tharp The Tharp ballet sequence was used initially as a means of testing the tracker. The input 

is very clean, the contours easy to extract, and the motion relatively uncomplicated. I t 

did test robustness against rotation. 

Walk The walking sequence is computer generated and tests translation in the x- and z-

directions. 

Each sequence contains markedly different motion and stresses the generality of the algorithm. 
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(a) (b) <7 = 0.5 (c) CT = 4 . 0 , / = 80 

(d) CT — 0.5. t — 80 (e) f = 80 ( f ) CT = 2.0. t = 80 

Figure 4.1: Edge detector outputs. 

All images have been inverted for clarity and cropped for inclusion, (a) is the input image, (b) 
shows the output of the Canny detector with a relatively small a and (c) the output with a high a. 
(d) is the output from the difference of Gaussians. (e) shows the results of the Sobel edge detector: 
this is not substantially difierent from the Canny detector. 

While the noise in the boundarv may be reduced by smoothing, more problematic is the loss 
of the contour near the legs. Using morphological operators creates a more attractive boundary ( f ) . 
The legs are still problematic, but noise has been reduced a great deal. More aggressive thresholding 
allows the curve reconstruction algorithm to produce better results, as in figure 5.3. 
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4.4 Algorithm Specifics 

4.4.1 Edge Detection 

Edge detection proved somewhat more difficult than expected. Contour detection is a vital part of 

the algorithm, since it is the input to the segment ation step. The contours should be well-formed in 

order to eliminate spurious segments from arising. 

Figure 4.1 shows the output from several detection schemes. Spurious segments are created in 

this image because the legs are corrupted. Faithful edge detection picks up this corruption and 

diverts the segmentation process, which motivates a pre-filtering process consisting of morphological 

filling and Gaussian smoothing. Filling helps to eliminate spurious segments from arising because 

of background subtraction, which tends to leave holes in the input. 

In constructing the algorithm, two means of edge detection were considered: Canny and the 

difference of Gaussians. 

4.4.1.1 Canny Edge Detect ion 

The Canny detector [5j was considered principally because of its ability to produce pixel-width 

contours, which helped reduce computation time in the segmentation process. Since it is a first-

derivative edge detector, it is less sensitive to noise than second derivative operators. 

However, Oanny's operator is fairly slow. And. while its analysis of input data is impressive, 

such analysis is wasted in this application. Neither edge strength nor direction are used, though 

they are maintained by Canny's detector to perform hysteresis. 

4.4.1.2 Difference of Gaussians 

The difference-of-Gaussians (DoG) operator is a second-derivative method for edge detection, i.e.. 

i t detects edges by finding the zero-crossings in the input, signal. Second derivative operators are 

particularly sensitive to noise in the signal, but the DoG filters noise tising Gaussian smoothing. 

More importantly, the Gaussian convolution kernel is separable, meaning that a two-dimensional 

convolution may be performed using a one-dimensional convolution in both the x and y directions. 

The Gaussian in one dimension is formed by 

(4.1) 
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wliere a is the standard deviation. The mean of the Gaussian is assumed to be centered at x = 0. 

and the kernel width is calculated by 

ic = 1 + 2 * [2.5 * tr] (4.2) 

The kernel's separability reduces the computational complexitv of convolution from 0 ( n 2 ) to 

0 ( j } ) . though it requires two passes. On large images, the impact is impressive. Even on small 

images, the results from fhe tracker improved markedly when using the DoG operator compared to 

Canny. 

The DoG is applied by first smoothing the input image and then subtracting the result from the 

original. I f / is the input image and Gcr{I) is the image smoothed by a Gaussian with standard 

deviation cr. we may express the pixel-wise subtraction as 

In many cases, the DoG is computed by performing two smoothing passes and subtracting the second 

from the first. This requires two standard deviations and may be formulated as 

With respect to the first criterion specified in Section 3.5.1. pixel-width response, the DoG is 

very good. In fact, in situations when the provided noise is small enough, the DoG is used to great 

effect in the tracker. Unfortunately, it fails the plausibility criterion. I t is even more faithful than 

the Canny detector in finding edges that are not a part of the "real" contour and so will not perform 

well when the silhouette is corrupted. Therefore, additional filtering is required. 

