CONDITIONAL DOUBLE PRECISION
IN, THE NUMERICAL SOLUTION

OF DIFFERENTIAL EQUATIONS

A Thesis

Presented in Partial Fulfillment of the Requirements
for the Degree Master of Science

by
John William Rlumberg, B.S.

The Ohio State University
1968

Approved by

. Adviser
Division of Computer and

Information Science

TABLE OF CONTENTS

Acknowledgment.,..o......
Introduction.eececcccccccco
Implementationeececececcocosce
ResuItS.scecceccscccoccss
ConclusioNe,ccececosseocse
Appendix.;...............

Bibliographifecoecsccceccecs

23
33
35
57

ACKNOWLEDGMENT

The progrémming presented in this paper was made possible
by the work and help of W.M. Lay. The guidance necessary in the
development of this thesis was provided by Dr. Clinton R. Foulk,
The author wishes to acknowledge the contribution made by E.S.B.

in the preparation of this paper.

- 1ii -

INTRODUCTION

Arnold Nordsieck in Mathematics of Computationl presents

an algorithm for the numerical integration of differential equa-
tions., This algorithm is stable, self-starting, designed to set
its own elementary interval size, able to reverse the order of
integration, and capable of handling continous or piecewise con-
tinous functions. Using this algorithm, a uéer merely specifies
the function to be integrated, the initial values, the length on
the x-axis to integrate, and the accuracy required in the solution.
The routine takes care of the step-size and automatically builds a
5th degree approximating polynomial,

The routine begins by assuming that the approximating
polynomial is one with coefficients of gzero. This polynomial is
then used and refined by the starting routine until theltruncam
tion error is within the specified limits, The routine then
begins to integrate the function over the specified x-interval.

As the integration proceeds the routine maintains its accuracy
by changing the elementary interval size as required by the logic

of the routine,

1prnord Nordsieck, "On Numerical Integration of Ordinary
Differential Equations", Mathematics of Computation, Vol., 16,
No. 77, January,1962, pp. 22 - 549,

-l -

Nordsieck uses the following quadrature formula to define
his method,

y(xeh) - y(x) = h/1440(475 f(xe¢h) « 1427 £(x) - 798 f(x-h)
4 482 f(x-2h) - 173 f(x=3h) & 27 f£(x=4h))

Howe¥er, he does not use this formula directly in the integration

process. He suggests the following:

y(xeh) - y(x) = h(f}x) ¢ a(x) ¢ b(x) ¢ c(x) & d(x) la,
¢ 95/288 (f(x¢h) - £P))

P =1(x) & 2a(x) & 3b(x) & be(x) & 5A(x) 1b,
a(xsh) - a(x) = 3b(x) ¢ 6e(x) » 10a(x) 4 25/24 (f(xeh) - £P) lc.
b(xsh) - b(x) = be(x) ¢ 10d(x) + 35/72 (£(xsh) - £P) | 1d.
c(xsh) - c(x) = 5d(x) + 5/48 (f(xsh) - £P) le.
d(xsh) - d(x) = 1/120. (£(x¢h) - £P), 1f,

These equations constitute the set of working equations, and
are formulated in this manner for ease of elementary interval
size changing.

Nordsieck has defined a stable integpation_angrithm
which will integrate a function within specifiéd:limits. To
control the truncation error the step-size (h) is set to provide
the proper accuracy. After each step of the integration the

following two conditions are checked

|y(_3)'_ y(2)' L <18 |y(2)_ y(l)’ . le.
|f<x¢h)-fp | max = T0L/|n|. 1h.

th Jredicted value of y(xsh), and TOL is the

Vhere y(i) is the i
tolerance specified by the user. Failure to pass either of these
tests indicates that h is too large and is to be halved.

-2 =

Test (lg) checks to insure that the iteration error is
dominated by the truncation error. Test (1n) checks to insure
that the truncation error is within the user specified limits.
Both of these tests can be "over-satisfied", that is 2h will also
satisfy the two conditions; if so the elementary interval size
is to be doubled.

Nordsieck!s criteria for controlling the truncation error
are complete and machine or arithmetic type independent., There
is, of course, one other major error which appears namelj round-
off error. Nordsieck's algorithm was designed for the ILLIAC,

a machine which uses "fixed-point" arithmetic. The version of
this algorithm under consideration is for the IB# 7094, a machine
which has "floating-point" arithmetic. Nordsieck points outl:

The discussion in the present paper is limited to

"fixed-point" arithmetic procedures. the question

whether a "floating-point" version of the method

could be made safe against loss or illusory gain

of significance of the quantities in the course of

a long computation, and o&herwise trustworthy, is

for future investigation,

The source of round-off error in this routine is found
in the working equations. In "fixed-point" one solves the prob-
lem by using guard digits. In formula (la) one keeps logz(lhl“l)
extra digits in the calculation of he(), and one keeps logz(lh('l)

extra digits in y(x+h), formula (la). The use of guard digits

is a technique which cannot be done in "floating-point" since

°Tbid., p. 2k.

one is not free to scale numberé at will, The only parallel

is double precisiong however, double precision arithmetic requires
moré computer time, and perhaps may not be necessary for every
evaluation of the working equations, ‘

Jo H, WilkinsonJ has developed a technique which allows
one to estimate the round-off error in a single precision,
"floating-point" calculation., It can be shown that (1a) of the working
equations is the primary source of round-off error; an analysis
of the round-off error in this calculation will give an error esti
mate which can be tested to provide a conditional double precision
routine, One must examine formula (la) as it is actually iuple-
mented in the progranm.

y(x¢h) = y(x) ¢ h(£(x) ¢ a ¢ ba c + d) + h-95/288(£(xsh)-fP) 1a.1

The last term of this expression is less than 288/95°TOL,
this is always the case because of test (1h). This term need not
be considered in the round-off error as the other terms will
be dominant,

As Wilkinson points out, the "floating-point!" accumulation
of the bracketed quantity in the second term of the above express-
ion will be; in a double register accumulator:
£(x) (14eq) + a(leez) ¢ b(1+e3) + c(1+eu_) + d(l+e5) .

The quantity ey is the round-off error associated with the

representation of a number in a double register accumulator.,

3J. H. Wilkinson, Rounding Errors in Algebraic Processes
" (Englewood Cliffs,N. J.: Prentice-Hall,Inc,,1963),pp. 23-25.

-4 .

+

In the IBM 7094 there are 54 bits in the mantissa of a double
register result, hence
lQee)] <= @e25¥ .
This quantity is then reduced to a single register to allow the
multiplication by h. The result after the reduction will be
(£(x)*(Lee3) ¢ as(leey) ¢ be(leeg) ¢ co(leey) ¢ d°(1¢e5))°(1+e) .
Here |(1+e)l £ (142-27), since there are only 27 bits in the
mantissa of a single register number. The factors associated
with each term of this calculation will be (leej)+(lee) and
since 2-5% is very small compared to 2-27, each factor will be
just (14e). The quantity can be reduced to
DEL « (1l¢e) .

The next step in the evaluation of expression (la.l) is the
calculation of y(xsh):

y(xeh) = (heDEL«(lse)*(leeq) ¢+ y(x)o(Leey))(1se)

y(x¢h) = heDEL.(142e) ¢ y(x)°(1lee) .

If conditional double precision is to be used in the
evaluation of the working equations, then y must be stored in
double precision. The calculation of heDEL yields a double
precision result,-even though DEL may be only a single precision
number. The final addition in the calculation of y(xesh) will be
performed in double precision. Expression (la.l) will become

y(x+h) = heDEL+(1ee) + ¥(x).
The round-off error in the calculation of y(x¢h) will be
heDELee .

-5-

The routine must be able to estimate the total round-off
error at the end of each step, if the round-off error in the
integration over the entire x-interval is to be controlled. At
the end of each calculation of formula (la) of the working
equations, an estimate of the total round-off error can be
obtained by

DX*DELee ,
where DX is the total x-axis integration interwval.

