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ABSTRACT 

This study is divided roughly into two major parts. The first part of the study 

deals with the study of the toughening behavior of MoSi2 with reinforced Nb layers. The 

crack/microstructure interactions in layered MoSi2/Nb composites are presented. 

Toughening by crack bridging and blunting mechanisms will be modeled using 

micromechanics concepts. Finite element models for the prediction of interfacial 

debonding and mixed mode crack growth are also presented. It will highlight use of 

combined mechanics and materials approaches in the engineering of damage tolerant 

intermetallic matrix composites. 

The second part of this work deals with the effect of vanadium layer thickness 

(100, 200 and 400 pm) on the resistance curve of NiAl/V microlaminates. The fracture 

resistance of the NiAl/V microlaminates modeled by fmite element method is shown to 

increase with increasing layer thickness. The improved fracture toughness is associated 

with the crack bridging and the interactions of the crack with vanadium layers. The re­

initiation of cracks in adjacent NiAl layer is also modeled by fmite element methods. The 

re-initiation is shown to occur as a result of strain concentration at the interface between 

the adjacent NiAl layers and the vanadium layers. The initial deviation of the re-initiation 
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crack from the pure mode I direction is shown to occur in the direction of maximum 

shear strain. Finally the finite element simulations match well with the experiment 

results. 
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CHAPTER 1 

INTRODUCTION 

High-temperature intermetallics are currently being developed for a range of 

structural aerospace applications [Gray et a l , 1991, Vasudevan et al., 1992]. However, 

most intermetallics systems generally have low fracture toughness due to their limited 

number of slip systems [Aindow et a l , 1991, Meschter, 1992]. There is, therefore, a need 

for research efforts designed to engineer improved fracture toughness in high-temperature 

intermetallic systems. 

High-temperature intermetallics may be toughened by intrinsic modification 

(alloying/heat treatment) or extrinsic modification (composite approach) [Ritchie et a l , 

1985]. Multiple toughening mechanisms may also be used to engineer fracture toughness 

improvements that are significantly greater than the matrix toughness levels. However, 

the engineering of such improvements requires a detailed understanding of the stress 

states and shielding mechanisms that can occur under potential service conditions. 

Recent work [Soboyejo et al., 1996], has shown that layered composites with 

improved fracture toughness (-20 MPaVm ) may be engineered by ductile phase 

toughening (crack bridging and crack-tip blunting). However, the influence of composite 

stress states on crack initiation/growth is not fully understood. There is, therefore, a need 

for detailed studies of the effects of layer geometry on crack growth. 
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This study presents the results of a computational study of crack growth and 

toughening in a layered MoSi2/Nb composite and Nial/V composite with the comparison 

of experiments. The stress states and crack driving forces associated with 

bridged/unbridged mode I cracks are computed using analytical and finite element 

methods, also the Residence curves for Nial/V composites with three distinct layers of are 

calculated. The shielding contributions from crack bridging and crack-tip blunting are 

also quantified using micro-mechanics approaches. The numerical predictions of crack 

re-initiation sites and propagation directions match those with the experimental data. The 

critical loads, where a crack reinitiates at the other side of the vanadium layer and 

propagates to the next vanadium layer, are numerically predicted and compared against 

experimental data. The effect of thickness on the R-curve behavior is examined. 
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CHAPTER 2 

FUNDAMENTALS OF F R A C T U R E AND FINITE E L E M E N T METHOD 

2.1 Fundamentals of Fracture Mechanics 

2.1.1 INTRODUCTION 

In this chapter, the basic concepts in the fields of fracture mechanics and finite 

element method which are relevant to the present study are reviewed. The concept of 

strain energy release rate, G, is first presented as an introduction to the subject of Linear 

Elastic Eracture Mechanics (LEEM). In the framework of LEEM, several important 

topics are introduced. The elastic crack tip stress field and the concept of stress intensity 

factor, K, are presented. The Von Mises stress criterion and the concept of the J-integral 

are discussed, and the relationship between G, K, and J is presented. Also the finite 

element method for elastic and plastic material to deal with the stress singularity at the 

crack tip of the specimen are discussed. 

2.1.2 STRAIN ENERGY RELEASE RATE 

The concept of strain energy release rate, G, is one of the most fundamental in the 

understanding of fracture. The strain energy release rate is defined as the rate of decrease 
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of the total potential energy, f l , of a system with respect to crack length, a (per unit 

thickness of the crack front): 

G = - ^ (2.1) 
da 

G represents the elastic energy per unit crack surface area that is available for 

infinitesimal crack extension [Ewalds, 1984], and can be thought of as a driving force for 

crack extension. From the works of Griffith [Griffith, 1921] and Irwin [Irwin, 1948], the 

following relationship can be derived: 

G = 2(7 e+7p) (2.2) 

where y e is the elastic surface energy of the material and yp is the plastic strain work from 

crack extension. Equation 2.2 indicates that a crack will extend i f G reaches a critical 

value, G c , equal to the energy required to create the new crack surfaces and the plastic 

zone. G c can be considered as a material parameter and is a measure of the intrinsic 

resistance of a material to crack growth. 

2.1.3 LINEAR ELASTIC FRACTURE MECHANICS (LEFM) 

There are three different modes of loading that can cause stresses to develop at a 

crack tip, as illustrated in Figure 2.1. 
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a : 

MODE I 
OPENING MODE 

MODE 11 

SLIDING MODE 

MODE III 

TEARING MODE 

Figure 2.1 The three modes of crack-tip loading [Ewalds, 1984] 

Mode I loading is also called the opening mode, where the crack surfaces move directly 

apart from each other. Mode I I loading is called the sliding mode or in-plane shearing 

mode, where the crack surfaces move over one another in a direction perpendicular to the 

crack front. Mode I I I loading is called the tearing mode, or anti-plane shearing mode, 

where the crack surfaces move in directions parallel to the crack front. 

Irwin [Irwin, 1957], using the complex variable method developed by 

Westergaard [Westergaard, 1939], quantified the near-tip stress fields surrounding a 

linear elastic crack as 

where ay is the stress tensor, K is the stress intensity factor, r is the radial distance from 

the crack-tip, and 0 is the angle between the crack propagation direction and a vector 

parallel to r, as shown in Figure 2.2. 

(2.3) 
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y 

Figure 2.2 Coordinate system and stresses near the tip of a crack [Suresh, 1991] 

In the vicinity of the crack tip, the higher order terms, symbolized as O(r) in 

Equation (2.3), can be neglected because they vanish as r approaches zero [Suresh, 1991]. 

