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I INTRODUCTION 

The Legendre Polynomials of the first kind, defined on the closed 

interval f1,~ , have important applications in the physical sciences 

and fields of engineering. The following study of these polynomials 

shows some of these applications and provides an introduction to the 

important topic of orthogonal f'unctions. 

A survey of the literature brings out the fact that different 

authors define these polynomials in many different we:;rs. This suggests 

the question as to whether or not all of these polynomials are iden-

tical. To answer this question we shall use Rodrigues• formula as our 

basic definition, for reasons of convenience, and then show that the 

same polynomials are obtained if other definitions are used. 

To facilitate the equivalence proofs of the other definitions, 

which we shall prove as theorems, we prove additional theorems on the 

recurrence relations between the polynomials. In addition to the 

equivalence proofs we include various theorems to be used later in the 

representation, expansion and convergence theorems as well as in the 

practical problems. 

A further development of our understanding of these polynomials 

requires a knowledge of their limitations. To satisfy this need we 

prove in a simple fashion or quote from other works several theorems 

on representation, expansion and convergence of these polynomials. 

~ince our primary purpose is a limited understanding of the appli-

cations of mathematics, we take up what seem to be typical problems in 

which these polynomials may be used. The solution of these problems 
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illustrates the methods of solution which can be applied to more com-

plicated problems than can be included in thi~ ~aper. Before ta.king 

up the actual solution of these problems we discuss the relation be-

tween spherical harmonics and Legendre Polynomials. 

For the first application we consider some problems of electro-

static potential. The method of solution of these problems may then 

be applied to other problems of potential at a point, where the vec-

tor force field is subject to the inverse square law, or the potential 

function satisfies Laplace I s differential equation ( V2V: 0). We next 

consider a heat flow problem in which the temperature at e:ny point 

within a solid hemisphere is computed in terms of the temperature on 

the surface. This method may be applied to flow problems which sat-

isfy Laplace's differential equation; for example, an irrotational 

motion of an incompressible fluid. For the last application we take 

up the Gauss-Legendre method of numerical integration. 

In our survey of the literature we make extensive use of the 

bibliography by ~hohat, Hille and Walsh, Bibliography on Orthogonal 

Polynomials, National Research Council Ba.lletin :/11.03, 1940. 



II DEFINITIONS AND THEIR EQUIVALENCE 

2.01 Introduction 

A survey of the literature concerned with Legendre Polynomials, 

shows that many different definitions of these polynomials are given. 

This suggests that, as introductory material in a study of Legendre 

Polynomials of the first kind, we might prove that these various def-

initions are equivalent. It seems convenient to use Rodrigues' for-

mula as our basic definition. 

2.02 Definition* 

The Legendre Polynomial, Pn(x), is given by the formula 

1Pn(x) -- £ (x2-l)n n--,0 1 , 2 , •••- J 

t" "! """ 

2.021 Remark 

We note that Pn(x) is the nth derivative of a polynomial 

of degree 2n and hence Pn(x) is a polynomial of degree n. 

Therefore Pn(x) is of the form 

the Legendre Polynomials are uniquely determined and may be cal-

culated explicitly by the above definition. The first six are 

as follows: 

P0 (x): l 

P1 (x):x 

* 



P2 (x):. ~ (3x2-l)  

P3(x)= -!(5x3-3x)  

P4 (x):: ~ (35x4-3ox2+3)  

P5(x):: ~ (63x5-7ox3+15x)  

2.03 Theorem* 

Pn(x) satisfies the formula 

[f] 
(-1/' (2n -2t )~-~ 1• n ! (n - a r) !.,..o 

where n(r) is the rth binomial coefficient and (j) is the greatest 

integer in ; • 

Proof 

From Rodrigues' Formula and the binomial expansion we have 

, 

Taking the nth derivative we get 

[j] 
, "'"' )r n-2r- wt L,....(-1 n( )(2n-2r)(2n-2r-1) ••• (n-2r+l)x

2 n. r:o r 

[j) 
L(-l)r (tn-ar)! n(r)xn-2r 
r,,o t"n! (n-.tr)! 

* see definition, Helsel, R. G., Mathematics Methods in Science, 
Vol. I, The Ohio State University, 1948, problem, page 31. 
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2.04 Theorem* 

The Legendre Polynomials satisfy the recurrence relation: 

Proof 

Taking the first derivative with respect to x of Pn(x) we get 

_. 1141 
.,( ) - ...J__ Q ( 2 )nPn X - ,2n,t( h"' x -1 

ll 
:: J 2[L nJdx" .1xCx -1) 

--

11 1 ... ,; [.z.<11-d(~~,,"·11 +• 
"' -;;;..... ,t.•·1 (11-1)! 

--
2.05 Theorem** 

ii / 

Pn(x)::: xPn-l (x) + nPn-l tx) , n~l 

* 

** 
see proof, Hargreaves, Messenger of Mathematics, series 2, Vol. 49 
1919, pages 58-62 
see recurrence relation and proof, Hargreaves, op. cit., pages 
58-62 
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Proof 

From the proof of Theorem 2.04 

Consider y :: f (x1,~), then 

J!I 2 )n-1 J ( 2 .n-1 
dX  = \X -1 + X dX X -1) 

and 

. . . . . . . . . . . . . . . . . . .  