This analysis leads to a test to insure that the truncation
error dominates the round-off error,

TOL > |DX.DEL-e 11,
If test (1i) is not satisfied, the working equations should be
calculated in double precision,

When the routine switches ﬁrecision it may have to recal-
culate the last step, If step i is performed in single precision
. and test (1i) requires double precision, then step i must be redone
in double precision., If step i is done in double precision and
test (11i) requires only single precision, then there is no need to
recalculate step i, and the routine proceeds to step i¢l. With
this conditional use of double precision the user need not worry
about whether or not to use double precision; the roﬁtine auto-
matically does so, if necessary., This algorithm now has auto-

matic step-size selection and automatic precision selection.

IMPLEMENTATION

i ODESA,«which stands for Ordinary Differential Equation
Solver Automatic, is the name of the FAP subroutine which has
been coded from Nordsieck's algorithm. This subroutine has been
designed for implementation on the 0SU 7094 subroutine library,
ODESA is a multiple entry subroutine which will integrate any
system of functions of the form:

dyp/dx = £ (X7 0¥p00ees¥y) = T3(x7)

dypldx = £5(%,57y,¥p0eees¥n) = f2(x,¥)

dypfdx = £ (X,79,Vps000,¥y) = £u(x,7),
where the set of initial conditions is known

yi<XO) - y'igo i= 192, 3, eccell o

To use the subroutine, the user calls tho initialization

routine as follows:

GALL ODESST ,DXD,XD,Y,YPR,TOL,N,D,AUX, TFLAG
| DXD -~ is the x-interval length the integration
is to proceed, in double precision.
XD - is the value of x5 in double precision.
Y - is a double precision array of length N,

which contains the set of yi(xo) values,

YPR - is a double precision array of length N,
which will contain the f(x,y) values.

TOL - is a single precision array of length N,

' which contains the tolerance values
supplied by the user., TOLy is the tol-
erance for Ve

-7

N - is the number of equations in the system
' to be integrated.

D - is a double precision array used for work-
ing storage and has length at least 10-N,

AUX - is the name of a subroutine which calculates
: the YPR values., ’

IFLAG - a cell which contains the number of elemen-
tary steps.

The subroutine AUX must be defined to be compatible with

CALL AUX,X,Y,YPR

The tolerance supplied by the user specifies the accuracy
in the following way; a TOL=10"" will supply n significant
digits in Y, The number of elementary steps taken will be pro-
portional to DXD e 1og2t 1/TOL).

After initialization the routine will integrate the system
of functions from x5 to xg + DXD by calling ODESA. Subsequent
calls to ODESA will integrate the system from x; to x3 ¢+ DXD.

~ CALL - ODESA
ODESA has no calling parameters. If the user wishes to revise
the x-interval of integration,the subroutine ODESRV is called.
A new DXD which is of opposite sign to the last one will reverse
the direction of the integration. ODESRV is called as follows:
CALL ODESRV, DXD

DXD - is the new x-interval length for integration
in double precision.

In order to cause the routine to integrate with this new DXD
a call to ODESA must follow the call to ODESRV.

-8 -

There is one error condition, if a call is made to ODESA
or ODESRV is madé without a call to ODESST beirg made; the job
will be terminated. Any other error conditions must be supplied
by the user. ODESA has conditional double precisioﬁ for the
evaluation of the working equations; the user does not concern
himself about this and he has no explicit control over it. He
has no explicit control over the elementary interval size selected
by the logic of ODESA.

The subroutine ODESST, flowchart page 10, performs the
function of suppling the remainder of the routine with the ad-
dresses of the calling parameters and performs the setup of the
approximating polynomial, ODESST sets the working equation
precision to double precision ; this is changed as required by.
calls to ODESA,

The subroutine ODESA, flowchart page 11, has the function
of performing the integration of f(x,y) from x to x 4 DXD. ODESA
takés its first elementary step in double precision and on each
succeeding step checks the precision criterion and proceeds with
the proper precision. If the user is integrating a system of
functioné, ODESA can perform the integration on each functioﬂ
in single or double precision dependent only on that function
and its tolerance. ODESA, as well as ODESST,uses certain other
internal routines to perform the operations of changing h, pre-
dicting y(xsh), correcting a,b,c,d and testing checks 1lg,lh, and

1i, These routines were written as subroutines to increase

-9 -

FLOWCHART T

| ODESST

Store addresses
Zero step count
Set double precision

¥

Set h
Reset stepping switch

)

Clear a,b,c,d

step

EXIT N > Call AUX
Advance X, predict
y step 1 steg
2.2
Test 1g pass]
fail
Deadvance x, depredict
¥ Y
Halve h Correct a,b,c,d
Step
It K 1
#1 Reverse h 4
Reverse h (&)} Restore y 8
Set double
delay 12
| pass Halve h 16 Gt
Test 1lh
[fail : 20

Reverse h Double h‘L——————.- 24
|

- 10 -

FLOWCHART II

ODESA

Set final x value

!

Delay doubling h 7

no yes
Over-satisfied ? Reduce delay
no yves
Double h

: y Y

Advance x, predict

¥
yes

ect
c,d-

QJ Force step ?

T oo

Test 1g fail

ypass

Deadvance x, deoredict

¥

Test 1h fail

Y PaSS

Halve h

pass Test 1i

fail

Deadvance x, depredict

- 11 -

generality and make the routines available to all of ODESA without
redundant coding.
The changing of the step-size is handled by three sub-

routines SETH, MULCH, and REVRSE., SETH, sst h, has the function

of halving and doubling h, if possible. The step-siée can be halved
if h/2 4 x # h ¢ x in the high order part; if this is not true,
then the old h is used and a step is forced. This is done to keep
|hl>'2“27, and set an upper bound on the number of steps. The step-
size can be doubled if 2Zh ¢ x £ final x; that is, if there are

an even number of steps left to be taken in this call to ODESA.

If SETH changes h, then MULCH, multinly change in h, is called.
MULCH performs the function of changing the remembered values a,

b,c,d for the new step-size., This is done according to TABLE T.

TABLE I
Reverse Double Halve | Replaces

-h 2h h/2 h

- y y y y
-a 2a af2 a

b 4o b/b b

-C 8¢ c/8 c

d 16d a/16 d

These simple step changing rules allow ODESA to handle automatic
step-sizing with ease., REVRSE performs the sole function of
setting h to -h and calling MULCH to~change the remembered quan-
tities. The flowcharts of these three subroutines follow on

pages 13 and 14,

- 12 -

FLOWCHART IIT

T = h *# MLTPL

!

yes Doubling ? ne X =x4T?1?
, yes no
final X = X =0 Set force] h=T
h b
L EXIT
-2n £2n
Set doubling
delay h=T Call MULCH
FLOWCHART IV
MULCH
MLTPL same as no
last one 17
yes Calculate new change
& constants
save MLTPL

Change a,b,c,d
in double precision

EXIT

-13 -

FLOWCHART ¥

REVRSE f

MLTPL = -1
L

Call MULCH

The subroutine MULCH is a routine which changes the remem-
bered quantities a;b,c,d; this changing can be done in the
working equation precision as far as round-off error in y{x+h)
is concerned, However, the truncation error test (lh) is very
sensitive to small errors in a,b,c,d; as they are introduced in the
calculation of the quantity P, A change in the step~size intro-
duces a large transient in the behavior of test (lh); this
transient can cause the doubling of h to be delayed indefinitely,
and can cause h to be halved whon halving should not be necessary.
It is for these reasons that all the arithmetic in MULCH in done
in double precision, rather than conditional double precision.

The subroutine ODESRV, ODUSA revising entry, has the
function of changing the exit interval, DXD. The exit interval
can be changed by any factor, positive or negative; the magnitude

of the change factor can be greater than one or less than one.

- 14 .