4.4.1.3 Morphologica l Operators 

When the input image is corrupt ed significantly, as shown in Figure 4.1. smoothing alone will not 

compensate for artifacts in the image, and so alternate approaches were examined. In particular, 

holes in the silhouette are very problematic since they are more likely to be segmented separately 

from the torso. 

I - G a i l ) (4.3) 

(4.4) 
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(a) cr = 2.0 (b) a = 2.0 (c) a = 0.5 

Figuie 4.3: Occlusion response. 

Images were thresholded at / = 128. Note how the Canny detector in (a) and the difference of 
Gaussians in (b) both highlight the contour created by the arm. In (c). the location of lhe ami is 
reasonably well preserved—note the curve next the torso-hut the middle noise is removed. 

In the genie sequence, for instance, the hand occludes the torso for some frames, and the occlusion 

will be picked up by both the Canny and DoG detectors. This skews the segmentation in these frames 

and may affect the final identification of the torso (Figuie 4.3). 

In each frame, then, the holes need to be filled before smoothing and 

j j j • contour detection. A class of discrete and binary convolutions known as 

1 1 1 'morphological operators fulfills this need. Morphological operators are 
t t t 

so called because they function to recognize specific shapes in an image. 

Holes may be filled by performing the close operation. The close 
Figure 4.2: An example 

strutural element for ero- operation consists of two steps, erosion and dilution. Morphological 

operators may also be used to perform edge detection. 

Close, Erode, Di la te In erosion, a structural elenient (i.e.. a kernel used for purposes other 

than convolution) such as the one in Figure 4.2 is passed over the image and the pixel values in 

the neighborhood are summed together. I f sum < n * w2. where sum i.s the computed sum. n is 

the foreground intensity value, and w is the width of the kernel, then the center pixel is set to the 

background color. Dilation is the dual to erosion. In this case, if the sum is greater than zero, the 

center pixel is sef to fhe foreground color. 

A close operation first, performs erosion and then dilation. The initial erosion eliminates all 
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(a) (b) size = 5 (c) size = 5 (d) cr = 0.5 

Figure 4 .4 : Morphological operations. 

(a) is the input image, (b) shows the result of morphological closure: note that the noisy holes in 
the torso are filled in. though there is still a very ugly gap at, the hips. Potential problems also arise 
at the legs, which have been joined because of the size of the structural element, (c) shows the result, 
of opening. This is clearly undesirable as portions of the arms have been removed and detail has 
been lost at the head. Worse, the feet are entirely missing, (d) shows the results of a difference of 
Gaussians on (b). 

artifacts in the image that are smaller than the dimensions of the structural element, and the dilat ion 

fills in the remaining holes. This has two particular advantages in that it eliminates salt-and-pepper 

noise in the initial erosion step, and helps to fi l l in holes in a corrupted silhouette. 

The dual of closure is opening. Opening is not preferred as a morphological operation because 

it will exaggerate holes created by noise. 

Examples of each of these operators may be found in Figure 4.4. 

4.4.1.4 F ina l Process 

The final process included a combination of detectors. The difference of Gaussians is particularly 

attractive because of its pixel-width response and speed. In sequences where corruption to the figure 

is minimal, the difference of Gaussians is applied without, any other processing. This is determined 

by the input value for a. When a < 1.0, no morphological operators are applied. 

When the silhouette is corrupted in the image [a > 1.0). the image is first subjected to closure and 

smoothing before the difference of Gaussians is applied. The delta between the Gaussian distributions 

was fixed at 0.5. This produced thin contours for minimal cost and preserved the contour effectively. 
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4.4.2 Segmentation 

The implementation of the Flow Discretization Algorithm takes several parameters, only one of 

which was specified: the number of segments in the figtire. 

When it was unable to find six segments in the input data provided by the edge detector, it 

produced an error message, which caused processing to stop. This was typically a result of overly 

aggressive thresholding, which produced input that was too sparse. A thresholding level of intensity 

values at 80 produced good results on the sample input data, even when the contours were relatively 

sparse. See, in particular, figure 5.3. 

