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I  INTRODUCTION

The Legendre Polynomials of the first kind, defined on the closed
interval El,%], have important applications in the physical sciences
and fields of engineering. The following study of these polynomials
shows some of these applications and provides an introduction to the

important topic of orthogonsl functions.

A survey of the literature brings out the fact that different
authors define these polynomials in meny different ways. This suggests
the question as to whether or not all of these polynomisls are iden-
tical, To answer this question we shall use Rodrigues' formula as our
basic definition, for reasons of convenience, and then show that the

seme polynomiels are obtained if other definitions are used.

To facilitate the equivalence proofs of the other definitions,
which we shall prove as theorems, we prove additional theorems on the
recurrence relations between the polynomials. In addition to the
equivalence proofs we include various theorems to be used later in the
representation, expeansion and convergence theorems as well as in the

practicel problems.

A further development of our understanding of these polynomials
requires a knowledge of their limitations. To satisfy this need we
prove in a simple fashion or quote from other works several theorems

on representation, expansion and convergence of these polynomiels.

oince our primary purpose is a limited understanding of the appli-
cations of mathematics, we take up what seem to be typical problems in

which these polynomials may be used. The solution of these problems
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illustrates the methods of solution which can be applied to more com-
plicated problems then can be included in this paper. Before taking
up the actuel solution of these problems we discuss the relation be-

tween spherical harmonics and Legendre Polynomials.

For the first epplication we consider some problems of electro-
static potential, The method of solution of these problems may then
be applied to other problems of potentiasl at a point, where the vec-
tor force field is subject to the inverse square law, or the potential
function satisfies Laplace's differential equation (V2V=0). We next
consider a heat flow problem in which the temperature at any point
within & solid hemisphere is computed in terms of the temperature on
the surface. This method mey be applied to flow problems which sat-
isfy Leplace's differential equation; for example, an irrotational
motion of an incompressible fluid. For the last applicetion we take

up the Geauss-Legendre method of numerical integration.

In our survey of the literature we make extensive use of the

bibliography by Shohat, Hille and Walsh, Bibliography on Orthogonal

Polxnomials, National Research Council Bulletin #105, 1240.

(4)



II DEFINITIONS AND THEIR EQUIVALENCE

2.0l Introduction

A survey of the literature concerned with Legendre Polynomisals,
shows that meny different definitions of these polynomials are given,
This suggests that, as introductory material in a study of Legendre
Polynomials of the first kind, we might prove that these various def-
initions are equivalent. It seems convenient to use Rodrigues' for-

mule as our basic definition.

2,02 Definition*
The Legendre Polynomial, P,(x), is given by the formula

- 1 _d" (2.0 -
Pn(X) - ;‘,‘,";f ";.(x "1) s n=0, 1, 2, ...

2.021 Remark

We note that P, (x) is the n®® derivative of e polynomial
of degree 2n and hence P,(x) is a polynomial of degree n.
Therefore P,(x) is of the form
Pn(x):anxn + eee * 84, a.n¢0

The Legendre Polynomiels are uniquely determined and msay be cal-
culated explieitly by the above definition. The first six are
as follows:

PO (x)=1

Py(x)=x

% Jackson, Dunham, Fourier Series and Orthogonal Polynomials, The
Carus Mathematical Monographs, Number Six, Publisned Dy The
Mathemsatical Association of America, 1941, pages 46 and 50
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Py (x)= 3(3x%-1)
Py (x)= £(5x°-3x)
P, (x)= +(35x%-30x"+3)

Pg(x)= %(63x5-70x5+15x)

2.03 Theorem*

P n(x) satisfies the formulsa

2 r
- (0" (an-2r)! n-2r
Palx) = 220l moar)t Hr)* ’

reo

t

where n(r) is the r h binomial coefficient and [‘2’] is the greatest

integer in 4 .

Proof
From Rodrigues' Formula and the binomial expansion we have
.S r 2\n~-r
Pn(X) - 2" nl Jxﬂ{rZ:;a (-1) n(r) (X )

Teking the n"1 derivative we get

[%] n-2r

P (x) = }—‘—n—; Z;(-l)rn(r) (2n-2r) (2n-2r-1) ... (n=2r+l)x

{%] (2 r)! 2
r n-2 : n=o1r
§<-1> 7l (n-2r) 1 (p)*

* gee definition, Helsel, R. G., Mathematics Methods in Science,
Vol., I, The Ohio State University, 1948, problem, page 3l.
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2,04 Theoremx
The Legendre Polynomials satisfy the recurrence relation:
4 I'd
Pn(x): (2n=1)P__;(x) + Py o(x) , n22

Proof

Taking the first derivative with respect to x of P (x) we get

, _ . d‘" 2 n
Pr(x) = oo Gren(x-1)

— j‘;nn [f; (xz-l)n]

2"n!

1

H

f "' [d
SENLENENE. TN g, 2 -
2”-'(”")! dx 8- [dx {x(x _1)!1 1}]

1R

4" 020" 253 (2 )2

ne}

» (x2)™4
‘;...[{(Zn-l)(xz—l) + 2n=2 }z""(w)!

_J__m' 20n-1) (x a,)"! + _é_"-' [ (xt Y%
dx e 2% (pa)? dx™t] 272 (n.2))

it

it

(2n-1)P, 3 (x) + B, (x)

2.05 Theorem**

I / )
Pn(x) = xPn_l(x) + nPn_lkx) , n21

* see proof, Hargreaves, Messenger of Mathematics, series 2, Vol, 49
1919, pages 58-62

** gee recurrence relation and proof, Hargreaves, op. cit., pages
58«62 ‘
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Proof

From the proof of Theorem 2.04

_odT o x oA
Pn(X) - _d;”[znvl (ﬂ“)! ]

Consider y = f(xl,xz), then

ﬁ‘i~3fi§'+.?i_d_xl
dx 3N, dx

dx 7 X% X,

Now let y:x(xz-l)n-l, where x1= x and %%z \xz-l)n'l, then

4y - \xz-l)n-l + x ﬁi(xz-l)nP1

ax dx
and
F3
-41 - i 2- n 1l dz 2 n-1
pr R G RIS R
& = () 4 (2-1)") 4 gL (2u1)m)
& - @) <, (x°-1)"7" + xLa(x*-1)
Hence
, _ dn-l (xf-p)n-‘ i_” ()(’?-l)”-'
Pn(x) S [m] +x " ["""‘—"2..-. (n=1)7 ]
Therefore

r;(x) = nPn_l(x) + xPI:_l(x)