ODESRV has to change the remembered quantities h,a,b,c,d to be
consistent with the new DXD, If a reversing DXD is used, the
routine must change the signs of the rémembered quantities, If
the new DXD is a change in magnitgde, the step-size must be
adjusted along with a,b,c,d., This changing is done with the aid

of MULCH.,

FLOWCHART VI

(ODESRV }

XDX = new DXD

MLTPL = XDX/h
v
> <
MLTPL ¢ 1.0

A

3 T = power of 2
' larger than XDX/h
h = XDX A

MLTPL = XDX/h/T
h = XDX/T

Call MULCH
v
Set doubling delay

&

EXIT

- 15 -

The advancing of x, and the prediction and correction of
y(x¢h) are performed by the subroutine PREDC. PREDC is also the
routine which causes ODESA to exit to the user when x;>x; + DXD.
This routine calcula}es the round-off error estimate for use in
test (1i), as well as other values for use in tests (1lg) and (1h).
It is in this routine that formulae (1a) and (1b) of the working
equations are calculated:

y(xeh) = y(x)+h(£(x) +asbsceds05/288(f(xsh) - £P))
where fP=f(x) +2as3belice5d
As was discussed previously, the critical section for round-off
error is the calculation of y(x) ¢ h(f(x)sasbscsed), so it is in
this calculation that the conditional double precision algorithm
is applied., The paftial result he() =DZL, is saved for use in
the round-off error estimate of test (1i).

In the evaluation of the non-critical sections of this
formula single precision is used; however some care is taken to
prevent round-off error., For example, in the evaluation of £P
each partial sum result is saved in a double precision temporary
to minimize the round-off accumulation, The flowchart of PREDC
appears on page 17,

The updating of the remembered values as x; goes to Xg# h
is done by a subroutine called UPDT. This routine evaluates the
last four formulae of the working equations to correct a,b;c,d;
UPDT also formally advances x from Xy to X5 ¢ h,

- 16 -

FLOWCHART VII

PREDC ’

X ¢ h > final x

yos

no

MM=x4¢h

Check precision l

single double

precision precision

\

y(x¢h) = y(x)+h(fsasbsced)

save DTL

fP = £42243balice5d

v

TEMPA = h(f(xsh) - fP)

y(x¢h) = y(xeh) ¢ TEMPA

¥
EXIT

-17

o

EXIT ODESA

The two routines PREDC and UPDT form the core of the
working equation évaluation section and could be fused into one
subroutine, ‘However, since a y(x+h) predicted by PREDC may be
. rejected by tests (lg) or (lh),and a new h may be generated by
SETH; the two routines have been seperated, The remembered
quantities a,b,c,d and x are updated if and only if the y(x+h)
predicted pasées all the criteria of tests (1g),(lh), and (1i),

UPDT has been implemented with the conditional precision
algorithm; parallel single and double precision coding is pro-
vided for the updating of a,b,c,d. This is necessary since these
quantities enter into the critical round-off error section of the

evaluation of y(x¢h).
FLOWCHART VIIT

UPDT

TEMPA = f(x¢h) - £P

Check precision

single double
precision ¢ precision
" a = a43b46c410d+25/24 - TEMPA
b = belce10d+35/72« TEMPA
¢ = c+5d+5/48 TEMPA
d = d+1/120-TEMPA
x = XD
EXIT

- 18 -

The tests which maintain a check on the truncation error
are in subroutines CK22A and CK22B, If either of these tests
fail, then the step-size must be halved. If both pass such that
2°h will also pass, then the tests are "over-satisfied" and the
step-size should be doubled if possible, The subroutine SPDP
sets the precision needed by that step, and sets test (1i) to
flag whether or not that step must be redone., A step is to be
recalculated if it was done in single precision and double pre-
cision was required.

SPDP and the conditional double precision algorithm is
designed in such a way that each function in the system to be
integrated will be integrated in single or double precision as
required. The precision flags are stored in the working storage
(D), provided by the user; in the low order part of D(9*N)
through D(10%N - 1), A flag of zero indicates single precision,
and a non-zero flag indicates double precision, The user must
supply the values f(x,y) in double registers., However, if
each f(x,y) is independent of the others, the usér can write
his own conditional double precision routine to evaluate the
f(x,y)'s. This can be done since f(x,y) need only be carried
in the precision in which the working equations are to be cal«
culated. A user writing the subroutine AUX in SCATRAN or other
algebraic language may find this suggestion quite difficult to
implement, -

The flowcharts of these three subroutines follow,

- 19 -

FLOWCHART IX

CK22A

Set 1lg fail

<

>

Set lg pass

[eGx) - P/ |eGam) |+ 3a10-®

<

>

—e

/

Set over-satisfied fail

v

Set lg pass

le(x) = 2]/ |e(xn)] + 1.5x1078

<

>

s

Set over-satisfied pass

160 |y(3y(2)] ¢ | y(2)yQ)|I Z

<

EXIT L

- 20 -

FLOWCHART X

G

Set 1h pass
)
TEVPF = f£(xsh) - £P
Did lg fail ? yes

,no

|95/288 * n * TEPF| : TOL =

<

Set 1h fail
¥

| 64 95/288 * b % TEMPF | : TOL te

h:d

E

<4

-

Set over-satisfied
fail

EXIT

- 2] -

FLOWCHART XTI

< SPDP)

\

Set 1li pass

!

TMP1 = precision flag
¥

| xp * pEL * 1078 | : TOL
< z

\

Set "single" Set "double"

I J
v

]

T™PL : "double"

#

new flag : "single"

i

£
Set 1i fail

.22 -

RESULTS

In order to test the method, functions must be selected
vwhich contribute no round-off error in the evaluation of f(x,y), as
this analysis assumes no round-off in the subroutine AUX, Such
a function is

dy/dx = ¥y where y(0) = 1, 3a.
This differential equation is well behaved and one with a well
known solution

y(x) = & . 3b,
This equation was integrated from x =0 to x = 10; the tolerance
was set to 10'3, 10“7, and 10“9.

To demonstrate the performance of ODESA, it was run in
three different versions; one that evaluates the working equations
in single precision, one that was double precision, and one
that uses the conditional double preeision algorithm, 1In these
test runs information was obtained about the solution, Y, the
number of elementary steps in single and double precision, and the
computer time used. A listing of the conditional precision version
of ODESA is included in the appendix.

TABLE II shows the results of a test run made with single
precision arithmetic used throughout, even in the subroutine
MULCH., As was discussed, the elementary interval size control
logic is very sensitive to small errors in the remembered quan-
tities, and these results show what effect transients have on

the step-size control.
-n 23 ‘ﬂ

TABLE II

; dyfdx = y y(0) = 1 Single Precision
TOL = I0-7
X Y STEPS TIME/MINUTES
1.0 .271828179x10> 159 .006
4,0 + 54598147 6x10° 5143 .020
7.0 .109663307x10% 927 034
10.0 +220264634x1.05 Lh53 159

The solution, Y, in each case is within the tolerance,
however, the number of elementary steps taken to get theée
solutions is quite excessive. The mathematical truncation error
in this Sth degree method is

(863/12) 07 /71 « y(VI1) 3,
At x = 10 this expression becomes 280.h7 , which should be
equal to the tolerance. Solwing this, the number of steps should
be on the order of 200 rather than 4453; of course, one can not
expect to predict exactly the number of steps from expression (3c).
This demonstrates that the number of elementary steps taken is
at least an order of magnitude too large.