4.4.3 Torso Identification 

Identifying the torso consists of two steps. The first updates an internal model of the torso and the 

second matches it to the input image. The observation is then incorporated into the state of the 

tracker. 

4.4.3.1 M o d e l Update 

The update step is generally si raight-

forward. though there are some situa­

tions in which better results were ob­

tained by providing a somewhat more 

complicated decision procedure. The 

confidence of the area was measured 

as described in Chapter 3. If it was 

found wanting, the segment was com­

bined with the second-largest and the 

confidence re-measured. 

This was motivated by empircal evidence that the torso is often split into two pieces by the Flow 

Discretization Algorithm due to bends or noise. By combining the two. a more confident measure 

mav be made and a better result is obtained. 

function Hausdorff ( l i s t 
A, l i s t B) 

f l o a t d i s t < oc 
in t i ̂  0 
foreach a i n A 

foreach b i n B 
f l o a t tmp «— |ja — b\\2 

i f tmp > d i s t then 
d i s t <— tmp 

endif 
endfor 

endfor 
end 

Figure 4.5: Hausdorff Distance Algorithm 
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4.4.3.2 Torso Match ing 

The matching step is also fairly straightforward. The Hausdorff distance is typically computed using 

the algorithm in Figure 4.5. This algorithm runs in 0{nm). wliere ;? is the number of vertices in A. 

m is the number of vertices in B. and || • || is the Euclidean distance norm. The repeated calculations 

of the norm are expensive, even when using the squared distance. 

A more efficient means of computing the Hausdorff distance is to first calculate the distance 

transform ofthe underlying set of vertices. The distance transform assigns an intensity value to each 

pixel in an input image corresponding to that pixel's distance from the contour of the figure. This 

results in a two-dimensional array of floating-point vahies. 

To calculate the Hausdorff distance, then, the array is "probed" at each of the moders vertices. 

Summing the distance at each vertex produces the Hausdorff distance. See Figure 4.6. 

By preconiputiiig the distance transform, the Hausdorff distance may be computed in 0[m). 

When coniputing reverse distances, this represents a significant savings in computation time, since 

the distance transform of the model need only be computed once, though the reverse distance may 

be computed thousands of tiines. In practice, this decreased computation time on rather trivial data 

sets from 10 seconds per frame to about two and a half. 

The matching process may be further improved using early acceptance methods. Two observa­

tions permit this here. First, there is only one figure in the frame. Second, the vertices of the torso 

are taken directly from the contour of the figure in question. Therefore, we may assume that the 

first very good match (e.g.. with a distance of one pixel) is the torso and terminate the search. Since 

the torso is usually located near the upper-middle of the figure, this can halve the search time. 

The final output is then smoothed using linear regression. 

f u n c t i o n Hausdorff ( f l o a t [ ] [ ] d t , l i s t B) 
f l o a t d i s t <— 0 
foreach b i n B 

d i s t = d i s t + d t ( b . x , b .y) 
endfor 

end 

Figure 4.6: Hausdorff Distance using Dist ance Transform 
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4.5 Default Settings 

Several system parameters may be toggled or altered to change performance. 

a The standard deviation for noise in source images. Defaults to 1.5 standard deviations. 

Wa The number of frames in the observation window. Defaults to 7 frames. 

Wm The size on a side of the morphological fill operator. The default operator is a 5x5 square. 

t The intensity threshold. Defaults to an intensity value of 80. 

tol The tolerance, in standard deviations, the tracker is willing to accept when measuring 

frame confidence. Defaults to 1.0. 

In practice, these settings are sufficient for most types of video and present an affordable trade-off 

between speed and accuracy. When movement is particularly sporadic or noise levels are high, it is 

appropriate to change these parameters. 

The Flow Discretization segmentation software used also takes some parameters. We accepted 

the defaults for ease of tise, with the exception of the option used to change the. number of outputted 

segments to six as described above. 