The stress intensity factor is the fundamental parameter used in linear elastic fracture 

mechanics. This parameter K is a measure of the strength, or intensity, of the crack-tip 

stress fields. Eor an infinite plate, K can be expressed as [Broek, 1982]: 

K = c^Vra (2.4) 

where a a is the remote applied stress and 'a' is the crack length. The expression for K 

changes when solutions for stresses in finite size specimens are needed. In the case of 

finite sized specimens, 

K = Ya a Vra (2.5) 

where Y is a geometric factor that is dependent on specimen dimensions. As discussed 

earlier, there are three modes of loading that can cause stresses at the crack-tip. Normal 

stresses that are caused by Mode I loading are characterized by the Mode I stress 

intensity factor Kj . Likewise, shear stresses, caused by Mode I I or Mode III loading, are 

characterized by Ku or Km, respectively. A body that is loaded arbitrarily could 
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experience mixed-mode loading, meaning that more than one of the three loading modes 

would be present. The elastic near-tip stress field in a body which is experiencing mixed-

mode loading can be calculated by using the method of superposition and adding together 

the stresses caused by each mode. 

Both the strain energy release rate, G, and the stress intensity factor, K, can be 

thought of as being driving forces for crack extension. For a general three-dimensional 

case, or the case of a two-dimensional plane strain state involving both in-plane and out-

of-plane loading, these two parameters are related by [Suresh, 1991] 

(2.6) 

where E is the elastic modulus of the material and v is the Poisson's ratio. 

For the case of plane stress state, this expression reduces to 

G = 1 ( K * + K 2

n ) (2.7) 
E 

Plane stress and plane strain will be discussed shortly. 

The expression for stress in terms of K, Equation (2.3), when the higher order 

terms are neglected, is only valid within a small region around the crack-tip. This is due 

to the fact that the higher order terms O(r) may not be neglected at large r. The region 

where these higher order terms O(r) may be neglected, and the stresses may be expressed 

solely in terms of K, is called the region of K-dominance [Kanninen, 1985]. These 

stresses are also sometimes called K-fields. Due to the singular nature of the elastic 

stress field. Equation (2.3) says that the stresses at the crack tip approach infinity as the 

radius r approaches zero. Physically, in a real material, this does not occur since some 

sort of inelastic or plastic deformation will take place at the crack-tip to relax the high 

7 



stresses. Figure 2.3 shows a schematic of the region of K-dominance around a crack-tip, 

denoted by the radius D, and also the region immediately surrounding the crack-tip where 

inelastic deformation has occurred, represented by the radius R. The K-fields can be used 

to characterize the stress state at a crack-tip as long as the region of inelastic deformation 

is confined well within the region of K-dominance [Suresh, 1991], and is sufficiently 

small compared to other characteristic geometric dimensions such as plate thickness. 

When this is the case, it is said that small-scale yielding conditions are satisfied and that 

small-scale yielding is taking place. 

Figure 2.3 The region of K-dominance at a crack-tip under small-scale yielding 
[Kanninen, 1985] 

In ductile materials, such as metals, this region of inelastic deformation is caused 

by plastic deformation at the crack-tip and is called the plastic zone. The size and the 

shape of the plastic zone depend on the stress states at the crack-tip. 

The shape of the crack-tip plastic zone can be approximated in a purely LEFM 
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analysis by use of the Von Mises yield criterion which states that yielding will occur 

when 

(a, -(y2f + {ci2-a3f + { a 3 - a l f = 2a y s

2 (2.8) 

where 0 1 , 0 2 , and 03 are the principal stresses and o y s is the uniaxial yield stress. From 

this criterion, the radius of the plastic zone as a function of 9 (same 9 as in Figure 2.2) 

can be expresses as [Gdoutos, 1993]: 

Plane strain: r (e) = K 

4j ia y s

2 

Plane stress: rp(e) = K 

4ico ys 

-sin 2(0)+(l-2v) 2(l + cose) 

l+-sin 2(e)+cose 
2 

(2.9) 

Figure 2.4 shows the difference between the plastic zones predicted by the Von Mises 

yield criterion for plane stress and plane strain stress states. 

Figure 2.4 Plastic zone shapes predicted by the Von Mises yield criterion 
[Ewald, 1984] 
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As discussed, the state of stress at a crack-tip in a very thin specimen may be 

idealized as being plane stress, while the stress states in a thick specimen may be 

considered plane strain. 

Under small-scale yielding conditions, the stress intensity factor, K, gives a 

unique characterization of the near-tip stress fields. However, when the plastic zone gets 

too large for small-scale yielding to apply, K is no longer valid. The parameter which 

corresponds to K can be used for the characterization of monotonic, nonlinear fracture is 

the J-integral proposed by Rice [Rice, 1968]. The J-integral is a line-integral following 

any arbitrary contour encircling the crack-tip and is defined as 

(2.10) 

where w is the strain energy density of the material, y is the distance along the direction 

normal to the plane of the crack, T is the traction vector, u is the displacement vector, and 

s is the arc length along the contour T. For materials undergoing linear elastic or 

nonlinear elastic deformation, J is independent of the path F around the crack-tip. The J-

integral has been shown [Rice, 1968] to be equal to the rate of decrease of the potential 

energy with respect to the crack length (per unit thickness): 

J = - ^ (2.11) da 

Therefore, for linear elastic materials, the J-integral and the strain energy release rate, G, 

are equivalent. 
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J = G = (Plane strain or three-dimensional) 

(2.12) 

J = G = ^ - ( K 2 + K ^ ) (Plane stress) 

Just like G and K, the J-integral can be thought of as a crack driving force. When the 

plastic zone size becomes too large for small-scale yielding and Linear Elastic Fracture 

Mechanics to apply, J becomes the needed parameter of interest in the characterization of 

such nonlinear fracture. Under these conditions, the methodologies of Elastic-Plastic 

Eracture Mechanics apply. 
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2.2 Theoretical Background of Singularity Crack-Tip Finite Elements 

2.2.1 INTRODUCTION 

The finite element method (FEM) is a very powerful tool that can be used to easily 

calculate stresses, strains, and deformations in structures, no matter how complicated the 

shape. However, when a component has a crack present, with the associated stress and 

strain singularities discussed above, conventional elements must be modified to exhibit 

these singularities. Barsoum, and also Henshell and Shaw, showed that 8-noded 

isoparametric elements can be used for plane stress and plane strain fracture mechanics 

analyses where a crack is present [Barsoum, 1976; Henshell and Shaw, 1975]. It was 

shown that the required —s= linear elastic stress and strain singularities for crack-tip stress 

Vr 

fields can be achieved by placing the mid-side nodes near the crack-tip at the 1/4 position 

instead of the 1/2 position. Barsoum also showed that triangular elements (2-D) formed 

by collapsing one side of the element into the crack-tip, produced much more accurate 

results (for stress intensity factors) than the rectangular 2-D elements. A recount of the 

derivation by Barsoum for the 8-noded isoparametric element is presented here for 

completeness [Barsoum, 1977]. 