TABLE III, page 25, shows the results when this function
is integrated with the working equations in single precision, and
the subroutine MULCH done in double precision., These results
show that the wild behavior of the elementary interval size
can be controlled., At TOL = 10-7, the number of steps is 480
ratherlthan 4453, this behavior is much closer to the predicted

- 24 -

TABLE ITI

dy/dx = y y(0) = 1 Single Precision
TOL = 10~3
X Y ERROR STEPS TIME/MINUTES
1.0 .27182885x10% .67x10-6 28 .001
4,0 . 54508125102 .25x10-6 Ll .002
7.0 .10966326x10% .51x10-7 69 .00k
10.0 .220260455%10° Jox10-° . 116 .006
T0L = 10~7
X Y / ERROR STEPS TIME/MINUTES
1.0 .27182817x10L .11x10~7 38 .001
4,0 . 54598145x102 «51x10-7 119 .00k
7.0 .10966330x10% J11x10-7 2Lly .009
10.0 .220261+:62x105 31x10-7 480 .018
TOL = 10~
X Yy ERROR STEPS TIME/MINUTES
1.0 .2718281795x101 .33x10-8 67 .002
4,0 . 545981 4746x102 .26x10~7 25l .009
7.0 .1096633069x10™ .89x10-8 L8l .017
10.0 .2202646326x105 - 25x10~7 733 .026

- 25 .

dy/dx

TABLE IV

=y y(0) = 1 Double Precision
TOL = 10-3
Y ‘ ERROR STEPS TIME/MINUTES
.27182885x10L .67x10-6 28 003
. 514598127x1.02 .23x10-6 bl .00k
.10966327x10% Li2x10-6 69 .006
220261:57x105 .80x10-7 116 .008
TOL = 10-7
Y ERROR STEPS TIME/MINUTE
2718281 7x10+ 11x10-7 38 .001
.54598148x10? .17x10-7 118 .005
.10966331x10* .30x10-3 243 .009
.22026465%x105 .70x10-8 456 .018
TOL = 10=Y
Y ERROR STEPS TIME/MINUTES
.2718281828x10+ .10x10-10 67 .003
« 5459814999x102 J16x10-2 247 .009
10966331 56x10% .18x10-9 483 .019
2202646574x105 .52x10= 723 .028

- 26 -

behavior, and is acceptable,

At tolerances of 10-3 and 10'7, it can be seen that the
error in the solutions are within the required tolerance. With
a tolerance of 10'7 the solutions are satisfactory, but the error
isrquite near the tolerance. With TOL set to 10“§, the single
precision calculation fails to yield acceptable solutions, the
round-off error in the working equations is destroying the solu-
tions, This is predictable, since a TOL of 10"9 requires more
than one register of accuracy.

This funétion was then integrated in double precisioh;
the results are presented in TABLE 1V, page 26. These results
show that in double precision the routine can provide solutions
accurate to nine digits, where as single precision can not.

The number of elementary steps is compatible with the single
precision results, The computer time used to integrate the
function in double precision is approximately 50% greater at a
tolerance of 10~3,

Since at large tolerances ODESA can give satisfactory .
solutions with single precision arithmetic and at small tol-
erances ODESA ﬁust use douﬁle precision arithmetic, the con-
ditional precision algorithm seems to be in order. TABLE V,
page 28, shows the results from the integration of function (3a)
in conditional precision. With a tolerance of i0'3, the routine
proceeds in single precison over the entire x-interval, after

starting in double precision. The solutions at this tolerance

-27 -

dy/dx =y

Y

.27182885x10+
. 54508125x102
.10966326x10%
.22026455x105

Y

.27182817x10>
.54598147x10§
+10966330x10

.22026464x105

Y

.2718281828x10L
.5459814999x10%
.1096633156x10*
2202646574102

TABLE V

y(0) = 1
T0L = 10-3
STEPS
ERROR sp DP
.67x10-6 I 24
.25x10~6 20 2
.51x10-7 L5 24
.10x10-5 92 24
TOL = TO=7
STEPS
ERROR SP DP
.11x10~7 14 2k

.30x10-7. 41
J11x10-7 i 1

77
99

.12x10-7 41 431
0L =.10~2
STEPS

ERROR Sp DP
.10x10-10 0 67
.16x10-9 0 247
.18x10~7 0 483
.52x10~9 0 723

- 28 =

Conditional Precision

TIME
MINUTES

.003
00k
0006
.008

TR
MINUTES

.001
.005
.009
.019

TTME
MINUTES

.002
.010
019

029

are quite acceptable, and the number of steps taken is compat-
ible with the two other versions. At TOL = 10“7, the routine
sta}té in single precision and then switches to double precision,
even though the singlé precision solutions have been shown to be
accurate to seven digits. This behavior is attributed to the
fact that the round-off error bound developed through the Wilk-
inson analysis is an upper bound, and in this case the actual
round-off error is below this bound, The solutions obtained
with TOL = 10~ are obtained by the use of double precision over
the entire x-interval. Single precision arithmetic has been
shown to fail at TOL = 10‘9, and test (1i) in ODESA caused double
precision to be used., The solutions obtained are accurate to
within the tolerance.

As a check on ODESA's ability’to handle a differential
equation where the elementary interval size should vary, the

following equation was used:

dyfax = 1 x & 4,5 or x > 6.5

dy/dx = 100 b5 &£ x € 6,5 where y(0) = 0,
The solution‘is: |

y(x) = x 04 x< b5

y(x) = 100+(x-4o5) ¢ 4.5 b5< x £ 6.5

v(x) = (x-6.5) 4 204,5 6.5 x

The integration is to proceed over the interval x = 0 to
x =25, The tolerance was set to 10-3,10-7, and 10-9, TABLE VT,

- 29-

page 31, shows the results of this integration using ODESA in
conditional double precision, Of interest in these results will
be the behavior of the step-size oontrol as the routine integrates
the function. There are two areas of interest; one where the
derivative is constant, and one where the derivative is changing
rapidly.

At each tolerance the routine begins by taking 4 steps
fromx =0 to x = 4, after the 24 initialization steps., This
is the expected behavior, since the derivative is constant, To
step from 4 to 5 the routine takes 74,122, and 337 steps at
tolerances of 10‘3, 10”7, and 10-7 respectively. This is due to
the change in the derivative at x = 4.5; the error at this point
is large due to the discontinuity. 1n the interval x = 5 to
x = 6, the routine takes 6,6, and 454 steps at the three tolerances.
In the interval x = 6 to x = 7 the derivative again changes, the
routine takes 72,97, and 338 steps at the three tolerances. This
stepping behavior is almost identical to the behavior at the first
discontinuity. The derivative again becomes constant and the
step~size begins to increase. From x =7 to x = 10, ODESA takes
11, 11, and 14 steps. Over the remainder of the interval from
x =10 to x = 25, the routine takes 1 step per unit of integration
at the tolerances 16'3 and 10-7, At TOL = 10‘9, four steps are
taken per unit of integration, ‘

The precision used at a tolerance of 10-3 is single pre-
cision over the entire interval, A tolerance of 10-9 requires

- 30 .

Q,
=
~——

&

"

&
~
&

~

wn O O~ O\ &
e o © o o o o o

NN
QOO OOOOO

i

[eNeoRoNoNoNoNoNo]

DN
Ot O~ o\ &

P4

e o o o o
QO OO OOOO

RNy
ot O a0\ &

.40000000x101
«54501224x102

.15450122x102
+20500302x103

.208007302x103

.21300302x102

.21800302x102
.22300302x10°

Y

.4000000000x10L
. 5450000079x102

.1545000008x103
205000001 6x103
.2080000016x103
.2130000016x103
.2180000016x107
.2230000016x103

Y

.4000000000x10+
. 5450000079%1.02

.1545000008x102
.2050000016x103
.2080000016x107
+2130000016x103
.2180000016x103
2230000017103

or x >6.5
X ;4.605
TOL = 10-3
STEPS .
ERROR Sp DP
.00x100 I ol
12x10-% 78 2l
J12x10-> 84 24
.30x10=2 156 2l
.30x10-> 167 2l
.30x10-2 172 2l
.30x10=2 177 2l
.30x10-° 182 2l
TOL = 10=7
STEPS
ERROR SP DP
.00x100 I 2l
79%x10-8 34 116
87x10-7 3 122

16x10-8 124 129
16x10-8 135 129
16x10-8 140 129

.16x10'2 145 129
JI6x10°° 150 129
0L = 10-7
STEPS
ERROR Sp DP
.00x10° 0 28
.79x10-8 0 365
.89x10-7 0 819
.16x10-8 0 1157
.16x10-8 0o 17
.16x10-8 0 1189
.16x10~2 0 1209
.17x10-8 0 1228

-3 -

y(0) = 0
Conditional Precision

TIME
MINUTES

.003
.006
.007
.010
011
013
014
015

TTVE
MINUTES

.002
.007
.008
012
013
014
016
017

TIME
MINUTES

.002
016
036
051
052
054
056
.058

double precision over the entire interval, With the tolerance
set to 10=7, the precision switches from single to double when
the;derivative increases at x= 4,5 . The precision switches
back to single precision, after the derivative decreases at
X = 6.5

The total error at tolerances of 10=3 and 10-7 is within
the specified tolerances. At TOL = 10“9 the error is not within
the tolerance, at x = 5 + This large amount of error is due to
the sharp discontinuity at x = 4.5 . The solution at x = 6 is
within the tolerance, since the derivative is constant from 5 to
6. After the second discontinuity at x = 6.5, the error returns

to a more reasonable level.