Inpuf sequences were subjected initially to the default parameters. These parameters were then 

changed in the course of experimentation to exaniine their effect. Where results are reported, 

parameters that deviate from the normal are explicitly noted. 

4.6 Problems Encountered 

This section considers from a more practical standpoint some of the difficulties encountered when 

generating output. Covered are the three main stages ofthe algorithm: edge detection, segmentation, 

and identification. 

4.6.1 I n Edge Detection 

Edge detection posed few problems. In initial testing, thresholding was sometimes too aggressive, 

which produced a sample too sparse for the segmenter to process. This was rectified by lowering the 

default threshold value from 128 to 80. 

Lower values for a may also require a lower threshold value. 
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4.6.2 I n Segmentation 

Fixing errors in segmentation proved somewhat more difficult than in edge detection. 

A consistent means of breaking tlie segmentation process seems to be to obscure the inverted 

V-angle for the legs. This has the effect of turning the legs into one unit and perhaps fusing them 

to the torso, which in turn skews the location of the torso considerably. This effect may be seen in 

Figures 5.4 and 5.7. 

Not all sequences in which this occurs had problems. The genie sequence, in particular, responded 

very well despite tfie noise in its input. As seen in many of the figures in this section and others, 

the legs were problematic throughout. 

This difficulty was addressed by changing the noise distribution flower values for a kept more 

detail and therefore better segments) and by tightening the tolerance on each frame. 

i 

More problematic than obscuring angles was the tendency of the segmenter to produce a good torso 

in one frame that would be split into two segments in the next. Therefore, when the confidence in a 

frame was low. the largest and next-largest segments were combined and the confidence remeasured. 

If the confidence exceeded the required tolerance, the segment would be accepted. 

In order to prevent the tracker from over-correcting, creating larger and larger segments, these 

synthesized segitients were accepted at half the normal confidence. This produced good results in 

the tested sequences. 

4.6.3 I n Identification 

The main problem encountered when identifying the torso was the drift associated with the tracker. 

Attempting to calculate a weighted average when working with a back window naturally pushes the 

results back in time. To combat this problem, the bounding box was shifted in both the .;; and 

•y directions to align it more accurately with the contour of the figure. The distance between the 

bounding box and the contour in both directions was found; the box was shifted by half of that 

distance. This had the effect of eliminating most of the drift. 

For reasons explained in Chapter 6, the model update step probably needs to be more sophisti­

cated to identify the torso (or other segments) in more complicated data sequences as well. 
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Chapter 5 

DISCUSSION OF RESULTS 

The goal of our algorithm is to describe a means by which reasonably general motion tracking may 

be accomplished. This tracking should be done relatively quickly, without relying on unnecessary 

or domain-specific information. It should be robust against noise and various kinds of movement. 

To that end. the model chosen for the human figure reduced the search space by decreasing the 

number of degrees of freedom. The algorithm relied on relatively simple image processing and cost 

metrics to identify and locate the torso throughout each frame. Example otttput frames are found 

in Section 5.3. 

This chapter presents a critical discussion of the. results, examining them in light of the stated 

objectives in Section 3.1. including successes and failures. The concluding remarks discuss means of 

continuing the work presented in this thesis, including how to overcome the obstacles encountered. 

5.1 Concerning Objectives 

5.1.1 Automatic Tracking 

A very difficult problem facing most current solutions to the tracking problem is that they are not 

automatic; sometimes substantial user intervention is required to set up the tracker. Usually this 

setup involves some kind of machine learning or tr aining. 
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When we speak of "automatic" or "general" tracking, it is with this ideal in mind: that the 

figure of interest may be disambiguated from its background and reliably followed through changing 

conditions without difficulty, and without user intervention. 

Tlie use of a low-level model is a necessary elenient of an automatic t racker; high-level models are 

too specific and compromise the generality of trackers. Low-level models separate conscious semantic 

meaning from the tracking process, thereby permitting more flexibility in the face of changing 

conditions and parameters. At the same time, they simplify the metrics used to locate the torso 

115]. 

Unfortunately, low-level models contain too little detail to provide high-level motion descriptions. 