2.2.2 SINGULARITY CRACK-TIP ELEMENT 

The geometry of an 8-noded plane isoparametric element is mapped into the 

normalized region in ^-T| space (-1 < ^ < 1,-1 < r i < 1) through the transformations 

12 



8 
X = X N i f e T i > 1 

1=1 
(2.13) 

1=] 

1 [ ( i + ^ Xi ^ ) - ( i ) ( i ^ n , ) - ( i - n 2 ) ( i + ^ fc,2 

N 1 ( 4 , T I ) = 4 (2.14) 

+ 1 ( i ) ( i ^ n , ) ( i K 2

+ i ( i - n 2 ) ( i + ^ ) ( i - n 2 

where (Xj , yj) are the coordinates of node i in x-y space, and r|i) are the nodal 

coordinates in ^-T| space. Figure 2.5 shows the geometry of an 8-noded isoparametric 

element and its transformation into ^-r] space. 

x • CONST. 

9 • CONST. 

Figure 2.5 8-noded isoparametric element in geometrical x-y space and its 

transformation into t,-r[ space [Barsoum, 1977] 

As can be seen for the element shown in Figure 4.1, the geometric coordinates of 

the nodes are 

and 

X i = X7 = X 8 = 0 , X2 = X 6 = - , X3 = X4 = X5 = h 
4 

yi = y? = ys = y4 = o , ya = - ye = - - , ys = - ys = - ^ 
4 

13 

(2.15) 



where the transformed coordinates are ^ j , r|i = ± 1 for the comer nodes and ^ j , r|j = 0 for 

the mid-side nodes. After substituting these values of Xj , yj, J^, and Tji into Equations 

(2.14) and (2.13), and doing some algebra to simplify the expressions, x and y can be 

written as 

and 
4 

4 

(2.16) 

The distance r from the crack tip to any point P on the radial line R, from Figure 2.5, can 

be written in terms of x and y as r = yj{x2 + y 2 ) . Substituting from Equation (2.16) we 

get 

4 

M ) = -
4~r 

2 
+11 +11 

(2.17) 

Since the element is isoparametric, the displacements within the element, u and v, are 

interpolated using the same functions N ; ^ , ^ ) of Equation (2.14), and are 

u = X N i ( t T l > i 
1=1 

(2.18) 

v = £ N i f e q > i 

1=1 

where (Uj, Vj) are the displacements of node i . 
14 



In order to calculate the strains in the element, which are given by 
du 
dx 
dv 

"-xy 
ay 

au av 
ay ax 

~ , . . , . . au au av , av . 
we first have to calculate the quantities — ,and— since 

a^ aq a^ aq 

au^ du1 av^ rav" 
ax 

'au au and ax 
av 

w M 
The matrix [J] is the Jacobian of the transformation from x-y coordinates to ^-Tj 

coordinates, and is defined as 

[J]= 

"ax ay" 
â  
ax dy 

dr] 
o 

4 

The determinant of the Jacobian is needed in the calculation of the inverse; the 

determinant of the Jacobian is 

d e t | j | = M ( 1 + ^ 

and inverting the Jacobian gives 

[J]"1 = det J 

• ay ay" 
an 
ax ax 

-4n 
h(l + 0 h(l + ^ ) 2 

4 H f 

For simplification later, we will use the notation 
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111 M2 
'21 2̂2 

The derivatives of u, v with respect to E,, Tj are 

(2.24) 

where 

= 1 
dN: du dN: 

dn 

d v _ ^ d N i _ dv _ y dNj 

l f e 1 ( i + n n i ) + 2 ^ ( i + n n i ) - ^ ( i - T i 2 | i

2 n f 

l t l l ( i + ^ i ) + 2 n ( i + ^ 1 ) - n i ( i - ^ | 1

2 T 1

2 

-nO + ^ i - T i f f e ^ 1 1 ^ ^ 2 ^ ^ ^ 

(2.25) 

(2.26) 

(2.27) 

Substituting the known quantities (^i, "Hi) a t e a c h node (i =1...8) into Equations (2.26) 

and (2.27), and then substituting these into Equation (2.25) yields 

du 
^ ( - 2 + 3 n - n 2 ) + u 2 ( i - n K ^ ( n + n 2 ) + ^ ( i - T i 2 ) 

- ^ ( - n + n 2 ) + u 6 ( i + T i ) + ^ ( - 2 - 3 n - n 2 ) - Y ( 1 " T l 2 ) 

+ ( i + ^a( i_ T 1 )_ U 2 ( 1 _ n ) + ^( 1 _^) + ^( 1 + T 1 )_ U 6 ( i + ^) + ^( 1 + ^ 

(2.28) 

du 

dn 
^- ( -2+4n)+—(2+4n)-2u 8 n 

+ ( i + ^ ^ ( 3 - 2 n ) - u 2 + ^ ( i + 2 n ) - u 4 n + ^ ( - i - f 2 n ) + u 6 - ^ ( - 3 + 2 n ) + u 8 n 

U] U2 U3 u 5 u 6 u 7 

4 2 4 4 2 I " 
(2.29) 
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3v 9v 
The derivatives — , — are exactly the same, except every u; in Equations (2.28) and 

(2.29) are replaced by the corresponding Vj. 

Erom Equation (2.29), it is observed that the first term, denoted by *, will be 

equal to zero i f the constraint is imposed that the displacements at nodes 1, 7, and 8 are 

equal, 

u, = Uy = u 8 

and (2.30) 
Vl = V7 = v 8 

For any point along the line 0 = constant (r) = constant), — , — , — , and — from 
dr\ 3^ dr\ 

Equations (2.28) and (2.29) can be written in the form 

^ - = a 0 +a 1 (l + ̂ ) 

^ b o + b . O H W i ^ ) 2 

an 

— = 0 + 0 ! (l + ^) 

| ^ = d 0 + d I ( l + O+d 2 ( ] + ^ ) 2 

where ao, ai, bo, bi , bi , Co, Ci, do, di , d2 are constants for any given set of nodal 

displacements and for any line 0 = constant. 

Now, calculating the strains in Equation (2.29) using Equation (2.20) yields 

(2.31) 
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du ^ v 1 

k 
[dyj 

' i n 
. ^ i I 22_ 

[dri. 

and dx 
dv 

Jyi 

"in 
J21 

112" 

^22. dv (2.32) 

and 
du 
dx 

du T du 
I i i ^ r + I i 2 ^ -

d^ dn 
2a + 2a, 4nb0 

4nb1 4nb2 

h( l+ i ) h h(l + ^ h(l + ^) h 
(2.33) 

Collecting the terms containing the different powers of (1+^) and substituting for (!+£,) in 

terms of Vr from Equation (2.17) yields 

^ = 4 o + ^ + A i 

dx Vr r 

where A 0 ,b' 0 ,A, are independent of radius r and are constants for any radial line 

(0 = constant). 