-2 -

CONCLUSION

The conditional precision feature of ODESA gives the user
freedom from all worry about how to obtain solutions to differ-
ential equations accurate to at least one full register. Conditional
precision should be the most efficient method of obtaining solutions
accurate to any tolerance, since faster less accurate arithmetic
will be used when less accuracy is required, and slower more
accurate arithmetic will be used only when very accurate solutions
are required or when round-off error could spoil the solutions,
However, as the results show the user must pay for the automatic
feature. The routine checks its precision criterion at each step,
this checking increases the overhead time, ODESA is not, in a
limited sense, the most efficient differential equation solving
algorithm, The most efficient scheme would be one without
automatic starting, automatic interval control, and automatic
precision selection. The user would be responsible for the
analysis of his problem, and would predetermine the step-size
and precision. Through the use of ODESA, a user can make the most
efficient use of computer time, in an over-all sense. Nordsieck
estimates that the saving in computer time can be by a factor of
10 or greater, if the elementary interval size should vary; since
ODESA controls the step-size and evaluates the derivatives only
twice per step.

The conditional precision technique presented here repre-

- 133 -

sents a method of controlling the accumulation of round-off

error in a "floating-point" numerical method. The applicaticn

of conditional precision can be seen where greater precision is
available. There exist routines which deliver up to 15 registers
of precision. These routines are slow, since fhey are subroutines
and not hardware routines like double precision arithmetic. The
conditional precision test could be used to determine any precision
between single and lBth, and result in large savings in computer
time, This use of conditional precision remains for future

investigation,

APPENDIX

- 35-

$FAP
COUNT 600
ENTRY ODESST
ENTRY ODESA
ENTRY ODESRV

START ING ENTRY POINT
REGUL.AR ENTRY POINT
ENTRY FOR REVERSING THE STEP

ODESST sTZ GO RESET GO SWITCH
STZ BSATC ALWAYS OKe
STL STARTD SET SWITCH FOR INITIALIZATION
STL START SET START SwITCH
STL FORCE SET FORCLE SWiTCH
TRA SAVEMC GO SAVE MACHINE CONDITIONS
SPACE 2

GETCAL DLD#* 1e4 GET INTCERVAL LENGTH
ST XOX STORE IN XDX
CAL 244 GET CURRENT XD LOCATON
STA XD3 '
STA XD4
STA XD5
STA y-1
STA XG4~2
STA STILIN+I
STA DBLH+3
CL. A% 6¢4 GET NUMBER OF EQUATIONS
STO N SAVE IN N
ADD N FORM N=*2.
STO NTN * %
CAL 344 GET A(Y)
STA Y
ACL. NTN NEED BES ADDRESSs
STA DEPRED+2
STA RSTOR+2
STA CLEAR-4
STA S8+2
STA SAVYYP+2
STA LAST4
STA FIXY+2
STA FIXY+4

- 36 -

CAL
STA
ACL
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
CAL
ACL
STA
STA
CAL
ACL.
STA
STA
ACL
STA
STA
STA
ACL
STA
STA
STA
ACL.
STA
STA
STA
ACL
STA
STA
STA
ACL
STA
STA
STA
STA

444
YPR

NTN

LAS
RSTOR+4
DEPREDT4
SAVYYPR
LAST
YPR)
YPRZ+2
FlIXYy
YPR3

D6

544

N

NEQ3
SR
74
NTN
CLEAR-3
S8+
NTN
SNGLE+1
CLEAR+I
LAST~4
NTN
SNGLE+2
CLEAR+2
LAST-3
NTN
SNGLE+3
CLEAR+3
LAST=2
NTN
SNGLE+4
CLEAR+4
LAST~1
NTN
DEPRED+1
RSTOR+1
SAVYYP+3
LASTZ2

GET A(YPR)

NEED BES ADDRESSS

GET A(TOL)
NEED BES ADDRESS

GET

NEED

NEED

NEED

NEED

NEED

-3 -

A(D)

BES

BES

BES

BES

BES

ADDF

AJ

ESSe

m
in
al

4

ADDRE

ADDRESS e

ADDRESS .

ADDRESSe

ADDRESS e

ZERODP

DP1

ACL
STA
STA
STA
STA
ACL
STA
STA
ACL
STA
STA
STA
ACL

' STA

STA
STA
ACL
STA
STA
STA
STA
STA
STA
CAL
STA
CAL
STA
STA
STA
sSTZ
ACL
STA
STA
STA
STZ
SXA
LXA
STL
TIX
AXT

NTN
YPR12
GETA
NEQ1
D6+ 1
NTN
YPR2
FIXY+)
NTN
SAVYYP+]
RSTOR+3
DEPRED+3
NTN
LASTI
LAS]I
SP1+1
=1

SP6

DP1
SP1i+3
SP11+5
YV A1
Ukl
B¢ 4
ALUX+1
9e 4
ZEROSP
PKTSP
PKTSP+2
¥ %

=1

ZERODP

PKTDP

PKTDP+2
%
DPI+244
NTNe 4
¥ 44
DPle4s2
*% 44

NEED BES ADDRESSe.

NEED BES ADDRESS.

NEED BES ADDRESS.

GET AD(DP)e

GET ADDR OF AUX SUBROUTINE

SETUP AND Zf RO«
STEP COUNTERe

START DOUBLE PRECISION.

XD3

XD4

CLEAR

STARTING INITIALIZATION PROCEDURE

DLD
DST
DLD
DST
DFAD
DST
L XA
DLD
DST
TIX
DLD
L XA
DST
DST
DST
DST
TIX
AXT

AXT
STZ

AXT,
TSX

XD

XTD

XDX

HD

XD

FXD
NTNe 1
$%41
¥4
*¥=24¢ 142
Z00
NINe1
*¥ e]

H K41

H K]

H K41
CLEAR+141 42
0s+6

6l
FIRST

442
AUX ¢+ 4

GET CURRENT XD

STORE IN THE LAST GOOD STEP CELL
GET THE INTERVAL LENGTH
THIS IS FIRST INCREMENT

ADD IN THE CURRENT X
STORE AS ABSOLUTZ VALUE
GET NOe EQNSe
GET INITIAL VY.
SAVE DO
ALL EONSe
GET ZERO.
GET NOe EONSe
ZERO D1
ZERO D2
ZERO D3
ZERGC D4
ALL FZONSe
SET STEP COUNTER
SIX 4 STEP INTER FOR STARTING
INITIAL ENTRY SwWITCH
FOUR STEPS NECESSARY.
GET YPR(Y+XD)

SET FIRST

-39 - -

* MAIN PROGRAM SECTION

*
PREDCT TSX PREDC 4 ADVANCEsPREDICT« I TERATE
NZT FORCE 1S THIS A FORCING STEP
TRA CORCT YESe BLINDEY CRRECT
NZT START 1S THIS INITIALTIZATION
TRA DM22A NOSsKEEP IN NORMAL ENTRY STREAM
ZET FIRST 1S THIS THY FIRST STEP
TRA CORCT NO+ GO CORRECT SOLUTION
ADM22A TSX CK22A 44 CHECK 22A CRITERIA
NZT BSATA DID THIS STEP PASS
TRA DEPRED NOe« GO DEPREDICT AND DEADVANCE
ZET START 1S THIS INITIALIZATION
TRA CORCT YESs GO CORRCCT
TSX CK22B4 CHECK 228 CRITERIA
NZT BSATB
TRA DEPRED
TSX SPDP 4 TEST FOR PROPER PRECISIONS
NZT BSATC
. TRA CORCT
RSTOR LXA NTN4 4
DLD #3k g4
DST ¥4 4
DLD # 3% ¢ 44
DST *¥¥ ¢4
TIX RSTOR+1s4s2
TRA PREDCT
DEPREND LXA NTNs 4 GET NOe QNS
DLD K* 44 GET OLLD Y IN Dbe
DST %% 4 RESTORE IN VYe
DLD *¥% 44 GET OLD YPR IN D8e
DST *% ¢4 STORE IN YPRe.
TIX ¥l oo 2 GET ALL EQNSe
DLD HALF GET HALF o5
DST MLTPL . HALVE VALUESe.
TSX SETH 4 HD (STERP SI1ZE))
TRA PREDCT GO BACK AND PREDICT