By deriving semantic information from low-level models, however, a higher-level description can be 

obtained without compromising generality. This is demonstrated to an extent by our algorithm, in 

which a variety of motions are tracked using simple statistical processes. 

In particular. Figure 5.1 and Figure 5.3 show the utility of simple metrics in clean and noisy 

reference frames. Figtire 5.5 demonstrates a "broken" frame in which the torso is completely oc­

cluded, noise has corrupted the figure, and the torso is moving quickly. However, there is a graceful 

degradation of the tracker—it, simplv adjusts to following the biggest segment. (In this particular 

case, the torso happens to be close to the largest segment: in general, this is not necessarily true.) 

5.1.2 Limited Optical Cues 

Another concern is that, the algorithm handle as many different types of data as possible. The lowest 

common denominator in visual input for computers is grayscale (or binary) imagery. Old films and 

surveillance footage are often black and white, and so the algorithm requires no additional color 

information to function. Moreover, no depth information is required either, though it would be 

useful in identifying the torso when it is completely occluded. 

To a degree, this lack of information may hamper tracking. Lack of depth information, especially, 

makes occlusion extremely difficult to resolve, witnessed by the multitude of cameras used in motion 

capture. (Ohio State's Advanced Coniputing Center for the Arts and Design motion capture lab 

uses fourteen.) Some researchers have used certain simplifying assumptions and machine learning to 

at tempt, to address occlusion with various degrees of success |15. 17. 21. 23], Lack of color eliminates 

secondary cues that mighl be useful in segmenting regions of the body (skin from clothing, for 

example as in [21J). 
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In the present solution, occlusion is handled as a case of noise. Color is not considered at all. 

5.1.3 Robustness to Noise 

A feature of human tracking is substantial robustness to noise in the visual input. The ability to 

"ignore" extraneous detail is probably assisted by the complex biochemistry of the eye and the brain's 

ability to make sense of vast visual bandwidth. 

I t has been suggested that certain visual pathways may have a Gaussian response, so the Gaussian 

smoothing filter is useful in attempting to emulate the action of the eye. In practice, however, the 

input is more likely to be corrupted by impulse noise, i.e., spikes in the input signal or salt and 

pepper noise. Median smoothing filters are often more appropriate to handle this kind of noise. 

Holes (background-color discontinuities in the input image) arose from background subtraction 

and occlusion, where limbs would form an internal boundary on the figure. To combat these features 

of the input, morphological operations are used to close holes after Gaussian smoothing had been 

applied. 

The result was relatively promising, though not sufficient for production. Large holes require a 

large structuring elenient to f i l l , which results in global figure degradation, as in the dance sequence 

(Figure 5.5). It would be better to use a more local operation, such as morphological filling 

Smaller holes responded well (Figuie 5.2). Figure 5.3 demonstrates the corrective efiect of morpho­

logical operations. The genie sequence was tracked extremely well once morphological operations 

were used to cover up the holes induced by occlusion and noise. 

5.1.4 Speed 

The speed of the tracker is difficult to bound tightly. The Hausdorff matching technique used finds 

cells of interest in the input sequence, and the area of the cells varies widely within a sequence. On 

a single input image, the algorithm runs in roughly O(hiv). where h is the height of the input image 

and w is its width. Typical processing times ranged bet ween three to seven seconds per frame. The 

time reported is subject, to several different performance bottlenecks. 
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5.1.4.1 Edge Detect ion 

A significant bottleneck in processing occurs during edge detection, since convolution is compu­

tationally expensive. Using the Difference of Gaussians operator improves computation time by 

reducing smoothing and edge-detection operations to one dimension. 

When applying the operator, the delta between the two smoothing distributions was fixed at 0.5. 

The larger the delta, the wider the detected edges and the more pronounced the smoothing effect. 

Using a delta of 0.5 produced pixel-width lines. 

The morphological operators require a single pass with a two-dimensional convolution kernel. 

In practice, a 5x5 kernel worked well. Closure first performs erosion and then dilation, so two 

total passes are required. So the hybrid operator requires four passes with a linear Gaussian kernel 

and two with a quadratic morphological operation. Other means of improving the performance are 

suggested in the concluding remarks (see section 6.2). 