2,06 Theorem*

’ / )
nP (x) = xP,(x) = Pp3ix) , n2l

* see recurrence relation, Ford, Lester, R., Differential Equations
page 197, problem 17, First Bdition, McGrew-Hill BoOK CO., 1933
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Rewriting Theorem 2,04
rd /
Pn+1(x)::(2n*1)Pn(x) + Pp_q(x)
and also rewriting fﬁeorem 2,05
/ /
Pn+1(x):xPn(x) + (n+1)Pn(x)
Subtracting Theorem 2.05 from Theorem 2.04
0= nf‘n\x> + Pn:l(x) - xPI:(x}
Therefore

nPn(x): xP;(x) - Pg;l(x)

2.07 Theorem*
oPp(x) = (2n-1)xP _;(x) + (n-1)Py_5(x)=0 , n22
Proof
From Theorem 2,086
V4 7
nPn(x): xPn(x) - Pn_l(x)

But by Theorem 2,04

/ /
xPn(x) = (Zn—l)xPn_l (x) + xPp_o(x)
Substituting in Theorem 2.06 we get

nP, (x) = (2n-1)xB,_; (x) + xB,_,(x) - B (x)

* see Ford, Op. cit., page 197, problem 16
(9)



But in Theorem 2.05

B, ()= x5 (x) + (n-1)B,_(x)

and on substitution we get

nPn(x):'(anl)xPnyl(x) + xP;;z(x) - {ng;z(x) + (n-1)P o (x) }
Therefore

nPn(x) - (Zn-l)xPn_l(x) + (n-l)Pn_z(x)'—'O
2,08 Theorem*
2+
(x°-1)P (%) = oxPy(x) = 0P _,(x) , n21
Proof

Multiply Theorem 2.06 by x3

/ V4
nxPn(x):'szn(x) - XPnrl(x)
then

mxP_(x) = 2P,y (x)= x2PL(x) - %P1 (x) - nP__, (x)

From Theorem 2.05 woe have

4 /
-XPn~l(x)= nPn_l(x) - Pp(x)
and on substitution we get

nxP_ (x) - nPn_l(x)::sz;kx) +nP o (x) - P;kx) - 0P _4(x)

Therefore

(xz-l)P;kx): nxPn(x) - nPn_l(x)

* Ford, op. cit. page 197, problem #19
op. o>
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2.09 Theorem
Pn(x) satisfies the recurrence relation:
2 Va
nPn(x): (x -1)Pn_1(x) + nxPn_l(x)
Proof
Rewrite Theorem 2.08 as follows
~(x%=1)P ", (x) = =(n-1)xP__; (x) + (u-1)P__,(x)
n-1 = xP _1x n-1) -2 (%
and add to Theorem 2.07, i.c.

nPn(x)='(2n-1)xPn_l(x) - (n—l)Pn_z(x)
and get
nP_(x) = (x2-1)B_ 5 (x) + nxP,_; (x)

2.10 Theorem*

’

/Pn(x)P _j(x)dx::O s j21 and ~1§x21

-/

P,(1)=1 , n20
Proof

Substituting for P (x) and Pn_j(x) from the basic definition

we get
_ ! Jﬂ 2 J"‘j n="=
/Pn(x)Pn_j(x)dx = —-—-—-—-—/2-’-‘,,(;: “1)P o (x2-1) " Jax

257 ! (n-j)!
~/ -~/

* see definition, Jackson, op. cit., pages 46 and 50
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Integrating by parts n times we get
}
H

v [ 2 nd” 2 ine
- zzn-j,,_/(,,.j); Jx'm(x "1) dxd (X -1) dx =0
M
Since
2n-j .
gurns (£2-1)"79= 0
and no other terms appear due to the following:

[

42 neg 4" 2yne 4™ 2 mmd 47 2 a
4 Ry L (P )Rax = £ (P1)2 T 4 (x -1)]‘

'JN-J'“ n-s dﬂ-l 2
-/;;...ju(xz-l) J T (X -1)%ax
]
n-i

Now 5;,.., (x®-1)" contains (x2-1) as a factor and on evaluation at
the limits -1 and 1 equals zero. By Remark 2.021 and using mathe-
matical induction

Py(1) =1

P(1)=1

Po(1) =1 ete.

Assume Pn_l(l) =1 and Pn_z(l) =1, n22., uihen by Theorem 2.07

nP (1) = (Zn-l)Pn_l (1) - (n—l;Pn_z (1)=2n-l-n+l=z=n
Hence

Pn(l) =1

2.11 Theorem*

P (-1)= (-1)*

Froof

Utilizing the recurrence relation Theorem 2,07, i.e.

nPn(x) - (2n=1)xP_;\x) + (n—l)Pn_z(x) =0

* Jackson, op. cit, page 46. 12)
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and Kemark 2,021 and evaluating
Po(=1)=1 ; P(=1)=-<1 ; Py(-1)=4(3-1)=1
Assuming
- -1
Ppopi-1) = (-1)F
and
Pyp(-1) = (-1)*7
n-2 -
consider the following:
a. Let n be even, then by Theorem 2.07 we have
nP (-1) = (2n-1)(-1)(~1) = (n-1)(1) = n
Hence
P (-1)=1
b. Let n be odd, then by Theorem 2,07 we have
oty (-1) = (20-1)(-1)(1) - (n-1)(-1) = -n
Hence
P_(-1) = (-1)
Therefore we may conclude that
- n
P_(-1) = (-1)
Note This may slso be proved by proving
Pn(x) 4 (-l)nPn("X)*

2.12 Theorem**

On the closed intervel [-1,1]

[

/Pn(x)Pn(x)dx z A

-1

* see Thesis, thomas, i. E,, Some Elementary Aspects of Legendre

Pol:xnomials, The Ohio State University, page 14
** Jackson, op. ecit., page 52
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Proof

From Definition 2,02

i

- d"
=) = T (x2-1)"

Substituting in the above theorem we get

i

! d" n J n
m JX"(X 1) d" ( ) dx

After n integrations by parts this becomes

—mo (20! (-1)’1/(

-.