CORCT

STEP
S8

REVIN

S41229

S24

TSX
STL
STL
NZT
TRA
TiX
AXT
TX1i

TRA*

TRA
TRA
TRA
TRA
TRA
TRA
LXA
DLD
DST
TIX
TSX
AXT
TSX
NZT
TRA
TRA
oLD
0ST
TSX
TSX
ZET
TRA
TSX
TRA
DLD
DST
TSX
STZ
sSTZ
TRA

UPDT s 4
FORCE
FIRST
START
DUBL CK

PRZDCTs26 1

442
*¥+1914-1
STER ¢ 1

CORRECT REMEMBERED VALUES
REZSET FORCE SWITCH

SET FIRST ENTRY SwITCH

IS THIS INITIALIZATION
NOsTRA TO CHECK DOUBL ING
PREDICT FOR INITIALIZATION
RESET STERP OUNTER

DECREASE INTURVAL COUNTER
TRANSFER TO PROPER STEPRP

STARTING PRCOCEDURES

S41220
s8
S41220
S16
S41220
524
NTN4s 4
¥ 44

*% 44
*¥-244%2
AUX s 4
443
REVRSE + 4
STARTD
EXIT
PREDCT
HALF
MLTRPL
SETHs4
CK2284+4
BSATS
S8
REVRSEs 4
CLEAR-1
TWO
MLTPL
SETHs 4
STARTD
START
s8

AFTER STEP 4

-FTER STEP 8

-FTER STEP 12

-FTER STEP 16

~-FTER STEP 20

-FTER STEP 24
GET NOe« ZQONSe
GEET Y IN DOe
RESTORE IN Ye
"ALL EONS»

GET YPR OF ORIGINAL
SET DOUBLING COUNT
REVERSE DIREICTIONS
FINISHED STARTING
YESS«EXIT
GO BACK AND PREDICT
GET HALF o5
HALVE VALUESe.
VALUES
CHECK THE TILERANCES
DOES IT PASS
YESs GO BACK AND RESET 1IC
NOs REVERSE DIRECTIONS
GO BACK AND START NEW H
GET TWO 2.0

SIZE
INITIALIZATION COMPLETED

M.

ODESA

SAVEMC

xXD5

DUBLCK

NORMAL ENTRY

NZT
TRA
STL
STZ
LMTM
SXA
SXA
SXA
SXA
SXA
SXA
NZT
TRA
LXA
DL.D
DST
DF AD
DST
T1X
NZT
TRA
DLD
DST
TSX
TRA

START
ABORT
GO

START

XR141+1
XR1+42+2
XR1+3.3
XR1+4 44
XR1+54+5
XR1+646
GO
GZTCAL
EMP 3
XD
XTD
XDX
FXD
PREDCT+3s1
BOVSAT
PREDCT
TWO
MLTPRPL
SETH«4
PREDCT

- b2 .

‘HAS PROCEDURE 8EEN STARTED

NOs GO PRONT MESSAGEZ N KILL
SET RUN SWITCH
RESET START SWITCH

IS THIS A GO RUN
NOs GO GET CALLING SEQUENCE
RESTORE DOUBL ING COUNT
GET CURRENT XD
SET LEFT HAND SIDE
ADD IN THE INTLRVAL LENGTH
SAVE LAST INTERVAL AS ABSVAL
CHECK DOUBLE COUNT AND PREDICT
ARE CONDITIONS SOVERSATIFIED
NOs GO PREDICT

YES«DOUGLE STEPR

*
*

ODESRYV

GOAHED

CHANGT

HERE

SXA
NZT
TRA
DLD*
DST
DFDP
DST
SSPR
LLRS
CAS
TRA
TRA
DLD
DST
TRA
ANA
ADD
STO
cLA
FDP
STO
STZ
DLD
DFDP
DST
TSX
AXT
SXA
AXT
TRA

ENTRY WHICH REVISES THE EXIT

HERE «4
START
ABORT
144
XDX
HD
ML TPRL

0

=1loe
GOAHED
*4+1
XDX

HD
CHANGT

INTERVAL

SAVE MACHINE CONITIONS
HAS THIS BEEN STARTED
NO+ KILL
GET NEW XDX
STORE
DIIDE BY OLD HD
SAVE FOR CHANGING VALUES
MAKE SURE ITS POSITIVE
ALL OF IT
IS XDX NEW GREATER THAN OLD HD
YESes MUST DEFINE N&EwW HD
NO o
GET Niw XDX
XDX GOOD &NOUGH FOR HD
GO CHANGE REMEMEBERED VALUES

=03770C0000000 FIND POWER OF 2 LARGLOR

=0001400002000

TEMP
MLTPRL
TEMP
MLTPL
TEMP+1
XDX
TEMP
HD
MULCH 4+ 4
443
TEMP «3
¥ ¢ 4
244

THAN XDX/HD AND

SAVE IN TEMmP
GET XDX/HD
DIVIDE BY NEXT POWER OF 2
THIS 1S THE CHANGE OF VALUES

GET NEW XDX

DIVIDE BY LARGEST POWIR OF 2

THIS 1S THE NEW HD

GO CHANGE REMEMIERED VALUES
RESET DOUBL ING COUNTe.

SAVED IN TEMP

RETURN

- b3

¥*
SPDP

SP5

SP1

SP11

SP4
sp2

ROUTINE

SXA
SXA
STZ
LLXA
L XA
CLA*
STO
ZAC
LDO
FMP
XCA
Fmp
SSP
CAS
TRA
TRA
STZ
TRA
STL
CLA
TNZ
CLA
TZE
STL
TRA
TXI
TIX
AXT
AXT
TRA

WHICH DETERMINES THE PRECISION TO PROCEED

SP2¢4
SP2+1e3
BSATC
NTN+ 4
Ne¢3
SPI1+3
TMP 1

XDX
D944

=1eE~8

TOL+3
¥4 4

¥+ 3
DI+1 44
42
D9+144
TMP 1
SP4
D9+1 44
sPyg
BSATC
sSP2

H*+1 9301
SP5¢4e62
*¥ 44

¥ %73
1+4

SAVE XR4.
SAVE XR3e

GET DISTANCE MOVEDe

ABS« (DIST*(e))oe
COMPARE WITH TOLe
SET DOUSLE®
SET DOUBLE
FORCE SINGLE PRECISIONe.