Hence 

Therefore 

2.06 Theorem* 

*

 see recurrence relation, Ford, Lester, R., Differential Equations 
page 197, problem 17, First Edition, McGraw-Hill Book Co., 1933 
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Proof 

Rewriting Theorem 2.04 

and also rewriting ~heorem 2.05 

Subtracting Theorem 2.05 from Theorem 2.04 

Therefore 

/ / 

nPn(x) =xPn(x) - Pn-l (x) 

2.07

 Theorem* 

nPn(x) - (2n-l)xPn-l (x) + (n-l)Pn_z(x) =0 n ~21 

Proof 

From Theorem 2.06 

./ ./ 

nPn(x)= xPn(x) - Pn_1 (x) 

But by Theorem 2.04 

Substituting in Theorem 2.06 we get 

* see Ford, op. cit., page 197, problem 16 
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But in Theorem 2.05 
/ I 

Pn_1(x)= xPn_2(x) + (n-l)Pn_2(x) 

and on substitution we get 

nPn(x)=(2n-l)xPn_1 (x) + xP~_2 (x) -{xP:_2(x) + (n-l)Pn_2(x)} 

Therefore 

2.08 Theorem* 

Proof  

Multiply Theorem 2.06 by x:  

then 

From Theorem 2.05 we have 
/ I 

-xP 1 (x): nP 1 (x) - Pn(x)n- n-

and on substitution we get 

2 I / 
nxPn(x) - nPn_1 (x)=x Pn(x) + nPn_1 (x) - Pn(x) - nPn_1 (x) 

Therefore 

* Ford, op. cit. page 197, problem ¥/=19 
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2.09 Theorem 

Pn(x) satisfies the recurrence relation: 

Proof 

Rewrite Theorem 2.08 as follows 

and add to Theorem 2.07, i.e. 

nP (x) =(2n-l)xP 1 (x) - (n-l)P 2(x)n n- n-
and get 

2 /
nPn (x) =(x -1 )Pn-l (x) + nxPn-l (x) 

2.10 Theorem* 
I 

/Pn(x)Pn-j(x)dx: O j ~ 1 and -1 ~ X ~ 1J 

-, 

Proof 

Substituting for Pn(x) and P .(x) from the basic definitionn-J 
we get 

I 

/Pn(x)Pn-j(x)dx :: 

* see definition, Jackson, op. cit., pages 46 and 50 

~11) 

-1 



Integrating by parts n times we get 
' ,..,, n·i 

' / J 2 n d 2 n- · 
lrt·j I (n-· JI Jx"J..x -1) Jxll•j (x -1) Jdx: 02 ,, . J • _, 

~ince 

and no other terms appear

due to the following: 

JI rt•j rt J,..j • J ,,-, jl  
1xn•j (x2-l)n-j j;n (x2-l)ndx =dx"·J (x2-l)n-J clx""' (x2-l)nj  

~ ' '

 ~ 
i 1• 1I d11-J•• 2 n-j 2

 n 

- J"11-j+1 (x -1) ;;rx,,-, (x •l) dx 
,,,_, -, 

Now Jx""' (x2-l)n contains (x2-l) a.s a factor and on evaluation at 

the limits -1 and l equals zero. By Remark 2.021 and using mathe-

matical induction 

P0 (1) =l 

pl (1):: l 

P2 (1) =1 etc. 

Assume Pn-l (1) =1 and f'n-Z \ 1 J=1., n ~ 2. .i;hen by Theorem 2.07 

nP (1):: (2n-l)P (1) - (n-l1P 2 (1):: 2n-l-n+l =n n n-1 n-
Hence 

2.11

Theorem* 

P (-1) =(-l)nn 
.Proof 

Utilizing the recurrence relation Theorem 2.07, i.e. 

* Jackson, op. cit, page

46. 
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and Kemark 2.021 and evaluating 

P0 (-1) =l ; pl (-1)::: -1 ,. P2(-1): f(3-l):: 1 

Assuming 

and 
n-2) (Pn_2 (-1 = -1) 

consider the following: 

a. Let n be even, then by Theorem 2 .07 we have 

nP (-1) =(2n-1) (-1) (-1) - (n-1) (1) =nn 
Hence 

Pn (-1): 1 

b. Let n be odd, then by Theorem 2.07 we have 

nl:'n(-1) =(2n-1J (-1)(1) - (n-1)(-1):: -n 

Hence 

Pn(-1) = (-1) 

Therefore we may conclude that 

P (-1):: (-l)n 

Note This mey al so 
n 

be proved by proving 

Pn(x) =(-l)nPn(-x)* 

2.12 Theorem** 

On the closed interval b1,1] 

f I 

n(x)Pn(x)dx - ;zn _. I~,  
* see Thesis, ~homas, ~. E., Some Elementary Aspects of Legendre 

Polynomials, The Ohio State University, page 14 
** Jackson, op. cit., page 52 
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Proof 

From Definition 2.02 

I d" ( 2 )np (x) JxM X -1n .z" n! 

Substituting in the above theorem we get 
I 

1 . ( J" ( 2 n /' 2 n 
2z"(11!)°a) Txn x -1) dx" (x -1) dx _, 

After n integrations by parts this becomes 
I 

: _2Z",(n!t l2n) I (-l)n/cx2-1)ndx _, 
Since this is an even function we may change the limits of inte-

gration from Oto land multiply by 2 as follows: 
I 

= z(zn)! /(l-x2)ndx
:•... (n!)' 

0 

Integrating this by the trigonometric substitution of x:: sin e, 
we get 

f .!. f 
::: ~(.Zn)! f._ 2n+lede = .iCtn)' f , 2n . ] a .zn J 2n-l }

a•"(nl>")cos .z•"(nl);_ lT,;";7 COS 0sl.n 9 + ',in+, COS 9d9 
0 0 " 

Since the first term of each integration contains a cosine term until 

the last, the integral becomes 
.2(~11)! (.a"n!) 2 

2 
.2""(n!)A (211 -t 1) ! = 

Hence 
I 

~Pn(x)Pn(x)dx - ,an+ I _, 

(14)  



2.13

 Theorem* 

On the closed interval [-1,1] 
I 

~" fpn-l(x)Pn(x)d:x. = 'I n4.. I ., 
Proof 

Substitu·Hng 

from Theorem 2.07, the integral becomes 
Il

 If p ( )[ nP,J)l.)+(n-,)1;.z(,c)]d:x. _ ..!Lj(P ( )~2d:x. + 

n x :zn-1 - an·I n x 1 2::·, /Pn(x)Pn-2(x)d:x. 
•I

 •I -· 

Evaluating this by 'l'heorem 2.10, we have the last integral as zero and 

by the previous theorem the first integral becomes 

--"- .J._ ::zn-1  in+ 1 

Hence

our theorem is true. 

