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INTRODUCTION

The problem of radiation from electrons moving in a magnetoplasma

is of interest in astrophysics and radio astronomy. Many authors have

treated this problem by taking different kinds of approach. Due to

the

anisotropic property of the magnetoplasma, formulas for radiation

in general are very complicated. The methods that have been used in

solving this problem are:

(4)

(B)

(C)

(D)

Integral expansion method:

Twiss(1952) developed this method. He and Roberts(1958) used this
method to find an asymptotic far field solution for synchrotron
radiation in a cold magnetoplasma.

Tensorial Green's function method:

Bunkin(1957) used this method and obtained an asymptotie far field
solution for the radiation from a current distribution. And Kuehl
(1962) obtained formulas for the radiation from an electric dipole
in a cold magnetoplasma,

qurier transform method:

Sitenko and Kolomenskii(1956) developed this method in solving for
Cerenkov radiation. Mansfield(1967) obtained a solutiocn for the
radiation from a spiraling electron in a cold magnetoplasma, but
his formula was corrected by Melrose(1968). McKenzie(1964) used a
different kind of approach of this method and obtained a different
solution,

Hamiltonian method:

Ginzburg(1940) first applied this method to a uniaxial anisotropic
medium. Kolomenskii(1953) extended this method to solve for the
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radiation from an oscillating charged particle in a gyrotropic medium,
while Eidman(1958) obtained a solution for that from a spiraling
electron in a cold magnetoplasma. By taking into account of dispersion,
Liemohn(1965) obtained a solution different from that obtained by
Eidman.,

The Hamiltonian method is a very powerful technique in solving
the problem of radiation in anisotropic media as can be seen from
those papers cited above in (D). But it has been pointed out by Ko
(1969, 1970) that there were errors in both Eidman and Liemohn's
papers. These errors have occurred because these authors have failed
to take into account the effect of dispersion in a consistent manner.
The complete procedures of this method will be présented in a joint
paper by Ko, King and Chuang. - Applications to other problems will be
also discussed in a dissertation by King.

In this thesis we will apply the Hamiltonian method to finding the
radiation from an arbitrarily oriented dipole antenna in a homogeneous
cold magnetoplasma. First, the Hamiltonian methcd is partly reviewed.
Then the radiation fields are found. And finally, as an example, we
will calculate the fields for the case of an infinite magnetostatic

field.



HAMILTONIAN METHOD
The discussion of the Hamiltonian method for a free space can be
found in (Heitler, 1954). A similar procedure for an anisotropic
medium will be taken in this thesis,

In a source-free region Maxwell's equations are

UxH -D =0 (1)
TxE +B =0 (2)
VB =0 (3)
7D=0 (4)

As usual, we define the vector and scalar potentials as
B = VxA (5)
E=-70-1 | (6)
The coordinate system is oriented such that the uniform
magnetostatic field is along the z-axis. Then the homogeneous cold
magnetoplasma is characterized by a dielectric complex hermitian
tensor E(w,0), where w is the angular frequency of the wave and 6 is
the angle measured from the z-axis.
Define K@ as the Fourier transform of K,

A, =) & e-dot at (7)

where the time t is defined such that for t £ 0, A = A = 0,
And the inverse Fourier transform is
X =) T, et as (8)
where f is the frequency of the wave.
From (5), the magnetic field intensity is
H=J vk (9)
And since Dy = €,%e(~ VD, - jwAy), we have
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D= -f: eoi.VQ“, edwt g -f: jweoz-xw edwt gr (10)
By substituting (9) and (10) into (1) and (4), we obtain

TxUxh +[2 jotee, 78, eI¥t ar - [ wiae, T-hy eIt ar = 0 (11)

(2 V.8V edwt dar +[2 juv.B.A, et ar = 0 (12)
Instead of the Lorentz gauge, the Coulomb gauge will be used,

VeSehy = 0 (13)
Under this condition we can set §, = 0. Then (11) reduces to
TxTxA =[5 wiue, €°h, ¥t df = 0 (14)
To find a solution for (14), we assume that the whole radiation
energy is enclosed in a cube of volume L3 and the vector potential
is required to satisfy some boundary condition, i.e.,

K is periodic on the surface of the cube. (15)
Then the general solution of (14) can be represented as a
superposition of orthogonal eigenfunctions,

I =% 30, (VE, @ + (LK F) (16)

A
or .

A = Re 3 q, (t)5,(F) (17)
where q)\(t) and I)\ (T) are complex functions and satisfy the
following equations

VxVshy (F) = w2 e, €y *h, (F) = 0 (18)

g, (t) = b eJat (19)
where €, is the dielectric tensor at w = w, and b is an arbitrary
constant.

