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INTRODUCTION 
The problera of radiation frora electrons raoving i n a magnetoplasraa 

is of interest i n astrophysics and radio astronomy. Many authors have 
treated this problem by taking different kinds of approach. Due to 
the anisotropic property of the magnetoplasraa, formulas for radiation 
i n general are very complicated. The methods that have been used i n 
solving this problera are: 
(A) Integral expansion raethod: 

Twiss(1952) developed this method. He and Roberts(1958) used this 
method to find an asymptotic far f i e l d solution for synchrotron 
radiation i n a cold magnetoplasraa, 

(B) Tensorial Green's function raethod: 
Bunkin(1957) used this method and obtained an asymptotic far f i e l d 
solution for the radiation from a current distribution. And Kuehl 
(1962) obtained formulas for the radiation from an electric dipole 
i n a cold magnetoplasraa, 

(C) Fourier transform method: 
Sitenko and Kolomenskii(1956) developed this raethod i n solving for 
Cerenkov radiation, Mansfield(196?) obtained a solution for the 
radiation from a spiraling electron i n a cold magnetoplasraa, but 
his formula was corrected by Melrose(1968), McKenzie(1964) used a 
different kind of approach of this method and obtained a different 
solution, 

(D) Hamiltonian raethod: 
Ginzburg(19i*-0) f i r s t applied this raethod to a uniaxial anisotropic 
raediura, Koloraenskii(1953) extended this raethod to solve for the 



radiation frora an oscillating charged particle i n a gyrotropic raediura, 
while Eidinan(1958) obtained a solution for that frora a spiraling 
electron i n a cold magnetoplasraa. By taking into account of dispersion, 
Liemohn(1965) obtained a solution different frora that obtained by 
Eidman, 

The Hamiltonian raethod is a very powerful technique i n solving 
the problera of radiation i n anisotropic media as can be seen frora 
those papers cited above i n (D). But i t has been pointed out by Ko 
(1969, 1970) that there were errors i n both Eidman and Lieraohn's 
papers. These errors have occurred because these authors have failed 
to take into account the effect of dispersion i n a consistent manner. 
The complete procedures of this method -will be presented i n a j o i n t 
paper by Ko, King and Chuang, Applications to other problems w i l l be 
also discussed i n a dissertation by King, 

In this thesis we w i l l apply the Hamiltonian method to finding the 
radiation from an a r b i t r a r i l y oriented dipole antenna i n a homogeneous 
cold magnetoplasraa. F i r s t , the Hamiltonian method is partly reviewed. 
Then the radiation fields are found. And f i n a l l y , as an example, we 
w i l l calculate the fields for the case of an i n f i n i t e magnetostatic 
f i e l d . 
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HAMILTONIAN METHOD 
The discussion of the Hamiltonian method for a free space can be 

found i n (Heitler, 1954)» A similar procedure for an anisotropic 
medium w i l l be taken i n this thesis. 

In a source-free region Maxwell's equations are 
?xH - D • 0 (1) 

VxE + B = 0 (2) 

V.B - 0 (3) 

V.D - 0 (4) 
As usual, we define the vector and scalar potentials as 

B = VxA (5) 

E = - V$ - A (6) 

The coordinate system is oriented such that the uniform 
magnetostatic f i e l d is along the z-axis. Then the homogeneous cold 
magnetoplasraa is characterized by a dielectric complex hermitian 
tensor ^ ( ^ , 6 ) , where u; is the angular frequency of the wave and 0 is 
the angle measured from the z-axis. 

Define Aw as the Fourier transform of A, 
A„ - j / A e->t d t (7) 

where the time t is defined such that for t ^ O , A e ,A = 0. 