2.14

 Theorem** 

Pn(x) is a particular solution of Legendre's differential equation 

2 // /
(1-x Jy - 2xy + n(n+l)y:; 0 

Proof 

Re,vriting Legendre's differential equation and substituting Pn(x) 

for y as follows: 

* Ford, op. oit., page 197, problem =jf5
** see previous reference, page 190. 
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••• 

••• 

By use of Theorem 2.08 we get 

Performing the indicated derivation we get 

I I 
-: nP 1 (x) - nxP (:x:) - nP (:x:) + n2P (:x:) + nP (:x:).n- n n n n 

But Theorem 2.06 states 
2 / /

n P n (:x:) : nxP n (x) - nPn-l (x). 

,I I 
Hence on substitution in the above equation for nPn_1 (:x:) - nxPn(:x:) 

we get 

= -n2P (x) + n2P (x) =0 n n 
Therefore Pn(x) is a particular solution of Legendre's differential 

equation. 

2.15 '.l.'heorem* 

:x: 1 0 0 0 

p (x) = I 

n 1 3x 2 0 0 "' 
0 2 5x 3 ... 0 

• 
• 
• n~l 

(n-1) 
0 0 0 ... (n-1) (2n-l)x 

I 

* see exercise v2, Whittaker and Robinson, The Calculus of Obser-
vation, Blackie and Son, Ltd., 2nd Edition, 19$7, pages 74,75 
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Proof 

Evaluating 

P1 (x) =x 

P2 (x): !(3x2-l) 

P3(x): 3', ( x(15x2-4) + (0-5x)] = 3', [1sx3-9x] = !(sx2-3x) 

The proof will be completed by showing that Pn(x) as given above 

satisfies the recurrence relation of Theorem 2.07, i.e. 

nPn(x):: (2n-l)xPn-l (x) - (n-l)Pn_2 (x) 
thEvaluating the determinant by expanding according to then column 

we get, af'ter multiplication by n! 

n!Pn(x) = (2n-l)x(n-l)!Pn-l (x) - (n-1) 2 (n-2)!Pn_2(x). 

Dividing by (n-1)1, we get 

nPn(x)=(2n-l)xPn_1 (x) - (n-l)Pn_2 (x) 

Hence the determinant form of Pn(x) is equivalent to Rodrigues' 

formula. 

2.16 Theorem* 

P (x) is given by the generating function n 

ll-2xy+y2)-'2 
1 = L00 

Pn(x)yn 
nso 

Proof 

Consider 
1 

F(x,y) = (l-2xy+y2 )~ 

*

 see definition and proof, Margenau and Murphy, The Mathematics 
of Physics and Chemistry, pages 94-109, and Helsel, op. cit. 
page 3l. 
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Evaluating at y:::: O 

F(x,y; I=l 
:J:«) 

Taking the partial derivative with respect to y and evaluating at 

y:. 0 we get 
I-r 

(x-y) ( l-2:x:y+y2) = l !P(x)~F(x,y) I= l7 ~·o ':J•" 

Similarly we see 

"'o" 
~a F(x,y) 

and 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
l"i;..F(x,y) I= n!Pn(x) 

,,.o 
Expanding in a MacLaurin series about F(x,o) we get 

- < 'bf I Yz -;,- / ,:J'' 'o"r /F(x,y)-F x,o) + y ~ + "if ay.r + ••• + ni -a,,. + ••• 
~·o 'J"'O •;,=o 

::P0 (x) +yP1 (x) +y2P2 (x) + ••• +yllpn(x) + ••• 

Hence 
00 

F(x,y) =LPn(x)yn 
>l:rO 

To show its equivalence to Rodrigues• formula we derive the re-

currence relation 'l'heorem 2 .07. Taking partial derivatives of both 

sides with respect toy, we get 

2 -t 2 -1 ~ ( n-1(x-y)(l-2:x:y+y ) (l-2:x:y+y ) =~nPn x)y 
,uo 

Rewriting and substituting for (l-2:x:y+y2) ~ 
- l -(l-2xy+y2 ) ~ nPn tx)yn- :: (x-y) L P n (x)yn 
•:-o "~• 

(18) 



Equating the coefficients of yn-l we get 

Combining terms we have 

which is Theorem 2.07. 

Note! For x =1 

( 2)-! , 2 n ~ nl-2y+y :; 1.~ =1 + y + y + • • • + y + • • • : L.,Y 
,.,o 

This implies an equation of Theorem 2.10, i.e. 

2.17

 Theorem* 

1·3·5· •• (;1"-1) {

 H'I ( )Pn(cos 9 ) = 2 .,..6 ... Can) 2cos ne + 2 ~ cos n-2 9 + 

l·S·n(n-1) ) l·f·5·'1(Jl-l}(n-.a) ( ) 1 
2 U(a11-1)(J111•3) COS (n-4 9 + 2 l·J·S(.in-1)(zr1•3)(an-s) COS n-6 0 + • • • 

Proof 

Let 
_ 1 ie -is)

X : COS 9 - 13( e + e 1 

and we see that 
2 J- ie ...4:- -ie J-(. l-2xy+y ) 2 := (1-ye ) 2 (1-ye ) 2 

If \YI< 1, we have, by the binomial theorem 

ie ...4:- 1 ie ,., 2 210 ,. 3-5· s Sia(1-ye ) 2 : 1 + °2Je +:r-,y e + TIT y e + ••• (1) 

*

 see definition and proof, rrasad, G., A Treatise on ~pherical 
Harmonics and Functions of Bessel and Le.me, Part 1, page 31, 
The Benares Mathematical Society, 1930. 
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and 

(1-ye-ieri::: l + ~e-ie + ;:: y2 e-2ie + !·.~--~ y3e-3ie + • • • (2) 

Hence their product must be equal to 

nby Theorem 2.16. Therefore the coefficient of y must be equal to 

Pn(cos e) 

Trucing the product of equations (1) and (2) for the coefficient of 

l•ll·S'·••(,a.>1•1) {ein9 + e-in9 + 1-.PI rei(n-2)9 + e-(n-2)6] 
.2·f4,.·f.·" (at1) 2·(zn~I) [ 

l·J· C£>1)(2r1-2) [ei(n-4)9 + 8 -i(n-4)9] + •• ·} 
'f" .t· If (;tl'l~I )(.h ·J) 

which is Theorem 2.17. 