From (18), we assume

B(F) = 3 [AIE o~I%°T (20)

where -1;,\ is the propagation vector at® =W, , 3,\ is the polarization
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vector associated with E; and ¢ is the velocity of light in free space.
For KX(F) to satisfy (15), the components of E; are given by
KaX =a—£)\-2, ey ™ ETE)Y and kpg = y[%ﬁ, where Ay, Ay and Ag are
integers.
The polarization vector is then normalized such that
foav K, (F)-5, I (F) = b7¢™n2 St (21)
where n, is the refractive index at w =w, along the direction of E‘

‘and § is the Kronecker's delta.

By substituting (20) into (18) and (21), we obtain

ih ogh — n}\%\x(é’;\xﬁ;\ ) (22)
K - -
an OEA e, = n; (23)

where X is the unit vector along k.
For (22) and (23) to be consistent with each other, the following
equation must be satisfied,
el = 1 (24)
If we let L approach to infinity, then k-space is approximately
continuous and the summation over A can be replaced by integration.
The number of modes in the solid angle do = sin® d6 4 and.the

frequency interval between w, and Wa * dwx is given by

L 923 Wy 9N
() whm (1 + 8 ayan (25)

Next we consider the radiation from a current source. Let J be
the current density. Then the vector potential produced by J
satisfies
TXUxA + [ jwme, B0, et af - (P uue, TAy edt gr = 4T (26)
Expand A as a superposition of the homogeneous eigenfunctions,

A = Re £ q,(t)A, (T) (27)



Where q, (t) takes the form of b,(t) eJ4t .

For simplicity, from now on we shall delete the word "Re". Then
all fields, potentials and currents will be represented by the
analytic signals of their real signals (Born and Wolf, 1964).

To find the solution for g,(t), we multiply (26) by Jadv K:(?)-
and use (18), (20), (21) and the following relation,

fo Av AA(F)-8-T0, = f5 dv 8,5 ~An(F)
fp dv (T+(§,F A (F)) = 0,T-% A (F)

=% _
'Sns dv (DwV~e 'AA(T)

to obtain
WG (t) = 12 Wt eeeman(w) edut gr
= ;%ILB dv M,K:(F)-TJ' + ;‘:lj_: jome, (s av @wv.i*.K:(F)] eJot af (28)
where q, (w) is the Fourier transform of q,(t).
Equation (28) may also be written as
(win} - Wa,.e.3, )g, (W) = 31;—; :U‘} dv AK:(?)-EJe"j“’t dt
§ - a w2
+ 27 jwu,e, II.."‘ dv § Ve A, (T) (29)
From (29), we have

(@) = U2 dv w I (F)-Te=3ot gt + jwuedfo dv BV Feh (F) (30)
2N un(win? - G757, )

Using inverse Fourier transformation, we can find g,(t). The
inverse Fourier transformation may be carried out by residue theorem
of complex function. Since the denominator of (30) has a zero at
W = W,, the numerator is evaluated at @ = W, Then the second
integral in the numerator is equal to zero since V-%,\ -I)\('f) = 0,

Therefore (30) reduces to

J5 (t ay seFn(F)+T)e=3°t at (31)
LT(WEni = o 3R TeT,)
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Then we have

ax(t) = {2 q,(w) eJot ar
ejw(t t)
= [Pat, ([, av ATy (F) o J(q)) Mo - dmma) & ()

The pole of (32) is on the real axis of the complex frequency
plane. But if we use a complex frequency (w - jo) in Fourier
transformation, the pole will be off the real axis and on the

upper half plane. Then

[ eIt -t -1 __edon(t-t) for t > t
o L7 (wing - T, €Ty ) 4Tj 20y + Q}\E;ogﬁoz,\ 1
=0 for t <t

3w B3 M . = 3k
Slnce a’\ "—A a.,\ ‘au),\ -'ai‘i);.e)‘ 'a)\ - aA.e'\.—B—L,S:
and from (22) and (24), it may be shown that

-k - - _ .e: -
%%f\oe,‘-a,\ a:oer%% = 0
hence (32) reduces to
joa(t = t)
eJ t’l. (32)'

. — —
q,(t) = 5:' dtxdgdv M“A"(r)'J(t‘)] 8 junn; (1 +—*h)

Under the Coulomb gauge, the scalar potential § is a static
potential (Heitler, 1954) which doesn't contribute to radiation,
Therefore in calculating the electric field intensity only the
vector potential will be taken into account, i.e.,