2"'
Since this is an even function we mey change the limits of inte-

gration from O to 1 and multiply by 2 as follows:

- 2(zn)
- gt [

Integrating this by the trigonometric substitution of x = sin @,

we get
| i 2 % :

. 2zn)! 2ntlosn — _20m ) n, . 2n 2n-1

= Wﬁos D+igge = W{W cos ©Osin 9] + -;;.—;—,—/cos ede
o ° e

Since the first term of each integration contains a cosine term until

the last, the integral becomes

_2Ge) @"aD)* 2
= A (ane )t T 2n4

Hence
1

j[Pn(X)Pn(x)dx - ;;é;T-

-t
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2,13 Theorem*

On the closed interval El,l]

1
R_hn
)/;Pn_l(x)Pn(x)dx e 3

-

Proof

Substituting

_ aR () + (n-)R (X
XPn-l(x) = = 2an-1

from Theorem 2.07, the integral becomes

4

’ P.x) +(n-1)E_, 60 l
/pnm [ B e 2 / [Pu(e)] Pax + 224 / Py(x)Py 5 (x)ax

-i - -l

Eveluating this by Theorem 2,10, we have the last integral as zero and

by the previous theorem the first integral becomes

n K - 2n
Zn-1  an+i = n%

Hence our theorem is truse.

2.14 Theorem**
Pn(x) is a particular solution of Legendre's differential equation

/77
(1-x?)y " - 2xy’+ n(a+l)y = 0

Proof

Rewriting Legendre's differential equation and substituting Pn(x)

for y as follows:

* Ford, op. cit., page 197, problem 75
** gee previous reference, page 190.
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i [(l—xz)Pn(x)] + n(n+1)Pn(x) 0
By use of Theorem 2.08 we get
- j—)-([nPn_l(x) - myn(x)] + n(s+1)P_(x)
Performing the ipdicated derivation we get
’ Y
:nPnpl(x) - nxPn(x) - nPn(x) + nZPn(x) + nPn(x).

But Theorem 2.06 states

nan(x) = nxPI:(x) - nPn:1 (x).

/ /
Hence on substitution in the above equation for nP,_; (x) - nxP_(x)
we get
2
= =n"P _(x) + n°P (x)= 0
Therefore P,(x) is a particular solution of Legendre's differential

equation,

2,15 <LTheorem*

X 1 0 0 ces 0
{
P (x) = w
1 3x 2 0 see 0
0 2 5x 3 coe 0
. * s n2l
(n-1)
0 O O s o0 (n"l) (Zn-l)x

* see exercise 72, Whitteker and Robinson, The Calculus of Obser-
vation, Blackie and Son, Ltd., 2nd Edition, 1537, pages 74,75
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Proof

Evaluating
Py (x)=-x
Py (x) = 3(3x%-1)

Ps(x):_;"—!-[x(ls:cz—tl) + (o-5x)] = 3‘!-[15::5-9;:] = 1(5x%-3x)

The proof will be completed by showing that P, (x) as given above
satisfies the recurrence relation of Theorem 2.07, i.e.
nPn(x)=1(2n-l)xPn_1(x) - (n-l)Pan(x)
Evaluating the determinant by expanding according to the n#h column
we get, after multiplication by n!
- - . - (=132 (ne

n!Pn(x)- (2n-1)x(n 1)!Pn_1(x) (n-1)¢(n 2)!Pn_2(x).
Dividing by (n-1)!, we get

nPn(x) = (2n~1)xP 4 (x) - (n—l)Pn_z(x)
Hence the determinant form of Pn(x) is equivalent to Rodrigues!

formula.

2.16 Theorem*
Pn(x) is given by the genmerating function

2\=% = n
(1-2xy+y“) =% = " P (x)y

n=o

Proof

Consider

1
F(x,y) = (1-2xy+y2)™%

* see definition and proof, Margenau end Murphy, The Mathematics
of Physics and Chemistry, pages 94-109, and Helsel, op. cit.
page 3l.
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Evalueting et y=0

=1
g=o

F(X9y}

Taking the partial derivative with respect to y and evaluating ab

y=0 we get

2 - 2"1' - )

39F (%57 o (x=y) (1=2xy+y*) e 11P(x)
20 E2-]

Similerly we see

2 -3 £
1) Z _ 277
35 F(xy) t z - (l-2xy+y?) " + Bx=y)?(1-2xy+y”) | = 8x"-1: 21Py(x)
,:o 330
and
¥ 2lF 3 2%
:‘;,F(x,y) = =9(x=y) (1-2xy+y°)" + 3¢5 x-y)°(l-2xy+y") = 31Pz(x)
yzo Y=o
Bn
5pf(xy) | = ntPy(x)
Y0
Expanding in a MacLaurin series about F(x,0) we get
>F t3 Y
F(X’y):F(x’o) +ys-g_ +-3T—g-yf;t +* e +%g§f;, +,..
y’@ y‘o ’:‘0

:PO(K) + yPl(X) + yzpz(X) + see *t yn?n(X) + eee
Hence

F(x,y) = f: P, (x)y™

n=o

To show its equivalence to Rodrigues' formule we derive the re-
currence relation theorem 2.07. Taking partial derivatives of both
sides with respect to y, we get

1 o
- -] -]
(x-y) (L-2xy+y?) = (1-2xy+y2) ™ = S :nPn(x)yn

n:0

o

Rewriting and substituting for (l-2xy+y?)
(1-2xy+y2) S nP (x)y™ 1= (xmy) 37 R, (x)y™

L -] fAze

(18)



n-1l

Equeating the coefficients of y we geot

xP__, (x) - P _5(x) = nPy(x) - Zx{?n_l(x)}(nrl) + (n=2)P_,(x)

Combining terms we have

nP (x) - (2n-1)xP_; (x) + (n—l)Pn_z(x)= 0

which is Theorem 2,07,

Note! For x=z=1

1 o0
(l-2y+y2)-§:—r_'g-:1 +y + yz + oee + yn + ves = Zyn

Nnso

This implies an equation of Theorem 2,10, i.e.