FORCE DOUBLE PRECISION

RETURN e

WITHe

SETH

HOK

REG4

OBLH

TOSML
¥*

STCT

SXA
DLD
DF MP
DST
CLLA
CAS
TRA
TRA
DLD
DF AD
CAS
TRA
TRA
DLD
DST
TSX
AXT
TRA
ZAC
LDO
DF AM
DF SM
DFDP
SSP
FAD
UFA
ANA
TZE
LBT
TRA
TRA
STZ

TRA
AXT
TRA

MADE

ROUTINE DETERMINES WHETHER A STEP CAN BE

REG4 + 4

HD GET CURRENT INCREMENT

MI_TPRL CHANGEZ BY MULTIPLE

TE 4P SAVE

MLTPL 1S THIS

=2 A DOUBLING

*+2 PROCEDURE

DBLH YiES. GO HCECK DOUSL ING

TEMP NOsCHECK FOR

XD X TOO SMALL

XDX AN INCREMENTP

*+2 oK

TOSML INCREMENT TOO SMALL

TEMP MAKE CHANGE

HD e 0

MUIL.CH+ 4 ¢ o

*¥ 44 AND

144 RiZ TURN
ZERO AC

=0 ZERO MG

FXD GET ABS OF LAST X

XD SUL ABS OF THE PRESENT X

HD DIVIDE BY OLD INCREZMENT
USE ADSOLUTE VALUFE

=e5 ADD ONE HALF FOR SURE

=0233000000000 GET INTEGER PART

=0000777777777 CLEAR THE INTEGERS

REG4 ZEDRO DONT DOUBLE HDs
IS IT EVEN

STCT YESs ALRIGHT TO DOUBLE

REG4 NOs USE PRESENT HD

FORCE MUST FORCE THIS STEP

REG4

443 RESET DOUBLING COUNT

HOK GO CHANGE VALUESS

- b5

PREDC

.%.

b3

ouT
STILIN
l-)(—

SAVYYP

YVAL

YVAL

LAST
LAST]

LAST2
LASTqy

COMPUTES NEW Y VALUE Y(XTD + HD)

SXA
SXA
SXA

DLD
AXT
TPL
AXT
DF AD
ZET
TRA
DST
DF SB
TZE
TPL*
TRA*
TRA
TRA
TRA
DLD
DST

LXA
OLD
DST
bOLD
DST
TIX

L XA
CLA
TZE
DLD
DFAD
DF AD
DFAD
DFAD
DF AD
STO
DF MP
DFAD
DST

XR4 44
XRa4+142
XR4+2¢1

DEFINE XD AND EXIT TO CALLER

HD

162

¥+ 2

Oe2

XTD
STARTD
STILIN+]

" TEMP

FXD

STILIN
OUTs2
OUT+iv2
EXIT
STILIN
EXIT

T=MP

XD

SAVE YPR((XTD)
NTNs 2

*¥ 42

*¥ 42

¥ 42

-
SAVYYP 4242

PREDICT NEXT VvVALUD

NTN4 2
*¥ 42
SNGLE
Z00

¥¥ o2
-
¥% D
-
¥ 42
D9s2
HD

e
*¥ 42

L6 -

SAVE MACHINE CONDITIONS

WHEN NECESSARY
GET CURRENT INCREMENT

SET NEGATIVE SWITCH

IF + POSITIVE OK

SET POSITIVE SWITCH

ADD EFT MOST VALUE

IS THIS DURING INITIALIZATION
YESs FORGLET AB0UT EXIT

SAVE

SUBTRACT FINAL X
IF 1S ZFERO EVEYONE
DECIDE WHERE TO GO

IS STILL IN

EXIT
OR STAY
EXIT
STAY s
XD
AND Y (XTD)
GET NOe EQNSe
GET NEXT YPR.
SAVE D8
GET NEXT Ye
SAVE DSe
DO ALL

DEF I NE&

OF Y

GET NOe EQNS.

GET SPDPe

DO IT IN SINGLE PRE.

ZERO«ACMO

D1

D2

D3

Da

ADD YPR

SAVE FACTORe
MULTIPLY BY CURRENT X VALUE
ADD Y IN DSe
STORE VYe

NEXD

YPR1
YPR12

*

AUXX

YPR2

STZ
STZ
oLD
DST
AXT
CLA
STA
LOQG
FMP
DFAD
OST
CLA
FAD
STO
TIX
OoLD
DFAD
DST
T1X

STZ
AXT
TSX
LXA
DLD
TXH
DLD
STO
CLA
STO
F3B
STO
XC A
FMP
XCA
FMP
DST

COMPUTE THE
TEMP
TEMP+1
TWO

T1

491
LAST ¢
¥*4-1

*H 2

TI

TEMP
TEMP

Tl

=1le

T1
NEXDs1 91
TEMP

*¥ 42

* ¥ 42
YVALl +242

NEXT VALUE FOR F (D-4)

L

SAVE CONSToe
FOUR D VALUES TO CHANGE

GET NEXT De
¥ Tloe

INCREASE
CONSTANT
BY ONE

ADD YPR,
STORE D6e

FIND CORRECTION FACTOR AND DETULRMINE LARGEST
CORRECTION AND DIFFERENCE

FMAXB
2l
AUX ¢ 4
NTN. 2
*¥ 42
¥4+24 1,41
*¥H 42
TEMPB
*% 42
T2
TEMPH

TEMPG

HD

COR
TEMPA

ZERO OUT ELEMENT

WIsSH TO CORRECT TWICE

CALL AUX SUBROUTINLZ FOR YPR
GET ALL EONSs
GET APRX YPRe

IF FIRST AC HAS PROPER VALUE

GET 2ND YPRe

SAVE APPROX

GET NEW YPR

SAVE IT

FORM DIFFEREZNCE YPR — APPROX

STORE

TEMPA=e3298611111%HD¥TEMPG

L7 .

FIXY

FINISH
XR4

EXIT
XRI1

SNGLE

LAS
LASI

ssP
CAS
TRA
TRA
TRA
STO
CLA
SLwW
CLA
SLW
DLD
DST
DLD
DF AD
DST
TIX
TXL
CLA
STO
STZ
TIX
AXT
AXT
AXT
TRA
SXA
SXA
AXT
AXT
AXT
AXT
AXT
AXT
STL
ZET
TRA
TRA
ZAC
FAD
FAD
FAD
FAD
FAD
STO
XCA
FMP
TRA

IS THIS THE LARGEST TEMPA
" MAKE SURE IT IS POSITIVE

FMAXES
*+3
FI1Xy
FI1Xy

NO+« GO SET LARGEST VALUE
YESs CO CORRECT Y
YESs CO CORRECT Y

FMAXB THIS IS THE LARGEST TEMPA ABS

TEMPG
FMAXC

T2

TEMPC

*H 42
¥%4p

¥¥ 40
TEMPA

¥H 42
GETA«2+2
FINISH«1 1
FMAXB
FMAXA
FMAXB
AUXX e 191
*% 44
H¥k e 2

*¥ 41

14

SAVE DIFFERENCE
SAVED AS A2S VAL
SAVE YPR VALUE
SAVED ABS VAL

RETURN

TEMP+3 SVE DOUBLING COUNT
TEMP+1+6 SAVE STEZP COUNTER

£% 41
¥¥ 4

¥¥43

*¥¥ 44

E¥ 45

1% .6

START
GO

1 ¢4

10+4

¥4 D2

ZERO ACe
D1

D2

D3

D4-

ADD YPRe
SAVE (ee)e

* CURRENT Xe

* DETERMINES IF 22A SATISFIED OR OVERSATISFIED
¥*
3¥* Se ¥FMAXP ¢ LE 6 FMAXA e ORe FMAXC/TEMPCelLE 36 ¥Xe -8
CK22A STZ BSATA SET TO FALSE
LDO FMAX3 GET FMAXA
FmpP =8,
* FORM 8*FMAXS
CAS FMAXA COMPARE WITH FiiAXA
TRA NEXTES AC GREATERe TRY NEXT TEST
TRA ¥4 1 EQUAL OK
STL BSATA LESS THAN SET TRUE
NEXTES CLA FMAXC GET FMAXC
FDP TEMPC FORM FMAXC/TEMPC
XCA
CAS =3.E-8 COMPARE WITH CONSTANT
TRA OVERSA FMAXC/TUMP «GTe 3%¥E-8
TRA ¥+ 1
sSTL ASATA SET TRUE
+#*
OVERSA STZ BOVSAT SET IFLASE
' CAS =]1e5E-8 1S FMAXC/TEMPC oLEe 10SE-8
TRA NEXTRY NO
TRA %41 YES
SETB STL BOVSAT YES
TRA 144 RETURN
NEXTRY LDO FMAXB GET FMAXS
FMP =16,
CAS FMAXA COMPARE. WITH FMAXA
TRA 144 NO GOOD RETURN
TRA SETH OK SET TRUL
TRA SETB OK SET TRUE