And the inverse Fourier transform is 

A = C A* e^t ^ (8) 

where f is the frequency of the wave. 
From (5 )i the magnetic f i e l d intensity is 

H = ^ VxA (9) 

And since D w = V^ - jwA^,), we have 
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D = - 1 * e a f . f | r t e^* df - J * >e 0 G-A^ e > t df (10) 

By substituting (9) and (10) into (1) and (4), we obtain 
VxVxA + j * juiMoSei'Vl^ df - J^ u/^e-I^ e^1 df = 0 (11) 

|^V.e.7| Be> t df juiV.e.A^ e ^ df = 0 (12) 

Instead of the Lorentz gauge, the Coulomb gauge w i l l be used, 
V-f.Ao = 0 (13) 

Under this condition vre can set | w = 0, Then (11) reduces to 
fxVxA - C t o X ^ ' A u e j w t df = 0 (14) 
To find a solution for (14), ire assurae that the whole radiation 

energy is enclosed i n a cube of volume L3 and the vector potential 
i s required to satisfy some boundary condition, i.e., 

A is periodic on the surface of the cube. (15) 

Then the general solution of (14) can be represented as a 

superposition of orthogonal eigenfunctions, 

or 

A = T i l Q A ( T ) A A ( 7 ) + ^ A ^ V ^ J (16) 

A = Re ̂  q A ( t ) A A ( r ) (1?) 
where q A ( t ) and A A(r) are coraplex functions and satisfy the 
following equations 

VxVxAA(r) - uj^U.e 0e A.A A(r) - 0 (18) 
q A ( t ) = b e ^ t ( 1 9 ) 

where eA i s the dielectric tensor at u = U)A and b is an arbitrary 
constant. 

From (18), we assurae 
A A(r) = e-&*'* (20) 

where k A is the propagation vector at w = » A A i s the polarization 



vector associated with k:A and c is the velocity of l i g h t i n free space. 
For A A(r) to satisfy (15)f the components of k A are given by 

kxx . -̂ Ay = ̂  and k ^ = 1^ £-, where Ax, Ay and A z are 
integers. 

The polarization vector is then normalized such that 
j^dv A^(r) . f A .AA ( r ) = 4iic xnf 5 M (21) 

where n A is the refractive index at w = wA along the direction of k A 

and J is the Kronecker's delta. 
By substituting (20) into (18) and (21), we obtain 

e Aoa A = nA1<Ax(aAxtcA) (22) 
aA'e A.a A = n A (23) 

where k A is the unit vector along k x. 
For (22) and (23) to be consistent with each other, the following 

equation must be satisfied, 

|aAf-|kA-iA| " 1 (24) 
I f we l e t L approach to i n f i n i t y , then k-space is approximately 

continuous and the summation over Ps can be replaced by integration. 
The number of modes i n the solid angle dfl = sin0 de d$ and the 
frequency interval between wA and (Ja + dwJA is given by 

( ^ f ^ n t d + ^ ^ d B (25) 

Next we consider the radiation from a current source. Let J be 
the current density. Then the vector potential produced by J 
satisfies 

VxVxA + /* j w ^ e J . V ^ e^* df - w lM oe 0f-I^ e ^ df = /U.J (26) 
Expand A as a superposition of the homogeneous eigenfunctions, 

A = Re S q A(t)A A(fO (2?) 



Where ^ ( t ) takes the form of b A ( t ) . 
For simplicity, from now on we shall delete the word "Re". Then 

a l l f i e l d s , potentials and currents w i l l be represented by the 
analytic signals of their real signals (Born and Wolf, 1964), 

_* _ 
To find the solution for q A ( t ) , we multiply (26) by j^dv AA(r)» 

and use (18), (20), (21) and the following relation, 
J lJ dv A^(r)'G'Vf l 0 = 3̂ dv V^.l*.A^(r) 

= ; e dv [7*(§l0i*'A^(?)) " $ttV•!*•]£(?)] 
= -j La dv ^ V . f * . X l ( r ) 

to obtain 
w ^ q A ( t ) - (*f<-e. ,i Aq A( to) df 
= ^ J j , dv MA OO-J + fr^Utf d v U - ^ ' X l C r ) ] e > t df (28) 

where q A( < : o) i s the Fourier transform of q A ( t ) . 
Equation (28) may also be written as 
( c o ^ - of^ . f . i A ) q ^ ( c o ) = ^ [ ; ( / L l d v ^ ( ? ) . j ) e - j - t dt 

+ f j , dv f^V.e .A A(r) (29) 

From (29), we have 
„ JTC/u' dv ̂ . A^ (r)«j)e-J'jt' dt + .icoAUesfi.'dv û)7.e»Ax(r) /-n\ 