Pn(l) z1

2.17 Theorem*

135 (2“_,)

P (cos @) = Ty

{Zcos ne + 2-.-;1(3‘-';"—_—'—5 cos (n-2)e +

1-3- 0 {n-s) 1-8-5-n(N-13(n~2)
2 t-2(an-1)(zn-3) cos (a-4)8 + 2 123 (2n-1)(zn-3)(an-5) O° (n-6)o + "'}

Proof

Let

end we see that

ig -+

1 10\ 5 -
(l-2xy+y2) == (1-—yele) F(l-ye ) =

If ‘y|<1, we have, by the binomial theorem

(1_y619) Rz 4 '%‘Yele +%y26216 + ;ii y3e319 +

cee (1)

* seo definition and proof, rrasad, G., A Treatise on spherical
Harmonics and Functions of Bessel and Leme, Part 1, pege 31,
The Benares Mathematical Society, 1930.
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and
i

—ig. el - 3 2 =218 3. -3i€
(1-ye )z 1 + 3ye +3y v e +Er YR w L 2)

Hence their product must be equal to

= n
S_P (cos 8)y

n:o

by Theorem 2.16., Therefore the coefficient of y™ must be equal to
P (cos 8)

Teking the product of equations (1) and (2) for the coefficient of

y2 we get

185+ (an-1) in® -in6 la-n i(n-2)e -(nPZ)e]
246 (2n) {e ve * 2 (&n=1) [e T

I-3. (2n) (2n-2) i(n-4)0 -i(n—4)9]
2%(zn~1){2n-3) [e *e T

which is Theorem 2.17.

2.18 Theorem*

mw
Pn(x) = #;/kx + 4x2-1 cos 6)"de
[+]

Proof

Evaluating "

Po(x) = “,;'»'ﬁel'-l 3

r °
w
Pl(x) = ,','ﬁx + ‘lxz-l cos 6)d8 = #[xe +4x2-1 sin e] =X
-]

]
The proof will be completed by showing that it satisfies the recur-

rence relation Theorem 2.07, i, e.

* see definition and proof, Jackson, op. cit., pages 59-60
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(n+1)P (x) - (2n+1)xP,(x) + nP,_;(x) =0

By direct substitution into Theorem 2.07 we get

n
_'_/{x + -‘xz-l cos e}n‘l {\n-l-l)(x + -Jx -1 cos 9)2
w
° -(2n+l)x(x+-lx2-1 cos 8) + n}dO

—T'T/{x + -Jx -1 cos e}n ~1 {-n.xz + n(x -1)cos e
+ (x -1)00526 + x«‘x -1 cos © + n}de

m
#/{x + «‘xz-l cos e}n'l{-n(xz-l)sinze
° + (x +-sz-l cos 6)(Jx2-1 cos e)}d@

i

"

Then to show

/{x +{;c_-l—cos 6} n-1 n(x -1)51n 0de
= ‘r.?/{x + E cos 9} { -1 cos e}dQ (1)

Integrating the right side by parts we get

n
"‘rF/{X +-4x2-1 cos G}n{JXZ—l cos Q}de
)
o - % o
z #{x +‘Jx -1l cos 9}n4x2-1 sin 9]
o

mw
+ -,';:/{x + ~Jx2-1 cos e}n-'n(xz-l)sinze de

o

Hence equation (1) is true and theorem 2.16 is equivelent %o

Rodrigues' formule.

2.181 Corollam

n
P (x) = T’f/(x + i Jl-x2 cos 6)"de
o

This is a restatement of 2.15.

(21)



2,19 Theorem*
o )" an 2"
Pn(cos 9) = —"—,2- r L (-'-:—)

where r = (x2+y2+z2);§ and cos 6 = ‘i.-(-
Evaluating
Po(cos 8)=lertz1

Pl(cos 8) = (':) 22 ( ) = \—l)r = %— =z cos &

1
w
93
ax

II\D
i

i
Wi
piil

[N

le)

o

17]

[¢v]

]

}—l
o

& 3 2
l:)Z(COS G)Ié;-r3%i,(—";—) Sy ax rs)‘ f;‘<% - ?L!)

. !
Let y = cos 8. Assume Pn_l(y) and Pn_l(y) = g;Pn-l(-V) as known to be
equivalent to the first Pn_l(y)'s of Rodrigues’ formula, then we com-

/7
pute P, (y) in terms of Pn_l(y) and Pn—l (y). We know

2 of _ -

X & T ’ f'Pn-l(y)
Now

W _ > - 2 2

3 = s = Aetx)
and

-5’ bYA
Fo-1 W)= Pr-1 (y) 3%
Then taking the partial of P _4 (y) with respect to x we get
¥ - (—o) n=lx ¥ (_')n-u 3"
Tx-rn_l(y) - n.‘)l ( ) ra 's—x—.-l(".f') + '("—.l)"-!" r —S—x-—" (—"-:-)

Substituting from above

* gee definition, Byerly, William ., Fourier Series and Spherical
Harmonics, page 165, uinn and Co., copyright 1893,
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(rix*) 7/ . nY g
i P 0) = F R, 0) -+ R 0)
Multiplying through by r we get
(v) = (3-1)P_«
nP (y) = 7“-1)P ;) + wP _,(y)
Hence by Theorem 2,09 the Pn(cos 9) of Theorem 2.19 is equivalent to
Rodrigues! formula with y = cos © substituted for x.

2.20 Hemarks

Other definitions of Legendre Polynomials may be found in the

references previously cited.

(23)



111 REPRESENTATION, EXPANSION AND CONVERGENCE THEORENMS

3.01 Introduction

Orthogonal functions are extensively used in a series expan-
sion of a given function. With a given set of orthogonal functions
two questions of interest are:

(1) How do you expand a function in e series using the given
set of orthogonal functions?

(2) Under what conditions will the series converge to the

given function?

In this chapter we shall show how one masy expand a function in
a series of Legendre Polynomials, We shall also state theorems con-
cerning the convergence of the Legendre expansion to a given function.
We shall see that under certain conditions*, continuous, or finitely
discontinuous functions, may be represented by a convergent series of
Legendre Polynomials. If the series is terminated, after n+l terms,
we shall see that the finite sum of the Legendre expansion is the

t

best nth degree polynomial approximation to the given function in the

sense of least squares.

If a function f(x) can be represented by a series of Legendre

Polynomials, i.e.

£(x) = 2_ 2P (x),
¢eQ
then formal multiplication termwise by Pi(x) and integration gives
¢

ay = 3%1%/;(X)Pi(x)dx

* Prasad, op. cit., pages 73 and 74

(24)



3.02 Definition

If £(x) is any integrable function we define the series

o0
Ez:aiPi(x) , Where a; is given by

‘co
]

as :-Eéiﬁ/}(x)Pi(x)dx s

3
to be the Legendre series associated with f£(x).

3.03 Theorem

Any polynomial of degree no greater then n is equal to a linear

combination of the first n+l Legendre Polynomials.,
Froof

Consider the polynomial F(x) = %<, where k is any fixed integer.