(2.34a) 

Similarly, 

^ = 1 ^ (b, =0) 
dy dn 

4b 0 4b, 4b-, 
- + — — — + -

41+4)2 4 + $ i 

dy Vr r 

The derivatives of v with respect to x and y are similar and can be written as 

^ 1 = ^ 0 + C 
dx Vr r 

dy Vr r 

(2.34b) 

(2.34c) 

(2.34d) 
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In Equations (2.34b-d), B0,bo,B1,C0,do,C1,D0,do , and Di are also constants independent 
ofr . 

If the constraints from Equation (2.30) are imposed, namely, that the 

displacements at the three crack-tip nodes are forced to be the same, then Equations 

(2.31) reduce to 

^ - = a0 + ai(l + 0 
OS 

l ^ b . d ^ W i ^ ) 2 

^ = c 0 +c 1 ( l + ^) 

^ = d 1 (l + 0 + d 2 ( l + ^ 

The derivatives of u, v with respect to x, y then reduce to 

— = ^ + A 1 

dx Vr 
5u _ B 0 

(2.35a-d) 

dy Vr ' 
(2.36a-d) 

3x Vr 

^ = ̂ - + 0, 
dy Vr 

As r ^ 0, the terms in (2.34a-d) tend to O '1̂ 1 
and the terms in (2.36a-d) tend to O 

The terms in (2.36a-d) represent the components of strain when the nodes at the crack-tip 

are constrained to have the same displacement, and the resulting 4= singularity is the 
Vr 

necessary stress and strain singularity required for linear elastic fracture mechanics. The 
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terms in (2.34a-d) represent the components of strain when the nodes at the crack-tip are 

initially coincident, but can then displace independently, and the - singularity that is 

r 

obtained is characteristic of perfect plasticity, and blunting of the crack-tip is obtained 

during loading. 
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CHAPTER 3 

MODELING ON MoSi-j/Nb COMPOSITES USING T H E HYBRID E L E M E N T 
METHOD 

3.1 Experimental Procedure 

MoSii composites reinforced with 20 vol. % of Nb layers and 20 vol. % zirconia 

particles stabilized with 2 mole % yttria (TZ-2Y) were fabricated by the Material Science 

Department of The Ohio State University. The Nb foils were made with a thickness of ~ 

200 pm. The microstructures of the composites are shown in Eigures 3.1(a) and 3.1(b). 

The Nb layers and a layered interfacial structure (consisting of (Mo, Nb)5Si3 and a NbsSis 

layer) are also evident in the above figures. The material properties of the composites are 

listed in Table 3.1. 

Property MoSi2 Nb NbsSis 
Elastic modulus, E (GPa) 

Poisson's ratio. 

380 103 300 

0.17 0.38 0.17 

Table 3.1 Constituent Property Data [ASM Metals Handbook, 1990] 
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200pm 
Figure 3.1(a), (b) Microstructure of MoSi2 composite reinforced with 20 Vol.% TZ-

2Y and 20 Vol.% Nb Laminate 
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3.1.1 Fracture Toughness 

Fracture toughness tests were performed by Fan Ye of the Material Science 

Department of The Ohio State University on Single Edge Notched (SEN) bend test 

samples with relatively deep notches (notch-to-width ratios of 0.4). The SEN specimens 

were produced by electro-discharge machining (EDM) techniques. The fracture 

toughness tests were performed in accordance with the ASTM E399 code [ASTM, 1948]. 

The specimens were initially pre-cracked under far-field compression loading 

[Brockenbrough and Suresh, 1988]. Precracking was used at a stress ratio Kmin/Kmax 

of 0.1 to produce an atomistically 'sharp'crack-tip. This was required to ensure that 

sufficiently high crack-tip triaxiality levels were maintained during the tests. Eracture 

toughness tests were then carried out under three-point loading at a loading rate 

corresponding to a stress intensity factor increase rate of 0.92 MPaVw* -s"1. The failure 

modes in the fractured specimens were then examined using scanning electron 

microscopy (SEM) techniques. 

3.1.2 Resistance Curve (R-Curve) Behavior 

R-curve tests were performed on Single Edge Notched (SEN) bend test samples 

by Fan Ye. The specimens were initially pre-cracked under far-field compression 

loading [Brockenbrough and Suresh, 1988] to produce a sharp pre-crack. A load 

corresponding to the lower stress intensity factor (below the initiation toughness) was 

applied and quickly removed. The specimen was then examined under an optical 

microscope. The applied loads were increased in increments of 5 % i f no crack growth 

was detected. 
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3.2 Numerical Simulation 

3.2.1 Main Crack Problem 

In this study the finite element method is used to analyze the effect of layers and 

interfaces on the crack propagation phenomena in three point bending experiments, as 

shown in Figure 3.2. The concentrated load P is specified to be 1647.89N to simulate a 

typical fracture toughness testing condition. The special crack tip element developed by 

Zhang [Zhang, 1995] based on the hybrid method was used to directly evaluate stress 

intensity factors at the crack tip. One 17 node linear crack tip element and 

approximately 2000 4 node linear elements were used in the analysis. In this numerical 

analysis, the material properties of matrix, layers, and interfaces were also assumed to be 

linearly elastic and isotropic. The mechanical properties are summarized in Table 3.1. 

The interfacial region in the first layer ahead of the crack tip (the fourth layer counting 

from the bottom of the beam in Figure 3.2) was included in this analysis, while the 

interfacial regions for other layers were ignored. Since the interfacial region is very thin, 

the above approximation was sufficient to model the effect of interfacial regions on the 

behavior of the major crack tip. 
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p 

2 0 m m 

Fig. 3.2 Three point bending simulation 

The deformation is predominantly mode I , and, therefore, the stress intensity 

factor, K j , is plotted as a function of the crack length, a, as in Figure 3.3. The results 

obtained for the composite are compared to those obtained for a monolithic sample 

consisting solely of the matrix material. In both the composite and monolithic cases, the 

longer the crack length, the larger the K j value becomes. For crack lengths between 

3.1mm and 3.78 mm, the K l values of the composite are slightly larger than those of the 

monolithic alloy. When the crack tip in the composite is far away from the layer, the 
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crack tip behavior is basically determined by the overall material properties of the 

sample. Since the overall elastic moduli of the composite are smaller than those of the 

monolithic alloy, the small increase in the stress intensity factors is attributed mainly to 

the lower moduli of the Nb reinforcement. When the crack length is 3.79 mm, since the 

layer is located 0.01 mm ahead of the crack tip, a significant increase in the K l value in 

the composite is observed. In contrast, in the case of monolithic MoSi2, very little 

change is observed. It is evident that, as the main crack approaches the layer, the crack is 

locally attracted to the softer layer. This is consistent with the results of previous analyses 

by Budiansky [Budiansky, 1986]. 