Using inverse Fourier transformation, we can f i n d q ^ ( t ) . The 
inverse Fourier transformation may be carried out by residue theorem 
of complex function. Since the denominator of (30) has a zero at 
1 0 11 , the numerator is evaluated at w = , Then the second 
integral i n the numerator is equal to zero since V.e A.A A(r) = 0, 

Therefore (30) reduces to 
n m i r t/^dv Msilm-jje-j^ dt 



Then we have 
q ^ t ) = e j c o t d f 

-* _ - i r jM(t -
= r d t t (Jtf d v ^ ( r ) . J ( g ] ^ . J a^.f.a A) df (32) 

The pole of (32) i s on the real axis of the complex frequency-
plane. But i f we use a complex frequency (̂  - jfl") i n Fourier 
transformation, the pole w i l l be off the real axis and on the 
upper half plane. Then 

a j ^ t - t j = 1 p W J ^ J d ) - » . 

l-» ^ ( ^ n * - u ) ^ c f . a A ) ^ 4Trj 2 ^ 5 + ̂ M ^ ^ A > 1 

= 0 f or t < t ! 

Since af .|-^.aA = ^ - | ^ . i A . a A _ af ,f. .|% 

and from (22) and (24), i t may be shown that 

1 % oc A.a x + a * . e A . - 0 

hence (32) reduces to 

^ ( t ) - C a M i ^ ^ t ( ? ) - 7 ( V ) 8 r 3 ^ V ^ ) (32) 

Under the Coulomb gauge, the scalar potential $ is a static 
potential (Heitler, 1954) which doesn't contribute to radiation. 
Therefore i n calculating the electric f i e l d intensity only the 
vector potential w i l l be taken into account, 1,6., 

E = - A 
Therefore from (32)' and (25), we obtain, after suppressing 

the subscript At formulas for E and H, 

E = - 1J e^w'" 5 ̂  + n f S)q(t)A(r) dw da (33) 

H = - J j f ^ f i ^ d + £ g)q(t ) S x A(r) do d^ (34) 



with 

q(t) - d t j ^ d v x a * ( r ) . J ( t l ) ) ^.[l '- ̂  (35) 

and 

K r ) - a j ^ e " ^ (36) 

Now we shall define the polarization coefficients for 3, Let 
k = (sine cos^), sine sin{j), cose), where 6 and $ are the angles 
i n the conventional spherical coordinate and the coraponents of the 
vector are expressed i n the x, y and z directions. The polarization 
coefficients associated with Ic are defined as 

a^ a^ I01*. 

where a^, â , and â  are the spherical coraponents of a as shown i n 
Fig, 1, and OCQ and 0̂  are real functions for a cold magnetoplasraa 
(Ginzburg, 1961), Then 

S - - a^(sin(l) + ja;fcos^, - cos({) + jo^sinlj), j<xz) (3?) 

where = ô gCosG + O^sinO 
oCz = a^cosG - o^sinB (38) 

- (1 + Of})"1 

T i l l now we have not specified the source founction J, hence 
(33) and (34) are general formulas for the radiation fields i n an 
anisotropic raediura. 
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RADIATION FROM A DIPOLE ANTENNA 
The dipole antenna is placed at the origin of the coordinate 

system and is oriented i n the yz-plane making an angle with the 
z-axis. Then the source function J takes the form of 

J = I I e^0^ £(r)(0, sinQd, cosod) (39) 

where I I is the dipole moraent of the antenna. 
The solution for q(t) raay be found frora (35), (36) and (37), 

I t is found that 
, . ] bird AAzlla.t / . A . . . . . 1 , . N 

q(t) - j-^T' 4 l T^ nxQ + 7f|^) ( s i n a c o s y JOf since san$ + jo^cosoc) 
.sin( 2. ) t e J ( g — ; t 

co - cOc 

In the l i m i t t-»-oo, the following equation is valid i n the sense of 
distribution function (Papoulis, 1962), 

lim sinmt . -rrtfa) 

Then 

q( t ; - "TTT^—rTTTTZlDT ( s : L n c< c051!5 + J ^ s i n * sin$ + joc-coscx) L ^jwn U ^ n 9 W; 
.S(co-oJ (40) 