We wish to find constants a; such that
= ngk(x) + ak_lPk_lkx) + ees + alPl(x) + 8, (1)

By Remark 2,021 P (x) is & polynomiel of ath degree., Let

o,y n-1

Pn(x)-'- b X n-1% oo v bx+ b,

n20,1,2,¢04,k and bnﬁt(L

On substituting Pn(x) in equation (1) we have:

Xk:-ak [bkkxk + bkk_lxk-l + o0 T bklx + ka

k-1 k-2
* ol {bk-l k-1%  * Peo) ppX

+ oo + bk_llx + bk—lO]
+ eee + 89 [%xz-%—] + a1x + 8g. (2)

(25)



Equating powers of x and solving for the aj's, we get, for the

coefficient of xk

l=aybyy  or  a = -

kK

Substituting i} for a, in equation (2) and equating the coefficients
k-l (1.3

of x we have
- L
0= 5 [bkk-lJ ¥ ak-l[bk-l k-l]
or
bkk-l
2 e —2 . etc.
"k-1 LW l’m e

Since the leading coefficients of each of the Legendre Polynomiels,
P, (x), is different from zero the a;'s will be defined, Hence we
may evaluate any polynomial as a linear combination of Legendre Poly-

nomials and determine the coefficients in this manner,
304 Theorem*

The Legendre Polynomial, Pn(x), is bounded as follows:

an(x)' < 1 on the closed interval [—l,q
,Pn(x), <-{3;?£;?Y on the open interval (-1,1)

3.05 Definition#**

An orthogonal set of functions is said to be complete with re-
spect to a class of continuous funetions, C, if whenever f, belong-

ing to C, is orthogonal to every member of the orthogonal set, then

* see proof, Jackson, op. cit., pages 61-63,
** see lhomas for definlglon, following theorem and corollary, op.

cit., pages 31-34
(26)



£ is identically zero.

3.06 Theorem

The set of Legendre Polynomials is complete with respect to the

class of continuous functions defined on the closed interval l}l,q .

3.061 Corollary

The Legendre coefficients of a continmuous function defined
on the closed interval l}l,ﬂ are all zero if and only if the

function is identically zero.

3,07 Theoremx*

If the sum of the absolute values of the Legendre coefficients
of a continuous function forms a convergent series, then the Legendre
expansion is absolutely and uniformly convergent, and converges to

the function,

3.08 Theorem**

/s
If £ (x) exists and is finite on the open interval (-1,1), and
has only a finite number of discontinuities and is monotone in each
of a finite number of parts of (-1,1), then the Legendre series as-

sociated with f(x) converges to f£(x).

* see previous reference, pages 37 and 38,
=% Prasad, op. cit., pages 68-73
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3.09 Theorem*

If £(x) is finite on the closed interval Edqll end is of lim-
ited total fluctuation in the interval; then at every point x inte-
rior to the interval, the Legendre series

Z”: aiPi (X)

{rO
converges to

%;{f(xm) . f(x-o)}

if this expression exists; at x 1 and at x =1, the series converges

to £(1-0) and f(-1+0) respectively when these limits exist.

3.10 Theorem**

If £(x) = ZanPn(x) and R (x) is any polynomial of degree $m,
n=o%

then ' |

/[f(x) - "ZT;anPn(x)] 2 4x < /[f(x) - Rm(x)] 2 ax

-l =1

m
We sey that S a, P, (x) is the best approximation to f(x) in the sense
nzo

of least squares.
Proof

m
Let R (x) = Zann(x). To complete the proof we must deter-

nio

mine the coefficients o<, such that
]

/[f&x) - Rm(x)] 2dx

)

* Prasad, op. cit., Part II, (Advenced) 1932, page 94.
** Helsel, op., cit., pages 33-34
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is o minimum, Taking the minimum of

Szt - Ry P

-1

as follows: Let ,

g—;r{ /[f(x) - E'":ann(x)]vzdx}:o ,

nso
-4

where af,, is any o

n' Teking the indicated partial derivative we

get: )

- =2 /[f(x) - io(nPn(x)] Pr(x)dx:O
A n:o
I

Hence

/f(x)Pr(x)d.x = ]é_r_: « Py (x)Pu(x)dx = o 22—

-1 -l

Therefore we have .

o = -‘a-gtf-ﬁ‘(x)?r(x)dx

]
From this we may conclude the minimum exists and is obtained with

every &, equal to the corresponding a..

3.11 Definition¥*

A sequence of functions, f (\x), defined on the closed interval

[a,b] is said to converge in the mean to the limit funetion f(x),

b
ﬂ‘:”/[fn(x) - £(2)] Pax 20

a

provided

3.12 Theorem**

Let f(x) be a bounded Riemenn integreble function defined on

* Helsel, op. cit., page 71.
** Thomas, Op. cit, page 55.
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[—1,1] +» The necessary and sufficient conditions for the Legendre

expansion of f(x) to converge in the mean to f(x) is that

iaﬁz"‘i, =/[f(x)]2dx

nzé

is satisfied.

(30)



iv APPLICATIONS

4,01 Introduction

We illustrate the uses of Legendre Polynomials by solving some

typical problems in electrostatic potential, heat transfer and numer-

icel integration. Before taking up the problems some remarks will
be made concerning the relation of spherical harmonics and Legendre

Polynomials.

4,02 Remarks*

In these remarks we will define a solid spherical harmonic and
discuss the differential equation method of obtaining the spherical

harmonics.
4,021 Definition

A solid spherical harmonic is a homogeneous function of x,y,z,

satisfying Laplace’s differential equation, i.e. V?'V: 0, where
the degree of V is called the degree of the harmonic and mey be any
constant, real or complex, integral or fractional, positive or neg-

stive.