5.1.4.2 Torso Match ing 

As previously stated, the matching process runs in 0{m) when using the distance transform method 

|16|. In practice, matching requires the bulk of processing time because the search is brute-force. 

Even using early acceptance and other techniques, the matching process is computationally intensive. 

5.2 Memory Complexity 

In general, the memory complexity of the tracker is reasonable. The tracker examines a window of 

frames to perform updates and therefore must only retain data for that many frames. 

A frame consists of a list of segments and an associated confidence. Each segment contains a 

list of vertices on tlie contour of the figure and a precomputed axis-aligned bounding box calculated 

from the vertices. A frame requires space on the order of magnit ude of the vertices of the object. 

Therefore, the memory complexity of the data is linear with respect to the number of vertices. 

The input and output images are PPM files, not known for their spatial efficiency. However, 

the image files are not retained for any length of time in memory and so only contribute to on-disk 

storage. 
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5.3 Example Output 

Figures 5.1 to 5.7 show various stages of output from the implementation, with appropriate caption­

ing to describe the results shown. Generally speaking, all figures contain input images with output 

from various stages of the tracking process, including COCONE segmentation and final output. 
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(d) (e) 

Figure 5 .1; Example stages (1). 

Iu this example, a = 0.5. so difference of Gaussians was applied without modification. Images have 
been edited for inclusion in the document: all input and output images are 320x240. (a) shows the 
input to the tracker, (b) the output, (c) the detected contour, (d) thc torso recommended by the 
segmenter. and (e) the segmentation of the entire body. Nole that the recommended torso in (d) 
contains the head of the dancer, but that the output from the tracker does not. 
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(c) Output induced bv DoG (d) COCONE segmentation (DoG in­
duced) 

(e) Torso recommendation (DoG 
induced) 

Figure 5.2; Example stages (2). 

Note the presence of image artifacts in (a) and how they are detected in (b). (b) is the result of 
using Lhe DoG operator. The presence of extra noise in tlie upper-left corner causes the effect seen 
in (d) and results in a skewed response in (c). Note how it drags the localion up to the face! 
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(a) Input image (b) DoG with morphological operators 
(cr = 2.0. size = 5 X 5, t = 128) 

(c) Morphologically induced output. (d) COCONE-segmented body (e) Recommended 
Torso 

Figure 5.3: Example stages (3). 

The input image (a) is the same as in figure 5.2. Using morphological operators and a relatively 
aggressive thresholding value produces the "pointilistic" contour of (b). Note that the noise that 
wrecked the prior example is now gone, (d) demonstrates that COCONE very effectively reconstructs 
the body contour from these points, (c) shows the corrected result—a significant improvement over 
the previous attempt. 
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(d) (e) 

Figuie 5.4: Change of depth effect. 

(a) is the input image, and (b) is the output from the hybrid morphological operators-difference of 
Gaussians edge detection, (d) and (e) reveal that this removes too much information for correct 
segmentation, (c) is the output image with the minimal-area metric (light) and sinoothed-corners 
metric (darker). The latter is obviously a poor decision in this case. 
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(c) (d) 

Figure 5.5: Breakdancing. 

(a) is the input image, and (b) is the output. While the bounding box corresponds mostly to the 
location of the torso, it is quite clear from (c) and (d) that the torso is not visible, so the location 
is rather fortuitous. This sequence in particular was very problematic for tracking because of the 
noise which corrupted the figure and the silhouette contortions, which make it difficult to isolate 
necessary detail to extract the torso. 
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(a) (b) 

(c) (d) 

Figuie 5.7: Hopping (2). 

(a) is the input and (b) the resulting output. This evidences the difficulty mentioned in section 
4.6.2. namely that the lack of separation between the legs results in a skewed torso location. In 
this particular frame, a solution such adaptive torso selection might help, or altering the smoothing 
parameter (here set at default). 
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Chapter 6 

CONCLUSION 

We have presented a novel solution to the problem of tracking the human torso through video. 