P 3.1 3.2 3.4 3.6 3.7 3.73 3.79 

oo 
Crack Length a, (mm) 

Figure 3.3 Ki Versus Main Crack Length 
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3.2.2 Debonding Crack Problem 

Since debonding was observed in the composites prior to the onset of the crack 

bridging (Figure 3.4), the debonding crack problem shown schematically in Figure 3.5 

was analyzed. Only a portion of the three-point bending experiment was considered in the 

analysis: the portion was cut from the whole specimen in the numerical analysis. The 

outer boundary stress distribution of this portion is imported from the corresponding main 

crack problem we previously analyzed. Since the region under consideration is 

sufficiently large, it is assumed that the inclusion of the debonding cracks will not 

significantly change the stress distribution on the outer boundary. The debonding is 

assumed to occur in the interfacial region, and is symmetric relative to the main crack. 

Two 17 node linear crack tip elements and approximately 2500 4 nodes linear elements 

were used once again. 

200 nm 
Figure 3.4 Interaction of crack and microstructure (crack bridging and blunting) in 

SEN fracture specimen before final fracture 

27 



Figure 3.4 Interaction of crack and microstructure (crack bridging and blunting) in 

SEN fracture specimen before final fracture 
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Fig.3.5 Debonding Crack Problem 

The stress intensity factors, K l and Kn, and the mixity ratio, Kj /Kn , at the 

debonding crack tips are plotted as a function of the crack length, d, in Figure 3.6. For 

long debond lengths, the values of K i and K n increase slightly, and the mode mixity 

ratio, K j /Kn , decreases. Also, when the extent of debonding is small, the driving force 

for debonding remains almost constant with increased debond length. The mode mixity 

also remains almost constant. 
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0.12 0.18 0.21 

Debonding crack length a (mm) 

0.24 

Fig 3.6 Stress Intensity Factors versus Debonding Length 

Finally, in Figure 3.7, for a= 0.12 mm and a=0.24mm, the maximum normal and 

shear strains are plotted as a function of the distance from the debonding crack tip in the 

x direction. In both cases, the strains are apparently beyond the elastic limit in the 

vicinity of the debonding crack tips. However, approximately 0.3 mm away from the 

debonding crack tips, the strains become sufficiently small to be considered elastic. This 

result shows that the plastic region is limited to the region immediately ahead of the 

debonding crack tips. At the interfacial region, the strains reach local maximum, and the 

direction of the maximum strain is almost in the y direction. In general, the strains at 

a=0.24 mm are larger than those at a =0.12 mm. When a=0.24mm, the value of the 

maximum shear strain reaches 0.25 % at the interface. Hence, debonding is likely to 

occur at the other interface, assuming that the plastic region around the debonding crack 
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tips will not significantly influence the stress distribution away from the crack tips. 

Since the critical strain states are reached at two points symmetric to the major crack, 

debonding at the other interface is likely to occur spontaneously and symmetrically. 

Once the debonding occurs at the other interface, the plastic regions around the new 

debonding crack tips will influence the plastic regions around the original debonding 

crack tips. Further plastic deformation within the Nb layer will dominate behavior 

beyond this point. 

% 1 

o 9 e max, »»0.12 min 

r ma)!, a*0.12 rom 0.8 

C 5 

0.7 
0.6 

0.3 

0.4 

0.1 
0 2 

0 
o d o 

distance from the debonding crack tip in tho x direction (mm) 

Fig.3.7 Maximum Normal and Shear Strains 
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3.3 CONCLUSION 

Crack/microstructure interactions have been studied in a layered MoSi2/Nb 

composite. The studies reveal that the crack/microstructure interactions give rise to 

shielding due to crack-tip blunting and crack bridging. Under the assumption that the 

material is monolithic, i.e., pure MoSi2, the finite element analysis gave the same K| as 

the results from the hand book solution [ASTM, 1981]. This proves that our finite 

element analysis is correct. Finally the numerical result of Kj =16.6 MPaVwz gave the 

true K] of the MoSi2/Nb composites. 

Finite element models of the observed crack/microstructure interactions were also 

developed. The models show that the matrix cracks in the MoSi2 are attracted to the 

softer Nb layers, especially when the cracks are very close to the Nb layers. The driving 

force for debonding and the mode mixity were found to remain constant with increased 

debond length. 
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CHAPTER 4 

MODELING ON NiAl/V COMPOSITES USING 
T H E FINITE E L E M E N T METHOD 

4.1 Introduction and Experimental Procedure 

There has been considerable interest in NiAl as a candidate material for 

intermediate-temperature applications in aerospace vehicles [Miracle, 1993 , Noebe et al., 

1991]. This interest has been due largely to its attractive combinations of excellent 

oxidation resistance (up to 1300 - 1400 C), moderate density (5.90 gem" ) and 

intermediate strength retention (up to 600 0C) [Miracle, 1993 , Noebe et al., 1991]. 

Unfortunately, however, the possible structural applications of NiAl have been limited by 

its low room-temperature fracture toughness (~5 - 7 MPa*Jm) [Miracle, 1993 , Noebe et 

al., 1991]. This has stimulated extensive efforts aimed at toughening NiAl via intrinsic 

[Bowman et al., 1992, George and Liu, 1990] and extrinsic [Chen et al., 1995, Heredia et 

al., 1993, Joslin et al., 1995, Noebe et al., 1991, Ramasundaram et al., 1998, Subramanian 

et al., 1994] modification. 

Intrinsic modification of NiAl via alloying has not resulted in significant 

toughening [Bowman et al., 1992, George and Liu, 1990]. In contrast, extrinsic 

toughening via ductile phase reinforcement (composite approach) has been shown to 

promote significant improvements in the fracture toughness of NiAl. Ductile phase 
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reinforcement with refractory metal particles and fibers has been shown to significantly 

improve the fracture toughness of NiAl to levels between -11 - ~ 30 MPa Vm [Chen et 

al., 1995, Heredia et al., 1993, Joslin et al., 1995, Noebe et al., 1991, Ramasundaram et 

al., 1998, Subramanian et al., 1994). 