* CHECK CONDITION 2 AND OVERSATISFICATION
#*
crz228 SXA ENDIT.2
SXA ENDIT+1+4
STL 85ATH SET CONQITION 2 TRUE
NE O L XA N2 N EQUATIONS
L XA NTNq¢ 4
NEO1 CLA *¥* 44 GET LAST YPR IN DG
STO T1 SAVE T1
NEO3 CLA *¥% 42 GET TOLERANCE
STO T3 SAVE IT
YPR3 CLA *¥ 4 4 GET LAST YPRe
STO T2 SAVE, IT
58 T Fokm yPR - 06
SS MAKE SURE 1T 1S PRPOSITIVE
STO TEMPF STORE THE AUYSOLUTE VALUE
NZT BSATA 1S BSATA FALSE
TRA NXTS YES« GO TO NEXT TZST
XCA
FMP HD
SLW Tl ’ SAVE ABS HD*TEMPF
XCA '
FMP COR FORM CORRECTION TERM
CAS T3 COMPARE WITH TOLERANCE
TRA ¥+ 3 GREATER
TRA NXTS EQUAL
TRA NXTS LESS
5TZ B5AT3 MAKE FA(_SZ
PXA Ce2 GET INREX OF FALSE TOLERANCE
STO TOLRPOS SAVE IT
NXTS LDG TEMPF CET TEMPF
FmMmP HD MULTIPLY BY CURRENT H
XCA
F MR =271e0409722
sSSP MAKC SURE IT 1S RPOSITIVE
CAS T3 COMPARE wlTH TOLERANCE
STZ BOVSAT GREATER SET FALSE
TRA ¥+ 1
CLA BOVSAT CHECK TO SEE
ADD BSATS ‘IF PREMATURELY
TZE ENDIT DONE
TXI1 *¥+1444-2
TIX NEO+2,2.4 1
ENDIT AXT. *¥% 42
AXT *¥¥% 44
TRA 14 . PREE

- 50-

* PREPARES REMEMBERED VALUES

¥* FOR A STEPRP SIZE CHANGE OF MLTPL

*

MUL CH SXA X24e2

: SXA XZ2+1 41
SXA X2+2«3
LDQG =0
CLA MLTPL GET CHANGE MULTIPLE
CAS NUV -8 SAME AS LAST CHANGE
TRA ¥+2 NO
TRA CONOK YESs GO AHEAD AND CHANGE
DST NUM-8 SAVE IN DP
AXT SXB!

CONST XCA
FMP MLTPL FORM NEXT MULTIPLE
DST NUM 4 1 SAVE IT IN DPe.
TIX CONSTe1e2

CONOK LXA NTNa« 2 ALL SETSe
AXT 441 4 IN EACH SET
AXT 8+3
ML DP CLA LAST ¢ GET PROPER D ADDRESSe
STA *+2 '
STA *¥+3
bpLb . X¥ 42 GET NEXT De
DF MP NUM4 3
DST *¥k 42 STORE NiZWw De
TX1 ¥+1 4342
TIX MLDP 11
. TIX CONOK+14242

Xz AXT ¥¥ 42
AXT - ¥ 41
AXT *¥*43
TRA 1«4

*

*

%
uPDT

D6

uPD1

INDCH

AGN 1

SXA
SXA

. SXA

SXA
LXA
DLLD
DFSB
DST
AXT
AXT
CLA
TZE
PXA
ARS
PAX
DLD
DFMP
DF AD¥%
DST
TNX
DL D
DFMP
DFAD
DST
TX1
TIX
SXA
PXA
ARS
PAX
DLD
DST#*
AXT
TIX

HAVING ACCERPTED STER
VALUES AND LEFT MKST

XG4 ¢ 4

XG4+143
XG44242
XG4+341

"NTNe 2

¥4 2

¥ o2
TEMPA
123

Be4
DA+1 2
SPRE

Ce4q

1

Gl
TEMPA
COR s 4
LAST]
TEMP
AGN1 91 el
LAST ¢]
MUL ¢ 3
TEMP
TEMP
*¥+1434~2
POSZ4+141
*+6H4 4
Os+4

1

Osqy

TEMP
LAST«4
*¥ 44
INDCHs4 4 2

URDT

o 52 =

XR1

FINISH THIS UPDATING

HAS NOs

REMEMBERED
XTD

VALUE

CHANGE
GET YPRe
sSUB YRR

CHECK

IN SINGLE.

D6e

FILAGe

XRa4/2=XR1 e

OF TERMS /

‘OLD FACTOR.

N SETS,.

ZQUATION

GET NEXT FACTORs

PKTDP

XG4l

XG4

SPRE

POS3

AGNZ2

PKTSP

cLA
ADD
STO
TIX
DLD
DST
AXT
AXT
AXT
AXT
TRA
PXA
ARS
PAX
LDO
FMP
EAD*
DST
TNX
LDQ#
FMp
DFAD
DST
TX1
TIX
SXA
PX A
ARS
PAX
DLD
DST*
AXT
TIX
CLA
ADD

STO
TRA

%

=1

¥* 3¢
D622
XD

XTD

*¥% 44
*% ¢33
*# 2
LA |
1e4

Oeyg

1

Oel
TEMPA
CORe« 4
LAST 1
TEMP
AGNZ2 e 191
LAST 1
MUL. +» 3-
TEMP
TEMP
¥+14e3¢~2
POS2e1
*+6 04
Oe4

1

Oe4

TEMP
LLAST «4
*¥% 44
SPRE 4 +2
¥* %

=1

¥* 3¢

XG4 1

BUMP DP COUNTERG

GET CURRENT X
STORE IN LEFT MOST X CELL

BUMP SP COUNTERee

- 532

D> % Xk ok Kk kK

REVRSE

REG1S54

ABORT

SXA
TSX
PZE
PZE
PZE
AXT
TRA

SXA
CLA
STO
TSX
bLD
CHS
LRS
DST
AXT
AXT
TRA
SPACE
CALL

UTILITY ROUTINES

CALLS SUBROUTINE AUXe FOR NEW VALUES OF YPR
X414

¥¥sa
XD

¥*% ¢ 4
1¢4 RETURN

ROUTINE TO CHANGE THE DIRECTIONS OF THE STEPR

REGIS4«4

==1s SET MULTIPLE TO MINUS ONE
MLTPL SAVE =1 STEP FACTOR.
MULCH« 4

HD GET CURRENT INCREMENT

0

HD MAKE IT INCREMENT NEGATIVE
443 RESET DOUBLEING COUNT

*¥ 44

1+4

2

JOBOFF FORCE OFF USER

- 54 -

* INTERNAL STORAGE

EVEN
TMP] DEC Oece0e
HALF DEC 0e5¢0,0
Ti DEC Ooe¢00
TEMPA DEC Oe s0o
Z00 DEC 0«0 ZERO CELLSe.
TwWO DEC 2e¢0oe o DP 2e
XTD PZE
PZE
XD PZE
PZE
HD PZE
PZE
XDX PZE
PZE
FXD PZE
PZE
MLTPL PZE
PZE ‘
NUM BES 8
TEMP PZE
PZE
DEC 1¢041666674327+00+648611111474340¢
DEC e 1041666674327:000
DEC e83333395415-2600
COR DEC e 3298611111140,
DEC 36¢006¢6e6306¢¢1006¢0024e¢0e691006e¢l0¢50e¢0,
MUL. PZE
N PZE
NTN PZE N+N o

FMAXB PZE
TEMPB PZE
TEMPG PZC
FMAXC PZE

T2 PZE
TEMPC PZE
BSATC PZE

BSATA PZE
BSATB PZE
BOVSAT PZE
T3 PZE
TOLPOS PZE
FMAXA PZE
TEMPF PZE
FLAG PZE

- 55

GO
START
STARTD
FORCE
FIRST
TOL
D9

. PZE

PZE
PZE
PZE
PZE
EQU
EQU
END

- 56 -

BIBLIOGRAPHY

Nordsieck, Arnold. "On Numerical Integration of Ordinary
Differential Equations". Mathematics of Computation.
Vol. 16, No. 77, January, 1962.

Wilkinson, J.H. . Rounding Errors in Algebraic Processes,
Englewood Cliffs,New Jersey: Prentice-Hall, Inc., 1963,

- 57 -