E=-4
Therefore from (32)! and (25), we obtain, after suppressing

the subscript A, formulas for E and ﬁ;

= -ff G2Ient +4 94 (£)E(F) dw dn (33)
H=-ff i1+ $3Dat)RE(T) do an (3%)
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with

_ =y = ejw(t - t4)
a(t) = |t dtlUL,dv M E (F)+3(ty)] e ¥ 23 (35)
and
A(F) =7 [4E IFT (36)

Now we shall define the polarization coefficients for . Let
R = (sin® cos, sind sin@, cos®), where 6 and § are the angles
in the conventional spherical coordinate and the components of the
vector are expressed in the x, y and z directions. The polarization

coefficients associated with % are defined as

where ag, EP) and a, are the spherical components of T as shown in
Fige 1, and & and of are real functions for a cold magnetoplasma
(Ginzburg, 1961). Then
T=- aé(sin¢ + ju@cosé, - cosp + jpsing, o) (37)

where &p = Kgcos® * 0 sind

Xy = 0gcos® = Dgsind (38)

o= (1 +ad)

Till now we have not specified the source founction 3, hence
(33) and (34) are general formulas for the radiation fields in an

anisotropic medium,.
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Fig. 1. Illustration of the polarization vector.
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RADIATION FRCM A DIPOLE ANTENNA
The dipole antenna is placed at the origin of the coordinate
system and is oriented in the yz-plane making an angle ® with the
z-axis. Then the source function J takes the form of
T = 11 eJ@t §(r)(0, sin¥, cosa) (39)
where Il is the dipole moment of the antenna.
The solution for q(t) may be found from (35), (36) and (37).

It is found that

Lyd  MJIla . N ; s .
q(t) = 1130 Lmjum"(; T 2o (sini cos¢ + o siny sin{ + jocosx)

n 2w
ip(ilsln, ey
w = w,

In the limit t-—»w, the following equation is valid in the sense of
distribution function (Papoulis, 1962),

lim sinwt .
.~ Té(w)

t—>o
Then
(47 I
a(t) = % Mel1ag (siny cosd + j&esinx sind * jx,cosa)

L 4 jen™ (1 +%%%)
Sl - ,) et (40)

The field point is chosen at ¥ = r(sin® cos, sin@ sinf, cose),
where r, ® and § are the spherical coordinates of the field point as
shown in Fig. 2. The fields at this point may be found by
substituting (40) into (33) and (34). After carrying out the
integration over W, the fields take the forms of

- w‘nggn
E= Q = 2
jd 8te(l +og)

ejwt - j90r(sin@® siné cos(¢ - §) + cos® cosd)

(sing cos§ + japsink sind + ju,cosx)
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(sin + jxpcos§, = cosp + jXpsind, jxz) (41)

wn*I1
8wic*(1 + «

H={ dn 5 (sing cosd + jopsinx sind + jxgcosx)

.ejwt - j‘%”r[sin@ sind cos(§ - §) + cos® cose)

*(cos® cosd = jugsin®, cos® sin§ + jX,cosP, = sind) (42)
It should be noted that in (41) and (42) the frequency W is
evaluated at the frequency of the source and the integration is

with respect to 8 and ¢.

The integration over § is easy to be carried out by

fz“ e-jX cos(9 - @) + jso 4 2"j-s ejsﬁ Js(X)

where X =Qcﬂr sin@® sinb and Jg is a Bessel function of order s.

Then

3
- . nIli ; ;
E={ do sin® ——4“:(1 " &;) exp(jot - j&0r cos@® cosd)

([ JXgsina J, + o cosx (sin + jxecosd) Jq 1
- 31 - 0(;') sin sin2 J, ,
- 3(1 + d?) sinX Jo * oz cosx (jxgsind - cos§) Jq

+3(1 - o<;') sinx cos2i Jp ,

- ogecosx Jg *+ oy sinx (cosl + jxesind) Jy ] (43)

= . Tl . .
H= S: dé sin® me‘;‘(i T a:)exp(gwt - j40r cos@® cos8)

(1(cosB + NgMe) sina Jo * 0z(cos® cosd - jxysinf) cosa Jyg
+ (X0 cos2d - cos® cos2d + jupsin2d - ju,cosé sin2f)sinx Jp ,
33(Xg + XpcosB) sind J, + Kz(cos® sind + jxgcosd) cosa Jy