2.18

 Theorem* 
rr 

Pn(x) = fij(x + ix2-l cos

e)nd9 
0 

Proof 

Evaluating  

P0 (x) = irfae 
rr 

=1  

0 

'l.'he proof will be completed by showing that it satisfies the recur-

rence relation Theorem 2.07, i.e. 

* see definition and proof, Jackson, op. cit., pages 59-60 
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0 

(n+l)Pn+l (x) - (2n+l)xPn(x) + nPn_1 tx) =0 

By direct substitution into Theorem 2.07 we get 
rr;,J { x + ix2-l cos e}n-l { \n+l)(x + ~x2-1 cos e) 2 ___ 

o -(2n+l)x(x+ ~ x2-l cos 9) + n}do 
,r 

2 2:~1{x + ~x -l cos eJn-l l-nx2 + n(x2-l)cos e · 
0 + (x2-l)cos2e + x ix2-l cos 

rr : ;\- f{x + ~x2-l cos e}n-l{-n(x2-l)sin2e 
20 + (x +ix -l cos 

Then to show 
rr 

-;;J{x + ix2 aJn-ln(x2-l)sin2ede-1 cos 

(1)=W/?x + -{Ti cos e}n {¥-1 cos e}de 

Integrating the right side by parts we get 

cos 

Hence equation (1) is true and theorem 2.16 is equivalent to 

Rodrigues' formula. 

2 .181 Corollary 

P lx) cos e)nd9-~Jc: + i i1-x2 
n 

OI 

This is a restatement of 2.15. 

t21) 



2.19 Theorem* 

P (cos 0) = (-,)" r"•1 L (.!..)n rt! )x" r 

Proof 

Evaluating 

Let y:: cos e. 
equivalent to the first Pn_1 (y)'s of Rodrigues 1 formula, then we com-

/ 
pute Pn(y) in terms of Pn_1 (y) and Pn_1 (y). We know 

l!f «ff ::: )f , f =}' 1 (y)~x 1i1 )X n-
Now 

~~ ::: ) (.k.\ = I 2 2 
)x ?ix rt -;:str -x ) 

and 

Then ta.king the partial of Pn_1 (y) with respect to x we get 

l  (-1 ,ii·• ( n-1 X )""' ( I ) (-1 t·· n )" I 
~ .l:'n-1 (y) = (n-1)! n)r r rx•-1 r + (n-1) ! r °ix" (v) 

Substituting from above 

*

 see definition, Byerly, William i!,., Fourier ~erie s and Spherical 
Harmonics, page 165, ~inn and Co., copyright 1893. 

1.22) 



(t~x") p I (.y) = ~ p l.Y) - nr Pn(y)
r! n-1 r n-1 

Multiplying through by r we get 

Hence by Theorem 2.09 the Pn(cos 0) of Theorem 2.19 is equivalent to 

Rodrigues' formula with y.:: cos e substituted for x. 

2.20 .H.emarks 

Other definitions of Legendre Polynomials may be found in the 

references previously cited. 

(23)  



III REPRESENTATION, EXPANSION AND CONVERGENCE THEOREMS 

3.01 Introduction 

Orthogonal functions are extensively used in a series expan-

sion of a. given function. With a given set of orthogonal functions 

two questions of interest are: 

(1) How do you expand a function in a series using the given 

set of orthogonal functions? 

(2) Under what conditions will the series converge to the 

given function? 

In this chapter we shall show how one may expand a function in 

a series of Legendre Polynomials. We shall also state theorems con-

cerning the convergence of the Legendre expansion to a given function. 

We shall see that under certain conditions*, continuous, or finitely 

discontinuous functions, may be represented by a convergent series of 

Legendre Polynomials. If the series is terminated, after n+l terms, 

we shall see that the finite sum of the Legendre expansion is the 

best nth degree polynomial approximation to the given function in the 

sense of least squares. 

If a function f(x) can be represented by a series of Legendre 

Polynomials, i.e. ... 
f(x) =L.a.-P.(x),. 1 1 cco 

then form.al multiplication term.wise by Pi(x) and integration gives 

ai:: ;\+'fI 

(x)Pi (x)dx 
-, 

* Prasad, op. cit., pages 73 and 74 

(24) 



3.02

 Definition 

If f(x) is any integrable function we define the series 

.... 
~~pi (x) , where ai is given by 
lr:o 

' 
~:: 

2
~+ 

1/f(x)Pi (x)dx , 
•I 

to be

the Legendre series associated with f(x). 

3.03

 Theorem 

Any polynomial of degree no greater than n is equal to a linear 

combination of the first n+l Legendre Polynomials. 

Proof 

Consider the polynomial F(x) =xk, where k is any fixed integer. 

We wish to find constants ai such that 

th 
By Remark 2.021 Pn(x) is a polynomial of n degree. Let 

n n-1P (x ) =b x + b 1x + ••• + bnlx + b ,n nn nn- no 

n:: 0,1,2 •••• ,k and bnn;z!: O. 

On substituting P (x) in equation (1) we have: n 

(2)  
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Equating powers of x and solving for the ai's, we get, for the 

coefficient of :x:k 
or 

Substituting-.;- for akin equation l2) and equating the coefficients 
k-1 I(~

of x we have 

or 

etc. 

Since the leading coefficients of each of the Legendre Polynomials, 

Pn(x), is different from zero the ai's will be defined. Hence we 

m9¥ evaluate any polynomial as a linear combination of Legendre Poly-

nomials and determine the coefficients in this manner. 

3.04 Theorem* 

The Legendre Polynomial, .Pn(x), is bounded as follows: 

IPn(xJI < 1 on the closed interval [-1,1] 

I.Pn(x)j <i 1,n(,~x11) on the open interval ~-1,1) 

3.05 Definition** 

.An orthogonal set of functions is said to be complete with re-

spect to a class of continuous functions, C, if whenever f, belong-

ing to C, is orthogonal to every member of the orthogonal set, then 

* see proof, Jackson, ot. cit., pages .61-63. 
**

 see Thomas for defini ion, following theorem and corollary, .2£• 

cit., pages 31-34 
(26) 



f is identically zero. 