The f i e l d point is chosen at r = r(sin® cos$, sin® sin$, cos®), 
where r, ® and $ are the spherical coordinates of the f i e l d point as 
shown i n Fig. 2, The fields at this point may be found by 
substituting (40) into (33) a n d (34), After carrying out the 
integration over Ui, the fields take the forms of 

E = ^ dn. O."1^ o£) ( s i n 0 < c o s ^ + j a f s i m < s i n 1 ) + foicosoi) 

jiot - j^rfsin® sinQ cosity - $) + cos® cosel .e \ 
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•(sin(|) + jOCfcostf), - coslj) + j«fsin(J), j0( z) (41) 

H = j" d a 8^^7i~+~o(|) ( s i n 0 ( c031!* + j«fSin« sinlp + jo<zcos«) 

jwt - jSpr(sin® sine cos((() - |) + cos® cose) 

•(cose coslj) - jo(esin(I), cosG sin(() + jo(ecos(|), - sine) (42) 

I t should be noted that i n (41) and (42) the frequency CO is 
evaluated at the frequency of the source and the integration i s 
with respect to 6 and ((), 

The integration over $ is easy to be carried out by 
f « -jX cosdf) - 1) + jsD _ -s j s j . j e e d(J) = 2trj e J S(X) 

where X = - ^ r sin® sine and J s is a Bessel function of order s. 
Then 

E = C d e s i n 9 ^ ^ ( i 1 ^ ^ ) exp(jwt - j ! f r cos® cose) 

' jo(ssinc< J 0 + o(2cosc< ( s i n | + jc<?cos|) 
- -Id - o(f) sino( sin2$ J2 , 

- -|(1 + o(j) sino< J 0 + c(zcos<x. (jO(jSin| - cos|) Jj 
+ "1(1 - oCy) sin« cos2^ J2 , 

- a^costx J 0 + cosine* (cosj + j«fsin$) Jj J (43) 

H = de sine 7^^(f~?^|~) exp( j ^ t - j ^ r cos® cose) 

'Kcose + (Xeo<f) sina J 0 + o(2(cose cos| - ja esin|) cos« 
+ -Kô oCj cos2$ - cose cos2$ + jo<esin2$ - jocose sin2$)sino^ 
jjic^q + «.fcose) sin0( J 0 + (X2(cose s i n | + jc^cosl) cosot Jj 
+ ^(KgO^s^^ - cose sin2| + jo^cose cos2^ - jo(ecos2$)sinoC J2 

j ^ s i ^ e coscx J 0 + ( j cosj - o(fsin|) sine sino( J j 
(44) 

11 



In (43) and (44), replace J S(X) by |(Kfg(X) + ^'(X)). And as r 
approaches to i n f i n i t y , the asymptotic forms of Hankel functions of 
large argument may be used. Then we perform the stationary phase 
method to carry out the integration over 6 (Copson, 1965). I t is 
found that 

Ffg(X) exp(- j ^ r cos® cose) de 

• p exp(ij^r((n - n") cosf^ - Zn'sin^)e2] dG 

= j s + 1(||-)exp(- j ^ r cos(j)(n sin© sine ((n - n") cosij - 2TI sin^)j 

(45) 
where f[ = ® - 6, and e is the angle where the stationary phase 

occurs and satisfies the following equations, 

n'cos(® - e) + n sin(® - e) = 0 (46) 

cos(®- e) > 0 (4?) 

- TT ̂  e $ IT 
where the primes denote differentiation with respect to 6 and equation 
(47) is due to the radiation condition at i n f i n i t y . 
The range of integration from - I T to 0 i n (45) is due to the f i r s t 
kind Hankel function according to the following transformation, 

X) = (- i ) s + 1 O x > 

I f there are more than one stationary phase point i n the range, 
- T T ^ 6 ̂  IT, the right hand side of (45) w i l l be replaced by a 
summation over each stationary phase point. 
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By using (46), we rewrite (45) as 

Hg(X) exp(- j ^ r cos® cose) dQ 

= j S + 1 ( ^ ' ) exp(- j ^ r cost|)[sin® sine cosr^ ( n 2 - nn* + 2n / 2 )] 