If in spherical coordinates V= r® Y,18,0), then Yn(e,¢) is

called a surface spherical harmonic of degree n

4,022 The Differential Equation Method

Laplace's equation in spherical coordinates becomes

* Prasad, op. ¢it., pages 1-4. (31)
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2

2 W 2 (sine 2V N LA
3,. (r*37) + s %e(sin® 55) + oyl Y S (1)

Let V=r"f(8)cos mp. Then r23¥ = nrn+lf(e)cos m$ and

2 .2 ; {(e)
+ %%) = n(n+l)r?f8)cos m g—:
also
sin 6%% = sin 6 r’cos m
and

coso dfe) . d{(e
s‘ne ae(s:.n@%—)-{s..ne Jo— * Jo rPcos mg
and finally
i

W oo ; 5_\, - mt B
W T rof(8)m sin md) and Sm"e EY sni@ £(8)r"cos m(b

substituting the above in equation (1) and combining terms we get

2
d*{(e) + 238 df(e) +{ .m:e}f(e): 0 2)

de? 3in® do sin

Meking a change of variables, let yz cos 8. Then

di(ey _ die) 49y _ dfce)
dJo T Jy de - T HnOgy
and
2
je{ie) Z - cos 6 jge) + s:.n 9—-—1—-—3;{6)

Substituting these in equation (2) we get

2
)jf(e) -2y j;;(e) . {n(n+1) - :;2} £(8)= 0 (3)

m
Now let £(8)= (l-yz)z W and substituting in equation (3) as follows:

m .1 m W
jj—g@ = -n(1-y2)% Ty W+ (1-y%)F 39—
and
IO 72, 2 2% -1 2.3 -1JW
3'9?‘)' = {22157 T @) meyt R T - 2y ey®)E T

& aW
+ (1-y2) b

(32)



and we get

(1-y2)%;w— -2 (m+1)y-3-9(9-' + (ne=m) (n+m+1)W = 0 (4)

Consider now Legendre's differential equation i.e.

(1-y* )Jy‘ 2yjs + n(n+l)s=0 (5)

Let Pn and Q, denote two independent particular solutions of Legendre's
differential equation, where Pn(l) =1 and Pn is of degree n. Differ-

entiating equation (5) m times with respect to y we get:

J""z m+|
(1'3’2)4;%; 2(m+l)yd i T (n-m) (n+m+l)g-—— = (8)
Hence d and -5}-—%?!'- » Which shall be denoted by —2— and
dy™ dy (-9 )g

m
_(T%;F » are independent particular solutions of equation (4).
Therefore VzrnPtlfll cos mp and V=rnQ$ cos mp are solutions of La-
place's equation (1). It will be noted that equation (3) is not
altered by replacing n by -n~l. Hence VI r n—le -1 cos m$ and
V= r-n.lQIfn_l cos m§ are also solutions of equation (1). Similarly
we may show for V= rnf(e)sin n$, we get like results involving the
sin m§ instead of cos m., These solutions of Laplace's equation
give the following:
i. Zonal harmonics, when m = Q.
ii. Tesserel harmonics, when m#Z0, and mZn
iii, OSectorial harmonics, when m=n
We note that for m=0, the zonal harmonic V= r P n(y) and

V= —7 P (y) contain the Legendre Polynomial, P (y), as given by

rl4|

(33)



Theorem 2,19. Therefore the Legendre Polynomials are a special case

of spherical harmoniecs.

4,03 wlectrostatic Potential

4,031 Vefinition*

Potential V at a point in an electrostatic field is the work nec-
essary to bring a unit positive charge from infinity; i.e. from out-

side the field up to the point in question.
4,032 Remarks**

Let us calculate the potential V at P (see figure 1) due to a
point charge q placed at the origin O, The electric intensity at Q
is E= -?.— (Coulomb's Law) in the direction

of the radius vector, r, and the work done

P
against the repulsion of ¢ in moving a L/ £
unit positive charge the distance dl from ﬁ,/ r
'l P
Qp to Q@ is dV = %_dl cos«x. But dl cos«x 0{,;/,_1.:;};;.
= - dr, Hence dV= -%—idr. Integrating
figure 1,

from « to R the distance from P to 0, we get:

R
- ar _
Ve 77‘?%"
o0

where the potential is independent of the path.

In case of a continuous distribution of electricity consisting

of f units of charge per unit volume occupying a volume T and e

* Page and Adams, Principles of Electricity, University Physics
Series, Van Nostrands Co., 1lth printing, page 15.
*¥ gsee previous reference, pages 15-%8.
(34




units of charge per unit ares distributed over a surface, S, then

the formula for the potential is as followss

v = [pJZ‘ fo«ds

where r 1s the distance from P to the elements, dt and ds. We see

from these expressions that V, the electrostatic potential in all
cases, is a function only of the coordinates of the point P at which
it is evaluated, and is independent of the path along which the unit
positive charge is carried to P. In a region in which there are no
free charges, the potential in an isotropic medium satisfies Laplace's

differential equation V2V Z0.*
4,033 rroblem**

To determine the potential at a point P (see figure 2) due

to two charges, -q and +q, located a distance 2d apart.
Solution

From Remark 4.032 we see that the poten-

tial at P is V= -;.%-3-'-. Now by the law of

%
2. .2 2. pd, 42

cosines, r%- R”+d"=2dRcos ¥ and rz- R™+d

+2dRcos ¥ . We need to consider two cases:

figure 2,
case i.
2 -_’_L 2 1
For -‘-’- €1, then V= ‘4(1 2——cos)'+ -:—i;) 2 -g—(l+2%cos I+ -‘R’T)"?

Hence by Theorem 2.16
’&-ZP (cosx)(-— - X }:P (-cos‘6)(-)

* Pege and Adems, op. cit., pages 83-85.
** gee previous reference, pages 34-35, and Helsel, op. cit.,
pages 29-30.
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By note of Theorem 2.11; 1i.e. Pn(x)z (-l)nPn(-x), this becomes

_ 2= d \2n+1
= T; Pzn_tl(cos‘d)(a)

since even terms cencel.

case ii,
1

-

- 1 2 - R
For & €1, then V= J(1-28cos ¥+ g@,-) = . g—(l*-z%cos ¥+ ) "
end similarly to case i,

- _32_2 (cos )(_%_)Zn-l-l

4,034 Problem*

To determine the potential at points
A and P (see figure 3) due to a circular
wire ring of small cross section of uni-

form charge density ¢ per unit length.
Solution

i) Sinee A is located on the axis of the

ring et a distance x from the origin and

figure 3.

is equidistant from all positions of the
Q
ring, its potential Va R s, where Q is the total charge on the ring

and R= (c 24x2-20x cosd)2 Hence as in Problem 4.033

b

v

Q o
a - ¢ ZPn(cos “)(—g—)n , where % <1 and
nso

H

ZP (cosd)(x)nﬂ' , where-i—él.

nz=o

ii) To obtain the value of the potential function at emy point in

*Smythe, Static and Dynamic Electricity,pages 137-138.,
(36)




space we must satisfy Laplace's equation, which in spherical coor-

dinates is as follows: ¥

(r? DV) £ (sin o3 ) f_\/‘ =0 (1)

¥ sm sine ‘oe

subject to the conditions that Vp: Vg for ©=0.