3.06 Theorem 

The set of Legendre Polynomials is complete with respect to the 

class of continuous functions defined on the closed interval ~1,~. 

3.061 Corollary 

The Legendre coefficients of a continuous function defined 

on the closed interval [-1,~ are all zero if and only if the 

function is identically zero. 

3.07 Theorem* 

If the sum of the absolute values of the Legendre coefficients 

of a continuous function forms a convergent series, then the Legendre 

expansion is absolutely and uniformly convergent, and converges to 

the function. 

3.08 Theorem** 

I 
If f (x) exists and is finite on the open interval (-1,1), and 

has only a finite number of discontinuities and is monotone in ea.oh 

of a finite number of parts of l-1,1), then the Legendre series as-

sociated with f(x) converges to f(x). 

* see previous reference, pages 37 and 38. 
~* Prasad, op. cit., pages 68-73 



3.09 Theorem* 

If f(x) is finite on the closed interval [-1,1] and is of lim-

ited total fluctuation in the interval; then at every point x inte-

rior to the interval, the Legendre series 

converges to 

} { f(x+O) + f(x-0)} 

if this expression exists; at x 1 and at x -1, the series converges 

to f(l-0) and f(-1+0) respectively when these limits exist. 

3.10 Theorem** 

-If f(x) : L8n.Pn(x) and ~(x) is any polynomial of degree ~ m, 

then I 

~ /(f(x) - Em(x)] 2dx 
•l ~, 

'" We say that ~~Pn(x) is the best approximation to f(x) in the sense 
n~o 

of least squares. 

Proof 

"" Let ~ (x) = L "'np n (x). To complete the proof we must deter-
,uo 

mine the coefficients ot n such that 

/if\x) • Rm(x)j 2dx 
-, 

* Prasad, op. cit., Part II, (Advanced) 1932, page 94. 
** Helsel, op. oit., pages 33-34 
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is a minimum. Taking the minimum of' 

j[
I 

f'(x) - I\n(x)J 2dx 
_, 

as follows: Let 

h, { /[r(x) - t «J'n(x)j 2c1x}=o 
_, 

where o( r is any o,: n· Taking the indicated partial derivative we 

get: I 

- -2 J[r(x) - tc(nPn(x)]Pr(x)dx=O 
• IHence 

;;(x)Pr(x)dx =J't. °'nPn(x)Pr(x)dx: ""r ,;., -, _, 
Therefore we have I 

ar-t 1 ~(.x)P (x)dx°' r = 2 JI r -, 
From this we may conclude the minimum exists and is obtained with 

every °'r equal to the corresponding ar• 

3.11 Definition* 

A sequence of functions, f'n\x), defined on the closed interval 

( a,bJ is said to converge in the mean to the limit function f(x), 

provided I, 

~i.:J[fn(x) - f'(x)] 2a.x :O 
Q. 

3.12 Theorem** 

Let f(x) be a bounded Riemann integrable function defined on 

* Helsel, op. cit., page 71. 
** Thomas, op. cit. page 55. 

(.29) 



(-1,1]. The necessary and sufficient conditions for the Legendre 

expansion of flx) to converge in the mean to f(x) is that 
I 

=j[nx)] 2dx -, 
is satisfied. 



IV APPLICATIONS 

4.01 Introduction 

We illustrate the uses of Legendre Polynomials by solving some 

typical problems in electrostatic potential, heat transfer and numer-

ical integration. Before taking up the problems some remarks will 

be made concerning the relation of spherical harmonics and Legendre 

Polynomials. 

4.02 Remarks* 

In these remarks we will define a solid spherical harmonic and 

discuss the differential equation method of obtaining the spherical 

harmonics. 

4.021 Definition 

A solid spherical harmonic is a homogeneous function of x,y,z, 

satisfying Laplace I s differential equation, i.e. v2v =O, where 

the degree of Vis called the degree of the harmonic and may be any 

constant, real or complex, integral or fractional, positive or neg-

ative. 

If in spherical coordinates V =rn Yn\0,(\)), then Yn(e,~) is 

called a surface spherical harmonic of degree n 

4.022 The Differential Equation Method 

Laplace's equation in spherical coordinates becomes 

* Prasad, op. cit., pages 1-4. 
(31) 



cl

 2 }V -I A..( . 8 i!lV) (1)- (r -) + c,e sin beir lT sin 8 

Let V=rnf(e)cos m~. Then r 2!~ = nrn+lf(0)cos m~ and 

also 

and 
1 Lt sin e W_) = { c.~.s e d{ceJ + lf<e>} rncos m""sine c,e ·W s,ne de Jez 'f 

and

finally 
oV I "$V m 2 

( ) n m ..,,...., ::: -rnft9)m sin m$ and . ., ..,,. .i,..z = - -:-:- f e r cos m'f 
ov  sm e Q.., s, "Ae 

~ubstituting the above in equation (1) and combining terms we get 

,lfre> + c_o,e d{<e> + {n(n+l) (2)re;- io,e Je 

Ma.king a change of variables, let y =cos e. Then 

. e Jrc~,df(e) = sin ~de 
and 

Substituting these in equation (2) we get 

11_ 2) d2 .f(e) _ d.f<e>  
\ y J y.z 2y d'j + {n(n+l) - (3) ,:';.i} f(e)=o 

m 

Now

 let f\.9):: (l-y2 )2 W and substituting in equation (3) as follows: 

and 
J'((e) - 2 !!?. -2 2 2 .!?l -11 2 m lJ'w 

{ f(:-1)(1-y /' (2y) -m(l-y /l JW- 2myt,;-y y-a-1;-w-
2)T

d-W-(+ 1-y d';Jl 

(32) 



and we get 

2) J'W <JW 
(1-y J'j1. -2 (m+l)y d'j + (n-m) (n+m+l)W:: O (4) 

Consider now Legendre's differential equation i.e. 