The possible use of vanadium microlaminates in the toughening of NiAl 

composites is examined here. Ductile layer reinforcement has been shown to offer higher 

toughening of brittle intermetallics than ductile particles and fibers. Vanadium layers 

with thicknesses of 100, 200 and 400 pm are shown to significantly improve the fracture 

toughness of NiAl. The extent of toughening, which increases with increasing layer 

thickness, is attributed to crack bridging and the interactions of propagating cracks with 

vanadium layers. Finite element models are used to explain the re-initiation of cracks in 

adjacent NiAl layers after retardation by the vanadium layers in the crack arrestor 

orientation. 

NiAI/V composites reinforced with 20 vol. % of vanadium layers were fabricated 

by Mingwei Li of the Material Science Department of The Ohio State University. The 

vanadium layers have thicknesses of 100, 200 and 400 pm. The microstructures of the 

composites are shown in Figures 4.1(a-d). A small interfacial layer was also observed to 

form between the NiAl and vanadium layers (Figure 4.1 d). 

The initiation fracture toughness and the resistance-curve behavior test of the 

NiAl/V microlaminates were studied using 38.1 mm long single edge notched (SEN) 

specimens with rectangular cross sections (15.24 mm x 6.35 mm), and the experimental 

test was done by Mingwei Li . The SEN specimens were pre-cracked in cyclic 

compression prior to fracture experiments under three-point bending. The specimens 
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were loaded in incremental stages until crack initiation from the pre-cracks was observed. 

The loads were then increased in 5% increments to promote stable crack growth until 

specimen fracture occurred. The crack/microstructure interactions associated with stable 

crack growth were monitored with an optical microscope before each load increment. 

The fracture toughness of monolithic NiAl was measured using SEN specimens of the 

same dimensions to obtain the matrix toughness value. Tensile tests were also performed 

on thin vanadium thin foils and single layer composite systems in an effort to determine 

the constitutive laws for the different layer thicknesses. 
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Figure 4.1 (a)~(d) Typical microstructure of NiAI/V composites: Optical 
micrograph of NiAl composites reinforced with (a) 100 pm thick vanadium layer, 
(b) 200 pm thick vanadium layer, and (c) 400 pm thick vanadium layer, and (d) 
SEM micrograph of the interface between NiAl and vanadium layers. 

35 



4.2 Finite Element Modeling with ABAQUS 

Finite element simulation of three point bending experiments of the NiAl/V 

composites as in Figure 4.2 (ASTM E-399 tests) [M. Li and R. Wang 1998] were 

conducted. The plastic deformation in vanadium is evident as seen in Figure 4.11 ~ 

Figure 4.13. Therefore, instead of using the hybrid method developed by J. Zhang 

[J.Zhang, 1995], which can only handle linear elastic material, the local strain 

distributions and J integrals around the crack tip associated with the microstructure 

configurations are modeled using the finite element package ABAQUS version 5.5. 

The composite is made of NiAl matrix and 20 % volume fraction of vanadium 

layers, and specimens with three distinct vanadium layer thicknesses (100, 200 and 400 

pm) are analyzed. The height and length of the specimens are 15.28 mm and 25.4 mm. 

While the thickness of the specimens is 6.25 mm, the plane strain assumption is 

employed in all of the numerical calculations. The size of the specimens are the same, 

and there are 24, 13, and 6 vanadium layers, respectively, for 100, 200, and 400 pm 

thickness layer specimens. The initial crack length is 5.9 mm. The material properties of 

the NiAl and interfaces are assumed to be linearly isotropic, and the vanadium layers are 

assumed to be elastic-perfectly plastic with von Mises yield criteria as in Table 4.1. 

Approximately 90,000 eight node iso-parametric plain strain elements are used 

to globally model the individual NiAl matrix, vanadium layers, and interfacial regions in 

order to capture the microstructure of the composites as shown in Figure 4.3, using the 

SDR IDEAS-4.2 software package. At the crack tips, special collapsed crack tip 

elements are used to capture the singularity of the crack tip associated with the elastic-
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perfectly plastic material behavior of the vanadium layer, as discussed in Chapter 2. 

N i A l Vanadium Interface 

E (Gpa) 188 102.6 145 

v 0.31 0.36 0.36 

Yie ld stress (Gpa) 0.4469 

Table 4.1, Material properties of NiAl, vanadium and interface 

// 

A 
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interface 

layer 
interface 

matrix 

Figure 4.2. Three point bending specimen 
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Boundary 
Condition 

; Y Y Y Y x Y Y Y Y Y Y Y x 

Figure 4.3 (a) F E M global mesh for 200 pm specimen 
(b) F E M submodel mesh for 200pm specimen 

To be continued 
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continued 
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4.2.1 Submodeling 

To capture the singularity at the crack tip and deal with the thin interfacial layer 

between NiAl and vanadium, submodeling technique is used after global modeling. 

Submodeling is a technique used to analyze a local part of a model with a refined mesh. 

It is very useful i f it is important to obtain an accurate solution in the local region while 

the refined modeling of this region has negligible effect on the overall model. This 

technique works as follows. First, the overall model is meshed with relatively coarse 

meshes. However, the mesh must be fine enough to get accurate results for the overall 

problem. Then a neighboring region of the local part of interest is modeled with refined 

meshes. Figure 4.4 shows the submodeling of a fracture problem. In this figure, the whole 

domain is meshed with larger elements. The sub-region near the crack tip is meshed with 

very fine rosette elements as shown in figure 4.4(b). The solution of the entire model 

serves as the boundary of the submodel. 

The boundary of the submodel is decided by interpolating the solution of the 

global model onto the appropriate submodel boundary nodes and by applying the 

prescribed boundary to this part. I f the global model defines an accurate boundary for the 

submodel, this technique can improve the accuracy of the solution for the local region 

and the calculation efficiency. A general criterion for choosing the region of the local 

model is that the solution at the boundary of the submodel is not changed significantly by 

different local modeling. This requires that the submodel boundary be far enough away 

from the area where the solution is changed by different modeling. St. Venant's principle 

can be used to determine the region of the submodel approximately. In our modeling, a 
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finer mesh at the crack tip was used through the submodel technique, and the mesh for 

200 pm is shown by Figure 4.3(b). 

y 

Submodel 
Boundaries 

Symmetry 
TV \ s \ I 1 1 1 1 1 

1 \L * nI Symmetry 
\ f 1 J 1 X 

^ ^ ^ ^ / / / / ^ j4c r / / 
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X Nodes where global 
model solution must be 
stored for interpolation 



4.2.2 Plastic deformation and crack tip strain states 

The vanadium had significant plastic deformation during the experiment, which 

means it underwent such non-recoverable deformation in a ductile fashion. The plasticity 

models we use in ABAQUS are "incremental" theories in which the mechanical strain 

rate is decomposed into an elastic part and a plastic (inelastic) part. From the tension test 

by Mingwei Li on vanadium (Figure 4.5), we can see that the plastic character of 

vanadium is almost perfect plasticity. This means the yield stress does not change with 

plastic strain. 