Let the polar axis be the axis of the ring and hence, due to
symmetry, the potential Vb is independent of O and Laplace's equation
reduces to

L4
2 5% +

-}
Prats sme 33 (sin @ 39) 0 (2)

By 4.032 we know that
ZAhrnP (cos 8)
nzo

and

ZAnr“,P (cos 8)
are solutions of equation (2).

Applying the boundry conditions we have

Z}mrnP (cos 8) = QZP (cos d)(-——) s, for 8= 0 or cos 8= 1.

n=o

But by Theorem 2.10 Pn(l)z 1, hence

Soar = 2308 (cos %) ()"

nIo
Therefore we may conclude that

” .
?Z;Pn(cos °<)({")nPn(cos 8) , for{-<1 or 8Z < ,-cf =1

Similaerly
-]
¢
v, = -?-zmoPn(cos d)(-,-.-)mf-an(cos 8) , for% <lor 8#«x,%z1

* Byerly, op. cit., pages 8-12, 152-158,
(37)



iii) Remark

As is stated in previous references, this problem is an example

of a type and is stated as follows:

Whenever, in a problem involving the solving of the special
form of Laplace's equation (equation (2) of ii), the value of V is
given or can be found for all points on the axis of X and this value
can be expressed as sum or a seéries involving only whole powers pos-
itive or negative of the radius vector of the point, the solution
for a point not on the axis can be obtained by multiplying each term
by the appropriate zonal harmonic, subject only to the condition

that the result, if a series, must be convergent.

4,035 Frroblem*

To determine the potential at a point P (see figure 4) due to a

thin sphericel shell of given surface charge density.
solution

The potential due to all the elements

of the surface ds is by Remarks 4,022

Nf e WJS
V“IR ;
5

where o~ is the surface charge density.

To find ds we let the sphere be centered

at 0 with coordinates of the point Q on

figure 4.

7
the surface being (a,9;¢ ) and the coor-

* MacRoberts, T. M., Spherical Harmonics, Methuen and Co., Ltd.,
London, 2nd odition, revised 1943, page 158,
' (38




dinates of the point P being (r,8,0). Then ds = a2sin 6de d}’

= azdy’d¢l s Where =y = cos 6: As in problem 4.033
R=&2+a?—ZM'wsX%

where cos ¥ = cos © cos 6/+ sin © sin e/oos (Q-Ql) which arises on

application of the law of cosines for spherical triangles to triangle

ABQ in figure 4. Hence
an

, '
V- o~ ds ; o~ o?dy’de
- (Y‘"-o- o*-zar cos¥)T (r?4 0r.z2ar cosb‘)i
§

e =

and therefore
anr

v o= //"‘,f‘z {iPn(cos x)(%)n}dy’dqf » for & <1

nza

F

= //d"‘ {Z "?';:Pn(cos ¥ )}dy d@ ZT T /Pn(cos 3)dy'd¢)’

nzo
)

and similarly a,

Vo= oo Z a,,_,//P (cos ¥)ay ‘ap’ , for L <1

4,0351 Remark

Since this problem may be solved much more easily in the stand-
ard menner, we use this problem as an illustration of the method of
applying Legendre Polynomials which for a more complicated problem
mey be the best method of solution. The standard solution to problem

4,035 follows:*

Let V5 and V, be the potentials at points P and Q inside and

* Page end Adems, op. c¢it., pages 19-32 and Problem # 9, page 25.
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outside the charged spherical shell respectively., By Gauss' law,
i.e. N‘=AQTJCVda s where N is the electric flux, the electric in-
tensity fiefd of a uniformly charged spherical shell outside is the
same as if the total charge were concentrated at a point and there-
fore V = %& , Where Q is the totael charge., Another result of
Gauss'! law is that there is no field interior to this charged sphere
and hence the potential is the same at all interior points which

requires that the potential V;= % .

4,04 Heat Transfer Problem*

If the convex surface of a solid hemisphere (figure 5) of
radius e is kept at the constant temperature unity and the base at
the constant temperature zero show that after the permanent state of
temperature is set up, the temperature of any internal point is U,
where

o 3 t . o,
U= ()P ) - T3 ) By o2 () rs) - e

Solution**

When there are no sources or sinks
in a uniform solid body it must satisfy

Fourier's heat equation, i.e.

2 = EP W
VU'—R"-bt

since our problem calls for the steady

state solution. YThe temperature at any
figure 5,

* Byerly, op. cit., page 176, Problem # 8.
*ok Sokolinko%?, I. S. end B, S,, Hisher Mathemetics for Engineers and

Pg%sicists, Second &dition, McGraw-Hill, 1941,pages 425-428 and

(40)



point must satisfy Leplace's equation ¥ 25=0. Since the temper-
abure distribution will be symmetrical and therefore independent

of ¢, Laplace's equation becomes

in spherical coordinates and particular solutions, as in 4,032,
are
o
Up = 2 Apr"Py (y)
a nzo

and
oQ

)
Ub: an rhel Pn(Y)

nso

where r is the radius vector of the point in question.

Prom the statement of the problem the boundry conditions are:

i)  u=zf£(8)=1 , for 0SO<F and &

x =1
. . n r
ii) uz=f(e)=0 , for =4 and g = 1.

iii) r=0, u=0.

Condition iii) implies Up= * at r=0, hence we consider only
U, in the solution of the problem, Thus we use the boundry condi-
tions to evaluate the constents in the series expansion of Ug.

Since the boundry conditions are stated at rza, we let
2.
U(y) = :Z:An(-é)nPn(y) (1)

instead of U, as defined previously. Then when r=a this becomes

U= g:.;A::Pn(Y) (2)

/
and if we mey determine the constents A, such that the equation sat-

isfies the boundry conditions, then we shall have the desired solu=-

(41)



tion to the problem. Let

Rly) = SoAPa(y).

nso

In order to expand F(y) in a series of Legendre Polynomials we define
it to be an odd function such that
a) Fly)=1 , for 0S® <3
b) F(y)=0 , for Fso<m
Hence by Theorem 3.02
)

= (2n+l) [F(y)P,(y)dy , where F(y)=1 on the range O to 1.