2) J's Js ( )ll-y, J,11. - 2y1; + n n+l s:: 0 (5) 

Let Pn and Qn denote two independent particular solutions of Legendre's 

differential equation, where P n (1) : 1 and Pn is of degree n. Differ-

entiating equation (5) m times with respect toy we get: 

..... Ill 

- 2 (m+l)y ;;...+, + (n-m) (n+m+l)j; ... : O (6) 

l"P.. l"Q" ft'Hence and Jum , which shall be denoted by n andJ!I"' 0 ~ (1-if')f 

Q:-'j')t , are independent particular solutions of equation (4). 

Therefore V =r~ cos m4) and V =rn~ cos m~ are solutions of La-

place's equation (1). It will be noted that equation t3) is not 
-n-1..Jllaltered by replacing n by -n-1. Hence V: r i:'-n-l cos m(\) and 

-n-1 m 
V=r Q-n-l cos m(\> are also solutions of equ3.tion t_l). Similarly 

we may show for V =rnf (9) sin m~, we get like results involving the 

sin mt instead of cos m~. These solutions of Laplace's equation 

give the following: 

i. Zonal harmonics, when m =0. 

ii. Tesseral harmonics, when m;to, and m;r!n 

iii. Sectorial harmonics, when m=n 

We note that for m=0, the zonal harmonic V =r ~n (y) and 

V= r~+i P n (y) contain the Legendre Polynomial, P n (y), as given by 

(33) 



Theorem 2.19. Therefore the Legendre Polynomials are a special case 

of spherical harmonics. 

4.03 ~lectrostatic Potential 

4.031 Uefinition* 

Potential V at a point in an electrostatic field is the work nec-

essary to bring a unit positive charge from infinity; i.e. from out-

side the field up to the point in question. 

4.032 Remarks** 

Let us calculate the potential Vat P (see figure 1) due to a 

point charge q placed at the origin o. The electric intensity at Qz 

is E = ~ (Coulomb' s Law) in the direction 

of the radius vector, r, and the work done 

against the repulsion of gin moving a 
/ 

R /
unit

positive charge the distance dl from - :a(.,, ,,

 r_ - - J; . ~ 

,.. ; ~ :.~ - - - - -Ql to Q.2 is dV = ~ dl cos "' • But

dl cos «. O .,:..- - - r+Jf',.


1 

::. - dr. Hence dV =_l_ dr. Integratingr" figure 1. 
from cc:,to R the distance from P to O, we get: 

R 
V • - , ( Jr - .1_ - :} r2 - R ' 

oO 

where the potential is independent of the path. 

In case of a continuous distribution of electricity consisting 

off units of charge per unit volume occupying a volume t and r-

t> 

*

 Page and Ad.ams, Principles of Electricity, University Physics 
Series, Van lfostrands Co., 11th printing, page 15. 

**

 see previous reference, pages 15-18. 
t34) 



units of charge per unit area distributed over a surface, S, then 

the formula for the potential is as follows: 

V : Jr/?:+ f ,o-Y'ds 
'l' s 

where r is the distance from P to the elements, d 't and ds. We see 

from these expressions that V, the electrostatic potential in all 

cases, is a function only of the coordinates of the point P at which 

it is evaluated, and is independent of the path along which the unit 

positive charge is carried to~. In a region in which there are no 

free charges, the potential in an isotropic medium satisfies Laplace's 

differential equation v 2v:: O.* 

4.033 .t'roblem** 

To determine the potential at a point P (see figure 2) due 

to two charges, -q and +q, located a distance 2d apart. 

Solution 

From Remark 4.032 we see that the poten-

tial at P is V :: ..! - .1 . Now by the law of 
l'; 'i 

cosines, ri =R2+d2-2dRcos ¥ and r~ =R2+i 

+2dRcos ¥. We need to consider two cases: 
figure 2. 

case i. 
ti 1- Z.J_ 

For ; ~ 1, then V =: (1-2 ~ cos '1 + ~-)~ - R(l+2 ~ cos '1 + ir)~ 
Hence by Theorem 2.16 

oO J 
V =t ~ Pn(cos ¥ )(R)n -

* Page and Adams, op. cit., pages 83-85.
**

see previous reference, pages 34-35, and Helsel, op. cit., 

pages 29-30. 
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By note of Theorem 2.11; i.e. Pn(x)= (-l)nPn(-x), this becomes 

= 2 'J LGO 

p (oos 'lf) (.l.)2n+l
R n•o 2n-tl 'R 

since even terms cancel. 

case ii. 

and similarly to case i, 
00 

V=.!!:. LP (cos 1' )(.R../n+l
d n:o 2n+l d 

4.034 Problem* 
A 

To determine the potential at points 

A and P (see figure 3) due to a circular 

wire ring of small cross section of uni-

form charge density y per unit length. 

Solution 

i) Since A is located on the axis of the 

ring at a distance x from the origin and 
figure 3. 

is equidistant from all positions of the 

ring, its potential V/ ~ , where Q. is the total charge on the ring 
2 2 .1,..and R:: (c +x -2cx cos"" )2 • Hence as in Problem 4.033 

... 
-- _g_ .....:- P (cos .J) (..S)n+l where.£. < 1C G.-J ......... ' x-..•  n,,o n " 

ii) To obtain the value of the potential function at any point in 

*Smythe, Static and Dynamic Electricity,pages 137-138. 
(36) 



space we must satisfy Laplace's equation, which in spherical coor-

dinates is as follows: * 
~ ( 2 ) V ) I ~ ( • qV ) + 1 "bV ~r r ir' + sini" is sin a -a e sinie c> t.. ::: 0 (1) 

subject to the conditions that VP= Va for e=o. 

Let the polar axis be the axis of the ring and hence, due to 

symmetry, the potential VP is independent of O and Laplace's equation 

reduces to 

1... (r2 1Y.) + ~ ~ ( · e },v ) - o~r ~Y' sm e ~e sin ~e - (2) 

By 4.032 we know that 

and .... 
VP= bAn:/1t+1 Pn(cos e) 

are solutions of equation l2). 

Applying the boundry conditions we have 

, for a= 0 or cos e= 1. 