+ 3(Xg%sin2d = cos® sin2d + jxecos® cos2§ - ju,cos2y)sina Iy ,

|~ Jo,5in6 cosx Jo * (j cosl = osind) sin® sine( Jg )
(44)
11




In (43) and (44), replace Jg(X) by 3(Hg(X) + HJ(X)). And as r
approaches to infinity, the asymptotic forms of Hankel functions of
large argument may be used. Then we perform the stationary phase
method to carry out the integration over © (Copson, 1965). It is
found that

f_: Hy(X) exp(- j%r cos@ cose) de

(N[

- j:r js( 2c )

T swn
monr sin@ siné exP(J; = Jer cos(® - 8)) de

2c S
Twnr sin@® sine) exp(.]% - J%‘r cosf)

= JS(
(_‘: exp[-zl-jﬂgr((n - n") cosq - 2n/ sinroez] de

=js*%3%mmbj%%cmmﬂnsv®snw(hv-“>cwﬂ‘ZKS“@f

wr
(45)
where { =® - ©, and 6 is the angle where the stationary phase
occurs and satisfies the following equations,
ncos(@® = 8) *nsin(® - 6) =0 (46)
cos(®- 6) >0 (47)

-ms o<W
where the primes denote differentiation with respect to © and equation
(47) is due to the radiation condition at infinity.
The range of integration from -7 to O in (45) is due to the first
kind Hankel function according to the following transformation,

-0 = (- 0° T )

If there are more than one stationary phase point in the range,

-7§® {T, the right hand side of (45) will be replaced by a
summation over each stationary phase point.
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By using (46), we rewrite (45) as

\2)

w i
j_“ HS(X) exp(- J%I‘ cos@® cosB) de

1
+ . -
5° 1(5—2) exp(- j%r cosr\)[sinﬁ) sin® cosf (n? - nn" + 2n? )] .

After carrying out the integration over 8, we find that the
fields are

= _ JomnIl sind exp(jot - j¥0r cosn)
5T m( + ®g)[sin® siné cosn (n* - nn’ + 2rf? )]} 4

’jo(fsin(x + o cos (j sinf - o(rcosﬁ) + 11 - Ol;) siny s:'mZQ:
- 31 + o) sing - ocos (opsind + j cosl) - i1 - d;)

.sina cos2y,

|- Wocosi + jisinx cosl - &,sina sind J (48)
= _JjnIlsin0Oexp(jt-j r cos )
" Lue(l + a3)(sin® sind cosf (n® - nn* + 2n* )]”é r
($(cos8 + KXgllp) sina + o cosx (j cos® cosd + Kgsind) g
+ 3(cos® - Nglp) sina cos2] + $j(XpcosB - Of) sind sin2,
35(dg + 0lpcos®) sinK + pycosX (j cosé sind - ogcosd)
+ 3(cos® - Mg&p) sinx sin2{ + —é—j(o(e - o(fcose) sin cos2(,
\- J%,5in6 cosx - sin® sinX cosl - j¥esind sinx sind J (49)
In (48) and (49) the components of the vectors are expressed
in the rectangular coordinate. To transform to the spherical
coordinate we need the following relations,
R = sin® cosd P + cos® cosd & - sind 6
% = sin@® sind ¥ + cos® sind & + cos{ @ (50)
2=cos®@? - sin@ @

When expressed in the spherical coordinate, (48) and (49) reduce to
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juT 5350 (oot + ik - 3 cosl) sian)
B Lw(1 + (X;)[Sine sin@ cosn (n® - nn” + 2n* )]y;_.

(el

_exp(jot - 40 cosn) (xgsinf + Occosf|, ogcosh - Ksinfl, J)

r
(51)
= jwn*I1 sind (ycosx * (esind - j cosd) sinx)
4mc(1 + og)(sind sin@ cosf| (n* - nn’ + 2n* )]Vz
< - W
.exp(gwt - ¥r cosn) (5 sinn, § cost, - otg) (52)

o
The average Poynting vector is defined as %Re(fx}—i* )e From (51)
and (52) we see that the average Poynting vector has a radial
component and a @-component. The radial component has a factor
(1 + vey) cosf| - o(eo(ksim(]’

which, by using (46), may be rewritten as
%[n(i + o) + n' K0l cosn

And the @-component has a factor
(1 + 0(;) sinf| + MglcosH ,

which may also be rewritten as
—}]-(- n' (1 + &g) + ngX) cosA.