Rather than requiring potentially costly learning processes or user intervention, we accommodate a 

loose model of the human figure {i.e.. that the torso has the greatest area of any other segmented 

body part) and analytically choose the best approximation to it throughout a sequence of images. 

Thi.s approach requires little user interaction and performs comparably to both Chen, et al. and 

Sminchisescu and Triggs. The implementation is straightforward and permits a wide range of inputs 

due to the generality of the model. There remains room for improvement, however. 

Of first importance is that it be extended to full-body tracking. While the speed of the tracker is 

reasonable, real-time solutions are necessary for many applications (such as surveillance or defense). 

Moreover, it is unlikely that tracking single figures will be as useful as tracking an arbitrary number. 

Finally, extremely complex movements are difficult for this tracker. To handle more interesting data, 

it will need to be extended. 

6.1 Full Body Tracking 

While tracking the torso is a practical problem, it is likely insufficient for most applications that use 

tracking tecimology, especially molion capture systems. To that end, extensions to the algorithm 

that, would accommodate full body tracking are discussed. 
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We have presented a system that will track the human torso by using statistical methods com­

bined with area-based segmental ion information. Using the area confidence is more general than 

stick figures, blobs, ov other models, and may be used fairly effectively to find the torso. 

The following sections describe how to track other segments using different criteria and how to 

track multiple segments at a time. 

6.1.1 Location Confidence 

The algorithm may be generalized when applied with a corresponding feature: the location confi­

dence. While the torso is usually the largest segment—or at least a part of the largest segment—the 

relationship between areas is not always consistent. The head, for example, is reliably segmented in 

almost every single frame of the walk sequence, but the area of the head in relation to the area of 

the other segments varies quite a bit, and so it is difficult to assign it a consistent position in the 

list of segments. It may appear last in one frame and fourth in another. 

This motivates the need for a location confidence, similar to the area metric already described. 

In fact, i t may be calculated exactly the same way. The location is determined by the centroid of 

the segment, which may be found either by applying Heron's method or by calculating the centroid 

of the bounding box of the segment. The former is usually more reliable, but the latter is more 

efficient. A window of observations is found, the standard error of the mean calculated, and the 

location confidence assigned in the same way as the area confidence: 

wliere la is the location confidence for the i-th frame, m is the mean location for the window 

of frames, and cr; is the standard deviation of the locations. The variable /, retains its normal 

interpretation—the tolerance in standard deviations we are willing to extend to outliers. 

6.1.2 Segment Integration 

It is unlikely that the location confidence by itself will provide enough information to perform full 

body tracking. Each of the segments should be considered, because a correlation should be made 

between the segment location and area so that disparate recordings may be reconciled. 

1 - SEM/w . U <m±t*(Ti 
(6.1) 
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Using the area confidence alone permitted relying upon the sorted area to correctly locate the 

torso (after some statistical adjustments and combinations, of course). Such a strategy will not work 

as effectively for full body tracking because the recorded area ofthe segments may vary enough that 

selecting the smallest segment consistently {e.g., assuming that the head is the smallest segment) 

could lead to incorrect results. 

Inst ead, it is necessary to exaniine each of the segments by location and area and select the one 

from the list that provides the best confidence in a match. In other words, the position in which a 

set/nient occurs in the list should not he un immediate factor in the analysis, despite the fact that tbe 

segments are sorted hy urea. The relative importance of the metrics may vary from application to 

application, and how to combine them is not immediately clear. However, i t seems logical to treat 

the two features as dependent probabilities and treat them accordingly. 

6.1.3 Ini t ia l izat ion 

Tracking other segments using both confidences is a little more difficult; additional constraints may 

be needed to initialize the frame. For example, if one wished to track the head, the initial segment 

location may have the largest y-value. Deciding which segment is the head based on area is more 

difficult. Additionally, it may be necessary to assume that the figure is standing erect with arms at 

the side. 

Such constraints are not particularly binding and-do not affect the model at all. Moreover, they 

vary from application to application. It is equally plausible to create a more interactive tracker 

initialized by the user. So. while initialization may be somewhat more complicated, the tracker 

should remain fairly flexible. 