But by Theorem 2.10 Pn(l)= 1, hence 

Therefore we may conclude that 

VP= ifP (coso<:)(~ )~ (cos e) , for c(' <1 or 0':t"' ,c,r =1 ,uo n n 

Similarly 
OD 

V = ~ ~Pn(cos..C:)(~)n+lpn(cos 0) , for~ <1 or e;to::,~:l
P n::o 

* Byerly, op. cit., pages 8-12, 152-158. 
l37) 



iii) Remark 

As is stated in previous references, this problem is an example 

of a type and is stated as follows: 

1Vhenever, in a problem involving the solving of the special 

form of Laplace's equation (equation (2) of ii), the value of Vis 

given or can be found for all points on the a.xis of X and this value 

can be expressed as sum or a series involving only whole powers pos-

itive or negative of the radius vector of the point, the solution 

for a point not on the a.xis can be obtained by multiplying each term 

by the appropriate zonal harmonic, subject only to the condition 

that the result, if a series, must be convergent. 

4.03b .t'roblem"' 

To determine the potential at a point P (see figure 4) due to a 

thin spherical shell of given surface charge density. 

i:>olution 

The potential due to all the elements 

of the surface ds is by Remarks 4.022 

V = f;Js , 
s 

where ~ is the surface charge density. 

To find ds we let the sphere be centered 

Js 

p 

at O with coordinates of the point Q on 
I I figure 4. 

the surface being (a,e,~) and the coor-

*

 MacRoberts, T. M., Spherical Harmonics, Methuen and Co., Ltd., 
London, 2nd ~dition, revised 1947, page 158. 

(38) 



2 , , ' dinates of the point P being (r,9,~). Then ds: a sin 9d0 di) 
2 / / ,=a dy d~ , where -y:: cos 9, As in problem 4.033 

R:: (r2 + a2 - 2ar cos 't y! 
I ' Iwhere cos cf= cos e cos e + sin e sin e cos (~-() ) which arises on 

application of the law of cosines for spherical triangles to triangle 

ABQ in figure 4. Hence 

! ';" I ,,.. o.1.J'J "10. , 
= (ra+o..A-allr,oslt)t 

0 -Jand therefore 
atr / 

V = j /""ro..z {t.Pn(cos If) (7)n}ay' d~' , for ~ < 1 
0 _, 

= /f {t. ;:::Pn(cos l )Jcly' d•' - ""f~ ~:::/fn(cos ~)cly'd•' 
0 -, o •I 

for ~ < 1r 
and similarly 

V = ~ f;. ;:.;j;n(cos lf)cly'~' , for~ < l 
0 _, 

4. 0351 Remark 

Since this problem may be solved much more easily in the stand-

ard manner, we use this problem as an illustration of the method of 

applying Legendre Polynomials which for a more complicated problem 

ma;v be the best method of solution. The standard solution to problem 

4.035 follows:* 

Let Vi and VO be the potentials at points P and Q inside and 

* Page and Adams, op. cit., pages 19-32 and Problem =I/= 9, page 25. 

(39) 



outside the charged spherical shell respectively. By Gauss' law, 

i.e. N:: 41~ da , where N is the electric flux, the electric in-

tensity field of a uniformly charged spherical shell outside is the 

same as if the total charge were concentrated at a point and there-

fore VO = !;- , v1here Q is the total charge. Another result of 

Gauss' law is that there is no field interior to this charged sphere 

and hence the potential is the same at all interior points which 

requires that the potential vi; ~ • 

4.04 Heat Transfer Problem* 

If the convex surface of a solid hemisphere (figure 5) of 

radius a is kept at the constant temperature unity and the base at 

the constant temperature zero show that after the permanent state of 

temperature is set up, the temperature of arry- internal point is U, 

where 

Solution** 

When there are no sources or sinks 

in a uniform solid body it must satisfy 

Fourier's heat equation, i.e. 

v2u = c.J ~ 
since our problem calls for the steady 

state solution. the temperature at arry-
figure 5. 

Byerly, o!. cit., page 176, Problem :fl= 8.* 
** Sokolinko f, I. s. a.nd E. s., Hi~her Mathematics for En~ineers and 

P~sicists, Second ~dition, Mc raw-Hill, 1941,pages 4 5-428 and 
3 -385. 

(40) 



point must satisfy Laplace's equation V 2u=O. Since the temper-

ature distribution will be symmetrical and therefore independent 

of~' Laplace's equation becomes 

~ 2 )U ) I ~ ( • ")U. ) _ or tr 1>r + sine 1,e sin 0 (19 - O, 

in spherical coordinates and particular solutions, as in 4.032, 

a.re -Ua =L AnrnPnly) 
/1:0 

and 

where r is the radius vector of the point in question. 

From the statement of the problem the boundry conditions are: 

i) u=f(e)=l , for o~ e < ; and : =1. 

ii) u= f(e) =o , for 0 :: ; and ~ =1. 

iii) r:: O, u =o. 

Condition iii) implies Ub:: 00 at r =O, hence we consider only 

Ua in the solution of the problem. Thus we use the boundry condi-

tions to evaluate the constants in the series expansion of Ua• 

Since the boundry conditions are stated at r:: a, we let 

(1)  

instead of Ua as defined previously. Then when r:: a this becomes 
OI> I 

U = LAn.Pn(y) (2) 
n:o 

I 
and if we may determine the constants An_ such that the equation sat-

isfies the boundry conditions, then we shall have the desired solu-

(4,1) 



I 

tion to the problem. Let 

In order to expand F(y) in a series of Legendre Polynomials we define 

it to

be an odd function such that 

aJ F(y) :: l , for o ~ e < -;:" 
b) F(y): 0 , for : ~e < 1T 

Hence by Theorem 3.02 
I 

A~: (2n+l) /F(y)Pn(y)dy , where F(y) =l on the range O to l. 
GI 

Evaluating this equation for various values of n we get: 

~ = fp 

I 

O(y) dy =l ~= 3)~•P1 (y)cy =3f ~cy =3 t]'= ! 
0  O O 0 

' 
: ; /(3y2-l)dy = i 

0 

I   I 

~=   ;/(5y3-3y)dy = ; [; y4-:y2] ::; : (S;') = - ~--; 
00 

I 

A;=

 ~j(GSy5_70y3+l5y)dy= ~ (663y6-~oy4+1y2r:: ~ ( 21+1-as) 
O  0 

Substituting these results into equation ll) we get 

- ... 
But the condition U:: 0 at r =0 implies that the first term of the ex-

pansion is not present. Hence the solution is: 

(42)  



3 ( t'  ) ( ) I· ? ( Y' ) 3p ( ) 4· l · 11 ( f' ) 5p ( ) u= a er P1 Y - 2.·it er 3 Y + ~ o: 5 Y - • • • 

Note that this could have been arrived at by using the extension of 

an odd function, i.e. 
I 

~n+l = [2(2n+l) + 1] ju(y)P2n+l(y)dy 
0 

4.05 Numerical Integration* 

This method of numerical integration is sometimes called the 

Gauss-Legendre method. Gauss has shown that by the proper choice of 

the interpolation points x0,x1 ,x2, ••• ,~, we can obtain an approx-

imation to the given integral equivalent to the approximation ob-

tained by replacing f(x) by a polynomial of degree 2n+l or less. 