DELTA-EPSINA curve 

7.00E+02 T 

Figure 4.5 Uniaxial tension test of vanadium 
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In actual experiments by Mingwei L i , the load was increased with a small 

increments and the crack tip position is checked at each load increment. Experimentally, 

the crack propagation was observed to be hindered at the ductile vanadium layers and 

reinitiated at the other side of the layers. Whenever the crack propagation is observed to 

occur from one layer to the next layer, the load is recorded as the critical load for the 

originating layer. 

Erom the uni-axial tension test of pure NiAl (see Eigure 4.14) made by Mingwei 

Li of the Material Science Department of The Ohio State University, we observed that 

the specimen failed when the normal strain come to 0.5%. That is the critical strain of 

NiAl ; therefore, the critical normal strain for NiAl is 0.5%, and the critical shear strain is 

0.25% since in many brittle materials the critical shear strain is half the critical normal 

strain. 

Based on the experimental observations of the re-initiation of a crack at the other 

interfacial region of the layers, the strain distributions of the interface layer are plotted as 

a function of the x axis for each incremental load as in Figure 4.7. In all the cases with 

three thickness layers, the critical strain states (0.25 % shear strains or 0.5% normal 

strains from the experiment) are observed to occur in shear strains rather than normal 

strains. As shown in Figure 4.7, cracks are numerically predicted to reinitiate 

approximately 45 degrees measured from the direction of original crack propagation. 

Furthermore, the direction of crack propagation is approximately 135 degrees measured 

from the x-axis. 

It must be pointed out that observed from the experimental results of Figure 4.12 

by Mingwei Li , the crack propagation path is not exactly 45 degrees at the interface. The 

43 



differences are caused because in our finite element analysis, we have made the idealized 

assumption that the crack paths originally are vertical to the vanadium layer, but actually 

the crack path in the matrix is tilted. 

// // 
interface 

layer 

interface 

matrix 

Figure 4.6 Specimen geometry and coordinate system 
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Figure 4.7(a). Maximum Principal Strain Along 100 pm Layered Structure 

0.00 0 .05 O . i O 0 . 1 5 0 .20 0 .25 0 .30 0 .35 0.10 0 .15 0.50 

ABSOLUTE DISTANCE 

Figure 4.7(b). Maximum Principal Strain Along 200 pm Layered Structure 
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Figure 4.7(c). Maximum Principal Strain Along 400 pm Layered Structure 

ABSOLUTE DISTANCE 

Figure 4.8(a). Maximum Shear Strain Along 100 pm Layered Structure 
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Figure 4.8(b). Maxiinum Shear Strain Along 200 pm Layered Structure 

ABSOLUTE DISTANCE 

Figure 4.8(c). Maximum Shear Strain Along 400 pm Layered Structure 
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4.2.3 J - integral and R-curve simulations 

ABAQUS offers the evaluation the J-integral for fracture mechanics studies. The 

J-integral is widely accepted as a fracture mechanics parameter for linear material 

response, as discussed in Chapter 2. For linear material response, J can be related to the 

stress intensity factor. 

The J-integral is defined in terms of the energy release rate associated with crack 

advance. For a virtual crack advance A{s) in the plane of a three-dimensional fracture, the 

energy release rate is given by: 

where J(s) is the local value of the J-integral at a position along the crack front; 

the limit L indicates that the integration goes from one end of the crack to the other, dS = 

dsdT being a surface increment along a vanishingly small tubular surface S| enclosing 

the crack tip; n is the outward normal to Su and q is the local direction of crack 

propagation. H is given by: 

H = ( M - c r — ) 

where W is the strain energy density, 

£ 

0 
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For elastic-plastic or viscoplastic material behavior, W is defined as the actual strain 

energy density plus the plastic dissipation, thus representing the strain energy in an 

"equivalent elastic material." 

With the divergence theorem, the contour integral can be expanded into an area 

integral in two dimensions, or a volume integral in three dimensions, over a finite domain 

surrounding the crack front. This domain integral method is used to evaluate contour 

integrals in ABAQUS. The method is quite robust in the sense that accurate contour 

integral estimates are usually obtained even with quite coarse meshes. This is because the 

integral is taken over a domain of elements surrounding the crack front, so that errors in 

local solution parameters have a lesser effect on the value calculated. Contour integrals 

along several different crack tips are evaluated at any time. 

The loads required to achieve the critical strain states in the interfacial layers are 

recorded as critical loads for the layer based on the numerical simulations, and the crack 

is assumed to propagate in the matrix to the next vanadium layer. Experimentally, the 

crack propagation is no longer symmetric since a crack is observed to reinitiate at only 

one of the numerically predicted crack re-initiation sites. However, the crack bridging 

due to ductile layers is experimentally observed to be more or less symmetrical. 

Therefore, in the numerical simulations, cracks are assumed to reinitiate along the 

direction of original crack propagation. In reality, a thin interfacial layer of 15 ~ 20 pm 

is observed to form between the NiAl and vanadium layers. The effect of these 

interfacial layers on the numerical results, however, is found to be very small, and thus 

the interfacial layers are ignored in the subsequent numerical predictions of critical loads 

and J integrals. These numerical simulations are performed for three samples with three 
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distinct thickness layers, and compared against experimental results as in Table 4.2. 

Despite some idealizations, numerical predictions match experimental measurements. 

At the critical load for each layer, J integrals are evaluated and plotted as a function of 

crack length increment as in Figure 4.9. When J integrals are evaluated at critical loads, 

the strain distributions around the crack tip show that the plastic region at the crack tip is 

very small and small scale yielding conditions are satisfied. Assuming that the mode I 

dominates the crack opening, the stress intensity factors are evaluated based on plane 

strain linear elastic fracture mechanics. The mode I stress intensity factors vs. crack 

length increments are plotted in Figure 4.10. 

Finally the Resistance-curves obtained from the finite element method are 

compared with the handbook solutions, large scale bridging model and steady-state 

toughness extracted from the weight function method (Kss) as done by Mingwei Li in 

Figure 4.15. In the handbook solution, we assume that the material is monolithic and use 

the formula from the handbook [Teda et al., 1985] to calculate Kj. Under the 

assumptions that the bridge length is large relative to the specimen dimension and crack 

length, and that the overall shielding effect to the crack is the traction acting on the crack 

with a factor of weight function and a volume factor, [Ye and Soboyejo, 1998], [Bloer et 

al., 1998], the large scale bridging model gives: 

where L is the length of bridge zone, Vf is the volume factor, a is the 

constraint/triaxiality factor, a(x) is a traction function along the bridge zone and assumed 

as a constant equal to the yield stress of the monolithic vanadium layer, a is crack length, 

h(a, x) is a weight function given by [Fett and Munz, 1994]. Then 
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KiSb = Kj + AKiSb 

where Kj is the stress intensity factor required for re-initiation from the first layer that 

intercepts the propagating crack. 