6.1.4 Mul t ip le Segment Tracking 

Once it is possible to track an arbitrary segment, tiacking them all at once is not particularly 

difflcult. Statistical information abotit each segment must be collected and stored. Record-type 

data structures should be sufficient to store this information. 

In particular, because the area of the segment rnay vary frame to frame, it is important to search 

tlirough each segment in the list to find an appropriate match, since the ranking of each segment 

will vary from frame to frame. This is caused by changes in pose, noise, and other considerations. 
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The relative size of the segment and quality of the sample will influence how easy i t is to track, and 

adjustments to the tolerance will prohahly be necessary in difficult situations. 

6.2 Real-Time Location 

Real-time tracking (in this case, locating the torso in real time) proved diflicult due to the nature of 

the image processing operations required. There are several possible solutions to this problem. The 

most viable is to implement as many operators in graphics hardware as possible. Real-time image 

processing libraries such as Inters OpenCV [1] may be used to enhance performance. Matching is 

also a bottleneck, but Huttenlocher and Rucklidge suggest several heuristics that may improve its 

performance, namely early rejection and acceptance [16J. 

An intriguiging possibility for leveraging graphics hardware to perform Sobel edge detection is out­

lined in [2]. Since the Canny detector finds edges by using the Sobel kernels initially, it seems likely 

that it could be easily adapted to this routine. 

The principle difficulty with implementing these routines is that they require additional input-

in the form of a depth map or normal map, neither of which is likely to be available for the input 

images. (If the depth map is available. 3-D motion capture data should be straightforward. The 

normal map must usually be specified with each ofthe coordinates—it is not derivative information.) 

I t seems, however, that implementing the difference of Gaussians operator in hardware should 

be considerably easier. Input images and the kernels could be passed as textures to a GPU shader. 

many of which have a hard-wired convolution function. Computing the difference should proceed 

quickly enough. 

6.3 Tracking Multiple Figures 

The algorithm assumes that only one figure appears in the input sequence. While useful for some 

applications, it is likely that most applications would capture interaction. In order to do this, the 

algorithm needs to be extended in two ways. The first is to identify separate figures in the input 

sequence; the second is to handle occlusions. 
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6.3.1 Figure Classification 

The first problem is motivated by the implementation the Flow Discretization Algorithm, which 

assumes that every vertex reported is on the contour of a single figure. When the contours are 

separate, as in Figure 4.l.f. a segment is found that bridges the contours. Not only is this inaccurate, 

when the figures are sufficiently separated, the "phantom segment" may be the largest one. and 

therefore incorrectly interpreted to be the torso. 

A simple solution to this is to tise connected components labeling or another pixel classifica­

tion algorithm to create two binary image masks. The two figures can be extracted and analyzed 

separately. 

6.3.2 Figure Occlusion 

The second problem, when figures occlude one another, is somewhat more problematic and would 

probably require some form of machine learning. Even then, without 3-D model data, it will be 

extremely difficult to solve this problem in any extended sequences. I t seems likely that automatic 

motion capture will be achieved hefore handling figure interaction in two dimensions. 

6.4 Multiple Movement Types 

As noted in Section 4.3. complicated movements may cause breakdowns in the tracking process. 

In the dance sequence, for instance, the torso moves quickly in all three dimensions and is fully 

occluded in several frames. 

I t is likely that complex sequences like this one will reciuire machine learning. Ho's technique[15j 

could be applied fairly well to these sequences: it should also be possible to use a more complicated 

Update technique that relies less on the bounding box of the contour vertices and more on the vertices 

themselves. 

6.5 Summary 

Despite the simplicity of this algorithm, it recommends a new way of thinking abotit the tracking 

problem. By limiting the specificity of the model and deriving information from the geometry of the 

contour, we have demonstrated that it is possible to track the human torso without semantically 
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identifying it as such. This allows substantially more flexibility than many current solutions whose 

models are so specific as to limit them to a particular domain [21] or that require extensive learning 

processes for each motion learned |17]. 
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