It will be shown in the next section that

n’ (1 +0§) = nog0ly (53)
Therefore the @-component of the average Poynting vector is zero.
Then the average Poynting vector is in the radial direction. The
radiation intensity is found to be

2 2
dP _ wnI’1® sind (n* + n*)((xycosx + dssing sinf) + sin® cos 0)
da 27*c sin® |n* - nn” + 2| (1 + o)

(54)
14



where d2 = sin@® d@ df and the parameters (n, Ogs Oys etce) in the

equation refer to the appropriate polarization.
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INFINITE MAGNETOSTATIC FIELD
The magnetoplasma is characterized by two parameters, the plasma
frequency wp = (Ne/me, )% and the gyro-frequency Wg = |e]B/m, where
N is the density of electrons in the magnetoplasma, B is the
magnetostatic field and m and e are the mass and the charge of an

electron, respectively.

Define

X = (Wp/w)?
and

Y = (Wy/w),

Then the refractive index and the polarization coefficients are given

by (Ginzburg, 1961)

: 2X(1 -~ X)
nt -"“‘—""——'—D:

2 .. 2 - . 2 2 2 14
De =2(1 -=X) =Y sin'8 * (Y sin'6 + 4Y (1 - X) cos g]2

(n% - 1)Y cos®

Cor == "2 (1 - X) (55)
O(KI - (1’1; -113Yxsin9

In (55) the upper (+) sign denotes the ordinary mode and the lower
(=) sign denotes the extraordinary mode of polarization.

By using (55), we may prove (53).

Next, it is interesting to examine the radiation fields at the
approximation, W« Wg and wP & Wz, because it is possible to obtain
explicit equations for the radiation fields under this assumption.

When Wy approaches to infinity, (55) becomes

D. = - 2Y* sin-©

16



Kg = 0 (56)

and
D, = 2(1 = X)((1 = X) cot’e +1]

X
2

31_

e (1 - X) cot?e +1

_— Y cos6
& (1 - X) cot?e

e o8 XY sin® .
7T W o0 - X) cotle + 1) (56)

Then from (46), we have
6. = @
and

cot®
g X (57)

cotf, =

Combine (56) and (57) to obtain

2 _ (1 = %) si’@+ cos’@
. 1 - X sin’®

(58)

n

We see that the extraordinary mode can radiate in all directions,
but the ordinary mode can only radiate in the directions where
X sinf® € 1.

From (51) and (52), we find the radiation fields as follows:

JuMI1l sinX cos{

e exp(jut - jr) @

E_ =

o jwIl sinx cos

- - A
4rer exp(jut - jgr) @ (59)

and

17



JwuIL(l - X)(sin@ cosx - cos@® sind sing)
4ir(1 - X sin2®)%

1
-exp[gwt - J—r(i X sin2®)2] @

JwIl(1l - X)(sin® cosx - cos@® sind sina)
Luer(1l - X sin’@)

|
-+
il

1
cexp(jwt - 3¢ Yr(1 - X sin2®)2) 6 | (59)
And the radiation intensity is

dp. wzzualz 1 sir’x cos’ ]

da 2 1ic (60)
and
2 2.2 2, . . . 2
dPy _ wMI'Y (1 = X)°(sin® cosX - cos®@ sind sinx) p
do R7%c(1 - X sin"@)%2 (60)
By integrating (60), it is found that the power radiated by
the extraordinary mode is
W, 1% sin’x
po= &% (61)
16me
and that radiated by the ordinary mode is
2
W, TF22 (1 - X) sin@®2 cos?X + cos’® (1 = 3 cos’X)
g = f 20 gt 2 Jio (62)

327c(l - X sin @)’2
The range of integration in (62) depends on whether X is greater
or less than 1, It is from O to W for X less than 1 and from O
to @ and T - @, to W for X greater than 1, where @, satisfies
X sin @, = 1

For X less than 1, the integration in (62) may be carried out
by making the following substitutions of variables,
| u = cos®

and

18



t S u
an v 1 - X

It is found that

W, 1° 1%

By = g ((1 = X) + (3 +X) cos’n] (63)

Then the total power radiated by the dipole antenna is

P=P, + P

- WK1 (4 - X sin’K)
LBrec (64)

where X is less than 1.
Thus for X less than 1, the radiation resistance of the dipole
antenna placed in a homogeneous cold magnetoplasma is

oo 2P Wi (4 - X sinx)
= —2 =

I 241c (65)

This result is in agreement with that obtained by Kuehl(1962).
From (59), we see that for a longitudinally oriented dipole
antenna, the extraordinary mode can not be excited, since X = 0,
and the ordinary mode reduces to the fields in free space obtained
by the conventional method, if we let X equal to zero. This
argument gives another check of the equations obtained in this

thesise.
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