Assuming the specimen width is significantly greater than that of the length of the 

bridging zone, we can change the large scale bridging model to the small-scale bridging. 

Putting the small bridging condition, in which the width of the specimen goes to infinity, 

into the above equation, the weight function method solution (Kss) can be obtained.[Li et 

al., 1998]. The finite element method and Kss method provide a steady state of Kj 

compared with other methods, i.e., higher intrinsic small-scale bridging fracture 

toughness levels. Also, the FEM results are independent of specimen dimensions; 

therefore, it is much more reliable than other methods and provide useful measures of the 

intrinsic fracture toughness of the NiAl/V microlaminates, which would otherwise be 

very difficult to obtain due to the excessively large specimen dimensions. 
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100 pm specimen 200 pm specimen 400 pm specimen 
Aa Pex PpEM Erro 

r (%) 
Aa P 

1 ex 
PpEM Error 

(%) 
Aa Pex PFEM Error 

(%) 
500 860 840 -2.3 1200 950 980 3.2 910 1250 1320 5.6 
1090 910 940 3.3 2200 1125 1200 6.7 
1700 980 1080 10.2 4500 1070 1250 16.8 
3040 1025 1240 20.9 5030 1060 1100 3.78 
4860 985 997 0.12 
5210 999 981 -1.8 

Table 4.2. Driving forces from experiment and F E M 

Aa: Crack increment pm, P e x : Experimental data (lb) from Mingwei L i , 
PFEM : FEM prediction (lb) 
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Figure 4.11 
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Figure 4.12 Crack propagation in NiAl/V composites: (a) Retardation of the crack 
and formation of the slip band, and (b) re-initiation of the crack 
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Figure 4.13 Crack/microstructure interactions in NiAl/V composites reinforced with 
(a)100 pm think vanadium layer, (b) 200 pm think vanadium layer, and (c) 400 pm 

think vanadium layer 
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Figure 4.14 Crack/microstructure interactions in NiAl/V composites reinforced with 
(a)100 pm think vanadium layer, (b) 200 pm think vanadium layer, and (c) 400 pm 

think vanadium layer 
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Figure 4.15 Uni-axial Tension Test of NiAl 
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CHAPTER 5 

CONCLUDING REMARKS 

Crack/microstructure interactions have been studied in a layered MoSi2/Nb 

composite. The studies reveal that the crack/microstructure interactions give rise to 

shielding due to crack-tip blunting and crack bridging. The numerical result of Ki =16.6 

MPa Vm is very close to the experimental result. 

Finite element models of the observed crack/microstructure interactions were also 

developed. The models show that the matrix cracks in the MoSi2 are attracted to the 

softer Nb layers, especially when the cracks are very close to the Nb layers. The driving 

force for debonding and the mode mixity were found to remain constant with increased 

debond length. 

The fracture behavior of layered NiAl/V composites reinforced with 100, 200 

and 400 pm thick vanadium layers has been examined. Similar resistance curve behavior 

was observed in the composites reinforced with 100 and 200 pm thick vanadium layers. 

However, the steady-state toughness of the composite with 200 pm thick vanadium layers 

was found to be greater than that of the composite with 100 pm thick vanadium layers. 

Also, a somewhat steeper resistance curve was obtained for the composite reinforced 

with 400 pm thick vanadium layers. 
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The re-nucleation of cracks in adjacent NiAl layers occurs at positions of 

maximum shear strain at the interface between NiAl and vanadium. The propagating 

cracks deviate rapidly back to the mode I direction, as they extend into the NiAl layers. 

Toughening and stable crack growth of N i A W composites is due largely to crack 

bridging and crack tip interactions with ductile vanadium layers. Stable resistance curves 

have been obtained for NiAl/V from finite element method and they provide very useful 

measures of the intrinsic fracture toughness for excessively large specimen dimensions. 
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CHAPTER 6 

SUGGESTIONS FOR F U T U R E W O R K 

1. The combination of the material toughening and particle transformation behavior 

should be studied. 

2. To decrease the computation time and space requirement for the computer, the 

distribution and parallel computing method should be better introduced and 

implemented in finite element analysis. The most time and memory consuming part 

of the finite element method is to construct, store and solve the stiff matrix, and 

normally the Gauss elimination method is used to solve the linear equations. I f the 

matrix were partitioned between different processors or different computers, each 

processor and computer would only store the data which belonged to itself, after the 

sparse linear equations were solved by iterative method (parallel Gauss-Sideal 

method, SOR or conjugate gradient method) or direct method (parallel Gauss method) 

, it would send out the data and boundary conditions to other processors or computers. 

Using this technique, a very large system could be solved very quickly. 

3. The object oriented finite element method should be a topic for future study. Each 

element would be considered as an object with the information belonging to it, such 

as material property, number of nodes, strain and stress components. Using the 

heritage and message hiding technology, efficient and reliable fmite element 

programs could be composed together with the objects made previously. The 
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application of object-oriented design to the finite element method has several 

advantages. The primary advantage is that it encourages the developer to abstract out 

the essential immutable qualities of the components of the fmite element method. 

This abstraction forms the definitions of objects that become the building blocks of 

the software. The class definitions encapsulate both the data and operations on the 

data, and provide an enforceable interface by which other components of the software 

may communicate with the object. Once specified, the object interfaces are frozen. 

For example, if we have a special element, such as crack tip element to catch the 

crack tip stress singularity, and we also have other regular elements or other special 

elements for different purpose, we must first abstract the information about the 

elements into the two kinds: the information that uniquely belongs to the element 

itself and should and need not to be seen and modified by other elements; and the 

information that other elements need, i.e., the interface. The encapsulated information 

could include shape functions and stress, strain distributions; the interface would 

include the number of nodes in the element, the coordinates of the elements, the nodal 

displacements and nodal forces. Thus, the design forms a stable base that can be 

extended with minimum effort to suit a new task. I f a new element, i.e. a new class 

wil l be introduced in the future, it could be derived from the existing element and by 

adding new features or made some modification to the encapsulated information. As 

the encapsulated information is independent of other elements, any modification to it 

would not change the encapsulated information belonging to other elements or the 

structure of the program. But we have to keep the interface frozen so that the other 

elements will recognize and cooperate with the new element. Due to the 
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encapsulation enforcement inherent in object-oriented languages, new code will work 

seamlessly with old code to form a new stiff matrix according to the interface the new 

element provides and get the results. However, to implement the object oriented 

method, a good design in the beginning is very crucial and much effort would be 

required because the design would very difficult to be modified with the time being. 
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