To determine the Gauss-Legendre numerical integration method 

we let Pn+l(x) have its n+l roots at x0,x1 ,x2,•••,xn in order be-

tween -1 and 1. Also let f(x) be a function with known values at 

, i: 0,1,2, ••• ,n and are equal to f(x0),f(x1),f(x2), ••• , 

From Lagrange's interpolation formula form a polynomial of de-

gree n as follows: 

( X•X.)(X·Xu(X• X,) · · •(X· ll',.) 
(X,· X.)(,c,->si>(.ic;·>e,) ... (x,-x.. ) 

(lt'•Xo}(X•X',)(l(•Xs)· • • (x-X,.)  (x- ><,,)(x-lC,)(x·x,>·· ·(Jr -x,..,)+ ••• + f ( Xn)

 (1)
(,..,. ,v.) (x,.x,)(,c,-Xs) ... (><,· x.i) (x,.- x. )()(,.-x,)(x,.- x,>···<x.-x,..,) 

We note that Fn(xi) =f(xi) for i =O, 1, 2, ••• , n. Integrating 

equation ~l) we have 

*

 Helsel, op. cit., pages 35-36. Also L. M. Milne-Thompson, Calculus 
of Finite Differences, pages 173-177, Macmillan and Co., Ltd. 1933 
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I 

/Fn(x)d:x.:H0f(x0 ) + H1f(x1 ) + Hzf(~) + ••• + Hnf(xn) , 
_, 

where 

dx , i: 0,1,2, ••• ,n (2) 

Proof of Gauss' assertion:  

If f(x) is a polynomial of degree ~ 2n+l, then  

foo ;: ~ (x) ,l;.,M 

where ~ (x) and ~(x) are of degree ~ n. Or 

f(x):: ~ (x)Pn+l (x) + ~(x) (3) 

Let x:: Xe and substitute in equation (3) and get 

f(x0): O•~(x0 ) + Rn(x0 ) 

Then let x: x1 in equation (3) and get 

f(x1): ~ (x1 ) etc. 

Hence we have that 

Now I I I 

/r(x)d:x. : /Pn+l (x)~(x)d:x. + j ~(x)d:x... ~, _, 
This implies that I I 

/f(x)d:x. =f Rn(x)d:x. , ., .., 
since 

If pn+l (x)~(x)d:x..: 0 
-, 

by the orthogonality property of Theorem 2.10. We know 
I

j Rn.(x)a:x.:: Ho~Cxo) + H1Rn(x1) + •• • + HnJ\i(xn) (5) _, 

(44)  



Therefore from equations (4) and (5) we ma;v conclude that 
I 

/f(x)dx =H0f(x0) + R1f(x1) + ••• + Hnf(xn) 
-I 

exactly. 

4.051 Solution of a Problem by Simpson's Method 

;..o 

Jt"K for n ::4 , where n is the number of intervals in [ a,b]. 
,.o 

Solution 

2.0J~ = ~ [f(xa) + 4f(xl) + 2f(x2) + 4f(x3) + f(x4)] 
J.O 

= -fF[1 + 4 1.~ 5 + 2is + 4 ,.~5 + i] =o.693254 

For n:: 8 this becomes 0.693154 

4.052 Solution of the Problem of 4.051 by the Gauss-Legendre Method 

for n:: 4 

Solution 

Since the Legendre Polynomials are symmetric in the interval 

[-1,1]the zeros of Pn(cx:) ma;v be arranged in such away that 

°'s = - o<.n-s+l 
for n even and if n is odd the middle one is zero. This implies 

that 

H =H s n-s+l 

(45) 



To change the limits from [ a, b] to we make the substi-[-1,1] 
tution 

Hence with a= l and b: 2 we get 

3+ °' X: -%-

and 

dx =}do(. 

For n =4 the roots of P4 ( o() are the ~i's as follows:* 

- cx: 0 =o(3 =o. 861136311 

and 

- ""1 = Cl('2 =o. 339981043 

and 

Ff. - A, h A·.""i. -
 2 , w. ere -:i. 

For this problem the ~- s a.re as follows: 

A. - Ai - 0.173927422T -;:--
and 

:· : ~ =0.3260725774 
,J,Q 

Using the above data to evaluate we get:ft"  
,t.o ,.o!Jx _ ~ h...( 2. ) _ Ao( 2 +~) A, ( .2 + % )"° - f.;-; 1.. 3 +it, - T 3t-°'3 ,-«, + T 3Ta2i ~ 

/,0 

- o.17392742(0.13507595 + o.51798223) + o.326072577(0.75187434 

+ 0.5988058) 

= 0.693146 

*

 Hobson, E.W., Stherical and Ellipsoidal Harmonics, pages 80-81, 
Cambridge at t e University Press, l93l; also, Margenau and 
Murphy, op. cit., pages 462-464. 
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4.053 The Exact Value of Problem in 5.051 

j 
~.() 

t: ln 2.0 =0.693147 * 
/.0 

A comparison of the results indicates that the Gauss-Legendre 

method is exact to the 6th decimal place for n =4 while Simpson's 

method for n =8 is only exact up to the 5th decimal place. 

*

 Peirce, B. O., A Short Table of Integrals, Third Revised Edition, 
Ginn and Compe.ey, page l09. 
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