After carrying out the integration over e, we find that the 
fields are 

_ jaApnll sin9 exp(,iust - jjj&r cosH.) 
~ 4Tr(l + o(e)(sin® sine cosr^ (n 2 - nn" + Zn'2 )J ? r 
'jCXaSinOC + ô cosce ( j sin$ - OlfCosfy) + i ( l - 0df) sinoi sin2|, 
- | ( 1 + 0(f) sina - Oacosod (orsini + j cos$) - i ( l - Oij) 

• since cos2$, 
- o(*cosoe + j<Xzs±noc cos| - ityifSijneL sin$ J (48) 

_ _ j n I I sinQ exp(j t - .i r cos ) ^ _ 
4TTC(1 + a|)(sin® sine cost; (n 2 - nn" + 2n'z ) ) % r 
^(cose + oi^OCf) sinoc + oleosa ( j cose cos$ + O^sinl) 
+ i(cose - C ( . 6 o L f ) since cosZ$ + ij((X fcose - OCQ) sino< sin2$, 
i j ( ^ e + Kfcose) sinO( + KzcosC< ( j cose sin$ - o(ecos$) 
+ Kcose - C(&0if) sino( sin2$ + i j ( o ( e - c(?cosB) sinoC cos2|, 

jo( zsine cosoc - sine sin0( cos^ - jo^sine sinoc s i n | J (49) 

In (48) and (49) the components of the vectors are expressed 
i n the rectangular coordinate. To transform to the spherical 
coordinate we need the following relations, 

x = sin® cos$ r + cos® cos^ © - s i n | $ 
y " sin® sinf r + cos© si n | ̂  + cosf $ (50) 

z • cos® ? - sin® ̂  
When expressed i n the spherical coordinate, (48) and (49) reduce to 

.2 O -T 
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- j t o ^ n l l sin6 ^coso^ + (otg_sin| - j cos|) sing) 
E ^ ~ 4ir(l + a|)(sine sin® cosr^ (n 2 - nn" + 2n'1 

>exp(jgt - r cosq) ( c ^ s ± n ^ + ̂ c o s r [ t . ̂ s i n ^ , j ) 
r 

(51) 

— jum2-!! sin6 {oCzcosU + (o( fsin| - j cos|) sing) 
H " 4Trc(l + «e)(sine sinQ cost^ (n 2 - nn* + 2n,z )],/2 

texp(ju3t - j f r cosq) ( . s . _ ( 5 2 ) 

r 
The average Poynting vector is defined as iRe(ExH ). Frora (51) 

and (52) we see that the average Poynting vector has a radial 
component and a ©-component. The radial component has a factor 

((1 + C(|) cos(\ - (XgO^sinttJ 

which, by using (46), may be rewritten as 

ir(n(l + < ) * n'K6og cos»V. 

And the ©-component has a factor 
((1 + o£) sinr; + OCeCXKcoŝ  , 

which raay also be rewritten as 

i ( - n'd + 0(|) + n0(e0(K) cosf^. 

I t w i l l be shown i n the next section that 
n ^ l + 0(|) = ny9o(K (53) 

Therefore the ©-component of the average Poynting vector is zero. 
Then the average Poynting vector is i n the radial direction. The 
radiation intensity is found to be 

dP _ ufxUnl 2! 2 - sine ( n 2 + n^)C(o^coso( +c(fsino( sinjEf + sjjrgC cos 2!) 
' 32TI 2C sin® [n2- - nn" + Zn'2-\ (1 + «^) 

(54) 
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where dn - sin® d® d$ and the parameters (n, a e, q̂ , etc.) i n the 
equation refer to the appropriate polarization. 
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INFINITE MAGNETOSTATIC FIELD 
The magnetoplasraa is characterized by two parameters, the plasma 

frequency Wp ~ (Ne/me0)2 and the gyro-frequency W6 = |e]B/ra, where 
N is the density of electrons i n the magnetoplasraa, B is the 
magnetostatic f i e l d and m and e are the mass and the charge of an 
electron, respectively. 

Define 
X = (Wp/to)2 

and 
y = (uyu)). 