Evaluating this equation for various values of n we get:

[
i

‘ ’ ' l ¥l 3
Ag = Po(y)dy::l H Al-'-' 3/1°Pl(y)dy:5/ydy =3 -5-] = 5
o

[}

/Pz(y)dy —-/(Sy -l)dy = {5y3-y] =0

]

R
"

4 2 - .
/(sy ey = 2[evt2vt] = 2050 = -2

1]

()?\

‘- 5 3 -1 163 6 70 4 15 2 At f 21+15-35
hg = 3—/(633/ =70y +15y)dy"a"[6y Y rey } ) ( 2 )
o

L]

<

»
+

it
"6‘0

»|
o

Substituting these results into equation (1) we get
Uy) =Pyly) +2(EIP () - 2 (L)%ps(y) + L3 (L)0r(y) -

But the condition U=0 at r=0 implies that the first term of the ex-

pansion is not present. Hence the solution is:

(42)



U= $(LIPL(y) - 15 (£)%rs(y) + 335 (£)°Pg(y) -

Note that this could have been arrived at by using the extension of

an odd function, i.e. .

By [2(2n+l) + 1] /‘U(y)Pzn_Pl(y)dy

o

4,05 Numerical Integration*

This method of numerical integration is sometimes celled the
Gauss-Legendre method. Gauss has shown that by the proper choice of
the interpolation points XgsXysXpseeesXy, We can obtain an approx-
imation to the given integral equivalent to the approximation ob-

teined by replacing f(x) by a polynomial of degree 2n+l or less.

To determine the Geuss-Legendre numerical integration method
we let Pn+1(x) have its n+l roots at Xy,Xj,Xpseessx, in order be-
tween -1 and 1, Also let f(x) be a function with known values at
each x; , 1=0,1,2,...,n and are equal to £(xy),f(x1),f(x5),..0,

f(xn) .

From Lagrange's interpolation formula form a polynomial of de-

gree n as follows:

- v (X X)(X=Xg) - (X=Xn) (X XY (X-Xp) (X=Xg) -+ (X~ X )
Fn(x) - f(xo) (CRLATETS ARG A2 8 * f(xl) (X~ XY X% (X=X )+« (%, =% )

(X=X)(X=%)(X~X5)- - - (% ~Xp) + - (%= 2D X=X, )X g~ {X-Xnr)
* f (x ) ()‘."X-) (Xg‘K)()‘g'xs) Tet (xe"xﬂ) T f ( n) (X”' .)(Y.“x,)a.’ xl)"'(xh'xn-l) (1)

We note that Fn(xi) =f(xi) for i=0, 1, 2, «e. 5, n. Integrating

equation (1) we have

* Helsel, op. cit., pages 35-36. Also L. M, Milne-Thompson, Calculus
of Finite Differences, pages 173-177, Macmillan and Co., LEd., 1933
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i

/Fn(x)dx:Hof(xO) FEE(x) + HE(r) + eee + B E(x)

-l

where ,

ivn
-}

(430X 08I O6 %) -~ (% Xn)

Proof of Gauss' assertion:

If £(x) is a polynomial of degree £2n+l, then

{oo - Rn0%
Bﬂ(x) s Qn(x) + "‘"“"‘E“w ’

where Qn(x) and R (x) are of degree gn. Or
£(x) 2 Qu(R)P,y (x) + Ry(x)
Let x= x; end substitute in equation (3) and get

£xo) = 000 (xg) + B (xo)
Then let x=x; in equation (3) and get

£(x7) = R,(x;) ete.

Hence we have that

f(xi) = Rn(xi) for 1%20,1,2,4s4,n

Now ) '

Seten = JomeIRereay) & ()i

- M

ff(x)dx :!Rn(x)dx

-1

This implies that

since ,

JENBINBEEE

ot}

by the orthogonality property of Theorem 2.10., We know

S ramans Hgyag) + BBaxy) + v+ Ry Gxg)

(44)

H "f‘x'x‘"x'x')"'o"x“)(x"&"-‘)"'(x'x") dx , 120,1,2,.00,n

(2)

(3)

(4)

(8)



Therefore from equations (4) and (5) we mey conclude that

i
ff(x)dx:HOf(xo) + Hlf(xl) * oses + an(xn)
-
exactly.,

4,051 Solution of a Problem by Simpson's Method

R.0

5‘*“—' for n=4 s Where n is the number of intervals in [a,b].

0

Solution

dx .'.'E.[f(xo) +4f(xy) + 2f(xp) + 4f(xg) + f(x4)]

1 X}

' i 1 [ 2l .
—,—z-[l tdar teiE téeTTEt g]_0.693254

For n=8 this becomes 0.693154

4.052 Solution of the Problem of 4.051 by the Gauss-Legendre Method

= for n=4
1.0

Solution

Since the Legendre Polynomials are symmetric in the interval
[—1,1] the zeros of Pn(oC) mey be arranged in such a way that
Xg= = Xpas+l

for n even and if n is odd the middle one is zero. This implies

that

s~ Hn- s+l

(45)



To change the limits from {a,b] to [—1,1] we make the substie-

tution
%z a;b + b;a. «
Hence with 221 and b2 we get
. 3+
)
and
dx = fde

For n=4 the roots of Py(«) are the «;'s as follows:*

- o(o bl °<3 = 0.861136311
and
- a<1 = o« = 0.339981043

and

i
- Al - A AR L R )
R where A. = 27 LT T ") d
B =2 = / TS byt b))
-l

For this problem the A5 are as follows:

2
A, - As
3 St 0.173927422
and
£ = £a - 0,3260725774
2.0
Using the ebove data to evaluate -‘f;’-‘- we get:
2.0 Lo

3
dx _ Al 2 - Al 2 L. 2 A (2 2
~ - ;?(344‘-) - 2° 3*(;* 3-0(,) + —;?" 31—‘;"' 3-«,)
1.0 -

1L

0.17392742(0.13507595 + 0,51798223) + 0.326072577(0,75187434

+ 0,5988058)

1

0.693146

* Hobson, E., W., Sphericael and Ellipsoidel Harmonics, pages 80-81,
Cambridge at the University Press, 193l; also, Margenau and
Murphy, op. cit., pages 462-464. |
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4,053 The Exact Value of Problem in 5.051

2.0

% z1n 2.020.693147 *
1o
A comparison of the results indicates that the Gauss-Legendre
method is exact to the 6th decimal place for n=z 4 while Simpson's

method for n=8 is only exact up to the 5th decimal place.

* Peirce, B. 0., A Short Table of Integrals, Third Revised Edition,
Ginn and Company, page 109.
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