Then the refractive index and the polarization coefficients are given 
by (Ginzburg, 1961) 

i . 2X(1 - X) 
n t ^ 1 " — D ^ 
D± = 2(1 - X) - Y2 sin© t (Y 4 sin ' s + 4Y 2(1 - x f cos 2e)* 

. (n| - 1)Y cos9 
V*tm - n| - (1 - X) (55) 

« = (nl - 1)Y sine 
^ T T x 

In (55) the upper (+) sign denotes the ordinary raode and the lower 
(-) sign denotes the extraordinary raode of polarization. 

By using (55), we raay prove (53)• 

Next, i t is interesting to examine the radiation fields at the 
approximation, £0 « 10 B and (Op « 1^3, because i t is possible to obtain 
e x p l i c i t equations for the radiation fields under this assumption, 

V/hen CJB approaches to i n f i n i t y , (55) becomes 
D_ = - 2YZ sin 2 6 
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Ke. - 0 

and 

D+ = 2(1 - X ) ( ( l - X) cot 2 e + l ] 

2 J X nr " 1 -+ " ( i - x) cot 2 e + i 
Y cos9 

e t ( i - x ) cot 2 e 

XY sine ^ ^ 
" ( i - x ) ( ( i - x) cot 2 e + 1 ] ^ ° ° 

Then from (46), we have 
e_ = ® 

and 
cot® 

c o t e + = FTF 
Combine (56) and (57) to obtain 

2 ( 1 - X ) 2 sin2® + cos2® 
n. = p 

+ 1-X sin2® 
We see that the extraordinary mode can radiate i n a l l directions, 
but the ordinary mode can only radiate i n the directions where 
X sin2® ̂  1, 

From (51) and (52), we fin d the radiation fields as follows: 
- j w / ^ I l sinCX cosf \ It-E_ = - ^ ^— exp(jtct - j ^ r ) $ 

— j w l l sinO< cos^ . x !̂  H- - ; exp(juJt - Wr) ® 
MTrcr 

and 
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- j o j ^ l K l - X)(sin® coscx - cos® sinf sinc<) 
+ ' 4irr(l - X sin 2®)^ 

.exp[ju)t - j g r d - X sin2®) 2] ® 

— j u ) I l ( l - X)(sin®coso( - cos® sinf sinoO 
+ " 4TTcr(l - X sin2®) 

•exp(jwt - j | r ( l - X sin2®)2} | (59) 

And the radiation intensity i s 
dP- ufMof"!? sinZo(. cos 2f . 
da 3 2 ^ ( 6 0 ) 

and 
2 2 2 2 dPf OO^/AQI 1 (1 - X) (sin® cosfX - cos®sin| sintx) 

dn = 32Tr2c(l - X sin 2®)% ( 6 0 ) 

By integrating (60), i t is found that the power radiated by 
the extraordinary mode is 

P. - ^f*™'* ( 6 1 ) 

16irc 
and that radiated by the ordinary raode is 

32I=<1 - X s i „ 2
9 ^ ^ ® ( 6 2 ) 

The range of integration i n (62) depends on whether X is greater 
or less than 1. I t is frora 0 to TT for X less than 1 and frora 0 
to ® 0 and TT - ® 0 to IT for X greater than 1, where ® 0 satisfies 

2 
X sin ®o = 1 • 

For X less than 1, the integration i n (62) may be carried out 
by raaking the following substitutions of variables, 

u = cos® 
and 

V 0 I a l 2 (1 - X)2sin©f2 cos2a + cos2® ( 1 - 3 cos2c<)) 
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I t is found that 

((1 - X) + (3 + X) cos2*} (63) 48Trc 

Then the t o t a l power radiated by the dipole antenna is 
P = P+ + P_ 

= ^ X l 2 l 2 (4 - X sin2oO . 
48TTC 1 

\jhere X is less tham 1 . 

Thus for X less than 1, the radiation resistance of the dipole 
antenna placed i n a homogeneous cold magnetoplasraa is 

This result i s i n agreeraent with that obtained by Kuehl(1962), 

From (59)» we see that for a longitudinally oriented dipole 
antenna, the extraordinary raode can not be excited, since 0( 0, 

and the ordinary raode reduces to the fields i n free space obtained 
by the conventional raethod, i f we l e t X equal to zero. This 
argument gives another check of the equations obtained i n this 
thesis. 

R 2P W ^ l 2 (4 - X sin2«) 
= , .i 

I 2 24Trc (65) 
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